WO2015098753A1 - ロボット制御システム - Google Patents

ロボット制御システム Download PDF

Info

Publication number
WO2015098753A1
WO2015098753A1 PCT/JP2014/083716 JP2014083716W WO2015098753A1 WO 2015098753 A1 WO2015098753 A1 WO 2015098753A1 JP 2014083716 W JP2014083716 W JP 2014083716W WO 2015098753 A1 WO2015098753 A1 WO 2015098753A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor
control system
control
servo
Prior art date
Application number
PCT/JP2014/083716
Other languages
English (en)
French (fr)
Inventor
毅 田頭
宗藤 康治
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP14874313.1A priority Critical patent/EP3090841A4/en
Priority to CN201480071012.1A priority patent/CN106103008B/zh
Priority to KR1020187030827A priority patent/KR102239951B1/ko
Priority to KR1020167020267A priority patent/KR20160119078A/ko
Priority to US15/108,497 priority patent/US9979327B2/en
Publication of WO2015098753A1 publication Critical patent/WO2015098753A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40462Constant consumed energy, regenerate acceleration energy during deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41294Dc-to-ac converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller

Definitions

  • the present invention relates to a robot control system for controlling a robot provided with a servo motor.
  • Patent Document 1 a system that combines a power regeneration function for regenerating power
  • the regenerative energy generated when the servo motor connected to the rotating shaft of the movable part such as a robot arm is decelerated is normally reduced when the servo motor that drives the rotating shaft of the movable part such as a machine tool is decelerated. Less than the regenerative energy produced. For this reason, when the regenerative energy is expected to increase as the operation load factor of the robot increases, it is common to enhance the resistance regenerative function rather than adding a power regeneration function.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a robot control system capable of suppressing an increase in development cost and adding a power regeneration function.
  • a robot control system includes a converter for converting an alternating current from an alternating current power source into a direct current, and an inverter for converting the direct current power supplied from the converter into an alternating current power.
  • a servo control device for controlling the drive of the servo motor based on a signal from a motor sensor attached to the servo motor, and a resistance regeneration circuit for consuming regenerative energy generated in the servo motor.
  • the servo control device includes a plurality of motor control units for enabling control of the plurality of servo motors, and a plurality of control port units corresponding to the plurality of motor control units. At least one of the motor control units has a power regeneration control function unit for controlling a power regeneration circuit, and Regenerative control function unit and the is configured to be able to switch between a control function unit of the servo motor, characterized in that.
  • all of the plurality of motor control units have the power regeneration control function unit.
  • the power regeneration circuit includes an inverter having a common configuration with the inverter for the servo motor.
  • the power regeneration circuit further includes the power regeneration circuit.
  • the power regeneration circuit includes a reactor connected to the AC power source, and a primary voltage sensor unit connected to a wiring connecting the reactor and the AC power source for detecting a primary voltage.
  • a reactor connected to the AC power source
  • a primary voltage sensor unit connected to a wiring connecting the reactor and the AC power source for detecting a primary voltage.
  • the inverter includes a plurality of rectifier elements and a plurality of switching elements connected in parallel to each of the plurality of rectifier elements.
  • FIG. 1 is a block diagram showing a robot control system according to an embodiment of the present invention.
  • the block diagram which showed an example of the conventional robot control system.
  • an alternating current from a three-phase alternating current power supply 2 is supplied to a converter 4 having a plurality (six in this example) of diodes (rectifier elements) 3. Current is converted to direct current. The direct current generated by the converter 4 is supplied to a plurality (N in this example) of inverters (DC-AC switching devices) 5 (5A, 5N).
  • Each inverter 5 includes a plurality (six in this example) of diodes 6 and a plurality (six in this example) of switching elements 7 connected in parallel to each of the plurality of diodes 6.
  • Each inverter 5 converts the DC power supplied from the converter 4 into AC power and supplies it to each servo motor 8 (8A, 8N).
  • Each servo motor 8 is provided with a motor sensor (encoder) 9 (9A, 9N).
  • a resistance regeneration circuit 10 is provided between the converter 4 and the inverter 5.
  • the resistance regeneration circuit 10 is configured by connecting a regeneration resistor 11 and a switching element 12 in series.
  • the robot control system 1 further includes a servo control device (servo board) 13 for controlling the drive of the servo motor 8.
  • the servo control device 13 includes a plurality (N in this example) of motor control units 14 (14A, 14N) for controlling each of the plurality of servo motors 8 and a plurality of (this book corresponding to the plurality of motor control units 14).
  • the control port unit 15 (15A, 15N) is provided.
  • Each motor control unit 14 controls driving of each servo motor 8 based on a signal from each motor sensor 9 attached to each servo motor 8.
  • Each of the plurality of motor control units 14 includes a power regeneration control function unit 16 (16A, 16N) for controlling the power regeneration circuit, and also includes a power regeneration control function unit 16 and a servo motor control function unit 17 ( 17A, 17N) can be switched. Switching between the power regeneration control function unit 16 and the control function unit 17 of the servo motor 8 may be performed by changing the setting or by automatic detection.
  • the connector 18N of the N-axis servo motor 9N is connected to the connector of the N-axis inverter 5N.
  • the N-axis inverter 5N is connected to the PWM port 20N of the N-axis control port unit 15N.
  • the connector 21N of the motor sensor 9N attached to the N-axis servomotor 8N is connected to the sensor communication port 22N of the N-axis control port portion 14N via the sensor communication wiring 23N.
  • the reactor 24 is connected to the three-phase AC power source 2 and the reactor A primary voltage sensor unit (phase detection unit) 26 for detecting the primary voltage is provided on the wiring 25 that connects 24 and the three-phase AC power source 2.
  • the connector 27 of the primary voltage sensor unit 26 is connected to the sensor communication port 22N of the N-axis control port unit 14N. Further, the connector 28 of the reactor 24 is connected to the connector 19N of the N-axis inverter 5N.
  • the inverter 5N for the N-axis servomotor 8N has the same configuration as the inverter constituting the power regeneration circuit, and both can be used together.
  • the communication format (protocol) for motor control (encoder) and the communication format (protocol) for power regeneration (primary voltage sensor unit) are standardized.
  • control function unit 17N of the N-axis servomotor 8N can be switched to the power regeneration function unit 16N by setting change or automatic detection. .
  • the N-axis inverter 5N when the level of the PN smoothing capacitor 29 provided between the resistance regeneration circuit 10 and the inverter 5 is below a predetermined value, the N-axis inverter 5N, When the power regeneration function by the power regeneration circuit including the reactor 24 and the primary voltage sensor unit 26 is activated and the level of the PN smoothing capacitor 29 exceeds a predetermined value, the regenerative energy is consumed in the resistance regeneration circuit 10.
  • the power regeneration control function unit 16 is standardly mounted on the servo control device 13 that controls the drive of the servo motor 8, and the servo control device 13 is preliminarily installed.
  • One of a plurality of prepared control ports 15 can be diverted to switch between using the port as a motor control port or a power regeneration port by a setting switching or automatic discrimination function, so that it can be selected as appropriate. Therefore, even when a power regeneration function is added according to the user's request, it is not necessary to newly provide a control unit for power regeneration control. Thereby, the increase in the development cost due to the addition of the power regeneration function can be suppressed.
  • the power regeneration function can be provided by using the inverter 5 for robot control, it is not necessary to newly develop a power regeneration inverter, and the development cost increases due to the addition of the power regeneration function. Further suppression can be achieved.
  • the motor control unit 14 used for power regeneration is not limited to the N-axis.
  • the motor control unit 14A for the first axis can be used for power regeneration, and in this case, the PWM port 20A and the sensor communication port 22A of the control port 15A for the first axis are used for power regeneration. Used for.
  • FIG. 2 shows a configuration when the regenerative function is enhanced in the conventional robot control system.
  • the motor control unit 102 of the servo control device 101 does not have a power regeneration control function. Therefore, the regenerative resistor 103 is added to the resistance regenerative circuit 10 in order to cope with an increase in regenerative energy. In other words, an additional regenerative resistor 103 is provided in parallel with the standard regenerative resistor 11.
  • the above-described conventional method not only has difficulty in dealing with a large increase in regenerative energy, but also increases the amount of regenerative energy consumed, and has a problem from the viewpoint of effective use of energy.
  • the power regeneration function can be easily added as described above, it is not necessary to add a regenerative resistor, and the energy can be effectively used. it can.
  • Robot control system 2 Three-phase AC power supply 3, 6 Diode (rectifier element) 4 Converter 5, 5A, 5N Inverter 7, 12 Switching element 8, 8A, 8N Servo motor 9, 9A, 9N Motor sensor (encoder) DESCRIPTION OF SYMBOLS 10 Resistance regeneration circuit 11 Regenerative resistor 13 Servo control device 14, 14A, 14N Motor control part 15, 15A, 15N Control port part 16, 16A, 16N Power regeneration control function part 17, 17A, 17N Servo motor control function part 18N Servo Motor connector 19N Inverter connector 20A, 20N PWM port 21N Motor sensor connector 22A, 22N Sensor communication port 23N Sensor communication wiring 24 Reactor 25 Reactor and wiring to connect three-phase AC power supply 26 Primary voltage sensor (phase Detection unit) 27 Primary voltage sensor connector 28 Reactor connector 29 Smoothing capacitor

Abstract

 本システムは、交流電流を直流電流に変換するコンバータ(4)と、コンバータ(4)から供給された直流電力を交流電力に変換するインバータ(5)と、サーボモータ(8)の駆動を制御するサーボ制御装置(13)と、回生エネルギーを消費する抵抗回生回路(10)とを備える。サーボ制御装置(13)は、複数のサーボモータ(8)を制御可能とする複数のモータ制御部(14)と、複数のモータ制御部(14)に対応する複数の制御ポート部(15)とを有する。複数のモータ制御部(14)のうちの少なくとも1つが、電源回生回路を制御する電源回生制御機能部(16)と、サーボモータ(8)の制御機能部(17)とを切替え可能に構成されている。開発コストの高騰を抑制し、電源回生機能を付加できるロボット制御システムを提供できる。

Description

ロボット制御システム
 本発明は、サーボモータを備えたロボットを制御するためのロボット制御システムに関する。
 従来、工作機械などにおいては、その可動部の回転軸を駆動するサーボモータの減速時に生じる回生エネルギーを処理するために、回生抵抗において回生エネルギーを消費する抵抗回生機能と、回生エネルギーを交流電源側に回生する電源回生機能とを兼備したシステムが知られている(特許文献1)。
 一方、産業用ロボットにおいては、ロボットアーム等の可動部の回転軸に接続されたサーボモータの減速時に生じる回生エネルギーは、通常、工作機械などの可動部の回転軸を駆動するサーボモータの減速時に生じる回生エネルギーよりも小さい。このため、ロボットの動作負荷率の上昇に伴って回生エネルギーが増加することが予想される場合、電源回生機能を追加するよりも、抵抗回生機能を増強することが一般的であった。
 しかしながら、産業用ロボットにおいても、極めて高い動作負荷率(起動・停止を頻繁に繰り返す)である動作を行う場合には、サーボモータにおいて発生する回生エネルギーが非常に大きくなるので、回生抵抗によって回生エネルギーを消費する抵抗回生機能に加えて、電力を電源に回生する電源回生機能を備えることが望ましい。
特開2011-101473号公報 特開2013-202762号公報
 ところで、産業用ロボットにおいて、ユーザーが要求する作業内容に応じて、必要な機能を追加、削除する場合、ロボット本体を駆動する基本的な要素をユーザー毎に変更する必要があり、開発コストが増大してしまう。
 産業用ロボットに電源回生機能を追加するとした場合も、この例外では無く、ロボット制御システムに電源回生機能を付加するために、電源回生専用の制御部を設計してロボット制御システムに組み込む必要があり、開発コストが高騰するという問題がある。
 本発明は、上述した従来技術の問題点に鑑みてなされたものであって、開発コストの高騰を抑制し、電源回生機能を付加することができるロボット制御システムを提供することを目的とする。
 上記課題を解決するために、本発明によるロボット制御システムは、交流電源からの交流電流を直流電流に変換するためのコンバータと、前記コンバータから供給された直流電力を交流電力に変換するためのインバータと、サーボモータに付設されたモータセンサからの信号に基づいて前記サーボモータの駆動を制御するためのサーボ制御装置と、前記サーボモータにおいて発生した回生エネルギーを消費するための抵抗回生回路と、を備え、前記サーボ制御装置は、複数の前記サーボモータを制御可能とするための複数のモータ制御部と、前記複数のモータ制御部に対応する複数の制御ポート部と、を有し、前記複数のモータ制御部のうちの少なくとも1つが、電源回生回路を制御するための電源回生制御機能部を有すると共に、前記電源回生制御機能部と前記サーボモータの制御機能部とを切替え可能に構成されている、ことを特徴とする。
 また、好ましくは、複数の前記モータ制御部のすべてが、前記電源回生制御機能部を有する。
 また、好ましくは、前記電源回生回路は、前記サーボモータ用の前記インバータと共通の構成を有するインバータを含む。
 また、好ましくは、前記電源回生回路をさらに備える。
 また、好ましくは、前記電源回生回路は、前記交流電源に接続されたリアクトルと、前記リアクトルと前記交流電源とを接続する配線に接続され、一次電圧を検出するための一次電圧センサ部と、を有する。
 また、好ましくは、前記インバータは、複数の整流素子と、前記複数の整流素子のそれぞれに並列に接続された複数のスイッチング素子を有する。
 本発明によれば、開発コストの高騰を抑制し、電源回生機能を付加できるロボット制御システムを提供することができる。
本発明の一実施形態によるロボット制御システムを示したブロック図。 従来のロボット制御システムの一例を示したブロック図。
 以下、本発明の一実施形態によるロボット制御システムについて、図1を参照して説明する。
 図1に示したロボット制御システム1においては、三相交流電源2からの交流電流が、複数(本例では6個)のダイオード(整流素子)3を有するコンバータ4に供給され、コンバータ4において交流電流が直流電流に変換される。コンバータ4で生成された直流電流は、複数(本例ではN個)のインバータ(直流-交流切替装置)5(5A、5N)に供給される。
 インバータ5の設置数Nは、ロボットの駆動軸および外部軸の数に応じて決まる。例えば、6軸多関節ロボットが3つの外部軸を有する場合、インバータ5の設置数Nは6+3=9となる。
 各インバータ5は、複数(本例では6個)のダイオード6と、複数のダイオード6のそれぞれに並列に接続された複数(本例では6個)のスイッチング素子7を有する。各インバータ5は、コンバータ4から供給された直流電力を交流電力に変換し、各サーボモータ8(8A、8N)に供給する。各サーボモータ8には、各モータセンサ(エンコーダ)9(9A、9N)が付設されている。
 コンバータ4とインバータ5との間には、抵抗回生回路10が設けられている。抵抗回生回路10は、回生抵抗11とスイッチング素子12とを直列に接続して構成されている。
 本実施形態によるロボット制御システム1は、さらに、サーボモータ8の駆動を制御するためのサーボ制御装置(サーボボード)13を備えている。サーボ制御装置13は、複数のサーボモータ8のそれぞれを制御するための複数(本例ではN個)のモータ制御部14(14A、14N)と、複数のモータ制御部14に対応する複数(本例ではN個)の制御ポート部15(15A、15N)とを有する。各モータ制御部14は、各サーボモータ8に付設された各モータセンサ9からの信号に基づいて各サーボモータ8の駆動を制御する。
 そして、複数のモータ制御部14のそれぞれが、電源回生回路を制御するための電源回生制御機能部16(16A、16N)を含むと共に、電源回生制御機能部16とサーボモータの制御機能部17(17A、17N)とを切替え可能に構成されている。電源回生制御機能部16とサーボモータ8の制御機能部17との切り替えは、設定を変更することで行っても良いし、自動検出で行うこともできる。
 以下、本実施形態によるロボット制御システム1において、N軸(外部軸)用のモータ制御部14Nを電源回生に使用する例について説明する。
 まず、N軸用のモータ制御部14Nを、電源回生ではなく、N軸のサーボモータ8Nの駆動制御に用いる場合には、N軸のサーボモータ9Nのコネクタ18NをN軸用のインバータ5Nのコネクタ19Nに接続すると共に、N軸用のインバータ5NをN軸用の制御ポート部15NのPWM用ポート20Nに接続する。また、N軸のサーボモータ8Nに付設されたモータセンサ9Nのコネクタ21Nを、N軸用の制御ポート部14Nのセンサ通信用ポート22Nにセンサ通信用配線23Nを介して接続する。
 これに対して、N軸用のモータ制御部14Nを、N軸のサーボモータ8Nの駆動制御ではなく、電源回生に使用する場合には、三相交流電源2にリアクトル24を接続すると共に、リアクトル24と三相交流電源2とを接続する配線25に、一次電圧を検出するための一次電圧センサ部(位相検出部)26を設ける。
 そして、一次電圧センサ部26のコネクタ27を、N軸用の制御ポート部14Nのセンサ通信用ポート22Nに接続する。さらに、リアクトル24のコネクタ28を、N軸用のインバータ5Nのコネクタ19Nに接続する。ここで、N軸のサーボモータ8N用のインバータ5Nは、電源回生回路を構成するインバータと共通の構成を備えており、両者は兼用可能である。
 なお、モータ制御(エンコーダ)用の通信フォーマット(プロトコル)と、電源回生(一次電圧センサ部)用の通信フォーマット(プロトコル)とが共通化されている。
 このようにN軸用のモータ制御部14Nを電源回生に使用する際には、設定の変更、或いは自動検出により、N軸のサーボモータ8Nの制御機能部17Nから電源回生機能部16Nに切り替えられる。
 上記実施形態によるロボット制御システム1においては、抵抗回生回路10とインバータ5との間に設けられたPNの平滑コンデンサー29のレベルが所定値を下回っている場合には、N軸用のインバータ5N、リアクトル24、および一次電圧センサ部26を含む電源回生回路による電源回生機能が働き、PNの平滑コンデンサー29のレベルが所定値以上になると、抵抗回生回路10において回生エネルギーが消費される。
 以上述べたように、本実施形態によるロボット制御システム1によれば、サーボモータ8の駆動を制御するサーボ制御装置13に電源回生制御機能部16を標準的に実装し、サーボ制御装置13に予め用意された複数の制御ポート15のうちの1つを流用して、設定の切り換えや自動判別機能により、当該ポートをモータ制御ポートに用いるか或いは電源回生ポートに用いるかを切り換え、適宜選択できるようにしたので、ユーザーの要求に応じて電源回生機能を付加する場合でも、電源回生制御用の制御部を新たに設ける必要が無い。これにより、電源回生機能の追加による開発コストの高騰を抑制することができる。
 また、ロボット制御用のインバータ5を流用して電源回生機能を提供することができるので、電源回生用のインバータを別途新規に開発する必要が無く、電源回生機能の追加に伴う開発コストの高騰をさらに抑制することができる。
 なお、上述した例においては、N軸用のモータ制御部14Nを電源回生に使用する場合について説明したが、電源回生に使用するモータ制御部14はN軸用に限られない。例えば、第1軸用のモータ制御部14Aを電源回生に使用することも可能であり、その場合には、第1軸用の制御ポート15AのPWM用ポート20Aおよびセンサ通信用ポート22Aが電源回生に使用される。
 図2は、従来のロボット制御システムにおいて回生機能を強化した場合の構成を示している。
 図2に示したように従来のロボット制御システム100においては、そのサーボ制御装置101のモータ制御部102が電源回生制御機能を備えていない。そのため、回生エネルギーの増大に対応するために、抵抗回生回路10に回生抵抗103を追加していた。すなわち、標準装備の回生抵抗11に対して並列に追加の回生抵抗103を設けていた。
 上述の従来の方法では、回生エネルギーの大幅な増大に対処し難いばかりで無く、回生エネルギーの消費量が増えることになり、エネルギーの有効利用という観点からも問題があった。
 これに対して本実施形態によるロボット制御システム1によれば、上記の通り電源回生機能を容易に付加することができるので、回生抵抗の追加による対応が不要となり、エネルギーの有効利用を図ることができる。
 1 ロボット制御システム
 2 三相交流電源
 3、6 ダイオード(整流素子)
 4 コンバータ
 5、5A、5N インバータ
 7、12 スイッチング素子
 8、8A、8N サーボモータ
 9、9A、9N モータセンサ(エンコーダ)
 10 抵抗回生回路
 11 回生抵抗
 13 サーボ制御装置
 14、14A、14N モータ制御部
 15、15A、15N 制御ポート部
 16、16A、16N 電源回生制御機能部
 17、17A、17N サーボモータの制御機能部
 18N サーボモータのコネクタ
 19N インバータのコネクタ
 20A、20N PWM用ポート
 21N モータセンサのコネクタ
 22A、22N センサ通信用ポート
 23N センサ通信用配線
 24 リアクトル
 25 リアクトルと三相交流電源を接続する配線
 26 一次電圧センサ部(位相検出部)
 27 一次電圧センサ部のコネクタ
 28 リアクトルのコネクタ
 29 平滑コンデンサー
 

Claims (6)

  1.  交流電源からの交流電流を直流電流に変換するためのコンバータと、
     前記コンバータから供給された直流電力を交流電力に変換するためのインバータと、
     サーボモータに付設されたモータセンサからの信号に基づいて前記サーボモータの駆動を制御するためのサーボ制御装置と、
     前記サーボモータにおいて発生した回生エネルギーを消費するための抵抗回生回路と、を備え、
     前記サーボ制御装置は、複数の前記サーボモータを制御可能とするための複数のモータ制御部と、前記複数のモータ制御部に対応する複数の制御ポート部と、を有し、
     前記複数のモータ制御部のうちの少なくとも1つが、電源回生回路を制御するための電源回生制御機能部を有すると共に、前記電源回生制御機能部と前記サーボモータの制御機能部とを切替え可能に構成されている、ロボット制御システム。
  2.  複数の前記モータ制御部のすべてが、前記電源回生制御機能部を有する、請求項1記載のロボット制御システム。
  3.  前記電源回生回路は、前記サーボモータ用の前記インバータと共通の構成を有するインバータを含む、請求項1または2に記載のロボット制御システム。
  4.  前記電源回生回路をさらに備えた請求項1乃至3のいずれか一項に記載のロボット制御システム。
  5.  前記電源回生回路は、前記交流電源に接続されたリアクトルと、前記リアクトルと前記交流電源とを接続する配線に接続され、一次電圧を検出するための一次電圧センサ部と、を有する、請求項1乃至4のいずれか一項に記載のロボット制御システム。
  6.  前記インバータは、複数の整流素子と、前記複数の整流素子のそれぞれに並列に接続された複数のスイッチング素子を有する、請求項1乃至5のいずれか一項に記載のロボット制御システム。
     
PCT/JP2014/083716 2013-12-26 2014-12-19 ロボット制御システム WO2015098753A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14874313.1A EP3090841A4 (en) 2013-12-26 2014-12-19 Robot control system
CN201480071012.1A CN106103008B (zh) 2013-12-26 2014-12-19 机器人控制系统
KR1020187030827A KR102239951B1 (ko) 2013-12-26 2014-12-19 로봇 제어 시스템
KR1020167020267A KR20160119078A (ko) 2013-12-26 2014-12-19 로봇 제어 시스템
US15/108,497 US9979327B2 (en) 2013-12-26 2014-12-19 Robot control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-270299 2013-12-26
JP2013270299A JP5813746B2 (ja) 2013-12-26 2013-12-26 ロボット制御システム

Publications (1)

Publication Number Publication Date
WO2015098753A1 true WO2015098753A1 (ja) 2015-07-02

Family

ID=53478610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083716 WO2015098753A1 (ja) 2013-12-26 2014-12-19 ロボット制御システム

Country Status (7)

Country Link
US (1) US9979327B2 (ja)
EP (1) EP3090841A4 (ja)
JP (1) JP5813746B2 (ja)
KR (2) KR20160119078A (ja)
CN (1) CN106103008B (ja)
TW (1) TWI577514B (ja)
WO (1) WO2015098753A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800188B2 (en) * 2015-09-15 2017-10-24 Regal Beloit America, Inc. Hybrid drive circuit for variable speed induction motor
US10193488B2 (en) * 2016-01-14 2019-01-29 Regal Beloit America, Inc. Methods and systems for reducing conducted electromagnetic interference
JP6998115B2 (ja) * 2017-02-27 2022-01-18 川崎重工業株式会社 ロボットコントローラ
DE102017009878A1 (de) * 2017-10-23 2019-04-25 Kuka Deutschland Gmbh Steuerungssystem und Verfahren zum Betreiben eines elektrischen Motors
JP7152238B2 (ja) * 2018-10-03 2022-10-12 川崎重工業株式会社 ロボット制御装置
JP6865262B2 (ja) * 2018-12-26 2021-04-28 川崎重工業株式会社 ロボットシステムの制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191979A (ja) * 1984-03-11 1985-09-30 三菱電機株式会社 エレベ−タ用電動機制御装置
JPH11289793A (ja) * 1998-03-31 1999-10-19 Sumitomo Heavy Ind Ltd 高調波抑制型電源回生コンバータを備えた電動射出成形機
JP2000201492A (ja) * 1998-12-28 2000-07-18 Ishikawajima Transport Machinery Co Ltd 電動機の駆動方法及び装置
JP2011101473A (ja) 2009-11-04 2011-05-19 Sanyo Denki Co Ltd モータ駆動用電源装置
JP2011161612A (ja) * 2010-02-15 2011-08-25 Denso Wave Inc ロボットシステム
JP2013102611A (ja) * 2011-11-08 2013-05-23 Fanuc Ltd 産業用ロボットの可動部の回転軸に接続されたサーボモータを駆動するサーボモータ駆動装置
JP2013202762A (ja) 2012-03-29 2013-10-07 Denso Wave Inc ロボットシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067001A (zh) * 1991-05-20 1992-12-16 中国航空航天工具协会 平面磨床用组合导磁夹具元件系统及其加工检测方法
JPH08216075A (ja) * 1995-02-16 1996-08-27 Toshiba Corp マニピュレータ制御装置
EP0881044B1 (en) * 1995-09-11 2006-06-07 Kabushiki Kaisha Yaskawa Denki Robot controller
CN1601885A (zh) * 2003-09-25 2005-03-30 乐金电子(天津)电器有限公司 Bldc电机的控制旋转速度用的f/g脉冲转换装置
CN101004932A (zh) * 2007-01-12 2007-07-25 明基电通信息技术有限公司 主轴马达速度反馈信号侦测装置与方法及其光驱
KR20110039972A (ko) * 2009-10-13 2011-04-20 (주)인텍에프에이 기판 이송용 로봇 제어 시스템
CN102424075B (zh) * 2011-11-22 2013-01-23 北京邮电大学 基于平衡杆控制的刚柔耦合走钢丝机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191979A (ja) * 1984-03-11 1985-09-30 三菱電機株式会社 エレベ−タ用電動機制御装置
JPH11289793A (ja) * 1998-03-31 1999-10-19 Sumitomo Heavy Ind Ltd 高調波抑制型電源回生コンバータを備えた電動射出成形機
JP2000201492A (ja) * 1998-12-28 2000-07-18 Ishikawajima Transport Machinery Co Ltd 電動機の駆動方法及び装置
JP2011101473A (ja) 2009-11-04 2011-05-19 Sanyo Denki Co Ltd モータ駆動用電源装置
JP2011161612A (ja) * 2010-02-15 2011-08-25 Denso Wave Inc ロボットシステム
JP2013102611A (ja) * 2011-11-08 2013-05-23 Fanuc Ltd 産業用ロボットの可動部の回転軸に接続されたサーボモータを駆動するサーボモータ駆動装置
JP2013202762A (ja) 2012-03-29 2013-10-07 Denso Wave Inc ロボットシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3090841A4 *

Also Published As

Publication number Publication date
KR20180120779A (ko) 2018-11-06
JP2015123554A (ja) 2015-07-06
CN106103008A (zh) 2016-11-09
TW201538292A (zh) 2015-10-16
EP3090841A4 (en) 2017-12-13
US20160329841A1 (en) 2016-11-10
KR20160119078A (ko) 2016-10-12
JP5813746B2 (ja) 2015-11-17
EP3090841A1 (en) 2016-11-09
US9979327B2 (en) 2018-05-22
KR102239951B1 (ko) 2021-04-13
TWI577514B (zh) 2017-04-11
CN106103008B (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2015098753A1 (ja) ロボット制御システム
JP6169203B1 (ja) 電動機制御装置および電動機制御方法
JP5260718B2 (ja) 産業用ロボットの可動部の回転軸に接続されたサーボモータを駆動するサーボモータ駆動装置
US9048733B2 (en) Motor driving device having reactive current instruction generating unit
JP2013115994A (ja) 停電の有無を判定する停電判定部を有するモータ駆動装置
JP2015062970A (ja) 多軸ロボットの動力遮断装置及び多軸ロボット
WO2019239628A1 (ja) コンバータ及びモータ制御装置
US9361260B2 (en) Master device that changes data communication speed when preparation to drive motor is completed
JP2013223302A (ja) 電源回生及び停電時の同期モータの停止を行うために同期モータを制御する同期モータ制御装置
JP6619404B2 (ja) 複数巻線バッファ用サーボモータを有するモータ駆動システム
US9588508B2 (en) Master device that changes data communication speed in accordance with the number of slave devices
JP5363598B2 (ja) 直流交流変換装置を接続可能なモータ駆動制御装置
US11128252B2 (en) Motor drive device
JP6400617B2 (ja) トルク指令制限部を有するモータ制御装置
JP6503013B2 (ja) 蓄電装置の異常検出部を有するモータ駆動システム
JP6608096B1 (ja) コンバータ及びモータ制御装置
JP6641921B2 (ja) ロボット制御装置
WO2020208980A1 (ja) モータ駆動装置及びサーボdc給電システム
JP6034757B2 (ja) 直流交流変換装置を接続可能なモータ駆動制御装置
JP2023150857A (ja) 制御装置およびロボットシステム
JP2021097476A (ja) 保護機構を有するモータ駆動装置
JP2021097473A (ja) 保護機構を有するモータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15108497

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014874313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874313

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167020267

Country of ref document: KR

Kind code of ref document: A