WO2015096658A1 - 芳香胺化合物、发光元件材料及发光元件 - Google Patents
芳香胺化合物、发光元件材料及发光元件 Download PDFInfo
- Publication number
- WO2015096658A1 WO2015096658A1 PCT/CN2014/094227 CN2014094227W WO2015096658A1 WO 2015096658 A1 WO2015096658 A1 WO 2015096658A1 CN 2014094227 W CN2014094227 W CN 2014094227W WO 2015096658 A1 WO2015096658 A1 WO 2015096658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- light
- emitting element
- aryl
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 93
- -1 Aromatic amine compound Chemical class 0.000 title claims abstract description 53
- 239000010410 layer Substances 0.000 claims description 107
- 150000001875 compounds Chemical class 0.000 claims description 96
- 125000003118 aryl group Chemical group 0.000 claims description 37
- 125000001072 heteroaryl group Chemical group 0.000 claims description 33
- 125000001424 substituent group Chemical group 0.000 claims description 33
- 125000005013 aryl ether group Chemical group 0.000 claims description 17
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 16
- 125000003545 alkoxy group Chemical group 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 15
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 15
- 125000000623 heterocyclic group Chemical group 0.000 claims description 15
- 125000003282 alkyl amino group Chemical group 0.000 claims description 14
- 125000000304 alkynyl group Chemical group 0.000 claims description 14
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 14
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 14
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 claims description 14
- 125000004414 alkyl thio group Chemical group 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 150000002431 hydrogen Chemical group 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 12
- 125000000732 arylene group Chemical group 0.000 claims description 12
- 229910052805 deuterium Inorganic materials 0.000 claims description 12
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 239000012044 organic layer Substances 0.000 claims description 8
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 125000004434 sulfur atom Chemical group 0.000 claims description 8
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 7
- 125000005549 heteroarylene group Chemical group 0.000 claims description 6
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims 6
- 238000000605 extraction Methods 0.000 abstract description 12
- 238000005286 illumination Methods 0.000 abstract description 2
- 239000004973 liquid crystal related substance Substances 0.000 abstract 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 50
- 238000000034 method Methods 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 23
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 22
- 229930192474 thiophene Natural products 0.000 description 22
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000002019 doping agent Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 230000005525 hole transport Effects 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 238000005481 NMR spectroscopy Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 125000000101 thioether group Chemical group 0.000 description 10
- 125000003342 alkenyl group Chemical group 0.000 description 9
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 125000000168 pyrrolyl group Chemical group 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 150000001716 carbazoles Chemical class 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 4
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005566 electron beam evaporation Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- JNYYORRROUFDBG-UHFFFAOYSA-N n-phenylpyridin-3-amine Chemical compound C=1C=CN=CC=1NC1=CC=CC=C1 JNYYORRROUFDBG-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 4
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 3
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 3
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 3
- 125000005605 benzo group Chemical group 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- HVNYGURPLBKPOT-UHFFFAOYSA-N n-(3-phenylphenyl)pyridin-3-amine Chemical compound C=1C=CC(C=2C=CC=CC=2)=CC=1NC1=CC=CN=C1 HVNYGURPLBKPOT-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 3
- 150000003852 triazoles Chemical class 0.000 description 3
- 125000006749 (C6-C60) aryl group Chemical group 0.000 description 2
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 2
- OXHNLMTVIGZXSG-UHFFFAOYSA-N 1-Methylpyrrole Chemical compound CN1C=CC=C1 OXHNLMTVIGZXSG-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- RDAYIURKTQGFOD-UHFFFAOYSA-N 2,5-bis(4-chlorophenyl)-1-methylpyrrole Chemical compound ClC1=CC=C(C=C1)C=1N(C(=CC=1)C1=CC=C(C=C1)Cl)C RDAYIURKTQGFOD-UHFFFAOYSA-N 0.000 description 2
- OAMKIKJEEIPWSI-UHFFFAOYSA-N 2,5-bis(4-chlorophenyl)thiophene Chemical compound C1=CC(Cl)=CC=C1C1=CC=C(C=2C=CC(Cl)=CC=2)S1 OAMKIKJEEIPWSI-UHFFFAOYSA-N 0.000 description 2
- KBVDUUXRXJTAJC-UHFFFAOYSA-N 2,5-dibromothiophene Chemical compound BrC1=CC=C(Br)S1 KBVDUUXRXJTAJC-UHFFFAOYSA-N 0.000 description 2
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 238000006443 Buchwald-Hartwig cross coupling reaction Methods 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- DTCGTTBBLXFTBU-UHFFFAOYSA-N N-(4-phenylphenyl)pyridin-3-amine Chemical compound C1(=CC=C(C=C1)NC=1C=NC=CC=1)C1=CC=CC=C1 DTCGTTBBLXFTBU-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000006161 Suzuki-Miyaura coupling reaction Methods 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 150000001454 anthracenes Chemical class 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical group C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 150000004826 dibenzofurans Chemical class 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 150000002916 oxazoles Chemical class 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 150000004867 thiadiazoles Chemical class 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N triphenylene Chemical compound C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- UKSZBOKPHAQOMP-SVLSSHOZSA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 UKSZBOKPHAQOMP-SVLSSHOZSA-N 0.000 description 1
- CAYQIZIAYYNFCS-UHFFFAOYSA-N (4-chlorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Cl)C=C1 CAYQIZIAYYNFCS-UHFFFAOYSA-N 0.000 description 1
- 125000006732 (C1-C15) alkyl group Chemical group 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 description 1
- PHZFJRZBZBRNFK-UHFFFAOYSA-N 1,1'-biphenyl;9h-fluorene Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C1=CC=C2CC3=CC=CC=C3C2=C1 PHZFJRZBZBRNFK-UHFFFAOYSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical group C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical group C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 1
- NHDODQWIKUYWMW-UHFFFAOYSA-N 1-bromo-4-chlorobenzene Chemical compound ClC1=CC=C(Br)C=C1 NHDODQWIKUYWMW-UHFFFAOYSA-N 0.000 description 1
- WLODWTPNUWYZKN-UHFFFAOYSA-N 1h-pyrrol-2-ol Chemical compound OC1=CC=CN1 WLODWTPNUWYZKN-UHFFFAOYSA-N 0.000 description 1
- XWIYUCRMWCHYJR-UHFFFAOYSA-N 1h-pyrrolo[3,2-b]pyridine Chemical compound C1=CC=C2NC=CC2=N1 XWIYUCRMWCHYJR-UHFFFAOYSA-N 0.000 description 1
- JFJNVIPVOCESGZ-UHFFFAOYSA-N 2,3-dipyridin-2-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CN=C1C1=CC=CC=N1 JFJNVIPVOCESGZ-UHFFFAOYSA-N 0.000 description 1
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- PIVFHOVVQBCFBX-UHFFFAOYSA-N 2-quinazolin-2-ylquinoxaline Chemical group C1=CC=CC2=NC(C3=NC4=CC=CC=C4C=N3)=CN=C21 PIVFHOVVQBCFBX-UHFFFAOYSA-N 0.000 description 1
- NKHUXLDXYURVLX-UHFFFAOYSA-N 2h-pyrrolo[3,4-c]pyrrole-4,6-dione Chemical class N1C=C2C(=O)NC(=O)C2=C1 NKHUXLDXYURVLX-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical group CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- UDQLIWBWHVOIIF-UHFFFAOYSA-N 3-phenylbenzene-1,2-diamine Chemical compound NC1=CC=CC(C=2C=CC=CC=2)=C1N UDQLIWBWHVOIIF-UHFFFAOYSA-N 0.000 description 1
- MZWDAEVXPZRJTQ-WUXMJOGZSA-N 4-[(e)-(4-fluorophenyl)methylideneamino]-3-methyl-1h-1,2,4-triazole-5-thione Chemical compound CC1=NNC(=S)N1\N=C\C1=CC=C(F)C=C1 MZWDAEVXPZRJTQ-WUXMJOGZSA-N 0.000 description 1
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- CRHRWHRNQKPUPO-UHFFFAOYSA-N 4-n-naphthalen-1-yl-1-n,1-n-bis[4-(n-naphthalen-1-ylanilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 CRHRWHRNQKPUPO-UHFFFAOYSA-N 0.000 description 1
- WXAIEIRYBSKHDP-UHFFFAOYSA-N 4-phenyl-n-(4-phenylphenyl)-n-[4-[4-(4-phenyl-n-(4-phenylphenyl)anilino)phenyl]phenyl]aniline Chemical group C1=CC=CC=C1C1=CC=C(N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 WXAIEIRYBSKHDP-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- PQJUJGAVDBINPI-UHFFFAOYSA-N 9H-thioxanthene Chemical compound C1=CC=C2CC3=CC=CC=C3SC2=C1 PQJUJGAVDBINPI-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 description 1
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- 229910007157 Si(OH)3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000006619 Stille reaction Methods 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- 125000006350 alkyl thio alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000007980 azole derivatives Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- DMVOXQPQNTYEKQ-UHFFFAOYSA-N biphenyl-4-amine Chemical compound C1=CC(N)=CC=C1C1=CC=CC=C1 DMVOXQPQNTYEKQ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical class [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- 150000001907 coumarones Chemical class 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 150000003950 cyclic amides Chemical class 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 1
- ZHXTWWCDMUWMDI-UHFFFAOYSA-N dihydroxyboron Chemical compound O[B]O ZHXTWWCDMUWMDI-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Natural products O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 1
- 235000011957 flavonols Nutrition 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 150000002290 germanium Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DZKVDIRMGRHENL-UHFFFAOYSA-N n-naphthalen-1-ylpyridin-3-amine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CN=C1 DZKVDIRMGRHENL-UHFFFAOYSA-N 0.000 description 1
- DKQSRQLSDPYGCJ-UHFFFAOYSA-N n-phenylpyridin-4-amine Chemical compound C=1C=NC=CC=1NC1=CC=CC=C1 DKQSRQLSDPYGCJ-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 150000004032 porphyrins Chemical group 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000002577 pseudohalo group Chemical group 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- JOZPEVMCAKXSEY-UHFFFAOYSA-N pyrimido[5,4-d]pyrimidine Chemical group N1=CN=CC2=NC=NC=C21 JOZPEVMCAKXSEY-UHFFFAOYSA-N 0.000 description 1
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical class C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 description 1
- PSGFEDCCKNRUJT-UHFFFAOYSA-N quinoline;ruthenium Chemical compound [Ru].N1=CC=CC2=CC=CC=C21 PSGFEDCCKNRUJT-UHFFFAOYSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- QCIWZIYBBNEPKB-UHFFFAOYSA-N tert-butyl(dimethyl)silane Chemical group C[SiH](C)C(C)(C)C QCIWZIYBBNEPKB-UHFFFAOYSA-N 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 125000002827 triflate group Chemical group FC(S(=O)(=O)O*)(F)F 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/12—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
- C07D495/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/655—Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
Definitions
- the present invention relates to an aromatic amine compound for an organic light-emitting device, a light-emitting device material containing the aromatic amine compound, and a light-emitting device, and particularly to an aromatic amine compound, a light-emitting device material, and a light-emitting device for an organic light-emitting device having greatly improved light extraction efficiency.
- the organic light-emitting element is a self-luminous display device, and has characteristics such as light weight, wide viewing angle, low power consumption, and high contrast.
- the principle of light emission of an organic light-emitting element is that light is generated when holes and electrons injected from an electrode return to a ground state via an excited state by recombination in a light-emitting layer.
- This light-emitting element has a feature of being thin and capable of high-intensity light emission at a low driving voltage and capable of multi-color light emission by selecting a light-emitting material, and thus has attracted attention.
- the organic light emitting element may be classified into a bottom emitting organic light emitting element and a top emitting organic light emitting element according to a direction in which light generated by the organic light emitting layer is emitted.
- the bottom emission organic light-emitting element light is incident on the substrate side, a reflective electrode is formed on the upper portion of the organic light-emitting layer, and a transparent electrode is formed on the lower portion of the organic light-emitting layer.
- the organic light emitting element is an active matrix element, a thin film is formed The portion of the transistor is opaque, so the light-emitting area is reduced.
- the transparent electrode is formed on the upper portion of the organic light-emitting layer, and the reflective electrode is formed on the lower portion of the organic light-emitting layer, so that the light is directed in a direction opposite to the substrate side, whereby the light is transmitted.
- the area is increased and the brightness is increased.
- an organic coating layer is formed on the upper translucent metal electrode that transmits light of the light-emitting layer, thereby adjusting the optical interference distance and suppressing the external interference.
- Light reflection and extinction caused by surface plasmon energy movement see Patent Documents 1 to 5).
- Patent Document 2 discloses that a refractive index of 1.7 or more is formed on an upper translucent metal electrode of a top emission organic light-emitting element.
- the organic coating layer increases the luminous efficiency of the red and green light-emitting organic light-emitting elements by about 1.5 times.
- the material of the organic coating layer used is an amine derivative, a quinolol complex or the like.
- Patent Document 4 discloses that a material having an energy gap of less than 3.2 eV affects a blue wavelength and is not suitable for use in an organic coating layer, and an organic coating material used is an amine derivative having a specific chemical structure or the like.
- Patent Document 5 discloses that, in order to realize a blue light-emitting element having a low CIEy value, the refractive index change amount of the organic cover layer material at a wavelength of 430 nm to 460 nm is ⁇ n>0.08, and the organic overcoat material used is a germanium derivative having a specific chemical structure. Things and so on.
- Patent Document 1 WO2001/039554
- Patent Document 2 JP2006-156390
- Patent Document 3 JP2007-103303
- Patent Document 4 JP2006-302878
- Patent Document 5 WO2011/043083.
- an amine derivative having a specific structure having a high refractive index or a material satisfying a specific parameter is used as an organic coating material to improve light extraction efficiency and color purity, but the luminous efficiency has not been solved yet. And the problem of color purity, especially in the case of preparing blue light-emitting elements.
- the present invention provides an aromatic amine compound for improving light extraction efficiency and color purity of an organic light-emitting device, an organic light-emitting device material containing the aromatic amine compound, an organic light-emitting device cover layer material, and an organic light-emitting device.
- the aromatic amine compound provided by the present invention has a thiophene structure, a furan structure or a pyrrole structure, it has excellent film stability and a high refractive index, and can solve the problem of improving light extraction efficiency and improving color purity.
- the aromatic amine compound is specifically represented by the following formula (1).
- X is selected from a sulfur atom, an oxygen atom, or N-R,
- R may be selected from the group consisting of hydrogen, deuterium, an alkyl group which may be substituted, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, and an aromatic group.
- L 1 and L 2 may be the same or different and are respectively selected from an arylene group or a heteroarylene group;
- Ar 1 and Ar 2 may be the same or different and are respectively selected from an aryl group or a heteroaryl group;
- Ar 3 and Ar 4 may be the same or different heteroaryl groups
- R 1 to R 2 may be the same or different and may be independently selected from the group consisting of hydrogen, deuterium, halogen, alkyl group which may be substituted, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group.
- alkylthio group an alkylthio group, an aryl ether group, an aryl sulfide group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group or a silane group. It is also possible to bond with adjacent substituents to form a ring.
- L 1 and L 2 are an arylene group.
- the present invention also provides an organic light-emitting device material comprising a compound represented by the following formula (1).
- X is selected from a sulfur atom, an oxygen atom, or N-R,
- R may be selected from the group consisting of hydrogen, deuterium, alkyl group which may be substituted, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl group One or more of a thioether group, an aryl group, a heteroaryl group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group or a silane group;
- L 1 and L 2 may be the same or different and are respectively selected from an arylene group or a heteroarylene group;
- Ar 1 and Ar 2 may be the same or different and are respectively selected from an aryl group or a heteroaryl group;
- Ar 3 and Ar 4 may be the same or different heteroaryl groups
- R 1 to R 2 may be the same or different and may be independently selected from the group consisting of hydrogen, deuterium, halogen, alkyl group which may be substituted, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group.
- alkylthio group an aryl ether group, an aryl sulfide group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group or a silane group. It is also possible to bond with adjacent substituents to form a ring. From the standpoint of the simplicity of the synthesis and the cost, it is preferred that L 1 and L 2 are an arylene group.
- the present invention provides an organic light-emitting element comprising a substrate, a first electrode, one or more organic layer films including a light-emitting layer, and a second electrode element, wherein the light-emitting element further has a cover layer; An organic material containing the above organic light emitting device material.
- the present invention further provides an organic light-emitting device cover layer material comprising a compound represented by the following formula (1).
- X is selected from a sulfur atom, an oxygen atom, or N-R,
- R may be selected from the group consisting of hydrogen, deuterium, an alkyl group which may be substituted, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, and an aromatic group.
- L 1 and L 2 may be the same or different and are respectively selected from an arylene group or a heteroarylene group;
- Ar 1 and Ar 2 may be the same or different and are respectively selected from an aryl group or a heteroaryl group;
- Ar 3 and Ar 4 may be the same or different heteroaryl groups
- R 1 to R 2 may be the same or different and may be independently selected from the group consisting of hydrogen, deuterium, halogen, alkyl group which may be substituted, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group.
- alkylthio group an alkylthio group, an aryl ether group, an aryl sulfide group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group or a silane group. It is also possible to bond with adjacent substituents to form a ring.
- L 1 and L 2 are an arylene group.
- the invention finally provides an organic light-emitting element comprising a substrate, a first electrode, a layer of an organic layer film including a light-emitting layer, and a second electrode element, the light-emitting element further having a cover layer;
- the organic light emitting device contains the above organic light emitting device cover layer material. Since the aromatic amine compound provided by the present invention has a thiophene structure, a furan structure or a pyrrole structure, it has excellent film stability and a high refractive index, and can solve the problem of improving light extraction efficiency and improving color purity.
- the cover layer material represented by the above formula (1) has a thiophene structure, a furan structure or a pyrrole structure, so has a high glass transition temperature and a steric hindrance effect, thereby having superior film stability, and a thiophene structure, a furan structure or a pyrrole structure.
- the structure can increase the absorption coefficient and obtain a higher attenuation coefficient, so that the film can obtain a higher refractive index in the ultraviolet/visible range.
- Further heteroaryl groups have the property of increasing the polarizability, thereby further increasing the refractive index.
- Ar 3 and Ar 4 are preferably miscellaneous.
- Ar 3 and Ar 4 have an electron-withdrawing nitrogen atom, that is, a nitrogen atom in the heteroaryl group is bonded to an adjacent atom by a double bond, and the red shift of the absorption wavelength can be suppressed while the refractive index becomes high.
- Ar 3 and Ar 4 are a pyridyl group, a quinolyl group, a pyrimidinyl group or a quinazolinylquinoxaline group, and a pyridyl group, a quinolyl group or a pyrimidinyl group is still more preferred.
- the cover layer material used an aromatic amine compound having a high refractive index, thereby obtaining an organic light-emitting element which greatly improved the light-emitting extraction efficiency and had superior color purity.
- the above alkyl group is preferably a C1-C20 alkyl group; further preferably one of a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a sec-butyl group or a t-butyl group; A variety.
- the above alkyl group may have a substituent or may have no substituent.
- the above cycloalkyl group is preferably a C3-C20 cycloalkyl group; more preferably one or more of a cyclopropyl group, a cyclohexyl group, a norbornyl group, or a saturated alicyclic hydrocarbon group such as an adamantyl group.
- the above cycloalkyl group may have a substituent or may have no substituent.
- the heterocyclic group is preferably a C2-C20 heterocyclic group; more preferably one or more of an aliphatic ring having an atom other than carbon in a ring such as a pyran ring, a piperidine ring or a cyclic amide.
- the above heterocyclic group may have a substituent or may have no substituent.
- the above alkenyl group is preferably a C2-C20 alkenyl group; more preferably one or more of an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group or a butadienyl group.
- the above alkenyl group may have a substituent or may have no substituent.
- the above cycloalkenyl group is preferably a C3-C20 cycloalkenyl group; more preferably one or more of an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group; kind.
- the above cycloalkenyl group may have a substituent or may have no substituent.
- the alkynyl group is preferably a C2-C20 alkynyl group; more preferably an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
- the above alkynyl group may have a substituent or may have no substituent.
- the alkoxy group is preferably a C1-C20 alkoxy group; more preferably one or more of a functional group such as a methoxy group, an ethoxy group or a propoxy group bonded to an aliphatic hydrocarbon group via an ether bond.
- the aliphatic hydrocarbon group may have a substituent or may have no substituent.
- the above alkylthio group is a group in which an oxygen atom of an alkoxy group is substituted with a sulfur atom. It is preferably a C1-C20 alkylthio group; the alkylthioalkyl group may have a substituent or may have no substituent.
- the above aryl group is preferably an C6-C60 aryl group; more preferably one or more of an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a benzene terphenyl group or a fluorenyl group.
- the aryl group may have a substituent or may have no substituent.
- the above heteroaryl group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furyl group, a thienyl group, a pyrrole group, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a pyridine One or more of a group or a quinolinyl group or the like.
- the aromatic heterocyclic group may have a substituent or may not be taken Daiji.
- the aryl ether group is preferably a C6-C40 aryl ether group; more preferably a functional group such as a phenoxy group bonded to an aromatic hydrocarbon group via an ether bond.
- the aryl ether group may or may not have a substituent.
- the above aryl sulfide group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
- Preferred is a C6-C60 aryl sulfide group.
- the aromatic hydrocarbon group in the aryl sulfide group may or may not have a substituent.
- the above halogen atom is selected from fluorine, chlorine, bromine or iodine.
- the above carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group or alkylamino group may have a substituent or may have no substituent.
- the number of carbon atoms of the alkylamino substituent is not particularly limited, and is usually in the range of 2 or more and 60 or less.
- the above silane group is represented by a functional group having a bond to a silicon atom such as a trimethylsilyl group, a triethylsilyl group, a dimethyl tert-butylsilane group or a triphenylsilyl group, and the silane group may have a substituent. It is also possible to have no substituents.
- the number of carbon atoms of the silane group is not particularly limited, and is usually in the range of 1 or more and 40 or less.
- the above substituent is selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4-C15 cycloalkenyl, C2 - alkynyl group of C15, alkoxy group of C1-C55, alkyl fluorenyl group of C1-C55, aryl ether group of C6-C55, aryl sulfide group of C6-C55, aryl group of C6-C55, C4-C55
- the aromatic amine compound is not particularly limited, and the following examples are preferred.
- the synthesis of the aromatic amine compound represented by the above formula (1) can be carried out by a known method.
- a cross-coupling reaction of a transition metal such as nickel or palladium is used.
- M is MgBr or the like.
- the coupling reaction, the Suzuki-Miyaura coupling reaction represented by B(OH)2, etc. is not limited to these methods.
- Hal is a pseudohalogen such as a halogen atom such as a chlorine atom, a bromine atom or an iodine atom or a trifluoromethanesulfonate group.
- a pseudohalogen such as a halogen atom such as a chlorine atom, a bromine atom or an iodine atom or a trifluoromethanesulfonate group.
- the Suzuki-Miyaura coupling reaction is preferred because the raw material is a metal compound having low toxicity, few by-products of the reaction, and easy removal of the unreacted main group metal compound.
- CN bond formation reaction of a transition metal such as nickel, palladium or copper.
- a Buchwald-Hartwig reaction using nickel or palladium a Ullman reaction using copper, but not limited to these methods.
- the above reaction, mild reaction conditions, and superior selectivity of various functional groups are preferred, and a Buchwald-Hartwig reaction is preferred.
- Ar 1 , Ar 2 or Ar 3 and Ar 4 are synthesized as different substituents, they are synthesized in stages according to the theoretical mixing ratio of the amine and the halide.
- the aromatic amine compound of the formula (1) in the present invention may be used singly or in combination with other materials in the organic light-emitting device.
- the present invention is an organic light-emitting device containing an aromatic amine compound, which has a substrate, a first electrode, one or more organic layer films including a light-emitting layer, and a light transmitting the light emitted from the light-emitting layer.
- the two electrodes and the light extraction efficiency improving layer, the light emitting layer emits light by electric energy.
- the substrate to be used is preferably a glass substrate such as soda glass or alkali-free glass.
- the thickness of the glass substrate is not particularly limited as long as it is sufficient to maintain mechanical strength. Therefore, 0.5 mm or more is sufficient.
- the material of the glass is preferably as small as possible because the amount of ions eluted from the glass is as small as possible.
- commercially available protective coatings such as SiO 2 may also be used.
- the substrate does not have to be glass, and for example, an anode may be formed on the plastic substrate.
- the material used in the first electrode is preferably a metal such as gold, silver or aluminum having a high refractive index property or a metal alloy such as an APC alloy. These metals or metal alloys may also be laminated in multiple layers. Further, a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
- a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
- the material used in the second electrode is preferably a material that forms a translucent or transparent film that transmits light.
- a material that forms a translucent or transparent film that transmits light For example, silver, magnesium, aluminum, calcium or an alloy of these metals, a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO). These metals, alloys, or metal oxides may also be laminated in multiple layers.
- the method for forming the above electrode may be, for example, resistance heating deposition, electron beam evaporation, sputtering, ion plating, or gel coating, and the like, and is not particularly limited. Further, the first electrode and the second electrode function as an anode with respect to the organic film layer and the other as a cathode depending on the work function of the material used.
- the organic layer may be composed of only a light-emitting layer, a hole transport layer/light-emitting layer, 2) a light-emitting layer/electron transport layer, and 3) a hole transport layer/light-emitting layer/electron transport layer, 4)
- the hole injection layer/hole transport layer/light emitting layer/electron transport layer, and 5) a structure in which a hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer or the like is laminated.
- each of the above layers may be either a single layer or a plurality of layers.
- the hole transport layer can be formed by a method of laminating or mixing one or more kinds of hole transport materials, or by a method using a mixture of a hole transport material and a polymer binder.
- the hole transporting material needs to efficiently transport holes from the positive electrode between the electrodes to which the electric field is applied. Therefore, it is desirable that the hole injection efficiency is high and the injected holes can be efficiently transported. Therefore, the hole transporting material is required to have an appropriate ion potential, and has a large hole mobility, and further, is excellent in stability, and is unlikely to cause impurities which may become traps during production and use.
- the substance satisfying such conditions is not particularly limited, and may be, for example, 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4'- Bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPD), 4,4'-bis(N,N-bis(4-biphenylyl)amino)biphenyl (TBDB), Biphenylamine such as bis(N,N-diphenyl-4-phenylamino)-N,N-diphenyl-4,4'-diamino-1,1'-biphenyl (TPD232), 4, 4 ',4"-tris(3-methylphenyl(phenyl)amino)triphenylamine (m-MTDATA), 4,4',4"-tris(1-naphthyl(phenyl)amino)triphenylamine ( 1-TNATA)
- a heterocyclic compound such as an oxadiazole derivative, a phthalocyanine derivative or a porphyrin derivative, or a fullerene derivative
- a polycarbonic acid having the above monomer in a side chain is also preferable.
- styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole and polysilane is also preferable.
- an inorganic compound such as P-type Si or P-type SiC can also be used.
- a hole injecting layer may be provided between the anode and the hole transporting layer.
- the organic light-emitting element can achieve a low driving voltage and improve the durability life.
- a hole injection layer is usually preferably used A material having a lower ion potential than the material of the hole transport layer. Specifically, for example, a benzidine derivative or a star-type triarylamine material group such as the above TPD232 may be used, and a phthalocyanine derivative or the like may also be used. Further, it is also preferred that the hole injection layer is composed of an acceptor compound alone or that the acceptor compound is doped in another hole transport layer.
- the acceptor compound examples include metal chlorides such as iron trichloride (III), aluminum chloride, gallium chloride, indium chloride, and cesium chloride, and metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and cerium oxide. , a charge transfer ligand such as tris(4-bromophenyl)hexachloroantimonate (TBPAH). Further, it may be an organic compound having a nitro group, a cyano group, a halogen or a trifluoromethyl group in the molecule, an anthraquinone compound, an acid anhydride compound, a fullerene or the like.
- metal chlorides such as iron trichloride (III), aluminum chloride, gallium chloride, indium chloride, and cesium chloride
- metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and cerium oxide.
- a charge transfer ligand such as tris(4-brom
- the light-emitting layer may be any one of a single layer and a plurality of layers, and may be formed of a light-emitting material (host material, dopant material), which may be a mixture of the host material and the dopant material, or may be only
- the main material can be used in either case. That is, in each of the light-emitting layers of the light-emitting element of the present invention, only the host material or only the dopant material may emit light, or the host material and the dopant material may emit light together. From the viewpoint of efficiently utilizing electric energy and obtaining light of high color purity, it is preferable that the light-emitting layer is formed by mixing a host material and a dopant material.
- the host material and the dopant material may be one type or a combination of a plurality of types, and any of them may be used.
- the doping material may be added to the entire host material or may be added to a portion, either in any case.
- the doping material may be either laminated or dispersed, either in any case.
- the doping material can control the luminescent color.
- the amount of the dopant material is too large, the concentration extinction phenomenon occurs. Therefore, the amount thereof is preferably 20% by weight or less, and more preferably 10% by weight or less based on the host material.
- the doping method may be a method of co-evaporation with a host material, or a method of simultaneously vapor-depositing after mixing with a host material.
- the luminescent material examples include a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant, a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum, or dibenzofuran.
- a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant
- a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum
- dibenzofuran dibenzofuran.
- the derivative, the carbazole derivative, the indolocarbazole derivative, the polyphenylenevinylene derivative, the polyparaphenylene derivative, and the polythiophene derivative in the polymer are not particularly limited.
- the host material contained in the luminescent material is not particularly limited, and ruthenium, phenanthrene, anthracene, benzophenanthrene, tetracene, anthracene, benzo[9,10]phenanthrene, fluoranthene, anthracene, anthracene, etc. may be used.
- a cyclic compound or a derivative thereof an aromatic amine derivative such as N,N'-dinaphthyl-N,N'-diphenyl-4,4'-diphenyl-1,1'-diamine, or the like a metal chelate hydroxyquinoline compound such as (8-hydroxyquinoline)aluminum, a pyrrolopyrrole derivative, a dibenzofuran derivative, a carbazole derivative, an indolocarbazole derivative, a triazine derivative,
- the polymer may, for example, be a polyphenylene vinylene derivative, a polyparaphenylene derivative, a polyfluorene derivative, a polyvinylcarbazole derivative or a polythiophene derivative, and is not particularly limited.
- the doping material is not particularly limited, and examples thereof include a compound having a condensed aromatic ring such as naphthalene, anthracene, phenanthrene, anthracene, benzophenanthrene, anthracene, benzo[9,10]phenanthrene, fluoranthene, anthracene or anthracene.
- a phosphorescent material may be doped in the light-emitting layer.
- the phosphorescent material is a material that can also be phosphorescent at room temperature.
- a phosphorescent material is used as the dopant, it is required to be substantially capable of phosphorescence at room temperature, but is not particularly limited, and preferably contains an indium, ruthenium, rhodium, palladium, platinum, rhodium, and An organometallic complex compound of at least one metal of cerium. From the viewpoint of having high phosphorescence luminous efficiency at room temperature, an organometallic complex having indium or platinum is more preferable.
- an anthracene derivative As a host material used in combination with a phosphorescent dopant, an anthracene derivative, a carbazole derivative, an indolocarbazole derivative, a nitrogen-containing aromatic compound derivative having a pyridine, a pyrimidine or a triazine skeleton,
- An aromatic hydrocarbon compound derivative such as an arylbenzene derivative, a spiroindole derivative, a trimeric europium, a benzo[9,10]phenanthrene, a dibenzofuran derivative, a dibenzothiophene or the like, an oxygen group-containing compound, and a hydroxyl group.
- An organic metal complex such as a quinoline ruthenium complex can be suitably used, but basically, as long as the triplet energy of the dopant used is larger and electrons and holes can be smoothly injected or transported from the respective layer transport layers, There is no particular limitation. Further, two or more kinds of triplet light-emitting dopants may be contained, or two or more types of host materials may be contained. In addition, more than one triplet luminescent dopant and one or more fluorescent luminescent dopants may also be included.
- the electron transport layer is a layer in which electrons are injected from the cathode and electrons are transferred.
- the electron transport layer preferably has high electron injection efficiency and can efficiently transport the injected electrons. Therefore, the electron transport layer is preferably composed of a substance having a large electron affinity and electron mobility and excellent stability, and which is less likely to cause impurities which are traps during production and use.
- the electron transport layer mainly functions to efficiently prevent holes from the anode from being combined and flowing to the cathode side, even materials having a lower electron transporting ability are not so high.
- the effect of improving the luminous efficiency is also equivalent to the case of a material having a high electron transporting ability. Therefore, in the electron transport layer in the present invention, the hole blocking layer which can efficiently prevent hole migration is also included as an equivalent.
- the electron transporting material used in the electron transporting layer is not particularly limited, and examples thereof include a condensed aromatic ring derivative such as naphthalene or an anthracene, and a styrene-based aromatic group represented by 4,4'-di(diphenylvinyl)biphenyl.
- a cyclic derivative an anthracene derivative such as hydrazine or biphenyl fluorene, a phosphine oxide derivative, or a tris(8-hydroxyquinoline) aluminum or the like a hydroxyquinoline complex, a benzoquinolinoline complex, a hydroxyazole complex, an azomethine complex, a cycloheptatrienol metal complex or a flavonol metal complex, From the viewpoint of driving voltage and high-efficiency luminescence, it is preferred to use a compound having a heteroaromatic ring structure composed of an element selected from the group consisting of carbon, hydrogen, nitrogen, oxygen, silicon, phosphorus, and containing electron-withdrawing Sexual nitrogen.
- the heteroaryl ring containing an electron-withdrawing nitrogen has high electrophilicity.
- An electron transporting material having electron-withdrawing nitrogen readily accepts electrons from a cathode having high electrophilicity, so that the driving voltage of the light-emitting element can be lowered. Further, since the electron supply to the light-emitting layer is increased and the probability of recombination in the light-emitting layer is increased, the light-emitting efficiency is improved.
- heteroaryl ring containing an electron-withdrawing nitrogen examples include a pyridine ring, a pyrazine ring, a pyrimidine ring, a quinoline ring, a quinoxaline ring, a naphthyridine ring, a pyrimidopyrimidine ring, a benzoquinoline ring, and a phenanthrene ring.
- a porphyrin ring an imidazole ring, an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, or a phenamimidazole ring, etc. .
- examples of the compound having such a heteroaromatic ring structure include a benzimidazole derivative, a benzoxazole derivative, a benzothiazole derivative, an oxadiazole derivative, a thiadiazole derivative, and a triazole derivative.
- An oligopyridine derivative such as a pyrazine derivative, a phenanthroline derivative, a quinoxaline derivative, a quinoline derivative, a benzoquinoline derivative, a bipyridine or a terpyridine.
- the fused aromatic ring skeleton is preferably an anthracene skeleton, an anthracene skeleton or a phenanthroline skeleton.
- the above electron transporting material may be used singly or in combination of two or more kinds of the above electron transporting materials, or one or more other electron transporting materials may be mixed and used in the above electron transporting material.
- a donor compound can also be added.
- the donor compound refers to the improvement of electrons.
- the donor compound of the present invention include an alkali metal, an alkali metal-containing inorganic salt, an alkali metal-organic complex, an alkaline earth metal, an alkaline earth metal-containing inorganic salt, or an alkaline earth metal and an organic substance.
- alkali metal or the alkaline earth metal include an alkali metal such as lithium, sodium or barium having a low work function and an effect of improving electron transporting ability, or an alkaline earth metal such as magnesium or calcium.
- an electron injecting layer may also be provided between the cathode and the electron transporting layer.
- the electron injecting layer is inserted for the purpose of assisting electron injection from the cathode to the electron transporting layer, and when inserted, a compound having a heteroaromatic ring structure containing electron-withdrawing nitrogen may be used, or a layer containing the above donor compound may be used.
- an inorganic substance of an insulator or a semiconductor can also be used. By using these materials, it is possible to effectively prevent the short-circuiting of the light-emitting element and to improve the electron injectability, which is preferable.
- At least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide, and an alkaline earth metal halide is preferably used. Further, a complex of an organic substance and a metal can also be used favorably.
- Examples of the method for forming the respective layers constituting the light-emitting element include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination, or coating, and the like, and are not particularly limited, but generally, from the viewpoint of element characteristics It is preferable to use resistance heating vapor deposition or electron beam evaporation.
- the thickness of the organic layer varies depending on the electric resistance value of the luminescent material, and is not limited, but is preferably 1 to 1000 nm.
- the film thickness of each of the light-emitting layer, the electron transport layer, and the hole transport layer is preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less.
- the light extraction efficiency improving layer of the present invention contains the above compound having a thiophene structure, a furan structure or a pyrrole structure.
- a thiophene structure In order to maximize high luminous efficiency and achieve color reproducibility, it is preferred to have a thiophene structure,
- the compound having a furan structure or a pyrrole structure is laminated in a thickness of from 20 nm to 120 nm. More preferably, the laminate thickness is from 40 nm to 80 nm. Further, from the viewpoint of maximizing the luminous efficiency, it is more preferable that the light extraction efficiency improving layer has a thickness of 50 nm to 70 nm.
- the method for forming the light extraction efficiency improving layer is not particularly limited, and examples thereof include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination method, coating method, ink jet method, doctor blade method, and laser transfer method. There are no special restrictions.
- the light-emitting element of the present invention has a function of converting electric energy into light.
- the electric energy a direct current is mainly used, and a pulse current or an alternating current can also be used.
- the current value and the voltage value it should be selected in such a manner that the maximum brightness can be obtained with the lowest possible energy.
- the light-emitting element of the present invention can be suitably used as a flat display which is displayed in, for example, a matrix and/or a field.
- the matrix method refers to a two-dimensional arrangement of pixels for display in a checkered or mosaic shape, and displays characters or images by a collection of pixels.
- the shape and size of the pixel depend on the application. For example, in an image and a character display of a computer, a monitor, and a television, a quadrangular pixel having a side length of 300 ⁇ m or less is generally used, and in the case of a large display such as a display panel, a pixel having a side length of mm is used.
- monochrome display it is only necessary to arrange pixels of the same color, but in the case of color display, red, green, and blue pixels are arranged to be displayed. In this case, there are typically triangular and striped shapes.
- the driving method of the matrix may be any one of a line-by-line driving method and an active matrix.
- the structure of the line-by-line drive is simple, when the operational characteristics are considered, the active matrix may be excellent, and therefore, it is required to be used flexibly depending on the application.
- the field mode in the present invention refers to forming a pattern and making an area determined by the configuration of the pattern Light, and thus the way in which the predetermined information is displayed.
- Examples thereof include a digital clock, a time in a thermometer, a temperature display, an operation state display of an audio device, an electromagnetic cooker, and the like, and a panel display of a car.
- the matrix display and the field display can coexist in the same panel.
- the light-emitting element of the present invention is preferably used as an illumination light source, and can provide a light source that is thinner and lighter than the prior art and can emit light on the surface.
- the aromatic amine compound of the present invention is exemplified by the following examples, but is not limited to the aromatic amine compounds exemplified in the examples and the synthesis methods.
- Dimethylformamide, ethyl acetate, 1,2-xylene, potassium carbonate, dichloromethane, ethanol and sodium carbonate were purchased from Sinopharm; N-methylpyrrole, 2,5-dibromothiophene, etc. were purchased from TCI Corporation; various palladium catalysts, boric acid derivatives and boronic acid ester derivatives were purchased from Aldrich.
- the 1 H-NMR spectrum was measured using a JEOL (400 MHz) nuclear magnetic resonance apparatus; the HPLC spectrum was measured using a Shimadzu LC-20AD high performance liquid chromatograph.
- NPD (N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine),
- TBDB (N, N, N', N'-4(4-biphenyl)biphenyldiamine).
- 2,5-dibromothiophene 24.2 g (100 mmol), 4-chlorophenylboronic acid 34.4 g (220 mmol), tetrakis(triphenylphosphine)palladium 5.7 g (5.0 mmol), 1.5 M carbonate were added to the reactor under a nitrogen atmosphere.
- a sodium aqueous solution of 200 ml (300 mmol) and dimethyl ether 100 ml (DME) were stirred and heated at 110 ° C overnight. After cooling to room temperature, filtration, the filtrate was separated into an organic layer and a water layer. The obtained solid was washed with ethanol to give 21.3 g of 2,5-bis(4-chlorophenyl)thiophene.
- Example 2 The same procedure as in Example 1 was carried out except that N-(4-biphenylyl)-3-pyridylamine was used instead of N-phenyl-3-pyridylamine. 1.1 g of compound [5] (light yellow solid) were obtained.
- Example 2 The same procedure as in Example 1 was carried out except that N-(4-biphenylyl)-3-pyridylamine was used instead of N-phenyl-4-pyridylamine. 2.2 g of compound [6] (light yellow solid) were obtained.
- Example 2 The same procedure as in Example 1 was carried out except that N-(3-biphenylyl)-3-pyridylamine was used instead of N-phenyl-3-pyridylamine. 1.5 g of compound [8] (light yellow solid) were obtained.
- Example 2 The same procedure as in Example 1 was carried out except that N-(3-biphenylyl)-3-pyridylamine was used instead of N-naphthyl-3-pyridylamine. 2.5 g of compound [31] (light yellow solid) were obtained.
- Example 2 The same procedure as in Example 1 was carried out except that N-(3-biphenylyl)-3-pyridylamine was used instead of N-biphenyl-3-pyridylamine. 3.2 g of compound [32] (light yellow solid) were obtained.
- Example 2 The same procedure as in Example 1 was carried out except that N-phenyl-3-pyridylamine was used instead of N-3-(3'-methylbiphenyl)-4-pyridylamine. 3.6 g of compound [134] (light yellow solid) were obtained.
- the alkali-free glass substrate (Asahi Glass Co., Ltd., AN100) was subjected to UV ozone washing treatment for 20 minutes, and further installed in a vacuum vapor deposition apparatus to perform evacuation until the degree of vacuum in the apparatus was higher than 1 ⁇ 10 -3 Pa. Under the conditions, the compound [2] was vapor-deposited by a resistance heating vapor deposition method to prepare a film of about 50 nm. The vapor deposition rate was 0.1 nm/s.
- the refractive index and attenuation coefficient of the film samples prepared above were determined at Toray Research Center (Inc.), and the instrument used was an ellipsometry (J.A. Woollam M-2000).
- optical constant (refractive index: n, attenuation coefficient: k) is the decimal point 3 digits rounded off
- Example 9 The same as Example 9 except that the compound [5] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [6] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [8] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same procedure as in Example 9 was carried out except that the compound [11] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [12] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [14] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [15] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [18] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [21] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [140] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [142] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same as Example 9 except that the compound [144] was used instead of the compound [2].
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
- Example 9 The same experiment as in Example 9 was carried out. As shown in Table 2, the results of Examples 10 to 24 are as follows.
- Examples 9-24 have a higher refractive index than Comparative Example 1. Further, the performance of the light-emitting element was tested.
- the compound [5] (60 nm) was evaporated as a coating layer.
- the sealing member made of an alkali-free glass was sealed with an epoxy resin adhesive.
- the light-emitting element was subjected to a direct current of 10 mA/cm 2 at room temperature in the atmosphere, and the light-emitting characteristics were measured from a light-emitting luminescence meter (CS1000, Konica Minolta Co., Ltd.) for light-emitting of the sealing plate.
- a high-performance light-emitting element having high luminous efficiency and high color purity was obtained.
- Example 25 The same elements as in Example 25 were evaluated except that the cover layer material was the compound [6], and the evaluation results are shown in Table 3.
- Example 25 The same elements as in Example 25 were evaluated except that the cover layer material was the compound [8], and the evaluation results are shown in Table 3.
- Example 25 The same components as in Example 25 were evaluated except that the cover layer material was NPD, and the evaluation results are shown in Table 3.
- Example 25 The same components as in Example 25 were evaluated except that the cover layer material was TBDB, and the evaluation results are shown in Table 3.
- Examples 28 to 39, and Comparative Examples 4 to 6 were evaluated in the same manner as in Example 25 except that the compounds were shown in Table 3. The evaluation results are shown in Table 3.
- Comparative Example 4 Comparative Example 4, Comparative Example 5, and Comparative Example 6 were as follows.
- the light-emitting elements of Examples 25 to 39 satisfy both high luminous efficiency and high color purity. Further, the light-emitting elements of Comparative Examples 2 to 6 were equivalent to the color purity of the examples, but the luminous efficiency was lower than that of the examples, and high luminous efficiency and high color purity could not be simultaneously satisfied.
- the aromatic amine compound of the present invention is suitable for use in an organic light-emitting device material, and a light-emitting element which satisfies both high light-emitting efficiency and high color purity is obtained, and is more suitable for a cover layer material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
化合物 | 发光效率(cd/A) | 色纯度CIE(x,y) | |
实施例25 | [5] | 6.5 | 0.139,0.051 |
实施例26 | [6] | 6.8 | 0.139,0.050 |
实施例27 | [8] | 5.8 | 0.138,0.049 |
实施例28 | [2] | 6.6 | 0.139,0.050 |
实施例29 | [11] | 5.9 | 0.138,0.052 |
实施例30 | [12] | 6.2 | 0.138,0.049 |
实施例31 | [13] | 6.6 | 0.137,0.049 |
实施例32 | [14] | 6.8 | 0.139,0.048 |
实施例33 | [15] | 6.1 | 0.139,0.051 |
实施例34 | [18] | 5.9 | 0.137,0.051 |
实施例35 | [21] | 6.0 | 0.139,0.050 |
实施例36 | [140] | 6.5 | 0.138,0.049 |
实施例37 | [142] | 6.5 | 0.139,0.049 |
实施例38 | [143] | 6.1 | 0.137,0.050 |
实施例39 | [144] | 6.1 | 0.137,0.048 |
比较例2 | NPD | 4.5 | 0.139,0.048 |
比较例3 | TBDB | 4.5 | 0.137,0.051 |
比较例4 | [147] | 4.6 | 0.137,0.053 |
比较例5 | [148] | 4.7 | 0.137,0.050 |
比较例6 | [149] | 4.4 | 0.138,0.052 |
Claims (8)
- 一种芳香胺化合物,其特征在于:具有下述通式(1):其中,X选自硫原子、氧原子、或N-R,R选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基;L1、L2相同或不同,分别独立选自亚芳基或亚杂芳基;Ar1、Ar2相同或不同,分别独立选自芳基或杂芳基;Ar3、Ar4相同或不同,分别独立选自杂芳基;其中,R1、R2相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环。
- 根据权利要求1所述的芳香胺化合物,其特征在于:L1和L2为亚芳基。
- 一种有机发光元件材料,其特征在于:该材料含有下述通式(1)所示的化合物:其中,X选自硫原子、氧原子、或N-R,R选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基;L1、L2相同或不同,分别独立选自亚芳基或亚杂芳基;Ar1、Ar2相同或不同,分别独立选自芳基或杂芳基;Ar3、Ar4相同或不同,分别独立选自杂芳基;其中,R1、R2相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环。
- 根据权利要求3所述的有机发光元件材料,其特征在于:L1和L2为亚芳基。
- 一种有机发光元件,其特征在于:包含基板、第一电极、含有一种以上有机层膜的发光层、第二电极、及覆盖层;该有机发光元件含有权利要求3或4所述的有机发光元件材料。
- 一种有机发光元件覆盖层材料,其特征在于:该材料含有下述通式(1)所示的化合物:其中,X选自硫原子、氧原子、或N-R,R选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基;L1、L2相同或不同,分别独立选自亚芳基或亚杂芳基;Ar1、Ar2相同或不同,分别独立选自芳基或杂芳基;Ar3、Ar4相同或不同,分别独立选自杂芳基;其中,R1、R2相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与 相邻的取代基键合而形成环。
- 根据权利要求6所述的有机发光元件覆盖层材料,其特征在于:L1和L2为亚芳基。
- 一种有机发光元件,其特征在于:包含基板、第一电极、包括发光层在内的一层以上有机层膜、第二电极元件,所述发光元件还具有覆盖层;所述覆盖层含有权利要求6或7所述的有机发光元件覆盖层材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167018779A KR102287601B1 (ko) | 2013-12-26 | 2014-12-18 | 방향족 아민 화합물, 발광 소자 재료 및 발광 소자 |
US15/108,126 US10700308B2 (en) | 2013-12-26 | 2014-12-18 | Aromatic amine compound, light-emitting element materials and light-emitting element |
JP2016542131A JP6617706B2 (ja) | 2013-12-26 | 2014-12-18 | 芳香族アミン化合物、発光素子材料および発光素子 |
CN201480070874.2A CN105849113B (zh) | 2013-12-26 | 2014-12-18 | 芳香胺化合物、发光元件材料及发光元件 |
EP14875253.8A EP3088403B1 (en) | 2013-12-26 | 2014-12-18 | Aromatic amine compound for light-emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310729370.4 | 2013-12-26 | ||
CN201310729370.4A CN104744450A (zh) | 2013-12-26 | 2013-12-26 | 芳香胺化合物、发光元件材料及发光元件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015096658A1 true WO2015096658A1 (zh) | 2015-07-02 |
Family
ID=53477533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/094227 WO2015096658A1 (zh) | 2013-12-26 | 2014-12-18 | 芳香胺化合物、发光元件材料及发光元件 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10700308B2 (zh) |
EP (1) | EP3088403B1 (zh) |
JP (1) | JP6617706B2 (zh) |
KR (1) | KR102287601B1 (zh) |
CN (2) | CN104744450A (zh) |
TW (1) | TWI631111B (zh) |
WO (1) | WO2015096658A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021064797A (ja) * | 2015-08-18 | 2021-04-22 | ノヴァレッド ゲーエムベーハー | 有機発光ダイオード(oled)の正孔注入層(hil)として使用される金属アミド |
CN115385842A (zh) * | 2022-08-23 | 2022-11-25 | 清华大学 | 一种含三芳香胺取代基的吡咯衍生物及其制备方法和应用 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104744450A (zh) * | 2013-12-26 | 2015-07-01 | 东丽先端材料研究开发(中国)有限公司 | 芳香胺化合物、发光元件材料及发光元件 |
CN106632185B (zh) * | 2016-10-14 | 2019-04-05 | 长春海谱润斯科技有限公司 | 一种9,9-二苯基芴衍生物及其制备方法和应用 |
KR20200115509A (ko) | 2018-01-31 | 2020-10-07 | 도레이 카부시키가이샤 | 방향족 아민 화합물, 캐핑층 재료 및 발광 소자 |
CN109860425B (zh) * | 2019-03-12 | 2021-07-13 | 江苏三月科技股份有限公司 | 一种含有覆盖层的有机电致发光装置及用途 |
CN110078681B (zh) * | 2019-05-20 | 2020-10-13 | 武汉华星光电半导体显示技术有限公司 | 有机发光材料及其制备方法、有机发光器件 |
KR20210024969A (ko) * | 2019-08-26 | 2021-03-08 | 주식회사 동진쎄미켐 | 캡핑층을 포함하는 유기 발광 소자 및 이에 적용되는 캡핑층용 화합물 |
CN111153809B (zh) * | 2020-01-15 | 2023-06-06 | 吉林奥来德光电材料股份有限公司 | 一种芳胺类化合物及其制备方法和应用 |
CN111808055A (zh) * | 2020-07-23 | 2020-10-23 | 吉林奥来德光电材料股份有限公司 | 一种以芳胺结构为中心骨架的有机电致发光材料及其制备方法和应用 |
CN113845513A (zh) * | 2021-10-29 | 2021-12-28 | 京东方科技集团股份有限公司 | 含氮化合物、有机电致发光器件和显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001039554A1 (en) | 1999-11-22 | 2001-05-31 | Sony Corporation | Display device |
JP2006156390A (ja) | 2004-11-26 | 2006-06-15 | Samsung Sdi Co Ltd | 有機電界発光素子及びその製造方法 |
JP2006302878A (ja) | 2005-03-24 | 2006-11-02 | Kyocera Corp | 発光素子、その発光素子を備えた発光装置及びその製造方法 |
JP2007103303A (ja) | 2005-10-07 | 2007-04-19 | Toshiba Matsushita Display Technology Co Ltd | 有機el表示装置 |
JP2008133225A (ja) * | 2006-11-29 | 2008-06-12 | Toyo Ink Mfg Co Ltd | インドール誘導体およびその用途 |
WO2011043083A1 (ja) | 2009-10-09 | 2011-04-14 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI245068B (en) * | 2003-11-18 | 2005-12-11 | Chi Mei Optoelectronics Corp | Iridium complex as light emitting material and organic light emitting diode device |
JP4540427B2 (ja) * | 2004-08-30 | 2010-09-08 | 三井化学株式会社 | アミノ置換テトラフェニルチオフェン化合物、および該化合物を含有する有機電界発光素子 |
JP2008166558A (ja) * | 2006-12-28 | 2008-07-17 | Idemitsu Kosan Co Ltd | 光電変換素子用材料及びそれを用いた光電変換素子 |
JP2010031249A (ja) * | 2008-06-23 | 2010-02-12 | Sumitomo Chemical Co Ltd | 組成物及び該組成物を用いてなる発光素子 |
KR101322828B1 (ko) * | 2009-11-05 | 2013-10-25 | 덕산하이메탈(주) | 유기화합물 및 이를 이용한 유기전기소자, 그 단말 |
KR20120066076A (ko) * | 2009-11-16 | 2012-06-21 | 이데미쓰 고산 가부시키가이샤 | 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자 |
KR20120104085A (ko) * | 2010-10-25 | 2012-09-20 | 이데미쓰 고산 가부시키가이샤 | 방향족 아민 유도체 및 그것을 사용한 유기 전계 발광 소자 |
US9130172B2 (en) * | 2012-05-08 | 2015-09-08 | Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University | Naphthyl-containing compounds for light-emitting devices |
CN104752619A (zh) * | 2013-12-26 | 2015-07-01 | 东丽先端材料研究开发(中国)有限公司 | 有机发光元件 |
CN104744450A (zh) * | 2013-12-26 | 2015-07-01 | 东丽先端材料研究开发(中国)有限公司 | 芳香胺化合物、发光元件材料及发光元件 |
-
2013
- 2013-12-26 CN CN201310729370.4A patent/CN104744450A/zh active Pending
-
2014
- 2014-12-18 WO PCT/CN2014/094227 patent/WO2015096658A1/zh active Application Filing
- 2014-12-18 CN CN201480070874.2A patent/CN105849113B/zh active Active
- 2014-12-18 US US15/108,126 patent/US10700308B2/en active Active
- 2014-12-18 JP JP2016542131A patent/JP6617706B2/ja active Active
- 2014-12-18 EP EP14875253.8A patent/EP3088403B1/en active Active
- 2014-12-18 KR KR1020167018779A patent/KR102287601B1/ko active IP Right Grant
- 2014-12-25 TW TW103145453A patent/TWI631111B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001039554A1 (en) | 1999-11-22 | 2001-05-31 | Sony Corporation | Display device |
JP2006156390A (ja) | 2004-11-26 | 2006-06-15 | Samsung Sdi Co Ltd | 有機電界発光素子及びその製造方法 |
JP2006302878A (ja) | 2005-03-24 | 2006-11-02 | Kyocera Corp | 発光素子、その発光素子を備えた発光装置及びその製造方法 |
JP2007103303A (ja) | 2005-10-07 | 2007-04-19 | Toshiba Matsushita Display Technology Co Ltd | 有機el表示装置 |
JP2008133225A (ja) * | 2006-11-29 | 2008-06-12 | Toyo Ink Mfg Co Ltd | インドール誘導体およびその用途 |
WO2011043083A1 (ja) | 2009-10-09 | 2011-04-14 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
Non-Patent Citations (2)
Title |
---|
JOURNAL OF APPLIED PHYSICS LETTERS, vol. 76, 2000, pages 1650 |
JOURNAL OF APPLIED PHYSICS, vol. 96, 2004, pages 19 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021064797A (ja) * | 2015-08-18 | 2021-04-22 | ノヴァレッド ゲーエムベーハー | 有機発光ダイオード(oled)の正孔注入層(hil)として使用される金属アミド |
JP7148589B2 (ja) | 2015-08-18 | 2022-10-05 | ノヴァレッド ゲーエムベーハー | 有機発光ダイオード(oled)の正孔注入層(hil)として使用される金属アミド |
CN115385842A (zh) * | 2022-08-23 | 2022-11-25 | 清华大学 | 一种含三芳香胺取代基的吡咯衍生物及其制备方法和应用 |
CN115385842B (zh) * | 2022-08-23 | 2024-07-16 | 清华大学 | 一种含三芳香胺取代基的吡咯衍生物及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN105849113B (zh) | 2018-08-21 |
EP3088403A4 (en) | 2017-06-07 |
TW201529561A (zh) | 2015-08-01 |
EP3088403A1 (en) | 2016-11-02 |
CN104744450A (zh) | 2015-07-01 |
KR20160100330A (ko) | 2016-08-23 |
US20160322606A1 (en) | 2016-11-03 |
US10700308B2 (en) | 2020-06-30 |
EP3088403B1 (en) | 2020-02-12 |
KR102287601B1 (ko) | 2021-08-10 |
CN105849113A (zh) | 2016-08-10 |
JP6617706B2 (ja) | 2019-12-11 |
TWI631111B (zh) | 2018-08-01 |
JP2017503793A (ja) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI631111B (zh) | 芳香胺化合物、發光元件材料及發光元件 | |
WO2015096657A1 (zh) | 有机发光元件 | |
TWI558693B (zh) | 發光元件材料及發光元件 | |
KR102028940B1 (ko) | 발광 소자 재료 및 발광 소자 | |
WO2019100999A1 (zh) | 有机发光元件 | |
KR20100115738A (ko) | 발광 소자 재료 및 발광 소자 | |
WO2016009823A1 (ja) | モノアミン誘導体、それを用いた発光素子材料および発光素子 | |
WO2021036683A1 (zh) | 芳香胺化合物、覆盖层材料及发光元件 | |
TWI558705B (zh) | 發光元件材料及發光元件 | |
CN111194315B (zh) | 芳香胺化合物、覆盖层材料及发光元件 | |
JPWO2014057873A1 (ja) | ホスフィンオキサイド誘導体およびそれを有する発光素子 | |
TWI579285B (zh) | 發光元件材料以及發光元件 | |
JP2014138006A (ja) | 発光素子材料および発光素子 | |
WO2014024750A1 (ja) | 発光素子材料および発光素子 | |
JP6954275B2 (ja) | 化合物、それを含有する電子デバイス、有機薄膜発光素子、表示装置および照明装置 | |
CN112920177A (zh) | 芳香单胺化合物、覆盖层材料及发光元件 | |
WO2014007022A1 (ja) | 発光素子材料および発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14875253 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016542131 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15108126 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167018779 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014875253 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014875253 Country of ref document: EP |