WO2015083705A1 - ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法 - Google Patents

ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法 Download PDF

Info

Publication number
WO2015083705A1
WO2015083705A1 PCT/JP2014/081880 JP2014081880W WO2015083705A1 WO 2015083705 A1 WO2015083705 A1 WO 2015083705A1 JP 2014081880 W JP2014081880 W JP 2014081880W WO 2015083705 A1 WO2015083705 A1 WO 2015083705A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
polyolefin microporous
polyolefin
film
stretching
Prior art date
Application number
PCT/JP2014/081880
Other languages
English (en)
French (fr)
Inventor
まさみ 菅田
勝輝 日向野
一ノ宮 崇
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to JP2015551522A priority Critical patent/JP6555128B2/ja
Priority to KR1020167013554A priority patent/KR102223395B1/ko
Priority to CN201480065580.0A priority patent/CN106170509B/zh
Publication of WO2015083705A1 publication Critical patent/WO2015083705A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separation membrane used for separation of substances, selective permeation, etc., and a microporous membrane widely used as a separator for electrochemical reaction devices such as alkali, lithium secondary batteries, fuel cells, capacitors, and the like.
  • the present invention relates to a polyolefin microporous membrane suitably used as a lithium ion battery separator.
  • Polyolefin microporous membranes are used as microfiltration membranes, fuel cell separators, capacitor separators, and the like.
  • the polyolefin microporous membrane is particularly suitably used as a separator for lithium ion batteries widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason is that the polyolefin microporous membrane has excellent membrane puncture strength and shutdown characteristics.
  • Lithium ion secondary batteries are being developed with the aim of higher energy density, higher capacity, and higher output. Along with this, separators also have high strength (particularly puncture strength), high permeability, etc. The demand for this is becoming even higher. However, puncture strength and permeability (air permeability resistance) are contradictory properties in a polyolefin microporous membrane, and it has been difficult to achieve both.
  • lithium-ion batteries have been widely applied to automobiles and devices used outdoors such as lawn mowers, mowers, small ships, as well as electric vehicles, hybrid vehicles, and electric motorcycles. For this reason, a large battery is required as compared with a small electronic device such as a conventional mobile phone or laptop computer, and a separator having a wide width, for example, a separator having a width of 100 mm or more is desired as a separator incorporated in the battery. It has come to be.
  • the polyolefin microporous membrane generally used for the separator has a thickness of 30 ⁇ m or less and has extremely low tensile strength and rigidity, problems such as wrinkles and winding misalignment are likely to occur.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-99799 describes a polyolefin microporous film wound product with less winding deviation when rewinding from a wound body. Although it has been disclosed that by setting the friction coefficient ratio between the front and back sides of the microporous membrane to 1.5 or less, the winding property at the time of rewinding is improved, high strength and high permeability are compatible. Absent.
  • the present invention achieves both puncture strength and air resistance, which have been difficult to achieve in the past, and controls the coefficient of static friction between the front and back of the film.
  • a polyolefin microporous membrane that can obtain a wound body without wrinkles or winding deviation while maintaining necessary characteristics even in many cases.
  • An object of the present invention is to provide a polyolefin microporous membrane having excellent puncture strength and air permeability resistance, and having an excellent appearance without wrinkles and unwinding when wound.
  • Patent Document 2 Japanese Patent Laid-Open No. 8-311225
  • Japanese Patent Laid-Open No. 8-311225 Japanese Patent Laid-Open No. 8-311225
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-966164 is a prior art document that focuses on the friction coefficient.
  • a high-molecular-weight polyethylene having an intrinsic viscosity of 5.0 dl / g or more is disclosed at the same time. This is for improving the surface smoothness of the high molecular weight polyethylene biaxially oriented film obtained by axial stretching, and not only the appearance of the wound body is improved but also the puncture strength and the air permeability resistance are not achieved at the same time.
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2009-132904 discloses a polyethylene gel sheet having a weight average molecular weight of 3.8 ⁇ 10 5. The film is successively stretched 8.5 times in the machine direction (machine direction) and 5 times in the transverse direction (perpendicular to the machine direction), and then the solvent is washed and dried. A film stretched 1.2 times in the transverse direction is disclosed.
  • Patent Document 5 Japanese Patent Application Laid-Open No.
  • 2010-24463 discloses a gel-like material composed of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2.0 ⁇ 10 6 and high density polyethylene having a weight average molecular weight of 3.5 ⁇ 10 5.
  • a film is disclosed in which a part of the solvent is removed from the sheet, and then the film is sequentially stretched 5 times in the longitudinal direction and 10 times in the transverse direction.
  • puncture strength and air resistance there is no disclosure about the balance between puncture strength and air resistance, and the appearance (wrinkle, misalignment) of the wound body, and it is expected that it will progress in the future. It was inadequate for widening and lengthening of the revolving product.
  • the present invention is as follows.
  • the puncture strength in terms of thickness of 16 ⁇ m is 400 gf or more, the air resistance in terms of thickness of 16 ⁇ m is 100 to 400 seconds / 100 cc, and the static friction coefficient when the front and back of the film are overlapped is 0.5 to 1
  • a separator for a non-aqueous electrolyte secondary battery comprising the polyolefin microporous membrane according to any one of (1) to (3).
  • the puncture strength in terms of thickness of 16 ⁇ m is 400 gf or more
  • the air resistance in terms of thickness of 16 ⁇ m is 100 to 400 seconds / 100 cc
  • the static friction coefficient when the front and back of the film are overlapped is 0.5 to 1 0.0
  • the number of laminated polyolefin microporous membranes wound on the core is 1500 or more
  • the width of the polyolefin microporous membrane The polyolefin microporous membrane roll is characterized in that the deviation of the end face in the direction is 0 to 3 mm on both the left and right sides in the lamination direction of the polyolefin microporous membrane.
  • Step (a) A step of preparing a polyolefin solution by melt-kneading a polyolefin resin containing an ultrahigh molecular weight polyolefin having a weight average molecular weight of 2 ⁇ 10 6 or more and less than 4 ⁇ 10 6 and a plasticizer
  • Step (a) The molten mixture obtained in (1) is extruded from an extruder to form an extrudate, so that the cooling rate of the front and back of the extrudate is 250 ° C./min or more and the difference in cooling rate between the front and back is 15 ° C./sec or more.
  • Step (c) of forming a gel-like sheet by cooling The sheet obtained in step (c) is a step obtained by stretching the sheet obtained in step (b) in the longitudinal direction (machine direction). Step (e) Stretching in the transverse direction (perpendicular to the machine direction) Step (e) Extracting the plasticizer from the stretched membrane obtained in Step (d) (f) The microporous membrane obtained in Step (e) Including a drying step, The method for producing a microporous polyolefin membrane according to any one of (1) to (3), wherein the step (c) and the step (d) are each continuously performed.
  • the polyolefin microporous membrane of the present invention is excellent in puncture strength and air permeability resistance, and has an excellent appearance when formed into a wound body, and is suitable as a separator for a lithium ion secondary battery.
  • the present invention is clearly different from that obtained by adding a lubricant such as inorganic particles to a polyolefin resin as a raw material for the polyolefin microporous membrane to adjust the friction coefficient.
  • a lubricant such as inorganic particles
  • the lubricant may fall off in a subsequent process, contaminating the process, resulting in a serious defect in the polyolefin microporous film.
  • polyolefin resin used in the polyolefin microporous membrane of the present invention preferably contains polyethylene as a main component.
  • the total polyolefin resin is 100% by mass, the proportion of polyethylene is preferably 80% by mass or more, more preferably 90% by mass or more, and polyethylene alone It is preferable to use in.
  • Polyethylene is not limited to a homopolymer of ethylene but may be a copolymer containing a small amount of other ⁇ -olefin.
  • ⁇ -olefin examples include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like.
  • high density polyethylene such as density exceeding 0.94 g / cm 3, density polyethylene in the range density of 0.93 ⁇ 0.94g / cm 3, density of 0.93 g / Low density polyethylene lower than cm 3 , linear low density polyethylene and the like can be mentioned, but in order to increase the puncture strength, it is preferable to include high density polyethylene.
  • the high-density polyethylene has a weight average molecular weight (hereinafter referred to as Mw) of 1 ⁇ 10 5 or more, more preferably 2 ⁇ 10 5 or more.
  • the upper limit of the Mw of the high-density polyethylene is preferably 8 ⁇ 10 5 , more preferably 7 ⁇ 10 5 . If Mw is in the above range, the stability of the film formation and the finally obtained puncture strength can both be achieved.
  • the polyethylene contains ultra high molecular weight polyethylene.
  • the ultra high molecular weight polyethylene may be not only a homopolymer of ethylene but also a copolymer containing a small amount of other ⁇ -olefin. Other ⁇ -olefins other than ethylene may be the same as described above.
  • the puncture strength can be improved by adding ultrahigh molecular weight polyethylene.
  • the Mw of the ultra high molecular weight polyethylene is preferably 2 ⁇ 10 6 or more and less than 4 ⁇ 10 6 .
  • ultra high molecular weight polyethylene having an Mw of 2 ⁇ 10 6 or more and less than 4 ⁇ 10 6 , pores and fibrils can be made finer, so that the membrane surface becomes dense and rough and the puncture strength is increased. It becomes possible.
  • the film surface becomes dense and rough, the friction coefficient can be controlled by combining with the manufacturing method described later.
  • “densely coarse” means that fine crystals exist densely as described later.
  • the Mw of the ultra high molecular weight polyethylene is 4 ⁇ 10 6 or more, the viscosity of the melt becomes too high, so that there is a problem in the film forming process such that the resin cannot be extruded from the die (die), There is a possibility that the shrinkage rate may deteriorate.
  • the Mw of the ultrahigh molecular weight polyethylene is 4 ⁇ 10 6 or more, it is easy to separate from the main component polyethylene, so that the surface of the microporous film becomes too rough and the friction coefficient may be too low.
  • the content of ultrahigh molecular weight polyethylene is 100% by mass with respect to the entire polyolefin resin, and the lower limit is preferably 10% by mass, more preferably 20% by mass, and even more preferably 30% by mass.
  • the upper limit of the content of ultrahigh molecular weight polyethylene is preferably 40% by mass. When the content of the ultrahigh molecular weight polyethylene is within this range, it becomes easy to obtain both puncture strength and air permeability resistance by a film forming method described later. In addition, when the content of the ultrahigh molecular weight polyethylene is within the above-described range, the ultrahigh molecular weight polyethylene is sufficiently dispersed, so that the surface crystallinity is easily controlled, and the friction coefficient is appropriately determined by the film forming method described later. It becomes possible to control to.
  • the meltdown temperature can be improved when the polyolefin microporous membrane of the present invention is used as a battery separator.
  • a block copolymer and a random copolymer can be used in addition to the homopolymer.
  • the block copolymer and random copolymer may contain a copolymer component with ⁇ -ethylene other than propylene, and ethylene is preferable as the other ⁇ -ethylene.
  • the pin puncture strength tends to be lower than when polyethylene alone is used, so 0 to 10% by mass in the polyolefin resin is preferable.
  • the weight average molecular weight (hereinafter referred to as Mw) of the polyolefin resin is preferably 1 ⁇ 10 5 or more. If Mw is less than 1 ⁇ 10 5 , breakage may easily occur during stretching.
  • various additives such as an antioxidant, a heat stabilizer and an antistatic agent, an ultraviolet absorber, and an antiblocking agent and a filler are added within the range not impairing the effects of the present invention.
  • An agent may be included.
  • the polyolefin microporous membrane of the present invention is substantially free of inorganic particles.
  • “Substantially free of inorganic particles” means, for example, a content of 300 ppm or less, preferably 100 ppm or less, and most preferably less than the detection limit when inorganic elements are quantified by fluorescent X-ray analysis. Even if particles are not positively added to the polyolefin microporous membrane, contaminants derived from foreign substances and raw material resin or dirt attached to the line and equipment in the polyolefin microporous membrane manufacturing process are peeled off. It is because it may be mixed in.
  • the method for producing a polyolefin microporous membrane of the present invention includes the following steps (a) to (f).
  • (A) A step (b) of preparing a polyolefin solution by melt-kneading a polyolefin resin containing an ultrahigh molecular weight polyolefin having a weight average molecular weight of 2 ⁇ 10 6 or more and less than 4 ⁇ 10 6 and a plasticizer.
  • the resulting polyolefin solution is extruded from an extruder to form an extrudate, and cooled so that the cooling rate of the front and back of the extrudate is 250 ° C./min or more and the difference in cooling rate between the front and back is 15 ° C./sec or more.
  • Step (c) of forming a gel-like sheet Step (b)
  • the sheet obtained in step (c) is stretched in the longitudinal direction (machine direction).
  • Step (e) stretching in the direction perpendicular to the machine direction) e) Step of extracting the plasticizer from the stretched membrane obtained in step (d)
  • step (f) Step of drying the microporous membrane obtained in step (e) .
  • the step (c) and the step (d) are each continuously performed.
  • a so-called batch type manufactured method in which a microporous membrane having a specific size is manufactured using a specific amount of resin, and then a series of steps are repeated using another raw material
  • the production method is continuously and constantly performed from the raw material preparation step to the microporous membrane winding step.
  • Other steps such as a hydrophilization treatment and a charge removal treatment can be added before, during and after the steps (c) to (f).
  • a polyolefin solution is prepared by heating and dissolving a polyolefin resin in a plasticizer.
  • the plasticizer is not particularly limited as long as it is a solvent that can sufficiently dissolve polyethylene.
  • the solvent is preferably a liquid at room temperature.
  • Liquid solvents include nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffins and other aliphatic, cycloaliphatic or aromatic hydrocarbons, and mineral oil fractions with boiling points corresponding to these, and dibutyl phthalate And phthalic acid esters which are liquid at room temperature such as dioctyl phthalate.
  • a non-volatile liquid solvent such as liquid paraffin.
  • a solid solvent may be mixed with the liquid solvent at room temperature.
  • examples of such a solid solvent include stearyl alcohol, seryl alcohol, and paraffin wax.
  • the blending ratio of the polyolefin resin and the plasticizer is preferably from 10 to 50% by weight from the viewpoint of improving the moldability of the extrudate, with the total of the polyolefin resin and the plasticizer being 100% by weight.
  • the lower limit of the content of the polyolefin resin is more preferably 20% by weight.
  • the upper limit of the content of the polyolefin resin is further preferably 40% by weight, and more preferably 35% by weight.
  • the content of the polyolefin resin is 50% by weight or less, since the shrinkage in the thickness direction is small, the moldability and the film forming property are good.
  • the content of the polyolefin resin is within this range, it is easy to obtain both puncture strength and air permeability resistance by a film forming method described later.
  • the content of the polyolefin resin is in the above-described range, the progress of crystallization due to the plasticizing effect is improved, and the crystal structure on the front and back of the film can be easily controlled. Thus, it is possible to control the friction coefficient between the front and back of the film.
  • the viscosity of the liquid solvent is preferably 20 to 200 cSt at 40 ° C. If the viscosity of the liquid solvent at 40 ° C. is 20 cSt or more, the thickness of the sheet obtained by extruding the polyolefin solution from the die is unlikely to be uneven. On the other hand, if the viscosity of the liquid solvent is 200 cSt or less, the liquid solvent can be easily removed.
  • the uniform melt-kneading of the polyolefin solution is not particularly limited, but when preparing a highly concentrated polyolefin solution, it is preferably carried out in an extruder, particularly a twin screw extruder. As needed, you may add various additives, such as antioxidant, to a polyolefin solution in the range which does not impair the effect of this invention. In particular, it is preferable to add an antioxidant in order to prevent oxidation of polyethylene.
  • the polyolefin solution is uniformly mixed at a temperature at which the polyolefin resin is completely melted.
  • the melt kneading temperature varies depending on the polyolefin resin to be used, but the lower limit is preferably (melting point of polyolefin resin + 10 ° C.), more preferably (melting point of polyolefin resin + 20 ° C.).
  • the upper limit of the melt kneading temperature is preferably (melting point of polyolefin resin + 120 ° C.), more preferably (melting point of polyolefin resin + 100 ° C.).
  • the melting point refers to a value measured by DSC based on JIS K7121 (1987) (hereinafter the same).
  • the lower limit of the melt kneading temperature is preferably 140 ° C., more preferably 160 ° C., and most preferably 170 ° C.
  • the upper limit of the melt kneading temperature of the polyethylene composition is preferably 250 ° C., 230 ° C., and most preferably 200 ° C.
  • the melt kneading temperature is preferably 190 to 270 ° C.
  • the melt kneading temperature is preferably low, but if it is lower than the above-mentioned temperature, an unmelted product is generated in the extrudate extruded from the die, causing film breakage or the like in the subsequent stretching step
  • the temperature is higher than the above-described temperature, the thermal decomposition of the polyolefin becomes violent, and the physical properties of the resulting microporous film, such as puncture strength and tensile strength, may be inferior.
  • the ratio (L / D) of the screw length (L) to the diameter (D) (L / D) of the twin screw extruder is preferably 20 to 100 from the viewpoint of obtaining good process kneadability and resin dispersibility / distributability.
  • the lower limit of the ratio is more preferably 35.
  • the upper limit of the ratio is more preferably 70.
  • L / D is 20 or more, melt-kneading is sufficient.
  • L / D is 100 or less, the residence time of the polyolefin solution does not increase excessively.
  • the inner diameter of the twin-screw extruder is preferably 40 to 100 mm.
  • the screw rotation speed (Ns) of the twin screw extruder In order to disperse polyethylene well in the extrudate and to obtain excellent thickness uniformity of the microporous membrane, it is preferable to set the screw rotation speed (Ns) of the twin screw extruder to 150 to 600 rpm. Furthermore, the ratio of the extrusion rate Q (kg / h) of the polyolefin solution to Ns (rpm), Q / Ns is preferably 0.6 kg / h / rpm or less. Q / Ns is more preferably 0.35 kg / h / rpm or less.
  • (B) Formation of extrudate and gel-like sheet The polyolefin solution melt-kneaded by an extruder is extruded from a die directly or through another extruder, and the extrudate is obtained by forming the microporous film of the final product to have a thickness of 5 to 100 ⁇ m. .
  • a rectangular T-die may be used as the die.
  • the slit gap of the die is preferably 0.1 to 5 mm from the viewpoint of easy control of the thickness of the microporous film of the final product, and is preferably heated to 140 to 250 ° C. during extrusion.
  • a gel-like sheet is obtained by cooling the extrudate obtained, and the polyethylene microphase separated by the solvent can be fixed by cooling.
  • the cooling step it is preferable to cool the gel-like sheet to the crystallization end temperature or lower. Cooling is preferably performed at a rate of 250 ° C./min or higher, more preferably 300 ° C./min or higher, until both the front and back sides of the gel-like sheet become the crystallization end temperature or lower. If the cooling rate is in the above range, the crystals forming the gel are not coarsened, and a dense higher order structure can be obtained.
  • the cooling rate is in the above range, the higher order structure is fine, so that the molecular orientation is easy to proceed in the subsequent stretching, and both puncture strength and air permeability resistance can be achieved. Furthermore, if the cooling rate is within the above range, the fine crystals are densely present, so that the surface of the finally obtained microporous film can be densely roughened. Control becomes possible. When the cooling rate is too low, the crystal becomes too coarse, and it becomes difficult to obtain the target friction coefficient.
  • the crystallization end temperature is an extrapolated crystallization end temperature measured according to JIS K7121 (1987). Specifically, polyethylene has an extrapolation crystallization end temperature of about 70 to 90 ° C.
  • the cooling rate here is determined by the time until the temperature of the resin discharged from the exit of the extruder reaches the crystallization completion temperature and the temperature difference between the resin temperature at the exit of the extruder and the crystallization completion temperature. Can do. Therefore, in the cooling step, when cooling to the crystallization end temperature or lower, the cooling rate of each of the front and back sides of the gel-like sheet is the difference between the resin temperature at the exit of the extruder and the respective gel-like sheet temperatures at the front and back of the cooling step. Is obtained by dividing the cooling step by the time required for the portion at a certain position in the gel-like sheet to pass through.
  • seat and the cooling rate of the other surface (back surface) is 15 degrees C / sec or more.
  • the cooling rate on the front and back sides of the gel sheet so that the difference in cooling rate is 15 ° C./second or more, the static friction coefficient when the front and back sides of the film are overlapped is 0.5 to 1.0.
  • a microporous membrane can be obtained.
  • the extrudate cooling method includes direct contact with cold air, cooling water, and other cooling media, contact with a roll cooled with a refrigerant, method using a casting drum, etc.
  • a method using a casting drum is preferable.
  • cold air, cooling water, other cooling media, a roll cooled with a refrigerant, or the like can be used in combination.
  • the solution pushed out from the die is taken up at a predetermined take-up ratio before or during cooling, and the lower limit of the take-up ratio is preferably 1 or more.
  • the upper limit is preferably 10 or less, more preferably 5 or less. When the take-up ratio is 10 or less, the neck-in becomes small, and breakage hardly occurs during stretching.
  • the lower limit of the thickness of the gel sheet is preferably 0.5 mm, and more preferably 0.7 mm.
  • the upper limit of the thickness of the gel sheet is 3 mm, more preferably 2 mm.
  • the thickness of the gel-like sheet is 3 mm or less, it is difficult for the structure to be uneven from the outermost layer to the inner layer of the film in the cooling process, and the higher-order structure can be made dense throughout the thickness direction.
  • seat is 3 mm or less, it will be easy to make the cooling rate of a gel-like sheet into the above-mentioned preferable range.
  • the polyolefin microporous membrane of the present invention is not limited to a single layer, and a laminate in which several microporous membranes (layers) are further laminated. It may be.
  • the additionally laminated layers may each contain a desired resin to the extent that the effects of the present invention are not impaired.
  • a method for forming a polyolefin microporous membrane as a laminate a conventional method can be used. For example, a desired resin is prepared as necessary, and these resins are separately supplied to an extruder to obtain a desired structure. There is a method of forming a laminated body by melting at a temperature, joining them in a polymer tube or a die, and extruding from a slit-shaped die at each desired laminated thickness.
  • the obtained gel-like sheet is stretched in the longitudinal direction (machine direction) (step (c)) and then continuously stretched in the transverse direction (direction perpendicular to the machine direction). Sequential stretching is performed (step (d)).
  • Stretching is performed at a predetermined magnification by heating the gel-like sheet and using a normal tenter method, a roll method, or a combination of these methods.
  • such stretching is performed by using a longitudinal stretching machine for stretching the gel sheet in the longitudinal direction and a transverse stretching machine for stretching in the transverse direction, in the production direction of the microporous membrane (from the extruder side to the winding side of the microporous membrane). In the direction toward the surface), and is continuously performed using these longitudinal stretching machines and transverse stretching machines.
  • the stretching method of the present invention since longitudinal stretching and lateral stretching are performed separately, stretching tension is applied only in each direction in each stretching step, so that the molecular orientation easily proceeds. Therefore, the molecular orientation can be increased even at the same area magnification as compared with the simultaneous stretching, and a high puncture strength can be achieved.
  • the stretching ratio varies depending on the thickness of the gel-like sheet, but it is preferably stretched 5 times or more in any direction.
  • the stretching in the machine direction is preferably performed at 5 times or more, more preferably 7 times or more.
  • the upper limit of stretching in the longitudinal direction is preferably 12 times, more preferably 10 times.
  • the stretching in the machine direction is 5 times or more, high strength can be imparted by stretching orientation.
  • the stretching in the longitudinal direction is 12 times or less, the tear due to stretching is less likely to occur.
  • the stretching in the transverse direction is preferably performed at a ratio of 4 times or more, more preferably 6 times or more.
  • the upper limit of the stretching in the transverse direction is preferably 10 times, more preferably 8 times.
  • the stretching ratio in the transverse direction is 4 times or more, higher strength can be imparted by stretching orientation.
  • the stretching ratio in the transverse direction is 10 times or less, it is difficult to break due to stretching, and further, it is possible to prevent the unevenness of the film surface from being crushed and smoothing the surface by stretching. A coefficient of friction is easily obtained.
  • the total area ratio of the longitudinal stretching and the lateral stretching is preferably 25 times or more, more preferably 30 times or more, and most preferably 42 times or more.
  • the stretching temperature is preferably below the melting point of the polyolefin resin, and more preferably in the range of (polyolefin resin crystal dispersion temperature Tcd) to (polyolefin resin melting point).
  • Tcd polyolefin resin crystal dispersion temperature
  • the stretching temperature is equal to or lower than the melting point of the gel sheet, the polyolefin resin is prevented from melting, and the molecular chains can be efficiently oriented by stretching. If the stretching temperature is equal to or higher than the crystal dispersion temperature of the polyolefin resin, the polyolefin resin is sufficiently softened, and the stretching tension is low, so that the film-forming property is good and the film is not easily broken during stretching. Is possible.
  • the longitudinal stretching temperature is preferably 80 ° C. or higher.
  • the upper limit of the longitudinal stretching temperature when a polyethylene resin is used is preferably 130 ° C, more preferably 125 ° C, and most preferably 120 ° C.
  • the crystal dispersion temperature Tcd is determined from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065. Alternatively, the crystal dispersion temperature Tcd may be obtained from NMR.
  • Cleavage occurs in the higher order structure formed in the gel-like sheet by stretching as described above, the crystal phase is refined, and a large number of fibrils are formed. Fibrils form a three-dimensional irregularly connected network structure. Stretching improves the mechanical strength and enlarges the pores, making it suitable for battery separators.
  • the sequential stretching is performed before the plasticizer in the gel sheet is removed.
  • the plasticizer is sufficiently contained in the gel-like sheet, the polyolefin is sufficiently plasticized and softened, so that stretching before the removal of the plasticizer facilitates the cleavage of the higher-order structure and makes the crystal phase fine. Can be made uniform.
  • the cleaning solvent examples include saturated hydrocarbons such as pentane, hexane, and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, ethers such as diethyl ether and dioxane, ketones such as methyl ethyl ketone, ethane trifluoride, Chain fluorocarbons such as C 6 F 14 and C 7 F 16 , cyclic hydrofluorocarbons such as C 5 H 3 F 7, hydrofluoroethers such as C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5 , C 4 Examples include readily volatile solvents such as perfluoroethers such as F 9 OCF 3 and C 4 F 9 OC 2 F 5 .
  • saturated hydrocarbons such as pentane, hexane, and heptane
  • chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride
  • ethers such as diethyl ether
  • These cleaning solvents have a low surface tension (eg, 24 mN / m or less at 25 ° C.).
  • a low surface tension cleaning solvent By using a low surface tension cleaning solvent, the network structure that forms micropores is prevented from shrinking due to the surface tension at the gas-liquid interface during drying after cleaning, and thus has a high porosity and permeability. A membrane is obtained.
  • These washing solvents are appropriately selected according to the solvent used for dissolving the polyolefin resin, and used alone or in combination.
  • the washing method can be carried out by a method of immersing and extracting the gel-like sheet in a washing solvent, a method of showering the gel-like sheet with the washing solvent, or a combination thereof.
  • cleaning solvent changes with washing
  • the washing temperature may be 15 to 30 ° C, and if necessary, heat to 80 ° C or less.
  • the mechanical properties and electrical properties of the microporous film From the viewpoint of improving the physical properties, the longer the time during which the gel-like sheet is immersed in the cleaning solvent, the better.
  • the above-described cleaning is preferably performed until the gel-like sheet after cleaning, that is, the residual solvent in the microporous membrane is less than 1 wt%.
  • the drying method is not particularly limited, but drying is performed by a heat drying method, an air drying method, or the like.
  • the drying temperature is preferably not higher than the crystal dispersion temperature Tcd of the polyethylene composition, and particularly preferably not higher than (Tcd-5 ° C.). Drying is preferably performed until the dry weight of the microporous membrane is 100% by weight and the residual cleaning solvent is 5% by weight or less, more preferably 3% by weight or less. If the drying is insufficient, the porosity of the microporous membrane is lowered by the subsequent heat treatment, and the permeability is deteriorated.
  • the stretched membrane or microporous membrane after stretching may be subjected to heat setting treatment and / or heat relaxation treatment.
  • Crystals are stabilized by heat setting treatment and heat relaxation treatment, a lamellar layer is made uniform, a microporous membrane having a large pore diameter and excellent strength can be produced.
  • the heat setting treatment is performed within a temperature range from the crystal dispersion temperature to the melting point of the polyolefin resin constituting the polyolefin microporous membrane.
  • the heat setting treatment is performed by a tenter method, a roll method or a rolling method.
  • thermal relaxation treatment method for example, the method disclosed in JP-A-2002-256099 can be used.
  • the stretched membrane or microporous membrane may be subjected to a hydrophilic treatment.
  • the hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge or the like. Monomer grafting is preferably performed after the crosslinking treatment.
  • any of a nonionic surfactant, a cationic surfactant, an anionic surfactant and a zwitterionic surfactant can be used, but a nonionic surfactant is preferred.
  • the microporous membrane is immersed in a solution obtained by dissolving a surfactant in water or a lower alcohol such as methanol, ethanol, isopropyl alcohol, or the solution is applied to the microporous membrane by a doctor blade method.
  • At least one surface of the stretched membrane or the microporous membrane can be subjected to corona discharge treatment in air, nitrogen, or a mixed atmosphere of carbon dioxide and nitrogen. After each process described above is completed, a wound body is obtained by winding a microporous film around the core.
  • Preferred embodiments of the polyolefin microporous membrane of the present invention include the following physical properties.
  • the polyolefin microporous membrane of the present invention has a static friction coefficient between the membranes of 0.5 to 1.0, more preferably 0.7 or more.
  • the static friction coefficient between the films refers to a static friction coefficient measured by facing (superimposing) one surface (front surface) and the opposite surface (back surface) of the polyolefin microporous film. .
  • the coefficient of static friction is 0.5 or more, the grip strength of the polyolefin microporous membrane can be secured, and the wound body can be wound even when transported at high speed when slitting the microporous membrane after film formation. Slip is unlikely to occur at the protruding portion, and meandering can be suppressed. Further, if the coefficient of static friction is 1.0 or less, since the slipperiness of the front and back of the film is good, blocking in the wound body of the microporous film after film formation can be suppressed, and the microporous film can be slit.
  • the microporous membrane having a static friction coefficient of the present invention has a remarkable effect particularly in a wound body having a long winding length and a large number of laminated films. Furthermore, by using the static friction coefficient in the above range, when using the finally obtained microporous membrane roll, the unwinding behavior of the microporous membrane is stabilized, as in the slit of the microporous membrane, In the subsequent battery production, it is possible to suppress deviation from the electrode and generation of wrinkles in the microporous film. In addition, a static friction coefficient says the value measured with the measuring method mentioned later.
  • the upper limit of the air permeability resistance of the polyolefin microporous membrane of the present invention is 400 seconds / 100 cc Air / 16 ⁇ m, more preferably 300 seconds / 100 cc Air / 16 ⁇ m, more preferably, when the film thickness is 16 ⁇ m.
  • the lower limit of the air permeability resistance is 50 seconds / 100 cc Air / 16 ⁇ m, preferably 70 seconds / 100 cc Air / 16 ⁇ m, and more preferably 100 seconds / 100 cc Air / 16 ⁇ m.
  • the air permeability resistance is 400 seconds / 100 cc Air / 16 ⁇ m or less, the ion permeability is good and charging / discharging can be performed at high speed. Moreover, if the air resistance is 50 seconds / 100 cc Air / 16 ⁇ m or more, the battery can be prevented from being deteriorated.
  • the puncture strength of the polyolefin microporous membrane of the present invention is 400 gf / 16 ⁇ m or more, preferably 450 gf / 16 ⁇ m.
  • the puncture strength is 450 gf / 16 ⁇ m or more, when a polyolefin microporous membrane is incorporated in a battery as a separator, a short circuit of the electrode does not occur and the safety of the battery increases.
  • Ratio of puncture strength and air permeability resistance Ratio of puncture strength and air resistance of the polyolefin microporous membrane of the present invention, (puncture strength [gf]) / air permeability resistance [sec / 100 cc Air]:
  • the lower limit of the film thickness is preferably 1.7, more preferably 2.0.
  • the upper limit of the ratio between the puncture strength and the air resistance is preferably 3.0. When the ratio between the puncture strength and the air resistance is 1.7 or more and 3.0 or less, the balance between safety and ion permeability is excellent when the polyolefin microporous membrane is incorporated in a battery as a separator.
  • the upper limit of the porosity of the polyolefin microporous membrane of the present invention is preferably 70%, more preferably 60%, and most preferably 55%.
  • the lower limit of the porosity is preferably 30%, more preferably 35%, and most preferably 40%. If the porosity is 70% or less, sufficient mechanical strength and insulating properties can be easily obtained, and short-circuiting is unlikely to occur during charging and discharging. Moreover, if the porosity is 30% or more, the ion permeability is good, and good charge / discharge characteristics of the battery can be obtained.
  • the upper limit of the thickness of the polyolefin microporous membrane used in the present invention is preferably 30 ⁇ m. Furthermore, the preferable upper limit of the thickness of the polyolefin microporous membrane is 16 ⁇ m, and most preferably 12 ⁇ m. The lower limit of the thickness of the polyolefin microporous membrane is 5 ⁇ m, preferably 6 ⁇ m. If the thickness of the polyolefin microporous membrane is in the above range, a practical piercing strength and a pore closing function can be retained, and it will be suitable for increasing the capacity of batteries that will be advanced in the future.
  • the microporous membrane roll obtained in the present invention preferably has a width of 300 mm or more and a diameter of 150 mm or more.
  • the winding core (core) for winding the microporous membrane preferably has an inner diameter of 76 mm or more, more preferably 152 mm or more.
  • the difference between the inner diameter and the outer diameter of the core is preferably 5 mm or more and 50 mm or less, and is adjusted according to the strength of the material used.
  • the tolerance of the inner diameter and outer diameter of the core is preferably ⁇ 0.5 mm or less, more preferably ⁇ 0.3 mm or less.
  • the core material include paper, plastic, and fiber reinforced composite material.
  • the microporous membrane winding body of the present invention is formed by winding a plurality of microporous membranes along the outer peripheral surface of a substantially cylindrical core. Therefore, the “width” of the wound body refers to a distance between two circular surfaces facing each other in parallel with respect to the outer surface of the wound body with the circumferential surface interposed therebetween. The “diameter” of the wound body is synonymous with the diameter of the circular surface. Furthermore, in the microporous membrane roll obtained in the present invention, the number of laminated films (microporous membranes) wound around the core is preferably 1500 or more. If the width dimension of the wound body is within the above range, it can be suitably used in the enlargement of a battery that will proceed in the future.
  • coating means forming a heat-resistant resin or the like on the microporous membrane, and adding a lubricant such as inorganic particles to the polyolefin resin that is the raw material of the microporous membrane.
  • the diameter of the wound body is the diameter of the entire microporous membrane wound body including the core diameter.
  • the polyolefin microporous membrane of the present invention is suitable as a separator (separating material) for electrochemical reaction devices such as batteries and capacitors. Especially, it can be used conveniently as a separator of a nonaqueous electrolyte system secondary battery, especially a lithium secondary battery.
  • Thickness average film thickness
  • a polyolefin microporous membrane was cut into a size of 10 cm ⁇ 10 cm, measured at 16 points at intervals of 3 cm in length and width, and the average value was defined as thickness ( ⁇ m).
  • a contact thickness meter was used for the measurement.
  • the distance between the end face that is in contact with the end face that is most deeply inside the winding body is measured in the width direction of the winding body, and this measurement result is described in the above-mentioned “deviation at the end face of the winding body” or “winding”. It is evaluated as “deviation”.
  • excellent: The deviation on the end face of the wound body is in the range of 0 to 1 mm on both sides and the surface of the wound body is free of wrinkles
  • good: The deviation on the end face of the wound body is 0 to both on the left and right No wrinkle on the surface of the wound body in the range of 3 mm x (defect): The deviation on the end face of the wound body is greater than 3 mm on either the left or right side, or the surface of the wound body is wrinkled
  • Porosity ((Volume ⁇ Mass / Membrane density) / Volume) ⁇ 100
  • the film density is 0. 99.
  • the thickness measured by above-mentioned (1) was used for calculation of a volume.
  • the number of laminated polyolefin microporous membranes X is the outer diameter R 1 (mm) of the microporous membrane laminated portion of the polyolefin microporous membrane roll, and the outer diameter of the core used. It calculated using the following formula from R 2 (mm), polyolefin microporous film thickness T ( ⁇ m), and air entrapment rate AD of the wound body.
  • the air entrapment rate AD is a roll side cross-sectional area St (m 2 ) calculated from the thickness T ( ⁇ m) and the length L (m) of the wound body as a theoretical diameter when there is no air entrainment.
  • the roll side cross-sectional area Sr (m 2 ) calculated from the actual diameters R 1 and R 2 , the following equation was used.
  • L AD Sr / St-1
  • Example 1 Polyolefin microporous membrane> Polyethylene (PE) composed of 40% by mass of ultra high molecular weight polyethylene (UHMWPE) having a mass average molecular weight (Mw) of 2.5 ⁇ 10 6 and 60% by mass of high density polyethylene (HDPE) having an Mw of 2.8 ⁇ 10 5 ) To 100 parts by mass of the composition, 0.375 parts by mass of tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane was dry blended to obtain a mixture.
  • UHMWPE ultra high molecular weight polyethylene
  • HDPE high density polyethylene
  • the obtained polyethylene solution was supplied from a twin-screw extruder to a T die and extruded to form a sheet-like molded body.
  • the extruded molded body was cooled while being drawn with a cooling roll adjusted to 35 ° C. to form a gel-like sheet.
  • the surface cooling rate was 399 ° C./min
  • the back surface cooling rate was 380 ° C./min.
  • the obtained gel-like sheet was longitudinally stretched by a roll method so as to be 9 times at a stretching temperature of 115 ° C., subsequently led to a tenter, and transversely stretched at a stretching ratio of 6 times and a stretching temperature of 115 ° C.
  • the stretched membrane was washed in a methylene chloride washing bath adjusted to 25 ° C. to remove liquid paraffin.
  • the washed membrane was dried in a drying furnace adjusted to 60 ° C., and heat-set in a tenter at 125 ° C. for 40 seconds to obtain a microporous membrane having a thickness of 16 ⁇ m.
  • the obtained microporous membrane was slit into a width of 300 mm and a length of 2000 m, and wound on an ABS core (inner diameter: 152.4 mm, outer diameter: 200.0 mm) to produce a polyolefin microporous membrane roll.
  • Comparative Example 3 A gel sheet was produced under the same extrusion conditions as in Example 1 using only HDPE having Mw of 3.8 ⁇ 10 5 .
  • the produced gel-like sheet was longitudinally stretched to 9 times at a stretching temperature of 115 ° C., and then laterally stretched to have a stretching ratio of 6 times at a stretching temperature of 120 ° C.
  • the stretched membrane is washed in a methylene chloride washing bath adjusted to 25 ° C., and in the extraction process where liquid paraffin is extracted, it is stretched by 3% by applying tension in the longitudinal direction, and contracted by about 12% in the transverse direction. I made it.
  • the washed film was dried in a drying furnace adjusted to 60 ° C., re-stretched to 120% in the transverse direction at 125 ° C. in a tenter, then contracted 16.7%, and heat-fixed for 40 seconds to obtain a thickness of 16 ⁇ m.
  • a microporous membrane was obtained.
  • the obtained microporous membrane was slit into a width of 300 mm and a length of 2000 m, and wound on an ABS core (inner diameter: 152.4 mm, outer diameter: 200.0 mm) to produce a polyolefin microporous membrane roll.
  • Comparative Example 4 The gel was subjected to the same extrusion conditions as in Example 1 except that 35% by mass of UHMWPE having an Mw of 2.5 ⁇ 10 6 and 65% by mass of HDPE having an Mw of 3.1 ⁇ 10 5 were used, and the liquid paraffin was 84 parts by mass.
  • a sheet was prepared. The prepared gel-like sheet was simultaneously biaxially stretched at a stretching temperature of 115 ° C. so as to be 5 times in the longitudinal and transverse directions. After stretching, the membrane was washed, air-dried and heat-set in the same manner as in Example 1 to obtain a microporous membrane having a thickness of 16 ⁇ m.
  • the obtained microporous membrane was slit into a width of 300 mm and a length of 2000 m, and wound on an ABS core (inner diameter: 152.4 mm, outer diameter: 200.0 mm) to produce a polyolefin microporous membrane roll.
  • Comparative Example 5 Comparative Example 3 except that 30% by mass of UHMWPE having an Mw of 2.5 ⁇ 10 6 and 70% by mass of HDPE having an Mw of 2.8 ⁇ 10 5 were used, the longitudinal stretching ratio was 5 times, and the lateral stretching ratio was 6 times.
  • a microporous film having a thickness of 16 ⁇ m was obtained.
  • the obtained microporous membrane was slit into a width of 300 mm and a length of 2000 m, and wound around an ABS core (inner diameter: 152.4 mm, outer diameter: 200.0 mm) to produce a polyolefin microporous membrane roll.
  • Comparative Example 6 After air drying, a microporous film having a thickness of 16 ⁇ m was obtained in the same manner as in Comparative Example 4 except that restretching was performed 1.2 times in the lateral direction at 128 ° C.
  • the obtained microporous membrane was slit into a width of 300 mm and a length of 2000 m, and wound around an ABS core (inner diameter: 152.4 mm, outer diameter: 200.0 mm) to produce a polyolefin microporous membrane roll.
  • Comparative Example 7 A gel-like sheet was produced under the same extrusion conditions as in Example 1 except that only UHMWPE having an Mw of 2.5 ⁇ 10 6 was used and 70 parts by mass of liquid paraffin was used.
  • the prepared gel-like sheet was washed in a methylene chloride washing tank adjusted to 25 ° C. and extracted with liquid paraffin, and then the washed membrane was air-dried while decompressing at room temperature.
  • the obtained unstretched sheet was simultaneously biaxially stretched at a temperature of 120 ° C. so as to be 6 times in the longitudinal and transverse directions, and then heat-set in a tenter at 140 ° C. for 1 minute to obtain a thickness of 16 ⁇ m.
  • a microporous membrane was obtained.
  • the obtained microporous membrane was slit into a width of 300 mm and a length of 2000 m, and wound around an ABS core (inner diameter: 152.4 mm, outer diameter: 200.0 mm) to produce a polyolefin microporous membrane roll.
  • Table 1 shows the resin composition and film forming conditions of the polyolefin microporous membranes obtained in Examples 1 to 14 and Comparative Examples 1 to 10, and Table 2 shows the physical properties.
  • the polyolefin microporous membranes of Examples 1 to 14 are relatively wide, and even when the number of laminated layers is large, both puncture strength and air resistance are compatible, and static friction between the front and back of the membrane is achieved.
  • the coefficient can be controlled, and a wound body having an excellent appearance with no wrinkles or winding deviation can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 本発明は、突刺強度と透気抵抗度に優れ、さらに捲回体にした時にしわ、巻きずれのない優れた外観を持つポリオレフィン微多孔膜、その捲回体およびポリオレフィン微多孔膜の製造方法を提供することを目的とする。 16μm換算の突刺強度が400gf以上であり、16μm換算の透気抵抗度が100~400秒/100ccであり、膜の表裏を重ね合わせた時の静摩擦係数が0.5~1.0であることを特徴とするポリオレフィン製微多孔膜。

Description

ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法
 本発明は、物質の分離、選択透過などに用いられる分離膜、及びアルカリ、リチウム二次電池や燃料電池、コンデンサーなど電気化学反応装置の隔離材等として広く使用されている微多孔膜に関する。特にリチウムイオン電池用セパレータとして好適に使用される、ポリオレフィン製微多孔膜に関する。
 ポリオレフィン微多孔膜は、精密ろ過膜、燃料電池用セパレータ、コンデンサー用セパレータなどとして用いられている。これらの他、ポリオレフィン微多孔膜は、ノート型パーソナルコンピュータや携帯電話、デジタルカメラなどに広く使用されているリチウムイオン電池用のセパレータとして特に好適に使用されている。その理由は、ポリオレフィン微多孔膜が優れた膜の突刺強度やシャットダウン特性を有していることが挙げられる。
 リチウムイオン二次電池においては、より高エネルギー密度化・高容量化・高出力化を目指して開発が進められており、それに伴ってセパレータについても高強度(特に、突刺強度)、高透過性などの要求が一層高いものとなってきている。しかし、ポリオレフィン微多孔膜において突刺強度と透過性(透気抵抗度)は相反する特性であり、これらを両立するのは難しかった。
 また、近年、リチウムイオン電池は電気自動車、ハイブリッド自動車、電動二輪車の他、芝刈り機、草刈り機、小型船舶などの屋外で使用される自動車類、機器類にも広く応用が検討されている。このため、従来の携帯電話やノートパソコン等の小型電子機器と比べて大型の電池が必要となってきており、電池に組み込まれるセパレータにおいても、幅の広いセパレータ、たとえば幅100mm以上のセパレータが要望されるようになってきている。しかしながら、一般にセパレータに用いられるポリオレフィン微多孔膜は厚さ30μm以下であり抗張力、剛直性が極めて低いため、しわや、巻きずれ等の問題が発生しやすく、良好な巻き姿のポリオレフィン微多孔膜の捲回体を得るのは困難であった。特に今後上記微多孔膜の生産性向上のため、捲回体製品の広幅化や長尺化、薄膜化、生産の高速化が進むことが予想され、この傾向はさらに顕著に現れると推測される。
 例えば、捲回体から巻き直した際の巻きずれの少ないポリオレフィン製微多孔膜捲回物が特許文献1(特開2004-99799号公報)に記載されている。微多孔膜の表裏の摩擦係数比を1.5以下とすることにより、巻き直しの際の捲回性が良好となることが開示されているが、高強度と高透過性の両立はできていない。
特開2004-99799号公報 特開平8-311225号公報 特開2001-96614号公報 特開2009-132904号公報 特開2010-24463号公報
 本発明は、従来両立が困難であった突刺強度と透気抵抗度を両立させ、膜の表裏の静摩擦係数を制御することにより、比較的幅広であり、かつ巻長が長くフィルムの積層枚数が多い場合であっても必要な特性を維持しつつ、しわ、巻きずれのない捲回体が得られるポリオレフィン微多孔膜である。
 本発明は、突刺強度と透気抵抗度に優れ、さらに捲回体にした時にしわ、巻きずれのない優れた外観を持つポリオレフィン微多孔膜を提供することを目的とする。
 なお、ポリオレフィン微多孔膜の摩擦係数に着目した先行技術文献として、例えば、特許文献2(特開平8-311225号公報)があるが、これは電池作製時の作業性のために自己潤滑性を追求したものであって、捲回体の外観向上はもちろん突刺強度と透気抵抗度の両立も達成されていない。
 また、同じく摩擦係数に着目した先行技術文献に特許文献3(特開2001-96614号公報)があるが、開示されているのは極限粘度が5.0dl/g以上の高分子量ポリエチレンを同時二軸延伸して得た高分子量ポリエチレン二軸配向フィルムの表面平滑性を改良するためのものであり、捲回体の外観向上はもちろん、突刺強度と透気抵抗度の両立も達成されていない。
 一方、本発明の製造に用いた延伸技術に関連する先行技術文献として、特許文献4(特開2009-132904号公報)には、重量平均分子量が3.8×10のポリエチレンゲル状シートを縦方向(機械方向)に8.5倍、横方向(縦方向と直角方向)に5倍に逐次延伸させたのちに溶剤を洗浄、乾燥し、その後再延伸工程において、縦方向に3.0倍、横方向に1.2倍延伸させたフィルムが開示されている。また、特許文献5(特開2010-24463号公報)には、重量平均分子量が2.0×10の超高分子量ポリエチレンと重量平均分子量3.5×10の高密度ポリエチレンからなるゲル状シートから、溶媒を一部取り除いたのちに縦方向に5倍、横方向に10倍に逐次延伸させたフィルムが開示されている。しかし、いずれも突刺強度と透気抵抗度の両立、さらには捲回体とした際の外観(しわ、巻きずれ)については何ら開示もなく、今後進んでいくであろうことが予想される捲回体製品の広幅化や長尺化に対しては不十分なものであった。
 本発明者らは、前記問題点を解決する為に鋭意検討を重ねた結果、以下の構成によって解決が可能であることを見出し、本発明に至った。すなわち、本発明は以下の通りである。
 (1)厚み16μm換算の突刺強度が400gf以上であり、厚み16μm換算の透気抵抗度が100~400秒/100ccであり、膜の表裏を重ね合わせた時の静摩擦係数が0.5~1.0であることを特徴とするポリオレフィン製微多孔膜。
 (2)突刺強度と透気抵抗度の比が1.7~3.0である前記(1)に記載のポリオレフィン微多孔膜。
 (3)ポリオレフィンが、重量平均分子量2.0×10以上の超高分子量ポリエチレンを含むポリエチレンである前記(1)または(2)に記載のポリオレフィン微多孔膜。
 (4)前記(1)~(3)のいずれかに記載のポリオレフィン微多孔膜からなる非水電解液系二次電池用セパレータ。
 (5)厚み16μm換算の突刺強度が400gf以上であり、厚み16μm換算の透気抵抗度が100~400秒/100ccであり、膜の表裏を重ね合わせた時の静摩擦係数が0.5~1.0であるポリオレフィン製微多孔膜をコアに捲回してなり、幅300mm以上であり、前記コアの上に捲回されたポリオレフィン微多孔膜の積層枚数が1500枚以上、ポリオレフィン微多孔膜の幅方向における端面のズレが当該ポリオレフィン微多孔膜の積層方向において左右ともに0~3mmであることを特徴とするポリオレフィン微多孔膜捲回体。
 (6)ポリオレフィン微多孔膜が非水電解液系二次電池用セパレータである(5)に記載のポリオレフィン微多孔膜捲回体。
 (7)前記(4)に記載の非水電解液系二次電池用セパレータを含む非水電解液系二次電池。
 (8)(a)重量平均分子量2×10以上4×10未満の超高分子量ポリオレフィンを含むポリオレフィン樹脂と可塑剤とを溶融混練してポリオレフィン溶液を調製する工程
(b)工程(a)にて得られた溶融混合物を押出機より押し出して押出物を形成し、押出物の表裏の冷却速度がともに250℃/分以上かつ、表裏の冷却速度差が15℃/秒以上となるように冷却してゲル状シートを成形する工程
(c)工程(b)にて得られたシートを、縦方向(機械方向)に延伸する工程
(d)工程(c)にて得られたシートを、横方向(機械方向と直角方向)に延伸する工程
(e)工程(d)にて得られた延伸膜から可塑剤を抽出する工程
(f)工程(e)にて得られた微多孔膜を乾燥する工程を含み、
 前記工程(c)及び前記工程(d)は、各々連続的に行われることを特徴とする前記(1)~(3)のいずれかに記載のポリオレフィン製微多孔膜の製造方法。
 本発明のポリオレフィン微多孔膜は突刺強度と透気抵抗度に優れ、さらに捲回体にした時に優れた外観をもち、リチウムイオン二次電池のセパレータとして好適である。
 本発明は、ポリオレフィン微多孔膜の原料となるポリオレフィン樹脂に無機粒子等の滑剤を添加し摩擦係数を調整したものとは明確に異なる。ポリオレフィン樹脂に無機粒子等の滑剤を添加した場合、後工程で滑剤が脱落し、工程を汚染し、結果としてポリオレフィン微多孔膜に重大な欠陥をもたらす場合があるからである。
以下、本発明について詳細に説明する。
[1]ポリオレフィン樹脂
 本発明のポリオレフィン微多孔膜に用いられるポリオレフィン樹脂は、ポリエチレンを主成分とするのが好ましい。透過性と突刺強度を向上させる為には、ポリオレフィン樹脂全体を100質量%として、ポリエチレンの割合が80質量%以上であるのが好ましく、90質量%以上であることがより好ましく、さらにポリエチレンを単独で用いることが好ましい。
 ポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。α-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
 ここで、ポリエチレンの種類としては、密度が0.94g/cmを越えるような高密度ポリエチレン、密度が0.93~0.94g/cmの範囲の中密度ポリエチレン、密度が0.93g/cmより低い低密度ポリエチレン、直鎖状低密度ポリエチレン等が挙げられるが、突刺強度を高くするためには、高密度ポリエチレンを含むことが好ましい。高密度ポリエチレンの重量平均分子量(以下、Mwという)は1×10以上、より好ましくは2×10以上であることが好ましい。高密度ポリエチレンのMwの上限は好ましくはMwが8×10、より好ましくはMwが7×10である。Mwが上記範囲であれば、製膜の安定性と最終的に得られる突刺強度とを両立することができる。
 本発明においては、ポリエチレンに超高分子量ポリエチレンを含有することが重要である。超高分子量ポリエチレンは、エチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外の他のα-オレフィンは上記と同じでよい。超高分子量ポリエチレンを添加することによって、突刺強度を向上させることができる。超高分子量ポリエチレンのMwとしては、2×10以上4×10未満であることが好ましい。Mwが2×10以上4×10未満の超高分子量ポリエチレンを使用することで、孔およびフィブリルを微細化することが可能であるため、膜表面が緻密に粗くなり突刺強度を高めることが可能となる。また、膜表面が緻密に粗くなるために、後述する製造方法と組み合わせることにより摩擦係数の制御も可能となる。ここで、「緻密に粗い」とは、後述するように、細かい結晶が緻密に存在することを意味している。また、超高分子量ポリエチレンのMwが4×10以上であると、溶融物の粘度が高くなりすぎるために、口金(ダイ)から樹脂を押し出せないなど製膜工程において不具合が出たり、熱収縮率が悪化したりするおそれがある。また、超高分子量ポリエチレンのMwが4×10以上であると、主成分とするポリエチレンと分離しやすいために、微多孔膜の表面が粗くなりすぎ、摩擦係数が低くなりすぎるおそれがある。超高分子量ポリエチレンの含有量はポリオレフィン樹脂全体を100質量%として、下限は10質量%であることが好ましく、より好ましくは20質量%、さらに好ましくは30質量%である。超高分子量ポリエチレンの含有量の上限は40質量%であることが好ましい。超高分子量ポリエチレンの含有量がこの範囲であると後述する製膜方法によって突刺強度と透気抵抗度の両立が得られやすくなる。また、超高分子量ポリエチレンの含有量が既述の範囲内であると、超高分子量ポリエチレンが十分に分散するために、表面の結晶性が制御しやすく、後述する製膜方法によって摩擦係数を適切に制御することが可能となる。
 低密度ポリエチレン、直鎖状低密度ポリエチレン、シングルサイト触媒により製造されたエチレン・α-オレフィン共重合体、重量平均分子量1000~4000の低分子量ポリエチレンを添加すると、低温でのシャットダウン機能を付与され、電池用セパレータとしての特性を向上させることができる。ただし、低分子量のポリエチレンが多いと、製造時の延伸工程において、微多孔膜の破断が起きやすくなるため、ポリオレフィン樹脂中0~10質量%が好ましい。
 また、ポリエチレンにポリプロピレンを添加すると、本発明のポリオレフィン微多孔膜を電池用セパレータとして用いた場合にメルトダウン温度を向上させることができる。ポリプロピレンの種類は、単独重合体のほかに、ブロック共重合体、ランダム共重合体も使用することができる。ブロック共重合体、ランダム共重合体には、プロピレン以外の他のα-エチレンとの共重合体成分を含有することができ、当該他のα-エチレンとしては、エチレンが好ましい。ただし、ポリプロピレンを添加すると、ポリエチレン単独使用に比べて、突刺強度が低下しやすいために、ポリオレフィン樹脂中0~10質量%が好ましい。
 ポリオレフィン樹脂の重量平均分子量(以下Mwという)は1×10以上であるのが好ましい。Mwが1×10未満では延伸時に破断が起こりやすくなるおそれがある。 
 その他、本発明のポリオレフィン微多孔膜には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材等の各種添加剤を含有させてもよい。特に、ポリエチレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤や熱安定剤の種類および添加量を適宜選択することは微多孔膜の特性の調整又は増強として重要である。
 また、本発明のポリオレフィン微多孔膜には、実質的に無機粒子を含まない。「実質的に無機粒子を含まず」とは、例えばケイ光X線分析で無機元素を定量した場合に300ppm以下、好ましくは100ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子をポリオレフィン微多孔膜に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはポリオレフィン微多孔膜製造工程におけるラインや装置に付着した汚れが剥離して、膜中に混入する場合があるためである。
[2]ポリオレフィン微多孔膜の製造方法
 次に、本発明のポリオレフィン微多孔膜の製造方法を具体的に説明するが、この態様に限定されるものではない。
 本発明のポリオレフィン微多孔膜の製造方法は、以下の(a)~(f)の工程を含む。
(a)重量平均分子量2×10以上4×10未満の超高分子量ポリオレフィンを含むポリオレフィン樹脂と可塑剤とを溶融混練してポリオレフィン溶液を調製する工程
(b)工程(a)にて得られたポリオレフィン溶液を押出機より押し出して押出物を形成し、押出物の表裏の冷却速度がともに250℃/分以上かつ、表裏の冷却速度差が15℃/秒以上となるように冷却してゲル状シートを成形する工程
(c)工程(b)にて得られたシートを、縦方向(機械方向)に延伸する工程
(d)工程(c)にて得られたシートを、横方向(機械方向と直角方向)に延伸する工程
(e)工程(d)にて得られた延伸膜から可塑剤を抽出する工程
(f)工程(e)にて得られた微多孔膜を乾燥する工程。
 ここで、工程(c)及び工程(d)は、各々連続的に行われる。すなわち、本発明では、いわゆるバッチ式(ある特定の量の樹脂を用いて特定の大きさの微多孔膜を製造した後、続いて別の原料を用いて先の一連の工程を繰り返す製造手法)ではなく、原料の調製工程から微多孔膜の巻き取り工程までを含めて連続的に定常的に行う製法を採っている。
工程(c)~(f)の以前、途中、以降に親水化処理、除電処理等の他の工程を追加することもできる。
(a)ポリオレフィン溶液の調製
 ポリオレフィン樹脂を、可塑剤に加熱溶解させたポリオレフィン溶液を調製する。可塑剤としては、ポリエチレンを十分に溶解できる溶剤であれば特に限定されない。比較的高倍率の延伸を可能とするために、溶剤は室温で液体であるのが好ましい。液体溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、および沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。液体溶剤の含有量が安定なゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。溶融混練状態では、ポリエチレンと混和するが室温では固体の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。ただし、固体溶剤のみを使用すると、延伸ムラ等が発生する恐れがある。
 ポリオレフィン樹脂と可塑剤との配合割合はポリオレフィン樹脂と可塑剤との合計を100重量%として、押出物の成形性を良好にする観点から、ポリオレフィン樹脂10~50重量%が好ましい。ポリオレフィン樹脂の含有量の下限は、さらに好ましくは20重量%である。ポリオレフィン樹脂の含有量の上限はさらに好ましくは40重量%であり、より好ましくは35重量%である。ポリオレフィン樹脂の含有量が10重量%以上である場合、シート状に成形する際にダイの出口でスウエルやネックインが小さいために、シートの成形性および製膜性が良好となる。また、ポリオレフィン樹脂の含有量が50重量%以下の場合、厚み方向の収縮が小さいために、成形加工性および製膜性が良好となる。ポリオレフィン樹脂の含有量がこの範囲であると後述する製膜方法によって突刺強度と透気抵抗度の両立が得られやすくなる。さらには、ポリオレフィン樹脂の含有量が既述の範囲であると、可塑化効果による結晶化の進行が良好となるために、膜表裏の結晶構造が制御しやすくなるために、後述する製膜方法によって、膜の表裏の摩擦係数の制御も可能となる。
 液体溶剤(可塑剤)の粘度は40℃において20~200cStであることが好ましい。40℃における液体溶剤の粘度を20cSt以上とすれば、ダイからポリオレフィン溶液を押し出したシートの厚みが不均一になりにくい。一方、液体溶剤の粘度を200cSt以下とすれば液体溶剤の除去が容易である。
 ポリオレフィン溶液の均一な溶融混練は、特に限定されないが、高濃度のポリオレフィン溶液を調製したい場合、押出機、特に二軸押出機中で行うことが好ましい。必要に応じて、本発明の効果を損なわない範囲で酸化防止剤等の各種添加材をポリオレフィン溶液に添加してもよい。特にポリエチレンの酸化を防止するために酸化防止剤を添加することが好ましい。
 押出機中では、ポリオレフィン樹脂が完全に溶融する温度で、ポリオレフィン溶液を均一に混合する。溶融混練温度は、使用するポリオレフィン樹脂によって異なるが、下限は(ポリオレフィン樹脂の融点+10℃)が好ましく、さらに好ましくは(ポリオレフィン樹脂の融点+20℃)である。溶融混練温度の上限は(ポリオレフィン樹脂の融点+120℃)とするのが好ましく、さらに好ましくは(ポリオレフィン樹脂の融点+100℃)である。ここで、融点とは、JIS K7121(1987)に基づき、DSCにより測定した値をいう(以下、同じ)。例えば、具体的には、ポリエチレン組成物は約130~140℃の融点を有するので、溶融混練温度の下限は140℃が好ましく、さらに好ましくは160℃、最も好ましくは170℃である。ポリエチレン組成物の溶融混練温度の上限は250℃が好ましく、230℃、最も好ましくは200℃である。
 また、ポリオレフィン溶液にポリプロピレンを含む場合の溶融混練温度は190~270℃が好ましい。
 樹脂の劣化を抑制する観点から溶融混練温度は低い方が好ましいが、上述の温度よりも低いとダイから押出された押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となる場合があり、上述の温度より高いと、ポリオレフィンの熱分解が激しくなり、得られる微多孔膜の物性、例えば、突刺強度、引張強度等が劣る場合がある。
 二軸押出機のスクリュー長さ(L)と直径(D)の比(L/D)は良好な加工混練性と樹脂の分散性・分配性を得る観点から、20~100が好ましい。前記比の下限はより好ましくは35である。前記比の上限は、より好ましくは70である。L/Dを20以上にすると、溶融混練が十分となる。L/Dを100以下にすると、ポリオレフィン溶液の滞留時間が増大し過ぎない。混練する樹脂の劣化を防ぎながら良好な分散性・分配性を得る観点から、二軸押出機のシリンダ内径は40~100mmであるのが好ましい。
 押出物中にポリエチレンを良好に分散させて、優れた微多孔膜の厚み均一性を得るために、二軸押出機のスクリュー回転数(Ns)を150~600rpmとすることが好ましい。さらに、Ns(rpm)に対するポリオレフィン溶液の押出量Q(kg/h)の比、Q/Nsを0.6kg/h/rpm以下にするのが好ましい。Q/Nsはさらに好ましくは0.35kg/h/rpm以下である。
(b)押出物の形成およびゲル状シートの成形 
 押出機で溶融混練したポリオレフィン溶液を直接に、あるいはさらに別の押出機を介して、ダイから押出して、最終製品の微多孔膜の厚みが5~100μmになるように成形して押出物を得る。ダイは、長方形のTダイを用いてもよい。Tダイを用いた場合、最終製品の微多孔膜の厚みを制御しやすい観点から、ダイのスリット間隙は0.1~5mmが好ましく、押出時に140~250℃に加熱するのが好ましい。
 得られた押出物を冷却することによりゲル状シートが得られ、冷却により、溶剤によって分離されたポリエチレンのミクロ相を固定化することができる。冷却工程においてゲル状シートを結晶化終了温度以下まで冷却するのが好ましい。冷却はゲル状シートの表裏ともに、結晶化終了温度以下となるまで250℃/分以上の速度で行うことが好ましく、より好ましくは300℃/分以上の速度である。冷却速度が上記範囲であれば、ゲルを形成する結晶が粗大化せず、緻密な高次構造を得ることができるために、表面の粗さが不均一となりにくい。また、冷却速度が上記範囲であれば、高次構造が細かいために、その後の延伸において分子配向が進みやすく、突刺強度と透気抵抗度を両立することができる。さらに、冷却速度が上記範囲であれば、細かい結晶が緻密に存在することによって、最終的に得られる微多孔膜の表面を緻密に粗くすることが可能となるために、目的とする摩擦係数の制御が可能となる。冷却速度が低すぎる場合、結晶が粗大となりすぎるために、目的とする摩擦係数が得られにくくなる。ここで、結晶化終了温度は、JIS K7121(1987)に従って測定した補外結晶化終了温度のことである。具体的には、ポリエチレンの場合は約70~90℃の補外結晶化終了温度を持つ。また、ここでの冷却速度は、押出機の出口から排出された樹脂の温度が結晶化完了温度となるまでの時間と、押出機出口の樹脂温度と結晶化完了温度との温度差によって求めることができる。したがって、冷却工程において、結晶化終了温度以下まで冷却する場合には、ゲル状シートの表裏それぞれの冷却速度は、押出機出口の樹脂温度と冷却工程出口の表裏それぞれのゲル状シート温度との差分を、冷却工程をゲル状シートにおけるある任意の位置における部位が通過する時間で除したものとなる。また、ゲル状シートの一方の面(表面)の冷却速度ともう一方の面(裏面)の冷却速度の差は、15℃/秒以上あることが好ましい。冷却速度の差が15℃/秒以上となるように、ゲル状シートの表裏における冷却速度をそれぞれ制御することにより、膜の表裏を重ね合わせた時の静摩擦係数が0.5~1.0の微多孔膜を得ることができる。
 押出物の冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法、キャスティングドラム等を用いる方法等があるが、目的とする冷却速度および冷却速度差を得るためには、キャスティングドラムを用いる方法が好ましい。また、キャスティングドラムを用いた上で冷風や冷却水その他冷却媒体、冷媒で冷却したロールなどを併用することもできる。なお、ダイから押し出された溶液は、冷却前あるいは冷却中に所定の引き取り比で引き取るが、引き取り比の下限は1以上が好ましい。上限は好ましくは10以下、より好ましくは5以下であることが好ましい。引き取り比が10以下であると、ネックインが小さくなり、延伸時に破断を起こしにくくなる。
 ゲル状シートの厚さの下限は0.5mmが好ましく、より好ましくは0.7mmである。ゲル状シートの厚さの上限は3mmであり、より好ましくは2mmである。ゲル状シートの厚さが3mm以下の場合、冷却過程において、フィルムの最表層から内層にかけて構造のムラができにくく、厚さ方向全体にわたって高次構造を密にすることができる。また、ゲル状シートの厚さが3mm以下であれば、ゲル状シートの冷却速度を上述の好ましい範囲としやすい。
 これまで微多孔膜が単層の場合を説明してきたが、本発明のポリオレフィン微多孔膜は、単層に限定されるものではなく、さらにいくつかの微多孔膜(層)を積層した積層体にしてもよい。追加して積層される層には、上述したようにポリエチレンの他に、本発明の効果を損なわない程度にそれぞれ所望の樹脂を含んでいてもよい。ポリオレフィン微多孔膜を積層体とする方法としては、従来の方法を用いることができるが、例えば、所望の樹脂を必要に応じて調製し、これらの樹脂を別々に押出機に供給して所望の温度で溶融させ、ポリマー管あるいはダイ内で合流させて、目的とするそれぞれの積層厚みでスリット状ダイから押出しを行う等して、積層体を形成する方法がある。
(c)及び(d)延伸
 本発明では得られたゲル状シートを縦方向(機械方向)に延伸(工程(c))した後、連続して横方向(機械方向と直角な方向)の延伸(工程(d))をする逐次延伸を行う。このように縦方向延伸と横方向延伸を別個かつ連続的に行うことによって突刺強度と透気抵抗度の両立、さらに所定の摩擦係数が得られやすくなる。延伸はゲル状シートを加熱し、通常のテンター法、ロール法、もしくはこれらの方法の組み合わせによって所定の倍率で行う。また、このような延伸は、ゲル状シートを縦方向に延伸する縦延伸機と横方向に延伸する横延伸機とを、微多孔膜の製造方向(押出機側から微多孔膜の巻き取り側に向かう方向)に互いに隣接させて配置して、これら縦延伸機と横延伸機とを用いて連続的に行われる。
 本発明の延伸方法では、縦延伸と横延伸を別々に行うため、各延伸工程において各方向にのみ延伸張力がかかることにより、分子配向が進みやすくなる。そのため、同時延伸に比べて同じ面積倍率においても分子配向を高くすることができ、高い突刺強度を達成することができる。
 延伸倍率は、ゲル状シートの厚さによって異なるが、いずれの方向でも5倍以上に延伸することが好ましい。縦方向の延伸は好ましくは5倍以上、より好ましくは7倍以上で行うことが好ましい。また、縦方向の延伸の上限は好ましくは12倍、より好ましくは10倍で行うことが好ましい。縦方向の延伸が5倍以上であると、延伸配向により高い強度を付与することができる。また、縦方向の延伸が12倍以下であると、延伸による破れが発生しにくい。
 横方向の延伸は好ましくは4倍以上、より好ましくは6倍以上で行うことが好ましい。横方向の延伸の上限は好ましくは10倍であり、より好ましくは8倍である。横方向の延伸倍率が4倍以上であると、延伸配向によって一層高い強度を付与することができる。また、横方向の延伸倍率が10倍以下であれば、延伸による破れが発生しにくく、さらに延伸により膜表面の凹凸が潰れて表面が平滑となることを防ぐことができるために、目的とする摩擦係数が得られやすくなる。
 縦延伸と横延伸を総合した面積倍率では、25倍以上が好ましく、さらに好ましくは30倍以上、最も好ましくは42倍以上である。
 延伸温度はポリオレフィン樹脂の融点以下にするのが好ましく、より好ましくは、(ポリオレフィン樹脂の結晶分散温度Tcd)~(ポリオレフィン樹脂の融点)の範囲である。延伸温度がゲル状シートの融点以下であると、ポリオレフィン樹脂の溶融が防がれ、延伸によって分子鎖を効率的に配向せしめることが可能となる。また、延伸温度がポリオレフィン樹脂の結晶分散温度以上であれば、ポリオレフィン樹脂の軟化が十分であり、延伸張力が低いために、製膜性が良好となり、延伸時に破膜しにくく高倍率での延伸が可能となる。
 具体的には、ポリエチレン樹脂の場合は約90~100℃の結晶分散温度を有するので、縦延伸温度は好ましくは80℃以上である。ポリエチレン樹脂を用いた場合の縦延伸温度の上限は好ましくは130℃であり、より好ましくは125℃であり、最も好ましくは120℃である。結晶分散温度TcdはASTM D 4065に従って測定した動的粘弾性の温度特性から求める。または、結晶分散温度TcdはNMRから求める場合もある。
 以上のような延伸によりゲル状シートに形成された高次構造に開裂が起こり、結晶相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに、細孔が拡大するので、電池用セパレータに好適になる。
 なお、本発明において、逐次延伸はゲル状シート中の可塑剤を除去する前に行うことが重要である。可塑剤が十分にゲル状シート中に含まれるとポリオレフィンが十分に可塑化し軟化した状態であるために、可塑剤の除去前の延伸によって、高次構造の開裂がスムーズになり、結晶相の微細化を均一に行うことができる。
(e)延伸膜からの可塑剤の抽出(洗浄)
 次に、ゲル状シート中に残留する溶剤を、洗浄溶剤を用いて抽出・除去、すなわち洗浄する。ポリオレフィン相と溶媒相とは分離しているので、溶剤の除去により微多孔膜が得られる。洗浄溶剤としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン、C14、C16等の鎖状フルオロカーボン、C等の環状ハイドロフルオロカーボン、COCH、COC等のハイドロフルオロエーテル、COCF、COC等のパーフルオロエーテル等の易揮発性溶剤が挙げられる。これらの洗浄溶剤は低い表面張力(例えば、25℃で24mN/m以下)を有する。低い表面張力の洗浄溶剤を用いることにより、微多孔を形成する網状構造が洗浄後に乾燥時に気-液界面の表面張力により収縮するのが抑制され、もって高い空孔率および透過性を有する微多孔膜が得られる。これらの洗浄溶剤はポリオレフィン樹脂の溶解に用いた溶剤に応じて適宜選択し、単独もしくは混合して用いる。
 洗浄方法は、ゲル状シートを洗浄溶剤に浸漬し抽出する方法、ゲル状シートに洗浄溶剤をシャワーする方法、またはこれらの組み合わせによる方法等により行うことができる。洗浄溶剤の使用量は洗浄方法により異なるが、一般にゲル状シート100重量部に対して300重量部以上であるのが好ましい。洗浄温度は15~30℃でよく、必要に応じて80℃以下に加熱する。この時、溶剤の洗浄効果を高める観点、得られる微多孔膜の物性の横方向および/または縦方向の微多孔膜物性が不均一にならないようにする観点、微多孔膜の機械的物性および電気的物性を向上させる観点から、ゲル状シートが洗浄溶剤に浸漬している時間は長ければ長い方が良い。
 上述のような洗浄は、洗浄後のゲル状シート、すなわち微多孔膜中の残留溶剤が1重量%未満になるまで行うのが好ましい。
(f)微多孔膜の乾燥
 洗浄後、洗浄溶剤を乾燥して除去する。乾燥の方法は特に限定されないが、加熱乾燥法、風乾法等により乾燥する。乾燥温度は、ポリエチレン組成物の結晶分散温度Tcd以下であることが好ましく、特に、(Tcd-5℃)以下であることが好ましい。乾燥は、微多孔膜の乾燥重量を100重量%として、残存洗浄溶剤が5重量%以下になるまで行うのが好ましく、3重量%以下になるまで行うのがより好ましい。乾燥が不十分であると、後の熱処理で微多孔膜の空孔率が低下し、透過性が悪化する。
(g)その他の工程
 ここで、一般的に、突刺強度等の機械的強度を向上させるために、洗浄乾燥後にさらに縦、または横、あるいは両方向に5%~20%程度の延伸(以下、再延伸という)を行う場合がある。しかしながら、再延伸を行うと、微多孔膜の表裏両面に形成された凹凸が引き伸ばされ、所望の摩擦係数を得にくくなる。言い換えると、可塑剤を除去する前の延伸膜には、既述のように内部だけでなく表裏面にも可塑剤が含まれている。従って、延伸膜から可塑剤を抽出する工程を経ることにより、微多孔膜の内部に空隙が形成されるとともに、微多孔膜の表裏面においても当該可塑剤が除去されたスペースの分だけ凹凸が良好に形成される。そのため、可塑剤を抽出した後に微多孔膜を再延伸すると、当該微多孔膜の表裏面の凹凸が引き伸ばされて平滑さが増加するので、微多孔膜の表裏面における摩擦係数が小さくなる。一方、このような再延伸を行うと、突刺し強度等の機械的強度が増加する。従って、本発明において、できるだけ大きな機械的強度を持つ微多孔膜を得るためには既述の再延伸を行うことが好ましいが、摩擦係数を後述の範囲内に設定した微多孔膜を得るためには、微多孔膜の乾燥工程(f)の後、再延伸を行わずにコアに微多孔膜を巻き取ることが好ましい。
 一方、本発明において、延伸後の延伸膜または微多孔膜を熱固定処理及び/または熱緩和処理してもよい。熱固定処理、熱緩和処理によって結晶が安定化し、ラメラ層が均一化され、細孔径が大きく、強度に優れた微多孔膜を作製できる。熱固定処理は、ポリオレフィン微多孔膜を構成するポリオレフィン樹脂の結晶分散温度以上~融点以下の温度範囲内で行う。熱固定処理は、テンター方式、ロール方式又は圧延方式により行う。
 熱緩和処理方法としては、例えば特開2002-256099号公報に開示の方法を利用できる。
 さらに、その他用途に応じて、延伸膜または微多孔膜に親水化処理を施してもよい。親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
 界面活性剤処理の場合、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤および両イオン界面活性剤のいずれも使用できるが、ノニオン系界面活性剤が好ましい。界面活性剤を水またはメタノール、エタノール、イソプロピルアルコール等の低級アルコールに溶解してなる溶液中に微多孔膜を浸漬するか、微多孔膜にドクターブレード法により溶液を塗布する。
 必要に応じ、延伸膜または微多孔膜の少なくとも片面に空気あるいは窒素あるいは炭酸ガスと窒素の混合雰囲気中で、コロナ放電処理することもできる。
 以上説明した各工程が終了したあと、コアに微多孔膜を巻き取って捲回体を得る。
[3]ポリオレフィン微多孔膜の構造及び物性
 本発明のポリオレフィン微多孔膜の好ましい実施態様としては次の物性がある。
(1)摩擦係数
 本発明のポリオレフィン微多孔膜は、膜同士の静摩擦係数が0.5~1.0であり、より好ましくは0.7以上である。ここで、膜同士の静摩擦係数とは、ポリオレフィン微多孔膜の一方の表面(おもて面)とその反対側の表面(裏面)とを正対させ(重ね合わせ)て測定した静摩擦係数をいう。静摩擦係数を上記範囲とすることで、ポリオレフィン微多孔膜の捲回体を作製した際に、しわや端面の飛び出しがない巻姿の良好なポリオレフィン微多孔膜を提供することができる。静摩擦係数が0.5以上であると、ポリオレフィン微多孔膜表裏のグリップ力を確保することができ、製膜後の微多孔膜をスリットする際に高速で搬送時しても捲回体の巻き出し部においてすべりが発生しにくく、蛇行を抑制することができる。また、静摩擦係数が1.0以下であると、膜表裏のすべり性が良いために、製膜後の微多孔膜の捲回体におけるブロッキングを抑制することができ、また、微多孔膜をスリットする際に捲回体の巻き出し部での張力変動が起こりにくいために、巻取を高速で行っても(スリット後の)捲回体でのしわの発生を抑制することができる。そのため、特に巻長が長く、フィルムの積層枚数が多い捲回体において、本発明の静摩擦係数を有する微多孔膜は顕著な効果を有する。さらに、静摩擦係数を上記範囲とすることによって、最終的に得られる微多孔膜捲回体を使用する際に、微多孔膜のスリット時と同様に、微多孔膜の巻き出し挙動が安定し、その後の電池作成において、電極とのずれや微多孔膜のしわの発生を抑制することができる。なお、静摩擦係数は後述する測定方法で測定した値をいう。
(2)透気抵抗度
 本発明のポリオレフィン微多孔膜の透気抵抗度の上限はフィルム厚みを16μmとした場合、400秒/100ccAir/16μm、より好ましくは300秒/100ccAir/16μm、さらに好ましくは200秒/100ccAir/16μmであり、透気抵抗度の下限は50秒/100ccAir/16μm、好ましくは70秒/100ccAir/16μm、さらに好ましくは100秒/100ccAir/16μmである。透気抵抗度が400秒/100ccAir/16μm以下であれば、イオン透過性が良く、充放電を高速で行うことができる。また、透気抵抗度が50秒/100ccAir/16μm以上であれば、電池の劣化を防ぐことができる。
(3)突刺強度
 本発明のポリオレフィン微多孔膜の突刺強度は400gf/16μm以上であり、好ましくは450gf/16μmである。突刺強度が450gf/16μm以上であると、ポリオレフィン微多孔膜をセパレータとして電池に組み込んだ場合に、電極の短絡が発生せず、電池の安全性が高くなる。
(4)突刺強度と透気抵抗度の比
 本発明のポリオレフィン微多孔膜の突刺強度と透気抵抗度の比、(突刺強度[gf])/透気抵抗度[秒/100ccAir]:いずれも膜厚16μm換算)の下限は1.7であることが好ましく、より好ましくは2.0である。突刺強度と透気抵抗度の比の上限は3.0であることが好ましい。突刺強度と透気抵抗度の比が1.7以上3.0以下であることによって、ポリオレフィン微多孔膜をセパレータとして電池に組み込んだ場合に安全性とイオン透過性とのバランスに優れる。
(5)空孔率
 本発明のポリオレフィン微多孔膜の空孔率については、上限は好ましくは70%、さらに好ましくは60%、もっとも好ましくは55%である。空孔率の下限は好ましくは30%、さらに好ましくは35%、もっとも好ましくは40%である。空孔率が70%以下であれば、十分な機械的強度と絶縁性が得られやすく、充放電時に短絡が起こりにくくなる。また、空孔率が30%以上であれば、イオン透過性がよく、良好な電池の充放電特性を得ることができる。
 (6)ポリオレフィン微多孔膜の厚さ
 本発明に用いるポリオレフィン微多孔膜の厚さの上限は30μmが好ましい。さらにポリオレフィン微多孔膜の厚さの好ましい上限は16μm、最も好ましくは12μmである。ポリオレフィン微多孔膜の厚さの下限は5μm、好ましくは6μmである。ポリオレフィン微多孔膜の厚さが上記の範囲であれば実用的な突き刺し強度と孔閉塞機能を保有させることができ、今後、進むであろう電池の高容量化にも適するものとなる。
(7)ポリオレフィン微多孔膜捲回体
 本発明において得られる微多孔膜捲回体は幅300mm以上、直径150mm以上であることが好ましい。また、微多孔膜を捲回する巻芯(コア)は、内径が76mm以上であることが好ましく、より好ましくは152mm以上である。巻芯の内径と外径の差は、5mm以上50mm以下であることが好ましく、使用する材質の強度に応じて調整される。巻芯の内径および外径の公差は、±0.5mm以下が好ましく、さらに好ましくは±0.3mm以下である。また、コアの材質としては紙やプラスチック、繊維強化複合材料などが挙げられる。すなわち、本発明の微多孔膜捲回体は、概略円柱状のコアにおける外周面に沿って微多孔膜を複数周巻きつけて形成される。従って、捲回体の「幅」とは、当該捲回体の外側の面のうち、周面を挟んで互いに平行に対向する2つの円状の面同志の間の距離を言う。また、捲回体の「直径」とは、前記円状の面の直径と同義である。さらに、本発明において得られる微多孔膜捲回体は、コアに巻かれたフィルム(微多孔膜)の積層枚数が1500枚以上であることが好ましい。捲回体の幅の寸法が上記範囲であれば、今後進むであろう電池の大型化においても好適に使用することができる。さらに、捲回体は、微多孔へ耐熱性樹脂などをコーティングする際に、捲回体の直径の寸法が上記範囲であれば、十分な巻長を持つためにコーティング時の微多孔膜捲回体の取り換え頻度を低くすることができ、また、幅が広いためにコーティング後のスリットにおいてトリミングによって失われる部分の割合を低くすることができるために、コスト性に優れる。なお、本明細書において、コーティングとは、微多孔膜上に耐熱性樹脂などを形成することを意味し、微多孔膜の原料となるポリオレフィン樹脂に無機粒子等の滑材を添加することとは異なる。また、捲回体の直径とは、コアの径を含む微多孔膜捲回体全体の径である。
[4]用途
 本発明のポリオレフィン微多孔膜は電池やコンデンサーなどの電気化学反応装置のセパレータ(隔離材)として好適である。なかでも、非水電解液系二次電池、特にリチウム二次電池のセパレータとして好適に使用できる。
[5]物性の測定方法
 以下に各物性の測定方法を説明する。
(1)厚み(平均膜厚)
 ポリオレフィン微多孔膜を10cm×10cmの大きさに切り出し、縦横3cm間隔で16点測定し、その平均値を厚み(μm)とした。測定には接触厚み計を用いた。
(2)透気抵抗度
 王研式透気抵抗度計(旭精工株式会社製、EGO-1T)を使用して、JIS P8117に準拠して測定した。
(3)ポリオレフィン微多孔膜の突刺強度
 先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T1(μm)の微多孔膜を2mm/秒の速度で突刺したときの最大荷重を測定した。最大荷重の測定値Laを、式:Lb=(La×16)/T1により、膜厚を16μmとしたときの最大荷重Lbに換算し、突刺強度(gf/16μm)とした。
(4)ポリオレフィン微多孔膜の摩擦係数
 JIS K7125(1999)に準拠して、試験方向をポリオレフィン微多孔の縦方向と平行とし、ポリオレフィン微多孔膜の表裏を組み合わせて測定した。ただし、滑り片の相対速度を100mm/min、補助板の質量を5g、滑り片の全質量を200gとした。
(5)捲回物の外観判定 
 得られたポリオレフィン微多孔膜を、西村製作所(株)製スリッターFN335Eを使用して、走行速度150m/分で、張力32N/mにてスリットして捲回した際のしわの状態および巻きズレの度合いにより評価した。判定の基準は以下に記載の通りとした。なお、「捲回体の端面におけるズレ」あるいは「巻きズレ」とは、以下の測定により得られた値を指している。具体的には、捲回体を作成したあと、捲回体の左右の端部の各々について、コア上に積層されている微多孔膜の複数の端面のうち捲回体の外側に最も突出している端面と捲回体の内側に最も入り込んでいる端面との間の距離を捲回体の幅方向において測定して、この測定結果を既述の「捲回体の端面におけるズレ」あるいは「巻きズレ」として評価している。
◎(優良):捲回体の端面におけるズレが左右ともに0~1mmの範囲かつ捲回体の表層にしわの発生がないもの
○(良):捲回体の端面におけるズレが左右ともに0~3mmの範囲かつ捲回体の表層にしわの発生がないもの
×(不良):捲回体の端面におけるズレが左右少なくともどちらかにおいて3mmより大きい、もしくは捲回体の表層にしわが発生したもの
(6)重量平均分子量(Mw)
UHMWPE及びHDPEのMwは以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工株式会社製Shodex UT806M 
・カラム温度:135℃
・溶媒(移動相):o-ジクロルベンゼン
・溶媒流速:1.0ml/分
・試料濃度:0.1質量%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作製した。
(7) 空孔率(%)
 ポリオレフィン微多孔膜を5cm×5cmの大きさに切り出し、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
   空孔率=((体積-質量/ 膜密度)/ 体積)×100
 ここで、膜密度は0 .99とした。また、体積の算出には、前述の(1)で測定した厚みを使用した。
(8) ポリオレフィン微多孔膜の積層枚数
 ポリオレフィン微多孔膜の積層枚数Xはポリオレフィン微多孔膜捲回体の微多孔膜積層部分の外径R(mm)を測定し、使用したコアの外径R(mm)および、ポリオレフィン微多孔膜厚みT(μm)、捲回体の空気噛み込み率ADから、次式を用いて計算した。
 
X=((R-R)/2)/(AD+1))/(T/1000)
 
ここで、エア噛み込み率ADは、空気の噛み込みがない場合の理論的径として、厚みT(μm)と捲回体の長さL(m)から計算したロール側面断面積St(m)と実際の各径RおよびRから計算したロール側面断面積Sr(m)とから、次式により、求めた。
 
Sr=3.14×(R1/2)-3.14×(R2/2)
St=(T/1000)×L
AD=Sr/St-1


 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。
実施例1
<ポリオレフィン微多孔膜>
 質量平均分子量(Mw)が2.5×10の超高分子量ポリエチレン(UHMWPE)40質量%と、Mwが2.8×10の高密度ポリエチレン(HDPE)60質量%とからなるポリエチレン(PE)組成物100質量部に、テトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.375質量部をドライブレンドし、混合物を得た。
 得られた混合物25質量部を強混練タイプの二軸押出機に投入し(ポリエチレン組成物の投入量Q:54kg/h)、二軸押出機のサイドフィーダーから流動パラフィン75質量部を供給し、スクリュー回転数Nsを180rpmに保持しながら、210℃の温度で溶融混練して(Q/Ns:0.3kg/h/rpm)、ポリエチレン溶液を調製した。
 得られたポリエチレン溶液を、二軸押出機からTダイに供給し、シート状成形体となるように押し出した。押し出した成形体を、35℃に温調した冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。ここで、冷却ロール接触面を表、非接触面を裏として、表面の冷却速度は399℃/分、裏面の冷却速度は380℃/分であった。得られたゲル状シートを延伸温度115℃で9倍になるようにロール方式で縦延伸を行い、引き続いてテンターに導き、延伸倍率6倍、延伸温度115℃にて横延伸を実施した。延伸後の膜を25℃に温調した塩化メチレンの洗浄槽内にて洗浄し、流動パラフィンを除去した。洗浄した膜を60℃に調整された乾燥炉で乾燥し、テンター内にて125℃で40秒間熱固定処理することにより厚さ16μmの微多孔膜を得た。得られた微多孔膜を、幅300mm、長さ2000mにスリットし、ABS製コア(内径152.4mm、外径200.0mm)に捲回して、ポリオレフィン微多孔膜捲回体を作製した。
実施例2~14、比較例1、2、8~10
 使用するUHMWPEのMw、樹脂組成、製膜条件、スリット幅、長さ、コアの上に捲回されたフィルムの積層枚数を表1、2のとおりに変更した以外は実施例1と同様にして、ポリオレフィン微多孔膜捲回体を作製した。
比較例3
 Mwが3.8×10のHDPEのみを使用し、実施例1と同様の押出条件にてゲル状シートを作製した。作製したゲル状シートを延伸温度115℃にて9倍になるように縦延伸を行い、引き続いて延伸温度120℃にて延伸倍率6倍になるように横延伸を実施した。延伸後の膜を25℃に温調した塩化メチレンの洗浄槽内で洗浄し、流動パラフィンを抽出した抽出過程において縦方向に張力を加えて3%延伸し、横方向に約12%収縮するようにした。洗浄した膜を60℃に調整された乾燥炉で乾燥し、テンター内で125℃で横方向に120%まで再延伸した後、16.7%収縮させ、40秒間熱固定することによって厚さ16μmの微多孔膜を得た。得られた微多孔膜を、幅300mm、長さ2000mにスリットし、ABS製コア(内径152.4mm、外径200.0mm)に捲回して、ポリオレフィン微多孔膜捲回体を作製した。
比較例4
 Mwが2.5×10のUHMWPE35質量%とMwが3.1×10のHDPE65重量%を使用し、流動パラフィンを84質量部とした以外は実施例1と同様の押出条件にてゲル状シートを作製した。作製したゲル状シートを延伸温度115℃にて縦方向横方向にそれぞれ5倍となるように同時二軸延伸した。延伸後、膜を実施例1と同様に洗浄、風乾、熱固定処理を行い、厚さ16μmの微多孔膜を得た。得られた微多孔膜を、幅300mm、長さ2000mにスリットし、ABS製コア(内径152.4mm、外径200.0mm)に捲回して、ポリオレフィン微多孔膜捲回体を作製した。
比較例5
 Mwが2.5×10のUHMWPE30質量%と、Mwが2.8×10のHDPE70質量%を使用し、縦延伸倍率を5倍、横延伸倍率を6倍とした以外は比較例3と同様にして、厚さ16μmの微多孔膜を得た。得られた微多孔膜を、幅300mm、長さ2000mにスリットして、ABS製コア(内径152.4mm、外径200.0mm)に捲回して、ポリオレフィン微多孔膜捲回体を作製した。
比較例6
 風乾後に、128℃で横方向に1.2倍の再延伸を実施した以外は比較例4と同様にして、厚さ16μmの微多孔膜を得た。得られた微多孔膜を、幅300mm、長さ2000mにスリットして、ABS製コア(内径152.4mm、外径200.0mm)に捲回して、ポリオレフィン微多孔膜捲回体を作製した。
比較例7
 Mwが2.5×10のUHMWPEのみを使用し、流動パラフィン70質量部とした以外は実施例1と同様の押出条件にてゲル状シートを作製した。作製したゲル状シートを25℃に温調した塩化メチレンの洗浄槽内で洗浄し、流動パラフィンを抽出したのちに、洗浄した膜を室温で減圧しながら風乾した。得られた未延伸シートを120℃の温度で縦方向横方向にそれぞれ6倍となるように同時二軸延伸したのちに、テンター内で140℃で1分間熱固定処理することにより厚さ16μmの微多孔膜を得た。得られた微多孔膜を、幅300mm、長さ2000mにスリットして、ABS製コア(内径152.4mm、外径200.0mm)に捲回して、ポリオレフィン微多孔膜捲回体を作製した。
 実施例1~14及び比較例1~10で得られたポリオレフィン微多孔膜の樹脂組成、製膜条件について表1に、物性について表2に示す。
 
Figure JPOXMLDOC01-appb-T000002
 
 表1から、実施例1~14のポリオレフィン微多孔膜は、比較的幅広であり、膜の積層枚数が多い状態であっても、突刺強度と透気抵抗度を両立させ、膜の表裏の静摩擦係数を制御することができ、しわ、巻きずれのない、優れた外観の捲回体を得ることができる。

Claims (8)

  1.  厚み16μm換算の突刺強度が400gf以上であり、厚み16μm換算の透気抵抗度が100~400秒/100ccであり、膜の表裏を重ね合わせた時の静摩擦係数が0.5~1.0であることを特徴とするポリオレフィン微多孔膜。
  2.  突刺強度と透気抵抗度の比が1.7~3.0である請求項1に記載のポリオレフィン微多孔膜。
  3.  ポリオレフィンが、重量平均分子量2.0×10以上の超高分子量ポリエチレンを含むポリエチレンである請求項1または2に記載のポリオレフィン微多孔膜。
  4.  請求項1~3のいずれかに記載のポリオレフィン微多孔膜からなる非水電解液系二次電池用セパレータ。
  5.  厚み16μm換算の突刺強度が400gf以上であり、厚み16μm換算の透気抵抗度が100~400秒/100ccであり、膜の表裏を重ね合わせた時の静摩擦係数が0.5~1.0であるポリオレフィン微多孔膜をコアに捲回してなり、幅300mm以上であり、前記コアの上に捲回されたポリオレフィン微多孔膜の積層枚数が1500枚以上、ポリオレフィン微多孔膜の幅方向における端面のズレが当該ポリオレフィン微多孔膜の積層方向において左右ともに0~3mmであることを特徴とするポリオレフィン微多孔膜捲回体。
  6.  ポリオレフィン微多孔膜が非水電解液系二次電池用セパレータである請求項5に記載のポリオレフィン微多孔膜捲回体。
  7.  請求項4に記載の非水電解液系二次電池用セパレータを含む非水電解液系二次電池。
  8. (a)重量平均分子量2×10以上4×10未満の超高分子量ポリオレフィンを含むポリオレフィン樹脂と可塑剤とを溶融混練してポリオレフィン溶液を調製する工程、
    (b)工程(a)にて得られたポリオレフィン溶液を押出機より押し出して押出物を形成し、押出物の表裏の冷却速度がともに250℃/分以上かつ、表裏の冷却速度差が15℃/秒以上となるように冷却してゲル状シートを成形する工程、
    (c)工程(b)にて得られたシートを、縦方向(機械方向)に延伸する工程
    (d)工程(c)にて得られたシートを、横方向(機械方向と直角方向)に延伸する工程
    (e)工程(d)にて得られた延伸膜から可塑剤を抽出する工程
    (f)工程(e)にて得られた膜を乾燥する工程を含み、
     前記工程(c)及び前記工程(d)は、各々連続的に行われることを特徴とする請求項1~3のいずれかに記載のポリオレフィン微多孔膜の製造方法
PCT/JP2014/081880 2013-12-06 2014-12-02 ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法 WO2015083705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015551522A JP6555128B2 (ja) 2013-12-06 2014-12-02 ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法
KR1020167013554A KR102223395B1 (ko) 2013-12-06 2014-12-02 폴리올레핀 미다공막, 비수 전해액계 이차 전지용 세퍼레이터, 폴리올레핀 미다공막 권회체, 비수 전해액계 이차 전지 및 폴리올레핀 미다공막의 제조 방법
CN201480065580.0A CN106170509B (zh) 2013-12-06 2014-12-02 聚烯烃微多孔膜、非水电解液系二次电池用隔膜、聚烯烃微多孔膜卷绕体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-253171 2013-12-06
JP2013253171 2013-12-06

Publications (1)

Publication Number Publication Date
WO2015083705A1 true WO2015083705A1 (ja) 2015-06-11

Family

ID=53273467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081880 WO2015083705A1 (ja) 2013-12-06 2014-12-02 ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法

Country Status (5)

Country Link
JP (1) JP6555128B2 (ja)
KR (1) KR102223395B1 (ja)
CN (1) CN106170509B (ja)
MY (1) MY175572A (ja)
WO (1) WO2015083705A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025958B1 (ja) * 2015-11-30 2016-11-16 住友化学株式会社 非水電解液二次電池用セパレータおよびその利用
JP2016212981A (ja) * 2015-04-30 2016-12-15 住友化学株式会社 セパレータ捲回体及びセパレータ捲回体の製造方法
JP2017017045A (ja) * 2016-10-26 2017-01-19 住友化学株式会社 セパレータ捲回装置及びセパレータ捲回体
KR20180062375A (ko) * 2016-11-30 2018-06-08 스미또모 가가꾸 가부시키가이샤 결함 검사 장치, 결함 검사 방법, 세퍼레이터 권회체의 제조 방법 및 세퍼레이터 권회체
WO2018180713A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜およびそれを用いた電池
JP2018169380A (ja) * 2017-03-30 2018-11-01 住友化学株式会社 検査装置、検査方法およびフィルム捲回体の製造方法
WO2019089897A1 (en) * 2017-11-03 2019-05-09 Celgard, Llc Improved microporus membranes, battery separators, batteries, and devices having the same
JP2022031973A (ja) * 2017-09-05 2022-02-22 三井化学株式会社 コンテナを用いて内容物の排出と注入とを繰り返す方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200006735A1 (en) * 2017-03-22 2020-01-02 Toray Industries, Inc. Microporous polyolefin membrane and battery including same
CN110431176B (zh) * 2017-03-31 2021-03-19 东丽株式会社 聚烯烃微多孔膜、非水电解液系二次电池用隔膜及非水电解液系二次电池
EP3950795A4 (en) * 2019-03-29 2023-01-18 Toray Industries, Inc. POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, SECONDARY BATTERY AND METHOD FOR PRODUCTION OF POLYOLEFIN MICROPOROUS FILM
CN111099416B (zh) * 2019-12-03 2020-08-28 南京贝迪电子有限公司 一种导光膜生产装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311225A (ja) * 1995-05-15 1996-11-26 Tonen Chem Corp ポリオレフィン微多孔膜
JP2013032545A (ja) * 2005-08-04 2013-02-14 Toray Battery Separator Film Co Ltd ポリエチレン微多孔膜及び電池用セパレータ
WO2013146585A1 (ja) * 2012-03-30 2013-10-03 東レバッテリーセパレータフィルム株式会社 ポリエチレン微多孔膜およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69229170T2 (de) 1991-12-27 1999-10-14 Mitsui Chemicals Zweiachsig orientierter hochmolekularer polyethylenfilm und oberflächenmodifizierter zweiachsig orientierter hochmolekularer polyethylenfilm sowie deren herstellung
JP2004099799A (ja) 2002-09-11 2004-04-02 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜捲回物
CN1887581A (zh) * 2005-06-30 2007-01-03 佛山塑料集团股份有限公司 聚烯烃微多孔膜的制作方法
KR101432146B1 (ko) 2007-11-28 2014-08-28 에스케이이노베이션 주식회사 물성과 고온 열안정성이 우수한 폴리올레핀 미세다공막
CN101345296B (zh) * 2008-08-25 2010-11-10 屠兆辉 锂离子电池隔膜制备方法
CN102264814B (zh) * 2008-12-26 2013-07-31 旭化成电子材料株式会社 聚烯烃制微多孔膜
JP2010024463A (ja) 2009-11-04 2010-02-04 Teijin Solfill Kk ポリオレフィン微多孔膜の製造方法、および、電池用セパレータの製造方法
JP5630827B2 (ja) * 2010-08-05 2014-11-26 日東電工株式会社 ポリオレフィン多孔質膜およびその製造方法ならびにその製造装置
CN102774009A (zh) * 2012-08-07 2012-11-14 重庆纽米新材料科技有限责任公司 聚烯烃微孔膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311225A (ja) * 1995-05-15 1996-11-26 Tonen Chem Corp ポリオレフィン微多孔膜
JP2013032545A (ja) * 2005-08-04 2013-02-14 Toray Battery Separator Film Co Ltd ポリエチレン微多孔膜及び電池用セパレータ
WO2013146585A1 (ja) * 2012-03-30 2013-10-03 東レバッテリーセパレータフィルム株式会社 ポリエチレン微多孔膜およびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212981A (ja) * 2015-04-30 2016-12-15 住友化学株式会社 セパレータ捲回体及びセパレータ捲回体の製造方法
JP6025958B1 (ja) * 2015-11-30 2016-11-16 住友化学株式会社 非水電解液二次電池用セパレータおよびその利用
US10084172B2 (en) 2015-11-30 2018-09-25 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator and use thereof
JP2017017045A (ja) * 2016-10-26 2017-01-19 住友化学株式会社 セパレータ捲回装置及びセパレータ捲回体
KR20180062375A (ko) * 2016-11-30 2018-06-08 스미또모 가가꾸 가부시키가이샤 결함 검사 장치, 결함 검사 방법, 세퍼레이터 권회체의 제조 방법 및 세퍼레이터 권회체
JP2018091825A (ja) * 2016-11-30 2018-06-14 住友化学株式会社 欠陥検査装置、欠陥検査方法、セパレータ捲回体の製造方法、及びセパレータ捲回体
KR102489513B1 (ko) 2016-11-30 2023-01-18 스미또모 가가꾸 가부시키가이샤 결함 검사 장치, 결함 검사 방법, 세퍼레이터 권회체의 제조 방법 및 세퍼레이터 권회체
WO2018180713A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜およびそれを用いた電池
JP2018169380A (ja) * 2017-03-30 2018-11-01 住友化学株式会社 検査装置、検査方法およびフィルム捲回体の製造方法
JP2022031973A (ja) * 2017-09-05 2022-02-22 三井化学株式会社 コンテナを用いて内容物の排出と注入とを繰り返す方法
WO2019089897A1 (en) * 2017-11-03 2019-05-09 Celgard, Llc Improved microporus membranes, battery separators, batteries, and devices having the same
CN111512472A (zh) * 2017-11-03 2020-08-07 赛尔格有限责任公司 改进的微孔膜、电池隔板、电池、和具有它们的装置

Also Published As

Publication number Publication date
KR20160094942A (ko) 2016-08-10
KR102223395B1 (ko) 2021-03-05
CN106170509B (zh) 2019-11-12
JP6555128B2 (ja) 2019-08-07
CN106170509A (zh) 2016-11-30
JPWO2015083705A1 (ja) 2017-03-16
MY175572A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6555128B2 (ja) ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法
JP5876632B1 (ja) ポリオレフィン微多孔膜およびその製造方法
US10658639B2 (en) Method of preparing microporous membrane, microporous membrane, battery separator, and secondary battery
JP7395827B2 (ja) 多孔性ポリオレフィンフィルム
JP2015208893A (ja) ポリオレフィン製積層微多孔膜
CN106574070B (zh) 烯烃制微多孔膜及其制造方法、非水电解液系二次电池用隔膜以及非水电解液系二次电池
JP7207300B2 (ja) 多孔性ポリオレフィンフィルム
JP2015208894A (ja) ポリオレフィン製積層微多孔膜
US20220298314A1 (en) Polyolefin microporous film, layered body, and battery
JP6962320B2 (ja) ポリオレフィン微多孔膜、及びそれを用いた電池
JP2003105122A (ja) ポリオレフィン微多孔膜及びその製造方法
WO2018180713A1 (ja) ポリオレフィン微多孔膜およびそれを用いた電池
US10770707B2 (en) Battery separator and method of manufacturing same
WO2021033733A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
WO2019151220A1 (ja) ポリオレフィン微多孔膜、コーティングフィルム及び電池、並びにポリオレフィン微多孔膜の製造方法
JP7470297B2 (ja) ポリオレフィン微多孔膜およびその製造方法
WO2023054139A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ、及び二次電池
JP2022151659A (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
JP2020111469A (ja) リール、及びリールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167013554

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015551522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868077

Country of ref document: EP

Kind code of ref document: A1