WO2015105106A1 - 熱伝導性シート用樹脂組成物、熱伝導性シート、樹脂被膜金属、電子機器 - Google Patents

熱伝導性シート用樹脂組成物、熱伝導性シート、樹脂被膜金属、電子機器 Download PDF

Info

Publication number
WO2015105106A1
WO2015105106A1 PCT/JP2015/050181 JP2015050181W WO2015105106A1 WO 2015105106 A1 WO2015105106 A1 WO 2015105106A1 JP 2015050181 W JP2015050181 W JP 2015050181W WO 2015105106 A1 WO2015105106 A1 WO 2015105106A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
resin composition
heat
filler
polyurethane
Prior art date
Application number
PCT/JP2015/050181
Other languages
English (en)
French (fr)
Inventor
雅子 日夏
武 藤原
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020167017527A priority Critical patent/KR20160106579A/ko
Priority to JP2015556809A priority patent/JPWO2015105106A1/ja
Priority to CN201580003926.9A priority patent/CN105899613A/zh
Publication of WO2015105106A1 publication Critical patent/WO2015105106A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Definitions

  • the present invention relates to a resin composition for a heat conductive sheet.
  • the present invention relates to a resin composition that is easy to handle and can easily form a sheet having excellent thermal conductivity.
  • a heat sink is known as a component that is attached to a mechanical / electrical component that generates heat and aims to lower the temperature by radiating heat.
  • heat sinks are mainly made of metal such as aluminum or copper, which easily conducts heat.
  • a heat conductive sheet made of resin is sandwiched between a heat generating element such as a semiconductor package and a heat sink made of aluminum or copper, and the heat generating element and the heat sink are brought into close contact with each other. There is a method to dissipate heat by efficiently transferring the heat to the heat sink.
  • inorganic particles having high thermal conductivity may be contained in the sheet.
  • inorganic particles having high thermal conductivity may be contained in the sheet.
  • the thermal conductivity in directions other than the thickness direction cannot be improved.
  • the heat conductive sheet in which the major axis direction of the particles is oriented in the thickness direction as described above is repeatedly subjected to hot pressing to orient the particles in a direction (plane direction) parallel to the sheet surface.
  • an object of the present invention is to provide a resin composition for a heat conductive sheet capable of forming a heat conductive sheet excellent in heat conductivity in the thickness direction and the surface direction.
  • a heat conductive sheet can be easily formed by using an aqueous dispersion in which aggregates in which hexagonal nitride crystals are aggregated and polyurethane particles are dispersed in water. Has found that it can have thermal conductivity in the thickness direction and in the plane direction, and has completed the present invention.
  • the resin composition for a thermal conductive sheet according to the first aspect of the present invention is a first aggregate 11 in which polyurethane water-dispersed particles and hexagonal nitride crystals as shown in FIG. 1 are aggregated.
  • the “polyurethane water-dispersed particle” means a polyurethane resin as a solid component dispersed in a dispersion medium (such as an aqueous liquid or water) in which the polyurethane resin is not dissolved. It is synonymous with.
  • the “aggregate in which crystals are aggregated” refers to an aggregate in which a plurality of crystals are collected.
  • the shape of the aggregate is not particularly limited, and may be, for example, a rounded snowman, spherical, substantially spherical, oblate, or a shape like a rugby ball. In addition, other shapes such as chocolate flakes, desert roses (mineral crystals), and worm-like nests may be used. If comprised in this way, since the resin composition for heat conductive sheets is aqueous, handling, such as application
  • the formed thermal conductive sheet is superior in adhesion to metal surfaces and heat resistance as compared to resin compositions based on acrylic and acrylic silicone, It can be a highly ductile sheet. Further, there is no contamination with low molecular siloxane, which is a concern when a silicone system is used as a base. Furthermore, the orientation of the crystals in the formed sheet is not limited to a certain direction in the formed sheet due to the aggregate of hexagonal nitride crystals contained in the resin composition. As shown in FIG. It can have thermal conductivity in the (vertical) direction and the plane (horizontal) direction.
  • the resin composition for a heat conductive sheet according to the second aspect of the present invention is the resin composition for a heat conductive sheet according to the first aspect of the present invention, wherein the material constituting the polyurethane water-dispersed particles is: It is at least one selected from the group consisting of polycarbonate polyurethane, polyester polyurethane, aliphatic polyurethane, fatty acid-modified polyurethane, aromatic polyurethane, and polyether polyurethane. If comprised in this way, it will become the resin composition for heat conductive sheets which can form the heat conductive sheet in which the characteristic of polyurethane was especially excellent.
  • the resin composition for a heat conductive sheet according to the third aspect of the present invention is the resin composition for a heat conductive sheet according to the first aspect or the second aspect of the present invention, wherein the first filler is Hexagonal boron nitride. If comprised in this way, the sheet
  • the resin composition for a heat conductive sheet according to the fourth aspect of the present invention is the resin composition for a heat conductive sheet according to any one of the first to third aspects of the present invention described above. 5 to 150 parts by weight of the first filler is contained with respect to 100 parts by weight of the polyurethane water-dispersed particles. If comprised in this way, content of a 1st filler can be made into an appropriate quantity.
  • the resin composition for a heat conductive sheet according to the fifth aspect of the present invention is the resin composition for a heat conductive sheet according to any one of the first to fourth aspects of the present invention.
  • the first filler is a powder, and the average particle size of the first filler is 0.5 to 150 ⁇ m. If comprised in this way, since the average particle diameter of a 1st filler is 0.5 micrometer or more, the sheet
  • the resin composition for a heat conductive sheet according to the sixth aspect of the present invention is the resin composition for a heat conductive sheet according to any one of the first to fifth aspects of the present invention. It further contains at least one second filler selected from the group consisting of boron nitride, cordierite, mullite, silica, alumina, zinc oxide and graphite. If comprised in this way, the heat conductivity of the sheet
  • the heat conductive sheet according to the seventh aspect of the present invention is obtained by drying the resin composition for a heat conductive sheet according to any one of the first to sixth aspects of the present invention. . If comprised in this way, the heat conductive sheet excellent in heat conductivity, heat resistance, and adhesiveness can be formed easily.
  • the thermal conductive sheet according to the eighth aspect of the present invention is the thermal conductive sheet according to the seventh aspect of the present invention, wherein the ASKER C hardness at a surface temperature of 50 ° C. is 25 to 80.
  • ASKER C hardness means the hardness measured with the C-type durometer, and the measuring method is based on Japan Rubber Association standard SRIS 0101.
  • SRIS 0101 is currently an abolition standard, but in general, the measurement method can be specified by the description of SRIS 0101.
  • the heat conductive sheet according to the ninth aspect of the present invention has a thickness of 5 to 500 ⁇ m in the heat conductive sheet according to the seventh aspect or the eighth aspect of the present invention. If comprised in this way, it can be used as a heat conductive sheet especially in the field of electronics.
  • the resin-coated metal according to the tenth aspect of the present invention includes, for example, as shown in FIG. 4, the thermally conductive sheet 1 according to any one of the seventh to ninth aspects of the present invention; And a metal part 21 coated with the heat conductive sheet. If comprised in this way, a metal component can be closely_contact
  • An electronic apparatus includes, for example, as shown in FIG. 4, a resin film metal according to the tenth aspect of the present invention; and an electronic device 22 having a heat generating portion; A metal heat conductive sheet 1 is disposed on the electronic device 22 so as to be in contact with the heat generating portion. If comprised in this way, the heat
  • the resin composition for a heat conductive sheet of the present invention is easy to handle because the dispersion medium is water (or an aqueous liquid or the like). By applying and drying (removing moisture) the resin composition, a heat conductive sheet can be easily formed. Furthermore, the formed heat conductive sheet is excellent in heat conductivity, heat resistance, and adhesiveness. In particular, since the heat conductive sheet contains an aggregate in which hexagonal nitride crystals are aggregated, the orientation of the crystal is not limited to a certain direction, and the heat conductive sheet is thermally conductive in the thickness direction and the plane direction. Can have.
  • the resin composition for a heat conductive sheet according to the first embodiment of the present invention includes polyurethane water-dispersed particles; a first filler that is an aggregate 11 in which hexagonal nitride crystals are aggregated; It contains water in which polyurethane water-dispersed particles and the first filler are dispersed. That is, the resin composition for a heat conductive sheet refers to a polyurethane water-dispersed particle dispersible in water (or an aqueous liquid) and a coagulated aggregate of hexagonal nitride crystals as a first filler. It is an aqueous dispersion containing aggregates.
  • polyurethane water-dispersed particles examples include at least one particle selected from the group consisting of polycarbonate polyurethane, polyester polyurethane, aliphatic polyurethane, fatty acid-modified polyurethane, aromatic polyurethane, and polyether polyurethane.
  • Polyurethane is preferable because it is excellent in heat resistance and adhesion to metals, and the above polyurethane is particularly preferable because it can form a heat conductive sheet excellent in heat resistance / adhesion.
  • polyester polyurethane is most preferable.
  • a heat conductive sheet formed of polyester polyurethane is excellent in flexibility and exhibits tackiness after film formation, and therefore has an advantage of following the unevenness on the surface of metal or the like and particularly excellent in adhesion.
  • the polyurethane may be used as a single type or as a mixture of a plurality of types.
  • the average particle diameter of the polyurethane water-dispersed particles is preferably 10 to 500 nm. More preferably, it is 10 to 100 nm. When the average particle size is 10 nm or more, aggregation in water hardly occurs. Moreover, dispersion
  • the average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis based on the Franhofer diffraction theory and Mie's scattering theory, the larger side and the smaller side are equivalent (volume basis). Was the median diameter.
  • the first filler is preferably one in which a plurality of crystals are aggregated and exist as aggregates (lumps). Aggregation may be chemical aggregation or physical aggregation as long as the filler in the resin can exhibit thermal conductivity in multiple directions by random orientation of crystals after film formation.
  • the shape of each crystal constituting the aggregate is not particularly limited as long as it is advantageous for random orientation, and is preferably non-spherical, such as scale-like, plate-like, oval or rod-like.
  • the first filler include boron nitride, silicon nitride, and aluminum nitride. Of these, boron nitride, which is a hexagonal nitride, is preferable because of its excellent thermal conductivity.
  • the reason why the aggregate is used as the first filler will be described by taking boron nitride as an example.
  • Boron nitride has a scaly crystal structure, and the scaly crystals are overlapped and oriented in a certain direction. Therefore, although the thermal conductivity of boron nitride is excellent in the major axis direction of the scaly crystals, it is inferior in the direction perpendicular to the major axis direction. That is, the thermal conductive sheet containing boron nitride has excellent thermal conductivity in the major axis direction of the crystal. For example, in the heat conductive sheet 2 shown in FIG.
  • the resin composition for a heat conductive sheet of the present application is an aggregate in which hexagonal nitride crystals are aggregated, and includes an aggregate in which crystal orientation is random. Therefore, the major axis direction of the crystals constituting the aggregate is rich in diversity, and thermal conductivity in all directions is ensured.
  • the resin composition for a heat conductive sheet is dried (moisture removed) and solidified, it is considered that the formed sheet can have heat conductivity in the surface direction and the thickness direction.
  • the first filler is preferably powder, paste, wire or the like.
  • the average particle size is preferably 0.5 to 150 ⁇ m, for example. More preferably, it is 15 to 100 ⁇ m.
  • the viscosity of the resin composition does not become too high, and the workability of the coating process is good.
  • the heat conductivity of the heat conductive sheet formed from the resin composition does not deteriorate.
  • the thickness is 150 ⁇ m or less, the surface of the thermally conductive sheet formed from the resin composition is not uneven.
  • the sedimentation of the filler is fast and the storage stability of the resin composition does not deteriorate.
  • the said numerical value is an illustration and the particle size of a 1st filler does not necessarily need to be the said range.
  • the thickness of the heat conductive sheet it is preferable that it is the same as or slightly smaller than the thickness of the sheet because the heat transfer coefficient is the highest.
  • the second filler is preferably at least one selected from the group consisting of boron nitride, cordierite, mullite, silica, alumina, zinc oxide, and graphite.
  • boron nitride, cordierite, mullite, alumina, and graphite are preferable because the thermal conductivity of the thermal conductive sheet formed from the resin composition can be further improved.
  • Silica is preferable because it can impart thixotropy, can adjust the viscosity of the resin composition, and has an effect of preventing dripping.
  • Alumina is preferable when the particle size is large because aggregation of nitrides between the alumina particles is difficult to break (a crystal piece can be prevented from falling apart).
  • Zinc oxide is preferable because it is excellent in dispersibility and can further disturb the crystal orientation of the first filler.
  • boron nitride as the second filler refers to a scaly thing and does not form an aggregate. Boron nitride that forms aggregates is the first filler.
  • the shape of the second filler is also preferably powder, paste, wire or the like.
  • the average particle size is preferably 0.01 to 150 ⁇ m, for example. More preferably, it is 0.05 to 100 ⁇ m. When it is 0.01 ⁇ m or more, the viscosity of the resin composition does not become too high, and the workability of the coating process is good. Further, the thermal conductivity is not deteriorated. When the thickness is 150 ⁇ m or less, the surface of the thermally conductive sheet formed from the resin composition is not uneven.
  • the sedimentation of the filler is fast and the storage stability of the resin composition does not deteriorate. Furthermore, it is preferable to make the average particle size of the second filler larger than the average particle size of the polyurethane water-dispersed particles because the fillers are easily brought into contact with each other and the thermal conductivity is improved. Further, when the second filler is a spherical particle, if the average particle size of the second filler is made smaller than the average particle size of the first filler, the second filler can enter the gaps of the first filler that is an aggregate. The thermal conductivity can be improved, which is preferable. In particular, when the second filler is added for coloring purposes, use of particles having an average particle size smaller than that of the first filler facilitates uniform dispersion and does not hinder contact between the first fillers. The conductivity is preferred without being impaired.
  • the first filler When the first filler is mixed in an amount of 5 to 150 parts by weight with respect to 100 parts by weight of the polyurethane water-dispersed particles, a good heat conduction effect can be obtained.
  • the first filler is preferably 10 to 150 parts by weight with respect to 100 parts by weight of the polyurethane water-dispersed particles.
  • the thermal conductivity of the filler can be sufficiently obtained.
  • the amount is 150 parts by weight or less, the viscosity of the resin composition is not increased so much that the operability is not impaired, and problems such as aggregation of the filler in the resin composition do not occur.
  • the total amount of filler is 5 to 150 parts by weight with respect to 100 parts by weight of the polyurethane water-dispersed particles.
  • the second filler is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the first filler. If it is said range, a heat conductive sheet will be obtained in the state embedded in the layer of this polyurethane resin, without a filler projecting from the solid layer which remains after dispersion medium drying.
  • a dispersant / antifoaming agent / color pigment / silane coupling agent may be further added as an additive to the resin composition for a heat conductive sheet.
  • Dispersants include hydroxyl group-containing carboxylic acid esters, long chain polyaminoamide and high molecular weight acid ester salts, high molecular weight polycarboxylic acid salts, long chain polyaminoamide and polar acid ester salts, high molecular weight unsaturated acid esters, Molecular copolymer, modified urea, modified polyurethane, modified polyacrylate, polyether ester type anionic activator, naphthalene sulfonic acid formalin condensate salt, aromatic sulfonic acid formalin condensate salt, polyoxyethylene alkyl phosphate ester, poly Oxyethylene nonyl phenyl ether, polyoxylene monoalkyl ether, and stearylamine acetate are used.
  • Antifoaming agents include silicone-based antifoaming agent, modified silicone-based antifoaming agent, silica-based antifoaming agent, wax, polysiloxane, polyether-modified polydimethylsiloxane, foam-breaking polymer, paraffinic oil, foam-breaking fat Group derivatives and the like. Addition of 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin composition for a heat conductive sheet exhibits antifoaming properties and improves the workability of the resin composition coating process.
  • Organic pigments and inorganic pigments can be used as the color pigment. Inorganic pigments are preferred.
  • a commercially available coupling agent is used for the silane coupling agent. Among these, silane coupling agent Silaace (registered trademark) (S330, S510, S520, S530) manufactured by JNC Corporation is preferable.
  • Silaace registered trademark
  • JNC Corporation JNC Corporation
  • Preparation of the resin composition for a heat conductive sheet is performed by adding a powder of a first filler (and a second filler as required) to a water dispersion (dispersion liquid) containing polyurethane water-dispersed particles. Then, stirring and defoaming are performed using a stirrer such as a rotation / revolution mixer, and mixing is performed to such an extent that aggregation of the filler is eliminated (FIG. 3, S01). For example, after dispersing and pulverizing for about 3 hours using a ball mill, defoaming is performed for 20 minutes at a rotational speed of 2200 rpm using a rotating and rotating mixer.
  • an additive such as a dispersant may be added as necessary, or a second filler may be added to adjust the viscosity of the resin composition for a heat conductive sheet according to the coating method.
  • a small amount of an organic solvent such as 1-methyl-2-pyrrolidone (NMP) or glycols may be added and mixed.
  • the resin composition for a thermally conductive sheet of the present application uses water as a dispersion medium, it is easier to handle and transport than a paint using an organic solvent or the like. Furthermore, it can also be a measure against VOC (Volatile Organic Compounds / volatile organic compounds). Moreover, since the dispersion medium is water, the resin composition for heat conductive sheets of this application can be used also on the resin surface soluble in an organic solvent. The resin composition for a thermally conductive sheet of the present application can easily form a thermally conductive sheet having thermal conductivity by drying after coating.
  • the heat conductive sheet according to the second embodiment of the present invention shown in FIG. 1 is a sheet of resin formed from the resin composition for a heat conductive sheet according to the first embodiment of the present invention. Is. This heat conductive sheet can be easily obtained by applying and drying the resin composition.
  • the method for applying the resin composition for a heat conductive sheet is preferably a wet coating method in which an aqueous dispersion is uniformly coated.
  • a spin coating method that allows simple and homogeneous film formation is preferable when a small amount is prepared.
  • gravure coating, die coating, bar coating, reverse coating, roll coating, slit coating, dipping, spray coating, kiss coating, reverse kiss coating, air knife coating Method, curtain coating method, rod coating method and the like are preferable.
  • the wet coating method can be appropriately selected according to the required film thickness, viscosity, drying conditions and the like from these methods.
  • the resin composition for a heat conductive sheet so that the thickness of the sheet after drying is 5 to 500 ⁇ m. More preferably, it is 50 to 300 ⁇ m.
  • the thickness is 5 ⁇ m or more, the thicker the film, the better the tracking of unevenness on the metal surface and the like, and the sufficient adhesion can be obtained.
  • it is 500 ⁇ m or less, the heat transfer coefficient increases as the thickness decreases. Therefore, an appropriate film thickness is selected according to the application.
  • the coating film is dried to remove moisture, and the resin composition for a heat conductive sheet is solidified to form a sheet (FIG. 3, S03). Drying may be natural drying at room temperature, hot air blowing from a dryer or the like, or heat drying by a machine such as a drying furnace. For the drying, it is sufficient that moisture is removed to such an extent that the resin composition loses fluidity.
  • the hardness of the heat conductive sheet obtained by drying the resin composition for a heat conductive sheet at 50 ° C. solid obtained by drying a dispersion containing polyurethane water-dispersed particles, filler, water, etc.
  • ASKER C is preferably 25-80. More preferably, it is ASKER C 40-80 at 50 ° C. More preferably, it is ASKER C 40-80 at 50 ° C., and ASKER C 50 or more at 25 ° C.
  • ASKER C 80 or less the effect of preventing cracks and the ability to follow irregularities on the metal surface and the like are obtained due to appropriate flexibility.
  • the measurement was performed in consideration of not only the hardness at 50 ° C. but also the hardness at room temperature (25 ° C.) in consideration of changes in hardness due to temperature (difference in handling properties).
  • the formed heat conductive sheet (solid material) contains hexagonal nitride having high heat conductivity. For this reason, when the formed sheet is disposed between a metal component having a high thermal conductivity such as a heat sink and an electronic device having a heat generating part, the heat generated in the heat generating part is efficiently conducted through the sheet to form a metal. Is transmitted to the part. Furthermore, the formed heat conductive sheet contains a polyurethane resin. Therefore, it is excellent in heat resistance and the mass loss temperature of 5% is 270 ° C. or higher. Since the adhesion to the metal surface is also excellent, the sheet follows the irregularities on the surface of the metal component and the electronic device, and the metal component and the electronic device can be adhered to each other. Moreover, since it is excellent in ductility, processing after painting is also possible.
  • seat formed from the resin composition for heat conductive sheets of this application functions as a heat conductive film. Therefore, after forming a heat conductive sheet, as shown in FIG. 4, you may comprise between the metal component 21 and electronic device 22 which function as a heat radiating member (heat sink etc.).
  • the resin composition for a heat conductive sheet of the present application is an aqueous dispersion and can be easily formed into a film, it may be directly applied to the metal part 21 and dried to form a film. What is necessary is just to arrange
  • the metal to be applied is not particularly limited, and examples thereof include copper, iron, magnesium, aluminum, and alloys thereof. These metals are particularly preferable because of their high thermal conductivity.
  • the metal component 21 may be an existing metal heat dissipation member such as a heat sink.
  • the heat conductive sheet 1 is disposed between the heat sink and the electronic device 22.
  • the metal component (resin-coated metal) on which the heat conductive sheet is formed is bonded to the electronic device 22 using an adhesive.
  • the adhesive is preferably an acrylic, silicone, or epoxy adhesive.
  • the resin-coated metal may be fixed to the electronic device 22 using screws or metal fittings. That is, any resin coating metal may be used as long as the metal can be adhered and fixed to the electronic device 22.
  • the metal component 21 may be a metal plate (plate shape), and may be a resin-coated metal having a metal plate.
  • the electronic device 22 may be a self-heating device such as a CPU or a battery of a device such as a smartphone or a PC, a machine, or the like.
  • the resin composition for a heat conductive sheet of the present invention is a dispersion containing polyurethane water-dispersed particles, a first filler that is an aggregate in which hexagonal nitride crystals are aggregated, and water. Therefore, handling is easy, and a heat conductive sheet excellent in heat conductivity, heat resistance, and adhesion can be easily formed.
  • the component material which comprises the heat conductive sheet used for the Example of this invention is as follows. ⁇ Aqueous urethane resin dispersion (dispersion) liquid> ⁇ Polyester-polyurethane resin dispersion liquid: PESU1: Sumika Bayer Urethane Co., Ltd.
  • the average particle diameter (median diameter) of each particle was measured using a laser diffraction scattering type particle size distribution measuring apparatus LA-950V2 manufactured by Horiba. That is, using the analysis based on the Franchoffer diffraction theory and Mie's scattering theory, when measuring by a wet method and dividing the powder into two from a certain particle size, the larger side and the smaller side are equivalent (volume basis) ) Is the median diameter.
  • the measurement was performed using a wet method, a solution in which a sample was dispersed after adding a small amount of a measurement sample (about one earpick) in pure water and then treating in an ultrasonic cleaner for 3 minutes. The concentration of the slurry at the time of measurement was adjusted so that the laser transmittance was 80%.
  • Example preparation> Using a ball mill, the aqueous urethane resin dispersion liquid and filler powder and 500 g of ⁇ 5 mm zirconia balls were stirred for 3 hours, then the zirconia balls were removed, and a rotating / revolving mixer (Shinky Co., Ltd., Awatori Rentaro, ARE -250), the following resin composition for a heat conductive sheet was prepared by defoaming at a rotational speed of 2200 rpm for 20 minutes.
  • a rotating / revolving mixer Shinky Co., Ltd., Awatori Rentaro, ARE -250
  • Example 1 100 parts by weight, 0.06 part by weight, and 21.4 parts by weight of PESU1, BYK-1710 and aggregated boron nitride (PTX25) having an average particle diameter of 25 ⁇ m were respectively weighed and stirred with a ball mill. It was.
  • Example 2 The sample of Example 2 was used in the same manner as in Example 1 except that the type of the aqueous polyurethane resin dispersion liquid was different.
  • Examples 3 and 4 Samples of Examples 3 and 4 were prepared in the same manner as in Example 1 except that the type of the aqueous polyurethane resin dispersion liquid and the amount of filler were different.
  • Example 5 A sample of Example 5 was prepared in the same manner as in Example 1 except that the amount of filler was different.
  • Comparative Examples 1 and 2 The samples of Comparative Examples 1 and 2 were used in the same manner as in Example 1 except that the type of filler was different. Table 3 shows the component ratio of each sample.
  • Comparative Example 3 As a comparative sheet, a heat conductive double-sided pressure-sensitive adhesive sheet (Inex, Inc., (trade name) Ainex HT-05) was used.
  • Comparative Example 4 As a comparison sheet, a heat conductive adhesive transfer tape (Sumitomo 3M Co., Ltd., (trade name) No. 9890) was used.
  • Example 6 In order to adjust the viscosity and enhance the heat conduction performance, a second filler was added in addition to the aggregated boron nitride (PTX25) having an average particle diameter of 25 ⁇ m as the first filler.
  • the ratio of the addition amount of the aqueous polyurethane resin dispersion liquid, BYK-1710 and filler is shown below.
  • the sample preparation procedure is the same as in Example 1.
  • Table 4 shows the component ratio of each sample.
  • Example 13 The sample (heat conductive sheet resin composition) used in Example 1 was directly applied to the LED as the heat generating member and dried, and the LED with the heat radiating member using the formed heat conductive sheet as the heat radiating member was as follows. As shown in FIG.
  • Example A evaluation of thermal conductivity is shown.
  • ⁇ Preparation of thermal conductive sheet> Using an applicator, the samples of Examples 1 to 12 and Comparative Examples 1 and 2 (resin composition for heat conductive sheet) were applied on a Teflon (registered trademark) sheet and dried on a hot plate at 60 ° C. for 3 hours. It was. The clearance gap of the applicator was adjusted to be about 250 ⁇ m or about 200 ⁇ m after film formation for each example. The film thickness was measured using a DIGIMICRO FM-501 manufactured by Nikon. The dried resin composition was peeled from the Teflon (registered trademark) sheet to obtain heat conductive sheets of Examples 1 to 12 and Comparative Examples 1 and 2.
  • Example 1 (resin composition for thermal conductive sheet) was applied to the back side of an LED (Opto Supply, 10W white LED OSW4XAHAE1E) and dried.
  • the dried coating film was adjusted to have a thickness of about 250 ⁇ m, and the LED with the heat radiation member of Example 13 was obtained.
  • thermocouple (Rika Kogyo Co., Ltd., ST-50) was attached to the LED package surface, and the temperature was recorded with a personal computer using a data logger. The LED with this heat sink attached is left in the center of a thermostat set at 40 ° C, and after confirming that the LED temperature is constant at 40 ° C, 10V is applied to the LED using a DC stabilized power supply. The temperature change on the surface of the LED package was measured.
  • the thermal conductivity was evaluated using the thermal conductive sheets of Examples 1 to 5 and Comparative Examples 1 to 2 or the comparative sheets of Comparative Examples 3 to 4.
  • Table 5 shows the surface temperature of the LED package when each sheet is used.
  • the heat conductive sheets of Examples 1 to 5 containing boron nitride and formed from the resin composition for a heat conductive sheet of the present invention maintain an excellent heat dissipation effect.
  • the thermal conductive sheet of Example 1 containing polyurethane and boron nitride has an excellent heat dissipation effect.
  • aggregated boron nitride filler is preferable to scaly boron nitride.
  • a higher content of aggregated boron nitride is preferable.
  • Table 6 shows the surface temperature of the LED package when each sheet is used.
  • the heat conductive sheets of Examples 6 to 12 containing boron nitride and the second filler formed from the resin composition for a heat conductive sheet of the present invention have excellent heat dissipation effects. Is maintained. Further, from Example 8 and Example 11, it is considered that the presence of spherical boron nitride aggregates disturbed the orientation of the scaly boron nitride and graphite as the second filler, improving the thermal conductivity. It is preferable. Furthermore, from Example 12, it is preferable to use zinc oxide as the second filler, because the dispersion of the filler can be promoted and the orientation of boron nitride as the first filler can be more disturbed.
  • Table 7 shows the surface temperature of the LED package.
  • Example 13 has the same composition and film thickness of the resin composition for a heat conductive sheet of the present invention, but the surface temperature of the LED package is lowered.
  • the heat conductive sheet resin composition is directly applied to the heat generating member to be cooled, dried and formed into a film, so that air does not enter between the heat generating member and the heat conductive resin composition.
  • a film was formed in a state in which the projections and depressions had already been followed, and a more closely attached state could be created.
  • the same effect can be obtained when the resin composition for a heat conductive sheet is applied to a heat radiating component such as a heat sink and dried to form a film.
  • Example B evaluation of the film physical properties of the produced heat conductive sheet is shown.
  • Example 4 When comparing Examples 1 to 4 and Comparative Example 4, the example is preferable because of its high hardness when the temperature is 25 ° C. and good handling. Compared with Example 3, Examples 1 and 2 are preferable because the hardness is small and can follow the substrate or the like when the temperature is 25 ° C. or 50 ° C. In comparison with Example 3, Example 4 is preferable because the hardness is small and the substrate can be followed when the temperature is 50 ° C. Also, Example 4 is preferable because it has a higher hardness at 25 ° C. and better handling than Examples 1 and 2.

Abstract

 本願発明は、熱伝導性シートの形成が容易な熱伝導性シート用樹脂組成物であって、厚さ方向および面方向の熱伝導性に優れた熱伝導性シートを形成可能な樹脂組成物である。本願の熱伝導性シート用樹脂組成物は、ポリウレタン水分散粒子と;六方晶系の窒化物の結晶が凝集した凝集体11である第1のフィラーと;前記ポリウレタン水分散粒子と前記第1のフィラーが分散した水を含む。六方晶系の窒化物の結晶が凝集した凝集体を含むことにより、形成されたシートは、結晶の配向が一定方向に限られず、図1に示すように、厚さ(縦)方向と面(水平)方向に熱伝導性を有することができる。

Description

熱伝導性シート用樹脂組成物、熱伝導性シート、樹脂被膜金属、電子機器
 本発明は、熱伝導性シート用樹脂組成物に関する。特に、取り扱いが容易な樹脂組成物であって、熱伝導性に優れたシートの形成が容易な樹脂組成物に関する。
 発熱する機械・電気部品に取り付けて、熱の放散によって温度を下げることを目的にした部品として、ヒートシンク(heat sink)が知られている。ヒートシンクには、主に熱が伝導しやすいアルミニウムや銅などの金属が材料として用いられることが多い。
 放熱の一般的な方法に、半導体パッケージのような発熱体とアルミや銅からなるヒートシンクとの間に樹脂製の熱伝導性シートを挟み、発熱体とヒートシンクとを密着させて、発熱体に生じた熱を効率よくヒートシンクに伝達させて放熱する方法がある。
 熱伝導性シートの熱伝導性を向上させるために、シート中に熱伝導率の高い無機粒子を含有させることがある。特に、粒子の形状に長軸方向を有する粒子を用いた場合、熱伝導性シートの厚さ方向に粒子の長軸方向を磁場配向させて、厚さ方向の熱伝導性を向上させるものがある(例えば、特許文献1参照)。
 しかし、厚さ方向以外の方向の熱伝導性を向上させることができない。
 さらに、上記のような厚さ方向に粒子の長軸方向を配向させた熱伝導性シートに対して、熱プレスを繰返し施し、粒子の向きをシート面に平行な方向(面方向)に配向させ、面方向の熱伝導性を向上させるものがある(例えば、特許文献2参照)。
 しかし、面方向以外の方向の熱伝導性を向上させることができない。
特開2008-280496号公報 特開2012-039060号公報
 そこで本発明は、厚さ方向および面方向の熱伝導性に優れた熱伝導性シートを形成可能な熱伝導性シート用樹脂組成物を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討を行なった。その結果、六方晶系の窒化物の結晶が凝集した凝集体と、ポリウレタンの粒子とを水中に分散させた水分散液を用いると、容易に熱伝導性シートを形成でき、さらに形成されたシートは、厚さ方向および面方向に熱伝導性を有することができることを見出し、本発明を完成させた。
 本発明の第1の態様に係る熱伝導性シート用樹脂組成物は、ポリウレタン水分散粒子と;図1に示すような六方晶系の窒化物の結晶が凝集した凝集体11である第1のフィラーと;前記ポリウレタン水分散粒子と前記第1のフィラーが分散した水を含む。ここで、「ポリウレタン水分散粒子」とは、ポリウレタン樹脂を溶解しない分散媒(水性の液体または水など)中に分散している、固形成分としてのポリウレタン樹脂を意味し、前出のポリウレタンの粒子と同義である。また、「結晶が凝集した凝集体」とは、複数の結晶が集まり塊となったものをいう。凝集体の形状は特に限定されず、例えば雪だるま状に丸くなったもの、球状、略球状、扁球状であってもよく、また、ラグビーボールのような形状でもよい。このほか、チョコフレークや砂漠のバラ(Desert Rose;鉱物結晶)、蓑虫の袋状巣のような他の形状であってもよい。
 このように構成すると、熱伝導性シート用樹脂組成物は水性であるため、塗布や運搬等の取り扱いが容易となる。また、塗布後乾燥(水分を除去)することにより、容易に製膜できる。さらに、樹脂組成物がポリウレタンをベースとしているため、アクリルやアクリルシリコーンをベースとした樹脂組成物に比べて、形成された熱伝導性シートは、金属表面等への密着性や耐熱性に優れ、延性の高いシートとなり得る。また、シリコーン系をベースとした場合に懸念される、低分子シロキサンによる汚染が生じない。さらに、樹脂組成物が含有する、六方晶系の窒化物の結晶が凝集した凝集体により、形成されたシート中において、結晶の配向が一定方向に限られず、図1に示すように、厚さ(縦)方向と面(水平)方向に熱伝導性を有することができる。
 本発明の第2の態様に係る熱伝導性シート用樹脂組成物は、上記本発明の第1の態様に係る熱伝導性シート用樹脂組成物において、前記ポリウレタン水分散粒子を構成する材料は、ポリカーボネートポリウレタン、ポリエステルポリウレタン、脂肪族ポリウレタン、脂肪酸変性ポリウレタン、芳香族ポリウレタン、ポリエーテルポリウレタンからなる群から選ばれる少なくとも1種である。
 このように構成すると、ポリウレタンの特性が特に優れた熱伝導性シートが形成可能な熱伝導性シート用樹脂組成物となる。
 本発明の第3の態様に係る熱伝導性シート用樹脂組成物は、上記本発明の第1の態様または第2の態様に係る熱伝導性シート用樹脂組成物において、前記第1のフィラーが、六方晶系の窒化ホウ素である。
 このように構成すると、熱伝導性シート用樹脂組成物から形成されたシートは、窒化ホウ素の凝集体11により、高い熱伝導性を有することができる。
 本発明の第4の態様に係る熱伝導性シート用樹脂組成物は、上記本発明の第1の態様~第3の態様のいずれか1の態様に係る熱伝導性シート用樹脂組成物において、前記ポリウレタン水分散粒子100重量部に対して、前記第1のフィラーを5~150重量部含有する。
 このように構成すると、第1のフィラーの含有量を適量とすることができる。
 本発明の第5の態様に係る熱伝導性シート用樹脂組成物は、上記本発明の第1の態様~第4の態様のいずれか1の態様に係る熱伝導性シート用樹脂組成物において、前記第1のフィラーは粉末であり、前記第1のフィラーの平均粒径は、0.5~150μmである。
 このように構成すると、第1のフィラーの平均粒径が0.5μm以上であるため、熱伝導性シート用樹脂組成物から形成されたシートは十分な熱伝導性を有することができる。また、150μm以下であるため、シートの表面に凹凸ができることがない。
 本発明の第6の態様に係る熱伝導性シート用樹脂組成物は、上記本発明の第1の態様~第5の態様のいずれか1の態様に係る熱伝導性シート用樹脂組成物において、窒化ホウ素、コーディエライト、ムライト、シリカ、アルミナ、酸化亜鉛および黒鉛からなる群から選ばれる少なくとも1種の第2のフィラーをさらに含む。
 このように構成すると、熱伝導性シート用樹脂組成物から形成されたシートの熱伝導性をさらに向上させることができる。
 本発明の第7の態様に係る熱伝導性シートは、上記本発明の第1の態様~第6の態様のいずれか1の態様に係る熱伝導性シート用樹脂組成物を乾燥させて得られる。
 このように構成すると、熱伝導性、耐熱性および密着性に優れた熱伝導性シートを容易に形成することができる。
 本発明の第8の態様に係る熱伝導性シートは、上記本発明の第7の態様に係る熱伝導性シートにおいて、表面温度が50℃におけるASKER C硬度が25~80である。なお、ASKER C硬度とは、C型デュロメータで測定した硬度を意味しており、測定方法は(財)日本ゴム協会標準基準SRIS 0101に準ずる。なお、SRIS 0101は現在廃止基準であるが、一般的にはSRIS 0101の記載で、測定方法が特定可能である。
 このように構成すると、例えば、熱伝導性シートを金属性の発熱部材と金属性の放熱部材で挟んだ場合に、シートが両金属の凹凸に追従して密着し、発熱部材で生じた熱を効率よく伝導し、放熱部材に伝達させることができる。
 本発明の第9の態様に係る熱伝導性シートは、上記本発明の第7の態様または第8の態様に係る熱伝導性シートにおいて、厚さが、5~500μmである。
 このように構成すると、特にエレクトロニクスの分野において熱伝導性シートとして使用することができる。
 本発明の第10の態様に係る樹脂被膜金属は、例えば図4に示すように、上記本発明の第7の態様~第9の態様のいずれか1の態様に係る熱伝導性シート1と;前記熱伝導性シートにより被膜された金属部品21とを備える。
 このように構成すると、熱伝導性シートを介して、金属部品を他の金属に密着させることができる。
 本発明の第11の態様に係る電子機器は、例えば図4に示すように、上記本発明の第10の態様に係る樹脂被膜金属と;発熱部を有する電子デバイス22とを備え;前記樹脂被膜金属の熱伝導性シート1が、前記発熱部に接触するように前記電子デバイス22に配置される。
 このように構成すると、電子デバイスで生じた熱を効率よく金属製の放熱部材等に伝達し、電子デバイスの放熱効果を高めることができる。
 本発明の熱伝導性シート用樹脂組成物は、分散媒が水(または水性の液体など)であるため取り扱いが容易である。この樹脂組成物は、塗布して乾燥(水分を除去)することにより、容易に熱伝導性シートを形成することができる。さらに、形成された熱伝導性シートは、熱伝導性、耐熱性および密着性に優れる。特に、熱伝導性シートが六方晶系の窒化物の結晶が凝集した凝集体を含有するため、結晶の配向が一定方向に限られず、熱伝導性シートは厚さ方向と面方向に熱伝導性を有することができる。
本発明の第2の実施の形態に係る熱伝導性シート1の断面模式図である。 フィラーとして鱗片状の窒化ホウ素を含有する熱伝導性シートの断面模式図である。 本発明の熱伝導性シートの製造工程を示すフロー図である。 本発明の第2の実施の形態に係る熱伝導性シート1の使用例を示す図である。
 この出願は、日本国で2014年1月8日に出願された特願2014-001985号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。
≪熱伝導性シート用樹脂組成物≫
 本発明の第1の実施の形態に係る熱伝導性シート用樹脂組成物は、ポリウレタン水分散粒子と;六方晶系の窒化物の結晶が凝集した凝集体11である第1のフィラーと;前記ポリウレタン水分散粒子と前記第1のフィラーが分散した水を含む。すなわち、熱伝導性シート用樹脂組成物とは、水中(または水性の液体中)に分散可能なポリウレタン水分散粒子と、第1のフィラーとしての、六方晶系の窒化物の結晶が凝集した凝集体とを含んだ水分散液である。
≪ポリウレタン水分散粒子≫
 ポリウレタン水分散粒子は、ポリカーボネートポリウレタン、ポリエステルポリウレタン、脂肪族ポリウレタン、脂肪酸変性ポリウレタン、芳香族ポリウレタン、ポリエーテルポリウレタンからなる群から選ばれる少なくとも1種の粒子を挙げることができる。
 ポリウレタンは、耐熱性、金属等との密着性に優れているため好ましく、上記ポリウレタンは特に耐熱性/密着性に優れた熱伝導性シートを形成できるため好ましい。これらの中でもポリエステルポリウレタンが最も好ましい。ポリエステルポリウレタンで形成された熱伝導性シートは柔軟性に優れ、製膜後にタック性が発現するため、金属等の表面の凹凸へ追従し、特に密着性に優れるという利点がある。
 上記ポリウレタンは、単一の種類で用いても複数種類を混合して用いてもよい。
 ポリウレタン水分散粒子の平均粒径は、10~500nmであることが好ましい。より好ましくは、10~100nmである。平均粒径が10nm以上であると、水中での凝集が起こりにくい。また、500nm以下であると、水中での分散が可能となる。
 なお、本明細書において平均粒径とは、レーザー回折・散乱法による粒度分布測定に基づく。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法により、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。
≪第1のフィラー≫
 第1のフィラーは、複数の結晶が集まり凝集体(塊)となって存在するものが好ましい。凝集は、化学的な凝集であっても物理的な凝集であってもよく、製膜後、樹脂中のフィラーが結晶のランダム配向により多方向に熱伝導性を発現できるものであればよい。
 凝集体を構成する各結晶の形状は、ランダム配向に有利な形状であればよく、例えば、鱗片状、板状、楕球状または棒状等の非球状であることが好ましい。
 第1のフィラーとしては、窒化ホウ素、窒化珪素、窒化アルミ等が挙げられる。中でも、熱伝導性に優れることから、六方晶系の窒化物である窒化ホウ素が好ましい。
 第1のフィラーとして凝集体を用いる理由を、窒化ホウ素を例に説明する。
 窒化ホウ素は、鱗片状の結晶構造を有し、その鱗片状の結晶が、重なり合い一定方向に配向した状態で存在する。よって、窒化ホウ素の熱伝導性は、鱗片状の結晶の長軸方向では優れるものの、長軸方向に垂直な方向では劣る。すなわち、窒化ホウ素を含有する熱伝導性シートは、結晶の長軸方向に優れた熱伝導性を有する。例えば、図2に示す熱伝導性シート2は、鱗片状の結晶13が面方向(水平方向)に配向しており、面方向の熱伝導率は大きくなるが、厚さ方向(垂直方向)の熱伝導率は小さくなる。
 本願の熱伝導性シート用樹脂組成物は、六方晶系の窒化物の結晶が凝集した凝集体であって、結晶の配向がランダムな凝集体を含有する。そのため、凝集体を構成する結晶の長軸方向が多様性に富み、全方向への熱伝導性が確保される。熱伝導性シート用樹脂組成物を乾燥(水分を除去)して固化させると、形成されたシートは熱伝導性を面方向と厚さ方向とで持つことができると考えられる。
 第1のフィラーは、粉末、ペースト、ワイヤ状等が好ましい。特に、水分散液である樹脂組成物中において均一な状態が得られることから、粉末として樹脂組成物中に混合することが好ましい。粉末の場合、その平均粒径は、例えば、好ましくは0.5~150μmである。より好ましくは15~100μmである。0.5μm以上であると、樹脂組成物の粘度が高くなりすぎることがなく、塗布工程の作業性がよい。また樹脂組成物から形成された熱伝導性シートの熱伝導率が悪くなることもない。150μm以下であると、樹脂組成物から形成された熱伝導性シートの表面に凹凸ができることがない。また、フィラーの沈降が速くて樹脂組成物の保存安定性が悪くなるということがない。なお前記数値は例示であり、第1のフィラーの粒径は、必ずしも前記の範囲である必要はない。熱伝導性シートの厚さに応じて、シートの厚さと同じか、少し小さいくらいが最も熱伝達率が高くなるので好ましい。
 さらに、ポリウレタン水分散粒子の平均粒径よりも第1のフィラーの平均粒径を大きくすると、フィラーどうしが接触しやすくなり、熱伝導性が向上するため好ましい。
≪第2のフィラー≫
 第1のフィラーに追加する形で、第2のフィラーを加えてもよい。第2のフィラーとしては、窒化ホウ素、コーディエライト、ムライト、シリカ、アルミナ、酸化亜鉛、および黒鉛からなる群から選ばれる少なくとも1種が好ましい。特に、窒化ホウ素、コーディエライト、ムライト、アルミナ、黒鉛は、樹脂組成物から形成された熱伝導性シートの熱伝導性をより向上させることができるため好ましい。シリカは、チクソ性を付与することができ、樹脂組成物の粘度を調節でき、液垂れ防止効果を有するため好ましい。アルミナは、その粒径が大きい場合、アルミナ粒子間にある窒化物の凝集が壊れがたい(結晶片がバラバラになることを防ぐことができる)ため好ましい。酸化亜鉛は、分散性に優れ、第1のフィラーの結晶配向をさらに乱すことができるため好ましい。
 なお、本明細書において、第2のフィラーとしての窒化ホウ素は、鱗片状のものをいい、凝集体を形成していないものをいう。凝集体を形成する窒化ホウ素は、第1のフィラーである。
 第2のフィラーの形状も、粉末、ペースト、ワイヤ状等が好ましい。特に、水分散液である樹脂組成物中において均一な状態が得られることから、粉末として樹脂組成物中に混合することが好ましい。粉末の場合、その平均粒径は、例えば、好ましくは0.01~150μmである。より好ましくは0.05~100μmである。0.01μm以上であると、樹脂組成物の粘度が高くなりすぎることがなく、塗布工程の作業性がよい。また熱伝導率が悪くなることもない。150μm以下であると、樹脂組成物から形成された熱伝導性シートの表面に凹凸ができることがない。また、フィラーの沈降が速くて樹脂組成物の保存安定性が悪くなるということがない。
 さらに、ポリウレタン水分散粒子の平均粒径よりも第2のフィラーの平均粒径を大きくすると、フィラーどうしが接触しやすくなり、熱伝導性が向上するため好ましい。
 また、第2のフィラーが球状粒子である場合、第1のフィラーの平均粒径よりも第2のフィラーの平均粒径を小さくすると、凝集体である第1のフィラーの隙間に入り込むことができ、熱伝導性を向上させることができ好ましい。
 特に、第2のフィラーを着色用途で添加する場合、第1のフィラーよりも平均粒径が小さい粒子を用いると、均一に分散し易く、また第1のフィラーどうしの接触を阻害しないため、熱伝導性が損なわれることがなく好ましい。
 第1のフィラーは、ポリウレタン水分散粒子100重量部に対して5~150重量部を混合させると良好な熱伝導効果が得られる。熱伝導性シート用樹脂組成物を塗布する工程の作業効率を考慮すると、第1のフィラーは、ポリウレタン水分散粒子100重量部に対して10~150重量部であることが好ましい。第1のフィラーが5重量部以上であると、フィラーの熱伝導特性を十分に得ることができる。また、150重量部以下であると、樹脂組成物の粘度が上がりすぎて操作性が損なわれるということがなく、フィラーが樹脂組成物中で凝集する等の問題も生じない。さらに、製膜後にポリウレタン樹脂が少なすぎることによりフィラー同士の接着が弱く形成された熱伝導性シートにクラックが生じるということを回避できる。また、熱伝導性シートが硬くなりすぎ金属表面等への追従性が損なわれる、といった問題も生じない。
 なお、フィラーの総量は、上記のとおり、ポリウレタン水分散粒子100重量部に対して5~150重量部である。第2のフィラーを追加する場合、第2のフィラーは第1のフィラー100重量部に対して1~100重量部とすることが好ましい。
 上記の範囲であれば、分散媒乾燥後に残る固形層からフィラーが突出することなく、該ポリウレタン樹脂の層中に埋没する状態で熱伝導性シートが得られる。
≪添加剤≫
 熱伝導性シート用樹脂組成物には添加剤として、さらに分散剤/消泡剤/着色顔料/シランカップリング剤を加えてもよい。
 分散剤には、水酸基含有カルボン酸エステル、長鎖ポリアミノアミドと高分子量酸エステルの塩、高分子量ポリカルボン酸の塩、長鎖ポリアミノアミドと極性酸エステルの塩、高分子量不飽和酸エステル、高分子共重合物、変性ウレア、変性ポリウレタン、変性ポリアクリレート、ポリエーテルエステル型アニオン系活性剤、ナフタレンスルホン酸ホルマリン縮合物塩、芳香族スルホン酸ホルマリン縮合物塩、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシレンモノアルキルエーテル、ステアリルアミンアセテートを用いる。フィラー100重量部に対して1~35重量部添加して使用することで、フィラーの凝集を防ぎ、熱伝導性シート用樹脂組成物の保存安定性を向上させることができる。
 消泡剤には、シリコーン系消泡剤、変性シリコーン系消泡剤、シリカ系消泡剤、ワックス、ポリシロキサン、ポリエーテル変性ポリジメチルシロキサン、破泡性ポリマー、パラフィン系オイル、破泡性脂肪族誘導体などを挙げることができる。熱伝導性シート用樹脂組成物100重量部に対して0.01~5重量部添加することで消泡性を示し、樹脂組成物の塗布工程の作業性が向上する。
 着色顔料には、有機系顔料と無機顔料が使用できる。無機系顔料が好ましい。
 シランカップリング剤には、市販のカップリング剤を用いる。その中でも、JNC(株)社製のシランカップリング剤サイラエース(登録商標)(S330、S510、S520、S530)が好ましい。ポリウレタン水分散粒子100重量部に対して1~10重量部添加して使用することで、金属板と熱伝導性シート用樹脂組成物から形成されたシートとの密着性を向上させることができる。
 熱伝導性シート用樹脂組成物の調製は、ポリウレタン水分散粒子を含有する水の分散液(ディスパージョン液)に、第1のフィラー(必要に応じてさらに第2のフィラー)の粉末を添加し、自転・公転ミキサー等の撹拌機を用いて撹拌・脱泡し、フィラーの凝集が解消される程度まで混合させる(図3、S01)。例えば、ボールミルを用いて3時間ほど分散・粉砕後、自転公転ミキサーを用い回転数2200rpmで20分間脱泡する。
 混合の際、必要に応じて分散剤等の添加剤を加えてもよく、第2のフィラーを加えて熱伝導性シート用樹脂組成物の粘度を塗布方法に応じて調整してもよい。ポリウレタン水分散粒子の水中への分散を助けるために、さらに1-メチル-2-ピロリドン(NMP)やグリコール類等の少量の有機溶媒を加えて混合してもよい。
 以上のとおり、本願の熱伝導性シート用樹脂組成物は分散媒として水を使用しているため、有機溶剤等を用いた塗料等と比べて取り扱い易くまた運搬等も容易となる。さらに、VOC(Volatile Organic Compounds/揮発性有機化合物)対策にもなり得る。また、本願の熱伝導性シート用樹脂組成物は分散媒が水であるため、有機溶剤に可溶な樹脂表面などにも使用が可能である。本願の熱伝導性シート用樹脂組成物は、塗布後乾燥することにより、容易に熱伝導性を有する熱伝導性シートを形成することができる。
≪熱伝導性シート≫
 図1に示す本発明の第2の実施の形態に係る熱伝導性シートは、本発明の第1の実施の形態に係る熱伝導性シート用樹脂組成物から形成された樹脂をシート状にしたものである。この熱伝導性シートは、該樹脂組成物を塗布後、乾燥させることで容易に得ることができる。
 熱伝導性シート用樹脂組成物を塗布する方法(図2、S02)は、水分散液を均一にコーティングするウェットコーティング法を用いることが好ましい。ウェットコーティング法のうち、少量を作成する場合には簡便で均質な製膜が可能であるスピンコート法が好ましい。生産性を重視する場合には、グラビアコート法、ダイコート法、バーコート法、リバースコート法、ロールコート法、スリットコート法、ディッピング法、スプレーコート法、キスコート法、リバースキスコート法、エアーナイフコート法、カーテンコート法、ロッドコート法などが好ましい。ウェットコーティング法は、これらの方法から必要とする膜厚、粘度や乾燥条件等に応じて適宜選択することができる。
 なお、乾燥後のシートの厚さが、5~500μmとなるように熱伝導性シート用樹脂組成物を塗布するのが好ましい。より好ましくは、50~300μmである。5μm以上であると、厚いほど金属表面等の凹凸への追従に優れ十分な密着性を得ることができる。500μm以下であると、薄いほど熱伝達率が大きくなる。したがって、用途に応じて適切な膜厚を選択する。
 塗布後、塗膜を乾燥させて水分を除去し、熱伝導性シート用樹脂組成物を固化させシートを形成する(図3、S03)。乾燥は、常温での自然乾燥、ドライヤ等からの熱風の送風のほか、乾燥炉等の機械による加熱乾燥であってもよい。乾燥は、樹脂組成物が流動性を失う程度に水分が除去されていればよい。
 50℃における、熱伝導性シート用樹脂組成物を乾燥して得られた熱伝導性シート(ポリウレタン水分散粒子、フィラーおよび水等を含む分散液を乾燥させて得られる固形物)の硬度は、ASKER C 25~80であることが好ましい。より好ましくは、50℃でASKER C 40~80である。さらに好ましくは、50℃でASKER C 40~80であり、かつ25℃で、ASKER C 50以上である。熱伝導性シートの25℃における硬度がASKER C 50以上であると、形成された熱伝導性シートの強度が維持できるためハンドリングがより良好になり、分散液の乾燥性に優れる。50℃でASKER C 80以下であると、適度な柔軟性によりクラックの防止効果、および金属表面等の凹凸への追従性が得られる。なお測定は、温度による硬度の変化(ハンドリング性の違い)を考慮し、50℃における硬度だけでなく、室温(25℃)での硬度も併せて行なった。
 形成された熱伝導性シート(固形物)は、高熱伝導性を有する六方晶系の窒化物を含んでいる。そのため、形成されたシートを、ヒートシンク等の熱伝導率の高い金属部品と発熱部を有する電子デバイス等との間に配置すると、発熱部で生じた熱が、効率よくシート内を伝導して金属部品へ伝達される。
 さらに形成された熱伝導性シートは、ポリウレタン樹脂を含んでいる。そのため、耐熱性に優れ、5%の質量損失温度は270℃以上である。金属表面への密着性にも優れるため、シートが金属部品と電子デバイスの表面の凹凸に追従し、金属部品と電子デバイスを密着させることができる。また、延性にも優れるため、塗装後の加工も可能となる。
 上記のとおり、本願の熱伝導性シート用樹脂組成物から形成されたシートは、熱伝導膜として機能する。したがって、熱伝導性シートを形成した後、図4に示すように、放熱部材(ヒートシンク等)として機能する金属部品21と電子デバイス22とで挟むように構成してもよい。または、本願の熱伝導性シート用樹脂組成物は、水性の分散液であり製膜が容易なため、金属部品21に直接塗布してこれを乾燥させ製膜してもよい。製膜後、熱伝導性シート1と電子デバイス22が直接接触するように配置すればよい。
 塗布対象となる金属は、特に限られず、銅、鉄、マグネシウム、アルミニウム、およびそれらの合金が例示できる。これらの金属は、熱伝導率が高く特に好ましい。
 具体的には、図4に示すように金属部品21は、ヒートシンクのような既存の金属製の放熱部材であってもよい。図4では、ヒートシンクと電子デバイス22の間に熱伝導性シート1が配置されている。
 なお、熱伝導性シートを製膜した金属部品(樹脂被膜金属)は、接着剤を用いて電子デバイス22に接着させる。接着剤は、アクリル系、シリコーン系、またはエポキシ系の接着剤が好ましい。または、ビス止めや金具等を用いて、樹脂被膜金属を電子デバイス22に固定してもよい。すなわち、樹脂被膜金属を電子デバイス22に密着させて固定できるものであればよい。
 金属部品21が金属板(板状)であって、金属板を有する樹脂被膜金属であってもよい。また電子デバイス22は、スマートフォンやPC等の機器のCPUやバッテリー等の自己発熱する器具、機械等であってもよい。
 本発明の熱伝導性シート用樹脂組成物は、ポリウレタン水分散粒子と、六方晶系の窒化物の結晶が凝集した凝集体である第1のフィラーと、水を含む分散液である。そのため、取り扱いが容易であり、熱伝導性、耐熱性および密着性に優れた熱伝導性シートを容易に形成することができる。
 以下に本発明を、実施例を用いて詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。
 本発明の実施例に用いた、熱伝導性シートを構成する成分材料は次のとおりである。
<水性ウレタン樹脂ディスパージョン(分散)液>
・ポリエステル-ポリウレタン樹脂ディスパージョン液:
 PESU1:住化バイエルウレタン(株)、(商品名)インプラニールDLP-R
 PESU2:住化バイエルウレタン(株)、(商品名)バイヒドロールUH650
・ポリカーボネート-ポリウレタン樹脂ディスパージョン液:
 PCU1:住化バイエルウレタン(株)、(商品名)バイヒドロールUH2606
・ポリエステル-ポリカーボネート-ポリウレタン樹脂ディスパージョン液:
 PECU1:住化バイエルウレタン(株)、(商品名)バイヒドロールUHXP2648
(インプラニールおよびバイヒドロールは登録商標)
 表1に水性ウレタン樹脂ディスパージョン液およびウレタン樹脂膜の特性を示す。
Figure JPOXMLDOC01-appb-T000001
<フィラー>
・窒化ホウ素:モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)、PTX25(凝集体状、平均粒径25μm)、PT120(鱗片状、平均粒径12μm)
・合成コーディエライト:丸ス釉薬(資)、(商品名)SS-1000(平均粒径1.7μm)
・電融ムライト:太平洋ランダム(株)、70M(商品名)325F
・二酸化ケイ素(シリカ):富士シリシア(株)、(商品名)サイリシア
・酸化アルミニウム(アルミナ):昭和電工(株)、(商品名)AL-47H
・酸化亜鉛:(株)アムテック、(商品名)パナテトラ WZ-05B1
・黒鉛:日本黒鉛工業(株)、(商品名)鱗状黒鉛粉末 F#2
<添加剤>
・消泡剤:ビックケミー・ジャパン(株)、(商品名)BYK-1710
<比較シート>
・熱伝導両面接着シート:(株)アイネックス、(商品名)Ainex HT-05
・熱伝導接着剤転写テープ:住友スリーエム(株)、(商品名)No.9890
 表2に比較シートの膜厚実測値を示す。
Figure JPOXMLDOC01-appb-T000002
<粒度分布の測定法>
 各粒子の平均粒径(メジアン径)の測定は、堀場製作所製レーザー回折散乱式粒度分布測定装置LA-950V2を用いて測定した。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法にて測定を行い、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。測定は湿式法、純水中に測定試料少量(耳かき一杯程度)を加えた後、超音波洗浄機中で3分間処理し、試料が分散した溶液を用いた。測定時のスラリーの濃度はレーザーの透過率が80%になるように調製した。
<試料作製>
 ボールミルを使用して、水性ウレタン樹脂ディスパージョン液およびフィラーの粉末とφ5mmジルコニアボール500gを3時間撹拌した後に、ジルコニアボールを取り除き、自転・公転ミキサー((株)シンキー製、あわとり錬太郎、ARE-250)を使用して、回転数2200rpmで20分間脱泡することにより、以下の熱伝導性シート用樹脂組成物を調製した。
≪実施例1≫
 PESU1、BYK-1710および平均粒径25μmの凝集体状窒化ホウ素(PTX25)を、それぞれ100重量部、0.06重量部、21.4重量部秤量してボールミルで撹拌し、実施例1の試料とした。
≪実施例2≫
 水性ポリウレタン樹脂ディスパージョン液の種類が異なる以外は、実施例1と同様に、実施例2の試料とした。
≪実施例3、4≫
 水性ポリウレタン樹脂ディスパージョン液の種類とフィラーの量が異なる以外は、実施例1と同様に、実施例3、4の試料とした。
≪実施例5≫
 フィラーの量が異なる以外は、実施例1と同様に、実施例5の試料とした。
≪比較例1、2≫
 フィラーの種類が異なる以外は、実施例1と同様に、比較例1、2の試料とした。
 表3に各試料の成分割合を示す。
Figure JPOXMLDOC01-appb-T000003
≪比較例3≫
 比較シートとして、熱伝導両面粘着シート((株)アイネックス、(商品名)Ainex HT-05)を用いた。
≪比較例4≫
 比較シートとして、熱伝導接着剤転写テープ(住友スリーエム(株)、(商品名)No.9890)を用いた。
≪実施例6~12≫
 粘度の調整や熱伝導性能を高めるために、第1のフィラーとして平均粒径25μm凝集体状窒化ホウ素(PTX25)に加えて第2のフィラーを添加した。水性ポリウレタン樹脂ディスパージョン液、BYK-1710およびフィラーの添加量の割合を下記に示す。試料の作製手順は実施例1と同様である。
 表4に各試料の成分割合を示す。
Figure JPOXMLDOC01-appb-T000004
≪実施例13≫
 実施例1で用いた試料(熱伝導性シート用樹脂組成物)を、発熱部材であるLEDに直接塗布し乾燥させ、形成された熱伝導性シートを放熱部材とした、放熱部材つきLEDを以下に示すように作製し実施例13とした。
[実施例A]
 実施例Aでは、熱伝導性についての評価を示す。
<熱伝導性シートの調製>
 アプリケーターを用いて、実施例1~12および比較例1、2の試料(熱伝導性シート用樹脂組成物)をテフロン(登録商標)シート上に塗布し、60℃のホットプレートで3時間乾燥させた。アプリケーターのクリアランスギャップは、それぞれの実施例ごとに製膜後約250μmまたは約200μmになるように調整した。膜厚は、Nikon社製、DIGIMICRO FM-501を使用して測定した。
 乾燥させた樹脂組成物を、テフロン(登録商標)シートから剥離し実施例1~12および比較例1、2の熱伝導性シートとした。
<放熱部材つきLEDの調製>
 LED(オプトサプライ社、10W白色LED OSW4XAHAE1E)の裏面側に実施例1の試料(熱伝導性シート用樹脂組成物)を塗布し、乾燥させた。乾燥させた塗膜が約250μmになるように調整し、実施例13の放熱部材つきLEDとした。
<熱伝導性の評価>
 実施例1~12および比較例1~4においては、アルミ製ピンフィンヒートシンク((株)アルファ、S08CZK02)の裏面側とLED(オプトサプライ社、10W白色LED OSW4XAHAE1E)の間にLEDパッケージと同じ大きさに切り出した熱伝導性シートもしくは比較シートを挿入し、ヒートシンクとシート、またシートとLEDが密着するように、ヒートシンクにLEDをネジ止めした。実施例13においては、放熱部材つきLEDの放熱部材部位が、ヒートシンクに密着するようにLEDをネジ止めした。LEDのパッケージ表面に熱電対(理化工業(株)、ST-50)を取り付け、データロガーを用いてパソコンにてその温度を記録した。このヒートシンクを取り付けたLEDを40℃に設定した恒温槽中央に静置し、LEDの温度が40℃で一定になったことを確認した後、LEDに直流安定化電源を用いて10Vを印加し、LEDパッケージの表面の温度変化を測定した。
 実施例1~5および比較例1~2の熱伝導性シートまたは比較例3~4の比較シートを用いて、その熱伝導性を評価した。表5に各シートを用いた場合のLEDパッケージの表面温度を示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から、本発明の熱伝導性シート用樹脂組成物から形成された、窒化ホウ素を含有する、実施例1~5の熱伝導性シートは、優れた放熱効果を維持している。例えば、実施例1と比較例2~4の熱伝導性試験結果を比較すると、ポリウレタンと窒化ホウ素を含有する実施例1の熱伝導性シートは、優れた放熱効果を有していることがわかる。また、実施例1と比較例1の熱伝導性試験結果から、鱗片状の窒化ホウ素よりも凝集体状の窒化ホウ素フィラーが好ましいことがわかる。さらに、実施例1と実施例5の熱伝導性試験結果から、凝集体状の窒化ホウ素の含有割合が多い方が好ましいことがわかる。
 実施例6~12の熱伝導性シートを用いて、その熱伝導性を評価した。表6に各シートを用いた場合のLEDパッケージの表面温度を示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果から、本発明の熱伝導性シート用樹脂組成物から形成された、窒化ホウ素と第2のフィラーを含有する、実施例6~12の熱伝導性シートは、優れた放熱効果を維持している。また、実施例8および実施例11より、球状の窒化ホウ素の凝集体が存在することで第2のフィラーである鱗片状の窒化ホウ素および黒鉛の配向が乱されたと考えられ、熱伝導性が向上していて好ましい。さらに、実施例12より、第2のフィラーに酸化亜鉛を用いることで、フィラーの分散を促進し、第1のフィラーである窒化ホウ素の配向をより乱すことができ好ましい。
 実施例13の放熱部材つきLEDを用いて、その熱伝導性を評価した。表7にLEDパッケージの表面温度を示す。
Figure JPOXMLDOC01-appb-T000007
 実施例1と比較すると、実施例13は本発明の熱伝導性シート用樹脂組成物の組成および膜厚は同様であるが、LEDパッケージの表面温度は下がっていることがわかる。これは冷却したい発熱部材に直接、熱伝導性シート用樹脂組成物を塗布し乾燥させ製膜することによって、発熱部材と熱伝導性樹脂組成物の間に空気などが入り込むこともなく、発熱部材の凹凸にすでに追従した状態で膜が形成され、より密着した状態を作り出すことができたためである。また、ヒートシンクなどの放熱部品に熱伝導性シート用樹脂組成物を塗布し乾燥させて製膜した場合にも、同様の効果が得られる。さらに、部材に熱伝導性シート用樹脂組成物を直接塗布し製膜することで、熱伝導性シートの膜厚を薄くしてもハンドリングが悪くなることがないため好ましい。
[実施例B]
 実施例Bでは、作製した熱伝導性シートの膜物性についての評価を示す。
<硬度の評価>
 実施例1~4の熱伝導性シートおよび比較例4の比較シートを切り取り、ゴム・プラスチック硬度計GS-701N((株)テクロック社製)を用いて、硬度を測定した。測定方法はSRIS 0101に準ずる。表8に各シートの硬度を示す。なお、温度が50℃の際の測定は、52℃に設定したホットプレートの上に設置したシートを用い、通常測定と同様の操作を行った。
Figure JPOXMLDOC01-appb-T000008
 実施例1~4と比較例4を比較すると、実施例は温度が25℃の際の硬度が大きくハンドリングが良いため好ましい。実施例1および2は実施例3と比較すると、温度が25℃の際も50℃の際も硬度が小さく基材等に追従できるため好ましい。実施例4は、実施例3と比較すると温度が50℃の際に硬度が小さく基材等に追従できるため好ましい。また実施例4は、実施例1および2と比較すると25℃の際の硬度が大きくハンドリングが良いため好ましい。
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組み合わせも本発明に包含される。
1   熱伝導性シート
2   鱗片状の窒化ホウ素を含む熱伝導性シート
11  凝集体
12  樹脂
13  鱗片状結晶
21  金属部品
22  電子デバイス
 

Claims (11)

  1.  ポリウレタン水分散粒子と;
     六方晶系の窒化物の結晶が凝集した凝集体である第1のフィラーと;
     前記ポリウレタン水分散粒子と前記第1のフィラーが分散した水を含む;
     熱伝導性シート用樹脂組成物。
  2.  前記ポリウレタン水分散粒子を構成する材料は、ポリカーボネートポリウレタン、ポリエステルポリウレタン、脂肪族ポリウレタン、脂肪酸変性ポリウレタン、芳香族ポリウレタン、ポリエーテルポリウレタンからなる群から選ばれる少なくとも1種である、
     請求項1に記載の熱伝導性シート用樹脂組成物。
  3.  前記第1のフィラーが、六方晶系の窒化ホウ素である、
     請求項1または請求項2に記載の熱伝導性シート用樹脂組成物。
  4.  前記ポリウレタン水分散粒子100重量部に対して、前記第1のフィラーを5~150重量部含有する、
     請求項1~請求項3のいずれか1項に記載の熱伝導性シート用樹脂組成物。
  5.  前記第1のフィラーは粉末であり、
     前記第1のフィラーの平均粒径は、0.5~150μmである、
     請求項1~請求項4のいずれか1項に記載の熱伝導性シート用樹脂組成物。
  6.  窒化ホウ素、コーディエライト、ムライト、シリカ、アルミナ、酸化亜鉛および黒鉛からなる群から選ばれる少なくとも1種の第2のフィラーをさらに含む、
     請求項1~請求項5のいずれか1項に記載の熱伝導性シート用樹脂組成物。
  7.  請求項1~請求項6のいずれか1項に記載の熱伝導性シート用樹脂組成物を乾燥させて得られた、
     熱伝導性シート。
  8.  50℃におけるASKER C硬度が、25~80である、
     請求項7に記載の熱伝導性シート。
  9.  厚さが、5~500μmである、
     請求項7または請求項8に記載の熱伝導性シート。
  10.  請求項7~請求項9のいずれか1項に記載の熱伝導性シートと;
     前記熱伝導性シートにより被膜された金属部品とを備える;
     樹脂被膜金属。
  11.  請求項10に記載の樹脂被膜金属と;
     発熱部を有する電子デバイスとを備え;
     前記樹脂被膜金属の熱伝導性シートが、前記発熱部に接触するように前記電子デバイスに配置された;
     電子機器。
     
PCT/JP2015/050181 2014-01-08 2015-01-06 熱伝導性シート用樹脂組成物、熱伝導性シート、樹脂被膜金属、電子機器 WO2015105106A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167017527A KR20160106579A (ko) 2014-01-08 2015-01-06 열전도성 시트용 수지 조성물, 열전도성 시트, 수지 피막 금속 및 전자 기기
JP2015556809A JPWO2015105106A1 (ja) 2014-01-08 2015-01-06 熱伝導性シート用樹脂組成物、熱伝導性シート、樹脂被膜金属、電子機器
CN201580003926.9A CN105899613A (zh) 2014-01-08 2015-01-06 热传导性片用树脂组合物、热传导性片、树脂覆膜金属、电子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-001985 2014-01-08
JP2014001985 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015105106A1 true WO2015105106A1 (ja) 2015-07-16

Family

ID=53523931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050181 WO2015105106A1 (ja) 2014-01-08 2015-01-06 熱伝導性シート用樹脂組成物、熱伝導性シート、樹脂被膜金属、電子機器

Country Status (5)

Country Link
JP (1) JPWO2015105106A1 (ja)
KR (1) KR20160106579A (ja)
CN (1) CN105899613A (ja)
TW (1) TW201531557A (ja)
WO (1) WO2015105106A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497381A (zh) * 2016-11-24 2017-03-15 中国科学技术大学 基于羟基聚乳酸中发色团的双重发光水性聚氨酯漆及制法
KR101759833B1 (ko) * 2016-04-05 2017-07-20 연세대학교 산학협력단 전기 전도성 및 분산성이 우수한 전도성 조성물 및 이의 제조방법
KR20220014894A (ko) * 2017-10-27 2022-02-07 주식회사 엘지화학 복합재

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614332B (zh) * 2016-09-22 2018-02-11 國立交通大學 具有導熱性之高分子複合物及其製備方法
KR102112790B1 (ko) * 2017-12-15 2020-05-19 주식회사 엘지화학 수지 조성물
KR102214563B1 (ko) * 2020-05-12 2021-02-09 주식회사 엘지화학 수지 조성물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509578A (ja) * 1999-09-21 2003-03-11 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド 熱管理のための疎水性化合物における熱伝導性材料
JP2004537489A (ja) * 2001-08-07 2004-12-16 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド 高固形分のhBNスラリー、hBNペースト、球状hBN粉末、並びにそれらの製造方法および使用方法
JP2008510878A (ja) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ 熱伝導性組成物およびその作製方法
JP2010189505A (ja) * 2009-02-17 2010-09-02 Yokohama Rubber Co Ltd:The 熱伝導性エマルジョン
JP2011184507A (ja) * 2010-03-05 2011-09-22 Denki Kagaku Kogyo Kk 高熱伝導性フィラー
WO2013009133A2 (ko) * 2011-07-13 2013-01-17 주식회사 포스코 표면 처리용 수지 조성물 및 이에 의해 코팅된 강판
JP2013032496A (ja) * 2011-06-27 2013-02-14 Nitto Shinko Kk 熱硬化性樹脂組成物、熱伝導性シート、及び、半導体モジュール
JP2013241321A (ja) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445797B2 (en) * 2005-03-14 2008-11-04 Momentive Performance Materials Inc. Enhanced boron nitride composition and polymer-based compositions made therewith
JP2003160768A (ja) * 2001-11-28 2003-06-06 Dainippon Ink & Chem Inc 熱伝導難燃性感圧接着テープ
JP5407120B2 (ja) 2007-04-11 2014-02-05 日立化成株式会社 熱伝導シート、その製造方法およびこれを用いた放熱装置
JP5184543B2 (ja) * 2007-09-26 2013-04-17 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP5036696B2 (ja) * 2008-12-26 2012-09-26 三菱電機株式会社 熱伝導性シート及びパワーモジュール
TWI492972B (zh) 2010-01-29 2015-07-21 Nitto Denko Corp 熱傳導性片材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509578A (ja) * 1999-09-21 2003-03-11 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド 熱管理のための疎水性化合物における熱伝導性材料
JP2004537489A (ja) * 2001-08-07 2004-12-16 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド 高固形分のhBNスラリー、hBNペースト、球状hBN粉末、並びにそれらの製造方法および使用方法
JP2008510878A (ja) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ 熱伝導性組成物およびその作製方法
JP2010189505A (ja) * 2009-02-17 2010-09-02 Yokohama Rubber Co Ltd:The 熱伝導性エマルジョン
JP2011184507A (ja) * 2010-03-05 2011-09-22 Denki Kagaku Kogyo Kk 高熱伝導性フィラー
JP2013032496A (ja) * 2011-06-27 2013-02-14 Nitto Shinko Kk 熱硬化性樹脂組成物、熱伝導性シート、及び、半導体モジュール
WO2013009133A2 (ko) * 2011-07-13 2013-01-17 주식회사 포스코 표면 처리용 수지 조성물 및 이에 의해 코팅된 강판
JP2013241321A (ja) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759833B1 (ko) * 2016-04-05 2017-07-20 연세대학교 산학협력단 전기 전도성 및 분산성이 우수한 전도성 조성물 및 이의 제조방법
CN106497381A (zh) * 2016-11-24 2017-03-15 中国科学技术大学 基于羟基聚乳酸中发色团的双重发光水性聚氨酯漆及制法
KR20220014894A (ko) * 2017-10-27 2022-02-07 주식회사 엘지화학 복합재
KR102479099B1 (ko) 2017-10-27 2022-12-19 주식회사 엘지화학 복합재

Also Published As

Publication number Publication date
CN105899613A (zh) 2016-08-24
JPWO2015105106A1 (ja) 2017-03-23
KR20160106579A (ko) 2016-09-12
TW201531557A (zh) 2015-08-16

Similar Documents

Publication Publication Date Title
WO2015105106A1 (ja) 熱伝導性シート用樹脂組成物、熱伝導性シート、樹脂被膜金属、電子機器
JP2019172935A (ja) 2成分型熱伝導樹脂組成物、熱伝導シート、金属製品、電子機器
TWI480371B (zh) 熱傳導潤滑脂
WO2014175344A1 (ja) 水性塗料、放熱部材、金属部品、電子機器
CN103804942B (zh) 含有石墨烯的绝缘散热组合物及其制备和应用
TWI553111B (zh) 具有低熱阻之熱油脂
US10870786B2 (en) Low heat resistance silicone composition
JP5220467B2 (ja) 電子部品を冷却するための熱ペースト及び方法
CN105086950B (zh) 一种高导热膏
CN105670502B (zh) 散热涂料及其制备方法
JP6919716B2 (ja) 熱伝導性シリコーングリース組成物
JP2010502785A (ja) 熱伝導性グリース
JP5422413B2 (ja) 放熱部材及びその製造方法
Suganthi et al. Influence of nanoparticle concentration on thermo-physical properties of CuO-propylene glycol nanofluids
JP2018052782A (ja) 六方晶窒化ホウ素一次粒子凝集体
CN109439236A (zh) 一种含石墨烯的导热粘结剂及其制备方法和应用
KR100865771B1 (ko) 방열용 코팅제 조성물
CN102250589B (zh) 一种高性能无硅导热膏及其制备方法
JP5755977B2 (ja) 高熱伝導性樹脂組成物
CN108148558A (zh) 一种含石墨烯的导热凝胶及其制备方法和应用
JP5284655B2 (ja) 熱伝導性グリース
CN109553908A (zh) 用于电子设备散热的导热界面材料
JP2022087605A (ja) 熱伝導性樹脂組成物、放熱構造体及び熱伝導性樹脂組成物の製造方法
JP6125303B2 (ja) 熱伝導性シート
JP4575310B2 (ja) 窒化硼素スラリー及び離型剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556809

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167017527

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735204

Country of ref document: EP

Kind code of ref document: A1