WO2015107944A1 - 絶縁電線の製造方法 - Google Patents

絶縁電線の製造方法 Download PDF

Info

Publication number
WO2015107944A1
WO2015107944A1 PCT/JP2015/050208 JP2015050208W WO2015107944A1 WO 2015107944 A1 WO2015107944 A1 WO 2015107944A1 JP 2015050208 W JP2015050208 W JP 2015050208W WO 2015107944 A1 WO2015107944 A1 WO 2015107944A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
component
extrusion molding
resin
mass
Prior art date
Application number
PCT/JP2015/050208
Other languages
English (en)
French (fr)
Inventor
豊貴 古川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2015107944A1 publication Critical patent/WO2015107944A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers

Definitions

  • the present invention relates to a method for producing an insulated wire, and more particularly to a method for producing an insulated wire that is excellent in high temperature oil resistance, wear resistance, and elongation and is suitable as a covering material for automobile wires.
  • insulated wires that can be used in a vibration environment such as in an automobile
  • insulated wires coated with polysulfone or polyethersulfone having excellent wear resistance are known (Patent Documents 4 to 5).
  • JP-A-11-66960 JP 05-182543 A Japanese Patent Laid-Open No. 08-241628 Japanese Patent Laid-Open No. 02-273411 Japanese Patent Laid-Open No. 02-183907
  • Insulated wires coated with fluoro rubber or fluoro resin are inferior in wear and are not suitable for use in vibration environments such as in automobiles. In particular, it is not suitable for the purpose of saving space by reducing the thickness of the insulating coating.
  • Insulated wires coated with polysulfone or polyethersulfone do not stretch well, so they are not suitable for use in places where bending force is applied during the installation of automobiles.
  • the problem to be solved by the present invention is to provide a method for producing an insulated wire excellent in high temperature oil resistance, wear resistance, and elongation.
  • the method for producing an insulated wire comprises (A) a polysulfone-based resin and (B) an aromatic polyester resin, and (C) a polyester elastomer during wire extrusion molding of the mixture. And (D)
  • the subject matter is to perform wire extrusion molding by compounding a compound having a reactive functional group that reacts with a carboxyl group or a hydroxyl group.
  • the polyester elastomer is preferably blended in an amount of 1 to 50% by mass in the total component including the components (A) to (C) at the time of wire extrusion molding.
  • the (B) aromatic polyester resin is preferably blended in an amount of 1 to 40% by mass in the total component including the components (A) to (B) at the time of preliminary mixing.
  • a compound having a reactive functional group that reacts with a carboxyl group or a hydroxyl group is blended in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of the total components including the components (A) to (C) during wire extrusion molding. It is preferable to do.
  • the method for producing an insulated wire according to the present invention, (A) a polysulfone-based resin and (B) an aromatic polyester resin are premixed, and (C) a polyester elastomer and (D) at the time of wire extrusion molding to the mixture. Since the wire extrusion molding is performed by blending a compound having a reactive functional group that reacts with a carboxyl group or a hydroxyl group, an insulated wire excellent in high-temperature oil resistance, wear resistance, and elongation can be produced.
  • (A) Polysulfone-based resin and (B) Aromatic polyester resin are not premixed, and when all of components (A) to (D) are blended at the same time during wire extrusion molding, high temperature oil resistance and wear resistance due to poor dispersion Adversely affect growth.
  • polyester elastomer When (C) polyester elastomer is premixed with (A) polysulfone-based resin and (B) aromatic polyester resin and then wire extrusion molding is performed, (C) polyester elastomer has a large thermal history, high temperature oil resistance, Affects wear and elongation. This is because (A) the polysulfone resin has a high melting temperature and the temperature of premixing and wire extrusion is high, whereas (C) the polyester elastomer has a thermal stability of (A) polysulfone resin and (B) aroma. It is because it is inferior compared with a group polyester resin. Therefore, the (C) polyester elastomer is not premixed with the (A) polysulfone resin and the (B) aromatic polyester resin before the wire extrusion molding.
  • the component (D) needs to be blended at least during wire extrusion molding. If the component (D) is not blended at the time of wire extrusion molding, the thermal deterioration of the polyester elastomer (C) at the time of wire extrusion molding (deterioration of physical properties due to molecular weight reduction) cannot be suppressed, so high temperature oil resistance, wear resistance, elongation Adversely affect. Moreover, the thermal deterioration of (B) aromatic polyester resin at the time of electric wire extrusion molding cannot be suppressed.
  • component (D) When component (D) is blended during wire extrusion molding, it can contribute to securing high-temperature oil resistance, wear resistance, and elongation, and (D) component improves compatibility between (B) aromatic polyester resin and (C) polyester elastomer. (C) Due to the improved dispersion of the polyester elastomer, it can contribute to the improvement of physical properties.
  • the component (D) may be blended at least at the time of electric wire extrusion molding, and may be blended at the time of premixing (A) polysulfone resin and (B) aromatic polyester resin, or may not be blended.
  • component (D) is blended even during preliminary mixing, there is an effect of suppressing thermal deterioration of (B) aromatic polyester resin during preliminary mixing.
  • the polysulfone-based resin is a thermoplastic resin and has a sulfonyl group in the structure (main chain) of the repeating unit.
  • a polysulfone-based resin is a component that improves high-temperature oil resistance and wear resistance.
  • Specific examples of the (A) polysulfone-based resin include polysulfone, polyethersulfone, and polyphenylsulfone. These may be used alone as the (A) polysulfone-based resin, or two or more of them may be used in combination.
  • the (A) polysulfone-based resin is preferably polyethersulfone, polyphenylsulfone, or a combination thereof. From the viewpoint of being particularly excellent in the effect of improving high temperature oil resistance, polyphenylsulfone is preferred.
  • the aromatic polyester resin is a thermoplastic resin and can improve the compatibility of (A) the polysulfone resin and (C) the polyester elastomer. Moreover, since it has an aromatic ring in the structure (intramolecular) of a repeating unit, high temperature oil resistance can be improved.
  • the (B) aromatic polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and the like. These may be used alone as the (B) aromatic polyester resin, or two or more of them may be used in combination.
  • aromatic polyester resin has a naphthyl group in the structure of repeating units. , PEN, PBN or a combination thereof.
  • the polyester elastomer is a component that improves elongation (insulation elongation). Since the (C) polyester elastomer itself has low compatibility with the (A) polysulfone resin, the elongation is not improved even if it is added alone to the (A) polysulfone resin, and (A) the polysulfone resin. Reduces physical properties such as high-temperature oil resistance and wear resistance that have been improved using resins. The (C) polyester elastomer is blended with the (B) aromatic polyester resin.
  • (B) The compatibility of (C) polyester elastomer and (A) polysulfone resin is improved by blending (C) polyester elastomer together with (A) aromatic polyester resin, and (C) elongation by blending polyester elastomer. The improvement effect is demonstrated. Moreover, (A) It suppresses that physical properties, such as high temperature oil resistance and abrasion resistance which were improved using the polysulfone-type resin, fall.
  • the polyester elastomer is a thermoplastic elastomer and is composed of a block copolymer of a hard segment and a soft segment.
  • the hard segment include aromatic polyesters such as PBT and PBN, and aliphatic polyesters.
  • the soft segment include aliphatic polyether and aliphatic polyester.
  • the polyester elastomer preferably has a melting point of 200 ° C. or higher from the viewpoint of superior oil resistance at high temperatures. More preferably, the melting point is 210 ° C or higher.
  • (D) A compound having a reactive functional group that reacts with a carboxyl group or a hydroxyl group reacts with the component (B) or the component (C) to form a bond (having a chain extension effect).
  • (A) Polysulfone resin increases the temperature of wire extrusion molding. Therefore, (B) aromatic polyester resins and (C) polyester elastomers, especially physical properties (high temperature oil resistance, wear resistance, etc.) due to molecular weight reduction of component (C) ), But the physical properties (high temperature oil resistance) due to the molecular weight of component (B) or component (C) are reduced by reacting with component (B) or component (C) to form a bond. Deterioration of wear resistance and wear resistance). In addition, the (B) component or the (C) component to which the (D) component is bonded is improved in compatibility with the (A) polysulfone resin due to an increase in melt viscosity. This also has the effect of improving physical properties.
  • the component (D) preferably has a high thermal decomposition temperature.
  • a thing with a high thermal decomposition temperature a thing with comparatively large molecular weight is preferable.
  • examples of such a compound include a polymer (polymer) having a reactive functional group that reacts with a carboxyl group or a hydroxyl group.
  • the reactive functional group that reacts with the carboxyl group or hydroxyl group of component (D) includes an epoxy group, a carbodiimide group, an oxazoline group, and the like.
  • Examples of the polymer (polymer) having a reactive functional group that reacts with a carboxyl group or a hydroxyl group include polycarbodiimide, a maleic acid-modified polymer, a glycidyl-modified polymer, and an oxazoline-modified polymer.
  • a compound having a reactive functional group that reacts with a carboxyl group or a hydroxyl group can sufficiently exhibit the above effect even if it is a monofunctional compound having one reactive functional group in the molecule.
  • a bond can be formed with respect to both the component (B) and the component (C), and the compatibility of both can be further enhanced.
  • the polyester elastomer is preferably blended in an amount of 1 to 50% by mass in the total component including the components (A) to (C) at the time of wire extrusion molding. More preferably, it is 5 to 30% by mass.
  • the compounding quantity of a polyester elastomer is 1 mass% or more in the total component, the improvement effect of elongation is high. Moreover, if the compounding quantity of (C) polyester elastomer is 50 mass% or less in the total component, the outstanding high temperature oil resistance and abrasion resistance will be easy to be ensured.
  • the aromatic polyester resin is preferably blended in an amount of 1 to 40% by mass in the total component including the components (A) to (B) at the time of preliminary mixing. More preferably, it is 5 to 30% by mass. If the blending amount of the (B) aromatic polyester resin is 1% by mass or more in the total component, the compatibility of the (C) polyester elastomer with the (A) polysulfone-based resin is easily improved, thereby improving the elongation. High effect. Also, excellent wear resistance is easily secured. (B) If the compounding quantity of aromatic polyester resin is 40 mass% or less in the total component, since a fall of abrasion resistance is easy to be suppressed, the outstanding abrasion resistance is easy to be ensured. And the improvement effect of elongation is high.
  • a compound having a reactive functional group that reacts with a carboxyl group or a hydroxyl group is blended in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of the total components including the components (A) to (C) during wire extrusion molding. It is preferred that More preferably, it is 0.1 to 1 part by mass.
  • the compounding quantity of a component is 0.01 mass part or more with respect to 100 mass parts of the total component, the effect which suppresses the molecular weight fall by reacting with a (B) component or (C) component and forming a bond. Is expensive. Thereby, the effect which improves high temperature oil resistance, abrasion resistance, and elongation is high.
  • the blending amount of the component (D) is 5 parts by mass or less with respect to 100 parts by mass of the total component, the influence on physical properties due to insufficient kneading can be suppressed, and thereby excellent high temperature oil resistance and abrasion resistance. Property and elongation can be maintained.
  • additives used for the wire covering material can be added to the wire covering material as necessary.
  • additives include fillers, pigments, antioxidants, and antioxidants. These additives may be blended either during premixing or during wire extrusion, but are preferably blended during premixing from the viewpoint of dispersibility.
  • the wire covering material can have excellent high temperature oil resistance, wear resistance and elongation by reacting (D) component with (B) component or (C) component to form a bond.
  • the elongation of the wire covering material is preferably 220% or more. More preferably, it is 250% or more. Elongation is the elongation at break.
  • the insulated wire obtained by the manufacturing method according to the present invention has a metal conductor and a wire coating material (insulation coating layer) coated on the outer periphery of the metal conductor.
  • a wire coating material insulation coating layer coated on the outer periphery of the metal conductor.
  • FIG. 1 the structure of the insulated wire which concerns on one Embodiment of this invention is shown.
  • the insulated wire 1 is configured by an insulating coating layer 3 provided on the outer periphery of a metal conductor 2.
  • the insulating coating layer 3 is a single layer.
  • the metal conductor 2 is generally made of copper, but aluminum, magnesium or the like can be used as a conductor in addition to copper. Moreover, you may contain another metal in copper. Examples of other metals include iron, nickel, magnesium, and silicon. In addition to the above, the metal conductor 2 may be a metal commonly used as a conductor added to copper or may be used alone. The metal conductor 2 may be a single wire or a stranded wire obtained by twisting a plurality of wires. At this time, the diameter can be reduced by twisting and compressing.
  • the cross-sectional area of the metal conductor 2, the thickness of the insulating coating layer 3 and the like can be appropriately selected according to the use of the insulated wire 1, and are not particularly limited.
  • an insulated wire for example, an insulated wire for automobiles used in a vibration environment such as in an automobile or in high-temperature oil can be used.
  • the insulated wire 1 is prepared by kneading the material constituting the insulating coating layer 3 by using a kneader that is usually used, such as an extruder (single screw or biaxial), a Banbury mixer, a pressure kneader, or a roll. It can be obtained by extrusion coating the insulating coating layer 3 on the outer periphery of the metal conductor 2 using a molding machine or the like.
  • a kneader that is usually used, such as an extruder (single screw or biaxial), a Banbury mixer, a pressure kneader, or a roll. It can be obtained by extrusion coating the insulating coating layer 3 on the outer periphery of the metal conductor 2 using a molding machine or the like.
  • the insulated wire 1 is made into a wire harness by connecting a connection terminal or a connector to the terminal. Moreover, it is set as a wire harness by bundling a plurality.
  • the insulated wire is immersed in ATF (Nissan genuine ATF: NS-3) at 120 ° C. for an arbitrary time, and then a self-winding test is performed, and 1 kv ⁇ 1 min.
  • the withstand voltage test was conducted. Even if the immersion time is 3000 hours or more, the case where the withstand voltage test can be endured without causing dielectric breakdown is evaluated as “Good”, and even if the immersion time is 3500 hours or more, the dielectric breakdown does not occur.
  • the case where the voltage test could be endured was rated as “ ⁇ ”, the case where the immersion time was less than 3000 hours caused dielectric breakdown, and the case where it could not withstand the withstand voltage test was determined as “failed”.
  • Comparative Example 1 since all of the components (A) to (D) are premixed and then wire extrusion is performed, the thermal history of component (C) is large, resulting in high temperature oil resistance, wear resistance, and elongation. Inferior. In Comparative Example 2, since all of the components (A) to (C) are premixed and then subjected to wire extrusion, the thermal history of the component (C) is large and the wear resistance and elongation are poor. In Comparative Example 3, since all of the components (B) to (D) are premixed and then wire extrusion is performed, the thermal history of the component (C) is large. Moreover, since the component (A) is not premixed, it is poorly dispersed.
  • the example according to the present invention it was confirmed that it was excellent in high temperature oil resistance, wear resistance and elongation.
  • the insulated wire obtained from these can be used even in a vibration environment in high-temperature oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Insulated Conductors (AREA)

Abstract

高温耐油性、耐摩耗性、伸びに優れる絶縁電線の製造方法を提供する。 (A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂を予備混合し、該混合物に対し、電線押出成形時に(C)ポリエステルエラストマーおよび(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物を配合して電線押出成形を行う。

Description

絶縁電線の製造方法
 本発明は、絶縁電線の製造方法に関し、さらに詳しくは、高温耐油性、耐摩耗性、伸びに優れる、自動車用電線の被覆材として好適な絶縁電線の製造方法に関するものである。
 高温油中で使用可能な絶縁電線としては、耐熱性および耐油性に優れたフッ素ゴムやフッ素樹脂を被覆した絶縁電線が知られている(特許文献1~3)。
 また、自動車内などの振動環境下で使用可能な絶縁電線としては、耐摩耗性に優れたポリサルホンやポリエーテルサルホンを被覆した絶縁電線が知られている(特許文献4~5)。
特開平11-66960号公報 特開平05-182543号公報 特開平08-241628号公報 特開平02-273411号公報 特開平02-183907号公報
 フッ素ゴムやフッ素樹脂を被覆した絶縁電線は摩耗性に劣り、自動車内などの振動環境下での使用には適さない。特に、絶縁被覆の厚みを薄くして省スペース化を図る目的には適さない。
 ポリサルホンやポリエーテルサルホンを被覆した絶縁電線は伸びが悪いため、自動車内などの配策時に曲げの力が加わるところでの使用には適さない。
 本発明の解決しようとする課題は、高温耐油性、耐摩耗性、伸びに優れる絶縁電線の製造方法を提供することにある。
 上記課題を解決するため本発明に係る絶縁電線の製造方法は、(A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂を予備混合し、該混合物に対し、電線押出成形時に(C)ポリエステルエラストマーおよび(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物を配合して電線押出成形を行うことを要旨とするものである。
 (C)ポリエステルエラストマーは、電線押出成形時に(A)~(C)成分を合わせた合計成分中に1~50質量%配合することが好ましい。(B)芳香族ポリエステル樹脂は、予備混合時に(A)~(B)成分を合わせた合計成分中に1~40質量%配合することが好ましい。(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物は、電線押出成形時に(A)~(C)成分を合わせた合計成分100質量部に対し0.01~5質量部配合することが好ましい。
 本発明に係る絶縁電線の製造方法によれば、(A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂を予備混合し、該混合物に対し、電線押出成形時に(C)ポリエステルエラストマーおよび(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物を配合して電線押出成形を行うことから、高温耐油性、耐摩耗性、伸びに優れる絶縁電線を製造できる。
本発明の一実施形態に係る絶縁電線の断面図である。
 本発明に係る絶縁電線の製造方法は、(A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂を予備混合し、該混合物に対し、電線押出成形時に(C)ポリエステルエラストマーおよび(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物を配合して電線押出成形を行うものである。
 (A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂を予備混合しないで、電線押出成形時に(A)~(D)成分のすべてを一度に配合すると、分散不良により高温耐油性、耐摩耗性、伸びに悪影響を及ぼす。
 (A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂とともに(C)ポリエステルエラストマーを予備混合した後、電線押出成形を行うと、(C)ポリエステルエラストマーの熱履歴が大きくなり、高温耐油性、耐摩耗性、伸びに悪影響を及ぼす。これは、(A)ポリサルホン系樹脂の溶融温度が高く、予備混合や電線押出成形の温度が高いのに対し、(C)ポリエステルエラストマーの熱安定性が(A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂と比較して劣るためである。よって、(C)ポリエステルエラストマーは、電線押出成形前に、(A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂とともに予備混合しない。
 (D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物は、(B)芳香族ポリエステル樹脂あるいは(C)ポリエステルエラストマーと反応して結合を形成する(鎖延長の効果がある)ので、後述するように、(A)ポリサルホン系樹脂に起因して予備混合の温度や電線押出成形の温度が高くなることによる、(B)芳香族ポリエステル樹脂や(C)ポリエステルエラストマー、特に(C)ポリエステルエラストマーの分子量低下による物性(高温耐油性や耐摩耗性など)の悪化を抑える。
 上記観点から、(D)成分は、少なくとも電線押出成形時に配合する必要がある。電線押出成形時に(D)成分を配合しないと、電線押出成形時の(C)ポリエステルエラストマーの熱劣化(分子量低下による物性の低下)を抑えることができないため、高温耐油性、耐摩耗性、伸びに悪影響を及ぼす。また、電線押出成形時の(B)芳香族ポリエステル樹脂の熱劣化も抑えることができない。
 電線押出成形時に(D)成分を配合すると、高温耐油性、耐摩耗性、伸びの確保に貢献できるほか、(D)成分による(B)芳香族ポリエステル樹脂と(C)ポリエステルエラストマーの相溶性向上による(C)ポリエステルエラストマーの分散向上から、物性の向上に貢献できる。
 (D)成分は、少なくとも電線押出成形時に配合すればよく、(A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂の予備混合時にも配合してもよいし、配合しなくてもよい。予備混合時にも(D)成分を配合すると、予備混合時の(B)芳香族ポリエステル樹脂の熱劣化を抑える効果がある。
 (A)ポリサルホン系樹脂は、熱可塑性樹脂であり、繰り返し単位の構造内(主鎖内)にスルホニル基を有するものである。(A)ポリサルホン系樹脂は、高温耐油性および耐摩耗性を向上する成分となる。(A)ポリサルホン系樹脂としては、具体的には、ポリサルホン、ポリエーテルサルホン、ポリフェニルサルホンなどが挙げられる。これらは、(A)ポリサルホン系樹脂として、単独で用いられても良いし、2種以上が組み合わされて用いられても良い。高温耐油性および耐摩耗性を向上する効果により優れるなどの観点からいうと、(A)ポリサルホン系樹脂は、ポリエーテルサルホン、ポリフェニルサルホン、あるいは、これらの組み合わせであることが好ましい。また、高温耐油性を向上する効果に特に優れるなどの観点からいうと、ポリフェニルサルホンが好ましい。
 (B)芳香族ポリエステル樹脂は、熱可塑性樹脂であり、(A)ポリサルホン系樹脂と(C)ポリエステルエラストマーの相溶性を向上させることができる。また、繰り返し単位の構造内(分子内)に芳香環を有することから、高温耐油性を向上させることができる。(B)芳香族ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)などが挙げられる。これらは、(B)芳香族ポリエステル樹脂として、単独で用いられても良いし、2種以上が組み合わされて用いられても良い。(A)ポリサルホン系樹脂および(C)ポリエステルエラストマーとの相溶性および高温耐油性に特に優れるなどの観点からいうと、(B)芳香族ポリエステル樹脂としては、繰り返し単位の構造内にナフチル基を有する、PEN、PBNあるいはこれらの組み合わせが好ましい。
 (C)ポリエステルエラストマーは、伸び(絶縁伸び)を向上する成分となる。(C)ポリエステルエラストマー自体は(A)ポリサルホン系樹脂との相溶性が低いため、(A)ポリサルホン系樹脂に対してこれ単独で配合しても伸びは改善されず、また、(A)ポリサルホン系樹脂を用いて向上させた高温耐油性および耐摩耗性などの物性を低下させる。(C)ポリエステルエラストマーは(B)芳香族ポリエステル樹脂とともに配合される。(B)芳香族ポリエステル樹脂とともに(C)ポリエステルエラストマーが配合されることで、(C)ポリエステルエラストマーと(A)ポリサルホン系樹脂の相溶性は改善され、(C)ポリエステルエラストマーを配合することによる伸びの向上効果が発揮される。また、(A)ポリサルホン系樹脂を用いて向上させた高温耐油性および耐摩耗性などの物性が低下するのを抑える。
 (C)ポリエステルエラストマーは、熱可塑性エラストマーであり、ハードセグメントとソフトセグメントとのブロック共重合体からなる。ハードセグメントは、PBTやPBNなどの芳香族ポリエステルや脂肪族ポリエステルなどが挙げられる。ソフトセグメントは、脂肪族ポリエーテルや脂肪族ポリエステルなどが挙げられる。(C)ポリエステルエラストマーは、高温耐油性により優れるなどの観点から、融点が200℃以上のものが好ましい。より好ましくは融点が210℃以上のものである。
 (D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物は、(B)成分あるいは(C)成分と反応して結合を形成する(鎖延長の効果がある)。(A)ポリサルホン系樹脂により電線押出成形の温度が高くなるため、(B)芳香族ポリエステル樹脂や(C)ポリエステルエラストマー、特に(C)成分の分子量低下による物性(高温耐油性や耐摩耗性など)の悪化が危惧されるが、(D)成分が(B)成分あるいは(C)成分と反応して結合を形成することにより、(B)成分あるいは(C)成分の分子量低下による物性(高温耐油性や耐摩耗性など)の悪化を抑えることができる。また、(D)成分が結合した(B)成分あるいは(C)成分は、溶融粘度の上昇により(A)ポリサルホン系樹脂との相溶性が向上する。これによっても、物性向上の効果がある。
 (B)成分あるいは(C)成分の分子量低下を抑える効果などの観点から、(D)成分は熱分解温度の高いものが好ましい。熱分解温度の高いものとしては、分子量の比較的大きいものが好ましい。このような化合物としては、カルボキシル基またはヒドロキシル基と反応する反応性官能基を有するポリマー(重合体)などが挙げられる。
 (D)成分のカルボキシル基またはヒドロキシル基と反応する反応性官能基としては、エポキシ基、カルボジイミド基、オキサゾリン基などが挙げられる。カルボキシル基またはヒドロキシル基と反応する反応性官能基を有するポリマー(重合体)としては、ポリカルボジイミド、マレイン酸変性ポリマー、グリシジル変性ポリマー、オキサゾリン変性ポリマーなどが挙げられる。
 (D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物は、その反応性官能基を分子中に1つ有する単官能の化合物であっても上記効果を十分に奏するが、2官能以上の化合物であると、(B)成分と(C)成分の両方に対して結合を形成して両者の相溶性をより高める効果を発揮できる。
 (C)ポリエステルエラストマーは、電線押出成形時に(A)~(C)成分を合わせた合計成分中に1~50質量%配合されることが好ましい。より好ましくは5~30質量%である。(C)ポリエステルエラストマーの配合量がその合計成分中に1質量%以上であれば、伸びの向上効果が高い。また、(C)ポリエステルエラストマーの配合量がその合計成分中に50質量%以下であれば、優れた高温耐油性や耐摩耗性が確保されやすい。
 (B)芳香族ポリエステル樹脂は、予備混合時に(A)~(B)成分を合わせた合計成分中に1~40質量%配合されることが好ましい。より好ましくは5~30質量%である。(B)芳香族ポリエステル樹脂の配合量がその合計成分中に1質量%以上であれば、(C)ポリエステルエラストマーの(A)ポリサルホン系樹脂との相溶性が改善されやすく、これによる伸びの向上効果が高い。また、優れた耐摩耗性も確保されやすい。(B)芳香族ポリエステル樹脂の配合量がその合計成分中に40質量%以下であれば、耐摩耗性の低下が抑えられやすいので、優れた耐摩耗性が確保されやすい。そして、伸びの向上効果が高い。
 (D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物は、電線押出成形時に(A)~(C)成分を合わせた合計成分100質量部に対し0.01~5質量部配合されることが好ましい。より好ましくは0.1~1質量部である。(D)成分の配合量がその合計成分100質量部に対し0.01質量部以上であれば、(B)成分あるいは(C)成分と反応して結合を形成することによる分子量低下を抑える効果が高い。これにより、高温耐油性、耐摩耗性、伸びを向上する効果が高い。また、(D)成分の配合量がその合計成分100質量部に対し5質量部以下であれば、混練不足による物性への影響を抑えることができ、これにより、優れた高温耐油性、耐摩耗性、伸びを維持することができる。
 電線被覆材には、(A)~(D)成分以外にも、必要に応じて、電線被覆材に利用される一般的な添加剤を添加することができる。このような添加剤としては、充填剤、顔料、酸化防止剤、老化防止剤などが挙げられる。これらの添加剤は、予備混合時、電線押出成形時のいずれにおいて配合してもよいが、分散性の観点から、予備混合時に配合することが好ましい。
 電線被覆材は、(D)成分が(B)成分あるいは(C)成分と反応して結合を形成することで、優れた高温耐油性と耐摩耗性と伸びを備えることができる。電線被覆材の伸びは、220%以上であることが好ましい。より好ましくは250%以上である。伸びは破断時の伸びである。
 本発明に係る製造方法により得られる絶縁電線は、金属導体と、金属導体の外周に被覆した電線被覆材(絶縁被覆層)と、を有する。図1には、本発明の一実施形態に係る絶縁電線の構成を示す。図1に示すように、絶縁電線1は、金属導体2の外周に絶縁被覆層3が設けられたもので構成されている。特に限定されるものではないが、絶縁被覆層3は単層である。
 金属導体2は、銅を用いることが一般的であるが、銅以外にもアルミニウム、マグネシウム等を導体として用いることができる。また、銅に他の金属を含有してもよい。他の金属としては、例えば、鉄、ニッケル、マグネシウム、シリコン等が挙げられる。金属導体2は、この他にも、通常、導体として広く使用されている金属を、銅に添加あるいは単独で使用しても良い。また金属導体2は、単線を用いてもよいし、複数の線を撚り合わせた撚り線を使用してもよい。このとき撚り合わせて圧縮すると細径化することが可能である。
 金属導体2の断面積、絶縁被覆層3の厚さ等は、絶縁電線1の用途等に応じて適宜選択することができ、特に限定されない。絶縁電線1の用途としては、高温耐油性や耐摩耗性に優れることから、自動車内などの振動環境下や高温油中で使用される絶縁電線(例えば自動車用絶縁電線)などが挙げられる。
 絶縁電線1は、例えば、押出機(単軸、二軸)、バンバリミキサー、加圧ニーダー、ロールなどの通常用いられる混練機を用いて絶縁被覆層3を構成する材料を混練し、通常の押出成形機などを用いて金属導体2の外周に絶縁被覆層3を押出被覆することで得られる。
 絶縁電線1は、その端末に接続端子やコネクタが接続されることにより、ワイヤーハーネスとされる。また、複数本が束ねられることにより、ワイヤーハーネスとされる。
 以下、本発明を実施例によって説明する。
〔絶縁電線の作製〕
 表1および表2に示された成分組成(質量部)に従って、樹脂成分の予備混合、電線押出成形を行い、絶縁電線を作製した。予備混合は二軸混合機を用いて行い、予備混合後、混合物をペレット化した。電線押出成形は押出成形機を用いて行った。電線押出成形では、混練した樹脂組成物を断面積0.35mmの撚線導体の周囲に被覆厚0.2mmの絶縁被覆層を押出成形した。押出成形では、直径が、それぞれ1.1mmのダイスと0.75mmのニップルを使用した。得られた絶縁電線について、高温耐油性、絶縁伸び、耐摩耗性の評価を行った。各試験結果を表1および表2に示す。なお、各成分の具体的な使用材料および試験方法は下記の通りである。
〔使用材料〕
<(A)ポリサルホン系樹脂>
・ポリフェニルサルホン(PPSU):ウルトラゾーンP3010(BASF社製)
<(B)芳香族ポリエステル樹脂>
・ポリエチレンナフタレート(PEN):テオネックスTN-8065S(帝人化成社製)
<(C)ポリエステルエラストマー>
・(C)ポリエステルエラストマー<2>:ハイトレル5557(東レ・デュポン社製、融点208℃)
<(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物>
・エポキシ基含有化合物:ジョンクリルADR4300S(BASF社製)(エポキシ基を有するポリマー、2官能以上の化合物)
〔高温耐油性〕
 絶縁電線を120℃×任意時間、ATF(日産純正ATF:NS-3)に浸漬後、自己巻き付け試験を行い、1kv×1min.の耐電圧試験を行った。浸漬時間が3000時間以上であっても絶縁破壊を生じないで耐電圧試験に耐えることができた場合を合格「○」とし、浸漬時間が3500時間以上であっても絶縁破壊を生じないで耐電圧試験に耐えることができた場合を合格「◎」とし、浸漬時間が3000時間未満で絶縁破壊を生じ、耐電圧試験に耐えられなかった場合を不合格「×」とした。
〔絶縁伸び〕
 絶縁電線から導体を抜き取り所定の長さの絶縁被覆層を取り出して試験片とした。引張試験機にて標線間距離が20mm、引張速度が50mm/min.の条件で絶縁被覆層の引張試験を行った。絶縁伸びが220%以上の場合を○(合格)、250%以上の場合を◎(合格)、220%未満である場合を×(不合格)とした。
〔耐摩耗性〕
 ISO6722に準拠し、ブレード往復法で行った。ブレードにかかる荷重を7Nとし、試験回数4回の最小値が1200回以上を合格(○)、1500回以上を合格(◎)、1200回未満を不合格(×)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例1では、(A)~(D)成分のすべてを予備混合した後、電線押出成形を行っているため、(C)成分の熱履歴が大きく、高温耐油性、耐摩耗性、伸びに劣っている。比較例2では、(A)~(C)成分のすべてを予備混合した後、電線押出成形を行っているため、(C)成分の熱履歴が大きく、耐摩耗性、伸びに劣っている。比較例3では、(B)~(D)成分のすべてを予備混合した後、電線押出成形を行っているため、(C)成分の熱履歴が大きい。また、(A)成分を予備混合していないため、分散不良である。このため、高温耐油性、伸びに劣っている。比較例4では、(A)~(D)成分のすべてを予備混合しないで電線押出成形を行っているため、分散不良で高温耐油性、耐摩耗性、伸びに劣っている。比較例5では、(A)、(C)成分を予備混合した後、電線押出成形を行っているため、(C)成分の熱履歴が大きい。また、(A)、(C)成分の相溶化剤となる(B)成分を予備混合していないため、分散不良である。このため、高温耐油性、耐摩耗性、伸びに劣っている。比較例6では、電線押出成形時に(D)成分を配合していないため、(C)成分の熱劣化により高温耐油性、耐摩耗性、伸びに劣っている。
 これに対し、本発明に従う実施例によれば、高温耐油性、耐摩耗性、伸びに優れることが確認できた。これらから得られる絶縁電線は、高温油中の振動環境下でも使用することができる。また、耐摩耗性に優れるため、絶縁被覆の薄肉化による電線細径化、ワイヤーハーネスの省スペース化に貢献できる。
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。

Claims (4)

  1.  (A)ポリサルホン系樹脂および(B)芳香族ポリエステル樹脂を予備混合し、該混合物に対し、電線押出成形時に(C)ポリエステルエラストマーおよび(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物を配合して電線押出成形を行うことを特徴とする絶縁電線の製造方法。
  2.  前記電線押出成形時に、前記(A)~(C)成分を合わせた合計成分中に、前記(C)ポリエステルエラストマーを1~50質量%配合することを特徴とする請求項1に記載の絶縁電線の製造方法。
  3.  前記予備混合時に、前記(A)~(B)成分を合わせた合計成分中に、前記(B)芳香族ポリエステル樹脂を1~40質量%配合することを特徴とする請求項1または2に記載の絶縁電線の製造方法。
  4.  前記電線押出成形時に、前記(A)~(C)成分を合わせた合計成分100質量部に対し、前記(D)カルボキシル基またはヒドロキシル基と反応する反応性官能基を有する化合物を0.01~5質量部配合することを特徴とする請求項1から3のいずれか1項に記載の絶縁電線の製造方法。

     
PCT/JP2015/050208 2014-01-15 2015-01-07 絶縁電線の製造方法 WO2015107944A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-004902 2014-01-15
JP2014004902A JP2015131458A (ja) 2014-01-15 2014-01-15 絶縁電線の製造方法

Publications (1)

Publication Number Publication Date
WO2015107944A1 true WO2015107944A1 (ja) 2015-07-23

Family

ID=53542834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050208 WO2015107944A1 (ja) 2014-01-15 2015-01-07 絶縁電線の製造方法

Country Status (2)

Country Link
JP (1) JP2015131458A (ja)
WO (1) WO2015107944A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964657A (ja) * 1982-10-05 1984-04-12 Dainippon Ink & Chem Inc 熱可塑性ポリエステル樹脂組成物
JP2013235788A (ja) * 2012-05-11 2013-11-21 Auto Network Gijutsu Kenkyusho:Kk 電線被覆材用樹脂組成物および絶縁電線

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964657A (ja) * 1982-10-05 1984-04-12 Dainippon Ink & Chem Inc 熱可塑性ポリエステル樹脂組成物
JP2013235788A (ja) * 2012-05-11 2013-11-21 Auto Network Gijutsu Kenkyusho:Kk 電線被覆材用樹脂組成物および絶縁電線

Also Published As

Publication number Publication date
JP2015131458A (ja) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5534035B2 (ja) 自動車用絶縁電線及び自動車用ワイヤーハーネス
JP2016039042A (ja) 絶縁電線、回転電機及び絶縁電線の製造方法
WO2013168525A1 (ja) 電線被覆材用樹脂組成物および絶縁電線
JP5967023B2 (ja) 電線被覆材用樹脂組成物および絶縁電線ならびにワイヤーハーネス
JP2014133834A (ja) 電線被覆材用樹脂組成物および絶縁電線ならびにワイヤーハーネス
JP2017199566A (ja) 絶縁電線及びその製造方法並びに電気機器の製造方法
JP2013120664A (ja) 自動車用絶縁電線及び自動車用ワイヤーハーネス
WO2015107944A1 (ja) 絶縁電線の製造方法
JP2013155272A (ja) 混合絶縁材料及びその成形品
JP5580700B2 (ja) 絶縁電線及びケーブル
JP5949670B2 (ja) 電線被覆材用樹脂組成物および絶縁電線ならびにワイヤーハーネス
JP2017076560A (ja) 絶縁電線およびその製造方法
JP2014053196A (ja) 絶縁電線
JP2016197560A (ja) 自動車用電線及びそれを用いたワイヤーハーネス
JP2015025032A (ja) 電線被覆材用樹脂組成物及び絶縁電線
WO2017199600A1 (ja) 自動車用電線及びそれを用いたワイヤーハーネス
CN109983545A (zh) 电线包覆材料用组合物和绝缘电线
JP2015015119A (ja) 電線被覆材用樹脂組成物及び絶縁電線
WO2015115157A1 (ja) 絶縁電線
JP2015065127A (ja) 絶縁電線
JP2014029770A (ja) 絶縁電線
JP5888173B2 (ja) 絶縁電線
JP2017103172A (ja) 絶縁電線
JP2017191718A (ja) 絶縁電線
JP2015130242A (ja) 絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737125

Country of ref document: EP

Kind code of ref document: A1