WO2013128783A1 - デジタル信号処理装置、受信装置、及び信号送受信システム - Google Patents

デジタル信号処理装置、受信装置、及び信号送受信システム Download PDF

Info

Publication number
WO2013128783A1
WO2013128783A1 PCT/JP2013/000044 JP2013000044W WO2013128783A1 WO 2013128783 A1 WO2013128783 A1 WO 2013128783A1 JP 2013000044 W JP2013000044 W JP 2013000044W WO 2013128783 A1 WO2013128783 A1 WO 2013128783A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
coefficients
coefficient
signal
fourier transform
Prior art date
Application number
PCT/JP2013/000044
Other languages
English (en)
French (fr)
Inventor
安部 淳一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/381,223 priority Critical patent/US9385766B2/en
Priority to JP2014501981A priority patent/JP6176238B2/ja
Publication of WO2013128783A1 publication Critical patent/WO2013128783A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0211Frequency selective networks using specific transformation algorithms, e.g. WALSH functions, Fermat transforms, Mersenne transforms, polynomial transforms, Hilbert transforms
    • H03H17/0213Frequency domain filters using Fourier transforms
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0025Particular filtering methods
    • H03H21/0027Particular filtering methods filtering in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L23/00Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H2021/0085Applications
    • H03H2021/0092Equalization, i.e. inverse modeling

Definitions

  • the present invention relates to a digital signal processing device, a receiving device, and a signal transmission / reception system for processing a digital signal.
  • Digital signals are transmitted and received in optical communication and wireless communication.
  • waveform distortion compensation is often performed on digital signals using a digital filter (see, for example, Patent Document 1 and Non-Patent Document 1).
  • Patent Document 2 describes the following technology. First, the digital signal is Fourier transformed. Next, waveform equalization processing in the frequency domain is performed on the result of the Fourier transform using a digital filter. Next, the result of the waveform equalization process is inverse Fourier transformed to generate a digital signal.
  • Non-Patent Document 2 chromatic dispersion compensation is performed by controlling a FDE (frequency-domain equalization) circuit, which is difficult to control, by switching filter coefficients semi-fixedly using a lookup table (LUT). The method of performing is disclosed.
  • FDE frequency-domain equalization
  • An object of the present invention is to provide a digital signal processing device, a receiving device, and a signal transmission / reception system that can reduce the processing required for setting the coefficients of the filter means.
  • Fourier transform means for generating a frequency domain signal that is a frequency axis signal by Fourier transforming a digital signal; Filter means for equalizing the frequency domain signal in the frequency domain using N first coefficients; An inverse Fourier transform means for returning the frequency domain signal processed by the filter means to the digital signal; first coefficient setting means for setting the N first coefficients using m (where N> m) second coefficients;
  • a digital signal processing apparatus is provided.
  • digital signal acquisition means for acquiring a digital signal
  • Digital signal processing means for processing the digital signal
  • the digital signal processing means includes Fourier transform means for generating a frequency domain signal that is a frequency axis signal by Fourier transforming the digital signal; Filter means for equalizing the frequency domain signal in the frequency domain using N first coefficients; An inverse Fourier transform means for returning the frequency domain signal processed by the filter means to the digital signal; first coefficient setting means for setting the N first coefficients using m (where N> m) second coefficients; Is provided.
  • a transmission means for transmitting a digital signal receives the digital signal;
  • Receiving means for receiving the digital signal includes Digital signal acquisition means for acquiring the digital signal;
  • the digital signal processing means includes Fourier transform means for generating a frequency domain signal that is a frequency axis signal by Fourier transforming the digital signal;
  • Filter means for equalizing the frequency domain signal in the frequency domain using N first coefficients;
  • An inverse Fourier transform means for returning the frequency domain signal processed by the filter means to the digital signal;
  • first coefficient setting means for setting the N first coefficients using m (where N> m) second coefficients;
  • a signal transmission / reception system is provided.
  • FIG. 1 shows the structure of the digital processing apparatus which concerns on 1st Embodiment. It is a figure for demonstrating in detail an example of a digital filter. It is a figure for demonstrating the process which a 1st coefficient setting part performs. It is a figure for demonstrating the 1st example of the process which a 1st coefficient setting part performs. It is a figure for demonstrating the 2nd example of the process which a 1st coefficient setting part performs. It is a figure for demonstrating the 3rd example of the process which a 1st coefficient setting part performs. It is a figure for demonstrating the 4th example of the process which a 1st coefficient setting part performs.
  • FIG. 1 is a diagram illustrating a configuration of a digital processing apparatus 100 according to the first embodiment.
  • the digital processing apparatus 100 has a digital filter 110.
  • the digital filter 110 includes a Fourier transform unit 111, an inverse Fourier transform unit 112, a filter unit 113, and a first coefficient setting unit 114.
  • the Fourier transform unit 111 generates a frequency domain signal which is a frequency axis signal by performing a Fourier transform on the time axis digital signal.
  • the filter unit 113 equalizes the frequency domain signal in the frequency domain using the N first coefficients.
  • the inverse Fourier transform unit 112 performs inverse Fourier transform on the frequency domain signal processed by the filter unit 113 to return it to a time-axis digital signal.
  • the Fourier transform unit 111, the inverse Fourier transform unit 112, and the filter unit 113 compensate for waveform distortion included in the digital signal by equalization processing in the frequency domain (that is, frequency-domain equalization (FDE)).
  • the first coefficient setting unit 114 sets N first coefficients used by the filter unit 113 using m (where N> m) second coefficients.
  • the digital signal input to the digital filter 110 is a signal received by the receiving device in, for example, optical communication or wireless communication.
  • the Fourier transform unit 111 is, for example, a size N Fourier transform circuit.
  • the Fourier transform processing performed by the Fourier transform unit 111 is DFT (discrete Fourier transform) or FFT (fast Fourier transform).
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • IDFT Inverse discrete Fourier transform
  • the inverse Fourier transform unit 112 performs IFFT (Inverse fast Fourier transform) processing.
  • FIG. 2 is a diagram for explaining an example of the digital filter 110 in detail.
  • the digital filter 110 is, for example, an FDE (Fre1uency-domain equalization) filter.
  • the Fourier transform unit 111 is a Fourier transform circuit of size N, and converts an input time-axis digital signal into N frequency-axis digital signals.
  • the converted digital signal has a constant frequency of ⁇ s .
  • ⁇ s 2 ⁇ f s / N
  • f s is the sampling frequency.
  • the filter unit 113 performs a process of multiplying each of the N frequency axis digital signals by the first coefficient H x (0 ⁇ x ⁇ N ⁇ 1).
  • the first coefficient is set for each of the N digital signals. Therefore, the first coefficient setting unit 114 sets N first coefficients for the filter unit 113.
  • the N digital signals after being multiplied by the first coefficient are returned to the time-axis digital signals by the inverse Fourier transform unit 112.
  • the first coefficient and the second coefficient are, for example, coefficients set for each frequency, but are not limited thereto.
  • the interval of at least some (or all) second coefficients is wider than the interval of the first coefficient on the frequency axis.
  • the first coefficient setting unit 114 sets an approximation function that approximates the first coefficient using the frequency as a variable, using m second coefficients. Then, the first coefficient setting unit 114 sets the first coefficient based on this approximate function.
  • the approximation function setting process and the first coefficient setting process described above are performed by hardware (LSI (Large Scale Integration) circuit or FPGA (field programmable gate array)), software (CPU (Central Processing Unit or microcomputer) or PC (Personal Computer)) or the like. These processes may be performed partly by software and the rest by hardware.
  • LSI Large Scale Integration
  • FPGA field programmable gate array
  • CPU Central Processing Unit or microcomputer
  • PC Personal Computer
  • FIG. 3 is a diagram for explaining processing performed by the first coefficient setting unit 114.
  • the first coefficient setting unit 114 sets N digital signals H x (0 ⁇ x ⁇ N ⁇ 1) using m second coefficients h y (0 ⁇ y ⁇ m ⁇ 1).
  • the first coefficient setting unit 114 includes, for example, an LSI circuit that receives m second coefficients hy as inputs and outputs N first coefficients Hx as outputs. There are several examples of this circuit.
  • FIG. 4 is a diagram for explaining a first example of processing performed by the first coefficient setting unit 114.
  • the first coefficient setting unit 114 includes an FIR (finite impulse response) filter transfer characteristic calculation circuit as shown in FIG.
  • the FIR filter transfer characteristic calculation circuit performs calculation processing according to a transfer function represented by the following expression (1).
  • FIG. 4B shows an example of the transfer function represented by the equation (1).
  • First coefficient setting unit 114 by using such a function, sets a first coefficient H x in the desired omega.
  • FIG. 5 is a diagram for explaining a second example of processing performed by the first coefficient setting unit 114.
  • the first coefficient setting unit 114 has a segmented transfer characteristic calculation circuit as shown in FIG.
  • the segmented transfer characteristic calculation circuit performs processing according to the following idea.
  • the frequency axis (0 to (N ⁇ 1) ⁇ s) is divided into m segments.
  • the width of each segment is an integral multiple of ⁇ s and may be equal to each other or at least partially different.
  • the second coefficient indicates the boundary value of each segment.
  • the boundary values of these segments are connected by an approximate function (for example, linear approximation), and the first coefficient is calculated using this approximate function.
  • the segment boundary frequencies of a certain segment are k 1 ⁇ s and k 2 ⁇ s (k 1 ⁇ k 2 ), and the transfer characteristic values at the boundary frequencies are Hk 1 and Hk 2 , respectively.
  • the value of the transfer characteristic at the frequency k ⁇ s (k 1 ⁇ k ⁇ k 2 ) is calculated as ⁇ (k 2 ⁇ k) Hk 1 + (k ⁇ k 1 ) Hk 2 ⁇ as an internal dividing point calculation by linear approximation. / (K 2 ⁇ k 1 ).
  • FIG. 6 is a diagram for explaining a third example of the process performed by the first coefficient setting unit 114.
  • the first coefficient setting unit 114 has a polynomial recent transfer characteristic calculation circuit as shown in FIG.
  • the polynomial near-time transfer characteristic calculation circuit performs calculation processing according to a transfer function represented by the following equation (2).
  • a x (0 ⁇ x ⁇ m ⁇ 1) is the second coefficient.
  • FIG. 6B shows an example of the transfer function represented by Expression (2).
  • First coefficient setting unit 114 by using such a function, sets a first coefficient H x in the desired omega.
  • FIG. 7 is a diagram for describing a fourth example of processing performed by the first coefficient setting unit 114.
  • the first coefficient setting unit 114 stores a coefficient set including m third coefficients corresponding to each of the m second coefficients for each of the N first coefficients.
  • the first coefficient setting unit 114 reads out a coefficient set of the third coefficient corresponding to the first coefficient for each first coefficient.
  • the first coefficient setting unit 114 calculates the first coefficient by multiplying each read third coefficient by the second coefficient corresponding to the third coefficient.
  • the first coefficient setting unit 114 stores a fixed value to be used as a substitute for z ⁇ m (k) in the above equation (1) as the third coefficient. This fixed value is updated as appropriate.
  • N first coefficients used by the filter unit 113 can be set using m (where N> m) second coefficients. For this reason, the arithmetic processing required for the coefficient setting of the filter unit 113 is reduced. For this reason, the speed of the digital processing apparatus 100 can be increased, and the communication speed can be increased accordingly. In addition, the circuit scale of the digital processing apparatus 100 can be reduced.
  • FIG. 8 is a diagram illustrating a configuration of the digital processing apparatus 100 according to the second embodiment.
  • the digital processing apparatus 100 according to the present embodiment has the same configuration as that of the digital processing apparatus 100 according to the first embodiment except that a fixed filter coefficient setting unit 116 and a multiplication unit 115 are included.
  • the fixed filter coefficient setting unit 116 stores a fixed value of the first coefficient.
  • the multiplier 115 multiplies the first coefficient set by the first coefficient setting unit 114 and the first coefficient stored in the fixed filter coefficient setting unit 116, and outputs the value to the filter unit 113.
  • the same effect as that of the first embodiment can be obtained. Further, by correcting the first coefficient stored in the fixed filter coefficient setting unit 116 with the first coefficient calculated by the first coefficient setting unit 114, the value of the first coefficient can be easily set to an appropriate value. Can do.
  • FIG. 9 is a diagram illustrating a configuration of a digital processing apparatus 100 according to the third embodiment.
  • the digital processing apparatus 100 according to the present embodiment is the first implementation except that it includes an initial value setting unit 117, a digital signal processing unit 120, an error signal generation unit 130, and a second coefficient setting unit 140.
  • the configuration is the same as that of the digital processing apparatus 100 according to the embodiment.
  • the initial value setting unit 117 stores an initial value of the first coefficient used by the first coefficient setting unit 114.
  • the first coefficient is updated as the second coefficient input from the second coefficient setting unit 140 changes.
  • the digital signal processing unit 120 is, for example, a DSP (digital signal processor) and processes the digital signal output from the digital filter 110.
  • the digital signal processing unit 120 performs digital signal processing necessary for signal reception, such as clock recovery, demodulation processing, and error correction.
  • the error signal generation unit 130 detects an error of the digital signal output from the digital filter 110 and generates an error signal indicating the detected error.
  • the error signal generator 130 calculates an error signal according to the waveform equalization (compensation) algorithm in the digital filter 110.
  • the waveform equalization (compensation) algorithm for example, a CMA (constantCmodulus algorithm), LMS (least mean squares) algorithm, RLS (recursive least squares) algorithm, or the like can be used.
  • the error signal generation unit 130 obtains an error between the reference signal (fixed value, training signal, identification determination (DD) signal, etc.) and the digital signal output from the digital filter 110 and equalizes each waveform (compensation). ) Perform error signal calculation according to the algorithm.
  • the second coefficient setting unit 140 receives the error signal generated by the error signal generation unit 130, and sets m second coefficients based on the received error signal. For example, the second coefficient setting unit 140 sets m second coefficients by the local search method. The m second coefficients set by the second coefficient setting unit 140 are output to the first coefficient setting unit 114.
  • the first coefficient setting unit 114 includes the FIR filter transfer characteristic calculation circuit shown in FIG.
  • the update value h ′ x (t) is calculated.
  • is a step size parameter
  • conj (•) represents a complex conjugate of (•).
  • the second coefficient setting unit 140 repeats the process using Expression (3). Thereby, even if the input to the digital filter 110 fluctuates in time, the first coefficient setting unit 114 can update the first coefficient following the fluctuation.
  • FIG. 10 is a diagram illustrating a first example of the configuration of the second coefficient setting unit 140.
  • the second coefficient setting unit 140 includes a gradient information calculation unit 141 and a second coefficient update unit 143.
  • the gradient information calculation unit 141 generates gradient information indicating the rate of change of the second coefficient.
  • the gradient information is, for example, information indicated by the second term on the right side of equation (3). Specifically, the gradient information is calculated according to the following equation (4).
  • the second coefficient update unit 143 updates the second coefficient using the gradient information calculated by the gradient information calculation unit 141.
  • the second coefficient updating unit 143 performs processing according to, for example, a steepest descent method using CMA, LMS, RLS, or a conjugate gradient method.
  • FIG. 11 is a diagram for explaining a second example of the configuration of the second coefficient setting unit 140.
  • the second coefficient setting unit 140 includes an error comparison unit 142 and a second coefficient update unit 143.
  • the second coefficient updating unit 143 changes the second coefficient by the first minute amount in the vicinity of the second coefficients h 0 to h m ⁇ 1 at time t (h 0 + ⁇ h1 0 to h m ⁇ 1 + ⁇ h1 m ⁇ 1 ).
  • the second coefficient updating unit 143 changes the second coefficient by a second minute amount in the vicinity of the second coefficients h 0 to h m ⁇ 1 (h 0 + ⁇ h2 0 to h m ⁇ 1 + ⁇ h2 m ⁇ 1 ).
  • the error comparison unit 142 compares the error signal e 1 when the first minute change is made with the error signal e 2 when the second minute change is made.
  • the second coefficient updating unit 143 uses the comparison result in the error comparison unit 142 to sequentially change the second coefficient update amounts ⁇ h 0 to ⁇ h m ⁇ 1 in a direction in which the error signal difference decreases.
  • the error comparison unit 142 can use a local search method such as a hill-climbing method, a successive improvement method, or a neighborhood search method.
  • FIG. 12 is a diagram for explaining a third example of the configuration of the second coefficient setting unit 140.
  • the second coefficient setting unit 140 updates the second coefficient by sequential updating.
  • the second coefficient setting unit 140 uses m error signals e (t) to e (t + m ⁇ 1) as second coefficients, and uses this second coefficient to block signal.
  • the first coefficient is calculated by processing.
  • the second coefficient setting unit 140 includes a Fourier transform unit 144, a gradient information calculation unit 145, and a second coefficient update unit 143.
  • the Fourier transform unit 144 performs Fourier transform on m pieces of error information e (t + X) (0 ⁇ X ⁇ m ⁇ 1), which is time axis information, and generates a frequency axis signal Ex (0 ⁇ X ⁇ m ⁇ 1). Generate.
  • the gradient information calculation unit 145 performs the same processing as the processing performed on the second coefficient by the gradient information calculation unit 141 on the frequency axis signal Ex (0 ⁇ X ⁇ m ⁇ 1), so that the frequency information Generate gradient information of the error in the region.
  • the second coefficient updating unit 143 sets the second coefficient (described as H x (0 ⁇ X ⁇ m ⁇ 1) in the example shown in the drawing) using the gradient information generated by the gradient information calculation unit 145. Then, the first coefficient setting unit 114 sets the first coefficient, for example, by the method described with reference to FIG.
  • the Fourier transform unit 144 may be omitted.
  • the second coefficient setting unit 140 performs block signal processing in the time domain, as in the examples illustrated in FIGS.
  • the second coefficient setting unit 140 sets the second coefficient using the error signal generated by the error signal generation unit 130. For this reason, even if the input to the digital filter 110 fluctuates with time, the first coefficient setting unit 114 can update the first coefficient following the fluctuation.
  • FIG. 13 is a diagram illustrating a configuration of a signal transmission / reception system according to the third embodiment.
  • the signal transmission / reception system shown in the figure includes a transmitter 10 and a reception device 30.
  • the transmission device 10 generates a digital signal and transmits it to the reception device 30.
  • a transmission medium 20 exists between the transmission device 10 and the reception device 30.
  • the transmission medium 20 is, for example, an optical fiber.
  • the transmission medium 20 is a space.
  • the receiving device 30 includes a digital processing device 100 and a front end unit 200.
  • the digital processing apparatus 100 has the configuration shown in any of the first to third embodiments, for example. In the example shown in this figure, the digital processing apparatus 100 has the same configuration as that of the third embodiment.
  • the front end unit 200 receives a signal transmitted from the transmission device 10.
  • the front end unit 200 converts the signal into a signal that can be processed by the digital processing apparatus 100.
  • FIG. 14 is a diagram illustrating the configuration of the receiving device 30 in detail.
  • the front end unit 200 includes a front end circuit 201 and a complex signal generation unit 208.
  • the front-end circuit 201 generates four-channel signals Ix, Qx, Iy, and Qy using the signal received from the transmission device 10 and the reference signal LO.
  • j is an imaginary unit.
  • the digital processing apparatus 100 has two digital filters 110.
  • the processing performed by the two digital filters 110 is as shown in the first to third embodiments.
  • the receiving device 30 includes two signal quality determination units 132.
  • the first signal quality determination unit 132 determines the signal quality of the output E xout (t) of the first digital filter 110. Specifically, the first signal quality determination unit 132 generates a waveform distortion signal indicating the waveform distortion based on the waveform distortion of the output E xout (t). The generated waveform distortion signal is input to the error signal generation unit 130.
  • the second signal quality determination unit 132 determines the signal quality of the output E yout (t) of the second digital filter 110. Specifically, the second signal quality determination unit 132 generates a waveform distortion signal indicating the waveform distortion based on the waveform distortion of the output E yout (t). The generated waveform distortion signal is input to the error signal generation unit 130.
  • the error signal generation unit 130 generates two types of error signals based on the two waveform distortion signals.
  • the second coefficient setting unit 140 sets a second coefficient for each of x and y based on each of the two types of error signals.
  • the first coefficient setting unit 114 sets the first coefficient for each of x and y.
  • the error signal generation unit 130 sets an error signal using the waveform distortion signal generated by the signal quality determination unit 132. For this reason, when the error signal generation unit 130, the second coefficient setting unit 140, and the first coefficient setting unit 114 are incorporated into the receiving apparatus 30 that already has the signal quality determination unit 132, a new error signal is generated. There is no need to add a detection circuit to the digital processing apparatus 100.
  • FIG. 15 is a diagram illustrating a configuration of a reception device 30 used in the signal transmission / reception system according to the fifth embodiment.
  • the signal transmission / reception system according to the present embodiment has the same configuration as the signal transmission / reception system according to the fourth embodiment, except for the configuration of the reception device 30.
  • the receiving device 30 according to the present embodiment has the same configuration as the receiving device 30 according to the fourth embodiment, except that an error correcting unit 134 is provided instead of the signal quality determining unit 132.
  • the error correction unit 134 corrects errors in the digital signal output from the digital signal processing unit 120. Further, the error correction unit 134 outputs error correction information indicating the correction content of the digital signal to the error signal generation unit 130.
  • the error signal generation unit 130 generates an error signal based on the error correction signal.
  • the error signal generation unit 130 sets an error signal using the error correction information generated by the error correction unit 134. Therefore, when the error signal generation unit 130, the second coefficient setting unit 140, and the first coefficient setting unit 114 are incorporated into the receiving device 30 that already has the error correction unit 134, detection for newly generating an error signal There is no need to add circuitry to the digital processing device 100.
  • the signal transmission / reception system according to the present embodiment has the same configuration as the signal transmission / reception system according to the fifth embodiment, except that the signal transmission / reception system uses a digital coherent technology to transmit / receive a signal. That is, in this embodiment, the signal is transmitted by optical communication.
  • the optical signal is subjected to multilevel modulation using a polarization multiplexing method, QAM (quadrature amplitude modulation), or the like.
  • FIG. 16 is a diagram illustrating a configuration of a reception device 30 used in the signal transmission / reception system according to the sixth embodiment.
  • the digital signal processing unit 120 is not shown.
  • the receiving device 30 includes a front end unit 200 and a digital processing device 100.
  • the front end unit 200 includes an optical hybrid 202, a photoelectric conversion unit 204, an AD (Analog-Digital) conversion unit 206, and a complex signal generation unit 208.
  • the optical hybrid 202 receives signal light from the transmission path and local light from the local light source.
  • the optical hybrid 202 causes the optical signal and local light to interfere with each other with a phase difference of 0 to generate a first optical signal (I x ), and causes the optical signal and local light to interfere with each other with a phase difference of ⁇ / 2 to generate the second light.
  • a signal (Q x ) is generated.
  • the optical hybrid 202 generates a third optical signal (I y ) by causing the optical signal and local light to interfere with each other with a phase difference of 0, and causes the optical signal and local light to interfere with each other with a phase difference of ⁇ / 2.
  • An optical signal (Q y ) is generated.
  • the first optical signal and the second optical signal form a set of signals
  • the third optical signal and the fourth optical signal also form a set of signals.
  • the photoelectric conversion unit 204 photoelectrically converts the four optical signals (output light) generated by the optical hybrid 202 to generate four analog signals.
  • the AD conversion unit 206 converts each of the four analog signals generated by the photoelectric conversion unit 204 into digital signals.
  • the digital processing apparatus 100 includes a band compensation coefficient setting unit 118 and a chromatic dispersion compensation coefficient setting unit 119.
  • the band compensation coefficient setting unit 118 stores a coefficient for compensating for chromatic dispersion caused by the front end unit 200.
  • the coefficient stored in the chromatic dispersion compensation coefficient setting unit 119 and the coefficient stored in the band compensation coefficient setting unit 118 are multiplied by the first coefficient set by the first coefficient setting unit 114. Then, the first coefficient after multiplication is output to the digital filter 110.
  • the information stored in the band compensation coefficient setting unit 118 and the chromatic dispersion compensation coefficient setting unit 119 is a semi-fixed value, and is updated manually, for example, as necessary.
  • the digital processing apparatus 100 may further include a storage unit that stores a coefficient for performing skew compensation and a storage unit that stores a coefficient for performing IQ imbalance compensation. The coefficients stored in these storage units are also multiplied by the first coefficient set by the first coefficient setting unit 114.
  • FIG. 17 is a diagram showing a configuration of the digital filter 110 shown in FIG.
  • the Fourier transform unit 111, the inverse Fourier transform unit 112, and the filter unit 113 are provided for each of the two digital signals.
  • the two Fourier transform units 111, the inverse Fourier transform unit 112, and the filter unit 113 constitute a butterfly circuit.
  • FIG. 18 is a diagram illustrating an example of the configuration of the second coefficient setting unit 140 and the first coefficient setting unit 114 in the present embodiment.
  • the second coefficient setting unit 140 performs the processing described with reference to FIG.
  • the second coefficient setting unit 140 includes a gradient information calculation unit 141 and a second coefficient update unit 143.
  • the gradient information calculation unit 141 calculates gradient information for each of the four signals Ix, Qx, Iy, and Qy.
  • the second coefficient updating unit 143 sets the second coefficient for each of the four signals Ix, Qx, Iy, and Qy.
  • the first coefficient setting unit 114 sets the first coefficient for each of the four signals Ix, Qx, Iy, and Qy.
  • the same effect as in the fifth embodiment can be obtained. Further, in the receiving apparatus used for digital coherent, it is possible to reduce the arithmetic processing required for setting the coefficient of the digital filter 110.
  • the signal transmission / reception system according to the present embodiment has the same configuration as that of the signal transmission / reception system according to the fifth embodiment except that the signal transmission / reception system is a system that transmits and receives signals by wireless communication.
  • FIG. 19 is a diagram illustrating a configuration of the receiving device 30 according to the present embodiment.
  • the receiving device 30 includes an antenna 300, a front end unit 400, a digital processing device 100, a first coefficient setting unit 114, a digital signal processing unit 120, an error signal generation unit 130, and a second coefficient setting unit 140.
  • the configurations of the digital processing device 100, the first coefficient setting unit 114, the digital signal processing unit 120, the error signal generation unit 130, and the second coefficient setting unit 140 are the same as those in any of the second to sixth embodiments described above. is there.
  • the antenna 300 receives a signal transmitted wirelessly.
  • the front end unit 400 processes the signal received by the antenna 300 and outputs the processed digital signal to the digital processing device 100.
  • FIG. 20 is a diagram illustrating a functional configuration of the front end unit 400.
  • the front end unit 400 includes a filter 402, a low noise amplifier 404, a mixer 406, a reference signal source 407, a filter 408, a variable gain amplifier 410, and an AD conversion unit 412.
  • the filter 402 removes a frequency component that becomes noise from the signal received by the antenna 300.
  • the low noise amplifier 404 amplifies the analog signal output from the filter 402.
  • the mixer 406 multiplies the reference signal generated by the reference signal source 407 on the analog signal output by the low noise amplifier 404.
  • the filter 408 removes a frequency component that becomes noise from the analog signal output from the mixer 406.
  • the variable gain amplifier 410 amplifies the analog signal output from the filter 408.
  • the AD conversion unit 412 converts the analog signal output from the variable gain amplifier 410 into a digital signal.
  • the front end unit 400 may not include at least one (including all cases) of the filter 402, the low noise amplifier 404, the mixer 406, the reference signal source 407, the filter 408, and the variable gain amplifier 410. .
  • the signal received by the antenna 300 is directly converted into a digital signal by the AD conversion unit 412.
  • the signal transmission / reception system according to the present embodiment has the same configuration as that of the signal transmission / reception system according to the seventh embodiment, except that wireless communication is performed using a MIMO (Multiple Input Multiple Output) scheme.
  • MIMO Multiple Input Multiple Output
  • FIG. 21 is a diagram illustrating a configuration of the receiving device 30 according to the eighth embodiment.
  • the receiving apparatus 30 includes a plurality of sets of an antenna 300, a front end unit 400, a complex signal generation unit 208, and a digital filter 110.
  • the front end unit 400 extracts a real number component (I n ) and an imaginary number component (Q n ) from the analog signal received by the antenna 300, and AD-converts each.
  • the processing after the complex signal generation unit 208 is the same as the processing described with reference to FIGS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Discrete Mathematics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 フーリエ変換部(111)は、時間軸のデジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成する。フィルタ部(113)は、N個の第1係数を用いて、周波数領域信号を周波数領域で等化する。逆フーリエ変換部(112)は、フィルタ部(113)が処理した周波数領域信号を逆フーリエ変換して、時間軸のデジタル信号に戻す。すなわちフーリエ変換部(111)、逆フーリエ変換部(112)、及びフィルタ部(113)は、デジタル信号に含まれる波形歪を、周波数領域における等化処理(すなわちFDE(frequency-domain equalization))で、補償する。第1係数設定部(114)は、m個(ただしN>m)の第2係数を用いて、フィルタ部(113)が用いるN個の第1係数を設定する。

Description

デジタル信号処理装置、受信装置、及び信号送受信システム
 本発明は、デジタル信号を処理するデジタル信号処理装置、受信装置、及び信号送受信システムに関する。
 光通信や無線通信において、デジタル信号が送受信されるようになっている。デジタル信号の受信装置において、デジタル信号に対して、デジタルフィルタを用いて波形ゆがみ補償を行うことが多い(例えば特許文献1及び非特許文献1参照)。
 また特許文献2には、以下の技術が記載されている。まず、デジタル信号をフーリエ変換する。次いで、このフーリエ変換の結果に対して、周波数領域における波形等化処理を、デジタルフィルタを用いて行う。次いで、この波形等化処理の結果を逆フーリエ変換してデジタル信号を生成する。
 なお、非特許文献2には、制御が難しいFDE(frequency-domain equalization)回路を、ルックアップテーブル(LUT:lookup table)を用いて半固定的にフィルタ係数を切り替えることにより制御し、波長分散補償を行う手法について開示されている。
特開2008-205654号公報 特開2010-057016号公報
Seb J.Savory,"Digital filters for coherent optical receivers," Optics Express Vol.16,No.2,p.804-817 (Jan.2008). M.Kuschnerov,F.N.Hauske,K.Piyawanno,B.Spinnler,A.Napoli,and B.Lankl,"Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems," in Optical Fiber Communication Conference,OSA Technical Digest (Optical Society of America,2009),paper OMT1.
 近年は、通信速度を高速化することが求められている。通信速度を高速化すると、フーリエ変換処理の回路規模が増大し、これに伴ってデジタルフィルタの係数も増大してしまう。デジタルフィルタの係数が増大すると、係数の設定に必要な処理が多くなってしまう。
 本発明の目的は、フィルタ手段の係数の設定に必要な処理を少なくすることができるデジタル信号処理装置、受信装置、及び信号送受信システムを提供することにある。
 本発明によれば、デジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成するフーリエ変換手段と、
 N個の第1係数を用いて、前記周波数領域信号を周波数領域で等化するフィルタ手段と、
 前記フィルタ手段で処理された前記周波数領域信号を前記デジタル信号に戻す逆フーリエ変換手段と、
 m個(ただしN>m)の第2係数を用いて、前記N個の第1係数を設定する第1係数設定手段と、
を備えるデジタル信号処理装置が提供される。
 本発明によれば、デジタル信号を取得するデジタル信号取得手段と、
 前記デジタル信号を処理するデジタル信号処理手段と、
を備え、
 前記デジタル信号処理手段は、
  前記デジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成するフーリエ変換手段と、
  N個の第1係数を用いて、前記周波数領域信号を周波数領域で等化するフィルタ手段と、
  前記フィルタ手段で処理された前記周波数領域信号を前記デジタル信号に戻す逆フーリエ変換手段と、
  m個(ただしN>m)の第2係数を用いて、前記N個の第1係数を設定する第1係数設定手段と、
を備える受信装置が提供される。
 本発明によれば、デジタル信号を送信する送信手段と、
 前記デジタル信号を受信する受信手段と、
を備え、
 前記受信手段は、
  前記デジタル信号を取得するデジタル信号取得手段と、
  前記デジタル信号を処理するデジタル信号処理手段と、
を備え、
 前記デジタル信号処理手段は、
  前記デジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成するフーリエ変換手段と、
  N個の第1係数を用いて、前記周波数領域信号を周波数領域で等化するフィルタ手段と、
  前記フィルタ手段で処理された前記周波数領域信号を前記デジタル信号に戻す逆フーリエ変換手段と、
  m個(ただしN>m)の第2係数を用いて、前記N個の第1係数を設定する第1係数設定手段と、
を備える信号送受信システムが提供される。
 本発明によれば、フィルタ手段の係数の設定に必要な処理を少なくすることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係るデジタル処理装置の構成を示す図である。 デジタルフィルタの一例を詳細に説明するための図である。 第1係数設定部が行う処理の説明するための図である。 第1係数設定部が行う処理の第1例を説明するための図である。 第1係数設定部が行う処理の第2例を説明するための図である。 第1係数設定部が行う処理の第3例を説明するための図である。 第1係数設定部が行う処理の第4例を説明するための図である。 第2の実施形態に係るデジタル処理装置の構成を示す図である。 第3の実施形態に係るデジタル処理装置の構成を示す図である。 第2係数設定部の構成の第1例を説明する図である。 第2係数設定部の構成の第2例を説明する図である。 第2係数設定部の構成の第3例を説明する図である。 第3の実施形態に係る信号送受信システムの構成を示す図である。 受信装置の構成を詳細に示す図である。 第5の実施形態に係る信号送受信システムで用いられる受信装置の構成を示す図である。 第6の実施形態に係る信号送受信システムで用いられる受信装置の構成を示す図である。 図16に示したデジタルフィルタの構成を示す図である。 第6の実施形態における第2係数設定部及び第1係数設定部の構成の一例を示す図である。 第7の実施形態に係る受信装置の構成を示す図である。 フロントエンド部の機能構成を示す図である。 第8の実施形態に係る受信装置の構成を示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係るデジタル処理装置100の構成を示す図である。デジタル処理装置100は、デジタルフィルタ110を有している。デジタルフィルタ110は、フーリエ変換部111、逆フーリエ変換部112、フィルタ部113、及び第1係数設定部114を有している。フーリエ変換部111は、時間軸のデジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成する。フィルタ部113は、N個の第1係数を用いて、周波数領域信号を周波数領域で等化する。逆フーリエ変換部112は、フィルタ部113が処理した周波数領域信号を逆フーリエ変換して、時間軸のデジタル信号に戻す。すなわちフーリエ変換部111、逆フーリエ変換部112、及びフィルタ部113は、デジタル信号に含まれる波形歪を、周波数領域における等化処理(すなわちFDE(frequency-domain equalization))で、補償する。第1係数設定部114は、m個(ただしN>m)の第2係数を用いて、フィルタ部113が用いるN個の第1係数を設定する。
 本実施形態では、m個(ただしN>m)の第2係数を用いて、フィルタ部113が用いるN個の第1係数を設定することができる。このため、フィルタ部113の係数設定に必要な演算処理が少なくなる。例えばN=4096である場合、m<10とすることができる。以下、詳細に説明する。
 デジタルフィルタ110に入力されるデジタル信号は、例えば光通信又は無線通信において、受信装置が受信した信号である。フーリエ変換部111は、例えばサイズNのフーリエ変換回路である。フーリエ変換部111が行うフーリエ変換処理は、DFT(discrete Fourier transform)、又はFFT(fast Fourier transform)である。フーリエ変換部111がDFTを行う場合、逆フーリエ変換部112は、IDFT(Inverse discrete Fourier transform)を行う。またフーリエ変換部111がFFTを行う場合、逆フーリエ変換部112はIFFT(Inverse fast Fourier transform)処理を行う。
 図2は、デジタルフィルタ110の一例を詳細に説明するための図である。デジタルフィルタ110は、例えば、FDE(Fre1uency-domain equalization)フィルタである。フーリエ変換部111は、サイズNのフーリエ変換回路であり、入力された時間軸のデジタル信号をN個の周波数軸のデジタル信号に変換する。変換後のデジタル信号は、一定の周波数Δω刻みになっている。なお、Δω=2πfs/Nであり、fsはサンプリング周波数である。そしてフィルタ部113は、N個の周波数軸のデジタル信号それぞれに対して、第1係数H(0≦x≦N-1)を乗算する処理を行う。第1係数は、N個のデジタル信号それぞれに対して設定されている。このため、第1係数設定部114は、フィルタ部113に対しては、N個の第1係数を設定する。そして第1係数が乗算された後のN個のデジタル信号は、逆フーリエ変換部112によって時間軸のデジタル信号に戻される。
 第1係数及び第2係数は、例えば、いずれも周波数別に設定された係数であるが、これに限定されない。第1係数及び第2係数が周波数別に設定されている場合、周波数軸上において、少なくとも一部(または全て)の第2係数の間隔は、第1係数の間隔よりも広い。第1係数設定部114は、周波数を変数としていて第1係数を近似する近似関数を、m個の第2係数を用いて設定する。そして第1係数設定部114は、この近似関数に基づいて第1係数を設定する。
 なお、上記した近似関数の設定処理及び第1係数の設定処理は、ハードウェア(LSI(Large Scale Integration)回路もしくはFPGA(field programmable gate array))、またはソフトウェア(CPU(Central Processing Unitすなわちマイコン)もしくはPC(Personal Computer))などを用いて行われる。またこれらの処理は、一部がソフトウェアで行われて残りがハードウェアで行われても良い。
 図3は、第1係数設定部114が行う処理を説明するための図である。第1係数設定部114は、m個の第2係数h(0≦y≦m-1)を用いて、N個のデジタル信号H(0≦x≦N-1)を設定する。第1係数設定部114は、例えば、m個の第2係数hを入力としてN個の第1係数Hを出力とするLSI回路を有している。この回路としては、複数の例がある。
 図4は、第1係数設定部114が行う処理の第1例を説明するための図である。第1例において、第1係数設定部114は、図4(a)に示すようにFIR(finite impulse response)フィルタ伝達特性演算回路を有している。FIRフィルタ伝達特性演算回路は、以下の式(1)で示される伝達関数に従って、演算処理を行う。
Figure JPOXMLDOC01-appb-M000001
 ここで、z-m(k)=[exp(jkΔω)]-m=exp(-jmkΔω)(jは虚数単位、T=1/f)である。
 図4(b)は、式(1)で示される伝達関数の一例を示している。第1係数設定部114は、このような関数を用いて、所望のωにおける第1係数Hを設定する。
 図5は、第1係数設定部114が行う処理の第2例を説明するための図である。第2例において、第1係数設定部114は、図5(a)に示すようにセグメント分け伝達特性演算回路を有している。セグメント分け伝達特性演算回路は、以下の考えに従った処理を行う。
 図5(b)に示すように、まず、周波数軸(0~(N-1)Δωs)を、m個のセグメントに分割する。各セグメントの幅は、Δωsの整数倍であり、互いに等しくても良いし、少なくとも一部が異なっていても良い。第2係数は、各セグメントの境界の値を示している。そしてこれらセグメントの境界値を近似関数で結び(例えば直線近似)、この近似関数を用いて、第1係数を算出する。
 例えばあるセグメントのセグメント境界周波数がkΔω及びkΔω(k<k)で、その境界周波数における伝達特性の値がそれぞれHk及びHkであるとする。この場合、周波数kΔω(k≦k<k)における伝達特性の値は、線形近似による内分点の演算として{(k-k)Hk+(k-k)Hk}/(k-k)と計算される。
 図6は、第1係数設定部114が行う処理の第3例を説明するための図である。第3例において、第1係数設定部114は、図6(a)に示すように多項式近時伝達特性演算回路を有している。多項式近時伝達特性演算回路は、以下の式(2)で示される伝達関数に従って、演算処理を行う。
Figure JPOXMLDOC01-appb-M000002
 ここで、a(0≦x≦m-1)が、第2係数である。
 図6(b)は、式(2)で示される伝達関数の一例を示している。第1係数設定部114は、このような関数を用いて、所望のωにおける第1係数Hを設定する。
 図7は、第1係数設定部114が行う処理の第4例を説明するための図である。本図に示す例において、第1係数設定部114は、m個の第2係数それぞれに対応したm個の第3係数からなる係数セットを、N個の第1係数別に記憶している。第1係数設定部114は、第1係数別に、その第1係数に対応する第3係数の係数セットを読み出す。そして第1係数設定部114は、読み出した第3係数それぞれを、その第3係数に対応する第2係数に乗ずることにより、第1係数を算出する。図7に示す例では、第1係数設定部114は、上記した(1)式におけるz-m(k)の代わりとして用いられるべき固定値を、第3係数として記憶している。なお、この固定値は、適宜更新される。
 以上、本実施形態によれば、m個(ただしN>m)の第2係数を用いて、フィルタ部113が用いるN個の第1係数を設定することができる。このため、フィルタ部113の係数設定に必要な演算処理が少なくなる。このため、デジタル処理装置100の速度を高速化することができ、これに伴い、通信速度を高速化することができる。またデジタル処理装置100の回路規模を小さくすることができる。
(第2の実施形態)
 図8は、第2の実施形態に係るデジタル処理装置100の構成を示す図である。本実施形態に係るデジタル処理装置100は、固定フィルタ係数設定部116及び乗算部115を有している点を除いて、第1の実施形態に係るデジタル処理装置100と同様の構成である。
 固定フィルタ係数設定部116は、第1係数の固定値を記憶している。そして乗算部115は、第1係数設定部114が設定した第1係数と、固定フィルタ係数設定部116が記憶している第1係数を乗算し、その値をフィルタ部113に出力する。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、固定フィルタ係数設定部116が記憶している第1係数を、第1係数設定部114が算出した第1係数で補正することにより、第1係数の値を容易に適切な値にすることができる。
(第3の実施形態)
 図9は、第3の実施形態に係るデジタル処理装置100の構成を示す図である。本実施形態に係るデジタル処理装置100は、初期値設定部117、デジタル信号処理部120、誤差信号生成部130、及び第2係数設定部140を有している点を除いて、第1の実施形態に係るデジタル処理装置100と同様の構成である。
 初期値設定部117は、第1係数設定部114が用いる第1係数の初期値を記憶している。そして第1係数は、第2係数設定部140から入力される第2係数が変動することにより、更新されていく。
 デジタル信号処理部120は、例えばDSP(digital Signal Processor)であり、デジタルフィルタ110から出力されたデジタル信号を処理する。デジタル信号処理部120は、クロック再生、復調処理、誤り訂正など、信号受信に必要なデジタル信号処理を行う。
 誤差信号生成部130は、デジタルフィルタ110が出力したデジタル信号の誤差を検出し、検出した誤差を示す誤差信号を生成する。誤差信号生成部130は、デジタルフィルタ110における波形等化(補償)アルゴリズムに応じた誤差信号の演算を行う。ここで波形等化(補償)アルゴリズムとしては、例えばCMA(constant modulus algorithm)、LMS(least mean squares)アルゴリズム、RLS(recursive least squares)アルゴリズムなどの手法を用いることが可能である。誤差信号生成部130は、参照信号(固定値、トレーニング信号、又は識別判定(DD:decision directed)信号等)とデジタルフィルタ110が出力したデジタル信号との誤差を求め、それぞれの波形等化(補償)アルゴリズムに応じた誤差信号演算を行う。
 第2係数設定部140は、誤差信号生成部130が生成した誤差信号を受信し、受信した誤差信号に基づいて、m個の第2係数を設定する。例えば、第2係数設定部140は、局所探索法によりm個の第2係数を設定する。第2係数設定部140が設定したm個の第2係数は、第1係数設定部114に出力される。
 ここで、具体例を用いて説明する。この例において、波形等化アルゴリズムとしてはCMAが用いられる。また第1係数設定部114は、図4に示したFIRフィルタ伝達特性演算回路を有している。第2係数設定部140は、以下の(3)式に従って、誤差信号生成部130が出力した誤差信号e(t)=1-|fout(t)|を処理することで、第2係数の更新値h´(t)を算出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、μはステップサイズパラメータであり、conj(・)は(・)の複素共役を表す。
 第2係数設定部140は、式(3)を用いた処理を繰り返す。これにより、デジタルフィルタ110への入力が時間的に変動しても、第1係数設定部114は、この変動に追従して第1係数を更新することができる。
 図10は、第2係数設定部140の構成の第1例を説明する図である。本実施形態において、第2係数設定部140は、勾配情報演算部141及び第2係数更新部143を有している。勾配情報演算部141は、第2係数の変化の割合を示す勾配情報を生成する。勾配情報は、例えば(3)式の右辺の第2項で示された情報である。具体的には、勾配情報は、以下の(4)式に従って算出される。
Figure JPOXMLDOC01-appb-M000004
 第2係数更新部143は、勾配情報演算部141が算出した勾配情報を用いて、第2係数を更新する。第2係数更新部143は、例えば、CMA、LMS、RLSなどを用いた最急降下法(steepest descent method)、又は共役勾配法(conjugate gradient method)に従って、処理を行う。
 図11は、第2係数設定部140の構成の第2例を説明する図である。本図に示す例において、第2係数設定部140は、誤差比較部142及び第2係数更新部143を有している。
 第2係数更新部143は、時刻tにおける第2係数h~hm-1の近傍で、第2係数を第1の微小量ほど変化させる(h+Δh1~hm-1+Δh1m-1)。また第2係数更新部143は、第2係数h~hm-1の近傍で、第2係数を第2の微小量ほど変化させる(h+Δh2~hm-1+Δh2m-1)。そして誤差比較部142は、第1の微少量変化させたときの誤差信号eと、第2の微少量変化させたときの誤差信号eを比較する。第2係数更新部143は、誤差比較部142における比較結果を用いて、誤差信号の差分が小さくなる方向へ逐次、第2係数の更新量Δh~Δhm-1を変化させる。この場合には、誤差比較部142は、山登り法、逐次改善法、近傍探索法などの局所探索法を用いることが可能である。
 図12は、第2係数設定部140の構成の第3例を説明する図である。図10に示した例及び図11に示したでは、第2係数設定部140は、逐次更新により第2係数の更新を行う。これに対して本図に示す例では、第2係数設定部140は、m個の誤差信号e(t)~e(t+m-1)を第2係数として、この第2係数を用いてブロック信号処理により第1係数を演算する。
 詳細には、第2係数設定部140は、フーリエ変換部144、勾配情報演算部145、及び第2係数更新部143を有している。フーリエ変換部144は、時間軸の情報であるm個の誤差情報e(t+X)(0≦X≦m-1)をフーリエ変換し、周波数軸の信号Ex(0≦X≦m-1)を生成する。次いで勾配情報演算部145は、勾配情報演算部141が第2係数に対して行った処理と同様の処理を周波数軸の信号Ex(0≦X≦m-1)に対して行うことにより、周波数領域での誤差の勾配情報を生成する。第2係数更新部143は、勾配情報演算部145が生成した勾配情報を用いて、第2係数(本図に示す例ではH(0≦X≦m-1)と記載)を設定する。そして第1係数設定部114は、例えば図5を用いて説明した方法により、第1係数を設定する。
 なお、本例において、フーリエ変換部144は省略されても良い。この場合、第2係数設定部140は、図10,11に示した例と同様に、時間領域でのブロック信号処理を行う。
 以上、本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、第2係数設定部140は、誤差信号生成部130が生成した誤差信号を用いて第2係数を設定する。このため、デジタルフィルタ110への入力が時間的に変動しても、第1係数設定部114は、この変動に追従して第1係数を更新することができる。
(第4の実施形態)
 図13は、第3の実施形態に係る信号送受信システムの構成を示す図である。本図に示す信号送受信システムは、送信機10及び受信装置30を有している。送信装置10は、デジタル信号を生成して受信装置30に送信する。送信装置10と受信装置30の間には、伝送媒質20が存在している。送信装置10と受信装置30の間の通信が有線で行われる場合、伝送媒質20は、例えば光ファイバである。また送信装置10と受信装置30の間の通信が無線で行われる場合、伝送媒質20は空間である。
 受信装置30は、デジタル処理装置100及びフロントエンド部200を有している。デジタル処理装置100は、例えば第1~第3の実施形態のいずれかに示した構成を有している。本図に示す例では、デジタル処理装置100は、第3の実施形態と同様の構成を有している。
 フロントエンド部200(デジタル信号取得部)は、送信装置10が送信してきた信号を受信する。そしてフロントエンド部200は、デジタル処理装置100が処理できる信号に変換する。
 図14は、受信装置30の構成を詳細に示す図である。本図に示す例において、フロントエンド部200はフロントエンド回路201及び複素信号生成部208を有している。フロントエンド回路201は、送信装置10から受信した信号と、参照信号LOを用いて、4チャンネルの信号Ix、Qx、Iy、及びQyを生成する。複素信号生成部208は、信号Ix、Qx、Iy、及びQyを用いて、2チャンネルの複素信号Exin(t)=Ix+jQ(x)、及びEyin(t)=Iy+jQ(y)を生成する。ここでjは虚数単位である。
 またデジタル処理装置100は、デジタルフィルタ110を2つ有している。第1のデジタルフィルタ110は、複素信号Exin(t)=Ix+jQ(x)を処理し、第2のデジタルフィルタ110は、Eyin(t)=Iy+jQ(y)を処理する。2つのデジタルフィルタ110が行う処理は、第1~第3の実施形態に示したとおりである。
 そして受信装置30は、2つの信号品質判断部132を有している。第1の信号品質判断部132は、第1のデジタルフィルタ110の出力Exout(t)の信号品質を判断する。具体的には、第1の信号品質判断部132は、出力Exout(t)の波形ゆがみに基づいて、この波形ゆがみを示す波形ゆがみ信号を生成する。生成された波形ゆがみ信号は、誤差信号生成部130に入力される。
 また第2の信号品質判断部132は、第2のデジタルフィルタ110の出力Eyout(t)の信号品質を判断する。具体的には、第2の信号品質判断部132は、出力Eyout(t)の波形ゆがみに基づいて、この波形ゆがみを示す波形ゆがみ信号を生成する。生成された波形ゆがみ信号は、誤差信号生成部130に入力される。
 そして誤差信号生成部130は、2つの波形ゆがみ信号それぞれに基づいて、2種類の誤差信号を生成する。第2係数設定部140は、2種類の誤差信号それぞれに基づいて、x、y別に第2係数を設定する。そして第1係数設定部114は、x、y別に、第1係数を設定する。
 本実施形態によっても、第1~第3の実施形態と同様の効果を得ることができる。また本図に示す例では、誤差信号生成部130は、信号品質判断部132が生成する波形ゆがみ信号を用いて、誤差信号を設定する。このため、既に信号品質判断部132を有する受信装置30に対して誤差信号生成部130、第2係数設定部140、及び第1係数設定部114を組み込む場合、新たに誤差信号を生成するための検出回路をデジタル処理装置100に追加する必要がなくなる。
(第5の実施形態)
 図15は、第5の実施形態に係る信号送受信システムで用いられる受信装置30の構成を示す図である。本実施形態に係る信号送受信システムは、受信装置30の構成を除いて、第4の実施形態に係る信号送受信システムと同様の構成である。
 本実施形態に係る受信装置30は、信号品質判断部132の代わりに誤り訂正部134を有している点を除いて、第4の実施形態に係る受信装置30と同様の構成である。誤り訂正部134は、デジタル信号処理部120が出力したデジタル信号の誤りを訂正する。また誤り訂正部134は、デジタル信号の訂正内容を示す誤り訂正情報を、誤差信号生成部130に出力する。誤差信号生成部130は、誤り訂正信号に基づいて、誤差信号を生成する。
 本実施形態によっても、第1~第3の実施形態と同様の効果を得ることができる。また本図に示す例では、誤差信号生成部130は、誤り訂正部134が生成する誤り訂正情報を用いて、誤差信号を設定する。このため、既に誤り訂正部134を有する受信装置30に対して誤差信号生成部130、第2係数設定部140、及び第1係数設定部114を組み込む場合、新たに誤差信号を生成するための検出回路をデジタル処理装置100に追加する必要がなくなる。
(第6の実施形態)
 本実施形態に係る信号送受信システムは、デジタルコヒーレント技術を用いて、信号を送受信するシステムである点を除いて、第5の実施形態に係る信号送受信システムと同様の構成である。すなわち本実施形態において、信号は、光通信によって送信される。光信号は、偏波多重方式やQAM(quadrature amplitude modulation)などを用いて、多値変調されている。
 図16は、第6の実施形態に係る信号送受信システムで用いられる受信装置30の構成を示す図である。なお本図において、デジタル信号処理部120の図示を省略している。受信装置30は、フロントエンド部200及びデジタル処理装置100を有している。
 フロントエンド部200は、光ハイブリッド202、光電変換部204、AD(Analog-Digital)変換部206、及び複素信号生成部208を有している。
 光ハイブリッド202には、伝送路からの信号光と、局所光源からの局所光が入力される。光ハイブリッド202は、光信号と局所光とを位相差0で干渉させて第1光信号(I)を生成し、光信号と局所光とを位相差π/2で干渉させて第2光信号(Q)を生成する。また光ハイブリッド202は、光信号と局所光とを位相差0で干渉させて第3光信号(I)を生成し、光信号と局所光とを位相差π/2で干渉させて第4光信号(Q)を生成する。第1光信号及び第2光信号は、一組の信号を形成し、また第3光信号及び第4光信号も、一組の信号を形成する。
 光電変換部204は、光ハイブリッド202が生成した4つの光信号(出力光)を光電変換して、4つのアナログ信号を生成する。
 AD変換部206は、光電変換部204が生成した4つのアナログ信号を、それぞれデジタル信号に変換する。
 複素信号生成部208は、信号Ix、Qx、Iy、及びQyを用いて、2チャンネルの複素信号Exin(t)=Ix+jQ(x)、及びEyin(t)=Iy+jQ(y)を生成する。
 デジタル処理装置100は、帯域補償係数設定部118及び波長分散補償係数設定部119を有している。帯域補償係数設定部118は、フロントエンド部200に起因した波長分散を補償するための係数を記憶している。そして波長分散補償係数設定部119が記憶している係数及び帯域補償係数設定部118が記憶している係数は、第1係数設定部114が設定した第1係数に対して乗算される。そして乗算された後の第1係数は、デジタルフィルタ110に出力される。
 なお、帯域補償係数設定部118及び波長分散補償係数設定部119が記憶している情報は、半固定値であり、必要に応じて例えばマニュアルで更新される。またデジタル処理装置100は、さらにスキュー補償を行うための係数を記憶する記憶部、及びI-Qインバランス補償を行うための係数を記憶する記憶部を有していても良い。これら記憶部に記憶されている係数も、第1係数設定部114が設定した第1係数に対して乗算される。
 図17は、図16に示したデジタルフィルタ110の構成を示す図である。本実施形態において、デジタル信号は複数(具体的には2つ)ある。そしてフーリエ変換部111、逆フーリエ変換部112、及びフィルタ部113は、2のデジタル信号別に設けられている。そして2つのフーリエ変換部111、逆フーリエ変換部112、及びフィルタ部113は、バタフライ回路を構成している。
 図18は、本実施形態における第2係数設定部140及び第1係数設定部114の構成の一例を示す図である。本図に示す例において、第2係数設定部140は、図10を用いて説明した処理をする。具体的には、第2係数設定部140は、勾配情報演算部141及び第2係数更新部143を有している。勾配情報演算部141は、4つの信号Ix、Qx、Iy、及びQyそれぞれごとに、勾配情報を算出する。第2係数更新部143は、4つの信号Ix、Qx、Iy、及びQyそれぞれごとに、第2係数を設定する。そして第1係数設定部114は、4つの信号Ix、Qx、Iy、及びQyそれぞれごとに、第1係数を設定する。
 本実施形態によっても、第5の実施形態と同様の効果を得ることができる。また、デジタルコヒーレントに用いられる受信装置において、デジタルフィルタ110の係数設定に必要な演算処理を少なくすることができる。
(第7の実施形態)
 本実施形態に係る信号送受信システムは、無線通信により信号を送受信するシステムである点を除いて、第5の実施形態に係る信号送受信システムと同様の構成である。
 図19は、本実施形態に係る受信装置30の構成を示す図である。本実施形態において、受信装置30は、アンテナ300、フロントエンド部400、デジタル処理装置100、第1係数設定部114、デジタル信号処理部120、誤差信号生成部130、及び第2係数設定部140を有している。デジタル処理装置100、第1係数設定部114、デジタル信号処理部120、誤差信号生成部130、及び第2係数設定部140の構成は、上記した第2~第6の実施形態のいずれかと同様である。
 アンテナ300は、無線で送信されてきた信号を受信する。フロントエンド部400は、アンテナ300が受信した信号を処理し、処理後のデジタル信号をデジタル処理装置100に出力する。
 図20は、フロントエンド部400の機能構成を示す図である。フロントエンド部400は、フィルタ402、ローノイズアンプ404、ミキサー406、基準信号源407、フィルタ408、可変利得アンプ410、及びAD変換部412を有している。フィルタ402は、アンテナ300が受信した信号からノイズとなる周波数成分を除去する。ローノイズアンプ404は、フィルタ402が出力したアナログ信号を増幅する。ミキサー406は、基準信号源407が生成した基準信号を、ローノイズアンプ404が出力したアナログ信号に乗ずる。フィルタ408は、ミキサー406が出力したアナログ信号からノイズとなる周波数成分を除去する。可変利得アンプ410は、フィルタ408が出力したアナログ信号を増幅する。AD変換部412は、可変利得アンプ410が出力したアナログ信号をデジタル信号に変換する。
 なお、フロントエンド部400は、フィルタ402、ローノイズアンプ404、ミキサー406、基準信号源407、フィルタ408、及び可変利得アンプ410の少なくとも一つ(全ての場合を含む)を有していなくても良い。この場合、フロントエンド部400において、アンテナ300が受信した信号を直接AD変換部412がデジタル信号に変換する。
 本実施形態によれば、無線通信に用いられる受信装置において、デジタルフィルタ110の係数設定に必要な演算処理を少なくすることができる。
(第8の実施形態)
 本実施形態に係る信号送受信システムは、MIMO(Multiple Input Multiple Output)方式で無線通信する点を除いて、第7の実施形態に係る信号送受信システムと同様の構成である。
 図21は、第8の実施形態に係る受信装置30の構成を示す図である。本実施形態において受信装置30は、アンテナ300、フロントエンド部400、複素信号生成部208、及びデジタルフィルタ110を複数組有している。フロントエンド部400は、アンテナ300が受信したアナログ信号から実数成分(I)と虚数成分(Q)を取り出し、それぞれをAD変換する。複素信号生成部208より後の処理は、例えば図14~図18を用いて説明した処理と同様である。
 本実施形態によれば、MIMO方式の無線通信に用いられる受信装置において、デジタルフィルタ110の係数設定に必要な演算処理を少なくすることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2012年3月1日に出願された日本出願特願2012-45962を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1.  デジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成するフーリエ変換手段と、
     N個の第1係数を用いて、前記周波数領域信号を周波数領域で等化するフィルタ手段と、
     前記フィルタ手段で処理された前記周波数領域信号を前記デジタル信号に戻す逆フーリエ変換手段と、
     m個(ただしN>m)の第2係数を用いて、前記N個の第1係数を設定する第1係数設定手段と、
    を備えるデジタル信号処理装置。
  2.  請求項1に記載のデジタル信号処理装置において、
     前記第1係数及び第2係数は周波数別に設定された係数であり、
     周波数軸上において、前記第2係数の間隔の少なくとも一つは、前記第1係数の間隔よりも広く、
     前記第1係数設定手段は、前記周波数を変数としていて前記第1係数を近似する近似関数を、前記m個の第2係数を用いて設定し、前記近似関数に基づいて前記第1係数を設定するデジタル信号処理装置。
  3.  請求項1に記載のデジタル信号処理装置において、
     前記第1係数設定手段は、前記m個の第2係数を入力として前記N個の第1係数を出力とする回路を有するデジタル信号処理装置。
  4.  請求項3に記載のデジタル信号処理装置において、
     前記回路は、FIR(finite impulse response)フィルタ伝達特性演算回路、セグメント分け伝達特性演算回路、又は多項式近時伝達特性演算回路であるデジタル信号処理装置。
  5.  請求項1に記載のデジタル信号処理装置において、
     前記第1係数設定手段は、
      前記m個の第2係数それぞれに対応したm個の第3係数からなる係数セットを、前記N個の第1係数別に記憶しており、
      前記第1係数別に、当該第1係数に対応する前記係数セットに含まれる前記m個の第3係数それぞれを、当該第3係数に対応する前記第2係数に乗ずることにより、当該第1係数を算出するデジタル信号処理装置。
  6.  請求項1~5のいずれか一項に記載のデジタル信号処理装置において、
     前記逆フーリエ変換手段が生成した前記デジタル信号の誤差を示す誤差信号を受信し、前記誤差信号に基づいて、前記m個の第2係数を設定する第2係数設定手段を備えるデジタル信号処理装置。
  7.  請求項6に記載のデジタル信号処理装置において、
     前記逆フーリエ変換手段が生成した前記デジタル信号と参照信号の差に基づいて、前記誤差信号を生成する誤差信号生成手段を備えるデジタル信号処理装置。
  8.  請求項6に記載のデジタル信号処理装置において、
     前記逆フーリエ変換手段が生成した前記デジタル信号の誤りを訂正したことを示す誤り訂正情報から、前記誤差信号を生成する誤差信号生成手段を備えるデジタル信号処理装置。
  9.  請求項6に記載のデジタル信号処理装置において、
     前記逆フーリエ変換手段が生成した前記デジタル信号の波形ゆがみに基づいて、前記誤差信号を生成する誤差信号生成手段を備えるデジタル信号処理装置。
  10.  請求項6~9のいずれか一項に記載のデジタル信号処理装置において、
     前記第2係数設定手段は、局所探索法により前記m個の第2係数を設定するデジタル信号処理装置。
  11.  請求項1~10のいずれか一項に記載のデジタル信号処理装置において、
     複数の前記デジタル信号が入力され、
     前記複数のデジタル信号別に、前記フーリエ変換手段、前記フィルタ手段、及び前記逆フーリエ変換手段を有しており、
     前記複数の前記フーリエ変換手段、前記フィルタ手段、及び前記逆フーリエ変換手段は、バタフライ回路であるデジタル信号処理装置。
  12.  デジタル信号を取得するデジタル信号取得手段と、
     前記デジタル信号を処理するデジタル信号処理手段と、
    を備え、
     前記デジタル信号処理手段は、
      前記デジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成するフーリエ変換手段と、
      N個の第1係数を用いて、前記周波数領域信号を周波数領域で等化するフィルタ手段と、
      前記フィルタ手段で処理された前記周波数領域信号を前記デジタル信号に戻す逆フーリエ変換手段と、
      m個(ただしN>m)の第2係数を用いて、前記N個の第1係数を設定する第1係数設定手段と、
    を備える受信装置。
  13.  請求項12に記載の受信装置において、
     光信号を光電変換してアナログ信号を生成する光電変換手段をさらに備え、
     前記デジタル信号取得手段は、前記アナログ信号を前記デジタル信号に変換することにより、前記デジタル信号を取得する受信装置。
  14.  デジタル信号を送信する送信手段と、
     前記デジタル信号を受信する受信手段と、
    を備え、
     前記受信手段は、
      前記デジタル信号を取得するデジタル信号取得手段と、
      前記デジタル信号を処理するデジタル信号処理手段と、
    を備え、
     前記デジタル信号処理手段は、
      前記デジタル信号をフーリエ変換して周波数軸の信号である周波数領域信号を生成するフーリエ変換手段と、
      N個の第1係数を用いて、前記周波数領域信号を周波数領域で等化するフィルタ手段と、
      前記フィルタ手段で処理された前記周波数領域信号を前記デジタル信号に戻す逆フーリエ変換手段と、
      m個(ただしN>m)の第2係数を用いて、前記N個の第1係数を設定する第1係数設定手段と、
    を備える信号送受信システム。
PCT/JP2013/000044 2012-03-01 2013-01-10 デジタル信号処理装置、受信装置、及び信号送受信システム WO2013128783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/381,223 US9385766B2 (en) 2012-03-01 2013-01-10 Digital signal processing device, receiving device, and signal transmitting and receiving system
JP2014501981A JP6176238B2 (ja) 2012-03-01 2013-01-10 デジタル信号処理装置、受信装置、及び信号送受信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012045962 2012-03-01
JP2012-045962 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013128783A1 true WO2013128783A1 (ja) 2013-09-06

Family

ID=49082002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000044 WO2013128783A1 (ja) 2012-03-01 2013-01-10 デジタル信号処理装置、受信装置、及び信号送受信システム

Country Status (3)

Country Link
US (1) US9385766B2 (ja)
JP (1) JP6176238B2 (ja)
WO (1) WO2013128783A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530974A (ja) * 2016-03-14 2018-10-18 三菱電機株式会社 光信号を復号する方法、並びに光信号を受信及び復号する受信機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3444632A4 (en) * 2016-04-11 2019-12-04 Furuno Electric Company, Limited SIGNAL PROCESSING DEVICE AND RADAR TYPE APPARATUS
JP6759742B2 (ja) * 2016-06-16 2020-09-23 富士通株式会社 受信装置及び設定方法
US9906384B1 (en) * 2016-09-26 2018-02-27 Nxp B.V. Multiple-tap compensation and calibration
JP7057500B2 (ja) * 2018-05-16 2022-04-20 日本電信電話株式会社 受信装置及び受信方法
JP2021040239A (ja) * 2019-09-03 2021-03-11 ファナック株式会社 機械学習装置、受信装置及び機械学習方法
US10958483B1 (en) * 2019-09-10 2021-03-23 Huawei Technologies Co., Ltd. Method and apparatus for determining a set of optimal coefficients

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133219A (ja) * 1989-10-19 1991-06-06 Fujitsu Ltd 高安定性エコーキャンセラ
JPH04196771A (ja) * 1990-11-28 1992-07-16 Hitachi Ltd 波形等化装置
JPH05252000A (ja) * 1992-03-05 1993-09-28 Hitachi Ltd 信号処理装置
JP2010057016A (ja) * 2008-08-29 2010-03-11 Fujitsu Ltd 光受信機の電力供給制御方法、並びに、デジタル信号処理回路および光受信機
JP2011171984A (ja) * 2010-02-18 2011-09-01 Nec Corp 光受信機、光通信システム及び等化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237416A (en) * 1989-10-18 1993-08-17 Victor Company Of Japan, Ltd. Apparatus for removing waveform distortion from a video signal
KR0141579B1 (ko) * 1991-12-11 1998-06-15 강진구 고스트제거장치 및 방법
KR970000767B1 (ko) * 1994-01-18 1997-01-18 대우전자 주식회사 블라인드 등화기
JP4682448B2 (ja) * 2001-05-25 2011-05-11 株式会社豊田中央研究所 受信装置
JP4303760B2 (ja) 2007-02-16 2009-07-29 富士通株式会社 Ad変換制御装置、光受信装置および光受信方法
CN101965698B (zh) * 2009-03-27 2014-11-05 富士通株式会社 色散均衡装置和方法以及数字相干光接收机
US8929750B2 (en) * 2009-05-18 2015-01-06 Nippon Telegraph And Telephone Corporation Signal generating circuit, optical signal transmitting apparatus, signal receiving circuit, method for establishing optical signal synchronization, and optical signal synchronization system
JP5444877B2 (ja) * 2009-06-24 2014-03-19 富士通株式会社 デジタルコヒーレント受信器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133219A (ja) * 1989-10-19 1991-06-06 Fujitsu Ltd 高安定性エコーキャンセラ
JPH04196771A (ja) * 1990-11-28 1992-07-16 Hitachi Ltd 波形等化装置
JPH05252000A (ja) * 1992-03-05 1993-09-28 Hitachi Ltd 信号処理装置
JP2010057016A (ja) * 2008-08-29 2010-03-11 Fujitsu Ltd 光受信機の電力供給制御方法、並びに、デジタル信号処理回路および光受信機
JP2011171984A (ja) * 2010-02-18 2011-09-01 Nec Corp 光受信機、光通信システム及び等化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530974A (ja) * 2016-03-14 2018-10-18 三菱電機株式会社 光信号を復号する方法、並びに光信号を受信及び復号する受信機

Also Published As

Publication number Publication date
US9385766B2 (en) 2016-07-05
JPWO2013128783A1 (ja) 2015-07-30
US20150333783A1 (en) 2015-11-19
JP6176238B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6176238B2 (ja) デジタル信号処理装置、受信装置、及び信号送受信システム
CN110337788B (zh) 光传输特性估计方法、光传输特性补偿方法、光传输特性估计系统及光传输特性补偿系统
JP5102738B2 (ja) Iqミスマッチ補正回路
JP6206487B2 (ja) 信号処理装置及び信号処理方法
WO2017217217A1 (ja) 伝送特性補償装置、伝送特性補償方法及び通信装置
US10396851B2 (en) Equalization processing circuit, digital receiver, signal transmitting/receiving system, equalization processing method, and digital receiving method
JP5965356B2 (ja) 信号処理システム、及び信号処理方法
US20160261398A1 (en) Clock Recovery Method and Device
WO2021199317A1 (ja) 光伝送システム及び特性推定方法
WO2020179726A1 (ja) 光受信装置及び係数最適化方法
WO2014155775A1 (ja) 信号処理装置、光通信システム、及び信号処理方法
US10985845B2 (en) Adaptive equalization filter and signal processing device
JP6355465B2 (ja) 光受信器、送受信装置、光通信システムおよび波形歪補償方法
US9106326B2 (en) Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus
JP5109886B2 (ja) 群遅延特性補償装置及び群遅延特性補償方法
JP4362246B2 (ja) ダイバーシティ受信用回り込みキャンセル装置及び中継システム
US10623055B2 (en) Reception apparatus, transmission apparatus, and communication system
JP2016208417A (ja) 光受信装置
KR100311522B1 (ko) 디지털 티브이 중계기에서의 왜곡 신호 보상 방법 및 장치
JP5068230B2 (ja) Ofdmデジタル信号等化装置、等化方法及び中継装置
JP2010177940A (ja) Ofdm通信装置及びサブキャリアの信号レベルの補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14381223

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13755336

Country of ref document: EP

Kind code of ref document: A1