WO2015087878A1 - ガラス溶融物製造装置、およびガラス物品の製造方法 - Google Patents

ガラス溶融物製造装置、およびガラス物品の製造方法 Download PDF

Info

Publication number
WO2015087878A1
WO2015087878A1 PCT/JP2014/082558 JP2014082558W WO2015087878A1 WO 2015087878 A1 WO2015087878 A1 WO 2015087878A1 JP 2014082558 W JP2014082558 W JP 2014082558W WO 2015087878 A1 WO2015087878 A1 WO 2015087878A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
glass
average particle
glass melt
granulated body
Prior art date
Application number
PCT/JP2014/082558
Other languages
English (en)
French (fr)
Inventor
中川 博之
宮崎 誠司
智 大川
渡辺 邦彦
邦洋 加藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020167012096A priority Critical patent/KR20160096591A/ko
Priority to CN201480066919.9A priority patent/CN105980318A/zh
Priority to JP2015552464A priority patent/JP6540513B2/ja
Publication of WO2015087878A1 publication Critical patent/WO2015087878A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • B07B1/40Resonant vibration screens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass melt production apparatus and a glass article production method.
  • the glass raw material particles supplied into the furnace are a granulated body, for example, fine fine powder generated by a part of the glass raw material particles being broken is mixed. There may be. Since the fine powder is light and easily floats, it may not reach the glass melt surface of the furnace bottom, and may adhere to the inner wall of the exhaust flue or the furnace wall. As a result, the problem of clogging the flue and the reaction product produced by the reaction between the fine powder adhering to the furnace wall and the furnace material fall to the glass solution surface, and the quality of the glass melt produced is lowered. There was a problem.
  • One aspect of the present invention is made in view of the above-mentioned problems, and is a glass melt production apparatus capable of suppressing fine powder from adhering to a furnace wall, an inner wall of a flue, etc., and its glass melting
  • Another object is to provide a method for producing a glass article using a product production apparatus.
  • the present inventors have found that the proportion of fine powder is significantly increased in the process of conveying the granulated body. Moreover, the present inventors have found that the above problem can be solved by providing a classifying device for removing fine powder in the process of conveying the granulated body based on this knowledge, and further by the configuration shown below.
  • a receiving device that receives a granulated material using a glass raw material as a forming material, and the granulated material that has been received by the receiving device include first particles.
  • the granulated body before being received by the receiving device is classified into third particles and fourth particles having an average particle diameter smaller than the average particle diameter of the third particles, and the third particles are It is good also as a structure further provided with the supply apparatus supplied to a receiving apparatus.
  • the classifier may be configured such that the average particle diameter of the first particles is 200 ⁇ m or more and 2000 ⁇ m or less, and the average particle diameter of the second particles is 10 ⁇ m or more and 100 ⁇ m or less.
  • the classifier may be a vibrating sieve.
  • the vibrating sieve has a classifiable mass of the granulated body per unit time that can be classified is 1.2 times or more of a mass supplied per unit time of the granulated body supplied to the classifier, 2.5 It is good also as a structure which is an apparatus below twice.
  • the vibrating sieve includes a sieve mesh for classifying the granulated body, the mesh opening of the sieve mesh is at least twice the classification target particle diameter of the second particles, and the average of the first particles It is good also as a structure smaller than a particle diameter.
  • the classifier may be a cyclone separator.
  • One aspect of the method for producing a glass article according to the present invention is to use the glass melt production apparatus described above, to form the granulated body with an average particle size smaller than the average particle size of the first particles and the first particles. Classifying the second particles having a diameter, producing a glass melt from the first particles, forming the glass melt into a formed body, and gradually cooling the formed body A glass article.
  • One aspect of the method for producing a glass article according to the present invention includes a step of quantifying a granulated body using a glass raw material as a forming material, and the granulated body from a first particle and an average particle diameter of the first particle.
  • a step of classifying the second particles having a small average particle diameter a step of producing a glass melt by melting the first particles in a high-temperature atmosphere in the furnace using a glass melting furnace, A step of forming a glass melt into a formed body, and a step of gradually cooling the formed body to form a glass article.
  • the average particle diameter of the first particles of the granulated body may be 200 ⁇ m or more and 2000 ⁇ m or less, and the second particles may have a mean particle diameter of 10 ⁇ m or more and 100 ⁇ m or less.
  • the step of classifying may be a manufacturing method after the step of quantifying.
  • the production method may further include another classification step.
  • a glass melt production apparatus capable of suppressing fine powder from adhering to a furnace wall, an inner wall of a flue, and the like, and production of a glass article using such a glass melt production apparatus A method is provided.
  • FIG. 3 is a graph showing the results of Example 1.
  • 10 is a graph showing the results of Example 2.
  • 10 is a graph showing the results of Example 3.
  • glass raw material is a component that is a raw material of glass
  • glass raw material composition is a composition that includes a plurality of components that are glass raw materials.
  • the glass raw material include oxides, composite oxides, and compounds that can be converted into oxides by thermal decomposition.
  • compounds that can be converted into oxides by thermal decomposition include hydroxides, carbonates, nitrates, sulfates, halides, and the like.
  • the “granulated body” is obtained by granulating a glass raw material composition, and basically includes all the components necessary for the production of glass in one granulated body. For example, when a granulated body is heated and melted to vitrify one granulated body, a glass having a glass composition to be obtained is obtained.
  • average particle diameter means a 50% diameter (D50) in an integrated fraction unless otherwise specified.
  • D50 50% diameter in the volume-based integrated fraction measured using the laser diffraction method
  • D50 50% diameter in the volume-based integrated fraction measured using the laser diffraction method
  • D50 50% diameter in the volume-based integrated fraction measured using the laser diffraction method
  • D50 50% diameter in the volume-based integrated fraction measured using the laser diffraction method
  • D50 is more than 1 mm
  • the 50% diameter of the cumulative mass measured by the method of sieving and obtaining the average particle size (sieving method) is defined as D50.
  • a particle diameter measuring method by laser diffraction method the method described in JIS Z8825-1 (2001) is used.
  • upstream side and downstream side refer to the flow of the granulated material conveyed in the glass melt production apparatus. That is, for example, the “upstream side” of each device described in this specification means the side to which the granulated material in each device is supplied, and the “downstream side” of each device means the structure in each device. It means the side where the granules are discharged.
  • pressure simply means an absolute pressure based on an absolute vacuum
  • gauge pressure means a relative pressure based on an atmospheric pressure
  • the glass melt manufacturing apparatus 100 of 1st Embodiment is the receiving apparatus 110, the discharge apparatus 150, the granule conveyance pipe
  • a powder conveying device 174 and a glass melting furnace 180 are provided.
  • the vibrating sieve 160 corresponds to a classification device in the scope of claims.
  • the receiving device 110 is a device that receives a granulated body (not shown) that is a glass raw material in order to supply the discharging device 150.
  • the receiving device 110 includes a reserve hopper 140.
  • the granulated body is silica sand, alumina (Al 2 O 3 ), boric acid (H 3 BO 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium carbonate ( It is composed of a glass composition in which glass raw materials such as CaCO 3 ), strontium carbonate (SrCO 3 ), and barium carbonate (BaCO 3 ) are prepared so as to match the composition of the target glass.
  • the size of the granulated body for example, the average particle diameter of the first particles in the granulated body is 200 ⁇ m or more and 2000 ⁇ m or less.
  • the granulated material is conveyed to the reserve hopper 140 by a conveyor or the like.
  • the reserve hopper 140 includes a hopper portion 141 and a valve 142.
  • the hopper unit 141 is a storage tank that stores the granulated material conveyed to the reserve hopper 140.
  • the hopper 141 is connected to a weighing hopper 151 of the discharge device 150 described later via a valve 142.
  • the weighing hopper 151 is provided on the lower side (the lower side in the drawing) of the reserve hopper 140 in the vertical direction.
  • the granulated material stored in the hopper 141 is dropped by its own weight when the valve 142 is opened, and is supplied to the weighing hopper 151, that is, the discharge device 150.
  • the opening / closing operation of the valve 142 is controlled by a control unit (not shown) according to the mass of the granulated material stored in the weighing hopper 151. That is, when the mass of the granulated material stored in the weighing hopper 151 is not less than a specified value, the valve 142 is in a closed state. On the other hand, when the mass of the granulated material stored in the weighing hopper 151 becomes smaller than a specified value, the valve 142 is opened, and the granulated material in the reserve hopper 140 is transferred to the weighing hopper 151. Supplied. When the mass of the granulated material in the measuring hopper 151 becomes equal to or greater than a specified value, the valve 142 is closed again.
  • the discharging device 150 is a device that discharges a certain amount of the granulated material supplied from the reserve hopper 140 of the receiving device 110.
  • the discharge device 150 is a device that discharges a certain amount of the granulated material after being received by the receiving device 110 and before being classified by the vibrating sieve 160.
  • the discharge device 150 includes a weighing hopper 151, a fixed discharge feeder 152, and a first oxygen inflow pipe 153.
  • the “constant amount” does not necessarily mean that the amount is strictly constant, and a certain amount of error is allowed. For example, an error of not less than 0.9 times and not more than 1.1 times the target amount is allowed.
  • the weighing hopper 151 is a storage tank in which the granulated body 111 supplied from the reserve hopper 140 is stored in a hopper portion 151a provided inside.
  • the hopper portion 151a includes an opening portion 151b that opens on the fixed discharge feeder 152 side, that is, on the lower side in the vertical direction (the lower side in the drawing) in the first embodiment.
  • the granulated body 111 stored in the hopper portion 151a is supplied to the fixed amount discharge feeder 152 through the opening portion 151b.
  • the weighing hopper 151 is provided with a load cell (not shown) so that the mass of the granulated body 111 stored in the hopper 151a can be measured.
  • the load cell is connected to the above-described control unit, and transmits information on the mass of the granulated body 111 stored in the hopper unit 151a of the weighing hopper 151.
  • the fixed discharge feeder 152 is a device that discharges a certain amount of the granulated body 111.
  • the fixed amount discharge feeder 152 includes a rotating plate 155 inside.
  • the rotating plate 155 is provided such that the thickness direction is the vertical direction.
  • the rotating plate 155 has a plurality of through holes 155a penetrating the rotating plate 155 in the thickness direction at positions equidistant from the center.
  • the opening 151b of the hopper 151a is located on the upper side of the rotating plate 155 in the vertical direction.
  • the opening 151b is provided away from the central axis AX of the rotating plate 155 by a distance from the central axis AX to the position where the through hole 155a is formed. That is, the opening 151b is provided so as to sequentially overlap with the plurality of through holes 155a in plan view when the rotating plate 155 is rotated about the central axis AX. Thereby, when the through-hole 155a and the opening 151b overlap in plan view, the granulated body 111 stored in the hopper 151a is filled into the through-hole 155a.
  • the first oxygen inflow pipe 153 has an opening 151b from the central axis AX of the rotating plate 155 on the opposite side of the opening 151b (right side in the drawing) across the central axis AX of the rotating plate 155 on the upper side in the vertical direction of the rotating plate 155.
  • the distance is the same as the distance up to. That is, like the opening 151b, the first oxygen inflow pipe 153 is provided so as to sequentially overlap the plurality of through holes 155a in plan view when the rotating plate 155 is rotated around the central axis AX.
  • Oxygen AR1 flows into the first oxygen inflow pipe 153.
  • the inflow amount of the oxygen AR1 is, for example, 2Nm 3 / h.
  • a granule transport pipe 154 is provided on the lower side in the vertical direction of the fixed amount discharge feeder 152.
  • the granule transport pipe 154 is provided at a position overlapping the first oxygen inflow pipe 153 in plan view.
  • the through hole 155a and the granule transport pipe 154 communicate with each other. .
  • the granulated body 111 with which the inside of the through-hole 155a was filled falls into the inside of the granulated body conveyance pipe
  • the first oxygen inflow pipe 153 and the through hole 155a are also communicated. Therefore, the oxygen AR1 flowing from the first oxygen inflow pipe 153 flows into the granule transport pipe 154 via the through hole 155a. Thereby, the granulated body 111 with which the inside of the through-hole 155a was filled is extruded by the oxygen AR1 in the granule transport pipe 154.
  • the mass of the granulated body 111 discharged from the discharge device 150 is set to be larger than the target value of the mass of the granulated body 111 supplied to the glass melting furnace 180. This is because the mass of the granulated body 111 supplied to the glass melting furnace 180 is smaller than the mass of the granulated body 111 discharged from the discharge device 150 because the granulated body 111 is classified by the vibrating sieve 160. It is to become.
  • the mass of the granulated body 111 discharged from the discharge device 150 is 1.02 times or more and 1.1 times or less the target mass of the granulated body 111 supplied to the glass melting furnace 180.
  • the mass per unit time of the granulated material supplied to the glass melting furnace 180 is 1.02 times or more and 1.1 times or less the target mass of the granulated body 111 supplied to the glass melting furnace 180.
  • requires beforehand the average mass of the fine powder 111b collect
  • the mass of the body 111 may be set. In the first embodiment, for example, during operation of the discharge device 150, the amount of fine powder 111b collected by the vibrating sieve 160 is measured as needed, and the granulated body discharged from the discharge device 150 according to the collected amount.
  • the mass of 111 may be automatically set by sequence control.
  • the fixed discharge feeder 152 is provided with a motor (not shown). By this motor, the rotating plate 155 is rotated around the central axis AX. This motor is controlled by a control unit (not shown) according to the mass of the granulated body 111 stored in the hopper portion 151a of the weighing hopper 151. Thereby, the mass of the granulated body 111 discharged to the granule transport pipe 154 is adjusted, and a certain amount of the granulated body 111 is discharged to the granule transport pipe 154.
  • the control part provided in the fixed quantity discharge feeder 152 may be the same as the control part provided in the reserve hopper 140, and may differ.
  • the granule transport pipe 154 is a pipe connected to the fixed discharge feeder 152 and the vibrating sieve 160.
  • the granulated material discharged from the fixed discharge feeder 152 is transported in the granulated material transport pipe 154 and supplied to the vibrating sieve 160.
  • the granule is transported in the granule transport pipe 154 by dropping due to its own weight and the oxygen AR1 flowing in from the first oxygen inflow pipe 153.
  • the pressure inside the granule transport pipe 154 is set to be larger than the atmospheric pressure.
  • the gauge pressure inside the granule transport pipe 154 is a positive pressure. That is, the granule is pumped through the granule transport pipe 154.
  • the gauge pressure inside the granule transport pipe 154 is set to, for example, 1 kPa or more and 40 kPa or less, and more preferably 3 kPa or more and 15 kPa or less. By setting in this way, it is easy to convey the granulated body.
  • the vibrating sieve 160 is a granulated body supplied from the granulated body transport pipe 154, in other words, the granulated body after being received by the receiving device 110, according to the particle diameter of the particles contained in the granulated body, Classification into first particles and second particles.
  • the first particles are particles conveyed to the glass melting furnace 180 among the granulated particles classified by the vibrating sieve 160.
  • the second particles are particles that are transported to a fine powder storage container or the like, which will be described later, by the fine powder transport device 170 among the granules classified by the vibrating sieve 160.
  • the first particles mainly include coarse powder 111a.
  • the second particles mainly contain fine powder 111b.
  • the average particle size of the second particles is smaller than the average particle size of the first particles.
  • the coarse powder 111a is a particle having an average particle diameter that is preferable as a particle to be supplied to the glass melting furnace 180 as a glass melt forming material to be produced.
  • the average particle diameter of the coarse powder 111a which is the first particle is approximately the same as the average particle diameter of the granulated body. That is, the average particle diameter of the coarse powder 111a is, for example, 200 ⁇ m or more and 2000 ⁇ m or less in the first embodiment.
  • the fine powder 111b has a smaller average particle diameter than the coarse powder 111a and is likely to float in the furnace when supplied to the glass melting furnace 180.
  • the average particle diameter of the fine powder 111b that is the second particle is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the first particles may contain fine powder 111b, and the second particles contain coarse powder 111a. It may be. Moreover, the 1st particle
  • grains may be comprised only with the coarse powder 111a, and the 2nd particle
  • the average particle diameter of the first particles is approximately the same as the average particle diameter of the granulated body although it depends on the average particle diameter of the particles classified as the second particles. This is because the second particles mainly contain fine powder 111b, and the volume ratio of fine powder 111b in the granulated body is sufficiently smaller than the volume ratio of coarse powder 111a in the granulated body.
  • the average particle diameter of the second particles is determined according to the setting of the vibrating sieve 160, that is, the classification target particle diameter described later.
  • the vibrating sieve 160 has, for example, an average particle diameter of the second particles of 10 ⁇ m or more and 100 ⁇ m or less with respect to an average particle diameter of the first particles in the granulated body of 200 ⁇ m or more and 2000 ⁇ m or less. Is set to be
  • the vibration sieve 160 when the vibration sieve 160 is set so that the average particle diameter of the second particles to be classified is smaller than 10 ⁇ m, the effect of classifying and removing the fine powder 111b from the granulated body is small. Moreover, the effect which suppresses the fine powder adhering to the inner wall 184a mentioned later in the glass melting furnace 180 and the discharge path 186a of the flue 186 is small. Moreover, when the vibration sieve 160 is set so that the average particle diameter of the classified second particles is larger than 100 ⁇ m, the mass of the second particles classified from the granulated body by the vibration sieve 160 is increased. For this reason, the mass of the 1st particle supplied to glass melting furnace 180 becomes small, and the yield of glass articles falls.
  • the vibrating sieve 160 so that the average particle diameter of the second particles is 10 ⁇ m or more and 100 ⁇ m or less, the adhesion of the fine powder in the furnace of the glass melting furnace 180 is effectively suppressed, and the glass article Yield reduction can be suppressed.
  • the first particles classified by the vibrating sieve 160 are referred to as coarse powder 111a, and the second particles are referred to as fine powder 111b.
  • the vibration sieve 160 includes a classification container 161, a coarse powder discharge pipe 162, a fine powder discharge pipe 163, a sieve mesh 164, and a vibration unit 165.
  • the classification container 161 is a container into which the granulated material 111 conveyed by the granulated material conveying tube 154 flows.
  • the internal space of the classification container 161 is partitioned into an upper space 161a and a lower space 161b by a sieve screen 164.
  • the granulated body 111 flows from the granulated body transport pipe 154 into the upper space 161a of the classification container 161.
  • the sieve mesh 164 can be selected according to the target value of the particle diameter for classifying the granulated body 111. That is, the opening W1 which is the width of the gap 164a of the sieve mesh 164 is set larger than the classification target particle diameter of the fine powder 111b and smaller than the average particle diameter of the coarse powder 111a.
  • the “classification target particle diameter” is the maximum value of the particle diameter of the particles to be classified as the fine powder 111b.
  • the classification target particle diameter is a value that is a classification target.
  • the fine powder 111b to be classified may include particles having a particle size larger than the classification target particle size.
  • the opening W1 of the sieve mesh 164 is twice or more the classification target particle diameter of the fine powder 111b and smaller than the average particle diameter of the coarse powder 111a.
  • the classification target particle diameter of the fine powder 111b is 50 ⁇ m. That is, the target is to classify particles having a particle diameter of 50 ⁇ m or less as fine powder 111b.
  • the opening W1 of the sieve mesh 164 is, for example, 150 ⁇ m.
  • the classification target particle size is only a target. Therefore, even if it is a case where it sets as mentioned above, the particle
  • the vibration unit 165 is a drive source for vibrating the vibration sieve 160.
  • the specific configuration of the vibration unit 165 is, for example, a configuration including two weights and a motor that rotates the two weights. By changing the phase angle of rotation of each weight of the vibration unit 165, the vibration state of the vibration sieve 160 can be controlled.
  • the phase angle of the vibrating sieve 160 is, for example, 40 ° in the first embodiment.
  • the granulated body 111 flowing into the upper space 161a of the classification container 161 is classified by the vibration generated by the vibration unit 165 and the sieve mesh 164. That is, the fine powder 111b passes through the gap 164a of the sieve mesh 164, falls to the lower space 161b, and is discharged from the fine powder discharge pipe 163 connected to the lower space 161b. Since the coarse powder 111a cannot pass through the gap 164a, it is discharged from the coarse powder discharge pipe 162 connected to the upper space 161a.
  • the oxygen AR1 flowing into the upper space 161a from the granule transport pipe 154 together with the granulated body 111 is closed by a first valve 172a described later in the fine powder transport device 170 connected to the fine powder discharge pipe 163. For this reason, oxygen AR1 flows toward the coarse powder discharge pipe 162 connected to the upper space 161a from the granule conveyance pipe 154. Thereby, the coarse powder 111a discharged from the coarse powder discharge pipe 162 is conveyed to the coarse powder conveying device 174.
  • the pressure inside the vibrating sieve 160 is set to be larger than the atmospheric pressure, similarly to the pressure inside the granule transport pipe 154. That is, the gauge pressure inside the vibrating sieve 160 is set to be a positive pressure.
  • the classifiable mass per unit time of the vibrating sieve 160 is set to be larger than the supply mass of the granulated body 111 per unit time supplied from the granule transport pipe 154. .
  • the classifiable mass is the maximum mass of the granulated body 111 that the vibration sieve 160 can classify per unit time. In the first embodiment, for example, the classifiable mass is set to 1.2 times or more and 2.5 times or less of the supplied mass of the granulated body 111.
  • the fine powder conveying device 170 conveys the fine powder 111b classified by the vibrating sieve 160 to a fine powder storage container or the like (not shown). As shown in FIG. 1, the fine powder conveying device 170 is provided with a pressure replacement unit 172 in the middle of the conveying pipe 171.
  • the conveyance pipe 171 connects the fine powder discharge pipe 163 of the vibrating sieve 160 and a fine powder storage container.
  • the pressure replacement unit 172 includes a first valve 172a and a second valve 172b.
  • the pressure replacement unit 172 includes a first valve 172a and a second valve 172b.
  • the gauge pressure on the vibration sieve 160 side (the upper side in the drawing) with respect to the pressure replacement unit 172 in the transfer pipe 171 is changed to the gauge inside the vibration sieve 160.
  • the fine powder 111b can be conveyed to a fine powder storage container or the like in an atmospheric pressure environment while maintaining the same level as the pressure.
  • the fine powder 111b stored in a fine powder storage container or the like may be reused as a material for forming a granulated body. In this case, the yield of the manufactured glass melt Gf can be improved.
  • the coarse powder conveying device 174 is a device that conveys the coarse powder 111 a classified by the vibrating sieve 160 to the glass melting furnace 180.
  • the coarse powder transfer device 174 includes a connection pipe 175, a second oxygen inflow pipe 176, and a transfer tube 177.
  • the connection pipe 175 is connected to the coarse powder discharge pipe 162 of the vibration sieve 160.
  • a transport tube 177 is connected to the end of the connection pipe 175 opposite to the coarse powder discharge pipe 162 side.
  • the end of the transfer tube 177 opposite to the connecting pipe 175 side is connected to an air melting burner 182 of a glass melting furnace 180 described later.
  • a second oxygen inflow pipe 176 is connected in the vicinity of the end of the connection pipe 175 opposite to the coarse powder discharge pipe 162 side. Oxygen AR2 flows into the second oxygen inflow pipe 176. The oxygen AR2 that has flowed into the second oxygen inflow pipe 176 flows into the transfer tube 177 through the connection pipe 175.
  • the coarse powder 111a is transferred to the glass melting furnace 180 by the oxygen AR1 flowing from the first oxygen inflow pipe 153 and the oxygen AR2 flowing from the second oxygen inflow pipe 176.
  • the pressure inside the coarse powder conveying device 174 is kept higher than the atmospheric pressure, as is the case with the granule conveying tube 154 and the vibrating sieve 160. That is, the gauge pressure inside the coarse powder conveying device 174 is a positive pressure.
  • the value obtained by dividing the mass of the coarse powder 111a (solid) in the transfer tube 177 by the mass of oxygen AR1 and oxygen AR2 (gas), that is, the solid-gas ratio is, for example, about 4 to 10 in the first embodiment. is there.
  • the value of the solid-gas ratio is in this range, the coarse powder 111a can be pumped while reducing the influence on the melting of the coarse powder 111a in the glass melting furnace 180.
  • the coarse powder 111a may stay in the transport tube 177 when transported in the transport tube 177. Therefore, it is preferable to connect the vibrating sieve 160 and the glass melting furnace 180 so that the connecting tube 175 and the transport tube 177 are not provided with a refraction point as much as possible.
  • the glass melting furnace 180 includes a furnace body 181, an air melting burner 182, and a flue 186.
  • the furnace body 181 has a hollow box shape.
  • the furnace body 181 is made of a refractory material such as a refractory brick, and can store a high-temperature glass melt Gf.
  • the bottom side (the lower side in the drawing) of the furnace body 181 serves as a storage portion 185 for the glass melt Gf.
  • the furnace body 181 is configured so that the glass melt Gf stored in the storage unit 185 can be held in a molten state at a target temperature, for example, about 1400 ° C., as necessary.
  • a glass melt discharge port (not shown) is provided at the bottom of the furnace body 181.
  • the manufactured glass melt Gf can be discharged to the outside through the glass melt discharge port.
  • An air melting burner 182 is provided on the ceiling wall portion 183 of the furnace body 181.
  • the in-air melting burner 182 passes through the ceiling wall 183 of the furnace body 181 in the thickness direction (the vertical direction in the figure), and is installed so that the injection side is the storage part 185 side (the lower side in the figure).
  • a tube for conveying fuel gas and combustion support gas is connected to the air melting burner 182.
  • the fuel gas for example, methane, propane, butane, or LPG (Liquid Petroleum Gas) is used.
  • the combustion support gas for example, oxygen or air is used.
  • the in-air melt burner 182 jets the fuel gas, the combustion support gas, and the coarse powder 111a and the oxygens AR1 and AR2 introduced from the transfer tube 177 into the furnace body 181 to form a combustion flame Fc.
  • the combustion flame Fc is formed by the air melting burner 182, thereby forming a high temperature atmosphere. This high temperature atmosphere is formed from the combustion flame Fc and the high temperature part near the combustion flame Fc.
  • combustion flame frame
  • other methods include the case where the plasma region is formed or the case where both the combustion flame and the plasma region are used. In the point of efficiently melting the granulated body, it is more preferable to form a plasma region.
  • the coarse powder 111a ejected into the furnace is melted by the above-described high-temperature atmosphere and is stored in the storage unit 185 as a glass melt Gf.
  • the flue 186 is an exhaust port provided in the side wall portion 184 of the furnace body 181 on the upper side in the vertical direction (the upper side in the drawing) with respect to the glass melting surface 185a of the storage portion 185.
  • An exhaust gas discharge path 186 a is formed inside the flue 186.
  • the discharge path 186 a communicates with a through hole 184 b formed in the side wall part 184 of the furnace body 181.
  • the manufacturing method of the glass melt using the glass melt manufacturing apparatus 100 demonstrated above includes a granule receiving step S11, a granule discharging step S12, a granule classifying step S13, and a coarse powder melting step S14.
  • the glass melt manufacturing method of the first embodiment includes a granule receiving step S11, a granule discharging step S12, a granule classifying step S13, and a coarse powder melting step S14.
  • the granule receiving step S11 is a step of receiving the granule with the receiving device 110.
  • the accepted granulated material is supplied to the discharge device 150 via the reserve hopper 140.
  • the granule discharging step S12 is a step of discharging the granulated material by the discharging device 150.
  • a certain amount of the granulated material is discharged to the granule conveying tube 154 by the discharging device 150.
  • the granulated material discharged to the granulated material transport tube 154 is supplied to the vibrating sieve 160.
  • the granulated body classification step S13 is a step of classifying the granulated body into coarse powder 111a as the first particles and fine powder 111b as the second particles by the vibrating sieve 160.
  • the granulated body is classified into coarse powder 111a and fine powder 111b by the granulated body classification step S13.
  • the coarse powder 111a is conveyed to the glass melting furnace 180 through the coarse powder conveyance device 174.
  • the fine powder 111b is conveyed to a fine powder storage container or the like via the fine powder conveyance device 170.
  • the coarse powder melting step S ⁇ b> 14 is a step in which the coarse powder 111 a classified by the vibrating sieve 160 is melted by the glass melting furnace 180.
  • a high temperature atmosphere is formed inside the furnace body 181 by the air melting burner 182 of the glass melting furnace 180, and the coarse powder 111a ejected from the air melting burner 182 is melted by this high temperature atmosphere.
  • the coarse powder 111a is melted by the coarse powder melting step S14, and the glass melt Gf is stored in the storage unit 185.
  • the glass melt Gf is manufactured by the above process.
  • the vibrating sieve 160 is provided after the discharge device 150. Therefore, the amount of fine powder contained in the particles supplied to the glass melting furnace 180 is reduced, and it is possible to suppress the fine powder from adhering to the inner wall 184a of the side wall portion 184 and the discharge path 186a of the flue 186 in the furnace body 181. . Details will be described below.
  • the fine powder 311b when the fine powder 311b is included in the particles supplied to the glass melting furnace 180, the fine powder 311b is easy to float because the average particle diameter is small and the mass is light, and does not reach the glass melting surface 185a. There is a case. In such a case, there has been a problem that the fine powder 311b adheres as an adhering matter M to the inner wall 184a of the side wall 184 and the discharge path 186a of the flue 186, and the flue 186 is blocked.
  • the product which the forming material of the side wall part 184 and the adhering matter M (fine powder 311b) reacted falls to the storage part 185, and mixes with the glass melt Gf, and the quality of the glass melt Gf will fall. Etc.
  • the coarse powder 111a (first particle) and the fine powder 111b (second particle) are classified from the granulated body, and the coarse powder 111a. Is supplied to the glass melting furnace 180. Thereby, the mass of the fine powder supplied to the glass melting furnace 180 can be reduced. Therefore, according to 1st Embodiment, the glass melt manufacturing apparatus which can suppress that a fine powder adheres to the inner wall 184a of the side wall part 184 in the furnace body 181 and the discharge path 186a of the flue 186 is obtained.
  • the vibrating sieve 160 is provided after the discharge device 150 in which the granule contains the most fine powder, that is, on the downstream side of the discharge device 150.
  • the fine powder can be efficiently excluded from the granulated material supplied to the glass melting furnace 180. Thereby, the mass of the fine powder supplied to the glass melting furnace 180 can be further reduced. Therefore, the stability of the supply amount of the granulated material to the glass melting furnace 180 is high, and fine powder adheres to the inner wall 184a of the side wall portion 184 and the discharge path 186a of the flue 186 in the furnace body 181. Can be suppressed.
  • the knowledge that the granulated body contains the most fine powder 111b was newly clarified by the present inventors.
  • the present inventors have clarified that the fine powder 111b is generated due to a part of the granulated body being broken before the granulated body is conveyed to the glass melting furnace 180. Furthermore, after the discharging device 150, it was clarified that the granulated body contains the most fine powder 111b.
  • the mass of the granulated body per unit time discharged from the discharge device 150 to the vibrating sieve 160 is set to be smaller than the classifiable mass per unit time of the vibrating sieve 160. is doing. For this reason, the discharge
  • the vibrating sieve 160 When a granulated body having a mass that can be classified per unit time is supplied to the vibrating sieve 160, the granulated body tends to stay on the sieve mesh 164 of the vibrating sieve 160. If the granulated material stays on the sieve mesh 164, the gauge pressure in the vibrating sieve 160 tends to become unstable, and the pumping of the coarse powder 111a may become unstable. As a result, the mass per unit time of the coarse powder 111a discharged from the vibrating sieve 160 may become unstable.
  • the supply mass of the granulated material per unit time supplied to the vibrating sieve 160 is made smaller than the classifiable mass per unit time of the vibrating sieve 160.
  • emitted from the vibration sieve 160 can be stabilized.
  • the vibration sieve 160 can be arrange
  • the opening W1 of the sieve mesh 164 is set to be twice or more the classification target particle diameter of the fine powder 111b. Therefore, it is possible to suppress clogging of the granulated body, more specifically, the fine powder 111b passing through the gap 164a in the gap 164a of the sieve mesh 164. Thereby, according to 1st Embodiment, it can suppress that the clearance gap 164a of the sieve mesh 164 is clogged, and a granulation body can retain on the sieve mesh 164, As a result, the coarse powder 111a discharged
  • the oxygen AR1 is introduced into the granule transport pipe 154, it is more stable to supply a certain amount of granule from the discharge device 150 to the vibrating sieve 160.
  • the vibrating sieve 160 is used as a classification device for classifying the granulated body, it is not necessary to suck in an airflow from the outside as in an airflow classifier, for example, which is simple.
  • the pressure substitution unit 172 is provided in the fine powder conveying device 170, when the fine powder 111b is conveyed to a fine powder storage container or the like, the pressure inside the vibrating sieve 160 is reduced. Can be suppressed.
  • the discharge device 150 including the quantitative discharge feeder 152 having the rotating plate 155 is used as the discharge device.
  • the present invention is not limited to this.
  • the discharge device 250 includes a weighing hopper 151 and a screw feeder 252.
  • the screw feeder 252 includes a drive unit 253 and a screw 254.
  • the driving unit 253 gives a rotational driving force around the axis to the rotating shaft 255 of the screw 254.
  • the drive unit 253 is controlled by a control unit (not shown), and the rotation speed is controlled according to the mass of the granulated body accumulated in the weighing hopper 151. Thereby, the mass per unit time of the granulation body discharged
  • the vibration sieve 160 is used as the classification device, but the present invention is not limited to this.
  • a configuration using a cyclone separator 260 as shown in FIG. 7 may be used as the classification device.
  • the cyclone separator 260 includes a main body 261, a granule inflow pipe 262, a fine powder discharge pipe 263, a coarse powder discharge pipe 264, and a rotary valve 265.
  • the main body portion 261 is constituted by a cylindrical container.
  • the oxygen AR1 including the granulated body flows into the main body 261 from the granule inflow pipe 262, the oxygen AR1 including the granulated body flows in a vortex inside the main body 261.
  • the coarse powder 111a with a large average particle diameter contained in the granulated body falls by its own weight, and goes to the coarse powder discharge pipe 264 connected to the end of the main body 261 on the lower side in the vertical direction (lower side in the drawing). Discharged.
  • the coarse powder 111 a discharged to the coarse powder discharge pipe 264 is conveyed to the coarse powder conveying device 174 via the rotary valve 265.
  • the fine powder 111b having a small average particle diameter contained in the granulated body rises in the main body 261 together with the oxygen AR1, and is discharged from a fine powder discharge pipe 263 provided on the upper side in the vertical direction (upper side in the drawing) of the main body 261. Is done. Thereby, a granulated body can be classified into the coarse powder 111a and the fine powder 111b.
  • the discharged fine powder 111b can be collected by, for example, a bag filter.
  • a classification apparatus it is not restricted to the vibration sieve 160 or the cyclone separator 260, What kind of thing is within the range which can classify a granulated body into the coarse powder 111a and the fine powder 111b? A configuration using a classification device may be used.
  • classification device 160 vibrating sieve 160
  • the present invention is not limited to this.
  • 1st Embodiment it is good also as a structure provided with a some classification apparatus.
  • one or two or more classification devices may be provided between the discharge device 150 and the receiving device 110 or at any location in front of the receiving device 110.
  • all the classifiers provided may have the same configuration, or may have different configurations.
  • oxygen AR1 and AR2 are introduced to convey the granulated body after quantification, but the present invention is not limited to this.
  • the granulated body may be transported by the inflow of a gas other than oxygen within a range in which the combustion flame Fc can be formed by the air melt burner 182.
  • the granulated body may be conveyed by flowing a mixed gas of oxygen such as air and nitrogen.
  • a gas flow rate of a certain amount or more is required to improve the classification efficiency. Therefore, from the first oxygen inflow pipe 153 and the second oxygen inflow pipe 176, For example, it is economically preferable to flow in air from a blower or the like.
  • the method of conveying the granulated body after quantification is the pressure feeding by the gas of oxygen AR1 and oxygen AR2, but is not limited thereto.
  • what kind of conveyance method may be sufficient in the range which can convey a granulated body.
  • the glass melting furnace 180 is configured to include the flue 186 as an exhaust port, but is not limited thereto.
  • the glass melting furnace 180 may have any configuration as an exhaust port within a range in which the exhaust in the furnace body 181 is possible.
  • Second Embodiment The second embodiment is different from the first embodiment in that a granulating apparatus 210 is provided.
  • a granulating apparatus 210 is provided.
  • symbol may be attached
  • the glass melt production apparatus 200 of the second embodiment includes a granulation apparatus 210, a reception apparatus 110, a discharge apparatus 150, a granule transport pipe 154, a vibrating sieve 160, and a fine powder A conveying device 170, a coarse powder conveying device 174, and a glass melting furnace 180 are provided.
  • the transfer pipe 171 of the fine powder transfer device 170 is connected to the fine powder storage container 173.
  • the granulator 210 includes a granulator 212 and a dryer 213.
  • the granulator 212 can produce a granulated body by, for example, mixing and hardening a glass raw material composition and water.
  • the dryer 213 is for drying the granulated body produced by the granulator 212 and removing water contained in the granulated body.
  • the dryer 213 is not particularly limited as long as the granulated body can be dried.
  • the fine powder stored in the fine powder storage container 173 may be supplied to the granulator 212. That is, according to the second embodiment, the yield can be improved by supplying fine powder to the granulator 212.
  • the granulator 210 is not restricted to the structure demonstrated above, What kind of structure may be sufficient in the range which can manufacture a granulated body.
  • the third embodiment is different from the first embodiment in that a supply device 310 is provided on the upstream side of the receiving device 110.
  • a supply device 310 is provided on the upstream side of the receiving device 110.
  • symbol may be attached
  • the glass melt production apparatus 300 of 3rd Embodiment is the supply apparatus 310, the receiving apparatus 110, the discharge apparatus 150, the granule conveyance pipe
  • the apparatus 170, the coarse powder conveying apparatus 174, and the glass melting furnace 180 are provided.
  • the supply apparatus 310 divides the granulated body before being received by the receiving apparatus 110 into coarse powder (third particle) and fine powder (fourth particle) having an average particle diameter smaller than the average particle diameter of the coarse powder. Classification is performed, and the coarse powder is supplied to the receiving device 110.
  • the supply device 310 is not particularly limited as long as the granulated body before being received by the receiving device 110 can be classified into coarse powder and fine powder, and is a vibration sieve having the same configuration as the vibration sieve 160. Also good. Moreover, the cyclone separator which has the structure similar to the cyclone separator 260 shown in FIG. 7 may be sufficient.
  • the coarse powder and fine powder classified by the supply device 310 may have the same average particle diameter as the coarse powder 111a and fine powder 111b classified by the vibrating sieve 160, or have different average particle diameters. May be.
  • the coarse powder classified by the supply device 310 is supplied to the receiving device 110 via the coarse powder conveyance device 311.
  • the fine powder classified by the supply device 310 is transported to a fine powder storage container (not shown) or the like via the fine powder transport device 312.
  • Fine powder stored in a fine powder storage container or the like may be reused as a material for forming a granulated body. In this case, the yield of the manufactured glass melt Gf can be improved.
  • the manufacturing method of the glass melt using the glass melt manufacturing apparatus 300 of 3rd Embodiment is a granulated body before granule acceptance process S11 with respect to the manufacturing method of the glass melt in 1st Embodiment.
  • the difference is that the classification step S13 and another classification step are provided.
  • the granulated material before being received by the receiving device 110 is classified into coarse powder and fine powder.
  • the mass can be further reduced. Therefore, according to 3rd Embodiment, the glass melt manufacturing apparatus which can suppress more that fine powder adheres in the inner wall 184a of the side wall part 184 in the furnace body 181 and the discharge path 186a of the flue 186 is obtained.
  • ⁇ Fourth embodiment> Glass melt production equipment 4th Embodiment differs in the position in which the vibration sieve 160 is provided with respect to 1st Embodiment.
  • symbol may be attached
  • the vibrating sieve 160 is provided between the receiving device 110 and the discharging device 150.
  • the granulated material is supplied to the vibrating screen 160 from the receiving device 110, more specifically from the reserve hopper 140.
  • the granulated material supplied to the vibration sieve 160 is classified into coarse powder 111a and fine powder 111b.
  • the coarse powder 111a is supplied to the discharge device 150, and the fine powder 111b is conveyed to a fine powder storage container or the like (not shown).
  • the manufacturing method of the glass melt using the glass melt manufacturing apparatus 400 of 4th Embodiment is a granule classification
  • the vibrating sieve 160 is provided on the upstream side of the discharge device 150, the stability of the supply amount of the granulated material supplied from the discharge device 150 to the glass melting furnace 180 is improved. Can be made.
  • the supply device 310 described in the third embodiment may be provided on the upstream side of the receiving device 110. According to this structure, the mass of the fine powder contained in the granulation body supplied to the glass melting furnace 180 can be further reduced.
  • the first embodiment, the second embodiment, and the fourth embodiment are not provided with the supply device 310 as compared with the third embodiment, and thus the number of glass melt manufacturing steps.
  • the cost can be reduced.
  • since the distance by which a granulated body is conveyed can be shortened compared with 3rd Embodiment, it can suppress that a granulated body breaks and a fine powder generate
  • first embodiment, the second embodiment, and the third embodiment are generated in the discharge device 150 because the vibrating sieve 160 is provided on the downstream side of the discharge device 150 as compared with the fourth embodiment. Fine powder can be removed more effectively.
  • the manufacturing method of the glass article of embodiment has glass melt manufacturing process S21, shaping
  • glass melt manufacturing process S21 is a process of manufacturing glass melt Gf using the glass melt manufacturing apparatus described in the first embodiment, the third embodiment, or the fourth embodiment.
  • molding process S22 is a process of shape
  • the slow cooling step S23 is a step of gradually cooling the molded body to obtain glass.
  • cutting process S24 is a process which cut
  • the glass article G5 is manufactured through the above steps.
  • a polishing step for polishing the cut glass may be provided after the cutting step S24.
  • the glass article is a glass melt or molded product in the middle of the slow cooling step S23, or a molded product after the slow cooling step S23 and after the cutting step S24, with a surface treatment or other processing applied. Including things.
  • a well-known method can be used as a manufacturing method of the above-mentioned glass article. Examples of methods for manufacturing glass articles include float method, down draw method, fusion method, slot down method, redraw method, roll forming method, roll out method, pulling up method, etc. Examples of other production methods include press molding, press blow molding, blow blow molding, and casting.
  • Example 1 it measured about the ratio of the fine powder contained in a granulated body in each measurement point of the glass melt manufacturing apparatus 500 shown in FIG.
  • the glass melt production apparatus 500 is different from the glass melt production apparatus 100 of the first embodiment in that the vibrating sieve 160 and the fine powder conveyance device 170 are not provided.
  • the content of fine powder in the granulated body was measured from the measuring point A to the measuring point D before the granulated body was supplied to the glass melting furnace 180. The measurement was performed twice at each measurement point from measurement point A to measurement point D, and the average and standard error of the fine powder content in the granulated body were obtained.
  • the content rate of the fine powder is mass% of the fine powder at each measurement point with respect to the total mass of the granulated body when the granulated body having a particle diameter of 50 ⁇ m or less is used as the fine powder.
  • the average particle diameter of the granulated body before conveyance was 500 ⁇ m.
  • Measured point A was the upper part of a flexible container bag storing a granulated material (not shown).
  • the measurement point B was set to the lower part of the flexible container bag which stored the granulated body which is not illustrated.
  • the measurement point C was set inside the weighing hopper 151.
  • the measurement point D was set inside the granule transport pipe 154.
  • the vertical axis represents the content of fine powder in the granulated body normalized by the average value at the measurement point A.
  • the plotted points indicate average values, and the lines extending up and down from the plotted points indicate standard errors.
  • Example 2 the glass melt production apparatus 100 of the first embodiment was operated, and the mass of the granulated material supplied from the vibrating sieve to the glass melting furnace was measured. Measurement was performed for the case where the target mass of the granulated material supplied to the glass melting furnace per unit time was set to 190 kg / h and 285 kg / h, respectively.
  • the mass of the granulated material discharged from the discharge device that is, the supplied mass of the granulated material supplied to the vibrating sieve is classified in advance with respect to the target mass of the granulated material supplied to the glass melting furnace.
  • the amount of fine powder collected was measured, and the amount was added.
  • the target particle size of fine powder was 50 ⁇ m.
  • the sieve screen of the vibration sieve was 100 mesh, and the aperture was 150 ⁇ m.
  • the phase angle of the vibrating sieve was 40 °.
  • the classifiable mass of the vibrating sieve was 380 kg / h.
  • the internal gauge pressure from the discharging device to the coarse powder conveying device was set to 4 kPa.
  • the average particle size of the granulated material before conveyance was 500 ⁇ m, and the average particle size of the fine powder collected by the vibrating sieve was 25 ⁇ m.
  • FIG. 14 The result of having measured the mass of the granulated material supplied to a glass melting furnace on the above conditions is shown in FIG.
  • the vertical axis represents the supply mass (kg / h) of the granulated material supplied to the glass melting furnace, and the horizontal axis represents the operation time (minutes) of the glass melt production apparatus.
  • the supply mass was almost constant at each target value.
  • the average supply mass when the target value was 190 kg / h was 190.6 kg / h
  • the average supply mass when the target value was 285 kg / h was 284.8 kg / h.
  • the target supply mass could be achieved.
  • Example 3 In Example 3, using the glass melt production apparatus in Example 2, the content of fine powder contained in the granulated material supplied to the glass melting furnace is determined from the flue according to JIS Z8808 (2013). The exhaust gas was sucked through the filter paper, and the amount collected on the filter paper was measured and determined. At this time, the average particle size of the granulated body before conveyance was 500 ⁇ m. As a comparative example, the content rate of fine powder was measured according to JIS Z8808 (2013) in the same manner as described above, using a glass melt production apparatus that differs only in that no vibrating sieve was provided. The measurement was performed twice at time ⁇ and time ⁇ .
  • the vertical axis indicates the content (%) of fine powder contained in the granulated body supplied to the furnace.
  • the content of fine powder is about 1.4% or more and 1.5% or less.
  • the content of fine powder was about 0.4% or more and 0.5% or less.
  • Example 4 the adhesion state of the fine powder in the flue when the glass melt production apparatus in Example 2 was operated for a long time was observed.
  • the same observation was performed using a glass melt production apparatus that differs only in that no vibrating sieve was provided.
  • the flue was blocked by the adhesion of fine powder in about several hours.
  • the flue was not blocked even when operated for 3 months or more.
  • the glass melt manufacturing apparatus which can suppress that a fine powder adheres to a furnace wall, the inner wall of a flue, etc. can be provided, and it is useful in the manufacturing method of a glass article.
  • 100, 200, 300, 400, 500 ... glass melt production apparatus 110 ... receiving apparatus, 111 ... granulated body, 111a ... coarse powder (first particle), 111b ... fine powder (second particle), 150, 250 ... Discharge device, 160 ... vibrating sieve (classifying device), 164 ... sieve mesh, 180 ... glass melting furnace, 210 ... granulating device, 260 ... cyclone separator, 310 ... feed device, G5 ... glass article, Gf ... glass melt , W1 ... Aperture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

 炉壁や、煙道の内壁等に微粉が付着することを抑制できるガラス溶融物製造装置を提供する。 本発明のガラス溶融物製造装置の一つの態様は、ガラス原料を形成材料とする造粒体を受け入れる受入装置と、受入装置に受け入れられた後の造粒体を、第1粒子と、該第1粒子の平均粒子径よりも小さい平均粒子径を有する第2粒子と、に分級する分級装置と、第1粒子を炉内の高温雰囲気中で溶融するガラス溶融炉と、を備える。

Description

ガラス溶融物製造装置、およびガラス物品の製造方法
 本発明は、ガラス溶融物製造装置、およびガラス物品の製造方法に関する。
 炉内における高温の雰囲気中でガラス原料粒子を溶融し、集積することでガラス溶融物を製造する気中溶解法が知られている(たとえば、特許文献1から3参照)。この気中溶解法では、ガラス原料粒子の大半がプラズマやバーナーなどによって形成されるプラズマ領域中やフレーム中でガラス化する。このため、気中溶解法は、バッチ原料をガラス溶融物上に投入し、そのガラス溶融物上に形成されるバッチ山をバーナーで加熱して溶解する従来の溶解方法とは異なる。
特開2008-100865号公報 特開2009-137780号公報 国際公開第2011/021576号
 上記のような気中溶解法においては、炉内に供給されるガラス原料粒子が造粒体である場合に、たとえば、ガラス原料粒子の一部が壊れること等によって生じた細かい微粉が混在している場合がある。この微粉は、質量が軽く浮遊しやすいため、炉底のガラス融液面に到達せず、排気用の煙道の内壁や、炉壁に付着してしまう場合がある。これにより、煙道が閉塞される問題や、炉壁に付着した微粉と炉材とが反応して生じた反応生成物がガラス溶液面に落下し、製造されるガラス溶融物の品質が低下する問題があった。
 本発明の一つの態様は、上記問題点に鑑みて成されたものであって、炉壁や、煙道の内壁等に微粉が付着することを抑制できるガラス溶融物製造装置、およびそのガラス溶融物製造装置を用いたガラス物品の製造方法を提供することを目的の一つとする。
 本発明者等は、上記課題を解決するために微粉の発生箇所を調べた結果、造粒体を搬送している工程で著しく微粉の割合が増えることを知見した。また、本発明者等は、この知見に基づいて、造粒体を搬送している工程内に微粉を除去する分級装置を設け、さらに以下に示す構成によって、上記課題を解決できることを見出した。
 すなわち、本発明のガラス溶融物製造装置の一つの態様は、ガラス原料を形成材料とする造粒体を受け入れる受入装置と、前記受入装置に受け入れられた後の前記造粒体を、第1粒子と、該第1粒子の平均粒子径よりも小さい平均粒子径を有する第2粒子と、に分級する分級装置と、前記第1粒子を炉内の高温雰囲気中で溶融するガラス溶融炉と、を備える。
 前記受入装置に受け入れられた後で、かつ、前記分級装置で分級される前の前記造粒体を、一定量排出する排出装置を、さらに備える構成としてもよい。
 前記受入装置に受け入れられる前の前記造粒体を、第3粒子と、該第3粒子の平均粒子径よりも小さい平均粒子径を有する第4粒子と、に分級し、前記第3粒子を前記受入装置に供給する供給装置を、さらに備える構成としてもよい。
 前記分級装置は、前記第1粒子の平均粒子径が200μm以上、2000μm以下に対して、前記第2粒子の平均粒子径が10μm以上、100μm以下となる装置である構成としてもよい。
 前記分級装置は、振動篩である構成としてもよい。
 前記振動篩は、分級可能な単位時間あたりの前記造粒体の分級可能質量が、前記分級装置に供給される前記造粒体の単位時間あたりの供給質量の1.2倍以上、2.5倍以下の装置である構成としてもよい。
 前記振動篩は、前記造粒体を分級するための篩網を備え、前記篩網の目開きは、前記第2粒子の分級目標粒子径の2倍以上で、かつ、前記第1粒子の平均粒子径よりも小さい構成としてもよい。
 前記分級装置は、サイクロン分離器である構成としてもよい。
 前記造粒体を製造する造粒装置をさらに備え、前記第2粒子は、前記造粒装置に搬送される構成としてもよい。
 本発明のガラス物品の製造方法の一つの態様は、上記のガラス溶融物製造装置を用いて、前記造粒体を、前記第1粒子と、前記第1粒子の平均粒子径よりも小さい平均粒子径を有する前記第2粒子と、に分級し、前記第1粒子からガラス溶融物を製造する工程と、前記ガラス溶融物を成形して成形体とする工程と、前記成形体を徐冷してガラス物品とする工程と、を含む。
 本発明のガラス物品の製造方法の一つの態様は、ガラス原料を形成材料とする造粒体を定量する工程と、前記造粒体を、第1粒子と、該第1粒子の平均粒子径よりも小さい平均粒子径を有する第2粒子と、に分級する工程と、ガラス溶融炉を用いて、炉内の高温雰囲気中で前記第1粒子を溶融してガラス溶融物を製造する工程と、前記ガラス溶融物を成形して成形体とする工程と、前記成形体を徐冷してガラス物品とする工程と、を含む。
 前記造粒体の第1粒子の平均粒子径が200μm以上、2000μm以下に対して、前記第2粒子は、平均粒子径が10μm以上、100μm以下である製造方法としてもよい。
 前記分級する工程は、前記定量する工程の後である製造方法としてもよい。
 前記分級する工程に加えて、さらに別の分級工程を含む製造方法としてもよい。
 本発明の一つの態様によれば、炉壁や、煙道の内壁等に微粉が付着することを抑制できるガラス溶融物製造装置、およびそのようなガラス溶融物製造装置を用いたガラス物品の製造方法が提供される。
第1実施形態のガラス溶融物製造装置を示す概略構成図である。 第1実施形態の排出装置を示す斜視図である。 第1実施形態の振動篩を示す断面図である。 第1実施形態のガラス溶融物の製造方法を示すフローチャートである。 ガラス溶融炉内における微粉の付着を模式的に示す図である。 第1実施形態の排出装置の他の一例を示す図である。 第1実施形態の分級装置の他の一例を示す図である。 第2実施形態のガラス溶融物製造装置を示す概略構成図である。 第3実施形態のガラス溶融物製造装置を示す概略構成図である。 第4実施形態のガラス溶融物製造装置を示す概略構成図である。 ガラス物品の製造方法の実施形態を示すフローチャートである。 実施例1において計測対象となるガラス溶融物製造装置を示す概略構成図である。 実施例1の結果を示すグラフである。 実施例2の結果を示すグラフである。 実施例3の結果を示すグラフである。
 本明細書において、「ガラス原料」とは、ガラスの原料となる成分であり、「ガラス原料組成物」とは、ガラス原料となる成分を複数含む組成物である。ガラス原料としては、酸化物や複合酸化物、熱分解により酸化物となりうる化合物が挙げられる。熱分解により酸化物となりうる化合物としては、水酸化物、炭酸塩、硝酸塩、硫酸塩、ハロゲン化物などが挙げられる。
 本明細書において、「造粒体」とは、ガラス原料組成物を造粒したものであって、基本的に1個の造粒体中に、ガラスの製造に必要な全ての成分を含む。造粒体は、たとえば1個の造粒体を加熱溶融してガラス化させると、得ようとするガラス組成を有するガラスが得られるものである。
 本明細書において、「平均粒子径」とは、特に断りのない限り、積算分率における50%径(D50)を意味する。D50が1mm以下の場合には、レーザー回折法を用いて測定された体積基準の積算分率における50%径をD50とする。D50が1mm超の場合には、篩で分級して平均粒子径を求める方法(篩分け法)で測定された質量累計の50%径をD50とする。レーザー回折法による粒子径測定方法としては、JIS Z8825-1(2001年)に記載の方法を用いる。
 本明細書において、「上流側」および「下流側」とは、ガラス溶融物製造装置内を搬送される造粒体の流れに対するものである。すなわち、たとえば、本明細書中で説明する各装置の「上流側」とは、各装置における造粒体が供給される側を意味し、各装置の「下流側」とは、各装置における造粒体が排出される側を意味する。
 本明細書において、単に「圧力」といった場合には、絶対真空を基準とした絶対圧を意味し、「ゲージ圧力」といった場合には、大気圧を基準とした相対的な圧力を意味する。
 以下、図面を参照しながら、本発明の実施形態に係るガラス溶融物製造装置、およびガラス物品の製造方法について説明する。
 なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。
<第1実施形態>
(ガラス溶融物製造装置)
 図1に示すように、第1実施形態のガラス溶融物製造装置100は、受入装置110と、排出装置150と、造粒体搬送管154と、振動篩160と、微粉搬送装置170と、粗粉搬送装置174と、ガラス溶融炉180と、を備える。
 なお、振動篩160は、特許請求の範囲における分級装置に相当する。
[受入装置]
 受入装置110は、ガラス原料である造粒体(図示しない。)を、排出装置150に供給するために受け入れる装置である。受入装置110は、リザーブホッパー140を備える。
 造粒体は、たとえば、無アルカリガラスを適用する場合には、珪砂、アルミナ(Al)、ホウ酸(HBO)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)などのガラス原料を目的のガラスの組成に合致するように調合したガラス組成物から構成される。造粒体の大きさは、たとえば、造粒体中の第1粒子の平均粒子径が200μm以上、2000μm以下である。
 造粒体は、コンベアー等によってリザーブホッパー140へと搬送される。
 リザーブホッパー140は、ホッパー部141と、バルブ142と、を備える。ホッパー部141は、リザーブホッパー140に搬送された造粒体を貯蓄する貯蓄槽である。ホッパー部141は、バルブ142を介して、後述する排出装置150の計量ホッパー151と接続されている。第1実施形態においては、計量ホッパー151は、リザーブホッパー140の鉛直方向下方側(図示下側)に設けられている。ホッパー部141に貯蓄された造粒体は、バルブ142が開かれることで、自重によって落下し、計量ホッパー151、すなわち、排出装置150へと供給される。
 バルブ142の開閉動作は、計量ホッパー151に貯蓄されている造粒体の質量に応じて、図示しない制御部によって制御される。すなわち、計量ホッパー151に貯蓄されている造粒体の質量が、規定の値以上である場合には、バルブ142は閉じた状態となっている。これに対して、計量ホッパー151に貯蓄されている造粒体の質量が、規定の値より小さくなった場合には、バルブ142は開かれ、リザーブホッパー140内の造粒体が計量ホッパー151に供給される。計量ホッパー151内の造粒体の質量が規定値以上となると、バルブ142は再び閉じられる。
[排出装置]
 排出装置150は、受入装置110のリザーブホッパー140から供給された造粒体を一定量排出する装置である。言い換えると、排出装置150は、受入装置110に受け入れられた後で、かつ、振動篩160で分級される前の造粒体を、一定量排出する装置である。
 排出装置150は、計量ホッパー151と、定量排出フィーダー152と、第1酸素流入管153と、を備えている。
 なお、本明細書において「一定量」とは、必ずしも厳密に一定の量であることのみを意味するものではなく、ある程度の誤差は許容される。たとえば、目標とする量の0.9倍以上、1.1倍以下程度の誤差は許容される。
 図2に示すように、計量ホッパー151は、内部に設けられたホッパー部151aに、リザーブホッパー140から供給された造粒体111を貯蓄しておく貯蓄槽である。ホッパー部151aは、定量排出フィーダー152側、すなわち、第1実施形態においては鉛直方向下方側(図示下側)に開口した開口部151bを備えている。開口部151bを介して、ホッパー部151aに貯蓄された造粒体111が、定量排出フィーダー152に供給される。
 計量ホッパー151には、図示しないロードセルが設けられており、ホッパー部151aに貯蓄された造粒体111の質量を計量できるようになっている。ロードセルは、上述した制御部に接続され、計量ホッパー151におけるホッパー部151aに貯蓄された造粒体111の質量の情報を送信する。
 定量排出フィーダー152は、一定量の造粒体111を排出する装置である。定量排出フィーダー152は、内部に回転板155を備えている。
 回転板155は、厚み方向が鉛直方向となるように設けられている。回転板155には、中心から等距離の位置に、回転板155を厚み方向に貫通する複数の貫通孔155aが形成されている。
 回転板155の鉛直方向上側には、ホッパー部151aの開口部151bが位置している。開口部151bは、回転板155の中心軸AXに対して、中心軸AXから貫通孔155aが形成されている位置までの距離だけ離れて設けられている。すなわち、開口部151bは、回転板155を中心軸AX回りに回転させると、平面視において、複数の貫通孔155aと順次重なるように設けられている。これにより、貫通孔155aと開口部151bとが、平面視において重なると、ホッパー部151aに貯蓄された造粒体111が、貫通孔155aの内部に充填される。
 第1酸素流入管153は、回転板155の鉛直方向上側における、回転板155の中心軸AXを挟んで開口部151bと逆側(図示右側)に、回転板155の中心軸AXから開口部151bまでの距離と同じ距離だけ離れて設けられている。すなわち、第1酸素流入管153は、開口部151bと同様に、回転板155を中心軸AX回りに回転させると、平面視において、複数の貫通孔155aと順次重なるように設けられている。第1酸素流入管153には、酸素AR1が流入されている。
 第1実施形態において、酸素AR1の流入量は、たとえば、2Nm/hである。
 定量排出フィーダー152の鉛直方向下方側には、造粒体搬送管154が設けられている。造粒体搬送管154は、第1酸素流入管153と、平面視において重なる位置に設けられている。回転板155の回転によって、内部に造粒体111が充填された貫通孔155aの位置が、造粒体搬送管154の位置と重なると、貫通孔155aと造粒体搬送管154とが連通する。これにより、貫通孔155aの内部に充填された造粒体111は、造粒体搬送管154の内部に自重によって落下する。
 また、この際においては、第1酸素流入管153と貫通孔155aとも連通する。そのため、第1酸素流入管153から流入される酸素AR1が貫通孔155aを介して、造粒体搬送管154内に流入する。これにより、貫通孔155aの内部に充填された造粒体111は、酸素AR1によっても、造粒体搬送管154内に押し出される。
 以上により、一定量の造粒体111が、排出装置150から造粒体搬送管154に排出される。第1実施形態においては、排出装置150から排出される造粒体111の質量は、ガラス溶融炉180に供給する造粒体111の質量の目標値より大きく設定される。これは、造粒体111が振動篩160によって分級されることで、ガラス溶融炉180に供給される造粒体111の質量が、排出装置150から排出される造粒体111の質量よりも小さくなるためである。
 第1実施形態においては、たとえば、排出装置150から排出される造粒体111の質量は、ガラス溶融炉180に供給する造粒体111の目標質量の1.02倍以上、1.1倍以下に設定される。このように設定することで、ガラス溶融炉180に供給される造粒体の単位時間あたりの質量を目標値にすることが容易である。
 その他、第1実施形態においては、たとえば、振動篩160によって回収される後述する微粉111bの平均質量をあらかじめ求め、その平均質量を目標質量に加えた質量を、排出装置150から排出される造粒体111の質量に設定してもよい。また、第1実施形態においては、たとえば、排出装置150の運転中に、振動篩160による微粉111bの回収量を随時測定して、その回収量に応じて排出装置150から排出される造粒体111の質量をシーケンス制御により自動設定できるようにしてもよい。
 定量排出フィーダー152には図示しないモーターが備えられている。このモーターによって回転板155が中心軸AX回りに回転される。このモーターは、計量ホッパー151のホッパー部151aに貯蓄された造粒体111の質量に応じて、図示しない制御部によって制御される。これにより、造粒体搬送管154に排出される造粒体111の質量が調整され、一定量の造粒体111が造粒体搬送管154に排出される。
 なお、定量排出フィーダー152に設けられた制御部は、リザーブホッパー140に設けられた制御部と同じであってもよいし、異なっていてもよい。
[造粒体搬送管]
 造粒体搬送管154は、図1に示すように、定量排出フィーダー152と、振動篩160とに接続された配管である。定量排出フィーダー152から排出された造粒体は、造粒体搬送管154内を搬送され、振動篩160に供給される。造粒体は、自重による落下と、第1酸素流入管153から流入された酸素AR1とによって、造粒体搬送管154内を搬送される。
 第1実施形態においては、造粒体搬送管154の内部の圧力は、大気圧よりも大きく設定されている。言い換えると、造粒体搬送管154の内部のゲージ圧力は、正圧である。すなわち、造粒体は、造粒体搬送管154内を圧送される。造粒体搬送管154の内部のゲージ圧力は、第1実施形態においては、たとえば、1kPa以上、40kPa以下と設定され、より好ましくは、3kPa以上、15kPa以下と設定される。このように設定することで、造粒体を搬送することが容易である。
[振動篩]
 振動篩160は、造粒体搬送管154から供給された造粒体、言い換えると、受入装置110に受け入れられた後の造粒体を、造粒体に含まれる粒子の粒子径に応じて、第1粒子と、第2粒子とに分級する。
 第1粒子とは、振動篩160によって分級された造粒体のうち、ガラス溶融炉180に搬送される粒子である。また、第2粒子とは、振動篩160によって分級された造粒体のうち、微粉搬送装置170によって後述する微粉貯蓄容器等に搬送される粒子である。
 第1粒子は、主として粗粉111aを含んでいる。第2粒子は、主として微粉111bを含んでいる。第2粒子の平均粒子径は、第1粒子の平均粒子径よりも小さい。
 粗粉111aは、製造されるガラス溶融物の形成材料としてガラス溶融炉180に供給する粒子として好ましい平均粒子径を有する粒子である。
 ここで、ガラス溶融物製造装置100に供給される造粒体としては、ガラス溶融炉180に供給される粒子として好ましい平均粒子径を有するものが選択される。そのため、第1粒子である粗粉111aの平均粒子径は、造粒体の平均粒子径と同程度である。すなわち、粗粉111aの平均粒子径は、第1実施形態においては、たとえば、200μm以上、2000μm以下である。
 微粉111bは、粗粉111aに比べて平均粒子径が小さく、ガラス溶融炉180に供給された際に、炉内で浮遊しやすい粒子である。
 第2粒子である微粉111bの平均粒子径は、第1実施形態においては、たとえば、10μm以上、100μm以下である。
 第2粒子の平均粒子径が、第1粒子の平均粒子径よりも小さい範囲内において、第1粒子には、微粉111bが含まれていてもよく、第2粒子には、粗粉111aが含まれていてもよい。また、第1粒子は、粗粉111aのみで構成されていてもよく、第2粒子は、微粉111bのみで構成されていてもよい。
 第1粒子の平均粒子径は、第2粒子として分級される粒子の平均粒子径にもよるが、造粒体の平均粒子径と同程度となる。これは、第2粒子は、主として微粉111bを含んでおり、造粒体における微粉111bの体積比率は、造粒体における粗粉111aの体積比率に対して、十分小さいためである。
 第2粒子の平均粒子径は、振動篩160の設定、すなわち、後述する分級目標粒子径に応じて決定される。第1実施形態においては、振動篩160は、たとえば、第2粒子の平均粒子径が、造粒体中の第1粒子の平均粒子径が200μm以上、2000μm以下に対して、10μm以上、100μm以下となるように設定される。
 ここで、分級される第2粒子の平均粒子径が10μmより小さくなるように振動篩160が設定される場合においては、造粒体中から微粉111bを分級して取り除く効果が小さい。また、ガラス溶融炉180における後述する内壁184aや、煙道186の排出経路186aに付着する微粉を抑制する効果が小さい。
 また、分級される第2粒子の平均粒子径が100μmより大きくなるように振動篩160が設定される場合においては、振動篩160によって造粒体から分級される第2粒子の質量が大きくなる。このため、ガラス溶融炉180に供給される第1粒子の質量が小さくなり、ガラス物品の歩留が低下する。
 したがって、第2粒子の平均粒子径が10μm以上、100μm以下となるように振動篩160を設定することにより、ガラス溶融炉180の炉内における微粉の付着を効果的に抑制しつつ、ガラス物品の歩留の低下を抑制できる。
 以下の説明においては、振動篩160によって分級される第1粒子を粗粉111aと呼称し、第2粒子を微粉111bと呼称する。
 図3に示すように、振動篩160は、分級容器161と、粗粉排出管162と、微粉排出管163と、篩網164と、振動部165と、を備えている。
 分級容器161は、造粒体搬送管154によって搬送された造粒体111が流入する容器である。分級容器161の内部空間は、篩網164によって上部空間161aと、下部空間161bと、に仕切られている。造粒体111は、造粒体搬送管154から、分級容器161の上部空間161aに流入される。
 篩網164は、造粒体111を分級する粒子径の目標値に応じて選定できる。すなわち、篩網164の隙間164aの幅である目開きW1は、微粉111bの分級目標粒子径よりも大きく、かつ、粗粉111aの平均粒子径よりも小さく設定される。
 本明細書において、「分級目標粒子径」とは、微粉111bとして分級したい粒子の粒子径の最大値である。
 なお、分級目標粒子径は、あくまで分級の目標となる値である。分級される微粉111bには、分級目標粒子径よりも大きい粒子径を有する粒子が含まれる場合がある。
 第1実施形態においては、篩網164の目開きW1は、微粉111bの分級目標粒子径の2倍以上で、かつ、粗粉111aの平均粒子径よりも小さい。このように設定することで、振動篩160から排出される粗粉111aの単位時間あたりの質量を安定化できる。
 第1実施形態においては、たとえば、微粉111bの分級目標粒子径は、50μmである。すなわち、50μm以下の粒子径を有する粒子を微粉111bとして、分級することを目標としている。第1実施形態においては、篩網164の目開きW1は、たとえば、150μmである。このように設定することで、粗粉111aの排出量を一定にすることが容易である。
 なお、上述したように、分級目標粒子径は、あくまで目標である。そのため、上記のように設定した場合であっても、微粉111bに粒子径が50μmより大きい粒子が含まれる場合がある。
 振動部165は、振動篩160を振動させるための駆動源である。振動部165の具体的な構成は、たとえば、2個の重りと、その2個の重りを回転させるモーターと、を備えた構成である。振動部165の各重りの回転の位相角を変えることで、振動篩160の振動状態を制御できる。振動篩160の位相角は、第1実施形態においては、たとえば、40°である。
 振動部165によって発生する振動と、篩網164とによって、分級容器161の上部空間161aに流入した造粒体111が分級される。すなわち、微粉111bは、篩網164の隙間164aを通過して下部空間161bへと落下し、下部空間161bに接続された微粉排出管163から排出される。粗粉111aは、隙間164aを通過できないため、上部空間161aに接続された粗粉排出管162から排出される。
 造粒体111と共に造粒体搬送管154から上部空間161aに流入した酸素AR1は、微粉排出管163に接続された微粉搬送装置170が後述する第1バルブ172aによって閉塞されている。このため、酸素AR1は、造粒体搬送管154から、上部空間161aに接続された粗粉排出管162に向かって流れる。これにより、粗粉排出管162から排出された粗粉111aは、粗粉搬送装置174へ搬送される。振動篩160の内部の圧力は、造粒体搬送管154の内部の圧力と同様に、大気圧より大きく設定されている。すなわち、振動篩160の内部のゲージ圧力は、正圧となるように設定されている。
 振動篩160の単位時間あたりの分級可能質量は、第1実施形態においては、造粒体搬送管154から供給される単位時間あたりの造粒体111の供給質量よりも大きくなるように設定される。分級可能質量とは、振動篩160が単位時間あたりに分級できる造粒体111の最大質量である。第1実施形態においては、たとえば、分級可能質量は、造粒体111の供給質量の1.2倍以上、2.5倍以下と設定される。
[微粉搬送装置]
 微粉搬送装置170は、振動篩160によって分級された微粉111bを図示しない微粉貯蓄容器等へと搬送する。
 図1に示すように、微粉搬送装置170は、搬送管171の途中に圧力置換部172が設けられている。搬送管171は、振動篩160の微粉排出管163と、微粉貯蓄容器等とを接続している。
 圧力置換部172は、第1バルブ172aと、第2バルブ172bとを備えている。第1バルブ172aと第2バルブ172bとを交互に開閉することによって、搬送管171における圧力置換部172よりも振動篩160側(図示上側)の内部のゲージ圧力を、振動篩160の内部のゲージ圧力と同程度に保ちつつ、大気圧環境下にある微粉貯蓄容器等へと微粉111bを搬送できる。
 微粉貯蓄容器等に貯蓄された微粉111bを、造粒体の形成材料として、再利用してもよい。この場合には、製造されるガラス溶融物Gfの歩留を向上することができる。
[粗粉搬送装置]
 粗粉搬送装置174は、振動篩160によって分級された粗粉111aをガラス溶融炉180へと搬送する装置である。
 粗粉搬送装置174は、接続管175と、第2酸素流入管176と、搬送チューブ177と、を備えている。
 接続管175は、振動篩160の粗粉排出管162に接続されている。接続管175の粗粉排出管162側と逆側の端部には、搬送チューブ177が接続されている。搬送チューブ177の接続管175側と逆側の端部は、後述するガラス溶融炉180の気中溶融バーナー182に接続されている。
 接続管175の粗粉排出管162側と逆側の端部近傍には、第2酸素流入管176が接続されている。第2酸素流入管176には、酸素AR2が流入される。第2酸素流入管176に流入された酸素AR2は、接続管175を介して搬送チューブ177内に流入される。
 すなわち、搬送チューブ177内においては、第1酸素流入管153から流入された酸素AR1と、第2酸素流入管176とから流入された酸素AR2とによって、粗粉111aがガラス溶融炉180へ搬送される。
 粗粉搬送装置174の内部の圧力は、造粒体搬送管154および振動篩160の内部と同様に、大気圧よりも大きく保たれている。すなわち、粗粉搬送装置174の内部のゲージ圧力は、正圧である。
 搬送チューブ177内における粗粉111a(固体)の質量を酸素AR1および酸素AR2(気体)の質量で除した値、すなわち、固気比は、第1実施形態においては、たとえば、4~10程度である。固気比の値がこの程度の範囲である場合には、ガラス溶融炉180における粗粉111aの溶融に与える影響を低減しつつ、粗粉111aを圧送できる。しかし、一方で、固気比の値がこの程度の範囲であっても、搬送チューブ177内を搬送される際に、粗粉111aが搬送チューブ177内に滞留してしまう場合がある。そのため、接続管175と搬送チューブ177とは、なるべく屈折点が設けられないようにして、振動篩160とガラス溶融炉180とを接続することが好ましい。
[ガラス溶融炉]
 ガラス溶融炉180は、図5に示すように、炉体181と、気中溶融バーナー182と、煙道186と、を備えている。
 炉体181は、中空の箱型である。炉体181は、たとえば、耐火レンガなどの耐火材で構成され、高温のガラス溶融物Gfを貯留できる。炉体181の底部側(図示下側)は、ガラス溶融物Gfの貯留部185となっている。炉体181は、必要に応じて貯留部185に貯留されているガラス溶融物Gfを目的の温度、たとえば1400℃程度、に溶融状態で保持できるように構成されている。
 炉体181の底部には、図示しないガラス溶融物排出口が設けられている。ガラス溶融物排出口によって、製造されたガラス溶融物Gfを外部に排出できるようになっている。炉体181の天井壁部183には、気中溶融バーナー182が設けられている。
 気中溶融バーナー182は、炉体181の天井壁部183を厚み方向(図示上下方向)に貫通し、噴射側が貯留部185側(図示下側)となるように設置されている。気中溶融バーナー182には、図示していないが、燃料ガスと支燃ガスとを搬送するチューブが接続される。燃料ガスとしては、たとえば、メタン、プロパン、ブタン、LPG(Liquefied Petroleum Gas)が使用される。支燃ガスとしては、たとえば、酸素、空気が使用される。
 気中溶融バーナー182は、燃料ガスと、支燃ガスと、搬送チューブ177から流入された粗粉111aおよび酸素AR1,AR2とを炉体181の内部に噴出し、燃焼炎Fcを形成する。気中溶融バーナー182によって燃焼炎Fcが形成されることで、高温の雰囲気が形成される。この高温の雰囲気は、燃焼炎Fcおよび燃焼炎Fc近傍の高温部から形成される。
 ここでは、高温の雰囲気として燃焼炎(フレーム)を形成する場合を示したが、その他の方法として、プラズマ領域を形成する場合、あるいは燃焼炎とプラズマ領域との両方を利用する場合も挙げられる。造粒体を効率よく溶融する点において、プラズマ領域を形成する場合がより好ましい。
 上記した高温の雰囲気によって、炉内に噴出された粗粉111aが溶融され、ガラス溶融物Gfとなって貯留部185に貯留される。
 煙道186は、貯留部185のガラス溶融面185aよりも鉛直方向上側(図示上側)の炉体181の側壁部184に設けられた排気口である。煙道186の内部には、排気ガスの排出経路186aが形成されている。排出経路186aは、炉体181の側壁部184に形成された貫通孔184bと連通している。
(ガラス溶融物の製造方法)
 次に、上記説明したガラス溶融物製造装置100を用いたガラス溶融物の製造方法について説明する。
 図4に示すように、第1実施形態のガラス溶融物の製造方法は、造粒体受入工程S11と、造粒体排出工程S12と、造粒体分級工程S13と、粗粉溶融工程S14と、を有する。
 造粒体受入工程S11は、造粒体を受入装置110で受け入れる工程である。受け入れられた造粒体は、リザーブホッパー140を介して、排出装置150に供給される。
 造粒体排出工程S12は、排出装置150によって、造粒体を排出する工程である。
 造粒体排出工程S12により、排出装置150によって一定量の造粒体が造粒体搬送管154に排出される。造粒体搬送管154に排出された造粒体は、振動篩160に供給される。
 造粒体分級工程S13は、振動篩160によって、造粒体を第1の粒子である粗粉111aと、第2の粒子である微粉111bとに分級する工程である。
 造粒体分級工程S13により、造粒体は、粗粉111aと微粉111bとに分級される。粗粉111aは、粗粉搬送装置174を介して、ガラス溶融炉180に搬送される。微粉111bは、微粉搬送装置170を介して、微粉貯蓄容器等に搬送される。
 粗粉溶融工程S14は、振動篩160によって分級された粗粉111aをガラス溶融炉180によって溶融する工程である。
 ガラス溶融炉180の気中溶融バーナー182によって、炉体181の内部に高温の雰囲気を形成し、この高温の雰囲気によって、気中溶融バーナー182から噴出された粗粉111aを溶融する。
 粗粉溶融工程S14により、粗粉111aが溶融され、ガラス溶融物Gfが貯留部185に貯留される。
 以上の工程により、ガラス溶融物Gfが製造される。
 第1実施形態によれば、排出装置150の後に、振動篩160が設けられている。そのため、ガラス溶融炉180に供給される粒子に含まれる微粉の量が低減され、炉体181における側壁部184の内壁184aや、煙道186の排出経路186a内に微粉が付着することを抑制できる。以下、詳細に説明する。
 図5に示すように、ガラス溶融炉180に供給される粒子に微粉311bが含まれる場合には、微粉311bは、平均粒子径が小さく質量が軽いため浮遊しやすく、ガラス溶融面185aに到達しない場合がある。このような場合においては、微粉311bが側壁部184の内壁184aや、煙道186の排出経路186a内に固着物Mとして付着し、煙道186が閉塞されてしまうといった問題があった。また、側壁部184の形成材料と固着物M(微粉311b)とが反応した生成物が貯留部185に落下してガラス溶融物Gfと混ざり、ガラス溶融物Gfの品質が低下してしまうといった問題等もあった。
 これらの問題に対して、第1実施形態のガラス溶融物製造装置100によれば、造粒体から粗粉111a(第1粒子)と微粉111b(第2粒子)とを分級し、粗粉111aをガラス溶融炉180に供給する。これにより、ガラス溶融炉180に供給される微粉の質量を低減することができる。そのため、第1実施形態によれば、炉体181における側壁部184の内壁184aや、煙道186の排出経路186a内に微粉が付着することを抑制できるガラス溶融物製造装置が得られる。
 また、第1実施形態によれば、図1に示すように、造粒体が微粉を最も多く含有する排出装置150の後、すなわち、排出装置150の下流側に振動篩160を設けているため、ガラス溶融炉180に供給される造粒体から微粉を効率的に排除することができる。これにより、ガラス溶融炉180に供給される微粉の質量をさらに低減することができる。そのため、ガラス溶融炉180への造粒体の供給量の安定度が高く、かつ、炉体181における側壁部184の内壁184aや、煙道186の排出経路186a内に微粉が付着することをより抑制できる。
 排出装置150から排出された後において、造粒体に最も多く微粉111bが含有されるという知見は、本発明者らによって新たに明らかとなった。本発明者らは、造粒体がガラス溶融炉180に搬送されるまでの間に、造粒体の一部が壊れる等によって、微粉111bが生じることを明らかにした。さらに、排出装置150の後において、造粒体が最も多くの微粉111bを含有していることを明らかにした。
 また、第1実施形態によれば、排出装置150から振動篩160に排出される単位時間あたりの造粒体の質量が、振動篩160の単位時間あたりの分級可能質量よりも小さくなるように設定している。このため、振動篩160から排出される粗粉111aの単位時間あたりの排出量を安定化することができる。以下、詳細に説明する。
 振動篩160に、単位時間あたりの分級可能質量以上の造粒体を供給すると、造粒体が振動篩160の篩網164上で滞留しやすい。造粒体が篩網164上で滞留すると、これによって振動篩160内におけるゲージ圧力が不安定となりやすく、粗粉111aの圧送が不安定となる場合がある。その結果として、振動篩160から排出される粗粉111aの単位時間あたりの質量が不安定となってしまう場合がある。
 このような場合に対して、第1実施形態によれば、振動篩160に供給される単位時間あたりの造粒体の供給質量を、振動篩160の単位時間あたりの分級可能質量より小さくすることで、造粒体が篩網164上で滞留することを抑制することができる。したがって、第1実施形態によれば、振動篩160から排出される粗粉111aの単位時間あたりの質量を安定化することができる。これにより、一定量の造粒体を排出する排出装置150の後に、振動篩160を配置できる。すなわち、定量化された造粒体を振動篩160によって分級しても、一定量の造粒体(粗粉111a)をガラス溶融炉180に供給することが可能である。
 また、第1実施形態によれば、篩網164の目開きW1は、微粉111bの分級目標粒子径の2倍以上に設定されている。そのため、篩網164の隙間164aに造粒体、より詳細には隙間164aを通過する微粉111bが詰まることを抑制できる。これにより、第1実施形態によれば、篩網164の隙間164aが詰まって造粒体が篩網164上に滞留することを抑制でき、結果として、振動篩160から排出される粗粉111aの単位時間あたりの排出量を安定化できる。
 また、第1実施形態によれば、造粒体搬送管154から微粉搬送装置170までの圧力が、大気圧よりも高い圧力に設定されているため、造粒体が圧送によってガラス溶融炉180まで搬送される。そのため、第1実施形態によれば、造粒体を安定して搬送することが可能である。
 また、第1実施形態によれば、造粒体搬送管154に酸素AR1が流入されているため、排出装置150から振動篩160に一定量の造粒体を供給することが、より安定化される。
 また、第1実施形態によれば、造粒体を分級する分級装置として、振動篩160を用いているため、たとえば、気流分級器のように外部から気流を吸い込む必要がなく、簡便である。
 また、第1実施形態によれば、微粉搬送装置170に圧力置換部172が設けられているため、微粉111bを微粉貯蓄容器等に搬送する際に、振動篩160の内部の圧力が低下することを抑制できる。
 なお、第1実施形態においては、以下の構成を採用することもできる。
 上記説明においては、排出装置として、回転板155を有する定量排出フィーダー152を備える排出装置150を用いる構成としたが、これに限られない。第1実施形態においては、たとえば、排出装置として、図6に示すような、スクリューフィーダー252を備える排出装置250を用いるような構成としてもよい。
 排出装置250は、図6に示すように、計量ホッパー151と、スクリューフィーダー252とを備える。
 スクリューフィーダー252は、駆動部253と、スクリュー254とを備える。
 駆動部253は、スクリュー254の回転軸255に、軸回りの回転駆動力を与える。回転軸255が回転すると、回転軸255に設けられたスクリュー羽根256が回転し、スクリューフィーダー252内に供給された造粒体を、たとえば、図では右側へと搬送する。駆動部253は、図示しない制御部によって制御され、計量ホッパー151に蓄積された造粒体の質量に応じて、回転数が制御される。これにより、造粒体搬送管154へ排出される造粒体の単位時間あたりの質量が定量化される。
 また、上記説明においては、分級装置として、振動篩160を用いる構成としたが、これに限られない。第1実施形態においては、たとえば、分級装置として、図7に示すようなサイクロン分離器260を用いた構成としてもよい。
 サイクロン分離器260は、図7に示すように、本体部261と、造粒体流入管262と、微粉排出管263と、粗粉排出管264と、ロータリーバルブ265と、を備える。
 本体部261は、円筒状の容器から構成される。造粒体を含んだ酸素AR1が、造粒体流入管262から本体部261に流入されると、造粒体を含んだ酸素AR1は、本体部261の内部で渦を巻くように流れる。そして、造粒体に含まれる平均粒子径の大きい粗粉111aは、自重により落下し、本体部261の鉛直方向下方側(図示下側)の端部に接続された粗粉排出管264へと排出される。粗粉排出管264へと排出された粗粉111aは、ロータリーバルブ265を介して、粗粉搬送装置174へと搬送される。
 一方、造粒体に含まれる平均粒子径の小さい微粉111bは、酸素AR1と共に本体部261内を上昇し、本体部261の鉛直方向上方側(図示上側)に設けられた微粉排出管263から排出される。これにより、造粒体を粗粉111aと微粉111bとに分級することができる。排出された微粉111bは、たとえば、バグフィルターで捕集することができる。
 また、第1実施形態においては、分級装置として、振動篩160や、サイクロン分離器260に限られるものではなく、造粒体を粗粉111aと微粉111bとに分級できる範囲内において、どのような分級装置を用いる構成としてもよい。
 また、上記説明においては、分級装置(振動篩160)が1つだけ設けられている構成としたが、これに限られない。第1実施形態においては、複数の分級装置を備える構成としてもよい。その場合においては、たとえば、排出装置150と受入装置110との間や、受入装置110の前のいずれかの箇所等に、1つ、または2つ以上の分級装置が設けられていてもよい。その場合において、設けられる分級装置は、すべて同じ構成を有するものであってもよいし、異なる構成を有するものであってもよい。
 また、上記説明においては、定量された後の造粒体を搬送するために酸素AR1,AR2を流入する構成としたが、これに限られない。第1実施形態においては、たとえば、造粒体は、気中溶融バーナー182による燃焼炎Fcの形成が可能な範囲内で、酸素以外のガスの流入によって搬送されてもよい。第1実施形態においては、たとえば、空気のような酸素と窒素等との混合ガスが流入されることによって造粒体が搬送されてもよい。また、サイクロン分離器260を分級装置として用いる場合には、分級効率を高めるために一定量以上のガス流量が必要であることから、第1酸素流入管153および第2酸素流入管176からは、たとえば、ブロアー等からの空気を流入させることが経済的に好ましい。
 また、上記説明においては、定量された後の造粒体の搬送方法は、酸素AR1、酸素AR2のガスによる圧送としたが、これに限られない。第1実施形態においては、造粒体を搬送できる範囲内において、どのような搬送方法であってもよい。
 また、上記説明においては、ガラス溶融炉180は、排気口として煙道186を備える構成としたが、これに限られない。第1実施形態において、ガラス溶融炉180は、炉体181内の排気が可能である範囲内において、排気口としてどのような構成のものを備えていてもよい。
<第2実施形態>
 第2実施形態は、第1実施形態に対して、造粒装置210が設けられている点において異なる。
 なお、第1実施形態と同様の構成については、図面において同一の符号を付し、説明を省略する場合がある。
 図8に示すように、第2実施形態のガラス溶融物製造装置200は、造粒装置210と、受入装置110と、排出装置150と、造粒体搬送管154と、振動篩160と、微粉搬送装置170と、粗粉搬送装置174と、ガラス溶融炉180と、を備える。
 第2実施形態においては、微粉搬送装置170の搬送管171は、微粉貯蓄容器173に接続されている。
[造粒装置]
 造粒装置210は、造粒機212と、乾燥機213と、を備えている。
 造粒機212は、第2実施形態においては、たとえば、ガラス原料組成物と水とを混合して固めることによって造粒体を製造できるものである。
 乾燥機213は、造粒機212によって製造された造粒体を乾燥させ、造粒体に含まれる水分を除去するものである。乾燥機213としては、造粒体を乾燥させることができる範囲内において、特に限定されない。
 第2実施形態においては、図8に矢印で示すように、微粉貯蓄容器173に貯蓄された微粉を、造粒機212に供給するような構成とすることができる。すなわち、第2実施形態によれば、微粉を造粒機212に供給することで、歩留を向上できる。
 なお、第2実施形態において、造粒装置210は、上記説明した構成に限られるものではなく、造粒体を製造できる範囲内において、どのような構成であってもよい。
<第3実施形態>
(ガラス溶融物製造装置)
 第3実施形態は、第1実施形態に対して、受入装置110の上流側に供給装置310が設けられている点において異なる。
 なお、第1実施形態と同様の構成については、図面において同一の符号を付し、説明を省略する場合がある。
 図9に示すように、第3実施形態のガラス溶融物製造装置300は、供給装置310と、受入装置110と、排出装置150と、造粒体搬送管154と、振動篩160と、微粉搬送装置170と、粗粉搬送装置174と、ガラス溶融炉180と、を備える。
[供給装置]
 供給装置310は、受入装置110に受け入れられる前の造粒体を、粗粉(第3粒子)と、粗粉の平均粒子径よりも小さい平均粒子径を有する微粉(第4粒子)と、に分級し、粗粉を受入装置110に供給する。
 供給装置310は、受入装置110に受け入れられる前の造粒体を、粗粉と、微粉と、に分級できる範囲内において特に限定されず、振動篩160と同様の構成を有する振動篩であってもよい。また、図7に示すサイクロン分離器260と同様の構成を有するサイクロン分離器であってもよい。
 供給装置310によって分級される粗粉および微粉は、振動篩160によって分級される粗粉111aおよび微粉111bと、同様の平均粒子径を有していてもよいし、異なる平均粒子径を有していてもよい。
 供給装置310によって分級された粗粉は、粗粉搬送装置311を介して受入装置110に供給される。供給装置310によって分級された微粉は、微粉搬送装置312を介して、図示しない微粉貯蓄容器等に搬送される。微粉貯蓄容器等に貯蓄された微粉を、造粒体の形成材料として、再利用してもよい。この場合には、製造されるガラス溶融物Gfの歩留を向上することができる。
(ガラス溶融物の製造方法)
 第3実施形態のガラス溶融物製造装置300を用いたガラス溶融物の製造方法は、第1実施形態におけるガラス溶融物の製造方法に対して、造粒体受入工程S11の前に、造粒体分級工程S13と別の分級工程を有している点において異なる。
 第3実施形態によれば、振動篩160による分級に加えて、受入装置110に受け入れられる前の造粒体を、粗粉と微粉とに分級するため、ガラス溶融炉180に供給される微粉の質量をさらに低減することができる。したがって、第3実施形態によれば、炉体181における側壁部184の内壁184aや、煙道186の排出経路186a内に微粉が付着することを、より抑制できるガラス溶融物製造装置が得られる。
<第4実施形態>
(ガラス溶融物製造装置)
 第4実施形態は、第1実施形態に対して、振動篩160の設けられている位置が異なる。
 なお、第1実施形態と同様の構成については、図面において同一の符号を付し、説明を省略する場合がある。
 図10に示すように、第4実施形態のガラス溶融物製造装置400においては、振動篩160は、受入装置110と、排出装置150との間に設けられている。
 造粒体は、受入装置110、より詳細には、リザーブホッパー140から、振動篩160に供給される。振動篩160に供給された造粒体は、粗粉111aと、微粉111bとに分級される。粗粉111aは、排出装置150へと供給され、微粉111bは、図示しない微粉貯蓄容器等に搬送される。
(ガラス溶融物の製造方法)
 第4実施形態のガラス溶融物製造装置400を用いたガラス溶融物の製造方法は、第1実施形態におけるガラス溶融物の製造方法に対して、造粒体分級工程S13が、造粒体排出工程S12よりも前に設けられている点において異なる。
 第4実施形態によれば、振動篩160が排出装置150よりも上流側に設けられているため、排出装置150からガラス溶融炉180へと供給される造粒体の供給量の安定度を向上させることができる。
 なお、第4実施形態においては、受入装置110の上流側に、第3実施形態において説明した供給装置310が設けられていてもよい。この構成によれば、ガラス溶融炉180に供給される造粒体に含まれる微粉の質量をさらに低減することができる。
 上記説明した各実施形態において、第1実施形態、第2実施形態、および第4実施形態は、第3実施形態に比べて、供給装置310が設けられていないため、ガラス溶融物の製造工程数を少なくでき、コストを削減できる。また、第1実施形態および第4実施形態においては、第3実施形態に比べて造粒体が搬送される距離を短くできるため、造粒体が壊れて微粉が発生することを抑制できる。
 また、第1実施形態、第2実施形態、および第3実施形態は、第4実施形態に比べて、排出装置150の下流側に振動篩160が設けられているため、排出装置150で発生した微粉をより効果的に取り除くことができる。
<ガラス物品の製造方法の実施形態>
 図11に示すように、実施形態のガラス物品の製造方法は、ガラス溶融物製造工程S21と、成形工程S22と、徐冷工程S23と、切断工程S24と、を有する。
 まず、ガラス溶融物製造工程S21は、第1実施形態、第3実施形態、または第4実施形態において述べたガラス溶融物の製造装置を用いてガラス溶融物Gfを製造する工程である。
 次に、成形工程S22は、製造されたガラス溶融物Gfを成形装置によって目的の形状の成形体に成形する工程である。
 次に、徐冷工程S23は、その成形体を徐冷し、ガラスとする工程である。
 次に、切断工程S24は、徐冷された成形体を必要な長さに切断する工程である。
 以上の工程により、ガラス物品G5が製造される。
 なお、必要に応じて、切断工程S24の後に、切断されたガラスを研磨する研磨工程を設けてもよい。また、ガラス物品は、徐冷工程S23の途中のガラス溶融物もしくは成形体、または徐冷工程S23の後および切断工程S24の後の成形体に、表面処理等の加工をしたものやフィルムを貼ったものを含む。
 また、前述のガラス物品の製造方法としては、公知の方法を用いることができる。ガラス物品の製造方法の例として、主に帯板状のガラスを成形する方法としてフロート法、ダウンドロー法、フュージョン法、スロットダウン法、リドロー法、ロール成形法、ロールアウト法や引き上げ法等を挙げることができ、その他の製造方法としてプレス成形法、プレスブロー成形法、ブローブロー成形法、鋳造法等が挙げられる。
<実施例1>
 実施例1では、図12に示すガラス溶融物製造装置500の各計測点において、造粒体に含まれる微粉の割合について計測を行った。ガラス溶融物製造装置500は、第1実施形態のガラス溶融物製造装置100に対して、振動篩160と微粉搬送装置170とが設けられていない点において異なる。
 造粒体がガラス溶融炉180に供給される前までの計測点Aから計測点Dまでについて、造粒体における微粉の含有率の計測を行った。計測は、計測点Aから計測点Dまでの各計測点において、それぞれ2回ずつ行い、造粒体における微粉の含有率の平均と標準誤差とを求めた。ここで、微粉の含有率は、粒子径が50μm以下の造粒体を微粉としたときの造粒体の全質量に対する各計測点での微粉の質量%である。搬送前の造粒体の平均粒子径は500μmであった。
 計測点Aは、図示していない造粒体を貯蔵したフレキシブルコンテナバッグの上部とした。計測点Bは、図示していない造粒体を貯蔵したフレキシブルコンテナバッグの下部とした。計測点Cは、計量ホッパー151の内部とした。計測点Dは、造粒体搬送管154の内部とした。
 計測結果を図13に示す。図13において縦軸は、計測点Aにおける平均値で規格化された造粒体における微粉の含有率である。図13においては、プロットされた点が平均値を示し、プロットされた点から上下に延びる線が標準誤差を示している。
 図13より、造粒体における微粉の含有率は、ガラス溶融物製造装置500において造粒体が搬送されていくに従って、概ね増加していることが確かめられた。そして、計測点Dにおいて、造粒体における微粉の含有率は最も大きいことが確かめられた。すなわち、定量排出フィーダー152(排出装置150)から排出された後の造粒体に、最も多く微粉が含有されていることが確かめられた。
<実施例2>
 実施例2においては、第1実施形態のガラス溶融物製造装置100を稼働させ、振動篩からガラス溶融炉へと供給される造粒体の質量について計測を行った。
 ガラス溶融炉へと単位時間あたりに供給する造粒体の目標質量を、190kg/hと、285kg/hとにそれぞれ設定した場合について計測を行った。
 排出装置から排出される造粒体の質量、すなわち、振動篩に供給される造粒体の供給質量は、ガラス溶融炉へと供給される造粒体の目標質量に対して、あらかじめ分級して回収した微粉の量を計測し、その量を上乗せした量とした。
 振動篩において、微粉の分級目標粒子径は、50μmとした。振動篩の篩網は、100メッシュで、目開きが150μmとした。振動篩の位相角は、40°とした。振動篩の分級可能質量は、380kg/hであった。
 排出装置から粗粉搬送装置までにおける内部のゲージ圧力は、4kPaと設定した。第1酸素流入口から流入させる酸素を、2Nm/hとし、第2酸素流入口から流入させる酸素を、13Nm/hとした。この際の搬送前の造粒体の平均粒子径は、500μmであり、振動篩によって回収された微粉の平均粒子径は、25μmであった。
 以上のような条件でガラス溶融炉へと供給される造粒体の質量を測定した結果を図14に示す。図14において、縦軸は、ガラス溶融炉に供給される造粒体の供給質量(kg/h)を表しており、横軸は、ガラス溶融物製造装置の運転時間(分)を示している。
 図14より、各目標値において、ほぼ一定の供給質量となっていることが確かめられた。また、目標値を190kg/hとした場合の平均供給質量は、190.6kg/hであり、目標値を285kg/hとした場合の平均供給質量は、284.8kg/hであった。これにより、ほぼ目標値の供給質量を実現できていることが確かめられた。
 以上により、排出装置の後に振動篩を配置しても、一定量の造粒体をガラス溶融炉に供給するのに支障がないことが確認された。
<実施例3>
 実施例3では、実施例2におけるガラス溶融物製造装置を用いて、ガラス溶融炉に供給される造粒体に含まれる微粉の含有率を、JIS Z8808(2013年)に準じて、煙道からの排気ガスを、ろ紙を通して吸引し、ろ紙に捕集された量を計測して求めた。この際の搬送前の造粒体の平均粒子径は、500μmであった。比較例として、振動篩が設けられていない点においてのみ異なるガラス溶融物製造装置を用いて、上記と同様に、JIS Z8808(2013年)に準じて、微粉の含有率を計測した。計測は、時刻αおよび時刻βとの2回行った。
 結果を図15に示す。図15においては、縦軸は、炉に供給される造粒体に含まれる微粉の含有率(%)を示している。図15から、時刻αおよび時刻βのいずれにおいても、振動篩なしの場合、すなわち比較例においては、微粉の含有率が1.4%以上、1.5%以下程度あるのに対して、振動篩ありの場合、すなわち本発明の実施例においては、微粉の含有率が0.4%以上、0.5%以下程度であることが確かめられた。これにより、本発明によれば、ガラス溶融炉に供給される微粉を低減できることが確かめられた。
<実施例4>
 実施例4では、実施例2におけるガラス溶融物製造装置を長時間稼働させた際における、煙道内の微粉の付着状態について観察を行った。比較例として、振動篩が設けられていない点においてのみ異なるガラス溶融物製造装置を用いて、同様の観察を行った。
 その結果、振動篩が設けられていない比較例のガラス溶融物製造装置においては、数時間程度で煙道が微粉の付着によって閉塞されてしまった。これに対して、本発明の実施例であるガラス溶融物製造装置では、3か月以上稼働させた場合であっても、煙道が閉塞されることがなかった。
 このことから、本発明によれば、煙道の内部に微粉が付着することを抑制できるガラス溶融物製造装置が得られることが確かめられた。
 本発明によれば、炉壁や、煙道の内壁等に微粉が付着することを抑制できるガラス溶融物製造装置を提供することができ、ガラス物品の製造方法において有用である。
 なお、2013年12月13日に出願された日本特許出願2013-257955号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 100,200,300,400,500…ガラス溶融物製造装置、110…受入装置、111…造粒体、111a…粗粉(第1粒子)、111b…微粉(第2粒子)、150,250…排出装置、160…振動篩(分級装置)、164…篩網、180…ガラス溶融炉、210…造粒装置、260…サイクロン分離器、310…供給装置、G5…ガラス物品、Gf…ガラス溶融物、W1…目開き

Claims (14)

  1.  ガラス原料を形成材料とする造粒体を受け入れる受入装置と、
     前記受入装置に受け入れられた後の前記造粒体を、第1粒子と、該第1粒子の平均粒子径よりも小さい平均粒子径を有する第2粒子と、に分級する分級装置と、
     前記第1粒子を炉内の高温雰囲気中で溶融するガラス溶融炉と、
     を備えるガラス溶融物製造装置。
  2.  前記受入装置に受け入れられた後で、かつ、前記分級装置で分級される前の前記造粒体を、一定量排出する排出装置を、さらに備える請求項1に記載のガラス溶融物製造装置。
  3.  前記受入装置に受け入れられる前の前記造粒体を、第3粒子と、該第3粒子の平均粒子径よりも小さい平均粒子径を有する第4粒子と、に分級し、前記第3粒子を前記受入装置に供給する供給装置を、さらに備える請求項1または2に記載のガラス溶融物製造装置。
  4.  前記分級装置は、前記第1粒子の平均粒子径が200μm以上、2000μm以下に対して、前記第2粒子の平均粒子径が10μm以上、100μm以下となる装置である請求項1から3のいずれか一項に記載のガラス溶融物製造装置。
  5.  前記分級装置は、振動篩である請求項1から4のいずれか一項に記載のガラス溶融物製造装置。
  6.  前記振動篩は、分級可能な単位時間あたりの前記造粒体の分級可能質量が、前記分級装置に供給される前記造粒体の単位時間あたりの供給質量の1.2倍以上、2.5倍以下の装置である請求項5に記載のガラス溶融物製造装置。
  7.  前記振動篩は、前記造粒体を分級するための篩網を備え、
     前記篩網の目開きは、前記第2粒子の分級目標粒子径の2倍以上で、かつ、前記第1粒子の平均粒子径よりも小さい請求項5または6に記載のガラス溶融物製造装置。
  8.  前記分級装置は、サイクロン分離器である請求項1から4のいずれか一項に記載のガラス溶融物製造装置。
  9.  前記造粒体を製造する造粒装置をさらに備え、
     前記第2粒子は、前記造粒装置に搬送される請求項1から8のいずれか一項に記載のガラス溶融物製造装置。
  10.  請求項1から9のいずれか一項に記載のガラス溶融物製造装置を用いて、前記造粒体を、前記第1粒子と、前記第1粒子の平均粒子径よりも小さい平均粒子径を有する前記第2粒子と、に分級し、前記第1粒子からガラス溶融物を製造する工程と、
     前記ガラス溶融物を成形して成形体とする工程と、
     前記成形体を徐冷してガラス物品とする工程と、
     を含むガラス物品の製造方法。
  11.  ガラス原料を形成材料とする造粒体を定量する工程と、
     前記造粒体を、第1粒子と、該第1粒子の平均粒子径よりも小さい平均粒子径を有する第2粒子と、に分級する工程と、
     ガラス溶融炉を用いて、炉内の高温雰囲気中で前記第1粒子を溶融してガラス溶融物を製造する工程と、
     前記ガラス溶融物を成形して成形体とする工程と、
     前記成形体を徐冷してガラス物品とする工程と、
     を含むガラス物品の製造方法。
  12.  前記第1粒子の平均粒子径が200μm以上、2000μm以下に対して、前記第2粒子は、平均粒子径が10μm以上、100μm以下である請求項10または11に記載のガラス物品の製造方法。
  13.  前記分級する工程は、前記定量する工程の後である請求項11または12に記載のガラス物品の製造方法。
  14.  前記分級する工程に加えて、さらに別の分級工程を含む請求項11から13のいずれか一項に記載のガラス物品の製造方法。
PCT/JP2014/082558 2013-12-13 2014-12-09 ガラス溶融物製造装置、およびガラス物品の製造方法 WO2015087878A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167012096A KR20160096591A (ko) 2013-12-13 2014-12-09 유리 용융물 제조 장치, 및 유리 물품의 제조 방법
CN201480066919.9A CN105980318A (zh) 2013-12-13 2014-12-09 玻璃熔融物制造装置及玻璃物品的制造方法
JP2015552464A JP6540513B2 (ja) 2013-12-13 2014-12-09 ガラス溶融物製造装置、およびガラス物品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013257955 2013-12-13
JP2013-257955 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015087878A1 true WO2015087878A1 (ja) 2015-06-18

Family

ID=53371180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082558 WO2015087878A1 (ja) 2013-12-13 2014-12-09 ガラス溶融物製造装置、およびガラス物品の製造方法

Country Status (5)

Country Link
JP (1) JP6540513B2 (ja)
KR (1) KR20160096591A (ja)
CN (1) CN105980318A (ja)
TW (1) TWI639567B (ja)
WO (1) WO2015087878A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912266A (zh) * 2021-11-22 2022-01-11 河北兹尔新材料科技有限公司 一种适用于玻璃生产的原料熔化机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037632A (ja) * 2000-07-26 2002-02-06 Asahi Glass Co Ltd ガラスの製造方法
WO2006051953A1 (ja) * 2004-11-15 2006-05-18 Nippon Sheet Glass Company, Limited ガラス物品の製造方法
JP2009298648A (ja) * 2008-06-13 2009-12-24 Kanyoo:Kk 薄板ガラス原料の製造方法
WO2012039327A1 (ja) * 2010-09-24 2012-03-29 旭硝子株式会社 ガラス原料造粒体の製造方法およびガラス製品の製造方法
JP2012096941A (ja) * 2010-10-29 2012-05-24 Asahi Glass Co Ltd 気中溶融バーナー、ガラス原料の溶融方法、溶融ガラスの製造方法、ガラスビーズの製造方法、ガラス製品の製造方法、気中溶融装置およびガラス製品の製造装置
WO2013129404A1 (ja) * 2012-02-28 2013-09-06 旭硝子株式会社 造粒体およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624971B2 (ja) 2006-10-18 2011-02-02 大同特殊鋼株式会社 ガラス溶解装置
JP5094352B2 (ja) 2007-12-04 2012-12-12 大同特殊鋼株式会社 ガラス溶解装置
CN102482132B (zh) 2009-08-20 2014-08-06 旭硝子株式会社 玻璃熔融炉、熔融玻璃的制造方法、玻璃制品的制造装置以及玻璃制品的制造方法
CN103648991B (zh) * 2011-07-19 2016-08-24 旭硝子株式会社 熔融玻璃的制造方法和玻璃制品的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037632A (ja) * 2000-07-26 2002-02-06 Asahi Glass Co Ltd ガラスの製造方法
WO2006051953A1 (ja) * 2004-11-15 2006-05-18 Nippon Sheet Glass Company, Limited ガラス物品の製造方法
JP2009298648A (ja) * 2008-06-13 2009-12-24 Kanyoo:Kk 薄板ガラス原料の製造方法
WO2012039327A1 (ja) * 2010-09-24 2012-03-29 旭硝子株式会社 ガラス原料造粒体の製造方法およびガラス製品の製造方法
JP2012096941A (ja) * 2010-10-29 2012-05-24 Asahi Glass Co Ltd 気中溶融バーナー、ガラス原料の溶融方法、溶融ガラスの製造方法、ガラスビーズの製造方法、ガラス製品の製造方法、気中溶融装置およびガラス製品の製造装置
WO2013129404A1 (ja) * 2012-02-28 2013-09-06 旭硝子株式会社 造粒体およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912266A (zh) * 2021-11-22 2022-01-11 河北兹尔新材料科技有限公司 一种适用于玻璃生产的原料熔化机构

Also Published As

Publication number Publication date
JP6540513B2 (ja) 2019-07-10
KR20160096591A (ko) 2016-08-16
JPWO2015087878A1 (ja) 2017-03-16
CN105980318A (zh) 2016-09-28
TWI639567B (zh) 2018-11-01
TW201532990A (zh) 2015-09-01

Similar Documents

Publication Publication Date Title
CN103331194B (zh) 加工霞石正长岩粉末以生产超细粒径产品的方法
EP1457268B1 (en) Separation method and separation device
CN103702799A (zh) 喷丸处理装置
JP2009160507A (ja) 廃石膏リサイクルプラント及び廃石膏リサイクル方法
JP5634198B2 (ja) 砕砂、砕石生産システム
JP2009061357A (ja) 製砂装置、製砂方法及び製砂
CN103764290A (zh) 辊磨机
US8540174B2 (en) Method for producing powder and fluidized bed pulverizing apparatus
US10233118B2 (en) Device for expansion of sand grain-shaped raw material
JP4625130B2 (ja) 気流分離装置
WO2015087878A1 (ja) ガラス溶融物製造装置、およびガラス物品の製造方法
KR20170055479A (ko) 분체 공급기, 성막 장치 및 성막 방법
US20180243798A1 (en) Closed-Loop Centrifugal Air Classifying System and Method for Utilizing the Same
EP2895278A1 (en) Method and apparatus for handling of material classified as waste, product manufactured by the method and use of the product
US7441716B2 (en) Aluminum recovering dry system and process
RU2618757C2 (ru) Способ и устройство для изготовления стеклянных полых сфер
KR102395420B1 (ko) 분체의 분급 장치 및 분급 시스템
KR100479409B1 (ko) 분쇄시스템
JP3853251B2 (ja) 定量フィーダ機構とその機構付きシステム装置
JP6399265B1 (ja) コンベアシステム
CN207272190U (zh) 超细锡粉处理装置
JP2011165476A (ja) 電極材料製造装置
JP4297889B2 (ja) ハングリー射出成形方法およびハングリー射出成形装置
KR20130035765A (ko) 미분탄 공급 시스템
KR20170018311A (ko) 금속 복합 산화물 미립자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552464

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167012096

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869415

Country of ref document: EP

Kind code of ref document: A1