WO2015102315A1 - 항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법 - Google Patents

항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법 Download PDF

Info

Publication number
WO2015102315A1
WO2015102315A1 PCT/KR2014/012886 KR2014012886W WO2015102315A1 WO 2015102315 A1 WO2015102315 A1 WO 2015102315A1 KR 2014012886 W KR2014012886 W KR 2014012886W WO 2015102315 A1 WO2015102315 A1 WO 2015102315A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
degassing
composition
degassed
freeze
Prior art date
Application number
PCT/KR2014/012886
Other languages
English (en)
French (fr)
Inventor
조중웅
김경해
서민효
이사원
Original Assignee
주식회사 삼양바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양바이오팜 filed Critical 주식회사 삼양바이오팜
Priority to US15/108,810 priority Critical patent/US10300063B2/en
Priority to EP14877377.3A priority patent/EP3090746B1/en
Priority to BR112016015190-9A priority patent/BR112016015190B1/pt
Priority to JP2016544149A priority patent/JP6505114B2/ja
Priority to CN201480074738.0A priority patent/CN105979949B/zh
Priority to MX2016008662A priority patent/MX366953B/es
Publication of WO2015102315A1 publication Critical patent/WO2015102315A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a pharmaceutical composition having improved stability, including pemetrexed or a pharmaceutically acceptable salt thereof, and a method for preparing the same.
  • Pemetrexed disodium salt is a new multi-target antifolate with excellent anticancer activity against non-small cell lung cancer (NSCLC), malignant pleural mesothelioma and a wide range of solid cancers including breast cancer, colorectal cancer, uterine cancer, head and neck cancer and bladder cancer.
  • NSCLC non-small cell lung cancer
  • Alimta® is a clinically used pemetrexed lyophilized injection, used in combination with cisplatin in patients with inoperable malignant pleural mesothelioma who has never received chemotherapy in Korea or after advanced chemotherapy. It was released and used in 2007 as a monotherapy for non-small cell lung cancer.
  • Injectables of most lyophilized formulations currently used are prepared in the form of lyophilized powder due to the instability of the drug in aqueous solution and reconstructed in physiological saline or water for injection before administration to the patient.
  • this reconstruction process is cumbersome to measure the required amount and put into the lyophilizer vials, there is a risk of microbial contamination during the reconstruction process, and there is a limit to use within a certain time after reconstruction.
  • lyophilized formulation is consumed a lot of time due to the long drying cycle in the freeze-drying process, the production cost is high and the manufacturing process has a complex problem. Therefore, in consideration of economical convenience during manufacturing, user convenience, and the like, there is a need for a ready-to-use liquid composition having stability.
  • pemetrexed is a representative drug that causes rapid oxidation in aqueous solution to produce various analogs. Due to the instability of the drug in the liquid phase, a typical method of increasing the stability of the drug is to add antioxidants or remove dissolved oxygen.
  • a method of using an antioxidant is disclosed in WO2001 / 56575 a liquid formulation in which pemetrexed is formulated with an antioxidant of monothioglycerol, L-cysteine or thioglycolic acid.
  • Korean Patent No. 10-1260636 discloses a formulation having increased stability by using acetyl cysteine as an antioxidant and citric acid as a buffer in pemetrexed.
  • WO2012 / 121523 discloses a manufacturing process for enhancing stability by adjusting the concentration of dissolved oxygen in the injection solution to 1 ppm or less without using an antioxidant.
  • the manufacturing process disclosed in this document is capable of small scale production in a laboratory, but there are many difficulties in large scale commercial production.
  • dispensing a glass vial after vacuum degassing the water for injection or aqueous solution during large-scale production there is a disadvantage that it is difficult to maintain a degassed state.
  • the document is not easy to connect the process to a commercially available process or a process that can increase the stability by preventing oxidation without using a stabilizer such as an antioxidant.
  • the present invention can proceed all the processes in a closed chamber without using stabilizers such as antioxidants, so that a large-scale commercial production is possible, stable antioxidant-free pharmaceutical composition in aqueous solution state and It aims at providing the manufacturing method thereof.
  • the present invention is to provide a pharmaceutical composition and a method for producing the same to increase the stability by removing oxygen without using an antioxidant.
  • Another object of the present invention is to freeze and degas the process in a closed chamber instead of the use of antioxidants or the hassle of preparing the composition in a system sealed with a degassed aqueous solution, thereby ensuring the stability of the drug that is unstable to oxidation.
  • an embodiment of the present invention comprises the steps of (a) freezing a solution containing a pemetrexed or a pharmaceutically acceptable salt and an aqueous solvent thereof; And (b) degassing the freeze under vacuum decompression conditions to obtain a degassed freeze.
  • the method of claim 1 provides an antioxidant-free pharmaceutical composition.
  • Another embodiment of the present invention provides an antioxidant-free pharmaceutical composition
  • an antioxidant-free pharmaceutical composition comprising pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent, which is frozen and degassed.
  • the solution of step (a) may be a solution that is not degassed, and may be frozen below ⁇ 20 ° C. in step (a).
  • the degassed freeze may include 95 parts by weight to 100 parts by weight of a solvent based on 100 parts by weight of the solvent contained in the solution of step (a), and degassing at a dissolved oxygen concentration of 1.5 ppm or less in step (b). It may be.
  • the step of freezing and degassing, optionally sealing may be carried out in a closed chamber, and thawing the degassed freeze after the step (b) or after the step of sealing. It may further comprise a step.
  • the vacuum decompression condition may be a condition of 2,000 mTorr or less .
  • composition may further comprise one or more selected from the group consisting of pharmaceutically acceptable excipients and pH adjusting agents, for example the excipient is mannitol, or the pH adjusting agent is hydrochloric acid, sodium hydroxide or mixtures thereof Can be.
  • excipient is mannitol
  • pH adjusting agent is hydrochloric acid, sodium hydroxide or mixtures thereof Can be.
  • One embodiment of the present invention comprises the steps of (a) freezing a solution comprising a pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a freeze; And (b) degassing said freeze under vacuum decompression conditions to obtain a degassed freeze.
  • Another embodiment of the present invention comprises the steps of (a) freezing a solution comprising a pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a freeze; And (b) degassing said freeze under vacuum decompression conditions to obtain a degassed freeze.
  • Preferred embodiments of the present invention comprise the steps of (a) freezing a solution comprising pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent in a closed chamber to obtain a frozen product and (b) under vacuum decompression conditions Degassing the frozen product to obtain a degassed frozen product; Or (a) freezing the solution containing pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a freeze, (b) degassing the freeze under vacuum reduced pressure to obtain a degassed freeze. And a step of (c) sealing to remove dissolved oxygen in an aqueous solution without using an antioxidant to improve the stability of the drug susceptible to oxidation.
  • the present invention is a method of improving the stability of a drug susceptible to oxidation by removing dissolved oxygen in an aqueous solution without using an antioxidant, and by using a degassing method, it is possible to minimize the use of additives in medicines, and unconfirmed flexibility due to the use of antioxidants.
  • the formation of oxidative degradation products of the substance and antioxidant itself can be excluded at a source.
  • the process since the process is performed in a closed chamber, the process can be easily performed in a sterile space without contamination. It is also very effective in yield.
  • One embodiment of the present invention comprises the steps of (a) freezing a solution comprising a pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a freeze; And (b) degassing the freeze under vacuum decompression conditions to obtain a degassed freeze, which is capable of commercially producing a large-scale stable composition containing no antioxidant.
  • a further embodiment of the present invention is to provide an antioxidant-free pharmaceutical composition
  • an antioxidant-free pharmaceutical composition comprising pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent, which is frozen and degassed.
  • the pharmaceutical compositions according to the invention can be thawed and used as liquid parenteral preparations, in particular liquid injections.
  • pemetrexed-containing injectable preparations cannot be obtained simply by filling the head space with an inert gas such as nitrogen, and stability should be ensured by the use of specific antioxidants.
  • an inert gas such as nitrogen
  • a solution containing pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent may be prepared and frozen to obtain a freeze.
  • a process of freezing may be performed. Dispensing the solution into a fill container prior to freezing may be performed. After dispensing the solution of step (a) in a container such as an ampoule or vial, the freezing, degassing and sealing processes may be sequentially performed in a closed chamber, which is advantageous in maintaining a degassing state at a large scale. .
  • pemetrexed is a 5-substituted pyrrolo [2,3-d] pyrimidine compound, specifically represented by the following Chemical Formula 1, and various cancers including non-small cell lung cancer and malignant pleural mesothelioma. It refers to a multi-target antifolate which shows anticancer efficacy in species.
  • pharmaceutically acceptable salts means salts prepared according to methods conventional in the art.
  • the pharmaceutically acceptable salts include, but are not limited to, salts derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • suitable acids include hydrochloric acid, bromic acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-p-sulfonic acid, tartaric acid, acetic acid, citric acid, methanesulfuric acid Phonic acid, formic acid, benzoic acid, malonic acid, naphthalene-2-sulfonic acid, benzenesulfonic acid, and the like.
  • suitable bases may include, but are not limited to, alkali metals such as sodium, or potassium, alkaline earth metals such as magnesium.
  • the pharmaceutically acceptable salt of pemetrexed may be, but is not limited to, pemetrexed disodium.
  • pemetrexed or a pharmaceutically acceptable salt thereof is a concept including a hydrate of pemetrexed or a pharmaceutically acceptable salt thereof, and includes all forms of hydrates such as 2.5 hydrates, heptahydrates and the like. Including but not limited to these.
  • the aqueous solvent may be a buffer solution, preferably water, such as water for injection or saline solution.
  • the pharmaceutical composition according to the invention may further comprise one or more selected from the group consisting of pharmaceutically acceptable excipients and pH adjusting agents, for example the excipient is mannitol, and / or the pH adjusting agent Hydrochloric acid, sodium hydroxide or mixtures thereof.
  • the excipient and pH adjusting agent may be added to the solution of step (a).
  • the solution or solvent of step (a) may not be degassed.
  • the present invention degassing after freezing As a result, the degassing or the treatment for adjusting the concentration of dissolved oxygen is not necessary for the solution containing the aqueous solvent or the drug in the previous step. Therefore, according to the present invention, it is possible to easily prepare a liquid formulation with high stability easily.
  • the freezing of the solution in step (a) may be frozen at temperatures below -20 ° C, preferably below -30 ° C, for example between -30 ° C and -50 ° C, in particular -40 ° C.
  • a freezing method of a conventional liquid formulation may be applied.
  • the degassed freeze of step (b) comprises 95 parts by weight to 100 parts by weight, or more preferably 98 parts by weight to 100 parts by weight, based on 100 parts by weight of the solvent contained in the solution of step (a). After degassing the freeze, most of the solvent content is kept intact, so that a liquid composition is obtained, and thus, there is an advantage in that it can be used immediately without performing reconstruction. Unlike conventional lyophilized powdered formulations, the pharmaceutical composition obtained according to the method of the present invention is not subjected to the drying process of removing the solvent in step (b), but to degassing to reduce oxygen content. The stability of the unstable drug pemetrexed or its pharmaceutically acceptable salt can be ensured.
  • the dissolved oxygen concentration of the degassed frozen product obtained in step (b) or after thawing composition may be 1.5 ppm or less.
  • the degassing process may be performed to reduce the content of dissolved oxygen contained in the composition, thereby ensuring the stability of the pemetrexed or pharmacological salt thereof, which is an oxygen labile drug.
  • the method for preparing the pharmaceutical composition may be performed in a hermetically sealed chamber, freezing and degassing, preferably sealing. Specifically, after freezing the solution of the step (a) at a temperature of -20 °C or less, by vacuum decompression to remove oxygen from the frozen composition and immediately sealing it, freezing, degassing and All sealing can be done.
  • the freezing and step (b) degassing step of the step (a) and before the sealing step it may further comprise the step of filling nitrogen in the container filled with the composition.
  • This risk is achieved by reducing the negative pressure by filling nitrogen in the container filled with the composition after the degassing process and before the sealing process, in order to completely exclude the possibility of backflow of atmospheric air due to the negative pressure created by the vacuum in the upper space of the filling container. Can be greatly reduced.
  • the step of degassing vacuum by filling with nitrogen before sealing with a rubber stopper after degassing. Even after sealing and degassing the vacuum, the dissolved oxygen is sufficiently removed, but negative pressure is applied in the vial, so air can be easily introduced into the fine holes. Can be reduced.
  • vacuum decompression in solution causes water to boil over immediately by vapor pressure, but freezing removes gas having a lower freezing point than aqueous solution by vacuum decompression without loss of composition and content in the process until drying occurs.
  • freezing removes gas having a lower freezing point than aqueous solution by vacuum decompression without loss of composition and content in the process until drying occurs.
  • the term "degassing” refers to the removal of gas molecules contained in a solid or liquid.
  • the basic principle of removing these gas molecules is Henry's law and Dalton's law of partial pressure.
  • Henry's law states that the amount of dissolved gas in a solution is proportional to the pressure of the gas in contact with the liquid, so that the pressure of the gas in contact with the liquid is reduced, that is, a vacuum, so that gas molecules in the liquid are discharged.
  • Another method is to heat the liquid using the dissolved saturation of the gas depending on the temperature of the liquid. This method has a problem of energy consumption for heating a liquid, and is not suitable for application to pharmaceuticals due to heat-denatured drug or excipient denaturation or change of concentration.
  • the degassing process of step (b) can be carried out under a specific pressure range condition, for example, the upper limit of the pressure condition is a pressure of 2,000 mTorr or less, preferably 1,000 mTorr or less, more preferably 500 mTorr or less, for example For example, it may be performed at a pressure of 300 mTorr or less.
  • the lower limit of the pressure condition may be 0 mTorr or more, for example 5 mTorr or more, for example 100 mTorr or more.
  • the degassing process may maintain the degree of vacuum for a predetermined time after achieving the desired degree of vacuum to remove oxygen or gas containing oxygen from the freeze.
  • the present invention is different from the general freeze-drying process is to release the vacuum before drying occurs when the desired degree of vacuum is reached after vacuum decompression after freezing. This is because as the drying proceeds, an increase in the concentration of the active ingredient due to the decrease of the solvent may occur.
  • the vacuum degree is preferably maintained within 12 hours, more preferably within 10 hours, even more preferably within 6 hours after reaching the desired reduced pressure conditions.
  • the sealing and / or vacuuming process can be performed immediately (at 0 hours) after reaching the desired decompression conditions.
  • the solvent contained in the degassed freeze or thawed solution of the present invention it is ideal that 100 parts by weight remain intact without drying at all, based on 100 weights of the solvent contained in the solution before freezing and degassing. It may include from 100 parts by weight of the solvent, more preferably from 98 parts by weight to 100 parts by weight of the solvent.
  • the thawing in the step of sealing and thawing, may be performed while raising the temperature in the hermetically sealed chamber, or may be thawed after being taken out of the hermetically sealed chamber. This is important to take out of the vial at too low temperature as it may cause inconvenience in capping aluminum due to moisture on the vial surface.
  • Liquid pharmaceutical compositions prepared by the present invention may be subjected to sterilization according to conventional methods, for example, methods such as sterilization filtration and / or heat sterilization.
  • methods such as sterilization filtration and / or heat sterilization.
  • the aqueous solvent or solution of step (a) of the present invention may be sterilized by a conventional method, for example, sterile filtration and / or heat sterilization.
  • the pharmaceutical composition according to the present invention can minimize the use of additives by not using an antioxidant and can fundamentally exclude oxidative degradation products of the unidentified flexible substance and the antioxidant itself due to the use of the antioxidant.
  • the manufacturing method according to the present invention is preferably suitable for large-scale commercial production because the freezing, degassing, and sealing processes are continuously performed in a closed chamber, and can be easily performed in a sterile space without contamination. It is a much more effective process in terms of time, convenience and yield than degassing.
  • the glass vial containing the prepared solution was placed in a closed chamber with a rubber stopper slightly open and frozen at -40 ° C for 1 hour. Confirming that the solution was completely frozen, vacuum decompression was started by operating the vacuum pump in the closed chamber while maintaining the temperature at -40 ° C. As shown in Table 1 below, the degree of vacuum was adjusted to the desired degree of vacuum and immediately stopped the operation of the vacuum pump and sealed with a rubber stopper. After confirming the sealing state, the vacuum was released, the glass vial was taken out of the closed chamber, thawed and capped with an aluminum cap. The dissolved oxygen concentration of the preparation obtained by performing freezing and degassing is shown in Table 1 below.
  • the dissolved oxygen was measured using a YSI 550A dissolved oxygen analyzer with stirring in a glove box filled with nitrogen. Table 1 shows the characteristics of the thawing solution.
  • Example 1 Main ingredient concentration (mg / ml) Torr Dissolved oxygen (ppm) pH Example 1 25 2 1.5 7.3 Example 2 25 One 1.1 7.3 Example 3 25 0.5 0.7 7.3 Example 4 25 0.3 0.5 7.3 Example 5 25 0.1 0.5 7.3
  • Example 2 In the same manner as in Example 1 to obtain a mixed solution filled in a vial.
  • the glass vial containing the prepared solution was placed in a closed chamber with a rubber stopper slightly open and frozen at -40 ° C for 1 hour. Confirm that the solution is completely frozen and start vacuum decompression by operating the vacuum pump in the closed chamber while maintaining it at -40 ° C.
  • the vacuum pump was stopped immediately, filled with nitrogen, and sealed with a rubber stopper. After checking the sealing state, when the vacuum was released, the glass vial was taken out of the sealed chamber, thawed, and capped with an aluminum cap.
  • the dissolved oxygen concentration of the obtained solution was about 0.5 ppm.
  • Example 2 In the same manner as in Example 1 to obtain a mixed solution filled in a vial.
  • the vial was capped with an aluminum cap.
  • the dissolved oxygen concentration of the obtained solution was about 7.0 ppm.
  • Example 2 In the same manner as in Example 1 to obtain a mixed solution filled in a vial. After filling the vial with nitrogen, it was sealed with a rubber stopper and capped with an aluminum cap. The dissolved oxygen concentration of the obtained solution was about 7.0 ppm.
  • Stability evaluation was performed under accelerated conditions (40 ° C / RH75%) of the compositions prepared in Examples 1 to 6 and Comparative Examples 1 and 2. Stability evaluation was performed by high performance liquid chromatography (HPLC) of the properties and pH of the aqueous solution and the content and amount of the flexible material.
  • HPLC high performance liquid chromatography
  • UV absorbance photometer (wavelength: 285 nm)
  • Acetic acid buffer solution (30 mM, pH 5.3 ⁇ 1): Add 1.7 mL of acetic anhydride per liter of purified water, mix well, adjust to pH 5.3 ⁇ 0.1 with 50% sodium hydroxide, and filter if necessary.
  • Formic acid buffer 2.9 g of ammonium formic acid is dissolved in 2 L of purified water and adjusted to pH 3.5 ⁇ 0.1 using formic acid.
  • Examples 3 to 6 showed almost similar results, and the degree of vacuum was almost similar to that of degassing at 500 mTorr or less.
  • the stability is significantly reduced regardless of the nitrogen filling. This shows that the process of removing dissolved oxygen through degassing is a process that greatly improves the stability of pemetrexed.
  • Table 4 shows the results of performing the harsh stability test (60 ° C./RH80%) for 4 weeks on the compositions of Example 5 and Comparative Example 1.
  • Example 5 showed a slight change in properties even after 1 month of severe stability, but there was almost no change in content, and total flexible substances (standard value: 1.5% or less) or individual flexible substances (standard value: 0.2% or less) were kept below the standard. there was.
  • Comparative Example 1 without degassing it was found that the content and the softening material were both out of the standard and the color changed to dark brown in one week, so that a significant oxidation reaction proceeds.
  • the aqueous solution formulation which greatly improved the stability through the degassing process can be seen as a stable aqueous formulation that can be stored at room temperature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

페메트렉시드와 같이 산화에 의한 분해가 쉽게 일어나는 약물을 포함하는 조성물의 제조에 있어서 항산화제를 사용하지 않고 제조공정상에서 산소를 제거하여 안정성을 높인 조성물 및 그 제조방법이 개시된다. 상기 제조방법은 밀폐된 챔버 내에서 동결 및 탈기하여 제조의 용이성을 높인 제조방법이며, 산화에 불안정한 약물의 안정성을 획기적으로 높인 조성물을 제공할 수 있다.

Description

항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법
본 발명은 페메트렉시드 또는 그의 약학적으로 허용가능한 염을 포함하는 안정성이 향상된 약학 조성물 및 그 제조방법에 관한 것이다.
페메트렉시드 이나트륨염은 새로운 다중표적 항엽산제로 비소세포폐암 (NSCLC), 악성 흉막중피종(methothelioma) 및 유방암, 대장암, 자궁암, 두경부암 및 방광암을 포함하는 광범위한 고형암에 우수한 항암활성을 가지고 있다. 알림타(Alimta: 상표명)는 임상에 사용되고 있는 페메트렉시드 동결건조제형 주사제로서, 국내에서는 화학요법을 받은 적이 없는 수술 불가능한 악성 흉막 중피종 환자에게 시스플라틴과 병용하여 사용하거나 이전 화학요법 실시 후, 국소 진행성 유방암과 비소세포 폐암의 단독요법제로 2007년에 출시되어 사용되고 있다.
현재 사용되고 있는 대부분의 동결건조 제형의 주사제는 수용액상에서 약물의 불안정성으로 인하여 동결건조분말 형태로 제조하고 이를 환자에 투약하기 전 생리식염수나 주사용수 등으로 재건하여 사용하고 있다. 그러나 이러한 재건 과정은 필요한 양을 측량해 동결건조제 바이알에 투입해야 하는 번거로움이 있고, 재건과정에서 미생물 오염의 위험이 있으며 재건 후 일정 시간 내에 사용해야 하는 제한도 있다. 그리고 이러한 동결건조 제형은 동결건조 과정에서 긴 건조 사이클로 인하여 많은 시간이 소비되어, 생산 비용이 높아지고 제조 공정도 복잡한 문제점이 있다. 이에, 제조시의 경제성 면이나 사용자의 편이성 등을 고려해 볼 때, 안정성이 확보된 즉시 사용가능한(ready-to-use) 액상 조성물의 필요성이 대두되었다.
그러나, 페메트렉시드는 수용액내에서 빠른 산화를 일으켜 여러 유연물질을 생성하는 대표적인 약물이다. 액상에서 약물의 불안정성으로 인하여, 약물의 안정성을 높이는 방법으로 대표적인 것이 항산화제를 첨가하거나 용존 산소를 제거하는 방법이다. 항산화제를 사용하는 방법으로는 WO2001/56575에서 페메트렉시드를 모노티오글리세롤, L-시스테인 또는 티오글리콜산의 항산화제와 함께 제제화한 액상제제를 개시한바 있다. 대한민국 등록특허 10-1260636에서는 페메트렉시드에 항산화제로 아세틸 시스테인, 완충제로 시트르산을 사용하여 안정성을 높인 제제를 개시하였다. 그러나, 의약품 제조에 사용되는 첨가제는 가능한 최소화하는 것이 안전성 측면에서 바람직하며, 특히, 항산화제의 사용에 따른 미확인 분해산물 및 항산화제 자체의 산화형 분해산물 형성을 배제할 수도 없는 실정이다. WO2012/121523에서는 항산화제를 사용하지 않고 주사 용액중 용존산소의 농도를 1 ppm 이하로 조절하여 안정성을 높이는 제조공정에 대해 개시하였다. 그러나 상기 문헌에 개시된 제조공정은 실험실내의 소규모 생산은 가능하나 대규모의 상업용 생산에는 많은 공정의 어려움이 있다. 특히 대규모 생산시 주사용수나 수용액을 진공 탈기한 후 유리 바이알에 분주하는 경우 탈기된 상태를 유지하는 것에 상당한 어려움이 따르는 단점이 있다. 상기 문헌은 항산화제 등의 안정화제를 사용하지 않고 산화를 방지하여 안정성을 높일 수 있는 공정이나 이를 상업생산 가능한 공정으로 연결시키는 것은 쉬운 일이 아니었다.
그리하여 본 발명은 상기한 문제점등을 고려하여 항산화제 등의 안정화제를 사용하지 않고 밀폐된 챔버 내에서 모든 공정을 진행할 수 있어 대규모의 상업생산이 가능한, 수용액 상태에서 안정한 항산화제 무함유 약학 조성물 및 그의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명은 항산화제를 사용하지 않고 산소를 제거하여 안정성을 높인 약학 조성물 및 이의 제조방법을 제공하고자 한다.
본 발명의 또 다른 목적은 항산화제의 사용이나 탈기한 수용액으로 밀폐된 시스템에서 조성물을 제조하는 번거로움 대신, 밀폐된 챔버내에서 동결 및 탈기하여 공정을 간단히 수행함으로써, 산화에 불안정한 약물의 안정성 확보와 함께 대규모 생산이 가능한, 페메트렉시드 함유 약학 조성물 및 이의 제조방법을 제공하고자 한다.
상기와 같은 과제를 해결하고자, 본 발명의 일구현예는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 항산화제-무함유(antioxidant-free) 약학 조성물의 제조방법을 제공한다.
본 발명의 또 다른 구현예는 페메트렉시드 또는 이의 약학적으로 허용 가능한 염과 수성 용매를 포함하고, 동결 및 탈기된 것을 특징으로 하는, 항산화제-무함유 약학 조성물을 제공한다.
상기 단계 (a)의 용액은 탈기처리가 되지 않는 용액일 수 있으며, 단계 (a)에서 -20℃ 이하로 동결할 수 있다. 상기 탈기된 동결물은 단계 (a)의 용액에 함유된 용매 100중량을 기준으로 95 중량부 내지 100 중량부의 용매를 포함하는 것일 수 있으며, 상기 단계 (b)에서 용존산소농도 1.5 ppm 이하로 탈기하는 것일 수 있다.
바람직하게는, 상기 동결 및 탈기, 선택적으로 밀봉하는 단계는 밀폐된 챔버 내에서 수행될 수 있으며, 상기 단계 (b)를 수행한 후에, 또는 밀봉하는 단계를 수행한 후에 탈기된 동결물을 해동하는 단계를 추가로 포함할 수 있다. 상기 단계 (b)에서 진공감압 조건은 2,000 mTorr 이하의 조건일 수 있다.
상기 조성물은 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함할 수 있으며, 예를 들면 상기 부형제는 만니톨이거나, 상기 pH 조절제는 염산, 수산화나트륨 또는 이들의 혼합물일 수 있다.
본 발명의 일구현예는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 항산화제-무함유 약학 조성물의 용존산소 농도를 감소시키는 방법에 관한 것이다.
본 발명의 또다른 구현예는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 항산화제-무함유 약학 조성물을 안정화시키는 방법에 관한 것이다.
본 발명의 바람직한 구현예는 밀폐된 챔버내에서 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계; 또는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계, (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계 및 (c) 밀봉하는 단계를 포함하는, 항산화제를 사용하지 않고 수용액상에서 용존 산소를 제거하여 산화에 약한 약물의 안정성을 높이는 방법에 관한 것이다.
본 발명은 항산화제를 사용하지 않고 수용액상에서 용존 산소를 제거하여 산화에 약한 약물의 안정성을 높이는 방법으로서, 탈기 방법을 사용함으로써, 의약품에서 첨가제 사용을 최소화할 수 있고, 항산화제 사용으로 인한 미확인 유연물질 및 항산화제 자체의 산화형 분해산물 형성을 원천적으로 배제할 수 있으며, 바람직하게는 공정이 밀폐된 챔버내에서 이루어지므로 오염 없이 무균 공간에서 간편하게 이루어질 수 있는 공정으로 다른 탈기방법보다 시간이나 편의성, 수율 면에서도 월등히 효과적이다.
이하 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일구현예는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 항산화제를 함유하지 않으면서 안정성이 우수한 조성물을 대규모로 상업 생산할 수 있는 방법에 관한 것이다.
본 발명의 추가 구현예는 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하고, 동결 및 탈기된 것을 특징으로 하는, 항산화제 무함유 약학 조성물을 제공하는 것이다. 본 발명에 따른 약학 조성물은 해동될 수 있으며, 액상 비경구 제제, 특히 액상 주사제로 사용될 수 있다.
통상적으로 페메트렉시드-함유 주사용 제제는 단순히 상부(head space)를 질소 등의 불활성 가스로 충진하는 것만으로는 안정한 약학적 제제를 얻을 수 없으며, 특정 항산화제의 사용함으로써 안정성을 확보하여야 한다. 그러나, 의약품 제조에 사용되는 첨가제는 가능한 최소화하는 것이 안전성 측면에서 바람직하며, 본 발명은 항산화제와 같은 안정화제의 사용을 배제한, 안정한 액상 약학 조성물의 제조방법을 제공한다.
상기 단계(a)에서, 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 제조하고, 이를 동결하여 동결물을 얻을 수 있다. 상기 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 제조한 후에 동결하는 공정을 수행할 수 있다. 동결전에 상기 용액을 충진 용기에 분주하는 단계를 수행할 수도 있다. 상기 단계(a)의 용액을 앰플 또는 바이알과 같은 용기에 분주한 후 밀폐된 챔버내에서 동결, 탈기 및 밀봉 공정을 순차적으로 수행할 수 있으므로, 대규모의 생산시 탈기 상태를 유지하는데 유리한 장점이 있다.
본 발명에서, "페메트렉시드(pemetrexed)"는 5-치환 피롤로[2,3-d]피리미딘 화합물로서, 구체적으로 하기 화학식 1로 표시되며, 비소세포 폐암, 악성 흉막 중피종을 비롯한 다양한 암 종에서 항암효능을 나타내는 다중표적 항엽산제를 의미한다.
화학식 1
Figure PCTKR2014012886-appb-C000001
본 발명에서, "약학적으로 허용가능한 염"은 당해 기술분야에서 통상적인 방법에 따라 제조된 염을 의미한다. 구체적으로, 상기 약학적으로 허용가능한 염은 약학적으로 허용되는 무기산과 유기산 및 염기로부터 유도된 염을 포함하지만 이것으로 한정되지는 않는다. 적합한 산의 예로는 염산, 브롬산, 브롬화수소산, 황산, 질산, 과염소산, 푸마르산, 말레산, 인산, 글리콜산, 락트산, 살리실산, 숙신산, 톨루엔-p-설폰산, 타르타르산, 아세트산, 시트르산, 메탄설폰산, 포름산, 벤조산, 말론산, 나프탈렌-2-설폰산, 벤젠설폰산 등을 포함할 수 있다. 적합한 염기의 예로는 알칼리 금속, 예를 들어, 나트륨, 또는 칼륨, 알칼리 토금속, 예를 들어, 마그네슘을 포함할 수 있으나 이에 제한되지 않는다. 특히, 페메트렉시드의 약학적으로 허용가능한 염은 페메트렉시드 이나트륨일 수 있으나 이에 제한되지 않는다.
본 발명에서, "페메트렉시드 또는 그의 약학적으로 허용가능한 염"은 페메트렉시드 또는 그의 약학적으로 허용가능한 염의 수화물을 포함하는 개념으로서, 모든 형태의 수화물, 예를 들어 2.5수화물, 7수화물 등을 포함하나 이들로 제한되는 것은 아니다.
상기 수성 용매는 완충용액일 수 있으며, 바람직하게는 물, 예를 들면 주사용수나 생리식염수일 수 있다.
본 발명에 따른 약학 조성물은 추가로 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함할 수 있으며, 예를 들면 상기 부형제는 만니톨이고/거나, 상기 pH 조절제는 염산, 수산화나트륨 또는 이들의 혼합물일 수 있다. 상기 부형제 및 pH 조절제는 단계(a)의 용액에 추가될 수 있다.
상기 단계 (a)의 용액 또는 용매는 탈기처리되지 않은 것일 수 있다. 종래에 액상 제제의 용존산소 농도를 조절하기 위하여, 수성용매 그 자체 또는 수성 용매에 약물을 용해시킨 용액에 대해 용존산소 농도를 조절하기 위한 단계를 수행할 필요가 있으나, 본 발명은 동결후 탈기처리를 수행하므로 그 전단계에서 수성용매 또는 약물을 포함하는 용액에 대해 탈기처리 또는 용존산소의 농도를 조절하기 위한 처리가 필요하지 않다. 따라서, 본 발명에 따르면, 안정성이 높은 액상 제제를 용이하게 간단히 제조할 수 있다.
상기 단계 (a)에서 상기 용액의 동결은 -20℃ 이하, 바람직하게는 -30℃ 이하, 예를 들어 -30℃ 내지 -50℃, 특히 -40℃의 온도에서 동결할 수 있다. 동결 방법은 통상의 액상제제의 동결방법을 적용할 수 있다.
상기 단계(b)의 탈기된 동결물은, 단계 (a)의 용액에 함유된 용매 100중량을 기준으로 95 중량부 내지 100 중량부, 또는 더욱 바람직하게는 98 중량부 내지 100 중량부의 용매를 포함하는 것일 수 있으며, 동결물의 탈기후에 용매함량이 대부분 그대로 유지되어 해동할 경우 액상의 조성물이 얻어지며, 따라서 재건 등을 수행할 필요없이 바로 사용할 수 있는 잇점이 있다. 종래의 동결건조된 분말형 제제와 달리, 본 발명의 방법에 따라 얻어진 약학 조성물은 단계(b)에서 용매를 제거하는 건조공정이 아니라, 용존산소의 함량을 감소시키는 탈기공정을 수행함으로써, 산소에 불안정한 약물인 페메트렉시드 또는 이의 약학적으로 허용가능한 염의 안정성을 확보할 수 있다.
상기 단계 (b)에서 얻어진 탈기된 동결물 또는 이후 해동된 조성물의 용존산소농도는 1.5 ppm 이하일 수 있다. 탈기공정을 수행하여, 조성물중에 함유된 용존산소의 함량을 감소시켜, 산소에 불안정한 약물인 페메트렉시드 또는 이의 약리학적 염의 안정성을 확보할 수 있다.
본 발명의 또 다른 일예에서, 상기 약학 조성물의 제조방법은 동결 및 탈기공정, 바람직하게는 밀봉공정을 밀폐 챔버내에서 수행할 수 있다. 구체적으로, -20℃이하의 온도에서 상기 단계 (a)의 용액을 동결시킨 후, 진공감압하여 동결 상태의 조성물에서 산소를 제거하고 이를 바로 밀봉함으로써 한 챔버내에서 일체의 공정으로 동결, 탈기 및 밀봉을 모두 수행할 수 있다.
본 발명의 일예에서, 상기 단계(a)의 동결 및 단계(b) 탈기공정 이후 및 밀봉공정 전에, 조성물이 충진된 용기에 질소를 충진하는 공정을 추가로 포함할 수 있다. 충진 용기의 상부 공간에 진공으로 생긴 음압으로 인하여 대기중의 공기가 역류할 가능성을 완전히 배제하기 위하여, 탈기 공정후, 밀봉공정 전에, 조성물이 충진된 용기에 질소를 충진하여 음압을 줄여줌으로써 이러한 위험성을 크게 감소시킬 수 있다. 구체적으로, 탈기 후 고무마개로 밀봉하기 전 질소를 충진하여 진공해제하는 공정을 포함한다. 탈기 후 밀봉하고 진공을 해제하여도 용존산소를 충분히 제거하나 바이알 내에 음압이 걸려있어 미세한 구멍에도 공기가 쉽게 투입될 가능성이 있기 때문에 밀봉 전 질소를 충진하여 바이알 내의 음압을 상당 부분 낮추어 줌으로써 이러한 위험성을 줄일 수 있다.
일반적으로 용액상태에서 진공감압을 하면 증기압에 의해 바로 수분이 끓어 넘치는 현상이 일어나지만 동결을 할 경우 건조가 일어나기 전까지의 공정에서 조성물의 성분 및 함량 손실 없이 진공감압으로 수용액보다 빙점이 낮은 기체가 제거 가능하다는 점에 착안하여 밀폐된 챔버에서 수용액을 동결한 후 탈기하는 방법을 개발한 것이다.
본 명세서에서, 용어 "탈기"란 고체 또는 액체중에 포함되어 있는 기체분자를 제거하는 것이다. 이 기체분자를 제거하는 기본 원리는 헨리의 법칙과 달턴의 분압의 법칙이 적용된다. 헨리의 법칙은 용액중의 용존 기체의 양은 그 액체와 접하고 있는 기체의 압력에 비례한다는 것으로써 액체와 접하는 기체의 압력을 낮추어서 즉, 진공으로 하여 액체 중의 기체분자가 배출되도록 하는 것이 기본 원리이다. 또 다른 방법으로는 액체의 온도에 따라 기체의 용존 포화도가 달라지는 것을 이용하여 액체를 가열하는 방법이 있다. 이 방법은 액체를 가열하기 위한 에너지 소비의 문제가 있고 또 열에 약한 약물이나 부형제의 변성이나 농도의 변화 등으로 의약품에 적용하기에는 적합한 방법이라 할 수 없다. 그 외 막탈기나 촉매수지 탈기 등의 방법이 있으나 생산공정이 복잡하여 적용하기에는 어려운 부분이 많이 있다. 이러한 탈기공정을 통해 수용액 내에 존재하는 산소의 농도를 현저히 낮춤으로써 산화반응을 차단할 수 있는 것이다.
상기 단계(b)의 탈기공정은 특정 압력범위 조건하에서 수행할 수 있으며, 예를 들면 압력조건의 상한은 2,000 mTorr 이하의 압력, 바람직하게는 1,000 mTorr 이하, 보다 바람직하게는 500 mTorr 이하, 예를 들면 300 mTorr 이하의 압력에서 수행할 수 있다. 또한, 상기 압력조건의 하한은 0 mTorr 이상, 예를 들어 5 mTorr 이상, 예를 들어 100 mTorr 이상일 수 있다. 상기 탈기공정은 목적하는 진공도를 달성한 후에 소정의 시간 동안 진공도를 유지하여, 동결물에 함유된 산소 또는 산소를 포함하는 기체를 제거할 수 있다.
본 발명이 일반적인 동결건조공정과 다른 점은 동결 후 진공감압 후 원하는 진공도에 이르면 건조가 일어나기 전에 진공을 해제하여야 하는 것이다. 이것은 건조가 진행될수록 용매의 감소로 인한 유효성분 등의 농도 증가가 일어날 수 있기 때문이다. 건조를 미연에 방지하기 위해서는 목적하는 감압조건에 이른 후에, 진공도를 바람직하게는 12시간 이내, 보다 바람직하게는 10시간 이내, 보다 더 바람직하게는 6시간 이내로 유지한다. 예를 들어, 목적하는 감압조건에 이른 후 즉시(0시간에) 밀봉 및/또는 진공해제 공정을 수행할 수 있다.
본 발명의 탈기된 동결물 또는 해동된 용액에 함유된 용매의 경우, 동결 및 탈기 전 용액에 함유된 용매 100중량을 기준으로 전혀 건조 없이 100중량부가 그대로 남아 있는 것이 이상적이나, 바람직하게는 95중량부 내지 100중량부의 용매를 포함할 수 있으며, 보다 바람직하게는 98 중량부 내지 100중량부의 용매를 포함할 수 있다.
또한 본 발명에서는 밀봉 후 해동하는 공정에 있어서 밀폐된 챔버 내에서 온도를 올려가며 해동하여도 되고, 밀폐된 챔버 내에서 꺼낸 후 해동하여도 된다. 너무 낮은 온도에서 바이알을 꺼내면 바이알 표면의 습기로 인하여 알루미늄 캡핑 시 불편함을 초래할 수 있으므로 이는 주의하여야 한다.
본 발명에 의해 제조된 액상 약학 조성물은 통상의 방법, 예를 들어 멸균여과 및/또는 가열멸균 등의 방법에 따라 멸균처리를 수행할 수도 있다. 또한 본 발명의 단계(a)의 수성 용매, 또는 용액을 통상의 방법, 예를 들어 멸균여과 및/또는 가열멸균 등의 방법에 따라 멸균처리를 수행할 수도 있다.
본 발명에 따른 약학 조성물은 항산화제를 사용하지 않아 첨가제 사용을 최소화할 수 있으며 항산화제 사용으로 인한 미확인 유연물질 및 항산화제 자체의 산화형 분해산물을 원천적으로 배제할 수 있다.
또한, 본 발명에 따른 제조방법은, 바람직하게는 밀폐된 챔버 내에서 동결, 탈기 및 밀봉 공정이 연속적으로 이루어지므로, 대규모 상업 생산에 적합하며, 오염 없이 무균 공간에서 간편하게 이루어질 수 있는 공정으로서, 다른 탈기방법보다 시간이나 편의성, 수율면에서도 월등히 효과적인 공정이다.
이하 본 발명을 실시예을 통하여 보다 상세히 설명하지만, 이들은 본 발명을 설명하기 위한 것이며, 본 발명의 범주가 이들에 의해 제한되는 것은 아니다.
[실시예 1 내지 5] 진공도에 따른 액상제제의 제조
(1) 바이알에 충진된 혼합용액
주사용수 1500ml에 페메트렉시드 이나트륨 2.5수화물 48.3g (페메트렉시드로 함량기준 40g)을 완전히 녹이고 여기에 만니톨 40g을 넣어 완전히 용해하였다. 상기 용액에 0.1N HCl을 가하여 pH를 7.3으로 맞추고 주사용수를 가하여 혼합 용액의 총 무게를 1,600g으로 조절하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다. 상기 제조한 혼합용액을 멸균필터를 이용하여 여과하고, 클린 벤치에서 5ml 바이알에 4ml씩 충진하고 고무마개로 밀봉하여, 상기 바이알에 충진된 혼합용액을 얻었다.
(2) 동결 및 탈기
상기 제조한 용액이 담긴 유리 바이알을 고무마개를 약간 열어준 상태로 밀폐된 챔버에 넣고 -40 ℃에서 1시간 동안 동결시켰다. 완전히 용액이 동결된 것을 확인하고 -40 ℃로 유지하면서 밀폐된 챔버의 진공펌프를 작동시켜 진공 감압을 시작하였다. 아래 표 1과 같이 진공도를 조절하고 원하는 진공도까지 내려가면 즉시 진공펌프의 작동을 중지하고 고무마개로 밀봉하였다. 밀봉상태를 확인한 후 진공을 해제하고 유리 바이알을 밀폐된 챔버에서 꺼낸 후 해동하고 알루미늄 캡으로 캡핑하였다. 동결 및 탈기를 수행하여 얻는 제제의 용존 산소농도를 하기 표 1에 나타냈다.
용존산소의 측정은 YSI 550A 용존산소측정기를 사용하여 질소로 충진되어 있는 glove box 내에서 교반하면서 측정하였다. 상기 해동용액의 특성을 표 1에 나타냈다.
표 1
주성분 농도(mg/ml) 진공도(Torr) 용존산소(ppm) pH
실시예 1 25 2 1.5 7.3
실시예 2 25 1 1.1 7.3
실시예 3 25 0.5 0.7 7.3
실시예 4 25 0.3 0.5 7.3
실시예 5 25 0.1 0.5 7.3
[실시예 6] 동결 및 탈기후 질소충진한 액상제제의 제조
상기 실시예 1과 동일한 방법으로 바이알에 충진된 혼합용액을 얻었다. 상기 제조한 용액이 담긴 유리 바이알을 고무마개를 약간 열어준 상태로 밀폐된 챔버에 넣고 -40℃에서 1시간 동안 동결시켰다. 완전히 용액이 동결된 것을 확인하고 -40℃로 유지하면서 밀폐된 챔버의 진공펌프를 작동시켜 진공 감압을 시작한다. 진공도가 300 mTorr까지 내려가면 즉시 진공펌프의 작동을 중지하고 질소를 충진한 후 고무마개로 밀봉하였다. 밀봉상태를 확인한 후 진공이 해제되면 유리바이알을 밀폐된 챔버에서 꺼낸 후 해동하고 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 0.5ppm 이었다.
[비교예 1] 동결 및 탈기하지 않은 액상제제의 제조
상기 실시예 1과 동일한 방법으로 바이알에 충진된 혼합용액을 얻었다. 상기 바이알을 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다.
[비교예 2] 동결 및 탈기하지 않고 질소충진한 액상제제의 제조
상기 실시예 1과 동일한 방법으로 바이알에 충진된 혼합용액을 얻었다. 상기 바이알에 질소를 충진한 후 고무마개로 밀봉하고 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다.
[실험예 1] 가속안정성 시험
상기 실시예 1 내지 6과 비교예 1 내지 2에서 제조한 조성물에 대해서 가속조건 (40℃/RH75%) 에서 안정성 평가를 수행하였다. 안정성 평가는 수용액의 성상 및 pH 그리고 함량 및 유연물질의 양을 고속액체크로마토그래피 (HPLC)로 분석하였다.
A. 함량 액체크로마토그래프 조건
a. 칼 럼 : Zorbax SB-C8, 4.6 mm x150 mm, 3.5 ㎛, 또는 이와 유사한 칼럼
b. 검출기 : 자외부흡광광도계 (측정파장: 285 ㎚)
c. 주입량 : 20 ㎕
d. 유 속 : 1.0 mL/min
e. 칼럼온도 : 30 ℃
f. 이동상 : 초산완충액 : 아세토니트릴 = (89 :11) (v/v %)
*초산완충액 (30 mM, pH 5.3 ±1): 정제수 1 L 당 1.7 mL의 아세트산무수물을 넣고 잘 혼합한 후 50% 수산화나트륨으로 pH 5.3±0.1로 조절한 뒤 필요시 여과
B. 유연물질 액체크로마토그래프 조건
a. 칼 럼 : Zorbax SB-C8, 4.6 mm x 150 mm, 3.5 ㎛, 또는 이와 유사한 칼럼
b. 검출기 : 자외부흡광광도계 (측정파장: 250 ㎚)
c. 주입량 : 20 ㎕
d. 유 속 : 1.0 mL/min
e. 칼럼온도 : 25 ℃
f. 자동주입기 온도 : 2 내지 8℃
g. 이동상 : 구배 용출
표 2
시간(분) 이동상 A(%) 이동상 B(%)
0 100 0
45 0 100
47 100 0
60 100 0
이동상 A : 포름산 완충액 : 아세토니트릴 = 95 : 5 (v/v)
이동상 B : 포름산 완충액 : 아세토니트릴 = 70 : 30 (v/v)
포름산 완충액 : 암모늄 포름산 2.9g을 2L의 정제수에 녹인 후 포름산을 이용하여 pH 3.5 ± 0.1로 조정함.
상기한 바와 같이 모든 실시예와 비교예의 가속 안정성시험 (40?/RH75%)을 12주간 수행한 결과를 표 3에 제시하였다. 안정성시험의 평가기준은 pH는 6.6 내지 7.8, 함량은 95 내지 105%, 총유연물질은 1.5% 이하, 개개유연물질은 0.2% 이하이다.
표 3
시간 (주) 성상 pH 함량(%) 총유연물질(%) 개개유연물질 (%)
실시예 1 초기 무색 7.3 103.2 0.04 0.04
1주 연한미황색 7.3 99.5 0.65 0.48
2주 미황색 7.3 91.7 2.15 0.99
3주 황색 7.2 88.1 4.88 2.11
4주 황색 7.1 84.7 7.66 3.77
8주 황색 7.1 82.3 12.60 5.52
12주 진한황색 7.0 74.0 15.33 6.89
실시예 2 초기 무색 7.3 102.4 0.04 0.04
1주 연한미황색 7.3 100.3 0.07 0.05
2주 연한미황색 7.2 99.1 0.15 0.10
3주 연한미황색 7.3 99.2 0.96 0.46
4주 미황색 7.2 98.2 1.25 0.56
8주 미황색 7.2 96.7 2.33 0.96
12주 황색 7.1 95.3 3.05 1.38
실시예 3 초기 무색 7.3 102.1 0.04 0.04
1주 연한미황색 7.3 101.4 0.05 0.05
2주 연한미황색 7.3 102.5 0.06 0.06
3주 연한미황색 7.3 101.8 0.09 0.06
4주 연한미황색 7.2 101.4 0.12 0.07
8주 연한미황색 7.2 100.1 0.16 0.10
12주 연한미황색 7.2 100.6 0.21 0.12
실시예 4 초기 무색 7.3 103.3 0.05 0.05
1주 무색 7.3 103.3 0.05 0.05
2주 연한미황색 7.3 103.0 0.06 0.05
3주 연한미황색 7.3 102.5 0.06 0.05
4주 연한미황색 7.3 102.6 0.11 0.06
8주 연한미황색 7.1 101.1 0.12 0.07
12주 연한미황색 7.2 101.6 0.15 0.08
실시예 5 초기 무색 7.3 102.7 0.05 0.05
1주 무색 7.3 103.4 0.05 0.05
2주 연한미황색 7.3 102.1 0.05 0.05
3주 연한미황색 7.2 102.2 0.06 0.06
4주 연한미황색 7.2 102.0 0.10 0.06
8주 연한미황색 7.2 101.7 0.13 0.07
12주 연한미황색 7.2 101.5 0.16 0.09
실시예 6 초기 무색 7.3 103.1 0.05 0.05
1주 무색 7.3 102.4 0.05 0.05
2주 연한미황색 7.2 102.1 0.05 0.05
3주 연한미황색 7.3 101.1 0.06 0.06
4주 연한미황색 7.2 101.8 0.10 0.06
8주 연한미황색 7.1 102.1 0.12 0.07
12주 연한미황색 7.2 101.6 0.14 0.08
비교예 1 초기 무색 7.3 103.5 0.05 0.05
1주 연한미황색 7.2 97.5 0.90 0.52
2주 미황색 7.2 91.0 3.05 1.33
3주 황색 7.1 84.1 9.09 4.84
4주 황색 7.1 78.2 11.72 5.42
8주 진한황색 7.0 71.5 16.20 6.10
12주 진한황색 6.9 61.9 18.56 7.14
비교예 2 초기 무색 7.3 102.9 0.05 0.05
1주 연한미황색 7.3 99.1 0.76 0.53
2주 미황색 7.2 95.7 2.52 1.11
3주 황색 7.2 82.2 8.09 2.84
4주 황색 7.1 79.2 12.72 4.29
8주 진한황색 7.1 72.8 15.01 6.00
12주 진한황색 7.0 66.5 17.56 6.84
측정결과 실시예 3 내지 6은 거의 비슷한 결과를 보이며, 진공도는 500 mTorr 이하에서는 거의 탈기가 비슷하게 진행된 것으로 보여진다. 탈기공정을 수행하지 않은 비교예의 경우 질소 충진 여부에 관계 없이 안정성이 현저히 떨어지는 것을 볼 수 있다. 이를 통해 탈기를 통해 용존산소를 제거하는 공정은 페메트렉시드의 안정성이 월등히 개선시켜 주는 공정임을 보여준다.
[실험예 2] 가혹 안정성 시험
실시예 5과 비교예 1의 조성물에 대해 가혹 안정성시험 (60℃/RH80%)을 4주간 수행한 결과를 표 4 에 제시하였다.
표 4
시간 (주) 성상 pH 함량(%) 총유연물질(%) 개개유연물질 (%)
실시예 5 초기 무색 7.2 102.1 0.05 0.05
1주 무색 7.2 101.2 0.07 0.05
2주 연한미황색 7.2 101.6 0.16 0.07
3주 연한미황색 7.1 100.5 0.22 0.09
4주 미황색 7.1 101.0 0.29 0.12
비교예 1 초기 무색 7.2 102.5 0.05 0.05
1주 연한미황색 7.1 87.9 7.91 3.81
2주 미황색 7.1 75.9 10.22 4.97
3주 황색 7.0 67.0 17.35 7.46
4주 진한황색 6.9 56.9 27.23 12.22
측정결과 실시예 5는 가혹안정성 1개월 결과에도 성상은 약간 변하였으나 함량의 변화는 거의 없었고 총 유연물질 (기준: 1.5% 이하)이나 개개 유연물질 (기준: 0.2% 이하)도 기준 이하로 유지되고 있었다. 하지만 탈기를 하지 않은 비교예 1의 경우 1주 만에 기준에서 함량, 유연물질 모두 벗어났고 성상도 진한 갈색으로 변한 것을 볼 수 있어서 상당한 산화반응이 진행됨을 알 수 있다. 위의 가혹시험 결과로 미루어 볼 때 탈기 공정을 통해 안정성을 획기적으로 개선한 위 수용액 제형은 상온보관이 가능한 안정한 수용액 제형으로 볼 수 있다.

Claims (22)

  1. (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및
    (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 항산화제-무함유(antioxidant-free) 약학 조성물의 제조방법.
  2. 제 1 항에 있어서, 상기 탈기된 동결물은 상기 단계 (a)의 용액에 함유된 용매 100중량을 기준으로 95 중량부 내지 100 중량부의 용매를 포함하는 것인 제조방법.
  3. 제 1 항에 있어서, 상기 단계 (b)에서 용존산소농도 1.5 ppm 이하로 탈기하는 제조방법.
  4. 제 1 항에 있어서, 상기 단계 (b)의 탈기단계는 12 시간 이내로 수행되는 것인 제조방법.
  5. 제 1 항에 있어서, 상기 단계 (a) 내지 (b)는 밀폐된 챔버내에서 수행되는 것인 제조방법.
  6. 제 1 항에 있어서, 상기 단계 (a)의 용액은 탈기처리가 되지 않는 용액인 제조방법.
  7. 제 1 항에 있어서, 상기 용액은 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함하는 것인 제조방법.
  8. 제 7 항에 있어서, 상기 부형제는 만니톨이거나, 상기 pH 조절제는 염산, 수산화나트륨 또는 이들의 혼합물인 제조방법.
  9. 제 1 항에 있어서, 상기 단계 (a)에서 -20℃ 이하로 동결하는 것인 제조방법.
  10. 제 9 항에 있어서, 상기 단계 (a)에서 -30℃ 이하로 동결하는 것인 제조방법.
  11. 제 1 항에 있어서, 상기 단계 (b)에서 진공감압 조건은 2,000 mTorr 이하의 조건인 제조방법.
  12. 제 11 항에 있어서, 상기 단계 (b)에서 진공감압 조건은 1,000 mTorr 이하의 조건인 제조방법.
  13. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서, 상기 단계 (b)를 수행한 후에, 밀봉하거나, 질소로 충진한 후 밀봉하는 단계를 추가로 포함하는 제조방법.
  14. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서, 상기 단계 (b)를 수행한 후에, 탈기된 동결물을 해동하는 단계를 추가로 포함하는 제조방법.
  15. 제 13 항에 있어서, 밀봉하는 단계를 수행한 후에, 탈기된 동결물을 해동하는 단계를 추가로 포함하는 제조방법.
  16. 페메트렉시드 또는 이의 약학적으로 허용 가능한 염과 수성 용매를 포함하고,
    동결 및 탈기된 것을 특징으로 하는, 항산화제 무함유 약학 조성물.
  17. 제 16 항에 있어서, 동결 및 탈기 전 함유된 용매 100중량을 기준으로 95 중량부 내지 100 중량부의 용매를 포함하는 것인 조성물.
  18. 제 16 항에 있어서, 용존산소농도 1.5 ppm 이하인 조성물.
  19. 제 16 항에 있어서, 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함하는 조성물.
  20. 제 19 항에 있어서, 상기 부형제는 만니톨이거나, 상기 pH 조절제는 염산, 수산화나트륨 또는 이들의 혼합물인 조성물.
  21. 제 16 항 내지 제 20 항 중 어느 한 항에 있어서, 동결 및 탈기 후 해동되는 조성물.
  22. 제 21 항에 있어서, 액상 비경구 제제로 사용하기 위한 조성물.
PCT/KR2014/012886 2013-12-30 2014-12-26 항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법 WO2015102315A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/108,810 US10300063B2 (en) 2013-12-30 2014-12-26 Pharmaceutical composition not containing antioxidant and preparation method therefor
EP14877377.3A EP3090746B1 (en) 2013-12-30 2014-12-26 Pharmaceutical composition not containing antioxidant and preparation method therefor
BR112016015190-9A BR112016015190B1 (pt) 2013-12-30 2014-12-26 Composição farmacêutica livre de antioxidante e método de preparação da mesma
JP2016544149A JP6505114B2 (ja) 2013-12-30 2014-12-26 抗酸化剤を含有しない薬学組成物およびその製造方法
CN201480074738.0A CN105979949B (zh) 2013-12-30 2014-12-26 不含抗氧化剂的药物组合物及其制备方法
MX2016008662A MX366953B (es) 2013-12-30 2014-12-26 Composición farmacéutica que no contiene antioxidantes y método de preparación de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130167677A KR101703980B1 (ko) 2013-12-30 2013-12-30 항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법
KR10-2013-0167677 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015102315A1 true WO2015102315A1 (ko) 2015-07-09

Family

ID=53493608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012886 WO2015102315A1 (ko) 2013-12-30 2014-12-26 항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법

Country Status (8)

Country Link
US (1) US10300063B2 (ko)
EP (1) EP3090746B1 (ko)
JP (1) JP6505114B2 (ko)
KR (1) KR101703980B1 (ko)
CN (1) CN105979949B (ko)
BR (1) BR112016015190B1 (ko)
MX (1) MX366953B (ko)
WO (1) WO2015102315A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190712A3 (ko) * 2015-05-28 2017-02-02 주식회사 삼양바이오팜 안정화된 약학 조성물 및 그의 제조방법
JP2019505561A (ja) * 2016-02-19 2019-02-28 イーグル ファーマシューティカルズ, インコーポレイテッド ペメトレキセド製剤
US11793813B2 (en) 2016-02-19 2023-10-24 Eagle Pharmaceuticals, Inc. Pemetrexed formulations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793573B2 (en) 2017-08-31 2020-10-06 Duquesne University Of The Holy Spirit First-in-class of SHMT2 and MTHFD2 inhibitors as antitumor agents
KR20230128629A (ko) * 2022-02-28 2023-09-05 한국유나이티드제약 주식회사 향상된 용해도를 가지는 닥티노마이신 함유 약학조성물의 제조방법
WO2023237093A1 (zh) * 2022-06-09 2023-12-14 上海云晟研新生物科技有限公司 培美曲塞二钠液体组合物、其制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056575A1 (en) 2000-02-04 2001-08-09 Eli Lilly And Company Pharmaceutical composition comprising pemetrexed together with monothioglycerol l-cystein or thioglycolic acid
US20090181990A1 (en) * 2007-12-23 2009-07-16 Patel Nileshkumar S Stable amorphous form of pemetrexed disodium
KR101069128B1 (ko) * 2011-03-10 2011-09-30 건일제약 주식회사 페메트렉시드 또는 그의 염을 포함하는 항산화제-비함유 주사용 용액 형태의 약학적 제제의 제조방법
KR101260636B1 (ko) 2012-11-29 2013-05-13 씨제이제일제당 (주) 안정화된 페메트렉시드 제제
US20130231357A1 (en) * 2010-07-28 2013-09-05 Eagle Pharmaceuticals, Inc. Pharmaceutical compositions containing pemetrexed having extended storage stability
WO2013144814A1 (en) * 2012-03-27 2013-10-03 Fresenius Kabi Oncology Ltd. Stable ready-to-use pharmaceutical composition of pemetrexed
KR20130122065A (ko) * 2012-04-30 2013-11-07 씨제이제일제당 (주) 페메트렉시드를 함유하는 안정화된 주사용 액상 제제

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58463B2 (ja) 1979-02-05 1983-01-06 日本原子力研究所 イオン交換膜の新規製造方法
US6686365B2 (en) * 2000-02-04 2004-02-03 Eli Lilly And Company Pharmaceutical composition
JP4815586B2 (ja) * 2005-08-12 2011-11-16 国立大学法人 筑波大学 Au25クラスターの選択的大量合成方法
US20070077303A1 (en) * 2005-09-30 2007-04-05 Azaam Alli Methods for providing oxidatively stable ophthalmic compositions
FR2894154B1 (fr) * 2005-12-06 2008-03-14 Pharmatop Scr Nouveau procede de stabilisation de substances minerales ou organiques sensibles a l'oxydation.
DE602007011384D1 (de) 2006-08-14 2011-02-03 Sicor Inc Verfahren zur herstellung lipophiler pharmazeutisch akzeptabler salze aus pemetrexed-disäure
WO2010030598A2 (en) * 2008-09-11 2010-03-18 Dr. Reddy's Laboratories Limited Pharmaceutical formulations comprising pemetrexed
CN101411710B (zh) 2008-11-25 2011-06-15 江苏奥赛康药业有限公司 培美曲塞二钠冻干粉针剂及其制备方法
WO2014060962A1 (en) 2012-10-17 2014-04-24 Shilpa Medicare Limited Pemetrexed dipotassium formulations
CN103432086B (zh) 2013-08-28 2015-07-22 南京正大天晴制药有限公司 一种注射用培美曲塞二钠冻干粉针剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056575A1 (en) 2000-02-04 2001-08-09 Eli Lilly And Company Pharmaceutical composition comprising pemetrexed together with monothioglycerol l-cystein or thioglycolic acid
US20090181990A1 (en) * 2007-12-23 2009-07-16 Patel Nileshkumar S Stable amorphous form of pemetrexed disodium
US20130231357A1 (en) * 2010-07-28 2013-09-05 Eagle Pharmaceuticals, Inc. Pharmaceutical compositions containing pemetrexed having extended storage stability
KR101069128B1 (ko) * 2011-03-10 2011-09-30 건일제약 주식회사 페메트렉시드 또는 그의 염을 포함하는 항산화제-비함유 주사용 용액 형태의 약학적 제제의 제조방법
WO2012121523A2 (en) 2011-03-10 2012-09-13 Kuhnil Pharm. Co., Ltd. Process for preparing pharmaceutical formulation in form of antioxidant-free solution for injection containing pemetrexed or its salt
WO2013144814A1 (en) * 2012-03-27 2013-10-03 Fresenius Kabi Oncology Ltd. Stable ready-to-use pharmaceutical composition of pemetrexed
KR20130122065A (ko) * 2012-04-30 2013-11-07 씨제이제일제당 (주) 페메트렉시드를 함유하는 안정화된 주사용 액상 제제
KR101260636B1 (ko) 2012-11-29 2013-05-13 씨제이제일제당 (주) 안정화된 페메트렉시드 제제

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3090746A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190712A3 (ko) * 2015-05-28 2017-02-02 주식회사 삼양바이오팜 안정화된 약학 조성물 및 그의 제조방법
EP3305283A4 (en) * 2015-05-28 2019-01-09 Samyang Biopharmaceuticals Corporation STABILIZED PHARMACEUTICAL COMPOSITION AND PROCESS FOR PREPARING THE SAME
US10456362B2 (en) 2015-05-28 2019-10-29 Samyang Biopharmaceuticals Corporation Stabilized pharmaceutical composition and method for preparing same
JP2019505561A (ja) * 2016-02-19 2019-02-28 イーグル ファーマシューティカルズ, インコーポレイテッド ペメトレキセド製剤
US11793813B2 (en) 2016-02-19 2023-10-24 Eagle Pharmaceuticals, Inc. Pemetrexed formulations

Also Published As

Publication number Publication date
MX366953B (es) 2019-07-31
KR101703980B1 (ko) 2017-02-08
BR112016015190B1 (pt) 2023-05-02
BR112016015190A8 (pt) 2023-04-25
JP2017506213A (ja) 2017-03-02
JP6505114B2 (ja) 2019-04-24
CN105979949A (zh) 2016-09-28
KR20150078376A (ko) 2015-07-08
EP3090746A4 (en) 2017-08-09
BR112016015190A2 (pt) 2017-08-08
EP3090746A1 (en) 2016-11-09
CN105979949B (zh) 2019-03-08
US10300063B2 (en) 2019-05-28
MX2016008662A (es) 2017-02-02
EP3090746B1 (en) 2019-06-19
US20160317539A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
WO2015102315A1 (ko) 항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법
WO2012121523A2 (en) Process for preparing pharmaceutical formulation in form of antioxidant-free solution for injection containing pemetrexed or its salt
AU2020244613B2 (en) Methods for treatment of diseases
CN102344457B (zh) 作为 gsk-3 抑制剂的螺环状氨基喹诺酮
KR20080003010A (ko) 동결 건조된 판토프라졸 제제 및 판토프라졸 주사액
US10688049B2 (en) Process for the preparation of a freeze-dried pharmaceutical composition containing mitomycin C
WO2013165130A1 (ko) 페메트렉시드를 함유하는 안정화된 주사용 액상 제제
WO2015141897A1 (ko) 약학적 액제 조성물
WO2018164513A1 (ko) 보르테조밉을 포함하는 안정한 제제 및 이의 제조방법
WO2019009661A1 (en) SKIN INJECTION COMPOSITION
WO2017105059A1 (ko) 페메트렉시드 또는 그의 약제학적으로 허용가능한 염을 함유하는 안정화된 약학조성물
CN103202816B (zh) 泮托拉唑钠冻干粉针剂
WO2015194923A1 (ko) 엔테카비르를 유효성분으로 포함하는 약학 제제 및 이의 제조방법
KR20190010578A (ko) 새로운 다파글리플로진 결정형 및 그의 제조 방법 및 용도
JP2020097570A (ja) 安定化された薬学組成物およびその製造方法
KR20210078462A (ko) 안정한 아자시티딘-함유 약제학적 조성물의 제조방법
CA2974953A1 (en) Stable 5-methyltetrahydrofolate formulations to moderate methylenetetrahydrofolate reductase associated polymorphisms
WO2005020876A2 (en) Pharmaceutical composition, method of manufacturing and therapeutic use thereof
CN113491668A (zh) 注射用药物组合制剂及其制备方法与应用
KR20160050305A (ko) 사카린을 이용한 용해도를 증가시킨 약제학적 조성물
CN105726492A (zh) 一种培美曲塞二钾的冻干粉针剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108810

Country of ref document: US

Ref document number: MX/A/2016/008662

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016544149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014877377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877377

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016015190

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016015190

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160628