WO2015100603A1 - 一种零中频校正的方法、装置及设备 - Google Patents

一种零中频校正的方法、装置及设备 Download PDF

Info

Publication number
WO2015100603A1
WO2015100603A1 PCT/CN2013/091077 CN2013091077W WO2015100603A1 WO 2015100603 A1 WO2015100603 A1 WO 2015100603A1 CN 2013091077 W CN2013091077 W CN 2013091077W WO 2015100603 A1 WO2015100603 A1 WO 2015100603A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
correction
receiving end
digital
distortion
Prior art date
Application number
PCT/CN2013/091077
Other languages
English (en)
French (fr)
Inventor
贠国飞
王洪涛
白建雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13900784.3A priority Critical patent/EP3082312B1/en
Priority to PCT/CN2013/091077 priority patent/WO2015100603A1/zh
Priority to CN201380002226.9A priority patent/CN104981980B/zh
Publication of WO2015100603A1 publication Critical patent/WO2015100603A1/zh
Priority to US15/199,655 priority patent/US9712370B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device and device for zero intermediate frequency correction. Background technique
  • the traditional modulation and demodulation method is that the antenna acquires a radio frequency (RF Frequency), and then converts it into an intermediate frequency signal, and then converts the intermediate frequency signal into a baseband signal, and the baseband signal can be in-phase orthogonal (In- Phase/Quadrature, I/Q) signal.
  • RF Frequency radio frequency
  • I/Q in-phase orthogonal
  • Zero-IF technology is a modulation and demodulation method in which an RF signal is directly converted into a baseband signal without passing through an intermediate frequency signal.
  • the working principle of the zero-IF architecture transceiver is: The baseband signal is input to the quadrature modulator through the I and Q channels, the quadrature modulator quadrature modulates the I and Q signals, and the transceiver transmits the output of the quadrature modulator. signal.
  • the current correction method mainly adds a corresponding feedback module or a coupling module between the transmitting end and the receiving end of the transceiver, and calculates a corresponding compensation coefficient by comparing the feedback signal with the baseband signal. Make the appropriate compensation.
  • adding a feedback module or a coupling module increases the hardware cost of the transceiver and increases the complexity of the hardware design.
  • the embodiment of the invention provides a signal receiving device, which can remove the image component caused by the imbalance of the two signals in the baseband signal without designing the feedback module and the coupling module, thereby improving the signal quality and reducing the complexity of the hardware design. degree.
  • Embodiments of the present invention also provide a signal transceiving device and a method of signal correction.
  • a first aspect of the present invention provides a signal receiving apparatus, including:
  • a receiving unit configured to receive a radio frequency signal sent by the signal transmitting device, where the radio frequency signal is
  • the signal transmitting device is obtained by processing the baseband signal of the transmitting end, wherein the radio frequency signal includes a mirror image component of the transmitting end, and the mirror image component of the transmitting end is after the signal transmitting device performs digital-to-analog conversion on the baseband signal of the transmitting end.
  • the generated analog signal is generated before the up-conversion processing, and is an interference signal conjugated with the analog signal;
  • An analog to digital conversion unit configured to convert the radio frequency signal received by the receiving unit into a first digital signal
  • a symbol synchronization processing unit configured to perform symbol synchronization processing on the first digital signal converted by the analog-to-digital conversion unit to obtain a second digital signal, and a rate at which the second digital signal operates at the signal receiving device
  • the rate at which the baseband signal of the transmitting end is running at the signal transmitting device is consistent, wherein the second digital signal includes a mirror component of the receiving end, and the mirror component of the receiving end is the received by the signal receiving device.
  • the radio frequency signal is an interference signal that is conjugate with the low-frequency signal generated by the down-converting processing of the radio frequency signal; and removing the image component of the receiving end from the second digital signal, Obtaining a quadrature modulation compensation signal;
  • a frequency offset correction unit configured to perform frequency adjustment on the quadrature modulation compensation signal processed by the first orthogonal modulation compensation unit, so that the frequency of the adjusted frequency offset correction signal and the baseband signal of the transmitting end are adjusted The same frequency;
  • a second orthogonal modulation compensation unit configured to remove the image component of the transmitting end from the frequency offset correction signal obtained by the frequency offset correction unit, to obtain a baseband signal of the receiving end.
  • the signal receiving apparatus further includes:
  • An equalization processing unit configured to adjust the first digital signal obtained after the analog-to-digital conversion unit is converted, the second digital signal obtained by the symbol synchronization processing unit symbol synchronization processing, and the first orthogonal modulation
  • the quadrature modulation compensation signal obtained by the compensation unit, the frequency offset correction signal processed by the frequency offset correction unit, or the modulus value of the baseband signal of the receiving end processed by the second orthogonal modulation compensation unit
  • the modulus of the baseband signal remains the same.
  • the signal receiving apparatus further includes:
  • phase noise immunoprocessing unit configured to perform phase adjustment on the baseband signal of the receiving end processed by the second orthogonal modulation compensation unit, so that the phase-adjusted baseband signal of the receiving end and the baseband signal of the transmitting end are The phase is consistent.
  • the first orthogonal modulation compensation unit includes: a second digital signal Performing a DC component processing to obtain a distortion signal before correction;
  • a first calculating sub-unit configured to calculate a receiving end correction coefficient according to the pre-corrected distortion signal obtained by the de-directing sub-unit going to direct current, wherein the receiving end correction coefficient is a self-correcting distortion signal a ratio of a correlation value to a cross-correlation value between the distortion signal before the correction and the distortion signal image before the correction;
  • a second calculating subunit configured to calculate the positive according to the distortion signal before the correction, the mirror image of the distortion signal before the correction, and the receiving end correction coefficient calculated by the first calculating subunit And a modulation compensation signal, wherein the orthogonal modulation compensation signal is a difference between the distortion signal before the correction and the image component of the receiving end, and the image component of the receiving end is the correction coefficient of the receiving end and the pre-correction The mirror product of the distorted signal.
  • the de-directing sub-unit is configured to collect a DC quantity of the N signal points in the second digital signal processed by the symbol synchronization processing unit, where the value of the N corresponds to the length of the preset DC statistical signal point And dividing the DC quantity of the N signal points by the length of the preset DC statistical signal point to obtain a DC component, and subtracting the DC component for each signal point to obtain the distortion signal before the correction.
  • the second orthogonal modulation compensation unit includes a third calculation subunit, configured to calculate an optimal transmitter correction coefficient according to an adaptive iterative algorithm; a fourth calculating subunit, configured to: according to the frequency offset correction signal processed by the frequency offset correction unit, the mirror image of the frequency offset correction signal, and the optimal transmitting end calculated by the third calculating subunit a correction coefficient, the baseband signal of the receiving end is calculated, the baseband signal of the receiving end is a difference between the frequency offset correction signal and the image component of the receiving end, and the image component of the receiving end is corrected by the optimal transmitting end The product of the coefficient and the image of the frequency offset correction signal.
  • the third calculating subunit is configured to obtain a compensation coefficient increment by a hard decision process, where the compensation coefficient increment is: a product of a hard decision input signal quantization value, an iteration step size, and a calculated difference value,
  • the calculated difference is the difference between the hard-decised output signal quantized value and the input signal quantized value, and the input signal has been aligned with the output signal before the difference is made, wherein the iteration step is used for Adjusting the transmitting end correction coefficient
  • the first compensation coefficient increment is the first transmitting end correction coefficient
  • the transmitting end correction coefficient is updated by the accumulation of the compensation coefficient increment until the optimal transmitting end correction coefficient is obtained.
  • a second aspect of the present invention provides a signal transceiving device, comprising: a signal receiving device and a signal transmitting device, wherein a signal transmitting device in one signal transceiving device is communicably connected with a signal receiving device in another signal transceiving device;
  • the signal transmitting device is configured to generate a baseband signal at a transmitting end, and process the baseband signal of the transmitting end into a radio frequency signal, and then send the radio frequency signal, and the baseband signal of the transmitting end is digital-analog converted by the signal transmitting device Forming an analog signal, the analog signal is up-converted by the signal transmitting device to become a radio frequency signal, and generating a mirror image component of the transmitting end before the up-conversion processing;
  • the signal receiving device is the signal receiving device described in the above technical solution.
  • a third aspect of the present invention provides a signal transceiving device, including: a receiver, a transmitter, a memory, and a processor;
  • the receiver is configured to receive a radio frequency signal transmitted by another signal transceiving device
  • the transmitter is configured to transmit a radio frequency signal to other signal transceiving devices
  • the storing is for storing a program for the processor to perform zero intermediate frequency signal correction
  • the processor is configured to perform the following steps: Converting the radio frequency signal received by the receiver from another signal transceiving device into a first digital signal; performing symbol synchronization processing on the analog-digital converted first digital signal to obtain a second digital signal, where The rate at which the two digital signals operate at the signal receiving device is consistent with the rate at which the baseband signal of the transmitting end operates at the signal transmitting device, wherein the second digital signal includes a mirror component of the receiving end, and the receiving end
  • the image component is generated after the signal receiving device down-converts the received radio frequency signal, and is an interference signal that is conjugate with the low-frequency signal generated by the down-conversion processing of the radio frequency signal;
  • the image signal of the transmitting end is removed from the frequency offset correction signal obtained after the frequency offset adjustment, and the baseband signal of the receiving end is obtained.
  • the processor is further configured to: adjust the first digital signal obtained after the analog-to-digital conversion, the second digital signal obtained after the symbol synchronization processing, the quadrature modulation compensation signal, and the frequency And a modulus value of the offset correction signal or the baseband signal of the receiving end, the first digital signal, the second digital signal, the quadrature modulation compensation signal, the frequency offset correction signal or the The modulus of the baseband signal at the receiving end is consistent with the modulus of the baseband signal of the transmitting end.
  • the processor is further configured to perform phase adjustment on the baseband signal of the receiving end, so that a phase adjusted baseband signal of the receiving end and a phase of the baseband signal of the transmitting end are consistent.
  • the processor is configured to perform de-DC component processing on the second digital signal subjected to symbol synchronization processing to obtain a distortion signal before correction, and calculate a receiver correction according to the distortion signal before the correction obtained by DC removal a coefficient, the receiving end correction coefficient being a self-phase of the distortion signal before the correction a ratio of a threshold value and a cross-correlation value between the distortion signal before the correction and the distortion signal image before the correction, according to the distortion signal before the correction, the mirror image of the distortion signal before the correction, and the receiving Calculating the orthogonal modulation compensation signal by using a mirror image of the distortion correction signal and the distortion signal before the correction, wherein the orthogonal modulation compensation signal is a difference between the distortion signal before the correction and the image component of the receiving end,
  • the receiving end image component is a mirror image product of the receiving end correction coefficient and the distortion signal before the correction.
  • the processor is configured to collect a DC quantity of the N signal points in the second digital signal after the symbol synchronization process, where the value of the N corresponds to a length of a preset DC statistical signal point, The DC amount of the N signal points is divided by the length of the preset DC statistical signal point to obtain a DC component, and the DC component is subtracted for each signal point to obtain the distortion signal before the correction.
  • any one of the first to fourth possible implementation manners of the third aspect in a fifth possible implementation manner of the third aspect, is a fifth possible implementation manner of the third aspect.
  • the processor is configured to calculate, according to an adaptive iterative algorithm, an optimal transmit end correction coefficient, and calculate, according to the frequency offset correction signal, the image of the frequency offset correction signal, and the optimal transmit end correction coefficient,
  • the receiving end baseband signal, the receiving end baseband signal is a difference between the frequency offset correction signal and the receiving end image component, and the receiving end image component is the optimal transmitting end correction coefficient and the frequency The product of the partial correction signal image.
  • the processor is configured to obtain a compensation coefficient increment by a hard decision process, where the compensation coefficient increment is: a product of a hard decision input signal quantization value, an iteration step size, and a calculated difference value, where the calculated The difference is a difference between the hard-decised output signal quantized value and the input signal quantized value, and the input signal has been aligned with the output signal before the difference is made, wherein the iterative step size is used to adjust the transmitting end
  • the correction coefficient, the first compensation coefficient increment is a first transmission end correction coefficient, and the transmission end correction coefficient is updated by the accumulation of the compensation coefficient increment until the optimal transmission end correction coefficient is obtained.
  • a fourth aspect of the present invention provides a method for zero intermediate frequency signal correction, including:
  • the signal receiving device receives the radio frequency signal sent by the signal transmitting device, and the radio frequency signal is obtained by the signal transmitting device by processing the baseband signal of the transmitting end, wherein the radio frequency signal includes a mirroring component of the transmitting end, and the transmitting end mirrors
  • the component is generated before the up-conversion processing of the analog signal generated by the signal transmitting device after performing digital-to-analog conversion on the baseband signal of the transmitting end, and is an interference signal conjugated with the analog signal;
  • the rate at which the second digital signal operates at the signal receiving device and the baseband signal at the transmitting end are The rate of operation of the signal transmitting device is consistent, wherein the second digital signal includes a receiving end image component, and the receiving end image component is generated by the signal receiving device performing down-conversion processing on the received radio frequency signal. And an interference signal that is conjugate with the low frequency signal generated by the down-conversion processing of the radio frequency signal;
  • the method further includes: adjusting the first digital signal obtained after the analog-to-digital conversion, and the method obtained after the symbol synchronization processing Determining, by the second digital signal, the quadrature modulation compensation signal, the frequency offset correction signal, or a modulus of the baseband signal of the receiving end, the first digital signal and the second digital signal after adjusting a modulus And a modulus value of the quadrature modulation compensation signal, the frequency offset correction signal, or the baseband signal of the receiving end is consistent with a modulus of the baseband signal of the transmitting end.
  • the method further includes: Performing phase adjustment on the baseband signal of the receiving end, so that the phase of the baseband signal after the phase adjustment is consistent with the phase of the baseband signal of the transmitting end.
  • the removing from the second digital signal after symbol synchronization processing The receiving end mirrors the component to obtain a quadrature modulation compensation signal, including:
  • the receiving end correction coefficient is an autocorrelation value of the distortion signal before the correction and a distortion signal before the correction a ratio of cross-correlation values between distortion image mirrors before correction;
  • the intermodulation compensation signal is a difference between the distortion signal before the correction and the image component of the receiving end, and the image component of the receiving end is a mirror image product of the correction coefficient of the receiving end and the distortion signal before the correction.
  • the processing of the second digital signal line after the symbol synchronization processing is corrected by DC component processing
  • the front distortion signal including:
  • the DC component is subtracted for each signal point to obtain the distortion signal before the correction.
  • any one of the first to fourth possible implementation manners of the fourth aspect in a fifth possible implementation manner of the fourth aspect, the performing the frequency offset correction signal
  • the transmitting end image component processing obtains the baseband signal of the receiving end, including:
  • the optimal transmitter correction coefficient is calculated
  • the baseband signal of the receiving end is calculated, the baseband signal of the receiving end is a difference between the frequency offset correction signal and the image component of the receiving end, and the image component of the receiving end is the optimal transmitting end correction coefficient The product of the image of the frequency offset correction signal.
  • the determining, by the adaptive iterative algorithm, the optimal transmit end correction coefficient including: obtaining by using a hard decision process
  • the compensation coefficient increment is: the product of the hard-decision input signal quantization value, the iteration step size and the calculated difference value, and the calculated difference value is the hard-decision output signal quantization value and the Deriving a difference between the quantized values of the input signals, and the input signal is aligned with the output signal before the difference is made, wherein the iteration step is used to adjust the correction coefficient of the transmitting end, and the first compensation coefficient increment is a transmitter correction coefficient;
  • the transmitter correction coefficients are updated by the accumulation of the compensation coefficient increments until the best transmitter correction coefficients are obtained.
  • the signal receiving apparatus provided by the embodiment of the present invention can perform two orthogonal modulation compensation on the radio frequency signal received from the signal transmitting apparatus, compared with the signal correction by adding the feedback module and the coupling module.
  • the image component is removed, which improves signal quality and reduces the complexity of the hardware design.
  • FIG. 1 is a schematic diagram of an embodiment of a signal receiving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a signal receiving apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a signal receiving apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a signal receiving apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a signal receiving apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a signal transceiving device in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of communication between signal transceiving devices in an embodiment of the present invention
  • 8 is a schematic diagram of a working principle of a transmitting end in a signal transceiving device according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a working principle of a receiving end in a signal transceiving device according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of a principle of quadrature modulation compensation at a receiving end according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a principle of orthogonal modulation modulation at a transmitting end according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a signal transceiving device according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an embodiment of a method for zero intermediate frequency signal correction in an embodiment of the present invention.
  • the embodiment of the invention provides a signal receiving device, which can remove the image component caused by the imbalance of the two signals in the baseband signal without designing the feedback module and the coupling module, thereby improving the signal quality and reducing the complexity of the hardware design. degree.
  • Embodiments of the present invention also provide a signal transceiving device and a method of zero intermediate frequency signal correction. The details are described below separately.
  • an embodiment of a signal receiving apparatus 110 includes: a receiving unit 109, configured to receive a radio frequency signal sent by a signal transmitting apparatus, where the radio frequency signal is transmitted by the signal transmitting apparatus to a transmitting end.
  • the baseband signal processing is obtained, wherein the radio frequency signal includes a mirror image component of the transmitting end, and the mirror image component of the transmitting end is an upconversion processing of the analog signal generated by the signal transmitting device after performing digital-to-analog conversion on the baseband signal of the transmitting end.
  • the analog-to-digital conversion unit 100 is configured to convert the radio frequency signal received by the receiving unit 109 into a first digital signal
  • the signal transmitting device may be a separate signal transmitting device, or may be a signal transceiver or other device or device that transmits signals.
  • a symbol synchronization processing unit 101 configured to perform symbol synchronization processing on the first digital signal converted by the analog-to-digital conversion unit 100 to obtain a second digital signal, where the second digital signal is operated by the signal receiving device Rate and rate at which the baseband signal of the transmitting end is operating at the signal transmitting device Consistently, wherein the second digital signal includes a receiving end image component, and the receiving end image component is generated by the signal receiving device performing down-conversion processing on the received radio frequency signal, and is The low frequency signals generated by the down conversion processing of the radio frequency signals are conjugated interference signals; the first orthogonal modulation compensation unit 102 is configured to perform the symbol synchronization processing of the second digital signals from the symbol synchronization processing unit 101. Removing the image component of the receiving end to obtain a quadrature modulation compensation signal;
  • the frequency offset correction unit 103 is configured to perform frequency adjustment on the quadrature modulation compensation signal processed by the first orthogonal modulation compensation unit 102, so that the frequency of the adjusted frequency offset correction signal is compared with the transmitting end
  • the baseband signals have the same frequency
  • the second orthogonal modulation compensation unit 104 is configured to remove the mirror image component of the transmission end from the frequency offset correction signal obtained by the frequency offset correction unit 103 to obtain a baseband signal at the receiving end.
  • the signal receiving apparatus provided by the embodiment of the present invention can perform two orthogonal modulation compensation on the radio frequency signal received from the signal transmitting apparatus, compared with the signal correction by adding the feedback module and the coupling module.
  • the image component is removed, which improves signal quality and reduces the complexity of the hardware design.
  • the signal receiving apparatus 110 further includes:
  • the equalization processing unit 105 is configured to adjust the first digital signal obtained by the conversion of the analog-to-digital conversion unit 100, the second digital signal obtained by the symbol synchronization processing unit 101, and the first digital signal.
  • the orthogonal modulation compensation unit 102 processes the obtained quadrature modulation compensation signal, the frequency offset correction signal processed by the frequency offset correction unit 103, or the reception processed by the second orthogonal modulation compensation unit 104 a modulus of the end baseband signal, the modulus of the first digital signal, the second digital signal, the quadrature modulation compensation signal, the frequency offset correction signal, or the baseband signal of the receiving end after adjusting the modulus
  • the value is consistent with the modulus of the baseband signal at the transmitting end.
  • the equalization processing unit 105 can perform only one modulus adjustment, and the position of the equalization processing unit 105 can be adjusted in the analog-to-digital conversion unit 100 and the symbol synchronization processing unit 101, and the first orthogonal modulation compensation unit. 102. Behind either of the frequency offset correction unit 103 or the second orthogonal modulation compensation unit 104.
  • the signal receiving apparatus 110 further includes:
  • the phase noise immunoprocessing unit 106 is configured to perform phase adjustment on the baseband signal of the receiving end processed by the second orthogonal modulation compensation unit 104, so that the phase-adjusted baseband signal of the receiving end and the baseband of the transmitting end are The phase of the signal remains the same.
  • the first orthogonal modulation compensation unit 102 includes: Performing a de-DC component processing on the second digital signal to obtain a distortion signal before correction;
  • a first calculating sub-unit 1022 configured to calculate a receiving end correction coefficient according to the pre-corrected distortion signal obtained by the de-directing DC sub-unit 1021, wherein the receiving end correction coefficient is the distortion signal before the correction a ratio of an autocorrelation value to a cross-correlation value between the distortion signal before the correction and the distortion signal image before the correction;
  • the division correction coefficient can be obtained: Ch
  • a second calculating subunit 1023 configured to perform, according to the distortion signal before the correction, a mirror image of the distortion signal before the correction, and the receiving end correction coefficient and the correction calculated by the first calculating subunit 1022 Computation of the quadrature modulation compensation signal, the quadrature modulation compensation signal being a difference between the distortion signal before the correction and the image component of the receiving end, the receiving The end mirror component is a mirror image product of the receiver correction coefficient and the distortion signal before the correction.
  • the process of calculating the quadrature modulation compensation signal according to the receiving end correction coefficient may be: the pre-corrected distortion signal is subtracted from the mirror image product of the receiving end correction coefficient and the pre-corrected distortion signal, and the signal is removed.
  • the receiving end mirrors the quadrature modulation compensation signal of the component.
  • Rx _ QMC _ out(n) U(n) - Ch _ QMC -
  • first computing sub-unit and the second computing sub-unit can be embodied as one processor in hardware.
  • any adaptive iterative algorithm may be used to calculate the receiving end correction coefficient.
  • the adaptive iterative algorithm may be a Least Mean Square (LMS) algorithm, a Newton gradient iterative algorithm, and a least squares (Least). Square, Ls) Modified conjugate gradient method, etc.
  • LMS Least Mean Square
  • Least least squares
  • the de-directing sub-unit 1021 is configured to collect a DC quantity of the N signal points in the second digital signal after the symbol synchronization process, where the value of the N corresponds to the length of the preset DC statistical signal point, Dividing the DC amount of the N signal points by the length of the preset DC statistical signal point to obtain a DC component, and subtracting the DC component from each signal point to obtain the distortion signal before the correction.
  • the second orthogonal modulation compensation unit 104 includes: a third calculating subunit 1041, configured to calculate an optimal transmitting end correction coefficient according to an adaptive iterative algorithm;
  • a fourth calculation subunit 1042 configured to perform, according to the frequency offset correction signal processed by the frequency offset correction unit 103, a mirror image of the frequency offset correction signal, and the most calculated by the third calculation subunit 1041 a good transmitter correction coefficient, the baseband signal of the receiving end is calculated, the baseband signal of the receiving end is a difference between the frequency offset correction signal and the image component of the receiving end, and the image component of the receiving end is the best The product of the transmitter correction coefficient and the image of the frequency offset correction signal.
  • any adaptive iterative algorithm may be used to calculate the optimal transmitter correction coefficient, and the adaptive iterative algorithm may be a Least mean square (LMS) algorithm, a cow.
  • LMS Least mean square
  • the third calculating subunit 1041 is configured to obtain a compensation coefficient increment by a hard decision process, where the compensation coefficient increment is: a product of a hard decision input signal quantization value, an iteration step size, and a calculated difference value, The calculated difference is a difference between the hard-decised output signal quantized value and the input signal quantized value, and the input signal is aligned with the output signal before the difference is made, wherein the iteration step is used Adjusting the transmission end correction coefficient, the first compensation coefficient increment is the first transmission end correction coefficient, and the transmission end correction coefficient is updated by the accumulation of the compensation coefficient increment until the optimal transmission end correction coefficient is obtained .
  • the hard decision can generally be considered as a finite N-bit quantization of the output signal of the demodulator, which is considered to be 1 above the threshold and 0 as the threshold, for the most common In terms of binary, the output of the demodulator is used for hard decisions only for values of 0 and 1.
  • the process of obtaining the optimal transmitter correction coefficient is continuously converged according to the Least Mean Square (LMS) algorithm in the prior art.
  • LMS Least Mean Square
  • the signal transceiving device 10 provided by the embodiment of the present invention includes: a signal receiving device 110 and a signal transmitting device 120, wherein a signal transmitting device in one signal transceiving device is communicatively connected with a signal receiving device in another signal transceiving device;
  • the signal transmitting device 120 is configured to generate a baseband signal at a transmitting end, and send the radio frequency signal after processing the baseband signal to the baseband signal, and the baseband signal of the transmitting end is digital-to-analog converted by the signal transmitting device And then become an analog signal, the analog signal is up-converted by the signal transmitting device to become a radio frequency signal, and a mirror image component of the transmitting end is generated before the up-conversion processing;
  • the signal receiving device 110 is configured to:
  • the signal transmitting device receives a radio frequency signal sent by the signal transmitting device, where the radio frequency signal is obtained by processing the baseband signal of the transmitting end by the signal transmitting device, wherein the radio frequency signal includes a mirror component of the transmitting end, and the image component of the transmitting end is a
  • the signal transmitting device generates the analog signal generated after the digital-to-analog conversion of the baseband signal of the transmitting end, and is conjugated with the analog signal.
  • the rate at which the second digital signal operates at the signal receiving device and the baseband signal at the transmitting end are The rate of operation of the signal transmitting device is consistent, wherein the second digital signal includes a receiving end image component, and the receiving end image component is generated by the signal receiving device performing down-conversion processing on the received radio frequency signal. And an interference signal that is conjugate with the low frequency signal generated by the down-conversion processing of the radio frequency signal;
  • an embodiment of a communication system includes: a first signal transceiving device 10A and a second signal transceiving device 10B.
  • a plurality of signal transceiving devices may be included in the communication system. The working process of two signal transceiving devices is described by taking two signal transceiving devices as an example.
  • the signal transmitting device 120A of the first signal transceiving device 10A processes the transmitting baseband signal into a radio frequency signal
  • the receiving device of the second signal transceiving device 10B The 110B receives the radio frequency signal, and processes the radio frequency signal to obtain a baseband signal at the receiving end.
  • the process by which the transmitting end device 120A processes the transmitting baseband signal into a radio frequency signal can be understood by referring to FIG. 8:
  • the baseband signal transmitter splits the baseband signals by I and Q. It is assumed that the data of each signal point of the I and Q signals is 1+j, and the two baseband signals of I and Q respectively pass through the number.
  • the analog converter is converted into an analog signal, and the two analog signals are up-converted by a local oscillator (LO) to become a high-frequency analog signal.
  • the high-frequency analog signals are transmitted by the I and Q signals. Over Different DC offset components will be generated in the process, and the amplitude gains of the two signals of I and Q are also different, so the signals of I and Q will be unbalanced. This I and Q signals are unbalanced before the up-conversion of the transmitting LO. It will cause the image component of the transmitting end.
  • the signal data point of the image component introduced into the transmitting end may become l+0.95j, and the change of each signal data point may be different.
  • the signal data point may become 0.95+j, or in other cases, the high frequency analog signal is amplified by the power amplifier and becomes the RF signal TX, which is transmitted through the transmitting end 200A antenna.
  • the process in which the receiving end device 110B receives the radio frequency signal and processes the radio frequency signal to obtain the baseband signal at the receiving end can be understood by referring to FIG. 9:
  • the radio frequency signal of the transmitting end device 120A is spatially transmitted and then reaches the antenna of the receiving end device 110B, and is received by the antenna of the receiving end 110B to become the radio frequency signal RX.
  • the radio frequency signal RX is down-converted by the receiving LO, and the two analog signals of I and Q are used. Separating into two low-frequency analog signals, after the receiving LO down-converts the radio frequency signal RX, the image component of the receiving end is introduced. Therefore, the two-way low-frequency analog signal has a receiving end image component.
  • the signal data point originally introduced into the mirror image of the transmitting end is l+0.95j, and after introducing the image component of the receiving end, it may become 1+0.9 j.
  • the two low-frequency analog signals of I and Q are respectively converted into analog signals by the analog-to-digital converter.
  • the two digital signals of I and Q enter the symbol synchronization module, and the symbol synchronization module is two digital adjustment clocks of I and Q, so that the receiving end device 110B receives the digital signal and the transmitting end device 120A transmits the baseband signal to the transmitting end.
  • the transmission speed is consistent.
  • the speed at which the transmitting device 120A transmits the baseband signal is Ins
  • the speed at which the receiving device 110B can receive the digital signal by the symbol synchronizing device is also 1 ns, thereby ensuring that the signal point is not misaligned or lost.
  • the symbol-synchronized digital signal arrives at the receiving end quadrature modulation compensation module, and the receiving end quadrature modulation compensation module blindly corrects the synchronized digital signal, and removes the receiving end image component processing to obtain a quadrature modulation compensation signal, if:
  • the signal point data is 1+0.9 j
  • the signal point data after removing the image component of the receiving end is restored to l+0.95j
  • the quadrature modulation compensation signal reaches the equalizer
  • the equalizer equalizes the baseband signal of the transmitting end.
  • the amplitude of the quadrature modulation compensation signal is consistent with the modulus of the baseband signal of the transmitting end, for example: the original signal point data is 1+j,
  • the modulus value is ⁇ / ⁇ .
  • the modulus of this signal point data may change due to inter-symbol interference. For example, it becomes ⁇ / ⁇ /0.99, and the equalizer removes the unbalanced signal introduced by inter-symbol interference. The modulus returns, after the equalizer process
  • the quadrature modulation compensation signal arrives at the frequency offset correction module to perform frequency offset correction.
  • the frequency offset correction is to adjust the phase of the signal. For example: the original signal point data has a phase of 1+j of 45 degrees, and the phase of the arrival frequency offset correction module is 50 degrees. Then, the frequency offset correction module needs to adjust the phase of the signal for performing the frequency offset correction to 45 degrees to become the frequency offset correction signal.
  • the frequency offset correction signal arrives at the transmitting end quadrature modulation compensation module, and the transmitting end quadrature modulation compensation module removes the signal component of the transmitting end of the frequency offset correction signal to obtain the baseband signal of the receiving end, and the signal data point after the image component of the receiving end is l+0.95j, After removing the image component of the transmitting end, the signal data point will become 1+j, but in reality, it is impossible to completely correct the baseband signal to the receiving end. At this time, there is phase jitter in the baseband signal of the receiving end. And noise, the receiving end signal is subjected to phase noise immunity processing in the phase noise immunity module to compensate the phase of the jitter, remove the noise, and make the baseband signal of the receiving end smooth. If the signal of the original baseband of the transmitting end is 1+j, then the phase The baseband signal at the receiving end of the noise immunoprocessing will become 1+j or infinitely close to 1+j.
  • the symbol synchronization module performs symbol synchronization processing on the digital signal after analog-to-digital conversion, and digital signal processed by symbol synchronization.
  • the DC module can perform two functions, one for DC calculation and the other for DC removal.
  • the specific implementation process of the DC calculation is: the developer first presets the length of the DC statistical signal point in the DC module, and if the preset length is N signal points, the N is calculated every N signal points. The amount of DC of the signal points, the DC amount of the N signal points is divided by the length of the preset DC statistical signal point, and the latest DC component is obtained, and the latest information is subtracted for each signal point. With the DC component, the DC process is implemented.
  • the scheme implemented here assumes that the ideal signal is not correlated with its image. Using this condition, the cross-correlation value between the signal autocorrelation value and the signal and its image is obtained. The ratio is taken as the correction coefficient Ch_QMC.
  • the distorted signal can be expressed as a complex coefficient in which the sum is a signal and a mirror image. After the correlation operation is performed, the division correction coefficient can be obtained: Ch
  • the process of calculating the quadrature modulation compensation signal according to the receiving end correction coefficient may be: the pre-corrected distortion signal is subtracted from the mirror image product of the receiving end correction coefficient and the pre-corrected distortion signal, and the signal is removed.
  • the receiving end mirrors the quadrature modulation compensation signal of the component.
  • the Slicer_in and the Slicer_out are respectively input and output signals of the hard-decision of the quadrature modulation compensation module of the transmitting end. Because the input signal Slicer_in is first and the output signal Slicer_out, the Slicerj signal is delayed by the delay module, so that the Slicer_in signal and said
  • the Slicer_out signal is aligned. After the two are aligned, the slicer_out signal quantized value is compared with the Slicer_in signal quantized value to obtain the error signal quantized value e.
  • the error signal quantized value e is multiplied by the slicerjn signal quantized value, and multiplied by the step step to obtain compensation.
  • Coefficient increment The compensation coefficient increment obtained at each iteration is continuously updated by the subsequent accumulator to the transmitter correction coefficient.
  • the transmitter correction coefficient is multiplied by the conjugate term of the frequency offset correction signal obtained after the frequency offset correction to obtain the image component of the transmitting end, and the image offset component of the frequency offset correction signal is subtracted from the image component of the transmitting end, thereby removing the image component of the transmitting end.
  • FIG. 12 is a schematic structural diagram of a signal transceiving device 10 according to an embodiment of the present invention.
  • the signal transceiving device 10 can include a receiver 160, a transmitter 170, a processor 140, and a memory 130, both of which can be an antenna.
  • the receiver 160 is configured to receive a radio frequency signal transmitted by another signal transceiving device
  • the transmitter 170 is configured to transmit a radio frequency signal to other signal transceiving devices
  • Memory 130 can include read only memory and random access memory and provides instructions and data to processor 140. A portion of memory 130 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • Memory 130 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • Operation instructions Includes various operation instructions for implementing various operations.
  • Operating System Includes a variety of system programs for implementing basic services and handling hardware-based tasks.
  • the processor 140 performs the following operations by calling an operation instruction stored in the memory 130 (the operation instruction can be stored in the operating system):
  • the image component is generated after the signal receiving device down-converts the received radio frequency signal, and is an interference signal that is conjugate with the low-frequency signal generated by the down-conversion processing of the radio frequency signal;
  • the frequency is the same as the frequency of the baseband signal at the transmitting end;
  • the image signal of the transmitting end is removed from the frequency offset correction signal obtained after the frequency offset adjustment, and the baseband signal of the receiving end is obtained.
  • the signal receiving apparatus provided by the embodiment of the present invention can perform two orthogonal modulation compensation on the radio frequency signal received from the signal transmitting apparatus, compared with the signal correction by adding the feedback module and the coupling module.
  • the image component is removed, which improves signal quality and reduces the complexity of the hardware design.
  • the processor 140 controls the operation of the signal transceiving device 10, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 130 can include read only memory and random access memory and provides instructions and data to processor 140. A portion of memory 130 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the components of the signal transceiving device 10 are coupled together by a bus system 150.
  • the bus system 150 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 150 in the figure.
  • Processor 140 may be an integrated circuit chip with signal processing capabilities.
  • the instruction in the form of implementation is completed.
  • the processor 140 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware. Component.
  • the methods, steps, and logic blocks disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in a decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 130, and the processor 140 reads the information in the memory 130 and combines the hardware to perform the steps of the above method.
  • the processor 140 is further configured to adjust the first number obtained after the analog-to-digital conversion And a modulus value of the word signal, the second digital signal obtained by the symbol synchronization processing, the quadrature modulation compensation signal, the frequency offset correction signal, or the baseband signal of the receiving end, so as to adjust the modulus
  • the modulus of the first digital signal, the second digital signal, the quadrature modulation compensation signal, the frequency offset correction signal, or the baseband signal of the receiving end is consistent with the modulus of the baseband signal of the transmitting end.
  • the processor 140 is further configured to perform phase adjustment on the baseband signal of the receiving end, so that the phase-adjusted baseband signal of the receiving end and the phase of the baseband signal of the transmitting end are consistent.
  • the processor 140 is configured to perform de-DC component processing on the second digital signal after the symbol synchronization process to obtain a distortion signal before correction, and obtain the distortion signal before the correction according to the DC removal.
  • Calculating a receiving end correction coefficient wherein the receiving end correction coefficient is a ratio of an autocorrelation value of the distortion signal before the correction and a cross correlation value between the distortion signal before the correction and the distortion signal image before the correction
  • the intermodulation compensation signal is a difference between the distortion signal before the correction and the image component of the receiving end, and the image component of the receiving end is a mirror image product of the correction coefficient of the receiving end and the distortion signal before the correction.
  • the processor 140 is configured to collect a DC quantity of the N signal points in the second digital signal after the symbol synchronization process, where the value of the N is the length of the preset DC statistical signal point Correspondingly, dividing the DC quantity of the N signal points by the length of the preset DC statistical signal point to obtain a DC component, and subtracting the DC component from each signal point to obtain the distortion signal before the correction .
  • the processor 140 is configured to calculate, according to an adaptive iterative algorithm, an optimal transmit end correction coefficient, according to the frequency offset correction signal, a mirror image of the frequency offset correction signal, and the optimal transmitting end.
  • a correction coefficient the baseband signal of the receiving end is calculated, the baseband signal of the receiving end is a difference between the frequency offset correction signal and the image component of the receiving end, and the image component of the receiving end is corrected by the optimal transmitting end The product of the coefficient and the image of the frequency offset correction signal.
  • the processor 140 is configured to obtain a compensation coefficient increment by using a hard decision process, where the compensation coefficient increment is: a product of a hard decision input signal quantization value, an iteration step size, and a calculated difference value, The calculated difference is a hard-decised output signal quantized value and the input signal quantized value a difference, and the input signal is aligned with the output signal before the difference is made, wherein the iteration step is used to adjust the transmitter correction coefficient, and the first compensation coefficient increment is the first transmitter correction coefficient And updating, by the accumulation of the compensation coefficient increments, the transmitter correction coefficient until the optimal transmitter correction coefficient is obtained.
  • the compensation coefficient increment is: a product of a hard decision input signal quantization value, an iteration step size, and a calculated difference value
  • the calculated difference is a hard-decised output signal quantized value and the input signal quantized value a difference
  • the input signal is aligned with the output signal before the difference is made
  • the iteration step is used to adjust the transmitter correction coefficient
  • an embodiment of a method for zero-IF signal correction includes:
  • the signal receiving device receives the radio frequency signal sent by the signal transmitting device, where the radio frequency signal is obtained by the signal transmitting device by processing the baseband signal of the transmitting end, where the radio frequency signal includes a mirror component of the transmitting end, and the transmitting
  • the end image component is generated before the analog signal generated by the signal transmitting device performing digital-to-analog conversion on the baseband signal of the transmitting end is subjected to up-conversion processing, and is an interference signal conjugate with the analog signal.
  • the method for correcting the zero intermediate frequency signal provided by the embodiment of the present invention can perform orthogonalization on the radio frequency signal received from the signal transmitting device, compared to the signal correction by adding the feedback module and the coupling module. Modulation compensation removes the image component, which improves signal quality and reduces the complexity of the hardware design.
  • the method may further include:
  • the frequency obtained from the adjustment is performed on the basis of the foregoing embodiment and the optional embodiment of FIG.
  • the method may further include:
  • phase-adjusting the baseband signal of the receiving end so that the phase-adjusted baseband signal of the receiving end and the phase of the baseband signal of the transmitting end are consistent.
  • the receiving end correction coefficient is an autocorrelation value of the distortion signal before the correction and a distortion signal before the correction a ratio of cross-correlation values between distortion image mirrors before correction;
  • the intermodulation compensation signal is a difference between the distortion signal before the correction and the image component of the receiving end, and the image component of the receiving end is a mirror image product of the correction coefficient of the receiving end and the distortion signal before the correction.
  • the method for performing the DC signal processing on the second digital signal line after the symbol synchronization processing to obtain the distortion signal before the correction may include: And calculating a direct current amount of the N signal points in the second digital signal after the symbol synchronization processing, where the value of the N corresponds to a length of a preset DC statistical signal point;
  • the DC component is subtracted for each signal point to obtain the distortion signal before the correction.
  • the frequency offset correction signal is performed on the basis of the foregoing embodiment and the optional embodiment of FIG.
  • De-transmitting mirror component processing to obtain the baseband signal of the receiving end which may include:
  • the optimal transmitter correction coefficient is calculated
  • the optimal transmitter correction coefficient is calculated, which may include:
  • the compensation coefficient increment is obtained by a hard decision process, where the compensation coefficient increment is: a product of a hard decision input signal quantization value, an iteration step size, and a calculated difference value, and the calculated difference is a hard decision output. a difference between the signal quantized value and the quantized value of the input signal, and the input signal has been aligned with the output signal before the difference is made, wherein the iterative step size is used to adjust the transmit end correction coefficient, the first compensation
  • the coefficient increment is the first transmitter correction coefficient;
  • the transmitter correction coefficients are updated by the accumulation of the compensation coefficient increments until the best transmitter correction coefficients are obtained.
  • the specific process of the method for correcting the zero intermediate frequency signal described in the embodiment of the present invention can be understood by referring to the process in FIG. 8 to FIG. 11 , and no further description is made herein.
  • a person skilled in the art may understand that all or part of the various steps of the foregoing embodiments may be completed by a program instructing related hardware.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种信号接收装置,所述信号接收装置接收信号发射装置所发送的射频信号,所述射频信号中包含发射端镜像分量,所述信号接收装置在对所述射频信号进行下变频处理后会产生接收端镜像分量,所述信号接收装置通过两次正交调制补偿分别去除所述接收端镜像分量和所述发射端镜像分量。从而提高了信号质量,且降低了硬件设计的复杂度。

Description

一种零中频校正的方法、 装置及设备 技术领域
本发明涉及通信技术领域,具体涉及一种零中频校正的方法、装置及设备。 背景技术
传统的调制解调方式是天线获取无线射频( Radio Frequency, RF M言号后, 先将其转换为中频信号,再由中频信号转换为基带信号, 所述基带信号可以为 同相正交(In-phase/Quadrature, I/Q )信号。 而零中频技术就是 RF信号直接 转换成基带信号, 不经过中频信号的调制解调方法。
近年来, 因器件的发展, 零中频技术得到广泛的应用, 并逐渐趋于成熟。 零中频架构收发信机的工作原理是: 基带信号经 I、 Q通道输入正交调制器, 正交调制器对 I、 Q两路信号进行正交调制, 收发信机发射正交调制器的输出 信号。
由于, 实际的正交调制器通常并不能做到两路信号完全正交, 引起正交调 制误差, 这种正交调制器的非理想化问题会导致载波泄漏和 I、 Q两路信号的 不平衡, 而 I、 Q信号不平衡, 会引起镜像分量, 镜像分量会导致信号质量下 降。 所以, 采用零中频技术的收发信机必须进行校正处理。
本发明的发明人发现, 当前的校正方法主要是,在收发信机的发射端和接 收端之间增加相应的反馈模块或者耦合模块, 通过比较反馈信号和基带信号, 计算出相应的补偿系数, 进行相应的补偿。 显然, 增加反馈模块或耦合模块都 会增加收发信机的硬件成本, 而且增加了硬件设计的复杂度。
发明内容
本发明实施例提供一种信号接收装置, 不需要设计反馈模块和耦合模块, 就可以去除由于基带信号中两路信号不平衡所引起的镜像分量,从而提高信号 质量,且降低了硬件设计的复杂度。本发明实施例还提供了信号收发设备和一 种信号校正的方法。
本发明第一方面提供一种信号接收装置, 包括:
接收单元, 用于接收信号发射装置所发送的射频信号, 所述射频信号由所 述信号发射装置通过对发射端基带信号处理得到, 其中, 所述射频信号中包含 发射端镜像分量,所述发射端镜像分量为所述信号发射装置对所述发射端基带 信号进行数模转换后产生的模拟信号进行上变频处理前产生的,且是与所述模 拟信号互为共轭的干扰信号;
模数转换单元,用于将所述接收单元接收的所述射频信号转换为第一数字 信号;
符号同步处理单元,用于对所述模数转换单元转换后的所述第一数字信号 进行符号同步处理,得到第二数字信号, 所述第二数字信号在所述信号接收装 置运行的速率与所述发射端基带信号在所述信号发射装置运行的速率保持一 致, 其中, 所述第二数字信号中包含接收端镜像分量, 所述接收端镜像分量为 所述信号接收装置对接收到的所述射频信号进行下变频处理后产生的,且是与 所述射频信号经下变频处理后产生的低频信号互为共轭的干扰信号; 所述第二数字信号中去除所述接收端镜像分量, 得到正交调制补偿信号;
频偏校正单元,用于对经过所述第一正交调制补偿单元处理得到的所述正 交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的频率与所述发 射端基带信号的频率相同;
第二正交调制补偿单元,用于从所述频偏校正单元调整后得到的所述频偏 校正信号中去除所述发射端镜像分量, 得到接收端基带信号。
结合第一方面,在第一方面的第一种可能的实现方式中, 所述信号接收装 置还包括:
均衡处理单元,用于调整所述模数转换单元转换后得到的所述第一数字信 号、所述符号同步处理单元符号同步处理后得到的所述第二数字信号、所述第 一正交调制补偿单元处理得到的所述正交调制补偿信号、所述频偏校正单元处 理得到的所述频偏校正信号或所述第二正交调制补偿单元处理得到的所述接 收端基带信号的模值,使调整模值后的所述第一数字信号、所述第二数字信号、 所述正交调制补偿信号、所述频偏校正信号或所述接收端基带信号的模值与所 述发射端基带信号的模值保持一致。 结合第一方面或第一方面第一种可能的实现方式,在第一方面的第二种可 能的实现方式中, 所述信号接收装置还包括:
相噪免疫处理单元,用于对所述第二正交调制补偿单元处理得到的所述接 收端基带信号进行相位调整,使得相位调整后的所述接收端基带信号与所述发 射端基带信号的相位保持一致。
结合第一方面、第一方面第一种或第二种可能的实现方式,在第一方面的 第三种可能的实现方式中, 所述第一正交调制补偿单元, 包括: 第二数字信号进行去直流分量处理得到校正前的失真信号;
第一计算子单元,用于根据所述去直流子单元去直流得到的所述校正前的 失真信号,计算出接收端校正系数, 所述接收端校正系数为所述校正前的失真 信号的自相关值与所述校正前的失真信号与所述校正前的失真信号镜像间的 互相关值的比值;
第二计算子单元, 用于根据所述校正前的失真信号、所述校正前的失真信 号的镜像, 以及所述第一计算子单元计算得到的所述接收端校正系数,计算出 所述正交调制补偿信号,所述正交调制补偿信号为所述校正前的失真信号与所 述接收端镜像分量的差值,所述接收端镜像分量为所述接收端校正系数和所述 校正前的失真信号的镜像乘积。
结合第一方面第三种可能的实现方式,在第一方面的第四种可能的实现方 式中,
所述去直流子单元,用于统计所述符号同步处理单元处理后的所述第二数 字信号中 N个信号点的直流量, 所述 N的取值与预置直流统计信号点的长度对 应, 用所述 N个信号点的直流量除以所述预置直流统计信号点的长度, 得到直 流分量, 对每个信号点都减去所述直流分量, 得到所述校正前的失真信号。
结合第一方面、 第一方面第一种至第四种可能的实现方式中的任意一种, 在第一方面的第五种可能的实现方式中, 所述第二正交调制补偿单元, 包括: 第三计算子单元, 用于根据自适应迭代算法,计算得到最佳发射端校正系 数; 第四计算子单元,用于根据所述频偏校正单元处理得到的所述频偏校正信 号、所述频偏校正信号的镜像和所述第三计算子单元计算得到的所述最佳发射 端校正系数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏校 正信号与所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射端 校正系数与所述频偏校正信号镜像的乘积。
结合第一方面第五种可能的实现方式,在第一方面的第六种可能的实现方 式中,
所述第三计算子单元, 用于通过硬判决过程得到补偿系数增量, 所述补偿 系数增量为: 硬判决的输入信号量化值、 迭代步长和计算得到的差值的乘积, 所述计算得到的差值为硬判决的输出信号量化值与所述输入信号量化值的差 值, 并且, 在做差前所述输入信号已与所述输出信号对齐, 其中所述迭代步长 用于调节发射端校正系数, 第一次补偿系数增量为第一个发射端校正系数, 通 过所述补偿系数增量的累加更新所述发射端校正系数,直到得到所述最佳发射 端校正系数。
本发明第二方面提供一种信号收发设备, 包括: 信号接收装置和信号发射 装置,一个信号收发设备中的信号发射装置与另一信号收发设备中的信号接收 装置通信连接;
所述信号发射装置, 用于产生发射端基带信号, 并将所述发射端基带信号 处理成射频信号后,发出所述射频信号, 所述发射端基带信号经所述信号发射 装置数模转换后成为模拟信号,所述模拟信号经所述信号发射装置上变频处理 成为射频信号, 并在上变频处理前产生发射端镜像分量;
所述信号接收装置为上述技术方案所述的信号接收装置。
本发明第三方面提供一种信号收发设备, 包括: 接收器、 发射器、 存储器 和处理器;
所述接收器用于接收其他信号收发设备发射的射频信号;
所述发射器用于向其他信号收发设备发射射频信号;
所述存储用于存储所述处理器执行零中频信号校正的程序;
其中, 所述处理器用于执行如下步骤: 将所述接收器从另一信号收发设备接收的射频信号转换为第一数字信号; 对所述模数转换后的所述第一数字信号进行符号同步处理,得到第二数字 信号,所述第二数字信号在所述信号接收装置运行的速率与所述发射端基带信 号在所述信号发射装置运行的速率保持一致, 其中, 所述第二数字信号中包含 接收端镜像分量,所述接收端镜像分量为所述信号接收装置对接收到的所述射 频信号进行下变频处理后产生的,且是与所述射频信号经下变频处理后产生的 低频信号互为共轭的干扰信号;
从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量,得到 正交调制补偿信号;
对所述正交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的 频率与所述发射端基带信号的频率相同;
从频偏调整后得到的所述频偏校正信号中去除所述发射端镜像分量,得到 接收端基带信号。
结合第三方面, 在第三方面的第一种可能的实现方式中,
所述处理器,还用于调整所述模数转换后得到的所述第一数字信号、所述 符号同步处理后得到的所述第二数字信号、所述正交调制补偿信号、所述频偏 校正信号或所述接收端基带信号的模值, 使调整模值后的所述第一数字信号、 所述第二数字信号、所述正交调制补偿信号、所述频偏校正信号或所述接收端 基带信号的模值与所述发射端基带信号的模值保持一致。
结合第三方面或第三方面第一种可能的实现方式,在第三方面的第二种可 能的实现方式中,
所述处理器,还用于对所述接收端基带信号进行相位调整,使得相位调整 后的所述接收端基带信号与所述发射端基带信号的相位保持一致。
结合第三方面、第三方面第一种或第二种可能的实现方式,在第三方面的 第三种可能的实现方式中,
所述处理器,用于对经过符号同步处理后的所述第二数字信号进行去直流 分量处理得到校正前的失真信号, 根据去直流得到的所述校正前的失真信号, 计算出接收端校正系数,所述接收端校正系数为所述校正前的失真信号的自相 关值与所述校正前的失真信号与所述校正前的失真信号镜像间的互相关值的 比值, 根据所述校正前的失真信号、 所述校正前的失真信号的镜像, 以及所述 接收端校正系数和所述校正前的失真信号的镜像,计算出所述正交调制补偿信 号,所述正交调制补偿信号为所述校正前的失真信号与所述接收端镜像分量的 差值,所述接收端镜像分量为所述接收端校正系数和所述校正前的失真信号的 镜像乘积。
结合第三方面第三种可能的实现方式,在第三方面的第四种可能的实现方 式中,
所述处理器, 用于统计所述符号同步处理后的所述第二数字信号中 N个信 号点的直流量, 所述 N的取值与预置直流统计信号点的长度对应, 用所述 N个 信号点的直流量除以所述预置直流统计信号点的长度,得到直流分量,对每个 信号点都减去所述直流分量, 得到所述校正前的失真信号。
结合第三方面、 第三方面第一种至第四种可能的实现方式中的任意一种, 在第三方面的第五种可能的实现方式中,
所述处理器, 用于根据自适应迭代算法, 计算得到最佳发射端校正系数, 根据所述频偏校正信号、 所述频偏校正信号的镜像和所述最佳发射端校正系 数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏校正信号与 所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射端校正系数 与所述频偏校正信号镜像的乘积。
结合第三方面第五种可能的实现方式,在第三方面的第六种可能的实现方 式中,
所述处理器, 用于通过硬判决过程得到补偿系数增量, 所述补偿系数增量 为: 硬判决的输入信号量化值、 迭代步长和计算得到的差值的乘积, 所述计算 得到的差值为硬判决的输出信号量化值与所述输入信号量化值的差值, 并且, 在做差前所述输入信号已与所述输出信号对齐,其中所述迭代步长用于调节发 射端校正系数, 第一次补偿系数增量为第一个发射端校正系数,通过所述补偿 系数增量的累加更新所述发射端校正系数, 直到得到所述最佳发射端校正系 数。 本发明第四方面提供一种零中频信号校正的方法, 包括:
信号接收装置接收信号发射装置所发送的射频信号,所述射频信号由所述 信号发射装置通过对发射端基带信号处理得到, 其中, 所述射频信号中包含发 射端镜像分量,所述发射端镜像分量为所述信号发射装置对所述发射端基带信 号进行数模转换后产生的模拟信号进行上变频处理前产生的,且是与所述模拟 信号互为共轭的干扰信号;
将所述射频信号转换为第一数字信号;
对所述模数转换后的所述第一数字信号进行符号同步处理,得到第二数字 信号,所述第二数字信号在所述信号接收装置运行的速率与所述发射端基带信 号在所述信号发射装置运行的速率保持一致, 其中, 所述第二数字信号中包含 接收端镜像分量,所述接收端镜像分量为所述信号接收装置对接收到的所述射 频信号进行下变频处理后产生的,且是与所述射频信号经下变频处理后产生的 低频信号互为共轭的干扰信号;
从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量,得到 正交调制补偿信号;
对所述正交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的 频率与所述发射端基带信号的频率相同;
从调整后得到的所述频偏校正信号中去除所述发射端镜像分量,得到接收 端基带信号。
结合第四方面,在第四方面的第一种可能的实现方式中,所述方法还包括: 调整所述模数转换后得到的所述第一数字信号、所述符号同步处理后得到 的所述第二数字信号、所述正交调制补偿信号、所述频偏校正信号或所述接收 端基带信号的模值, 使调整模值后的所述第一数字信号、 所述第二数字信号、 所述正交调制补偿信号、所述频偏校正信号或所述接收端基带信号的模值与所 述发射端基带信号的模值保持一致。
结合第四方面或第四方面第一种可能的实现方式,在第四方面的第二种可 能的实现方式中,所述从调整后得到的所述频偏校正信号中去除所述发射端镜 像分量, 得到接收端基带信号之后, 所述方法还包括: 对所述接收端基带信号进行相位调整,使得相位调整后的所述接收端基带 信号与所述发射端基带信号的相位保持一致。
结合第四方面、第四方面第一种或第二种可能的实现方式,在第四方面的 第三种可能的实现方式中,所述从符号同步处理后的所述第二数字信号中去除 所述接收端镜像分量, 得到正交调制补偿信号, 包括:
对经过所述符号同步处理后的所述第二数字信号进行去直流分量处理得 到校正前的失真信号;
根据所述去直流得到的所述校正前的失真信号, 计算出接收端校正系数, 所述接收端校正系数为所述校正前的失真信号的自相关值与所述校正前的失 真信号与所述校正前的失真信号镜像间的互相关值的比值;
根据所述校正前的失真信号、所述校正前的失真信号的镜像, 以及所述接 收端校正系数和所述校正前的失真信号的镜像, 计算出所述正交调制补偿信 号,所述正交调制补偿信号为所述校正前的失真信号与所述接收端镜像分量的 差值,所述接收端镜像分量为所述接收端校正系数和所述校正前的失真信号的 镜像乘积。
结合第四方面第三种可能的实现方式,在第四方面的第四种可能的实现方 式中,所述对经过所述符号同步处理后的所述第二数字信号行去直流分量处理 得到校正前的失真信号, 包括:
统计所述符号同步处理后的所述第二数字信号中 N个信号点的直流量, 所 述 N的取值与预置直流统计信号点的长度对应;
用所述 N个信号点的直流量除以所述预置直流统计信号点的长度, 得到直 流分量;
对每个信号点都减去所述直流分量, 得到所述校正前的失真信号。
结合第四方面、 第四方面第一种至第四种可能的实现方式中的任意一种, 在第四方面的第五种可能的实现方式中,所述对所述频偏校正信号进行去发射 端镜像分量处理得到接收端基带信号, 包括:
根据自适应迭代算法, 计算得到最佳发射端校正系数;
根据所述频偏校正信号、所述频偏校正信号的镜像和所述最佳发射端校正 系数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏校正信号 与所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射端校正系 数与所述频偏校正信号镜像的乘积。
结合第四方面第五种可能的实现方式,在第四方面的第六种可能的实现方 式中, 所述根据自适应迭代算法, 计算得到最佳发射端校正系数, 包括: 通过硬判决过程得到补偿系数增量, 所述补偿系数增量为: 硬判决的输入 信号量化值、迭代步长和计算得到的差值的乘积, 所述计算得到的差值为硬判 决的输出信号量化值与所述输入信号量化值的差值, 并且,在做差前所述输入 信号已与所述输出信号对齐, 其中所述迭代步长用于调节发射端校正系数, 第 一次补偿系数增量为第一个发射端校正系数;
通过所述补偿系数增量的累加更新所述发射端校正系数,直到得到所述最 佳发射端校正系数。
与现有技术相比中通过增加反馈模块和耦合模块来进行信号校正相比,本 发明实施例提供的信号接收装置,可以对从信号发射装置接收到的射频信号进 行两次正交调制补偿来去除镜像分量,从而提高了信号质量,且降低了硬件设 计的复杂度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
图 1是本发明实施例中信号接收装置的一实施例示意图;
图 2是本发明实施例中信号接收装置的另一实施例示意图;
图 3是本发明实施例中信号接收装置的另一实施例示意图;
图 4是本发明实施例中信号接收装置的另一实施例示意图;
图 5是本发明实施例中信号接收装置的另一实施例示意图;
图 6是本发明实施例中信号收发设备的一实施例示意图;
图 7是本发明实施例中信号收发设备间通信的一实施例示意图; 图 8是本发明实施例中信号收发设备中发射端工作原理示意图; 图 9是本发明实施例中信号收发设备中接收端工作原理示意图;
图 10是本发明实施例中接收端正交调制补偿原理示意图;
图 11是本发明实施例中发射端正交调制补偿原理示意图;
图 12是本发明实施例中信号收发设备的另一实施例示意图;
图 13是本发明实施例中零中频信号校正的方法的一实施例示意图。
具体实施方式
本发明实施例提供一种信号接收装置, 不需要设计反馈模块和耦合模块, 就可以去除由于基带信号中两路信号不平衡所引起的镜像分量,从而提高信号 质量,且降低了硬件设计的复杂度。本发明实施例还提供了信号收发设备和一 种零中频信号校正的方法。 以下分別进行详细说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
参阅图 1 , 本发明实施例提供的信号接收装置 110的一实施例包括: 接收单元 109, 用于接收信号发射装置所发送的射频信号, 所述射频信号 由所述信号发射装置通过对发射端基带信号处理得到, 其中, 所述射频信号中 包含发射端镜像分量,所述发射端镜像分量为所述信号发射装置对所述发射端 基带信号进行数模转换后产生的模拟信号进行上变频处理前产生的,且是与所 述模拟信号互为共轭的干扰信号;
模数转换单元 100,用于将所述接收单元 109接收的所述射频信号转换为第 一数字信号;
所述信号发射装置可以为单独的信号发射装置,也可以为信号收发信机或 其他发射信号的装置或设备。
符号同步处理单元 101 ,用于对所述模数转换单元 100转换后的所述第一数 字信号进行符号同步处理,得到第二数字信号, 所述第二数字信号在所述信号 接收装置运行的速率与所述发射端基带信号在所述信号发射装置运行的速率 保持一致, 其中, 所述第二数字信号中包含接收端镜像分量, 所述接收端镜像 分量为所述信号接收装置对接收到的所述射频信号进行下变频处理后产生的, 且是与所述射频信号经下变频处理后产生的低频信号互为共轭的干扰信号; 第一正交调制补偿单元 102,用于从所述符号同步处理单元 101符号同步处 理后的所述第二数字信号中去除所述接收端镜像分量, 得到正交调制补偿信 号;
频偏校正单元 103,用于对经过所述第一正交调制补偿单元 102处理得到的 所述正交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的频率与 所述发射端基带信号的频率相同;
第二正交调制补偿单元 104,用于从所述频偏校正单元 103调整后得到的所 述频偏校正信号中去除所述发射端镜像分量, 得到接收端基带信号。
与现有技术相比中通过增加反馈模块和耦合模块来进行信号校正相比,本 发明实施例提供的信号接收装置,可以对从信号发射装置接收到的射频信号进 行两次正交调制补偿来去除镜像分量,从而提高了信号质量,且降低了硬件设 计的复杂度。
可选地, 在上述图 1对应的实施例的基石出上, 参阅图 2, 本发明实施例提供 的信号接收装置 110的一实施例中, 所述信号接收装置 110还包括:
均衡处理单元 105,用于调整所述模数转换单元 100转换后得到的所述第一 数字信号、 所述符号同步处理单元 101符号同步处理后得到的所述第二数字信 号、 所述第一正交调制补偿单元 102处理得到的所述正交调制补偿信号、 所述 频偏校正单元 103处理得到的所述频偏校正信号或所述第二正交调制补偿单元 104处理得到的所述接收端基带信号的模值, 使调整模值后的所述第一数字信 号、 所述第二数字信号、 所述正交调制补偿信号、 所述频偏校正信号或所述接 收端基带信号的模值与所述发射端基带信号的模值保持一致。
本发明实施例中, 均衡处理单元 105只做一次模值调整即可, 均衡处理单 元 105的位置可以在模数转换单元 100、 符号同步处理单元 101做模值调整、 第 一正交调制补偿单元 102、 频偏校正单元 103或第二正交调制补偿单元 104任何 一个的后面。 可选地, 在上述图 2对应的实施例的基石出上, 参阅图 3, 本发明实施例提供 的信号接收装置 110的一实施例中, 所述信号接收装置 110还包括:
相噪免疫处理单元 106,用于对所述第二正交调制补偿单元 104处理得到的 所述接收端基带信号进行相位调整,使得相位调整后的所述接收端基带信号与 所述发射端基带信号的相位保持一致。
可选地, 在上述图 3对应的实施例的基石出上, 参阅图 4, 本发明实施例提供 的信号接收装置 10的一实施例中, 所述第一正交调制补偿单元 102, 包括: 所述第二数字信号进行去直流分量处理得到校正前的失真信号;
第一计算子单元 1022,用于根据所述去直流子单元 1021去直流得到的所述 校正前的失真信号,计算出接收端校正系数, 所述接收端校正系数为所述校正 前的失真信号的自相关值与所述校正前的失真信号与所述校正前的失真信号 镜像间的互相关值的比值;
例如: 设接收端正交调制补偿 Rx_QMC校正前失真信号为 [/(«), 失真信 号的镜像表示为 W) , 未失真信号为 S i) , 未失真信号镜像为 由假设 可知
E [S(n) - (S* (n)Y = E [S(n)■ S(n)] = E [S* (n)■ S* =
Figure imgf000013_0001
0 失真信号可表示为 U (n) = (n) + k2S n), 其中 和 ^为信号与镜像的复系 数。 对其求相关运算后作除法运算可得接收端校正系数: Ch
Figure imgf000013_0002
第二计算子单元 1023, 用于根据所述校正前的失真信号、所述校正前的失 真信号的镜像,以及所述第一计算子单元 1022计算得到的所述接收端校正系数 和所述校正前的失真信号的镜像,计算出所述正交调制补偿信号, 所述正交调 制补偿信号为所述校正前的失真信号与所述接收端镜像分量的差值,所述接收 端镜像分量为所述接收端校正系数和所述校正前的失真信号的镜像乘积。 根据所述接收端校正系数计算正交调制补偿信号的过程可以为:所述校正 前的失真信号减去所述接收端校正系数与所述校正前的失真信号的镜像乘积, 即可得到去除了所述接收端镜像分量的所述正交调制补偿信号。
Rx _ QMC _ out(n) = U(n) - Ch _ QMC -
Figure imgf000014_0001
特別说明的是, 第一计算子单元, 第二计算子单元, 在硬件上其实可以体 现为一个处理器。
本发明实施例中,计算接收端校正系数还可以采用任何一种自适应迭代算 法, 自适应迭代算法可以为最小均方 (Least mean square, LMS ) 算法、 牛顿 梯度迭代算法, 最小二乘 (Least square, Ls)解的修正共轭梯度法等。
可选地, 在上述图 4对应的实施例的基础上, 本发明实施例提供的信号接 收装置 110的一实施例中,
所述去直流子单元 1021 ,用于统计所述符号同步处理后的所述第二数字信 号中 N个信号点的直流量, 所述 N的取值与预置直流统计信号点的长度对应, 用所述 N个信号点的直流量除以所述预置直流统计信号点的长度, 得到直流分 量, 对每个信号点都减去所述直流分量, 得到所述校正前的失真信号。
可选地, 在上述图 3对应的实施例的基石出上, 参阅图 5 , 本发明实施例提供 的信号接收装置 110的一实施例中, 所述第二正交调制补偿单元 104, 包括: 第三计算子单元 1041 , 用于根据自适应迭代算法,计算得到最佳发射端校 正系数;
第四计算子单元 1042, 用于根据所述频偏校正单元 103处理得到的所述频 偏校正信号、所述频偏校正信号的镜像和所述第三计算子单元 1041计算得到的 所述最佳发射端校正系数,计算出所述接收端基带信号, 所述接收端基带信号 为所述频偏校正信号与所述接收端镜像分量的差值,所述接收端镜像分量为所 述最佳发射端校正系数与所述频偏校正信号镜像的乘积。
本发明实施例中,计算最佳发射端校正系数可以采用任何一种自适应迭代 算法, 自适应迭代算法可以为最小均方 ( Least mean square, LMS ) 算法、 牛 顿梯度迭代算法, 最小二乘 (Least square, Ls)解的修正共轭梯度法等。
可选地, 在上述图 5对应的实施例的基础上, 本发明实施例提供的信号接 收装置 110的一实施例中,
所述第三计算子单元 1041 , 用于通过硬判决过程得到补偿系数增量,所述 补偿系数增量为: 硬判决的输入信号量化值、迭代步长和计算得到的差值的乘 积,所述计算得到的差值为硬判决的输出信号量化值与所述输入信号量化值的 差值, 并且, 在做差前所述输入信号已与所述输出信号对齐, 其中所述迭代步 长用于调节发射端校正系数, 第一次补偿系数增量为第一个发射端校正系数, 通过所述补偿系数增量的累加更新所述发射端校正系数,直到得到所述最佳发 射端校正系数。
本发明实施例中,硬判决我们一般可认为是对解调器的输出信号作有限的 N比特量化, 高于门限值的认为是 1 , 低于门限值的认为是 0, 对于最常见的二 进制来说, 解调器的输出供给硬判决使用的仅限于 0、 1值。
硬判决为本领域的公知技术, 在此不作过多赘述。
得到最佳发射端校正系数的过程是根据现有技术中的最小均方 (Least mean square, LMS ) 算法, 不断收敛得到的。
参阅图 6, 本发明实施例提供的信号收发设备 10包括: 信号接收装置 110 和信号发射装置 120, —个信号收发设备中的信号发射装置与另一信号收发设 备中的信号接收装置通信连接;
所述信号发射装置 120, 用于产生发射端基带信号, 并将所述发射端基带 信号处理生射频信号后,发出所述射频信号, 所述发射端基带信号经所述信号 发射装置数模转换后成为模拟信号,所述模拟信号经所述信号发射装置上变频 处理成为射频信号, 并在上变频处理前产生发射端镜像分量;
所述信号接收装置 110用于:
接收信号发射装置所发送的射频信号,所述射频信号由所述信号发射装置 通过对发射端基带信号处理得到,其中,所述射频信号中包含发射端镜像分量, 所述发射端镜像分量为所述信号发射装置对所述发射端基带信号进行数模转 换后产生的模拟信号进行上变频处理前产生的,且是与所述模拟信号互为共轭 的干扰信号;
将所述射频信号转换为第一数字信号;
对所述模数转换后的所述第一数字信号进行符号同步处理,得到第二数字 信号,所述第二数字信号在所述信号接收装置运行的速率与所述发射端基带信 号在所述信号发射装置运行的速率保持一致, 其中, 所述第二数字信号中包含 接收端镜像分量,所述接收端镜像分量为所述信号接收装置对接收到的所述射 频信号进行下变频处理后产生的,且是与所述射频信号经下变频处理后产生的 低频信号互为共轭的干扰信号;
从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量,得到 正交调制补偿信号;
对所述正交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的 频率与所述发射端基带信号的频率相同;
从调整后得到的所述频偏校正信号中去除所述发射端镜像分量,得到接收 端基带信号。
参阅图 7, 本发明实施例提供的通信系统的一实施例包括: 第一信号收发 设备 10A和第二信号收发设备 10B , 实际上, 通信系统中可以有多个信号收发 设备,本发明实施例中只是以两个信号收发设备为例说明两个信号收发设备的 工作过程。
在第一信号收发设备 10A与第二信号收发设备 10B通信过程中, 第一信号 收发设备 10A的信号发射装置 120A将发射端基带信号处理成射频信号发出 ,第 二信号收发设备 10B的接收端装置 110B接收所述射频信号, 并对所述射频信号 进行处理, 得到接收端基带信号。
发射端装置 120A将发射端基带信号处理成射频信号发出的过程可以参阅 图 8进行理解:
如图 8所示, 基带信号发射器分 I、 Q两路发射基带信号, 假设 I、 Q两路信 号的每个信号点数据都为 1+j , I、 Q两路发射基带信号分別经数模转换器转换 为模拟信号, 两路模拟信号经发射本地振荡器(Local Oscillator, LO )进行上 变频, 成为一路高频模拟信号, 该路高频模拟信号中因 I、 Q两路信号在传输过 程中会产生不同的直流偏置分量, 而且 I、 Q两路信号的幅度增益也不同, 所以 I、 Q两路信号会不平衡, 这种 I、 Q两路信号不平衡在发射 LO进行上变频前会 引起发射端镜像分量, 因此, 高频模拟信号中会有发射端镜像分量, 引入发射 端镜像分量的信号数据点可能变为了 l+0.95j ,而且每个信号数据点的变化可能 不同, 有的信号数据点可能变为了 0.95+j , 或者其他情况, 高频模拟信号经功 率放大器进行功率放大后, 成为射频信号 TX, 经发射端 200A天线发射出去。
接收端装置 110B接收所述射频信号, 并对所述射频信号进行处理, 得到 接收端基带信号的过程可以参阅图 9进行理解:
发射端装置 120A的射频信号经空间传输后到达接收端装置 110B的天线, 经接收端 110B的天线接收, 成为射频信号 RX, 射频信号 RX经接收 LO进行下 变频, 将 I、 Q两路模拟信号分离, 成为两路低频模拟信号, 接收 LO对射频信 号 RX进行下变频之后, 会引入接收端镜像分量, 因此, 所述两路低频模拟信 号中有接收端镜像分量。 假如, 原来引入发射端镜像的信号数据点为 l+0.95j , 再引入接收端镜像分量后, 可能就成为了 1+0.9 j , I、 Q两路低频模拟信号分別 经模数转换器转换为两路 I、 Q两路数字信号。 I、 Q两路数字信号进入符号同步 模块, 符号同步模块为 I、 Q两路数字调整时钟, 使接收端装置 110B对所述数 字信号的接收速度与所述发射端装置 120A对发射端基带信号的发射速度保持 一致, 例如: 发射端装置 120A发射基带信号的速度是 Ins, 通过符号同步装置 就可以保持接收端装置 110B接收数字信号的速度也是 1 ns, 从而保证信号点不 会错位或丟失。 经过符号同步的数字信号到达接收端正交调制补偿模块,接收 端正交调制补偿模块对同步后的数字信号进行盲校正,去除接收端镜像分量处 理得到正交调制补偿信号, 假如: 去接收端镜像前的信号点数据为 1+0.9 j , 那 么去除接收端镜像分量后的信号点数据恢复到 l+0.95j ,正交调制补偿信号到达 均衡器,均衡器均衡处理掉所述发射端基带信号在所述接收端接收时由于码间 干扰引入的不均衡信号,使所述正交调制补偿信号的模值与所述发射端基带信 号的模值保持一致, 例如: 原来信号点数据为 1+j , 模值为 Λ/Ϊ , 由于码间干 扰, 这个信号点数据的模值可能会发生变化, 例如, 变为 Λ/Ϊ/0.99, 均衡器就 会去除由于码间干扰引入的不均衡信号, 使模值回到 , 经过均衡器处理的 正交调制补偿信号到达频偏校正模块进行频偏校正,频偏校正就是调整信号的 相位, 例如: 原来信号点数据为 1+j的相位为 45度, 到达频偏校正模块的相位 为 50度,那么频偏校正模块需要将进行频偏校正的信号的相位调整到 45度成为 频偏校正信号。频偏校正信号到达发射端正交调制补偿模块,发射端正交调制 补偿模块去掉频偏校正信号的发射端镜像分量得到接收端基带信号,去接收端 镜像分量后的信号数据点为 l+0.95j ,去掉发射端镜像分量后,该信号数据点就 会成为 1+j , 但实际在传输过程中, 不可能做到完全校正到接收端基带信号, 此时的接收端基带信号中还会存在相位抖动和噪声,将该接收端信号在相噪免 疫模块中进行相噪免疫处理, 补偿抖动的相位, 去掉噪声, 使接收端基带信号 平稳, 如果原来发射端基带的信号为 1+j , 那么经过相噪免疫处理的接收端基 带信号才会成为 1+j , 或者与 1+j无限接近。
图 10为上述图 9中接收端正交调制 卜偿模块去接收端镜像分量的原理图, 参阅图 10,符号同步模块对模数转换后的数字信号进行符号同步处理, 经过符 号同步处理的数字信号进入接收端正交调制补偿模块中的去直流模块,去直流 模块可以执行两部分功能, 一为直流计算, 另一个功能为直流去除。 直流计算 的具体实现过程为:开发人员首先会在去直流模块中预置直流统计信号点的长 度, 假如该预置长度为 N个信号点, 那么每统计到 N个信号点就会计算出该 N 个信号点的直流量, 用所述 N个信号点的直流量除以所述预置直流统计信号点 的长度,得到最新的直流分量,对每个信号点都减去所述最新的所述直流分量, 就实现了去直流过程。
对于去直流后的信号再进行去镜像分量的过程,此处实现时的方案假设理 想信号与其镜像之间不相关, 利用这一条件, 求得信号自相关值与信号及其镜 像的互相关值之比值, 来作为校正系数 Ch_QMC。
例如: 设接收端正交调制补偿 Rx_QMC校正前失真信号为 [/(«), 失真信 号的镜像表示为 W) , 未失真信号为 S i) , 未失真信号镜像为 由假设 可知
E [S(n) - (S* (n)Y = E [S(n)■ S(n)] = E [S* (n)■ S* =
Figure imgf000018_0001
0 失真信号可表示为 其中 和 ^为信号与镜像的复系 数。 对其求相关运算后作除法运算可得接收端校正系数: Ch
Figure imgf000019_0001
根据所述接收端校正系数计算正交调制补偿信号的过程可以为:所述校正 前的失真信号减去所述接收端校正系数与所述校正前的失真信号的镜像乘积, 即可得到去除了所述接收端镜像分量的所述正交调制补偿信号。
Rx _ QMC _ out(n) = U(n) - Ch _ QMC -
Figure imgf000019_0002
以上, 为去接收端镜像分量的过程, 下面参阅图 11 , 说明本发明实施例中 发射端正交调制补偿模块去发射端镜像的过程:
参阅图 11 , 其中 Slicer_in和 Slicer_out分別为发射端正交调制补偿模块硬判 决的输入信号和输出信号, 因输入信号 Slicer_in先与输出信号 Slicer_out, 所以 通过 delay模块对 Slicerjn信号进行延时处理, 使得所述 Slicer_in信号与所述
Slicer_out信号对齐, 两者对齐之后, Slicer_out信号量化值与 Slicer_in信号量化 值作差得到误差信号量化值 e, 误差信号量化值 e与 slicerjn信号量化值相乘, 再与步长 step相乘, 得到补偿系数增量。 每次迭代时得到的补偿系数增量通过 后面的累加器不断更新发射端校正系数。 发射端校正系数与频偏校正后得到的频偏校正信号的共轭项相乘得到发射 端镜像分量, 频偏校正信号减去所述发射端镜像分量, 就去除了发射端镜像分 量。 上述为一次迭代过程, 通过反复迭代, 发射端校正系数不断更新, 最终收 敛到最佳权值。 Step为迭代步长, 一般比较小, 典型值取 2Λ-15。 通过更改其数 值大小可调节收敛速度, Step越大收敛速度越快, 但稳态误差较大; Step越小 收敛速度慢, 但稳态误差较小。 图 12是本发明实施例信号收发设备 10的结构示意图。信号收发设备 10可包 括接收器 160、 发射器 170、 处理器 140和存储器 130, 所述接收器 110和发射器 120都可以为天线。
所述接收器 160用于接收其他信号收发设备发射的射频信号;
所述发射器 170用于向其他信号收发设备发射射频信号;
存储器 130可以包括只读存储器和随机存取存储器,并向处理器 140提供指 令和数据。 存储器 130的一部分还可以包括非易失性随机存取存储器 ( NVRAM )。
存储器 130存储了如下的元素, 可执行模块或者数据结构, 或者它们的子 集, 或者它们的扩展集:
操作指令: 包括各种操作指令, 用于实现各种操作。
操作系统: 包括各种系统程序, 用于实现各种基础业务以及处理基于硬件 的任务。
在本发明实施例中,处理器 140通过调用存储器 130存储的操作指令(该操 作指令可存储在操作系统中), 执行如下操作:
将所述接收器从另一信号收发设备接收的射频信号转换为第一数字信号; 对所述模数转换后的所述第一数字信号进行符号同步处理,得到第二数字 信号,所述第二数字信号在所述信号接收装置运行的速率与所述发射端基带信 号在所述信号发射装置运行的速率保持一致, 其中, 所述第二数字信号中包含 接收端镜像分量,所述接收端镜像分量为所述信号接收装置对接收到的所述射 频信号进行下变频处理后产生的,且是与所述射频信号经下变频处理后产生的 低频信号互为共轭的干扰信号;
从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量,得到 正交调制补偿信号;
对所述正交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的 频率与所述发射端基带信号的频率相同;
从频偏调整后得到的所述频偏校正信号中去除所述发射端镜像分量,得到 接收端基带信号。
与现有技术相比中通过增加反馈模块和耦合模块来进行信号校正相比,本 发明实施例提供的信号接收装置,可以对从信号发射装置接收到的射频信号进 行两次正交调制补偿来去除镜像分量,从而提高了信号质量,且降低了硬件设 计的复杂度。
处理器 140控制信号收发设备 10的操作, 处理器 140还可以称为 CPU ( Central Processing Unit, 中央处理单元)。 存储器 130可以包括只读存储器和 随机存取存储器, 并向处理器 140提供指令和数据。存储器 130的一部分还可以 包括非易失性随机存取存储器(NVRAM )。 具体的应用中, 信号收发设备 10 的各个组件通过总线系统 150耦合在一起,其中总线系统 150除包括数据总线之 夕卜, 还可以包括电源总线、控制总线和状态信号总线等。 但是为了清楚说明起 见, 在图中将各种总线都标为总线系统 150。
上述本发明实施例揭示的方法可以应用于处理器 140中,或者由处理器 140 实现。 处理器 140可能是一种集成电路芯片, 具有信号的处理能力。 在实现过 件形式的指令完成。 上述的处理器 140可以是通用处理器、 数字信号处理器 ( DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或者其他可编 程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行 本发明实施例中的公开的各方法、 步骤及逻辑框图。通用处理器可以是微处理 器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方 法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬 件及软件模块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储 器, 可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存 储介质中。 该存储介质位于存储器 130, 处理器 140读取存储器 130中的信息, 结合其硬件完成上述方法的步骤。
可选地, 所述处理器 140, 还用于调整所述模数转换后得到的所述第一数 字信号、所述符号同步处理后得到的所述第二数字信号、所述正交调制补偿信 号、所述频偏校正信号或所述接收端基带信号的模值,使调整模值后的所述第 一数字信号、 所述第二数字信号、 所述正交调制补偿信号、 所述频偏校正信号 或所述接收端基带信号的模值与所述发射端基带信号的模值保持一致。
可选地, 所述处理器 140, 还用于对所述接收端基带信号进行相位调整, 使得相位调整后的所述接收端基带信号与所述发射端基带信号的相位保持一 致。
可选地, 所述处理器 140, 用于对经过符号同步处理后的所述第二数字信 号进行去直流分量处理得到校正前的失真信号,根据去直流得到的所述校正前 的失真信号,计算出接收端校正系数, 所述接收端校正系数为所述校正前的失 真信号的自相关值与所述校正前的失真信号与所述校正前的失真信号镜像间 的互相关值的比值,根据所述校正前的失真信号、所述校正前的失真信号的镜 像, 以及所述接收端校正系数和所述校正前的失真信号的镜像,计算出所述正 交调制补偿信号,所述正交调制补偿信号为所述校正前的失真信号与所述接收 端镜像分量的差值,所述接收端镜像分量为所述接收端校正系数和所述校正前 的失真信号的镜像乘积。
可选地, 所述处理器 140, 用于统计所述符号同步处理后的所述第二数字 信号中 N个信号点的直流量,所述 N的取值与预置直流统计信号点的长度对应, 用所述 N个信号点的直流量除以所述预置直流统计信号点的长度, 得到直流分 量, 对每个信号点都减去所述直流分量, 得到所述校正前的失真信号。
可选地, 所述处理器 140, 用于根据自适应迭代算法, 计算得到最佳发射 端校正系数,根据所述频偏校正信号、所述频偏校正信号的镜像和所述最佳发 射端校正系数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏 校正信号与所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射 端校正系数与所述频偏校正信号镜像的乘积。
可选地, 所述处理器 140, 用于通过硬判决过程得到补偿系数增量, 所述 补偿系数增量为: 硬判决的输入信号量化值、迭代步长和计算得到的差值的乘 积,所述计算得到的差值为硬判决的输出信号量化值与所述输入信号量化值的 差值, 并且, 在做差前所述输入信号已与所述输出信号对齐, 其中所述迭代步 长用于调节发射端校正系数, 第一次补偿系数增量为第一个发射端校正系数, 通过所述补偿系数增量的累加更新所述发射端校正系数,直到得到所述最佳发 射端校正系数。
参阅图 13 , 本发明实施例提供的零中频信号校正的方法的一实施例包括:
201、 信号接收装置接收信号发射装置所发送的射频信号, 所述射频信号 由所述信号发射装置通过对发射端基带信号处理得到, 其中, 所述射频信号中 包含发射端镜像分量,所述发射端镜像分量为所述信号发射装置对所述发射端 基带信号进行数模转换后产生的模拟信号进行上变频处理前产生的,且是与所 述模拟信号互为共轭的干扰信号。
202、 将所述射频信号转换为第一数字信号。
203、 对所述模数转换后的所述第一数字信号进行符号同步处理, 得到第 二数字信号,所述第二数字信号在所述信号接收装置运行的速率与所述发射端 基带信号在所述信号发射装置运行的速率保持一致, 其中, 所述第二数字信号 中包含接收端镜像分量,所述接收端镜像分量为所述信号接收装置对接收到的 所述射频信号进行下变频处理后产生的,且是与所述射频信号经下变频处理后 产生的低频信号互为共轭的干扰信号。
204、从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量, 得到正交调制补偿信号。
205、 对所述正交调制补偿信号进行频率调整, 使调整后得到的频偏校正 信号的频率与所述发射端基带信号的频率相同。
206、 从调整后得到的所述频偏校正信号中去除所述发射端镜像分量, 得 到接收端基带信号。
与现有技术相比中通过增加反馈模块和耦合模块来进行信号校正相比,本 发明实施例提供的零中频信号校正的方法,可以对从信号发射装置接收到的射 频信号进行两次正交调制补偿来去除镜像分量,从而提高了信号质量,且降低 了硬件设计的复杂度。
可选地,在上述图 13对应的实施例的基础上, 本发明实施例提供的零中频 信号校正的方法的另一实施例中, 所述方法还可以包括:
调整所述模数转换后得到的所述第一数字信号、所述符号同步处理后得到 的所述第二数字信号、所述正交调制补偿信号、所述频偏校正信号或所述接收 端基带信号的模值, 使调整模值后的所述第一数字信号、 所述第二数字信号、 所述正交调制补偿信号、所述频偏校正信号或所述接收端基带信号的模值与所 述发射端基带信号的模值保持一致。
可选地,在上述图 13对应的实施例及可选实施例的基础上, 本发明实施例 提供的零中频信号校正的方法的另一实施例中,所述从调整后得到的所述频偏 校正信号中去除所述发射端镜像分量,得到接收端基带信号之后, 所述方法还 可以包括:
对所述接收端基带信号进行相位调整,使得相位调整后的所述接收端基带 信号与所述发射端基带信号的相位保持一致。
可选地,在上述图 13对应的实施例及可选实施例的基础上, 本发明实施例 提供的零中频信号校正的方法的另一实施例中,
所述从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量, 得到正交调制补偿信号, 可以包括:
对经过所述符号同步处理后的所述第二数字信号进行去直流分量处理得 到校正前的失真信号;
根据所述去直流得到的所述校正前的失真信号, 计算出接收端校正系数, 所述接收端校正系数为所述校正前的失真信号的自相关值与所述校正前的失 真信号与所述校正前的失真信号镜像间的互相关值的比值;
根据所述校正前的失真信号、所述校正前的失真信号的镜像, 以及所述接 收端校正系数和所述校正前的失真信号的镜像, 计算出所述正交调制补偿信 号,所述正交调制补偿信号为所述校正前的失真信号与所述接收端镜像分量的 差值,所述接收端镜像分量为所述接收端校正系数和所述校正前的失真信号的 镜像乘积。
其中,所述对经过所述符号同步处理后的所述第二数字信号行去直流分量 处理得到校正前的失真信号, 可以包括: 统计所述符号同步处理后的所述第二数字信号中 N个信号点的直流量, 所 述 N的取值与预置直流统计信号点的长度对应;
用所述 N个信号点的直流量除以所述预置直流统计信号点的长度, 得到直 流分量;
对每个信号点都减去所述直流分量, 得到所述校正前的失真信号。
可选地,在上述图 13对应的实施例及可选实施例的基础上, 本发明实施例 提供的零中频信号校正的方法的另一实施例中,所述对所述频偏校正信号进行 去发射端镜像分量处理得到接收端基带信号, 可以包括:
根据自适应迭代算法, 计算得到最佳发射端校正系数;
根据所述频偏校正信号、所述频偏校正信号的镜像和所述最佳发射端校正 系数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏校正信号 与所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射端校正系 数与所述频偏校正信号镜像的乘积。
其中, 所述根据自适应迭代算法, 计算得到最佳发射端校正系数, 可以包 括:
通过硬判决过程得到补偿系数增量, 所述补偿系数增量为: 硬判决的输入 信号量化值、迭代步长和计算得到的差值的乘积, 所述计算得到的差值为硬判 决的输出信号量化值与所述输入信号量化值的差值, 并且,在做差前所述输入 信号已与所述输出信号对齐, 其中所述迭代步长用于调节发射端校正系数, 第 一次补偿系数增量为第一个发射端校正系数;
通过所述补偿系数增量的累加更新所述发射端校正系数,直到得到所述最 佳发射端校正系数。
本发明实施例所描述的零中频信号校正的方法的具体过程可以参阅图 8- 图 11中的过程进行理解, 本处不再做过多赘述。 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。
以上对本发明实施例所提供的零中频信号校正的方法、装置以及设备进行 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于 本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均 会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种信号接收装置, 其特征在于, 包括:
接收单元, 用于接收信号发射装置所发送的射频信号, 所述射频信号由所 述信号发射装置通过对发射端基带信号处理得到, 其中, 所述射频信号中包含 发射端镜像分量,所述发射端镜像分量为所述信号发射装置对所述发射端基带 信号进行数模转换后产生的模拟信号进行上变频处理前产生的,且是与所述模 拟信号互为共轭的干扰信号;
模数转换单元,用于将所述接收单元接收的所述射频信号转换为第一数字 信号;
符号同步处理单元,用于对所述模数转换单元转换后的所述第一数字信号 进行符号同步处理,得到第二数字信号, 所述第二数字信号在所述信号接收装 置运行的速率与所述发射端基带信号在所述信号发射装置运行的速率保持一 致, 其中, 所述第二数字信号中包含接收端镜像分量, 所述接收端镜像分量为 所述信号接收装置对接收到的所述射频信号进行下变频处理后产生的,且是与 所述射频信号经下变频处理后产生的低频信号互为共轭的干扰信号; 所述第二数字信号中去除所述接收端镜像分量, 得到正交调制补偿信号; 频偏校正单元,用于对经过所述第一正交调制补偿单元处理得到的所述正 交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的频率与所述发 射端基带信号的频率相同;
第二正交调制补偿单元,用于从所述频偏校正单元调整后得到的所述频偏 校正信号中去除所述发射端镜像分量, 得到接收端基带信号。
2、根据权利要求 1所述的信号接收装置, 其特征在于, 所述信号接收装置 还包括:
均衡处理单元,用于调整所述模数转换单元转换后得到的所述第一数字信 号、所述符号同步处理单元符号同步处理后得到的所述第二数字信号、所述第 一正交调制补偿单元处理得到的所述正交调制补偿信号、所述频偏校正单元处 理得到的所述频偏校正信号或所述第二正交调制补偿单元处理得到的所述接 收端基带信号的模值,使调整模值后的所述第一数字信号、所述第二数字信号、 所述正交调制补偿信号、所述频偏校正信号或所述接收端基带信号的模值与所 述发射端基带信号的模值保持一致。
3、 根据权利要求 1或 2所述的信号接收装置, 其特征在于, 所述信号接收 装置还包括:
相噪免疫处理单元,用于对所述第二正交调制补偿单元处理得到的所述接 收端基带信号进行相位调整,使得相位调整后的所述接收端基带信号与所述发 射端基带信号的相位保持一致。
4、 根据权利要求 1-3任一所述的信号接收装置, 其特征在于, 所述第一正 交调制补偿单元, 包括: 第二数字信号进行去直流分量处理得到校正前的失真信号;
第一计算子单元,用于根据所述去直流子单元去直流得到的所述校正前的 失真信号,计算出接收端校正系数, 所述接收端校正系数为所述校正前的失真 信号的自相关值与所述校正前的失真信号与所述校正前的失真信号镜像间的 互相关值的比值;
第二计算子单元, 用于根据所述校正前的失真信号、所述校正前的失真信 号的镜像, 以及所述第一计算子单元计算得到的所述接收端校正系数,计算出 所述正交调制补偿信号,所述正交调制补偿信号为所述校正前的失真信号与所 述接收端镜像分量的差值,所述接收端镜像分量为所述接收端校正系数和所述 校正前的失真信号的镜像乘积。
5、 根据权利要求 4所述的信号接收装置, 其特征在于,
所述去直流子单元,用于统计所述符号同步处理单元处理后的所述第二数 字信号中 N个信号点的直流量, 所述 N的取值与预置直流统计信号点的长度对 应, 用所述 N个信号点的直流量除以所述预置直流统计信号点的长度, 得到直 流分量, 对每个信号点都减去所述直流分量, 得到所述校正前的失真信号。
6、 根据权利要求 1-5任一所述的信号接收装置, 其特征在于, 所述第二正 交调制补偿单元, 包括: 第三计算子单元, 用于根据自适应迭代算法,计算得到最佳发射端校正系 数;
第四计算子单元,用于根据所述频偏校正单元处理得到的所述频偏校正信 号、所述频偏校正信号的镜像和所述第三计算子单元计算得到的所述最佳发射 端校正系数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏校 正信号与所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射端 校正系数与所述频偏校正信号镜像的乘积。
7、 根据权利要求 6所述的信号接收装置, 其特征在于,
所述第三计算子单元, 用于通过硬判决过程得到补偿系数增量, 所述补偿 系数增量为: 硬判决的输入信号量化值、 迭代步长和计算得到的差值的乘积, 所述计算得到的差值为硬判决的输出信号量化值与所述输入信号量化值的差 值, 并且, 在做差前所述输入信号已与所述输出信号对齐, 其中所述迭代步长 用于调节发射端校正系数, 第一次补偿系数增量为第一个发射端校正系数, 通 过所述补偿系数增量的累加更新所述发射端校正系数,直到得到所述最佳发射 端校正系数。
8、 一种信号收发设备, 其特征在于, 包括: 信号接收装置和信号发射装 置,一个信号收发设备中的信号发射装置与另一信号收发设备中的信号接收装 置通信连接;
所述信号发射装置, 用于产生发射端基带信号, 并将所述发射端基带信号 处理成射频信号后,发出所述射频信号, 所述发射端基带信号经所述信号发射 装置数模转换后成为模拟信号,所述模拟信号经所述信号发射装置上变频处理 成为射频信号, 并在上变频处理前产生发射端镜像分量;
所述信号接收装置为上述权利要求 1-7任一所述的信号接收装置。
9、 一种信号收发设备, 其特征在于, 包括: 接收器、 发射器、 存储器和 处理器;
所述接收器用于接收其他信号收发设备发射的射频信号;
所述发射器用于向其他信号收发设备发射射频信号;
所述存储用于存储所述处理器执行零中频信号校正的程序; 其中, 所述处理器用于执行如下步骤:
将所述接收器从另一信号收发设备接收的射频信号转换为第一数字信号; 对所述模数转换后的所述第一数字信号进行符号同步处理,得到第二数字 信号,所述第二数字信号在所述信号接收装置运行的速率与所述发射端基带信 号在所述信号发射装置运行的速率保持一致, 其中, 所述第二数字信号中包含 接收端镜像分量,所述接收端镜像分量为所述信号接收装置对接收到的所述射 频信号进行下变频处理后产生的,且是与所述射频信号经下变频处理后产生的 低频信号互为共轭的干扰信号;
从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量,得到 正交调制补偿信号;
对所述正交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的 频率与所述发射端基带信号的频率相同;
从频偏调整后得到的所述频偏校正信号中去除所述发射端镜像分量,得到 接收端基带信号。
10、 根据权利要求 9所述的信号收发设备, 其特征在于,
所述处理器,还用于调整所述模数转换后得到的所述第一数字信号、所述 符号同步处理后得到的所述第二数字信号、所述正交调制补偿信号、所述频偏 校正信号或所述接收端基带信号的模值, 使调整模值后的所述第一数字信号、 所述第二数字信号、所述正交调制补偿信号、所述频偏校正信号或所述接收端 基带信号的模值与所述发射端基带信号的模值保持一致。
11、 根据权利要求 9或 10所述的信号收发设备, 其特征在于,
所述处理器,还用于对所述接收端基带信号进行相位调整,使得相位调整 后的所述接收端基带信号与所述发射端基带信号的相位保持一致。
12、 根据权利要求 9-11任一所述的信号收发设备, 其特征在于,
所述处理器,用于对经过符号同步处理后的所述第二数字信号进行去直流 分量处理得到校正前的失真信号, 根据去直流得到的所述校正前的失真信号, 计算出接收端校正系数,所述接收端校正系数为所述校正前的失真信号的自相 关值与所述校正前的失真信号与所述校正前的失真信号镜像间的互相关值的 比值, 根据所述校正前的失真信号、 所述校正前的失真信号的镜像, 以及所述 接收端校正系数和所述校正前的失真信号的镜像,计算出所述正交调制补偿信 号,所述正交调制补偿信号为所述校正前的失真信号与所述接收端镜像分量的 差值,所述接收端镜像分量为所述接收端校正系数和所述校正前的失真信号的 镜像乘积。
13、 根据权利要求 12所述的信号收发设备, 其特征在于,
所述处理器, 用于统计所述符号同步处理后的所述第二数字信号中 N个信 号点的直流量, 所述 N的取值与预置直流统计信号点的长度对应, 用所述 N个 信号点的直流量除以所述预置直流统计信号点的长度,得到直流分量,对每个 信号点都减去所述直流分量, 得到所述校正前的失真信号。
14、 根据权利要求 9-13任一所述的信号收发设备, 其特征在于,
所述处理器, 用于根据自适应迭代算法, 计算得到最佳发射端校正系数, 根据所述频偏校正信号、 所述频偏校正信号的镜像和所述最佳发射端校正系 数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏校正信号与 所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射端校正系数 与所述频偏校正信号镜像的乘积。
15、 根据权利要求 14所述的信号收发设备, 其特征在于,
所述处理器, 用于通过硬判决过程得到补偿系数增量, 所述补偿系数增量 为: 硬判决的输入信号量化值、 迭代步长和计算得到的差值的乘积, 所述计算 得到的差值为硬判决的输出信号量化值与所述输入信号量化值的差值, 并且, 在做差前所述输入信号已与所述输出信号对齐,其中所述迭代步长用于调节发 射端校正系数, 第一次补偿系数增量为第一个发射端校正系数,通过所述补偿 系数增量的累加更新所述发射端校正系数, 直到得到所述最佳发射端校正系 数。
16、 一种零中频信号校正的方法, 其特征在于, 包括:
信号接收装置接收信号发射装置所发送的射频信号,所述射频信号由所述 信号发射装置通过对发射端基带信号处理得到, 其中, 所述射频信号中包含发 射端镜像分量,所述发射端镜像分量为所述信号发射装置对所述发射端基带信 号进行数模转换后产生的模拟信号进行上变频处理前产生的,且是与所述模拟 信号互为共轭的干扰信号;
将所述射频信号转换为第一数字信号;
对所述模数转换后的所述第一数字信号进行符号同步处理,得到第二数字 信号,所述第二数字信号在所述信号接收装置运行的速率与所述发射端基带信 号在所述信号发射装置运行的速率保持一致, 其中, 所述第二数字信号中包含 接收端镜像分量,所述接收端镜像分量为所述信号接收装置对接收到的所述射 频信号进行下变频处理后产生的,且是与所述射频信号经下变频处理后产生的 低频信号互为共轭的干扰信号;
从符号同步处理后的所述第二数字信号中去除所述接收端镜像分量,得到 正交调制补偿信号;
对所述正交调制补偿信号进行频率调整,使调整后得到的频偏校正信号的 频率与所述发射端基带信号的频率相同;
从调整后得到的所述频偏校正信号中去除所述发射端镜像分量,得到接收 端基带信号。
17、 根据权利要求 16所述的方法, 其特征在于, 所述方法还包括: 调整所述模数转换后得到的所述第一数字信号、所述符号同步处理后得到 的所述第二数字信号、所述正交调制补偿信号、所述频偏校正信号或所述接收 端基带信号的模值, 使调整模值后的所述第一数字信号、 所述第二数字信号、 所述正交调制补偿信号、所述频偏校正信号或所述接收端基带信号的模值与所 述发射端基带信号的模值保持一致。
18、 根据权利要求 16或 17所述的方法, 其特征在于, 所述从调整后得到的 所述频偏校正信号中去除所述发射端镜像分量,得到接收端基带信号之后, 所 述方法还包括:
对所述接收端基带信号进行相位调整,使得相位调整后的所述接收端基带 信号与所述发射端基带信号的相位保持一致。
19、 根据权利要求 16-18任一所述的方法, 其特征在于, 所述从符号同步 处理后的所述第二数字信号中去除所述接收端镜像分量,得到正交调制补偿信 号, 包括:
对经过所述符号同步处理后的所述第二数字信号进行去直流分量处理得 到校正前的失真信号;
根据所述去直流得到的所述校正前的失真信号, 计算出接收端校正系数, 所述接收端校正系数为所述校正前的失真信号的自相关值与所述校正前的失 真信号与所述校正前的失真信号镜像间的互相关值的比值;
根据所述校正前的失真信号、所述校正前的失真信号的镜像, 以及所述接 收端校正系数和所述校正前的失真信号的镜像, 计算出所述正交调制补偿信 号,所述正交调制补偿信号为所述校正前的失真信号与所述接收端镜像分量的 差值,所述接收端镜像分量为所述接收端校正系数和所述校正前的失真信号的 镜像乘积。
20、 根据权利要求 19所述的方法, 其特征在于, 所述对经过所述符号同步 处理后的所述第二数字信号行去直流分量处理得到校正前的失真信号, 包括: 统计所述符号同步处理后的所述第二数字信号中 N个信号点的直流量, 所 述 N的取值与预置直流统计信号点的长度对应;
用所述 N个信号点的直流量除以所述预置直流统计信号点的长度, 得到直 流分量;
对每个信号点都减去所述直流分量, 得到所述校正前的失真信号。
21、 根据权利要求 16-20任一所述的方法, 其特征在于, 所述对所述频偏 校正信号进行去发射端镜像分量处理得到接收端基带信号, 包括:
根据自适应迭代算法, 计算得到最佳发射端校正系数;
根据所述频偏校正信号、所述频偏校正信号的镜像和所述最佳发射端校正 系数,计算出所述接收端基带信号, 所述接收端基带信号为所述频偏校正信号 与所述接收端镜像分量的差值,所述接收端镜像分量为所述最佳发射端校正系 数与所述频偏校正信号镜像的乘积。
22、根据权利要求 21所述的方法,其特征在于,所述根据自适应迭代算法, 计算得到最佳发射端校正系数, 包括:
通过硬判决过程得到补偿系数增量, 所述补偿系数增量为: 硬判决的输入 信号量化值、迭代步长和计算得到的差值的乘积, 所述计算得到的差值为硬判 决的输出信号量化值与所述输入信号量化值的差值, 并且,在做差前所述输入 信号已与所述输出信号对齐, 其中所述迭代步长用于调节发射端校正系数, 第 一次补偿系数增量为第一个发射端校正系数;
通过所述补偿系数增量的累加更新所述发射端校正系数,直到得到所述最 佳发射端校正系数。
PCT/CN2013/091077 2013-12-31 2013-12-31 一种零中频校正的方法、装置及设备 WO2015100603A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13900784.3A EP3082312B1 (en) 2013-12-31 2013-12-31 Zero intermediate frequency correction method, device and equipment
PCT/CN2013/091077 WO2015100603A1 (zh) 2013-12-31 2013-12-31 一种零中频校正的方法、装置及设备
CN201380002226.9A CN104981980B (zh) 2013-12-31 2013-12-31 一种零中频校正的方法、装置及设备
US15/199,655 US9712370B2 (en) 2013-12-31 2016-06-30 Zero-intermediate frequency correction method, apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091077 WO2015100603A1 (zh) 2013-12-31 2013-12-31 一种零中频校正的方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/199,655 Continuation US9712370B2 (en) 2013-12-31 2016-06-30 Zero-intermediate frequency correction method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2015100603A1 true WO2015100603A1 (zh) 2015-07-09

Family

ID=53492955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091077 WO2015100603A1 (zh) 2013-12-31 2013-12-31 一种零中频校正的方法、装置及设备

Country Status (4)

Country Link
US (1) US9712370B2 (zh)
EP (1) EP3082312B1 (zh)
CN (1) CN104981980B (zh)
WO (1) WO2015100603A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528643A (zh) * 2017-09-04 2017-12-29 中国计量大学 一种多通道发射机及其通道一致性误差自动补偿方法
CN110113059A (zh) * 2019-04-12 2019-08-09 博微太赫兹信息科技有限公司 一种降低adc采样速率的装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409000B (zh) * 2015-04-10 2019-05-28 华为技术有限公司 一种相干光源频偏估计和补偿的相干接收机、方法和系统
CN108432196B (zh) * 2015-12-17 2020-09-11 华为技术有限公司 确定零中频无线接收机校正参数方法和零中频无线接收机
CN108650040B (zh) * 2018-04-26 2021-07-30 深圳市盛路物联通讯技术有限公司 一种射频信号的调整方法及系统
CN110113067A (zh) * 2019-04-22 2019-08-09 智为博程电子科技(苏州)有限公司 一种用于零中频接收机的iq不平衡校正装置及方法
CN112671681B (zh) * 2020-02-03 2022-03-01 腾讯科技(深圳)有限公司 边带抑制方法、装置、计算机设备和存储介质
CN112383365B (zh) * 2020-11-18 2022-11-01 武汉虹信科技发展有限责任公司 一种零中频自动校准方法及系统
CN112865823A (zh) * 2020-12-30 2021-05-28 南京天际易达通信技术有限公司 一种正交下变频基带信号镜像抑制方法及电路
CN117978299B (zh) * 2024-03-28 2024-06-11 高拓讯达(北京)微电子股份有限公司 一种i/q不平衡和直流偏置的联合校准方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257465A (zh) * 2008-03-31 2008-09-03 上海华为技术有限公司 信号转换的方法、正交解调器及零中频接收机
US20120115412A1 (en) * 2010-11-05 2012-05-10 Qualcomm Incorporated Iq imbalance compensation in interference cancellation repeater using a zero-if radio architecture
CN102594381A (zh) * 2012-02-03 2012-07-18 京信通信系统(中国)有限公司 接收机及其镜像抑制方法
CN102833198A (zh) * 2012-08-02 2012-12-19 奥维通信股份有限公司 针对零中频架构的iq不平衡校正系统及方法
CN102882818A (zh) * 2012-09-06 2013-01-16 大唐移动通信设备有限公司 一种针对零中频反馈不平衡的修正方法和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152494C (zh) * 2002-08-01 2004-06-02 上海交通大学 模拟正交调制失衡补偿方法
US7146148B2 (en) * 2002-10-01 2006-12-05 Hitachi Kokusai Electric Inc. Low intermediate frequency type receiver
WO2006030481A1 (ja) * 2004-09-13 2006-03-23 Mitsubishi Denki Kabushiki Kaisha 歪補償装置
US7769111B2 (en) * 2005-10-27 2010-08-03 Broadcom Corporation Detection of large carrier offsets using a timing loop
KR100653181B1 (ko) * 2005-12-07 2006-12-05 한국전자통신연구원 주파수 옵셋 보상 기능을 가지는 넌­코히런트 동기직접변환 수신 장치
KR101452995B1 (ko) 2008-02-19 2014-10-23 삼성전자주식회사 직교 주파수 분할 다중 수신기에서 아이/큐 불균형파라미터를 추정하는 장치 및 방법
CN101540626B (zh) 2008-03-20 2013-06-05 中兴通讯股份有限公司 收发信机及零中频发射校准方法
CN101610090B (zh) * 2008-06-20 2012-10-10 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
CN101616125B (zh) 2008-06-26 2012-06-27 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
US8290458B2 (en) * 2008-06-30 2012-10-16 Entropic Communications, Inc. System and method for IQ imbalance estimation using loopback with frequency offset
US8351495B2 (en) * 2009-09-10 2013-01-08 Teledyne Paradise Datacom, Llc Method and apparatus for detecting in-band interference in a data communications modem
US8638889B2 (en) * 2010-10-28 2014-01-28 Broadcom Corporation Method and apparatus to improve acquisition of a quadrature amplitude modulated (QAM) signal having a frequency offset
JP2013090003A (ja) * 2011-10-13 2013-05-13 Hitachi Ltd 無線通信装置、イメージ成分分離方法及びインバランス補正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257465A (zh) * 2008-03-31 2008-09-03 上海华为技术有限公司 信号转换的方法、正交解调器及零中频接收机
US20120115412A1 (en) * 2010-11-05 2012-05-10 Qualcomm Incorporated Iq imbalance compensation in interference cancellation repeater using a zero-if radio architecture
CN102594381A (zh) * 2012-02-03 2012-07-18 京信通信系统(中国)有限公司 接收机及其镜像抑制方法
CN102833198A (zh) * 2012-08-02 2012-12-19 奥维通信股份有限公司 针对零中频架构的iq不平衡校正系统及方法
CN102882818A (zh) * 2012-09-06 2013-01-16 大唐移动通信设备有限公司 一种针对零中频反馈不平衡的修正方法和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528643A (zh) * 2017-09-04 2017-12-29 中国计量大学 一种多通道发射机及其通道一致性误差自动补偿方法
CN107528643B (zh) * 2017-09-04 2020-11-24 中国计量大学 一种多通道发射机及其通道一致性误差自动补偿方法
CN110113059A (zh) * 2019-04-12 2019-08-09 博微太赫兹信息科技有限公司 一种降低adc采样速率的装置及方法
CN110113059B (zh) * 2019-04-12 2021-10-22 博微太赫兹信息科技有限公司 一种降低adc采样速率的装置及方法

Also Published As

Publication number Publication date
US20160315798A1 (en) 2016-10-27
EP3082312B1 (en) 2017-09-13
EP3082312A4 (en) 2016-10-19
CN104981980A (zh) 2015-10-14
US9712370B2 (en) 2017-07-18
CN104981980B (zh) 2017-04-19
EP3082312A1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
WO2015100603A1 (zh) 一种零中频校正的方法、装置及设备
US9712369B2 (en) Method and apparatus for low-complexity frequency dependent IQ imbalance compensation
US8379767B2 (en) Methods and systems to compensate IQ imbalance in zero-IF tuners
US9166839B2 (en) Systems and methods for reducing effects of local oscillator leakage
CA2724735A1 (en) System and method for iq imbalance estimation using loopback with frequency offset
US9425836B2 (en) Asymmetrical transmitter-receiver system for short range communications
US8526521B2 (en) Apparatus and method for compensating for phase noise in a receiver supporting OFDM
WO2012167555A1 (zh) 一种校正同相正交信号的方法和装置
WO2013128783A1 (ja) デジタル信号処理装置、受信装置、及び信号送受信システム
US9787408B2 (en) Apparatus and method for unified mitigation of correlative additive and multiplicative noise
JP5685908B2 (ja) ループフィルタ
JP2007228057A (ja) 衛星通信システム及び衛星通信用送信局
TW201724818A (zh) 於下鏈傳輸系統中解決不完美之聯合估測預補償方法
JP2008042663A (ja) 回り込みキャンセラ
TW200407003A (en) Adaptive phase and gain imbalance cancellation
US10505768B2 (en) Partially disjoint equalization and carrier recovery
JP6241789B2 (ja) 送信機
KR100489409B1 (ko) 무선 통신시스템의 송수신기 성능을 개선하기 위한 방법
Lin et al. Joint adaptive transmitter/receiver IQ imbalance correction for OFDM systems
JP2007336317A (ja) 適応等化器
WO2016095261A1 (zh) 一种分布式iq不平衡估计与抑制方法
WO2001024390A1 (fr) Emetteur/recepteur
JP6082125B2 (ja) マルチキャリア変調信号のための受信機
WO2014205797A1 (zh) 一种辨识方法、装置、系统及基站
WO2023050717A1 (zh) 全双工数字自干扰消除方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201605022

Country of ref document: ID