WO2015087813A1 - 粉体プライマー組成物及びそれを用いた積層体 - Google Patents

粉体プライマー組成物及びそれを用いた積層体 Download PDF

Info

Publication number
WO2015087813A1
WO2015087813A1 PCT/JP2014/082312 JP2014082312W WO2015087813A1 WO 2015087813 A1 WO2015087813 A1 WO 2015087813A1 JP 2014082312 W JP2014082312 W JP 2014082312W WO 2015087813 A1 WO2015087813 A1 WO 2015087813A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
primer composition
epoxy resin
layer
etfe
Prior art date
Application number
PCT/JP2014/082312
Other languages
English (en)
French (fr)
Inventor
星川 潤
舘 範治
等 諏佐
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015552428A priority Critical patent/JP6519481B2/ja
Priority to CN201480067399.3A priority patent/CN105814152B/zh
Priority to EP14869710.5A priority patent/EP3081608B1/en
Priority to KR1020167013462A priority patent/KR102329381B1/ko
Publication of WO2015087813A1 publication Critical patent/WO2015087813A1/ja
Priority to US15/096,550 priority patent/US10113068B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/04Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C09D127/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/031Powdery paints characterised by particle size or shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size

Definitions

  • the present invention relates to a powder primer composition and a laminate using the same.
  • Ethylene / tetrafluoroethylene copolymers are excellent in heat resistance, chemical resistance, weather resistance, gas barrier properties, etc., and are used in various fields such as semiconductor industry, automobile industry, and chemical industry. Used in.
  • the pellet-like ETFE particles are processed into various molded bodies by extrusion molding, injection molding or the like.
  • finer ETFE powder is coated or lined on the heat-resistant substrate surface by powder coating methods such as electrostatic coating methods or rotational molding methods, and metal surfaces such as containers, tanks, piping, and fittings. It is used for protection and chemical resistance improvement.
  • coating by an electrostatic coating method is widely used because a coating film can be easily formed on the surface of an irregularly shaped article.
  • ETFE has better adhesion to the base material compared to perfluoro fluororesin such as polytetrafluoroethylene resin, so it is applied directly after surface roughening treatment such as sandblasting on the surface of the base material. Often done.
  • ETFE-coated articles are required to be used in more severe environments, and improvement in adhesion between ETFE and a substrate is desired.
  • a powder primer composition using reactive ETFE having a reactive group in the ETFE molecule is known (for example, Patent Document 1).
  • the liquid primer composition using the silane coupling agent for improving the adhesiveness of ETFE and a base material is known (for example, patent document 2).
  • an attempt to mix an epoxy resin powder with a fluororesin powder and heat-treat at 180 to 200 ° C. is also known (for example, Patent Document 3).
  • JP 2006-206637 A Japanese Patent Laid-Open No. 2006-167689 U.S. Pat. No. 3,111,426
  • the object of the present invention is to solve the above-mentioned conventional problems and to provide a powder primer composition excellent in adhesiveness to a substrate and a laminate obtained by using the same.
  • the present invention contains a repeating unit (A) based on tetrafluoroethylene, a repeating unit (B) based on ethylene, and a repeating unit (C) based on a monomer having an acid anhydride residue and a polymerizable unsaturated bond, (C) / ((A) + (B)) in a molar ratio of 1 / 10,000 to 5/100, a powder made of a reactive ethylene / tetrafluoroethylene copolymer, and an epoxy equivalent of 500
  • a powder made of an epoxy resin which is a powder made of an epoxy resin and a powder made of an epoxy resin having a softening point of 70.degree.
  • the present invention relates to a powder primer composition having a mass ratio of 99/1 to 80/20.
  • the present invention relates to a laminate in which a primer layer that is a heat-treated product of the above-described powder primer composition and a topcoat layer made of a fluororesin are laminated in this order on the surface of a substrate.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the primer layer formed from the powder primer composition of the present invention (hereinafter also simply referred to as “primer composition”) is excellent in adhesion to the substrate, and in particular, the adhesion to the substrate and the primer layer Excellent adhesion to the topcoat layer made of a fluororesin.
  • the primer composition is excellent in storage stability. Furthermore, it is excellent in applicability and a coating layer with high uniformity can be easily obtained.
  • the average particle size of the primer composition is not particularly limited, but may be 1 to 1,000 ⁇ m, preferably 1 to 300 ⁇ m, more preferably 3 to 300 ⁇ m, and particularly preferably 5 to 200 ⁇ m. If the average particle size is 1 ⁇ m or more, the adhesion amount and the durability are stable because the amount of adhesion at the time of application increases, and if it is 1,000 ⁇ m or less, there is little dropout of particles after application and the surface smoothness is good. Tend.
  • the average particle diameter of the primer composition refers to the average particle diameter of the entire powder contained in the composition.
  • the average particle diameter of the primer composition is a volume-based median diameter measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the bulk density of the primer composition is not particularly limited, but is preferably 0.4 to 1.2 g / cc, and more preferably 0.5 to 1.0 g / cc.
  • the bulk density is 0.4 or more, the adhesion amount and the durability are stabilized because the amount of adhesion at the time of application is increased, and defects of the coating film due to bubbles generated at the time of firing are suppressed.
  • it is 1.2 or less, dropout of particles during coating tends to be small, and surface smoothness tends to be good.
  • the bulk density can be measured by the method described in JIS K6891.
  • the repose angle of the primer composition is not particularly limited, but is preferably 20 to 52 degrees, and more preferably 30 to 50 degrees. Manufacturing is not difficult if the angle of repose is 20 degrees or more, and powder flowability is improved if the angle of repose is 52 degrees or less, and problems such as bridge formation in the powder supply tank and blockage of the coating gun during electrostatic coating. It tends to be suppressed.
  • the angle of repose is easily determined by reading the angle of repose of the powder dropped on the angle of repose measuring instrument with a protractor, and an angle of repose measuring instrument manufactured by As One or a powder tester PTX type manufactured by Hosokawa Micron can be used.
  • a powder composed of a reactive ethylene / tetrafluoroethylene-based copolymer is a repeating unit based on tetrafluoroethylene (hereinafter also referred to as “TFE”) (A (Hereinafter also referred to as “repeating unit (A)”), ethylene-based repeating unit (B) (hereinafter also referred to as “repeating unit (B)”), acid anhydride residue and polymerizable unsaturated bond
  • the repeating unit (C) based on the monomer which contains (it is hereafter mentioned also as a “repeating unit (C)" is contained.
  • the reactive ETFE powder reacts with the epoxy resin in the baking step at 200 to 320 ° C., but the reaction at room temperature is extremely suppressed and can be stored stably for a long period of time.
  • Reactive ETFE powders may be used alone or in combination of two or more.
  • the reactive ETFE powder contains at least one repeating unit (C).
  • the repeating unit (C) is formed by polymerizing a monomer having an acid anhydride residue and a polymerizable unsaturated bond with itself or with tetrafluoroethylene or ethylene.
  • the repeating unit (C) may have an acid anhydride group derived from the monomer as it is, or may have an acidic functional group obtained by hydrolyzing the acid anhydride group.
  • the repeating unit (C) may be a single type or a combination of two or more types.
  • the content ratio of (C) / ((A) + (B)) is 1 / 10,000 to 5/100 in terms of molar ratio.
  • (C) / ((A) + (B)) is less than 1 / 10,000, there is too little chemical reaction with the powder made of epoxy resin in the firing step for producing the primer layer. High adhesion to the material cannot be obtained.
  • (C) / ((A) + (B)) is more than 5/100, chemical resistance and heat resistance are low.
  • (C) / ((A) + (B)) is preferably 1/1000 to 5/100, more preferably 3 / 2,000 to 3/100, 3/1, Particularly preferred is 000 to 3/100. When it exists in this range, there exists a tendency which adhesiveness is more excellent and chemical resistance and heat resistance are more excellent.
  • the content ratio of (A) and (B) is not particularly limited, but (A) / (B) is preferably in a molar ratio of 20/80 to 80/20, preferably 50/50 to More preferably, it is 70/30.
  • (A) / (B) is 20/80 or more, heat resistance, weather resistance, chemical resistance, and gas barrier properties tend to be further improved, and (A) / (B) is 80/20 or less. And there exists a tendency for mechanical strength and a meltability to improve more.
  • the content of the repeating units (A), (B), and (C) is substantially the same as the charged amount of the monomer constituting each repeating unit.
  • the reactive ETFE in the present invention is based on other monomers other than the monomers constituting the repeating units (A), (B) and (C) in addition to the repeating units (A), (B) and (C).
  • the repeating unit (D) (hereinafter also referred to as “repeating unit (D)”) may be included.
  • the repeating unit (D) may be a single type or a combination of two or more types.
  • Other monomers constituting the repeating unit (D) include hydrocarbon olefins having 3 or more carbon atoms such as propylene and butene; CH 2 ⁇ CX (CF 2 ) n Y (wherein X and Y are A hydrogen atom or a fluorine atom, and n is an integer of 2 to 8); a fluoroolefin having a hydrogen atom in an unsaturated group such as vinylidene fluoride, vinyl fluoride or trifluoroethylene A fluoroolefin having no hydrogen atom in an unsaturated group such as hexafluoropropylene or chlorotrifluoroethylene (excluding TFE); a perfluoro (alkyl vinyl ether) such as perfluoro (propyl vinyl ether); an alkyl vinyl ether, (fluoroalkyl) Vinyl ether, glycidyl vinyl ether, hydroxybutyl vinyl Vinyl ethers such as ruether and methylvinyloxybuty
  • the other monomer is preferably at least one selected from the group consisting of hexafluoropropylene, perfluoro (propyl vinyl ether) and the compound represented by CH 2 ⁇ CX (CF 2 ) n Y.
  • the content of the repeating unit (D) is preferably 0 to 20 mol%, more preferably 0 to 15 mol%, more preferably 0 to 10 mol based on all repeating units in the reactive ethylene / tetrafluoroethylene-based copolymer. % Is particularly preferred. In the present invention, the content of the repeating unit (D) substantially coincides with the charged amount of other monomers.
  • the average particle size of the reactive ETFE powder is not particularly limited, but may be 1 to 1,000 ⁇ m, preferably 1 to 300 ⁇ m, more preferably 3 to 300 ⁇ m, and particularly preferably 5 to 200 ⁇ m. If the average particle size is 1 ⁇ m or more, the amount of reactive ETFE powder deposited during coating increases, so the number of overcoatings can be reduced, and if it is 1,000 ⁇ m or less, the reactive ETFE powder after coating. There is a tendency for the body to fall off and the surface smoothness to be excellent.
  • the average particle diameter of the reactive ETFE powder is a volume-based median diameter measured using a laser diffraction / scattering particle size distribution apparatus.
  • reactive ETFE powder is not specifically limited, The method of grind
  • the method for producing reactive ETFE is not particularly limited, and examples thereof include the method disclosed in JP-A-2004-238405.
  • reactive ETFE powder may be obtained by a method in which the medium is evaporated and removed by directly spraying the ETFE dispersion.
  • the reactive ETFE powder contained in the ETFE dispersion is granulated to an intermediate particle size, dried, and then pulverized by a pulverizer such as a hammer mill, turbo mill, cutting mill, crusher, jet mill, counter jet mill, etc.
  • Reactive ETFE powder having a small particle size can be obtained more easily by freeze pulverization.
  • freeze pulverization In the case of freeze pulverization, pulverization is performed while cooling with a cooling medium such as liquefied carbon dioxide or liquid nitrogen.
  • a freeze pulverizer manufactured by AS ONE, a Linrex mill manufactured by Hosokawa Micron, etc. can be used, and the temperature during pulverization is preferably ⁇ 200 to 20 ° C., more preferably ⁇ 180 to ⁇ 20 ° C. It is particularly preferably ⁇ 150 to ⁇ 50 ° C.
  • the particle size of the reactive ETFE powder may be adjusted by classification using a sieve or air flow.
  • the powder made of an epoxy resin is a powder of an epoxy resin that is solid at room temperature (for example, 25 ° C.).
  • An epoxy resin refers to a compound having one or more epoxy groups in the molecule.
  • the epoxy resin is not particularly limited, but bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin obtained by condensation reaction of bisphenol A and epichlorohydrin, Examples thereof include glycidyl ester type epoxy resins, biphenyl type epoxy resins, polymer type epoxy resins, and other modified epoxy resins.
  • the powder which consists of an epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • the powder made of epoxy resin has a softening point of 70 ° C. or higher.
  • the softening point of the epoxy resin is preferably 80 to 140 ° C, more preferably 90 to 130 ° C. Further, when the softening point of the powder made of epoxy resin is 140 ° C. or less, it tends to melt during heat treatment, and the adhesive force tends to be improved.
  • the softening point of an epoxy resin can be measured by the method described in JIS K7234 (ring ball method).
  • the molecular weight of the epoxy resin is not particularly limited, but is preferably 1,000 to 3,500, and more preferably 1,500 to 3,000. If the molecular weight of the epoxy resin is 1,000 or more, a crosslinking reaction is less likely to occur during storage, storage stability is improved, and the occurrence of foaming and discoloration tends to be suppressed. They tend to melt during heat treatment and tend to improve the adhesion.
  • the epoxy equivalent of the powder made of epoxy resin is 500 to 2,700, preferably 700 to 2,300, more preferably 900 to 2,000.
  • the epoxy equivalent is the number of grams of a resin containing 1 gram equivalent of an epoxy group, and can be measured by the method described in JIS K7236 (potentiometric titration method).
  • epoxy resins are commercially available solid epoxy resins such as epoxy resins jER (registered trademark) 1004, 1004K, 1004F, 1004AF, 1007 manufactured by Mitsubishi Chemical Corporation; epoxy resin Epicron (registered trademark) 4050 manufactured by DIC Corporation; 7050 and the like.
  • the average particle size of the powder made of epoxy resin is not particularly limited, but can be 1 to 1,000 ⁇ m, preferably 1 to 300 ⁇ m, more preferably 3 to 200 ⁇ m, and more preferably 5 to 50 ⁇ m. Is particularly preferred. If the average particle diameter of the powder made of epoxy resin is 1 ⁇ m or more, the storage stability tends to improve and the powder fluidity tends to improve. If the average particle diameter is 1,000 ⁇ m or less, the reactive ETFE powder during heat treatment There is a tendency that the reactivity with the body is improved and the adhesive force is improved.
  • the average particle diameter of the powder made of an epoxy resin is a volume-based median diameter when measured using a laser diffraction / scattering particle size distribution apparatus.
  • the manufacturing method of the powder which consists of an epoxy resin is not specifically limited, The method of grind
  • the pulverization method include a method of pulverizing with a pulverizer such as a hammer mill, a turbo mill, a cutting mill, a crusher, a jet mill and a counter jet mill, or a method of freeze pulverizing at a low temperature.
  • a pulverizer such as a hammer mill, a turbo mill, a cutting mill, a crusher, a jet mill and a counter jet mill, or a method of freeze pulverizing at a low temperature.
  • the average particle diameter of the said commercially available solid epoxy resin in the range of the suitable average particle diameter of the powder which consists of the said epoxy resin can be used as it is.
  • the particle size of the powder made of epoxy resin may be classified and adjusted using a sieve or an air stream.
  • the primer composition has a mass ratio of reactive ETFE powder to powder made of epoxy resin of 99/1 to 80/20, preferably 98/2 to 85/15, and 97/3 to 88/12. Particularly preferred. If the mass ratio of the reactive ETFE powder to the epoxy resin powder is more than 99/1, the adhesive strength is reduced, and the reactive ETFE powder to the epoxy resin powder has a mass ratio of 80/20. If it is less than 1, the fluidity of the primer composition is lowered, so that the coating tends to be non-uniform, and foaming and discoloration are likely to occur due to thermal decomposition of the epoxy resin.
  • the primer composition can contain additional components within the range where the effects of the present invention are exhibited.
  • the primer composition includes pigments such as carbon black, graphite, cobalt blue, ultramarine blue, and titanium oxide as colorants; silica and alumina for improving fluidity; inorganic fillers as reinforcing materials; other synthetic resin powders, and the like It may contain.
  • the content of these components can be 5.0 parts by mass or less, based on a total of 100 parts by mass of the reactive ETFE powder and the epoxy resin, and 0.1 to 5.0 parts by mass. It is preferable that the amount be 0.1 to 3.0 parts by mass.
  • the primer composition may contain a heat stabilizer such as a copper compound, a tin compound, an iron compound, a lead compound, a titanium compound, or an aluminum compound as long as the adhesive effect of the primer composition is not inhibited.
  • the content of the heat stabilizer can be less than 1.0 part by mass and less than 0.1 part by mass with respect to 100 parts by mass in total of the powder composed of the reactive ETFE powder and the epoxy resin. Is preferable, and it is more preferable not to contain substantially.
  • the primer composition can be produced by mixing each component.
  • the mixing method include a dry blend method using a V-type blender, a double cone type blender, a container blender, a drum type blender, a horizontal cylindrical mixer, a ribbon type mixer, a paddle type mixer, a screw type mixer and the like.
  • the mixing is desirably performed at a temperature lower than the softening point of the powder made of epoxy resin.
  • a mixing device such as a Henschel mixer that applies strong shearing force or centrifugal force
  • the epoxy resin softens and adheres to the reactive ETFE powder, agglomerates, and the powder fluidity decreases.
  • a chemical reaction between the reactive ETFE powder and the epoxy resin powder occurs during mixing, which is not preferable.
  • the laminate is obtained by laminating a primer layer, which is a heat-treated product of the primer composition, and a topcoat layer made of a fluororesin in this order on the substrate surface.
  • a primer layer which is a heat-treated product of the primer composition
  • a topcoat layer made of a fluororesin in this order
  • an organic or inorganic coating layer that is a different material from the top coat layer may be further laminated on the surface of the top coat layer.
  • the laminate is excellent in durability such as heat resistance and alkali resistance, and adhesiveness.
  • the substrate in the present invention is not particularly limited, and includes metals such as iron, stainless steel, aluminum, copper, tin, titanium, chromium, nickel, and zinc; heat-resistant materials such as glass and ceramics, and iron and stainless steel.
  • metals such as iron, stainless steel, aluminum, copper, tin, titanium, chromium, nickel, and zinc
  • heat-resistant materials such as glass and ceramics, and iron and stainless steel.
  • Aluminum is preferred.
  • the shape of the substrate in the present invention is not particularly limited, and examples thereof include pipes, tubes, films, plates, tanks, rolls, vessels, valves, elbows, etc., and various containers, pipes, tubes, tanks, pipes, joints. , Rolls, autoclaves, heat exchangers, distillation towers, jigs, valves, stirring blades, tank trucks, pumps, blower casings, centrifuges, cooking equipment, etc.
  • the primer layer in the present invention is a heat-treated product of the primer composition.
  • the primer composition is as described above including preferable ones.
  • the thickness of the primer layer is preferably 1 to 1,000 ⁇ m, more preferably 5 to 500 ⁇ m, and most preferably 10 to 200 ⁇ m. When the thickness of the primer layer is 1 ⁇ m or more, the adhesiveness is sufficiently exhibited, and when it is 1,000 ⁇ m or less, foaming and blistering tend not to occur.
  • the topcoat layer made of a fluororesin can be formed by applying and curing a powder topcoat composition containing a powder made of a fluororesin or a powder made of a fluororesin.
  • the powder made of fluororesin is a fluororesin powder that is solid at room temperature (for example, 25 ° C.).
  • the fluororesin is not particularly limited, and includes a fluorine-containing monomer alone or a copolymer, but does not include the reactive ETFE.
  • the fluorine-containing monomer include TFE, fluoroolefin having a hydrogen atom in an unsaturated group, fluoroolefin having no hydrogen atom in an unsaturated group (excluding TFE), and perfluoro (alkyl vinyl ether).
  • the fluororesin includes, for example, ethylene, hydrocarbon olefins having 3 or more carbon atoms, monomers having an acid anhydride residue and a polymerizable unsaturated bond, vinyl ethers, vinyl esters, and (meth) acrylic esters.
  • the copolymer which made the monomer which does not have a fluorine atom the comonomer component may be sufficient.
  • non-reactive ETFE non-reactive ethylene / tetrafluoroethylene copolymer
  • propylene / TFE copolymer propylene / TFE copolymer
  • TFE / perfluoro (alkyl vinyl ether) copolymer polymer, TFE / hexafluoropropylene copolymer, TFE / hexafluoropropylene / vinylidene fluoride copolymer, chlorotrifluoroethylene / ethylene copolymer, vinylidene fluoride polymer, hexafluoropropylene / vinylidene fluoride system A copolymer etc.
  • Non-reactive ETFE is preferable. That is, in the present invention, the topcoat layer made of a fluororesin is a powder containing a powder made of non-reactive ETFE (hereinafter also referred to as “non-reactive ETFE powder”) or a powder made of non-reactive ETFE. It is preferably obtained using a body topcoat composition.
  • the non-reactive ETFE powder means an ETFE powder having a molar ratio of (C) / ((A) + (B)) in the above-mentioned definition of reactive ETFE.
  • the non-reactive ETFE powder may contain the repeating unit (D) based on another monomer. Except that (C) / ((A) + (B)) is less than 1 / 10,000 in molar ratio, the non-reactive ETFE powder includes preferred ones as described above in the reactive ETFE powder. It is.
  • Specific examples of non-reactive ETFE powders include Fluoron (registered trademark) TL-081, Z-8820X, and LM-2150 manufactured by Asahi Glass Co., Ltd. (both are monomers having an acid anhydride residue and a polymerizable unsaturated bond). Based repeating unit (C) is not contained).
  • the powder made of fluororesin may be used alone or in combination of two or more.
  • the average particle diameter of the powder made of fluororesin is preferably 1 to 1,000 ⁇ m, more preferably 5 to 300 ⁇ m, and particularly preferably 10 to 200 ⁇ m.
  • the average particle diameter of the powder made of fluororesin is a volume-based median diameter when measured using a laser diffraction / scattering particle size distribution apparatus.
  • the powder topcoat composition containing the powder which consists of fluororesins contains heat stabilizers, such as a copper compound, a tin compound, an iron compound, a lead compound, a titanium compound, an aluminum compound.
  • heat stabilizers such as a copper compound, a tin compound, an iron compound, a lead compound, a titanium compound, an aluminum compound.
  • the content of the heat stabilizer is preferably 1 ⁇ 10 ⁇ 8 to 5% by mass, more preferably 1 ⁇ 10 ⁇ 7 to 1% by mass with respect to the topcoat composition, and 5 ⁇ 10 ⁇ 7 to 0.1%. Mass% is particularly preferred.
  • the specific surface area of the heat stabilizer is preferably from 0.1 to 100 m 2 / g, more preferably from 1 to 70 m 2 / g, particularly preferably from 5 to 50 m 2 / g.
  • the specific surface area is based on the BET method.
  • the thickness of the top coat layer can be selected in the range of 10 to 5,000 ⁇ m.
  • a thickness of 10 to 100 ⁇ m is preferable for the purpose of improving water repellency, antifouling property and glossiness of the substrate surface, and a thickness of 50 to 500 ⁇ m is preferable for the purpose of improving the lubricity and surface protection of the substrate surface.
  • a thickness of 200 to 1,000 ⁇ m is preferable, and a thickness of 1,000 to 5,000 ⁇ m is preferable particularly when extremely long-term durability is required. If it is too thin, the coating effect is not sufficient, and if it is too thick, the number of times of coating is increased, which is uneconomical and stress distortion due to the difference in thermal expansion coefficient from the substrate tends to occur, which is not preferable.
  • ⁇ Coating layer of organic or inorganic material that is different from the topcoat layer examples include a colored layer, a hard coat layer, and a permeation prevention layer.
  • the further coating layer When a laminated body contains the further coating layer, there exists a tendency for a laminated body to have further effects, such as a coloring effect, a hard-coat effect, and a penetration prevention effect.
  • the thickness of the further coating layer is not particularly limited, but can be 0 to 1,000 ⁇ m, preferably 0 to 500 ⁇ m. The thickness of the further coating layer can be adjusted according to the properties imparted by the further coating layer.
  • the adhesive force of the topcoat layer to the substrate can be examined by measuring the 90 ° peel strength.
  • the peel strength is preferably 20 N / cm or more, more preferably 40 N / cm or more, and particularly preferably 50 N / cm or more.
  • the peel strength is less than 20 N / cm, the reliability of adhesion is low, and depending on the use environment, it may lead to peeling of the coating film or corrosion deterioration of the blister or substrate, which is not preferable.
  • the laminate includes a step of obtaining a primer layer on the surface of the substrate and a step of obtaining a topcoat layer on the surface of the primer layer, and optionally a step of obtaining a further coating layer on the surface of the topcoat layer. It is obtained by the manufacturing method containing.
  • the primer layer is obtained by a production method including a step of forming the primer composition layer by applying the primer composition of the present invention to the substrate surface and a step of forming a primer layer by heat-treating the primer composition layer. .
  • the reactive ETFE powder and the powder made of the epoxy resin chemically react and harden to form a primer layer.
  • the method for applying the primer composition is not particularly limited, and examples thereof include known powder coating methods such as electrostatic coating, fluid dipping, and rotational molding.
  • the electrostatic coating method is preferable because it is simple and can coat a large area with a uniform thickness.
  • As the coating machine various commercially available electrostatic coating machines can be used, and a primer composition can be sprayed together with an air current by applying static electricity at a voltage of ⁇ 100 to ⁇ 30 kV.
  • the thickness of the primer composition layer applied on the base material includes a preferable one and includes a thickness that is the thickness of the primer layer described above. Moreover, if the thickness of a primer composition layer exists in the said range, sufficient adhesiveness will be expressed by providing a primer composition once, but you may provide a primer composition in multiple times. In addition, the thickness of a primer composition can be adjusted according to the thickness of the primer layer after heat processing.
  • the application amount of the primer composition applied on the substrate is not particularly limited as long as it is an amount that can be the thickness of the primer composition described above, and is preferably 1.6 to 1,600 g / m 2. 8.0 to 800 g / m 2 is more preferable.
  • the heat treatment of the primer composition layer can be performed by any heating means such as an electric furnace, a gas furnace or an infrared heating furnace set to a predetermined temperature.
  • the heat treatment temperature is preferably 260 to 340 ° C, more preferably 280 to 320 ° C, and particularly preferably 290 to 310 ° C.
  • the heat treatment time varies depending on the heat treatment temperature, but heat treatment for 1 to 180 minutes is preferable, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes. When the heat treatment time is 1 minute or longer, there is no tendency for adhesive strength reduction or bubble remaining due to insufficient firing to occur, and when it is 180 minutes or shorter, discoloration and foam formation tend to be suppressed.
  • the substrate Prior to application of the primer composition, the substrate may be preheated at a temperature of 200 ° C. or lower. Further, the surface of the base material may be roughened by sandblasting, etching, metal spraying, or the like before applying the primer composition, and solvent cleaning may be performed to remove foreign matters attached to the surface. Thereby, there exists a tendency for adhesiveness to improve.
  • the surface roughness Ra can be processed in the range of 1 to 100 ⁇ m depending on the adhesiveness and application.
  • the topcoat layer is obtained by applying a topcoat composition containing a powder made of a fluororesin or a powder made of a fluororesin to the surface of the primer layer laminated on the surface of the base material, A step of forming a topcoat composition layer containing a powder made of fluororesin, and a heat treatment of the powder layer made of fluororesin or the topcoat composition layer containing a powder made of fluororesin to form a topcoat layer It is obtained by a manufacturing method including a process.
  • the application method of the topcoat composition containing the powder made of fluororesin or the powder made of fluororesin is not particularly limited, but examples include the application method of the primer composition, such as electrostatic coating method, fluidized dipping method, rotation A known powder coating method such as a molding method can be applied, but an electrostatic coating method is preferable because it can be easily applied with a uniform thickness.
  • the thickness of the topcoat composition layer containing a powder layer made of a fluororesin or a powder made of a fluororesin formed on the surface of the primer layer includes a preferable one, and a thickness that is the thickness of the topcoat layer described above Is mentioned. Further, if the thickness of the powder layer made of fluororesin or the topcoat composition layer containing the powder made of fluororesin is within the above range, the topcoat containing the powder made of fluororesin or the powder made of fluororesin It is sufficient to apply the composition once, but a topcoat composition containing a powder made of fluororesin or a powder made of fluororesin may be applied multiple times.
  • the thickness of the topcoat composition layer containing the powder layer which consists of a fluororesin, or the powder which consists of a fluororesin can be adjusted according to the thickness after baking.
  • the top coat layers formed a plurality of times are collectively used as a top coat layer.
  • the amount of the topcoat composition containing the powder made of fluororesin or the powder made of fluororesin that is applied to the surface of the primer layer is not particularly limited as long as it is an amount that can be the thickness of the topcoat layer described above. .
  • the heat treatment of the powder layer made of fluororesin or the topcoat composition layer containing the powder made of fluororesin is not particularly limited as long as the topcoat layer is formed on the surface of the primer layer, but is set to a predetermined temperature.
  • the heating can be performed by any heating means such as an electric furnace, a gas furnace or an infrared heating furnace.
  • the heat treatment temperature is preferably 260 to 340 ° C., more preferably 280 to 320 ° C., and particularly preferably 290 to 310 ° C. When the heat treatment temperature is 260 ° C. or higher, voids and bubble remaining due to insufficient firing are less likely to occur, and when it is 340 ° C. or lower, discoloration and foaming tend not to occur.
  • the heat treatment time varies depending on the heat treatment temperature, but heat treatment for 1 to 180 minutes is preferable, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes. If the heat treatment time is 1 minute or longer, bubbles remain due to insufficient firing, and if it is 180 minutes or less, discoloration and sagging tend not to occur.
  • the additional coating layer includes a step of applying a composition for an organic or inorganic coating layer, which is a material different from the top coat, to the surface of the top coat layer, and a method of forming the additional coating layer. Is obtained.
  • the thickness of the organic or inorganic coating layer, which is a material different from the top coat is not particularly limited, and examples thereof include a thickness that is the thickness of the further coating layer.
  • the conditions for the composition for the further coating layer and the method for producing the further coating layer are not particularly limited, and examples include the conditions that are usually used for forming the further coating layer.
  • Examples 1 to 5 are examples, and examples 6 to 11 are comparative examples.
  • coating and evaluation of each example followed the method as described below.
  • Each powder was dispersed in an aqueous solution of 0.1% by mass of a surfactant (manufactured by Nippon Emulsifier Co., Ltd., New Coal 1308FA (90)), and a laser scattering particle size distribution meter (manufactured by Horiba, Ltd., LA -920) was used to measure the volume-based median average particle size.
  • a surfactant manufactured by Nippon Emulsifier Co., Ltd., New Coal 1308FA (90)
  • a laser scattering particle size distribution meter manufactured by Horiba, Ltd., LA -920
  • the particles obtained by solution polymerization and granulation of ETFE were pulverized by a freezing pulverizer TPH-01 manufactured by AS ONE, and a reactive ETFE powder (reactive ETFE-1) having an average particle diameter of 40 ⁇ m was obtained. )
  • EP-1 ⁇ Manufacture of epoxy resin powder (EP-1)>
  • An epoxy resin 1004 epoxy equivalent 925, molecular weight 1650, softening point 97 ° C.
  • Mitsubishi Chemical Corporation was pulverized by a freeze pulverizer TPH-01 manufactured by AS ONE, and a powder made of an epoxy resin having an average particle diameter of 23 ⁇ m (EP-1) Got.
  • ETFE powder primer composition (P-1) Reactive ETFE powder (reactive ETFE-1) and epoxy resin powder (EP-1) were mixed at a mass ratio of 95/5 for 1 minute with a V-type blender, and the ETFE powder primer composition (P -1) was produced.
  • the temperature after mixing was 25 ° C.
  • the powder flowability of the ETFE powder primer composition after mixing was good
  • the average particle size was 39 ⁇ m.
  • this ETFE powder primer composition showed no abnormality after a storage stability test at 40 ° C. for 300 hours.
  • full-on ETFE TL-081 non-reactive ETFE-1, a monomer having an acid anhydride residue and a polymerizable unsaturated bond
  • Which does not contain the repeating unit (C) based is baked at 300 ° C. for 10 minutes, and this electrostatic coating and baking process is repeated three times to form a topcoat layer with a total thickness of 370 ⁇ m.
  • a specimen was obtained.
  • the initial peel strength of the topcoat layer was 71.9 N / cm, and sufficient peel strength was exhibited after the hot water resistance test and after the alkali resistance test.
  • Example 2 and 3 The amounts of the reactive ETFE powder (reactive ETFE-1) and the epoxy resin powder (EP-1) were changed as shown in Table 1, and the ETFE powder primer composition (P-2) and An ETFE powder primer composition (P-3) was produced to obtain a coating test piece. When the same evaluation as in Example 1 was performed, good results were obtained.
  • Example 4 As a powder made of an epoxy resin, an epoxy resin 1007 (epoxy equivalent 1,975, molecular weight 2,900, softening point 128 ° C.) made by Mitsubishi Chemical Corporation was freeze-ground and a powder made of an epoxy resin having an average particle size of 28 ⁇ m (EP- 2) was used to prepare a powder primer composition (P-4) with the formulation shown in Table 1 as Example 4. Further, as non-reactive ETFE powder for topcoat, Asahi Glass Co., Ltd. full-on ETFE Z-8820X (non-reactive ETFE-2, a repeating unit based on a monomer having an acid anhydride residue and a polymerizable unsaturated bond (C ) was not used to obtain a coating test piece. When the same evaluation as in Example 1 was performed, good results were obtained.
  • Example 5 A reactive ETFE powder (reactive ETFE-2) having an average particle size of 10 ⁇ m was obtained by changing the pulverization conditions of the ETFE powder produced in Example 1, and a powder primer having the formulation shown in Table 1 as Example 5 A composition (P-5) was produced. After applying the primer using the powder primer composition (P-5), the top coat was applied 6 times to obtain a coating test piece. When the same evaluation as in Example 1 was performed, good results were obtained.
  • Example 6 (comparative example)
  • a powder primer composition (P-6) was prepared with the formulation shown as Example 6 in Table 2 to obtain a coating test piece.
  • P-6 powder primer composition
  • Example 7 (comparative example)
  • a powder primer composition (P-7) was prepared with the formulation shown as Example 7 in Table 2 to obtain a coating test piece.
  • Reactive ETFE was not used, and thus the peel strength was poor.
  • Example 8 As an epoxy resin powder, an epoxy resin powder (EP-3) having an average particle size of 67 ⁇ m obtained by freeze-pulverizing an epoxy resin 1001 (epoxy equivalent 475, molecular weight 900, softening point 64 ° C.) manufactured by Mitsubishi Chemical Corporation is used. Then, a powder primer composition (P-8) was produced with the formulation shown in Table 2 as Example 8, and a coating test piece was obtained. When the same evaluation as in Example 1 was performed, the peel strength after the hot water resistance test and the alkali resistance test was poor, and a decrease in powder fluidity due to agglomeration was observed after the storage stability test.
  • EP-3 epoxy resin powder having an average particle size of 67 ⁇ m obtained by freeze-pulverizing an epoxy resin 1001 (epoxy equivalent 475, molecular weight 900, softening point 64 ° C.) manufactured by Mitsubishi Chemical Corporation is used. Then, a powder primer composition (P-8) was produced with the formulation shown in Table 2 as Example 8, and a coating test piece was obtained.
  • Example 9 As a powder made of an epoxy resin, an epoxy resin 1009 (epoxy equivalent 2,850, molecular weight 3,800, softening point 144 ° C.) manufactured by Mitsubishi Chemical Corporation was freeze-pulverized and a powder made of an epoxy resin having an average particle size of 56 ⁇ m (EP -4) was used to prepare a powder primer composition (P-9) with the formulation shown in Table 2 as Example 9, and coating test pieces were obtained. When the same evaluation as in Example 1 was performed, the peel strength was low.
  • an epoxy resin 1009 epoxy equivalent 2,850, molecular weight 3,800, softening point 144 ° C.
  • EP -4 a powder made of an epoxy resin having an average particle size of 56 ⁇ m
  • Example 10 (comparative example)
  • a powder primer composition (P-10) was prepared by increasing the blending amount of the powder EP-1 made of an epoxy resin with the blending shown as Example 10 in Table 2, and a coating test piece was obtained.
  • unevenness occurred during primer application due to low powder flowability.
  • bubbles were generated after topcoat baking.
  • a decrease in powder fluidity due to agglomeration was observed after the storage stability test.
  • Example 11 (comparative example)
  • the reactive ETFE powder and the powder made of epoxy resin were mixed for 10 minutes using a Henschel mixer. Since the temperature of the powder during mixing rose to 70 ° C., the agglomeration of the ETFE powder primer composition occurred and the primer could not be applied.
  • Reactive ETFE-1 Average particle size of 40 ⁇ m
  • Reactive ETFE-2 Average particle size 10 ⁇ m
  • Non-reactive ETFE-1 TL-081 manufactured by Asahi Glass Co., Ltd., average particle size 76 ⁇ m
  • Non-reactive ETFE-2 Z-8820X manufactured by Asahi Glass Co., Ltd., average particle size 45 ⁇ m
  • EP-1 pulverized product of epoxy resin 1004 manufactured by Mitsubishi Chemical Corporation, average particle size 23 ⁇ m, epoxy equivalent 925, softening point 97 ° C.
  • EP-3 pulverized product of epoxy resin 1001 manufactured by Mitsubishi Chemical Corporation, average particle size 67 ⁇ m, epoxy equivalent 475, softening point 64 ° C., molecular weight 900 EP-4: pulverized product of epoxy resin 1009
  • the primer composition of this invention is excellent in adhesiveness, durability, storage stability, and uniform coating property compared with the conventional ETFE primer.
  • the primer composition of the present invention can be applied to the surface of a heat-resistant substrate such as metal, glass and ceramics, and is useful as a primer for lining, coating and surface treatment with a fluororesin, particularly ETFE.
  • the primer composition of the present invention and the laminate obtained using the primer composition of the present invention include various containers, pipes, tubes, tanks, pipes, joints, rolls, autoclaves, heat exchangers, distillation towers, jigs, etc. , Valves, stirring blades, tank trucks, pumps, blower casings, centrifuges, cooking equipment, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

 接着性に優れる粉体プライマー組成物及びそれを用いて得られた積層体を提供すること。 テトラフルオロエチレンに基づく繰り返し単位(A)、エチレンに基づく繰り返し単位(B)及び酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)を含有し、(C)/((A)+(B))がモル比で1/10,000~5/100である、反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体と、エポキシ当量が500~2,700であり、軟化点が70℃以上である、エポキシ樹脂からなる粉体とを含有し、反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体の、エポキシ樹脂からなる粉体に対する質量比が99/1~80/20である、粉体プライマー組成物である。

Description

粉体プライマー組成物及びそれを用いた積層体
 本発明は、粉体プライマー組成物及びそれを用いた積層体に関する。
 エチレン/テトラフルオロエチレン系共重合体(以下、「ETFE」ともいう。)は、耐熱性、耐薬品性、耐候性、ガスバリア性等に優れ、半導体産業、自動車産業、化学産業等の種々な分野で使用されている。ペレット状のETFE粒子は、押出し成形、射出成形等により各種成型体に加工される。また、より微細なETFE粉体は、静電塗装法等の粉体塗装法や回転成形法等の方法により耐熱基材面に塗装又はライニング加工され、容器、タンク、配管、継ぎ手等の金属表面の保護や耐薬品性の向上のために利用される。特に、静電塗装法による塗装は、異型形状物品の表面に容易に塗膜を形成できることから、幅広く用いられている。
 一般に、ETFEは、ポリテトラフルオロエチレン樹脂などのパーフルオロフッ素樹脂と比較して基材との接着性が良好であるため、基材表面にサンドブラストなどの表面粗化処理を行なったのちにそのまま塗装される場合が多い。しかし近年、ETFE塗装物品はより厳しい環境下での使用が求められており、ETFEと基材との接着性の向上が望まれている。
 このような状況下、ETFEの分子中に反応基を有する反応性ETFEを用いた粉体プライマー組成物が知られている(例えば、特許文献1)。また、ETFEと基材との接着性を向上させるためのシランカップリング剤を用いた液体プライマー組成物が知られている(例えば、特許文献2)。更に、フッ素樹脂粉体にエポキシ樹脂粉体を混合して180~200℃で熱処理する試みも知られている(例えば、特許文献3)。
特開2006-206637号公報 特開2006-167689号公報 米国特許第3111426号明細書
 しかし、特許文献1に記載された反応性ETFEよりも更に優れた、ETFE塗膜と基材との接着性が求められている。また、特許文献2に記載されたプライマーよりも更に優れた、ETFE塗膜と基材との接着性が求められている。更に、特許文献3では、充分な接着性を発現するためにエポキシ樹脂を30%以上添加することが必要であるため粉体の流動性が低下し、塗膜厚みが不均一になりやすい。また、通常、ETFEの焼きつけ温度が約300℃の高温であるため、焼成工程でのエポキシ樹脂や硬化剤の熱分解に起因した発泡やフクレが生じやすいという問題がある。
 本発明は、上記のような従来の課題を解消し、基材との接着性に優れる粉体プライマー組成物及びそれを用いて得られた積層体を提供することを課題とする。
 本発明は、テトラフルオロエチレンに基づく繰り返し単位(A)、エチレンに基づく繰り返し単位(B)及び酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)を含有し、(C)/((A)+(B))がモル比で1/10,000~5/100である、反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体と、エポキシ当量が500~2,700であり、軟化点が70℃以上である、エポキシ樹脂からなる粉体とを含有し、反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体の、エポキシ樹脂からなる粉体に対する質量比が99/1~80/20である、粉体プライマー組成物に関する。
 本発明は、基材表面に、前記に記載の粉体プライマー組成物の熱処理物であるプライマー層と、フッ素樹脂からなるトップコート層とがこの順に積層された、積層体に関する。
 本発明により、基材との接着性に優れる粉体プライマー組成物及びそれを用いて得られた積層体を提供することができる。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
<粉体プライマー組成物>
 本発明の粉体プライマー組成物(以下、単に「プライマー組成物」ともいう。)から形成されるプライマー層は基材との接着性に優れ、特に、基材への接着性と、プライマー層上に設けられるフッ素樹脂からなるトップコート層との接着性に優れる。またプライマー組成物は、保存安定性に優れる。更に塗布性に優れ、均一性の高い塗布層を容易に得ることができる。
 プライマー組成物の平均粒径は、特に限定されないが、1~1,000μmとすることができ、1~300μmが好ましく、3~300μmがより好ましく、5~200μmが特に好ましい。平均粒径が1μm以上であれば、塗布時の付着量が増えるために接着力や耐久性が安定し、1,000μm以下であれば、塗布後の粒子の脱落が少なく、表面平滑性がよい傾向がある。プライマー組成物の平均粒径は、組成物に含まれる粉体全体の平均粒径をいう。プライマー組成物の平均粒径は、レーザー回折散乱粒度分布測定装置を用いて測定した場合の体積基準のメジアン径である。
 プライマー組成物の嵩密度は、特に限定されないが、0.4~1.2g/ccであるのが好ましく、0.5~1.0g/ccであるのがより好ましい。嵩密度が0.4以上であれば、塗布時の付着量が増えるために接着力や耐久性が安定するほか、焼成時に発生する気泡による塗膜の欠陥が抑えられる。また、1.2以下であれば塗布時の粒子の脱落が少なくなり、表面平滑性がよい傾向がある。嵩密度は、JIS K6891に記載された方法により測定することができる。
 プライマー組成物の安息角は、特に限定されないが、20~52度であるのが好ましく、30~50度であるのがより好ましい。安息角が20度以上であれば製造が困難でなく、52度以下であれば粉体流動性が向上し、静電塗布時の粉体供給タンクでのブリッジ生成や塗布ガンの閉塞などの問題の発生が抑制される傾向がある。安息角は、安息角測定器に落下させた粉体の安息角を分度器で読み取ることにより容易に求められ、アズワン社製安息角測定器や、ホソカワミクロン社製パウダーテスターPTX型などが使用できる。
<反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体>
 反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体(以下、「反応性ETFE粉体」ともいう。)は、テトラフルオロエチレン(以下、「TFE」ともいう。)に基づく繰り返し単位(A)(以下、「繰り返し単位(A)」ともいう。)、エチレンに基づく繰り返し単位(B)(以下、「繰り返し単位(B)」ともいう。)及び酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)(以下、「繰り返し単位(C)」ともいう。)を含有する。
 本発明において、反応性ETFE粉体は、200~320℃での焼成工程でエポキシ樹脂と反応するが、室温での反応は極めて抑制されるため、長期間安定して保存することができる。
 反応性ETFE粉体は、1種単独で用いてもよいし、2種以上を併用してもよい。
<酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)>
 反応性ETFE紛体は、少なくとも1種の繰り返し単位(C)を含む。繰り返し単位(C)は、酸無水物残基と重合性不飽和結合とを有するモノマーが、それ自体又はテトラフルオロエチレン若しくはエチレンと重合することで形成される。繰り返し単位(C)は、モノマーに由来する酸無水物基をそのままの状態で有していてもよく、また、酸無水物基が加水分解した酸性官能基を有していてもよい。繰り返し単位(C)は、1種単独であってもよく、2種以上の組み合わせであってもよい。
 繰り返し単位(C)を構成する、酸無水物残基と重合性不飽和結合とを有するモノマーとしては、特に限定されないが、無水マレイン酸、無水イタコン酸(以下、「IAH」という。)、無水シトラコン酸(以下、「CAH」という。)、5-ノルボルネン-2,3-ジカルボン酸無水物等が挙げられる。好ましくは、IAH又はCAHである。IAH又はCAHを用いると、より容易に反応性ETFEが得られる傾向がある。
 酸無水物残基と重合性不飽和結合とを有するモノマーは、1種単独で用いてもよいし、2種以上を併用してもよい。
 本発明において、(C)/((A)+(B))の含有量比は、モル比で1/10,000~5/100である。(C)/((A)+(B))が1/10,000未満であると、プライマー層を製造するための焼成工程でエポキシ樹脂からなる粉体との化学反応が少なすぎるため、基材への高い接着力を得ることができない。また、(C)/((A)+(B))が5/100超であると、耐薬品性や耐熱性が低い。(C)/((A)+(B))は、1/1,000~5/100であるのが好ましく、3/2,000~3/100であるのがより好ましく、3/1,000~3/100であるのが特に好ましい。この範囲にあると、接着性がより優れ、耐薬品性や耐熱性がより優れる傾向がある。
 本発明において、(A)及び(B)の含有量比は、特に限定されないが、(A)/(B)はモル比で20/80~80/20であるのが好ましく、50/50~70/30であるのがより好ましい。(A)/(B)が20/80以上であると、耐熱性、耐候性、耐薬品性、ガスバリア性がより向上する傾向があり、(A)/(B)が80/20以下であると、機械的強度、溶融性がより向上する傾向がある。
 本発明において、繰り返し単位(A)、(B)及び(C)の含有量は、各繰り返し単位を構成するモノマーの仕込み量とほぼ一致する。
<その他のモノマーに基づく繰り返し単位(D)>
 本発明における反応性ETFEは、繰り返し単位(A)、(B)及び(C)に加えて、繰り返し単位(A)、(B)及び(C)を構成するモノマー以外の、その他のモノマーに基づく繰り返し単位(D)(以下、「繰り返し単位(D)」ともいう。)を含んでいてもよい。繰り返し単位(D)は、1種単独であってもよく、2種以上の組み合わせであってもよい。
 繰り返し単位(D)を構成する、その他のモノマーとしては、プロピレン、ブテン等の炭素数3以上の炭化水素系オレフィン;CH=CX(CFY(式中、X及びYは、互いに独立して水素原子又はフッ素原子であり、nは2~8の整数である)で表される化合物;フッ化ビニリデン、フッ化ビニル、トリフルオロエチレン等の不飽和基に水素原子を有するフルオロオレフィン;ヘキサフルオロプロピレン、クロロトリフルオロエチレン等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、TFEを除く);ペルフルオロ(プロピルビニルエーテル)等のペルフルオロ(アルキルビニルエーテル);アルキルビニルエーテル、(フルオロアルキル)ビニルエーテル、グリシジルビニルエーテル、ヒドロキシブチルビニルエーテル、メチルビニロキシブチルカーボネート等のビニルエーテル;酢酸ビニル、クロロ酢酸ビニル、ブタン酸ビニル、ピバル酸ビニル、安息香酸ビニル、クロトン酸ビニル等のビニルエステル;(ポリフルオロアルキル)アクリレート、(ポリフルオロアルキル)メタクリレート等の(メタ)アクリル酸エステル等が挙げられる。
 その他のモノマーは1種単独で用いてもよいし、2種以上を併用してもよい。
 その他のモノマーとしては、ヘキサフルオロプロピレン、ペルフルオロ(プロピルビニルエーテル)及び前記CH=CX(CFYで表される化合物からなる群から選ばれる1種以上が好ましい。なかでも、CH=CX(CFYで表される化合物がより好ましく、n=2~4であるものが特に好ましい。n=2~4であるCH=CX(CFYで表される化合物の具体例としては、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられ、CH=CF(CFF、CH=CH(CFF、CH=CH(CFH又はCH=CF(CFHが好ましく、CH=CH(CFFがより好ましい。
 繰り返し単位(D)の含有率は、反応性エチレン/テトラフルオロエチレン系共重合体中の全繰り返し単位に対して0~20モル%が好ましく、0~15モル%がより好ましく、0~10モル%が特に好ましい。本発明において、繰り返し単位(D)の含有量は、その他のモノマーの仕込み量とほぼ一致する。
<平均粒径>
 反応性ETFE粉体の平均粒径は、特に限定されないが、1~1,000μmとすることができ、1~300μmが好ましく、3~300μmがより好ましく、5~200μmが特に好ましい。平均粒径が1μm以上であれば、塗布時の反応性ETFE粉体の付着量が増えるために重ね塗り回数が少なくすることができ、1,000μm以下であれば、塗布後の反応性ETFE粉体の脱落が少なくなり、表面平滑性が優れる傾向にある。反応性ETFE粉体の平均粒径は、レーザー回折散乱粒度分布装置を用いて測定した場合の体積基準のメジアン径である。
<調製方法>
 反応性ETFE粉体の製造方法は、特に限定されないが、反応性ETFEを製造後、粉砕処理する方法が挙げられる。反応性ETFEの製造方法は、特に限定されないが、例えば、特開2004-238405号公報に開示された方法等が挙げられる。なお、反応性ETFEの分散液を製造した場合は、ETFE分散液を直接噴霧して媒体を蒸発除去させる方法により、反応性ETFE粉体を得てもよい。粉砕処理としては、ETFE分散液に含まれる反応性ETFE粉体を中間粒径に造粒し乾燥した後、ハンマーミル、ターボミル、カッティングミル、クラッシャー、ジェットミル、カウンタージェットミル等の粉砕機で粉砕する方法、反応性ETFEが脆化する室温未満の低温で機械的に粉砕する方法(以下、「冷凍粉砕」ともいう。)が挙げられる。冷凍粉砕により、より容易に小粒径の反応性ETFE粉体を得ることができる。
 冷凍粉砕の場合、液化炭酸ガスや液体窒素等の冷却媒体で冷却しながら粉砕する。冷凍粉砕装置としては、アズワン社製凍結粉砕機、ホソカワミクロン社製リンレックスミルなどを用いることができ、粉砕時の温度は、-200~20℃が好ましく、より好ましくは-180~-20℃であり、特に好ましくは-150~-50℃である。
 なお、反応性ETFE粉体の粒径は、篩や気流を用いて分級し、調整してもよい。
<エポキシ樹脂からなる粉体>
 エポキシ樹脂からなる粉体は、常温(例えば、25℃)で固体のエポキシ樹脂の粉体である。エポキシ樹脂とは、分子中にエポキシ基を1つ以上有する化合物をいう。エポキシ樹脂は、特に限定されないが、ビスフェノールAとエピクロルヒドリンとの縮合反応により得られるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂、高分子型エポキシ樹脂、その他の変性エポキシ樹脂等が挙げられる。
 エポキシ樹脂からなる粉体は、1種単独で用いてもよいし、2種以上を併用してもよい。
 エポキシ樹脂からなる粉体は、軟化点が70℃以上である。エポキシ樹脂からなる粉体の軟化点が70℃未満であると、プライマー組成物の保存安定性が低下し、発泡及び変色が生じやすくなる。エポキシ樹脂の軟化点は、80~140℃が好ましく、90~130℃がより好ましい。また、エポキシ樹脂からなる粉体の軟化点が140℃以下であると、熱処理時に融けやすく、接着力が向上する傾向がある。なお、エポキシ樹脂の軟化点は、JIS K7234(環球法)に記載された方法により測定することができる。
 エポキシ樹脂の分子量は、特に限定されないが、1,000~3,500が好ましく、1,500~3,000がより好ましい。エポキシ樹脂の分子量が1,000以上であれば、保存中に架橋反応が生じにくくなり、保存安定性が向上し、発泡及び変色の発生が抑制される傾向があり、3,500以下であれば、熱処理時に融けやすく、接着力が向上する傾向がある。
 エポキシ樹脂からなる粉体のエポキシ当量は500~2,700であり、700~2,300であるのが好ましく、900~2,000であるのがより好ましい。エポキシ当量が500未満であると、保存安定性が低下し、発泡及び変色が発生しやくすなり、2,700超であると、熱処理時に融けにくく、接着力が低下する。なお、エポキシ当量とは、1グラム当量のエポキシ基を含む樹脂のグラム数であり、JIS K7236(電位差滴定法)に記載された方法により測定することができる。
 このようなエポキシ樹脂は、市販品である固形エポキシ樹脂として、三菱化学社製エポキシ樹脂jER(登録商標)1004、1004K、1004F、1004AF、1007;DICコーポレーション社製エポキシ樹脂エピクロン(登録商標)4050、7050等;が挙げられる。
<平均粒径>
 エポキシ樹脂からなる粉体の平均粒径は、特に限定されないが、1~1,000μmとすることができ、1~300μmが好ましく、3~200μmであるのがより好ましく、5~50μmであるのが特に好ましい。エポキシ樹脂からなる粉体の平均粒径が1μm以上であれば、保存安定性が向上し、粉体流動性が向上する傾向があり、1,000μm以下であれば、熱処理時の反応性ETFE粉体との反応性が向上し、接着力が向上する傾向がある。エポキシ樹脂からなる粉体の平均粒径は、レーザー回折散乱粒度分布装置を用いて測定した場合の体積基準のメジアン径である。
<調製方法>
 エポキシ樹脂からなる粉体の製造方法は、特に限定されないが、前記の市販の固形エポキシ樹脂を、粉砕する方法が挙げられる。粉砕方法は、ハンマーミル、ターボミル、カッティングミル、クラッシャー、ジェットミル、カウンタージェットミル等の粉砕機で粉砕する方法、あるいは低温で冷凍粉砕する方法が挙げられる。なお、前記の市販の固形エポキシ樹脂の平均粒径が、前記のエポキシ樹脂からなる粉体の好適な平均粒径の範囲にあるものはそのまま使用することができる。
 また、エポキシ樹脂からなる粉体の粒径は、篩や気流を用いて分級し、調整してもよい。
 プライマー組成物は、反応性ETFE粉体の、エポキシ樹脂からなる粉体に対する質量比が99/1~80/20であり、98/2~85/15が好ましく、97/3~88/12が特に好ましい。反応性ETFE粉体の、エポキシ樹脂からなる粉体に対する質量比が99/1超であると接着力が低下し、反応性ETFE粉体の、エポキシ樹脂からなる粉体に対する質量比が80/20未満であるとプライマー組成物の流動性が低下するため、塗布が不均一になりやすく、またエポキシ樹脂の熱分解により発泡及び変色が生じやすくなる。
<更なる成分>
 プライマー組成物は、本発明の効果を奏する範囲内で更なる成分を含有することができる。プライマー組成物は、着色剤であるカーボンブラック、グラファイト、コバルトブルー、群青、酸化チタン等の顔料;流動性向上のためのシリカ、アルミナ等;補強材である無機フィラー;他の合成樹脂粉体等を含有してもよい。これらの成分の含有量は、反応性ETFE粉体及びエポキシ樹脂からなる粉体の合計100質量部に対して、5.0質量部以下とすることができ、0.1~5.0質量部であるのが好ましく、0.1~3.0質量部であるのが特に好ましい。
 また、プライマー組成物は、銅化合物、錫化合物、鉄化合物、鉛化合物、チタン化合物、アルミニウム化合物等の熱安定剤を、プライマー組成物の接着効果を阻害しない範囲で含有してもよい。熱安定剤の含有量は、反応性ETFE粉体及びエポキシ樹脂からなる粉体の合計100質量部に対して、1.0質量部未満とすることができ、0.1質量部未満であるのが好ましく、実質的に含有しないのがより好ましい。
<調製方法>
 プライマー組成物は、各成分を混合することにより製造することができる。混合方法は、V型ブレンダー、ダブルコーン型ブレンダー、コンテナブレンダー、ドラム式ブレンダー、水平円筒式ミキサー、リボン式ミキサー、パドル式ミキサー、スクリュー式ミキサーなどを用いたドライブレンド法が挙げられる。なお、混合は、エポキシ樹脂からなる粉体の軟化点未満の温度で行うことが望ましい。例えば、ヘンシェルミキサー等の強いせん断力や遠心力をかける混合装置で長時間混合すると、エポキシ樹脂が軟化して反応性ETFE粉体に固着し、団塊化し、粉体流動性が低下してしまう。また、混合中に反応性ETFE粉体とエポキシ樹脂からなる粉体との化学反応が生じるため好ましくない。
<積層体>
 本発明において、積層体は、基材表面に、プライマー組成物の熱処理物であるプライマー層と、フッ素樹脂からなるトップコート層とがこの順に積層されたものである。積層体は、更に、トップコート層の表面に、トップコート層とは異なる材質である有機物又は無機物のコーティング層が積層されていてもよい。
 積層体は、耐熱性、耐アルカリ性等の耐久性、及び接着性に優れる。
<基材>
 本発明における基材としては、特に限定されず、鉄、ステンレス鋼、アルミニウム、銅、錫、チタン、クロム、ニッケル、亜鉛等の金属;ガラス、セラミックス等の耐熱材料が挙げられ、鉄、ステンレス鋼、アルミニウムが好ましい。
 本発明における基材の形状としては、特に限定されず、パイプ、チューブ、フィルム、板、タンク、ロール、ベッセル、バルブ、エルボー等が挙げられ、各種の容器、パイプ、チューブ、タンク、配管、継ぎ手、ロール、オートクレーブ、熱交換器、蒸留塔、治具類、バルブ、撹拌翼、タンクローリ、ポンプ、ブロワのケーシング、遠心分離機、調理機器等に使用できる。
<プライマー層>
 本発明におけるプライマー層は、プライマー組成物の熱処理物である。プライマー組成物については、好ましいものも含め、前記したとおりである。プライマー層の厚みは、1~1,000μmが好ましく、5~500μmがより好ましく、10~200μmが最も好ましい。プライマー層の厚みが1μm以上であると、接着性が十分に発揮され、1,000μm以下であると、発泡やふくれが生じにくい傾向がある。
<トップコート層>
 フッ素樹脂からなるトップコート層は、フッ素樹脂からなる粉体又はフッ素樹脂からなる粉体を含む粉体トップコート組成物を付与し、硬化させることにより形成することができる。
<フッ素樹脂からなる粉体又はフッ素樹脂からなる粉体を含む粉体トップコート組成物>
 フッ素樹脂からなる粉体は、常温(例えば、25℃)で固体のフッ素樹脂の粉体である。フッ素樹脂としては、特に限定されるものでなく、含フッ素モノマーの単独又は共重合体が挙げられるが、前記の反応性ETFEは含まない。含フッ素モノマーは、前記した、TFE、不飽和基に水素原子を有するフルオロオレフィン、不飽和基に水素原子を有しないフルオロオレフィン(ただし、TFEを除く)及びペルフルオロ(アルキルビニルエーテル)が挙げられる。また、フッ素樹脂は、上記した、エチレン、炭素数3以上の炭化水素系オレフィン、酸無水物残基と重合性不飽和結合とを有するモノマー、ビニルエーテル、ビニルエステル及び(メタ)アクリル酸エステル等のフッ素原子を有さないモノマーをコモノマー成分とした共重合体であってもよい。
 このようなフッ素樹脂として、非反応性エチレン/テトラフルオロエチレン系共重合体(以下、「非反応性ETFE」ともいう。)、プロピレン/TFE系共重合体、TFE/ペルフルオロ(アルキルビニルエーテル)系共重合体、TFE/ヘキサフルオロプロピレン共重合体、TFE/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体、クロロトリフルオロエチレン/エチレン系共重合体、フッ化ビニリデン重合体、ヘキサフルオロプロピレン/フッ化ビニリデン系共重合体等が挙げられ、非反応性ETFEが好ましい。すなわち、本発明において、フッ素樹脂からなるトップコート層は、非反応性ETFEからなる粉体(以下、「非反応性ETFE粉体」ともいう。)又は非反応性ETFEからなる粉体を含む粉体トップコート組成物を用いて得られるのが好ましい。
 非反応性ETFE粉体は、前記の反応性ETFEの定義における(C)/((A)+(B))がモル比で1/10,000未満のETFE粉体を意味する。また、非反応性ETFE粉体は、その他のモノマーに基づく繰り返し単位(D)を含んでいてもよい。(C)/((A)+(B))がモル比で1/10,000未満であることを除き、非反応性ETFE粉体は、好ましいものを含み反応性ETFE粉体において前記したとおりである。非反応性ETFE粉体の具体例として、旭硝子社製フルオン(登録商標)TL-081、Z-8820X、LM-2150(いずれも、酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)を含有しない)などが挙げられる。
 フッ素樹脂からなる粉体は、1種単独で用いてもよいし、2種以上を併用してもよい。
 フッ素樹脂からなる粉体の平均粒径は、1~1,000μmであるのが好ましく、5~300μmであるのがより好ましく、10~200μmであるのが特に好ましい。フッ素樹脂からなる粉体の平均粒径が1μm以上であると、付着量が少なすぎず所定厚みに加工するための重ね塗り回数が少なくなり、1,000μm以下であると、表面の平滑性が保たれる傾向がある。フッ素樹脂からなる粉体の平均粒径は、レーザー回折散乱粒度分布装置を用いて測定した場合の体積基準のメジアン径である。
 また、フッ素樹脂からなる粉体を含む粉体トップコート組成物は、銅化合物、錫化合物、鉄化合物、鉛化合物、チタン化合物、アルミニウム化合物等の熱安定剤を含有することが好ましい。熱安定剤を含有すると、焼成過程での熱劣化による黄変やタレを生じにくい傾向がある。熱安定剤の含有率は、トップコート組成物に対して、1×10-8~5質量%が好ましく、1×10-7~1質量%がより好ましく、5×10-7~0.1質量%が特に好ましい。また、熱安定剤の比表面積は、0.1~100m/gであることが好ましく、1~70m/gであることがより好ましく、5~50m/gであることが特に好ましい。比表面積は、BET法による。
<トップコート層の厚み>
 トップコート層の厚みは、10~5,000μmの範囲で最適な厚みを選ぶことができる。基材表面の溌水性向上、防汚性向上、光沢性向上などの目的では10~100μmの厚みが好ましく、基材表面の潤滑性向上や表面保護の目的では50~500μmの厚みが好ましく、有機薬品や無機薬品に対する基材の保護の目的では200~1,000μmの厚みが好ましく、特に非常に長期の耐久性が必要とされる場合には1,000~5,000μmの厚みが好ましい。薄すぎる場合には被覆効果が充分でなく、厚すぎる場合には塗装回数が増えるために不経済であるほか、基材との熱膨張係数の相違による応力ひずみを生じやすくなり好ましくない。
<トップコート層とは異なる材質である有機物又は無機物のコーティング層>
 トップコート層とは異なる材質である有機物又は無機物のコーティング層(以下「更なるコーティング層」ともいう)は、着色層、ハードコート層、浸透防止層等が挙げられる。積層体が更なるコーティング層を含むことにより、積層体が、色づけ効果、ハードコート効果、浸透防止効果等の更なる効果を有する傾向がある。更なるコーティング層の厚みは、特に限定されないが、0~1,000μmとすることができ、0~500μmであるのが好ましい。更なるコーティング層の厚みは、更なるコーティング層により付与される特性に応じて調整することができる。
<剥離強度>
 本発明の積層体において、トップコート層の基材に対する接着力は、90度剥離強度を測定することにより調べることができる。接着力は高いほどよいが、20N/cm以上の剥離強度であることが好ましく、40N/cm以上の剥離強度であることがより好ましく、50N/cm以上の剥離強度であることが特に好ましい。剥離強度が20N/cm未満である場合には接着の信頼性が低く、使用環境によっては塗膜の剥離やブリスターや基材の腐食劣化につながるため好ましくない。
<積層体の製造方法>
 本発明において、積層体は、基材表面にプライマー層を得る工程、及びプライマー層の表面にトップコート層を得る工程を含み、場合により、トップコート層の表面に更なるコーティング層を得る工程を含む製造方法により得られる。
<プライマー層の製造方法>
 プライマー層は、基材表面に本発明のプライマー組成物を付与してプライマー組成物層を形成する工程と、プライマー組成物層を熱処理してプライマー層を形成する工程とを含む製造方法により得られる。熱処理により、反応性ETFE粉体及びエポキシ樹脂からなる粉体が化学反応し、硬化して、プライマー層が形成される。
 プライマー組成物の付与方法としては、特に限定されないが、静電塗装法、流動浸漬法、回転成型法等の公知の粉体塗装方法が挙げられる。静電塗装法が、簡便であり大面積を均一な厚みで塗布することができるため好ましい。塗装機としては、各種の市販の静電塗装機が使用でき、-100~-30kVの電圧で静電印加し、気流とともにプライマー組成物を吹きつけることができる。
 基材上に付与されるプライマー組成物層の厚みは、好ましいものも含み、前記したプライマー層の厚みとなるような厚みが挙げられる。また、プライマー組成物層の厚みが前記の範囲にあれば、プライマー組成物を1回付与することで十分な接着性を発現するが、プライマー組成物を複数回付与してもよい。なお、プライマー組成物の厚みは、熱処理後のプライマー層の厚みに応じて調整することができる。
 基材上に付与されるプライマー組成物の付与量は、前記したプライマー組成物の厚みとなるような量であれば特に限定されず、1.6~1,600g/mとすることが好ましく、8.0~800g/mとすることがより好ましい。
 プライマー組成物層の熱処理は、所定温度に設定した電気炉やガス炉や赤外加熱炉などの任意の加熱手段により行なうことができる。
 熱処理温度は、260~340℃が好ましく、280~320℃がより好ましく、290~310℃が特に好ましい。熱処理温度が260℃以上であると、焼成不足による接着力低下や気泡残りの発生が抑制され、340℃以下であると、変色や発泡の生成が抑制される傾向がある。
 熱処理時間は、熱処理温度により異なるが、1~180分の間での熱処理が好ましく、より好ましくは5~120分であり、特に好ましくは10~60分である。熱処理時間が、1分以上であると、焼成不足による接着力低下や気泡残りが生じず、180分以下であると、変色や発泡の生成が抑制される傾向がある。
 プライマー組成物の付与に先だって、200℃以下の温度で基材を予熱しておいてもよい。また、プライマー組成物の付与前に基材表面をサンドブラスト処理やエッチング処理や金属溶射処理等により粗面化してもよく、表面に付着した異物を除去するために溶剤洗浄をしてもよい。これにより、接着性が向上する傾向がある。ここで、サンドブラスト処理の場合、表面粗さRaは接着性や用途に応じて1~100μmの範囲で加工できる。
<トップコート層の製造方法>
 トップコート層は、基材表面に積層されたプライマー層の表面に、フッ素樹脂からなる粉体又はフッ素樹脂からなる粉体を含むトップコート組成物を付与して、フッ素樹脂からなる粉体層又はフッ素樹脂からなる粉体を含むトップコート組成物層を形成する工程と、フッ素樹脂からなる粉体層又はフッ素樹脂からなる粉体を含むトップコート組成物層を熱処理してトップコート層を形成する工程とを含む製造方法により得られる。
 フッ素樹脂からなる粉体又はフッ素樹脂からなる粉体を含むトップコート組成物の付与方法としては、特に限定されないが、プライマー組成物の付与方法が挙げられ、静電塗装法、流動浸漬法、回転成型法など公知の粉体塗装方法が適用できるが、静電塗装法が簡便に均一な厚みで塗布することができるため好ましい。
 プライマー層の表面に形成されるフッ素樹脂からなる粉体層又はフッ素樹脂からなる粉体を含むトップコート組成物層の厚みは、好ましいものも含み、前記したトップコート層の厚みとなるような厚みが挙げられる。また、フッ素樹脂からなる粉体層又はフッ素樹脂からなる粉体を含むトップコート組成物層の厚みが前記の範囲にあれば、フッ素樹脂からなる粉体又はフッ素樹脂からなる粉体を含むトップコート組成物を1回付与することで十分であるが、フッ素樹脂からなる粉体又はフッ素樹脂からなる粉体を含むトップコート組成物を複数回付与してもよい。なお、フッ素樹脂からなる粉体層又はフッ素樹脂からなる粉体を含むトップコート組成物層の厚みは、焼成後の厚みに応じて調整することができる。また、複数回トップコート層を形成した場合、この複数回形成したトップコート層をまとめてトップコート層とする。
 プライマー層の表面に付与されるフッ素樹脂からなる粉体又はフッ素樹脂からなる粉体を含むトップコート組成物の付与量は、前記したトップコート層の厚みとなるような量であれば特に限定されない。
 フッ素樹脂からなる粉体層又はフッ素樹脂からなる粉体を含むトップコート組成物層の熱処理は、プライマー層の表面にトップコート層が形成される条件であれば特に限定されないが、所定温度に設定した電気炉やガス炉や赤外加熱炉などの任意の加熱手段により行なうことができる。熱処理温度は、260~340℃であるのが好ましく、280~320℃であるのがより好ましく、290~310℃であるのが特に好ましい。熱処理温度が260℃以上であると、焼成不足によるボイドや気泡残りが生じにくく、340℃以下であると、変色や発泡が生じにくい傾向がある。
 熱処理時間は、熱処理温度により異なるが、1~180分の間での熱処理が好ましく、より好ましくは5~120分であり、特に好ましくは10~60分である。熱処理時間が1分以上であると、焼成不足による気泡残りが生じにくく、180分以下であると変色やタレが生じにくい傾向がある
<トップコートとは異なる材質である有機物または無機物のコーティング層の製造方法>
 更なるコーティング層は、トップコート層の表面に、トップコートとは異なる材質である有機物または無機物のコーティング層のための組成物を付与する工程と、更なるコーティング層を形成する工程を含む製造方法により得られる。トップコートとは異なる材質である有機物または無機物のコーティング層の厚みは、特に限定されないが、前記した更なるコーティング層の厚みとなるような厚みが挙げられる。更なるコーティング層のための組成物及び更なるコーティング層の製造方法の条件は、特に限定されず、更なるコーティング層を形成するために通常用いられる条件が挙げられる。
 以下に実施例を挙げて、本発明を詳細に説明するが、本発明はこれらに限定されない。例1~5が実施例であり、例6~11が比較例である。なお、各例の塗布や評価は、以下に記載の方法にしたがった。
[塗布厚]電磁式膜厚計により5点測定し平均値を求めた。
[外観の判定]粉体プライマー組成物塗布時や、プライマー層付き基材及び塗装試験片の塗膜外観に異常がみられない場合にはAランクとし、たれや厚みむら生ずる場合や、塗膜の厚みむらや気泡やふくれ等の異常が確認された場合には以下基準によりランク付けし、Dランクは不可とした。
         非常に均一な外観      : Aランク
         概ね均一な外観       : Bランク
         若干の異常がみられる    : Cランク
         著しい異常がみられる    : Dランク
[初期接着性評価]プライマー層付き基材や塗装試験片の表面にカッターナイフを用いて10mm間隔の切り込みを入れ、塗膜の一部を剥離した後、引張り試験機のチャックに固定し、引張り速度50mm/分で90度剥離強度を測定した。得られた初期剥離強度について、以下基準によりランク付けし、Dランクは不可とした。
    剥離強度≧50N/cm           : Aランク
         40.0以上50.0N/cm未満 : Bランク
         20.0以上40.0N/cm未満 : Cランク
         <20N/cm          : Dランク
[耐熱水性]塗装試験片を、プレッシャークッカー(高温蒸気圧力釜)により130℃24時間処理後、初期接着性評価と同様にトップコート層の剥離強度を測定した。得られた耐熱水性試験後の剥離強度について、初期剥離強度の評価と同様にランク付けを行なった。
[耐アルカリ性]塗装試験片を、80℃の10%水酸化ナトリウム水溶液中に300時間浸漬後、初期接着性評価と同様にトップコート層の剥離強度を測定した。得られた耐アルカリ性試験後の剥離強度について、初期剥離強度の評価と同様にランク付けを行なった。
[平均粒径]0.1質量%の界面活性剤(日本乳化剤株式会社製、ニューコール1308FA(90))水溶液中に各粉体を分散し、レーザー散乱粒度分布計(堀場製作所社製、LA-920)を使用して、体積基準のメジアン平均粒径を測定した。
[嵩密度]JIS K6891に記載された方法により測定した。
[安息角]安息角測定器(筒井理科学測定器社製、ターンテーブル型安息角測定器)で安息角を測定した。安息角が小さいほうが、粉体流動性に優れる。
[保存安定性]粉体プライマー組成物を、40℃で300時間保管後、団塊化や粉体流動性に基づいてランク付けを行なった。
       団塊化がなく流動性も良好         : Aランク
       団塊化がないが流動性が少し低い      : Bランク
       団塊化しているが容易にほぐれ使用可能   : Cランク
       団塊化しており使用困難          : Dランク
[例1]
<反応性ETFE粉体(反応性ETFE-1)の製造>
 TFEに基づく繰り返し単位(A)/エチレンに基づく繰り返し単位(B)/IAHに基づく繰り返し単位(C)/CH=CH(CFFに基づく繰り返し単位(D)が、モル比で57.6/40.0/1.8/0.6(すなわち、(C)/((A)+(B))は、モル比で1.84/100である)であり、融点が242℃であるETFEを溶液重合し、造粒処理することにより得られた粒子をアズワン社製冷凍粉砕機TPH-01により粉砕し、平均粒径が40μmである反応性ETFE粉体(反応性ETFE-1)を得た。
<エポキシ樹脂からなる粉体(EP-1)の製造>
 三菱化学社製エポキシ樹脂1004(エポキシ当量925、分子量1650、軟化点97℃)をアズワン社製冷凍粉砕機TPH-01により粉砕し、平均粒径23μmのエポキシ樹脂からなる粉体(EP-1)を得た。
<ETFE粉体プライマー組成物(P-1)の製造>
 反応性ETFE粉体(反応性ETFE-1)とエポキシ樹脂からなる粉体(EP-1)を95/5の質量比で、V型ブレンダーにより1分間混合し、ETFE粉体プライマー組成物(P-1)を作製した。混合後の温度は25℃であり、混合後のETFE粉体プライマー組成物の粉体流動性は良好であり、平均粒径は39μmであった。
 また、このETFE粉体プライマー組成物は、40℃で300時間の保存安定性試験後に、異常はみられなかった。
<積層体の製造>
 縦50mm、横150mm、厚さ2mmのSUS316ステンレス鋼板の表面を60メッシュのアルミナ粒子を用いて表面粗さRa=5~10μmとなるようサンドブラスト処理したのち、エタノールで表面を清浄化し、試験用基材を作成した。
 この試験用基材表面に、粉体用静電塗装ガンを用い、-60kVの印加電圧でETFE粉体プライマー組成物(P-1)を吹きつけ、オーブン中に吊り下げて300℃10分間焼成し、プライマー層を形成し、プライマー層付き基材を得た。
 ついで、その表面に、トップコート用の非反応性ETFE粉体として、旭硝子社製フルオンETFE TL-081(非反応性ETFE-1、酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)を含有しない)を静電塗装し、300℃で10分間焼成し、この静電塗装及び焼成工程を3回繰り返すことにより、合計厚み370μmのトップコート層を形成し、塗装試験片を得た。トップコート層の初期剥離強度は71.9N/cmであり、耐熱水性試験後及び耐アルカリ性試験後にも充分な剥離強度を示した。
[例2、3]
 反応性ETFE粉体(反応性ETFE-1)及びエポキシ樹脂からなる粉体(EP-1)の配合量を、表1に示すように変えて、ETFE粉体プライマー組成物(P-2)及びETFE粉体プライマー組成物(P-3)を作製し、塗装試験片を得た。例1と同様の評価を行なったところ、良好な結果が得られた。
[例4]
 エポキシ樹脂からなる粉体として、三菱化学社製エポキシ樹脂1007(エポキシ当量1,975、分子量2,900、軟化点128℃)を冷凍粉砕した平均粒径28μmのエポキシ樹脂からなる粉体(EP-2)を使用して、表1中に例4として示す配合で粉体プライマー組成物(P-4)を作製した。またトップコート用の非反応性ETFE粉体として、旭硝子社製フルオンETFE Z-8820X(非反応性ETFE-2、酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)を含有しない)を使用して、塗装試験片を得た。例1と同様の評価を行なったところ、良好な結果が得られた。
[例5]
 例1で作製したETFE粉体の粉砕条件を変えることにより、平均粒径10μmの反応性ETFE粉体(反応性ETFE-2)を得て、表1中に例5として示す配合で粉体プライマー組成物(P-5)を作製した。粉体プライマー組成物(P-5)を使用してプライマー塗布を行なった後、トップコート塗布を6回行ない、塗装試験片を得た。例1と同様の評価を行なったところ、良好な結果が得られた。
[例6(比較例)]
 表2中の例6として示す配合で粉体プライマー組成物(P-6)を作製し、塗装試験片を得た。例1と同様の評価を行ったところ、エポキシ樹脂を使用しないと考えられるために剥離強度が不良であった。
[例7(比較例)]
 表2中の例7として示す配合で粉体プライマー組成物(P-7)を作製し、塗装試験片を得た。例1と同様の評価を行ったところ、反応性ETFEを使用しないと考えられるために剥離強度が不良であった。
[例8(比較例)]
 エポキシ樹脂からなる粉体として、三菱化学社製エポキシ樹脂1001(エポキシ当量475、分子量900、軟化点64℃)を冷凍粉砕した平均粒径67μmのエポキシ樹脂からなる粉体(EP-3)を使用し、表2中に例8として示す配合で粉体プライマー組成物(P-8)を作製し、塗装試験片を得た。例1と同様の評価を行ったところ、耐熱水性試験後及び耐アルカリ性試験後の剥離強度が不良であったほか、保存安定性試験後に団塊化による粉体流動性低下が認められた。
[例9(比較例)]
 エポキシ樹脂からなる粉体として、三菱化学社製エポキシ樹脂1009(エポキシ当量2,850、分子量3,800、軟化点144℃)を冷凍粉砕した、平均粒径56μmのエポキシ樹脂からなる粉体(EP-4)を使用し、表2中に例9として示す配合で粉体プライマー組成物(P-9)を作製し、塗装試験片を得た。例1と同様の評価を行ったところ、剥離強度が低かった。
[例10(比較例)]
 表2中の例10として示す配合でエポキシ樹脂からなる粉体EP-1の配合量を増やして粉体プライマー組成物(P-10)を作製し、塗装試験片を得た。例1と同様の評価を行ったところ、粉体流動性が低いためにプライマー塗布時にムラを生じた。また、トップコート焼成後に気泡を生じた。また、保存安定性試験後に団塊化による粉体流動性低下が認められた。
[例11(比較例)]
 表2中の例8として示す配合で、反応性ETFE粉体とエポキシ樹脂からなる粉体との混合を、ヘンシェルミキサーを用いて10分間行なった。混合中の粉体の温度が70℃まで上昇したためにETFE粉体プライマー組成物に著しい団塊化が生じ、プライマー塗布を行なうことができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
  反応性ETFE-1:平均粒径40μm
  反応性ETFE-2:平均粒径10μm
  非反応性ETFE-1:旭硝子社製TL-081、平均粒径76μm
  非反応性ETFE-2:旭硝子社製Z-8820X、平均粒径45μm
  EP-1:三菱化学社製エポキシ樹脂1004粉砕物、平均粒径23μm、エポキシ当量925、軟化点97℃、分子量1,650
  EP-2:三菱化学社製エポキシ樹脂1007粉砕物、平均粒径28μm、エポキシ当量1,975、軟化点128℃、分子量2,900
  EP-3:三菱化学社製エポキシ樹脂1001粉砕物、平均粒径67μm、エポキシ当量475、軟化点64℃、分子量900
  EP-4:三菱化学社製エポキシ樹脂1009粉砕物、平均粒径56μm、エポキシ当量2,850、軟化点144℃、分子量3,800
 本発明のプライマー組成物は、従来のETFEプライマーと比較して、接着性、耐久性、保存安定性、及び均一塗装性に優れる。本発明のプライマー組成物は、金属、ガラス、セラミックス等の耐熱基板表面に塗布することが可能であり、フッ素樹脂、特にETFEによるライニング、コーティング、表面処理のプライマーとして有用である。本発明のプライマー組成物及び本発明のプライマー組成物を用いて得られる積層体は、各種の容器、パイプ、チューブ、タンク、配管、継ぎ手、ロール、オートクレーブ、熱交換器、蒸留塔、治具類、バルブ、撹拌翼、タンクローリ、ポンプ、ブロワのケーシング、遠心分離機、調理機器等に使用できる。
 なお、2013年12月11日に出願された日本特許出願2013-255660号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (5)

  1.  テトラフルオロエチレンに基づく繰り返し単位(A)、エチレンに基づく繰り返し単位(B)及び酸無水物残基と重合性不飽和結合とを有するモノマーに基づく繰り返し単位(C)を含有し、(C)/((A)+(B))がモル比で1/10,000~5/100である、反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体と、
    エポキシ当量が500~2,700であり、軟化点が70℃以上である、エポキシ樹脂からなる粉体と
    を含有し、反応性エチレン/テトラフルオロエチレン系共重合体からなる粉体の、エポキシ樹脂からなる粉体に対する質量比が99/1~80/20である、粉体プライマー組成物。
  2.  平均粒径が1~1000μmである、請求項1に記載の粉体プライマー組成物。
  3.  平均粒径が1~300μmである、請求項1又は2に記載の粉体プライマー組成物。
  4.  基材表面に、請求項1~3のいずれかに記載の粉体プライマー組成物の熱処理物であるプライマー層と、フッ素樹脂からなるトップコート層とがこの順に積層された積層体。
  5.  基材に対する、トップコート層の剥離強度が、20N/cm以上である、請求項4に記載の積層体。
PCT/JP2014/082312 2013-12-11 2014-12-05 粉体プライマー組成物及びそれを用いた積層体 WO2015087813A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015552428A JP6519481B2 (ja) 2013-12-11 2014-12-05 粉体プライマー組成物及びそれを用いた積層体
CN201480067399.3A CN105814152B (zh) 2013-12-11 2014-12-05 粉体底漆组合物以及使用其的层叠体
EP14869710.5A EP3081608B1 (en) 2013-12-11 2014-12-05 Powder primer composition and laminate using it
KR1020167013462A KR102329381B1 (ko) 2013-12-11 2014-12-05 분체 프라이머 조성물 및 그것을 사용한 적층체
US15/096,550 US10113068B2 (en) 2013-12-11 2016-04-12 Powder primer composition and laminate using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013255660 2013-12-11
JP2013-255660 2013-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/096,550 Continuation US10113068B2 (en) 2013-12-11 2016-04-12 Powder primer composition and laminate using it

Publications (1)

Publication Number Publication Date
WO2015087813A1 true WO2015087813A1 (ja) 2015-06-18

Family

ID=53371118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082312 WO2015087813A1 (ja) 2013-12-11 2014-12-05 粉体プライマー組成物及びそれを用いた積層体

Country Status (6)

Country Link
US (1) US10113068B2 (ja)
EP (1) EP3081608B1 (ja)
JP (1) JP6519481B2 (ja)
KR (1) KR102329381B1 (ja)
CN (1) CN105814152B (ja)
WO (1) WO2015087813A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224285A (ja) * 2014-05-27 2015-12-14 株式会社Lixil 粉体塗料、塗装方法、及び塗膜
JP2018162416A (ja) * 2017-03-27 2018-10-18 Agc株式会社 粉体塗料
CN114026149A (zh) * 2019-07-01 2022-02-08 索尔维特殊聚合物美国有限责任公司 PEEK-PEoEK共聚物粉末和制备该粉末的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163913A1 (ja) * 2018-02-23 2019-08-29 Agc株式会社 積層体及びその製造方法、ならびに成形体及びその製造方法
EP3978146A4 (en) * 2019-05-31 2023-06-14 Daikin Industries, Ltd. PRIMER FOR ETHYLENE/TETRAFLUORETHYLENE COPOLYMER COATING MATERIALS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111426A (en) 1961-08-04 1963-11-19 Pennsalt Chemicals Corp Application of polyvinylidene fluoride coatings
JPS58141252A (ja) * 1982-01-22 1983-08-22 アライド・コ−ポレ−シヨン 粉末化したプライマ−被覆組成物の製造方法
WO2002090450A1 (en) * 2001-05-09 2002-11-14 Daikin Industries, Ltd. Fluorine-containing resin coating compositions, primers for etfe coating, and coated articles
JP2004238405A (ja) 2002-02-22 2004-08-26 Asahi Glass Co Ltd 含フッ素共重合体
JP2006167689A (ja) 2004-12-20 2006-06-29 Asahi Glass Co Ltd フッ素樹脂の被膜の形成方法及び該被膜を表面に有する金属基材
JP2006206637A (ja) 2005-01-25 2006-08-10 Asahi Glass Co Ltd エチレン/テトラフルオロエチレン系共重合体粉体及びそれを塗装してなる物品
JP2007314759A (ja) * 2006-04-26 2007-12-06 Kansai Paint Co Ltd 粉体プライマー組成物及び塗膜の形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699728B2 (ja) * 1995-08-08 2005-09-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 耐透過性etfe組成物
TW457284B (en) * 1997-09-12 2001-10-01 Cytec Tech Corp Water based primer compositions and their use for treating metal surfaces
JP2006182963A (ja) * 2004-12-28 2006-07-13 Honda Motor Co Ltd 塗料組成物及び自動車車体構成部材
CA2584950A1 (en) 2006-04-26 2007-10-26 Kansai Paint Co., Ltd. Powder primer composition and method for forming coating film
WO2009119493A1 (ja) * 2008-03-28 2009-10-01 ダイキン工業株式会社 粉体塗料及び含フッ素積層体
WO2013146078A1 (ja) * 2012-03-26 2013-10-03 ダイキン工業株式会社 複合粒子、粉体塗料、塗膜、積層体、及び、複合粒子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111426A (en) 1961-08-04 1963-11-19 Pennsalt Chemicals Corp Application of polyvinylidene fluoride coatings
JPS58141252A (ja) * 1982-01-22 1983-08-22 アライド・コ−ポレ−シヨン 粉末化したプライマ−被覆組成物の製造方法
WO2002090450A1 (en) * 2001-05-09 2002-11-14 Daikin Industries, Ltd. Fluorine-containing resin coating compositions, primers for etfe coating, and coated articles
JP2004238405A (ja) 2002-02-22 2004-08-26 Asahi Glass Co Ltd 含フッ素共重合体
JP2006167689A (ja) 2004-12-20 2006-06-29 Asahi Glass Co Ltd フッ素樹脂の被膜の形成方法及び該被膜を表面に有する金属基材
JP2006206637A (ja) 2005-01-25 2006-08-10 Asahi Glass Co Ltd エチレン/テトラフルオロエチレン系共重合体粉体及びそれを塗装してなる物品
JP2007314759A (ja) * 2006-04-26 2007-12-06 Kansai Paint Co Ltd 粉体プライマー組成物及び塗膜の形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224285A (ja) * 2014-05-27 2015-12-14 株式会社Lixil 粉体塗料、塗装方法、及び塗膜
JP2018162416A (ja) * 2017-03-27 2018-10-18 Agc株式会社 粉体塗料
CN114026149A (zh) * 2019-07-01 2022-02-08 索尔维特殊聚合物美国有限责任公司 PEEK-PEoEK共聚物粉末和制备该粉末的方法

Also Published As

Publication number Publication date
JP6519481B2 (ja) 2019-05-29
KR102329381B1 (ko) 2021-11-19
KR20160096594A (ko) 2016-08-16
EP3081608A4 (en) 2017-06-21
CN105814152B (zh) 2019-06-18
US20160222219A1 (en) 2016-08-04
EP3081608A1 (en) 2016-10-19
CN105814152A (zh) 2016-07-27
EP3081608B1 (en) 2019-02-20
JPWO2015087813A1 (ja) 2017-03-16
US10113068B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
JP6432521B2 (ja) 液体プライマー組成物及びそれを用いた積層体
EP2832771B1 (en) Composite particles, powder coating material, coating film, laminate, and method for producing composite particles
US10113068B2 (en) Powder primer composition and laminate using it
JP6149739B2 (ja) プライマー組成物及びそれを用いた積層体
WO1997021776A1 (fr) Materiau fluore pour composition de revetement et procede d'enrobage au moyen de cette composition
TW201936760A (zh) 積層體及其製造方法、以及成形體及其製造方法
JP5165184B2 (ja) 中空物品の内部表面をロトライニングするためのフルオロポリマー組成物
US7985790B2 (en) Water-based fluoropolymer composition
JP4254536B2 (ja) 含フッ素塗料組成物、塗膜及び塗装物
TWI731010B (zh) 塗裝用粉體及塗裝物品
CN116867858A (zh) 粉末涂料组合物
JP2006510472A (ja) ロトライニング法
JP2017213505A (ja) 塗装物品の製造方法
JP2020111644A (ja) 粉体組成物、物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552428

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014869710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869710

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167013462

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE