WO2015083663A1 - Polymerizable monomer, polymer compound, photocurable resin composition, sealing element for liquid crystal display element, vertical conduction material, and liquid crystal display element - Google Patents

Polymerizable monomer, polymer compound, photocurable resin composition, sealing element for liquid crystal display element, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
WO2015083663A1
WO2015083663A1 PCT/JP2014/081737 JP2014081737W WO2015083663A1 WO 2015083663 A1 WO2015083663 A1 WO 2015083663A1 JP 2014081737 W JP2014081737 W JP 2014081737W WO 2015083663 A1 WO2015083663 A1 WO 2015083663A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
compound
crystal display
meth
polymerizable monomer
Prior art date
Application number
PCT/JP2014/081737
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015501601A priority Critical patent/JP6434901B2/en
Priority to CN201480058891.4A priority patent/CN105683225B/en
Priority to KR1020167006200A priority patent/KR102256146B1/en
Publication of WO2015083663A1 publication Critical patent/WO2015083663A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/60Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in meta- or para- positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D335/16Oxygen atoms, e.g. thioxanthones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate

Definitions

  • the present invention relates to a polymerizable monomer that has low contamination to liquid crystals, is highly sensitive to long-wavelength light, and has an excellent sensitizing effect, and a polymer obtained by polymerizing the polymerizable monomer Relates to compounds.
  • the present invention also provides a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and the The present invention relates to a vertical conduction material and a liquid crystal display element manufactured using a sealing agent for liquid crystal display elements.
  • a liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing.
  • a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. . Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
  • the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
  • the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. As described above, when the sealant is insufficiently cured, there is a problem in that the uncured sealant component is eluted in the liquid crystal and easily causes liquid crystal contamination.
  • Patent Document 3 discloses that a highly sensitive photopolymerization initiator is blended with a sealant. However, the sealing agent could not be sufficiently photocured simply by adding a highly sensitive photopolymerization initiator.
  • Patent Document 4 discloses that a sealing agent is combined with a highly sensitive photopolymerization initiator and a sensitizer. However, the use of a sensitizer has a problem that liquid crystal contamination is likely to occur.
  • the present invention relates to a polymerizable monomer that has low contamination to liquid crystals, is highly sensitive to long-wavelength light, and has an excellent sensitizing effect, and a polymer obtained by polymerizing the polymerizable monomer
  • the object is to provide a compound.
  • the present invention also provides a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and the It is an object of the present invention to provide a vertical conduction material and a liquid crystal display element manufactured using a sealing agent for liquid crystal display elements.
  • the present invention is a polymerization obtained by reacting a dialkylaminobenzoic acid compound or a thioxanthone derivative having a functional group capable of reacting with an epoxy group and an epoxy compound having an unsaturated double bond or an epoxy compound having an alkoxysilyl group. Monomer.
  • the present invention is described in detail below.
  • the present inventors surprisingly found that a polymerizable monomer having a specific structure or a polymer compound obtained by polymerizing the polymerizable monomer has low contamination with respect to liquid crystal, and has long wavelength light. On the other hand, it was found to be highly sensitive and excellent in sensitizing effect. Therefore, the present inventor has excellent photocurability and liquid crystal contamination by using a photocurable resin composition containing the polymerizable monomer or the polymer compound as a photopolymerization initiator or sensitizer. It has been found that a sealing agent for liquid crystal display elements capable of suppressing the above can be obtained, and the present invention has been completed.
  • the polymerizable monomer of the present invention includes a dialkylaminobenzoic acid compound or a thioxanthone derivative having a functional group capable of reacting with an epoxy group (hereinafter also simply referred to as “thioxanthone derivative”) and an epoxy having an unsaturated double bond. It is obtained by reacting a compound or an epoxy compound having an alkoxysilyl group (hereinafter also referred to as “the epoxy compound according to the present invention”).
  • dialkylaminobenzoic acid compound examples include a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), and a compound represented by the following formula (1-3). 7- (dimethylamino) coumarin-3-carboxylic acid and the like.
  • a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), or a compound represented by the following formula (1-3) is preferable, and the following formula (2)
  • a compound represented by the following formula (2-2), or a compound represented by the following formula (2-3) is more preferred.
  • the thioxanthone derivative has a functional group capable of reacting with an epoxy group.
  • the functional group capable of reacting with the epoxy group include a hydroxyl group, a carboxyl group, and an amino group. Of these, a hydroxyl group or a carboxyl group is preferred.
  • Examples of the thioxanthone derivative include a compound represented by the following formula (3), 2-amino-9H-thioxanthen-9one, and the like. Among these, a compound represented by the following formula (3) is preferable, and a compound represented by the following formula (5-1) or a compound represented by (5-2) is more preferable.
  • X is hydrogen, a hydroxyl group, or a group represented by the following formula (4).
  • Each X may be the same or different, but at least one X is a hydroxyl group or a group represented by the following formula (4).
  • the epoxy compound according to the present invention that reacts with the dialkylaminobenzoic acid compound or the thioxanthone derivative is an epoxy compound having an unsaturated double bond or an epoxy compound having an alkoxysilyl group.
  • the unsaturated double bond or alkoxysilyl group has a role as a polymerizable reactive group related to the polymerization of the polymerizable monomer of the present invention.
  • Examples of the functional group having an unsaturated double bond include a (meth) acryloyloxy group, a vinyl group, and an allyl group. Of these, a (meth) acryloyloxy group is preferable. In the present specification, the “(meth) acryloyloxy group” means an acryloyloxy group or a methacryloyloxy group.
  • alkoxysilyl group examples include a trimethoxysilyl group, a triethoxysilyl group, a methyldimethoxysilyl group, and a methyldiethoxysilyl group. Of these, a trimethoxysilyl group is preferable.
  • epoxy compound according to the present invention a compound represented by the following formula (6-1) or (6-2) is preferably used.
  • R 1 represents hydrogen or a methyl group.
  • R 2 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. Each R 2 may be the same or different, but at least one R 2 is an alkoxy group having 1 to 10 carbon atoms.
  • the dialkylaminobenzoic acid is obtained in the presence of a basic catalyst.
  • the reaction between the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention is preferably performed in the presence of a trivalent organic phosphoric acid compound and / or an amine compound from the viewpoint of reactivity.
  • the dialkylaminobenzoic acid compound or the thioxanthone derivative As the use ratio of the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention when the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention are reacted, In terms of the ratio, the dialkylaminobenzoic acid compound or the thioxanthone derivative: the epoxy compound according to the present invention is preferably 1: 1 to 10: 1. Production ratio of the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention is within this range, thereby producing the polymerizable monomer of the present invention having a photoreactive group in a high yield. can do.
  • Examples of the basic catalyst used when the dialkylaminobenzoic acid compound or the thioxanthone derivative is reacted with the epoxy compound according to the present invention include, for example, triphenylphosphine, triethylamine, tripromylamine, tetramethylethylenediamine, dimethyllaurylamine. , Triethylbenzylammonium chloride, trimethylcetylammonium bromide, tetrabutylammonium bromide, trimethylbutylphosphonium bromide, tetrabutylphosphonium bromide and the like. Of these, triphenylphosphine is preferable.
  • the basic catalyst can be supported on a polymer and used as a polymer-supported basic catalyst.
  • the polymerizable monomer of the present invention obtained by reacting the above dialkylaminobenzoic acid compound with the epoxy compound according to the present invention (hereinafter also referred to as “polymerizable monomer derived from a dialkylaminobenzoic acid compound”).
  • polymerizable monomer derived from a dialkylaminobenzoic acid compound include compounds represented by the following formulas (7-1) to (7-6).
  • R 1 represents hydrogen or a methyl group.
  • R 2 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. Each R 2 may be the same or different, but at least one R 2 is an alkoxy group having 1 to 10 carbon atoms.
  • polymerizable monomer of the present invention obtained by reacting the thioxanthone derivative with the epoxy compound according to the present invention (hereinafter also referred to as “polymerizable monomer derived from thioxanthone derivative”), specifically, examples thereof include compounds represented by the following formulas (8-1) to (8-4).
  • R 1 represents hydrogen or a methyl group.
  • R 2 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. Each R 2 may be the same or different, but at least one R 2 is an alkoxy group having 1 to 10 carbon atoms.
  • a polymer compound obtained by polymerizing the polymerizable monomer of the present invention (hereinafter also referred to as “polymer compound of the present invention”) is also one aspect of the present invention.
  • examples of a method for polymerizing a polymerizable monomer derived from the dialkylaminobenzoic acid compound include cationic polymerization, anionic polymerization, and radical polymerization.
  • a method in which a compound dissolved in a toluene solvent is reacted in the presence of a radical polymerization initiator such as azobisisobutylnitrile with stirring at 60 to 100 ° C. for 4 to 12 hours is preferable.
  • Examples of the cationic polymerization catalyst used for the cationic polymerization of the polymerizable monomer derived from the dialkylaminobenzoic acid compound include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, formic acid, acetic acid and propionic acid. And sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and paratoluenesulfonic acid. Of these, hydrochloric acid is preferred.
  • Examples of the anionic polymerization catalyst used for anionic polymerization of the polymerizable monomer derived from the dialkylaminobenzoic acid compound include alkyllithiums such as n-butyllithium, sec-butyllithium and t-butyllithium, , 4-dilithiobutane, etc., alkylenedilithium, phenyllithium, stilbenelithium, lithium naphthalene, sodium naphthalene, potassium naphthalene, n-butylmagnesium, n-hexylmagnesium, ethoxycalcium, calcium stearate, t-butoxystrontium, ethoxybarium, iso Examples include propoxy barium, ethyl mercapto barium, t-butoxy barium, phenoxy barium, diethylamino barium, and barium stearate. Of these, n-butyllithium is preferable.
  • radical polymerization initiator used for radical polymerization of the polymerizable monomer derived from the dialkylaminobenzoic acid compound examples include azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4 -Dimethylvaleronitrile) and other azo compounds, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2 And organic peroxides such as ethyl hexanoate and di-t-butyl peroxide. Of these, azobisisobutyronitrile is preferable.
  • examples of a method for polymerizing a polymerizable monomer derived from the thioxanthone derivative include polymerization by a sol-gel method in the presence of an acidic catalyst or a basic catalyst.
  • a method in which the polymerizable monomer of the present invention dissolved in an ethanol solvent and water are mixed and reacted with stirring under an acidic catalyst at 60 to 120 ° C. for 2 to 24 hours is preferable.
  • Examples of the acidic catalyst used when polymerizing the polymerizable monomer derived from the thioxanthone derivative include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, carboxylic acids such as formic acid, acetic acid, and propionic acid, Examples include sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and paratoluenesulfonic acid. Of these, hydrochloric acid is preferred.
  • Examples of the basic catalyst used when polymerizing a polymerizable monomer derived from the thioxanthone derivative include inorganic compounds such as sodium hydroxide, potassium hydroxide and ammonia, and organic compounds such as amine compounds. Of these, sodium hydroxide is preferable.
  • a preferred lower limit of the degree of polymerization of the polymer compound of the present invention is 3.
  • a more preferred lower limit of the degree of polymerization of the polymer compound of the present invention is 10.
  • the preferred upper limit of the degree of polymerization of the polymer compound of the present invention is 1000.
  • a more preferable upper limit of the degree of polymerization of the polymer compound of the present invention is 100.
  • the preferable lower limit of the number average molecular weight of the polymer compound of the present invention is 2000, and the preferable upper limit is 30,000.
  • the number average molecular weight of the polymer compound of the present invention is less than 2000, liquid crystal contamination may not be sufficiently suppressed when used as a photopolymerization initiator or a sensitizer in a sealing agent for liquid crystal display elements.
  • the number average molecular weight of the polymer compound of the present invention exceeds 30,000, the coatability may be deteriorated when used as a photopolymerization initiator or a sensitizer in a sealing agent for liquid crystal display elements.
  • the more preferable lower limit of the number average molecular weight of the polymer compound of the present invention is 5000, and the more preferable upper limit is 10,000.
  • the said number average molecular weight is a value calculated
  • the polymer compound of the present invention is preferably used as a photopolymerization initiator or a sensitizer because it is highly sensitive to long-wavelength light and has an excellent sensitizing effect.
  • a photocurable resin composition containing a curable resin and the polymerizable monomer of the present invention and / or the polymer compound of the present invention is also one aspect of the present invention.
  • the photocurable resin composition of the present invention preferably contains the polymer compound of the present invention from the viewpoint of being unreacted with the curable resin immediately after application to a substrate or the like and preventing liquid crystal contamination.
  • the polymer compound of the present invention has a role as a photopolymerization initiator or a sensitizer.
  • the content of the polymer compound of the present invention is preferably 0.5 parts by weight and preferably 20 parts by weight with respect to 100 parts by weight of the curable resin.
  • the resulting photocurable resin composition may be inferior in photocurability.
  • the content of the polymer compound of the present invention exceeds 20 parts by weight, the resulting photocurable resin composition is inferior in weather resistance and storage stability, or when used as a sealant for liquid crystal display elements Liquid crystal contamination may occur.
  • the more preferable lower limit of the content of the polymer compound of the present invention is 2 parts by weight, and the more preferable upper limit is 10 parts by weight.
  • the photocurable resin composition of the present invention is a polymer compound of the present invention obtained by polymerizing a polymerizable monomer derived from the dialkylaminobenzoic acid compound (hereinafter referred to as “derived from a dialkylaminobenzoic acid compound”).
  • a polymer compound of the present invention obtained by polymerizing a polymerizable monomer derived from the thioxanthone derivative (hereinafter also referred to as “polymer compound derived from a thioxanthone derivative”), It is preferable to use a combination of both of the above, a polymer compound derived from the dialkylaminobenzoic acid compound is used as a photopolymerization initiator, and a polymer compound derived from the thioxanthone derivative is more preferably used as a sensitizer. preferable.
  • the photocurable resin composition of the present invention contains a combination of a polymer compound derived from the dialkylaminobenzoic acid compound and a polymer compound derived from the thioxanthone derivative, the dialkylaminobenzoic acid compound
  • the resulting photocurable resin composition is photocurable by long-wavelength light. It will be particularly excellent.
  • the photocurable resin composition of the present invention in addition to the polymer compound of the present invention, does not cause adverse effects such as liquid crystal contamination when used as a sealing agent for liquid crystal display elements.
  • Other sensitizers may be contained.
  • Examples of the other photopolymerization initiators include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, and the following formula (9- Examples thereof include a compound represented by 1) and a compound represented by the following formula (9-2).
  • Examples of other commercially available photopolymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucin TPO ether (all manufactured by Bensoin Methyl). Benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.), Adeka optomer N-1414, Adeka optomer N-1717, Adeka optomer N-1919, Adeka optomer NCI-839, Adeka optomer NCI -930, etc. (all manufactured by ADEKA).
  • Examples of the other sensitizers include anthracene derivatives, anthraquinone derivatives, coumarin derivatives, thioxanthone derivatives, phthalocyanine derivatives, compounds represented by the following formula (10-1), and compounds represented by the following formula (10-2). Compounds and the like.
  • Examples of the anthracene derivative include 9,10-dibutoxyanthracene, 9,10-diproxyanthraquinone, 9,10-ethoxyanthraquinone, and the like.
  • Examples of the anthraquinone derivative include 2-ethylanthraquinone, 1-methylanthraquinone, 1,4-dihydroxyanthraquinone, 2- (2-hydroxyethoxy) -anthraquinone and the like.
  • Examples of the coumarin derivative include 7-diethylamino-4-methylcoumarin.
  • Examples of the thioxanthone derivative include 2,4-diethylthioxanthone, 2-chlorothioxanthone, 4-isopropylthioxanthone, 1-chloro-4-propylthioxanthone and the like.
  • Examples of the phthalocyanine derivative include phthalocyanine and the like.
  • the benzophenone type compound mentioned as said other photoinitiator can also be used as said other sensitizer.
  • the photocurable resin composition of the present invention contains a curable resin.
  • the curable resin preferably contains a (meth) acrylic resin.
  • the (meth) acrylic resin preferably has 2 to 3 (meth) acryloyloxy groups in the molecule because of its high reactivity.
  • Examples of the (meth) acrylic resin include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy (meta) obtained by reacting (meth) acrylic acid with an epoxy compound.
  • Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with an acrylate or isocyanate compound. Of these, epoxy (meth) acrylate is preferable.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acrylic resin” means a resin having a (meth) acryloyloxy group.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid.
  • Examples of the monofunctional compounds of the ester compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethylcal Tall (meth) acrylate, phen
  • bifunctional ester compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth).
  • ester compound having three or more functional groups examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylol.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy resin used as a raw material for synthesizing the epoxy (meth) acrylate include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin.
  • Hydrogenated bisphenol type epoxy resin propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, ortho-cresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Emissions phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by NS Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
  • the epoxy (meth) acrylate specifically, for example, 360 parts by weight of a resorcinol type epoxy resin (manufactured by Nagase ChemteX Corporation, “EX-201”) and p-methoxyphenol 2 as a polymerization inhibitor are used.
  • a resorcinol-type epoxy acrylate can be obtained by reacting 2 parts by weight of triethylamine as a reaction catalyst and 210 parts by weight of acrylic acid at 90 ° C. for 5 hours while feeding and refluxing air.
  • Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Den
  • Examples of the urethane (meth) acrylate obtained by reacting a hydroxyl group-containing (meth) acrylic acid derivative with the isocyanate compound include, for example, (meth) acrylic having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups. Two equivalents of the acid derivative can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
  • isocyanate compound used as the raw material for the urethane (meth) acrylate examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,11-undecanetriiso Aneto and the like.
  • Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol. It is also possible to use chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). Hydroxyalkyl (meth) acrylates such as acrylate and 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, etc.
  • Mono (meth) acrylates of dihydric alcohols mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin, and bisphenol A type epoxy alcohol Epoxy (meth) acrylate of rate, and the like.
  • the urethane (meth) acrylate includes, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and 666 parts by weight of isophorone diisocyanate.
  • the mixture can be reacted at 60 ° C. for 2 hours with stirring under reflux, then 51 parts by weight of 2-hydroxyethyl acrylate is added, and air is fed in and the mixture is reacted at 90 ° C. with stirring under reflux for 2 hours.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-122P, U-108A, U-340P,
  • the curable resin preferably further contains an epoxy resin for the purpose of improving the adhesiveness of the resulting photocurable resin composition.
  • an epoxy resin the epoxy resin used as the raw material for synthesize
  • the partial (meth) acryl-modified epoxy resin means a resin having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two or more epoxy resins. Can be obtained by reacting a part of the epoxy group with (meth) acrylic acid.
  • the ratio of the (meth) acryloyloxy group to the epoxy group is 50:50 to 95: 5. It is preferable to blend the (meth) acrylic resin and the epoxy resin.
  • the ratio of the (meth) acryloyloxy group is less than 50%, there are many uncured epoxy resin components even when the polymerization is completed, and thus liquid crystal contamination occurs when used as a sealant for liquid crystal display elements. Sometimes. When the ratio of the (meth) acryloyloxy group exceeds 95%, the resulting photocurable resin composition may be inferior in adhesiveness.
  • the curable resin preferably has a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing liquid crystal contamination when used as a sealant for liquid crystal display elements.
  • the photocurable resin composition of the present invention may contain a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
  • the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. .
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000.
  • the polymer azo initiator may adversely affect the liquid crystal when used as a sealing agent for liquid crystal display elements.
  • the number average molecular weight of the polymeric azo initiator exceeds 300,000, mixing with the curable resin may be difficult.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • polymer azo initiator examples include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
  • Examples of the azo compound that is not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the thermal radical polymerization initiator is preferably 0.1 parts by weight and preferably 30 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermal radical polymerization initiator is less than 0.1 parts by weight, the thermal polymerization of the resulting photocurable resin composition may not sufficiently proceed.
  • the content of the thermal radical polymerization initiator exceeds 30 parts by weight, liquid crystal contamination may occur due to the unreacted thermal radical polymerization initiator when used in a sealing agent for liquid crystal display elements.
  • the minimum with more preferable content of the said thermal radical polymerization initiator is 0.5 weight part, and a more preferable upper limit is 10 weight part.
  • the photocurable resin composition of the present invention may contain a thermosetting agent.
  • thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
  • organic acid hydrazide examples include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • organic acid hydrazides examples include SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.), and the like. It is done.
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. If the content of the thermosetting agent is less than 1 part by weight, the resulting photocurable resin composition may not be sufficiently heat-cured. When content of the said thermosetting agent exceeds 50 weight part, the viscosity of the photocurable resin composition obtained will become high too much, and applicability
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the photocurable resin composition of the present invention preferably contains a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient, improving moisture resistance of the cured product, and the like.
  • the filler examples include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, aluminum nitride, and organic materials such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles A filler is mentioned. These fillers may be used independently and may use 2 or more types together.
  • the minimum with preferable content of the said filler in 100 weight part of photocurable resin compositions of this invention is 10 weight part, and a preferable upper limit is 70 weight part.
  • a preferable upper limit is 70 weight part.
  • content of the filler is less than 10 parts by weight, effects such as improvement of adhesiveness may not be sufficiently exhibited.
  • content of the said filler exceeds 70 weight part, the viscosity of the photocurable resin composition obtained will become high too much, and applicability
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the photocurable resin composition of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion aid for favorably bonding the photocurable resin composition of the present invention to a substrate or the like.
  • the silane coupling agent is excellent in the effect of improving the adhesion with a substrate or the like, for example, 3 -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of photocurable resin compositions of this invention is 0.1 weight part, and a preferable upper limit is 20 weight part.
  • a preferable upper limit is 20 weight part.
  • content of the silane coupling agent is less than 0.1 parts by weight, the effect of blending the silane coupling agent may not be sufficiently exhibited.
  • content of the said silane coupling agent exceeds 20 weight part, when the photocurable resin composition obtained is used for the sealing compound for liquid crystal display elements, liquid crystal contamination may be caused.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 10 weight part.
  • the photocurable resin composition of the present invention may contain a light shielding agent.
  • the photocurable resin composition of this invention can be used suitably as a light shielding sealing agent.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-mentioned titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing light-shielding properties to the photocurable resin composition of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • the light shielding agent contained in the photocurable resin composition of the present invention is preferably a highly insulating material, and titanium black is also suitable as the highly insulating light shielding agent.
  • the titanium black preferably has an optical density (OD value) per ⁇ m of 3 or more, more preferably 4 or more.
  • OD value optical density
  • the OD value of the titanium black is not particularly limited, but is usually 5 or less.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • a liquid crystal display element manufactured using the photocurable resin composition of the present invention containing titanium black as a light-shielding agent as a sealant for liquid crystal display elements has sufficient light-shielding properties, so that light leaks out. Therefore, a liquid crystal display element having a high contrast and excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the said light-shielding agent will not be specifically limited if it is below the distance between board
  • the primary particle diameter of the light-shielding agent is less than 1 nm, the viscosity and thixotropy of the resulting photocurable resin composition are greatly increased, and workability may be deteriorated.
  • the primary particle diameter of the light-shielding agent exceeds 5 ⁇ m, the applicability of the resulting photocurable resin composition may be deteriorated.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
  • the minimum with preferable content of the said light-shielding agent in 100 weight part of photocurable resin compositions of this invention is 5 weight part, and a preferable upper limit is 80 weight part. If the content of the light shielding agent is less than 5 parts by weight, sufficient light shielding properties may not be obtained. When the content of the light-shielding agent exceeds 80 parts by weight, the adhesion of the resulting photocurable resin composition to the substrate and the strength after curing may be reduced, or the drawability may be reduced.
  • the more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
  • a method for producing the photocurable resin composition of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, A method of mixing the polymerizable monomer of the invention and / or the polymer compound of the invention with additives such as other photopolymerization initiators, other sensitizers, and silane coupling agents that are added as necessary. Etc.
  • the photocurable resin composition of the present invention is suitably used as a sealing agent for liquid crystal display elements.
  • the sealing agent for liquid crystal display elements which uses the photocurable resin composition of this invention is also one of this invention.
  • a vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element manufactured using the sealing compound for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
  • the sealing agent for the liquid crystal display element of the present invention or the like is applied to one of two transparent substrates such as a glass substrate with an electrode such as an ITO thin film or a polyethylene terephthalate substrate.
  • the process of forming a rectangular seal pattern by screen printing, dispenser application, etc., the liquid crystal display element sealant of the present invention is uncured, and liquid crystal microdrops are dropped on the entire surface of the transparent substrate and applied immediately.
  • the method etc. which have the process of heating this and making it harden
  • a polymer compound can be provided.
  • a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and The vertical conduction material and the liquid crystal display element manufactured using the sealing agent for a liquid crystal display element can be provided.
  • the compounding ratio of the compound represented by the formula (2-1) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (2-1) in molar ratio.
  • Compound: Compound represented by formula (6-1), wherein R 1 is hydrogen 2: 1.
  • the compounding ratio of the compound represented by the formula (2-3) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (2-3) as a molar ratio.
  • Compound: Compound represented by formula (6-1), wherein R 1 is hydrogen 63.2: 32.0.
  • the compounding ratio of the compound represented by the formula (5-1) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (5-1) as a molar ratio.
  • Compound: Compound represented by formula (6-1) and R 1 is hydrogen 57.63: 28.9.
  • polymer compound F (Preparation of polymer compound F) The obtained polymerizable monomer F (10 parts by weight) was used in the presence of 20.0 g of ethanol, 0.5 g of water, and 0.6 parts by weight of 6N hydrochloric acid as an acid catalyst for 4 hours at 70 ° C. with nitrogen flow. Polymer compound F was obtained by making it react, stirring. The number average molecular weight of the obtained polymer compound F was 16500 (degree of polymerization 46).
  • the compounding ratio of the compound represented by the formula (5-1) and the compound represented by the formula (6-2), in which all R 2 are methoxy groups, is expressed in terms of a molar ratio.
  • Compound represented by formula: Compound represented by formula (6-2), wherein all R 2 are methoxy groups 57.6: 28.8.
  • Examples 1 to 17, Comparative Example 1 According to the mixing ratios described in Tables 1 and 2, after mixing each material using a planetary stirrer (“Shinky Co., Ltd.,“ Awatori Netaro ”), by further mixing using three rolls The sealing agents for liquid crystal display elements of Examples 1 to 17 and Comparative Example 1 were prepared.
  • each liquid crystal display element sealing agent obtained in Examples and Comparative Examples was applied so that the gap after bonding the glass substrates was about 5 ⁇ m, and the same size glass substrate was applied to the substrate.
  • ultraviolet rays (wavelength 365 nm) of 100 mW / cm 2 were irradiated for 10 seconds using a metal halide lamp. Photocurability was evaluated by measuring the amount of change of the (meth) acryloyl group-derived peak before and after light irradiation using an infrared spectroscope (manufactured by BIORAD, “FTS3000”).
  • liquid crystal contamination 1 part by weight of spacer fine particles (“Micropearl SI-H050”, manufactured by Sekisui Chemical Co., Ltd.) is dispersed in 100 parts by weight of each liquid crystal display element sealant obtained in Examples and Comparative Examples, and the liquid crystal display element sealant is obtained.
  • the sealant was applied to one of the two rubbed alignment films and the substrate with a transparent electrode with a dispenser so that the line width of the sealant was 1 mm.
  • liquid droplets manufactured by Chisso Corp., “JC-5004LA”
  • JC-5004LA liquid droplets
  • the agent part was cured by irradiating with 100 mW / cm 2 ultraviolet rays (wavelength 365 nm) for 30 seconds using a metal halide lamp, and further heated at 120 ° C. for 1 hour to obtain a liquid crystal display element.
  • the liquid crystal display element controls the application position of the sealant with a dispenser, and the liquid crystal display element (no light blocking part) where the sealant is completely exposed to light, and the sealant has 50% of the line width on the black matrix of the color filter substrate.
  • Two types of liquid crystal display elements (with light-shielding portions) coated in this way were produced.
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal display device prepared without using a light-shielding portion using the liquid crystal display device sealants obtained in Examples and Comparative Examples, and FIG. It is sectional drawing which shows typically the liquid crystal display element produced in the state with a light-shielding part using each sealing compound for liquid crystal display elements obtained by the comparative example.
  • the sealing agent 1 does not have a light shielding portion, the sealing agent 1 is completely exposed to light, while the sealing agent 1 has a light shielding portion as shown in FIG.
  • the sealant 1 in contact with the liquid crystal 3 is shielded by the black matrix 2 and does not receive any light.
  • the liquid crystal alignment disorder of the sealant vicinity after making it into a voltage application state at 80 degreeC for 1000 hours was confirmed visually.
  • the alignment disorder is determined by the color unevenness of the display part. Depending on the degree of color unevenness, “ ⁇ ” indicates that there is no color unevenness, “ ⁇ ” indicates that the color unevenness is slight, and “color unevenness”.
  • the liquid crystal contamination property was evaluated with “ ⁇ ” when there was a little, and “ ⁇ ” when there was considerable color unevenness. Note that the liquid crystal display elements with the evaluations “ ⁇ ” and “ ⁇ ” are at a level that causes no problem in practical use.
  • a polymer compound can be provided.
  • a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and The vertical conduction material and the liquid crystal display element manufactured using the sealing agent for a liquid crystal display element can be provided.

Abstract

A purpose of the present invention is to provide a polymerizable monomer having low contamination with respect to liquid crystals, high sensitivity to light of long wavelengths, and an exceptional sensitizing effect, and a polymer compound obtained by polymerizing the polymerizable monomer. Another purpose of the present invention is to provide a photocurable resin composition containing the polymerizable monomer and/or the polymer compound; a sealing agent for liquid crystal display elements which uses the photocurable resin composition; and a vertical conduction material and liquid crystal display element which are manufactured using the sealing agent for liquid crystal display elements. The present invention is a polymerizable monomer obtained by causing a thioxanthone derivative that has a functional group capable of reacting with a dialkylaminobenzoic acid compound or epoxy group to react with an epoxy group having an unsaturated double bond or an epoxy group having an alkoxysilyl group.

Description

重合性単量体、高分子化合物、光硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Polymerizable monomer, polymer compound, photocurable resin composition, sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、液晶に対する汚染性が低く、長波長の光に対して高感度であり増感効果にも優れる重合性単量体、及び、該重合性単量体を重合して得られる高分子化合物に関する。また、本発明は、該重合性単量体及び/又は該高分子化合物を含有する光硬化性樹脂組成物、該光硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、並びに、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子に関する。 The present invention relates to a polymerizable monomer that has low contamination to liquid crystals, is highly sensitive to long-wavelength light, and has an excellent sensitizing effect, and a polymer obtained by polymerizing the polymerizable monomer Relates to compounds. The present invention also provides a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and the The present invention relates to a vertical conduction material and a liquid crystal display element manufactured using a sealing agent for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method of manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin and a light as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. . Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and portable game machines are widespread, downsizing of devices is the most demanded issue. As a method for reducing the size of the apparatus, there is a narrow frame of the liquid crystal display unit. For example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出して液晶汚染を発生させやすくなるという問題があった。 However, in the narrow frame design, the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. As described above, when the sealant is insufficiently cured, there is a problem in that the uncured sealant component is eluted in the liquid crystal and easily causes liquid crystal contamination.
特許文献3には、シール剤に高感度の光重合開始剤を配合することが開示されている。しかしながら、単に高感度の光重合開始剤を配合しただけでは、充分にシール剤を光硬化させることができなかった。また、特許文献4には、シール剤に高感度の光重合開始剤と増感剤とを組み合わせて配合することが開示されている。しかしながら、増感剤を用いることにより、液晶汚染が発生しやすくなるという問題があった。 Patent Document 3 discloses that a highly sensitive photopolymerization initiator is blended with a sealant. However, the sealing agent could not be sufficiently photocured simply by adding a highly sensitive photopolymerization initiator. Patent Document 4 discloses that a sealing agent is combined with a highly sensitive photopolymerization initiator and a sensitizer. However, the use of a sensitizer has a problem that liquid crystal contamination is likely to occur.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718 国際公開第2011/002028号International Publication No. 2011/002028 特開2010-286640号公報JP 2010-286640 A
本発明は、液晶に対する汚染性が低く、長波長の光に対して高感度であり増感効果にも優れる重合性単量体、及び、該重合性単量体を重合して得られる高分子化合物を提供することを目的とする。また、本発明は、該重合性単量体及び/又は該高分子化合物を含有する光硬化性樹脂組成物、該光硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、並びに、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することを目的とする。 The present invention relates to a polymerizable monomer that has low contamination to liquid crystals, is highly sensitive to long-wavelength light, and has an excellent sensitizing effect, and a polymer obtained by polymerizing the polymerizable monomer The object is to provide a compound. The present invention also provides a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and the It is an object of the present invention to provide a vertical conduction material and a liquid crystal display element manufactured using a sealing agent for liquid crystal display elements.
本発明は、ジアルキルアミノ安息香酸系化合物又はエポキシ基と反応可能な官能基を有するチオキサントン誘導体と、不飽和二重結合を有するエポキシ化合物又はアルコキシシリル基を有するエポキシ化合物とを反応させて得られる重合性単量体である。
以下に本発明を詳述する。
The present invention is a polymerization obtained by reacting a dialkylaminobenzoic acid compound or a thioxanthone derivative having a functional group capable of reacting with an epoxy group and an epoxy compound having an unsaturated double bond or an epoxy compound having an alkoxysilyl group. Monomer.
The present invention is described in detail below.
本発明者は、驚くべきことに、特定の構造を有する重合性単量体や該重合性単量体を重合して得られる高分子化合物が、液晶に対する汚染性が低く、長波長の光に対して高感度であり増感効果にも優れることを見出した。そこで本発明者は、該重合性単量体や該高分子化合物を光重合開始剤又は増感剤として配合した光硬化性樹脂組成物を用いることにより、光硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。 The present inventors surprisingly found that a polymerizable monomer having a specific structure or a polymer compound obtained by polymerizing the polymerizable monomer has low contamination with respect to liquid crystal, and has long wavelength light. On the other hand, it was found to be highly sensitive and excellent in sensitizing effect. Therefore, the present inventor has excellent photocurability and liquid crystal contamination by using a photocurable resin composition containing the polymerizable monomer or the polymer compound as a photopolymerization initiator or sensitizer. It has been found that a sealing agent for liquid crystal display elements capable of suppressing the above can be obtained, and the present invention has been completed.
本発明の重合性単量体は、ジアルキルアミノ安息香酸系化合物又はエポキシ基と反応可能な官能基を有するチオキサントン誘導体(以下、単に「チオキサントン誘導体」ともいう)と、不飽和二重結合を有するエポキシ化合物又はアルコキシシリル基を有するエポキシ化合物(以下、併せて「本発明に係るエポキシ化合物」ともいう)とを反応させて得られる。 The polymerizable monomer of the present invention includes a dialkylaminobenzoic acid compound or a thioxanthone derivative having a functional group capable of reacting with an epoxy group (hereinafter also simply referred to as “thioxanthone derivative”) and an epoxy having an unsaturated double bond. It is obtained by reacting a compound or an epoxy compound having an alkoxysilyl group (hereinafter also referred to as “the epoxy compound according to the present invention”).
上記ジアルキルアミノ安息香酸系化合物としては、例えば、下記式(1-1)で表される化合物、下記式(1-2)で表される化合物、下記式(1-3)で表される化合物、7-(ジメチルアミノ)クマリン-3-カルボン酸等が挙げられる。なかでも、下記式(1-1)で表される化合物、下記式(1-2)で表される化合物、又は、下記式(1-3)で表される化合物が好ましく、下記式(2-1)で表される化合物、下記式(2-2)で表される化合物、又は、下記式(2-3)で表される化合物がより好ましい。 Examples of the dialkylaminobenzoic acid compound include a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), and a compound represented by the following formula (1-3). 7- (dimethylamino) coumarin-3-carboxylic acid and the like. Among these, a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), or a compound represented by the following formula (1-3) is preferable, and the following formula (2) A compound represented by the following formula (2-2), or a compound represented by the following formula (2-3) is more preferred.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
上記チオキサントン誘導体は、エポキシ基と反応可能な官能基を有する。
上記エポキシ基と反応可能な官能基としては、例えば、水酸基、カルボキシル基、アミノ基等が挙げられる。なかでも、水酸基又はカルボキシル基が好ましい。
The thioxanthone derivative has a functional group capable of reacting with an epoxy group.
Examples of the functional group capable of reacting with the epoxy group include a hydroxyl group, a carboxyl group, and an amino group. Of these, a hydroxyl group or a carboxyl group is preferred.
上記チオキサントン誘導体としては、例えば、下記式(3)で表される化合物、2-アミノ-9H-チオキサンテン-9オン等が挙げられる。なかでも、下記式(3)で表される化合物が好ましく、下記式(5-1)で表される化合物又は(5-2)で表される化合物がより好ましい。 Examples of the thioxanthone derivative include a compound represented by the following formula (3), 2-amino-9H-thioxanthen-9one, and the like. Among these, a compound represented by the following formula (3) is preferable, and a compound represented by the following formula (5-1) or a compound represented by (5-2) is more preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(3)中、Xは、水素、ヒドロキシル基、又は、下記式(4)で表される基である。各Xは、同一であってもよいし、異なっていてもよいが、少なくとも1つのXは、ヒドロキシル基又は下記式(4)で表される基である。 In formula (3), X is hydrogen, a hydroxyl group, or a group represented by the following formula (4). Each X may be the same or different, but at least one X is a hydroxyl group or a group represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と反応する本発明に係るエポキシ化合物は、不飽和二重結合を有するエポキシ化合物又はアルコキシシリル基を有するエポキシ化合物である。
上記不飽和二重結合又はアルコキシシリル基は、本発明の重合性単量体の重合に係る重合性反応基としての役割を有する。
The epoxy compound according to the present invention that reacts with the dialkylaminobenzoic acid compound or the thioxanthone derivative is an epoxy compound having an unsaturated double bond or an epoxy compound having an alkoxysilyl group.
The unsaturated double bond or alkoxysilyl group has a role as a polymerizable reactive group related to the polymerization of the polymerizable monomer of the present invention.
上記不飽和二重結合を有する官能基としては、例えば、(メタ)アクリロイルオキシ基、ビニル基、アリル基等が挙げられる。なかでも、(メタ)アクリロイルオキシ基が好ましい。
なお、本明細書において、上記「(メタ)アクリロイルオキシ基」とは、アクリロイルオキシ基又はメタクリロイルオキシ基を意味する。
Examples of the functional group having an unsaturated double bond include a (meth) acryloyloxy group, a vinyl group, and an allyl group. Of these, a (meth) acryloyloxy group is preferable.
In the present specification, the “(meth) acryloyloxy group” means an acryloyloxy group or a methacryloyloxy group.
上記アルコキシシリル基としては、例えば、トリメトキシシリル基、トリエトキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基等が挙げられる。なかでも、トリメトキシシリル基が好ましい。 Examples of the alkoxysilyl group include a trimethoxysilyl group, a triethoxysilyl group, a methyldimethoxysilyl group, and a methyldiethoxysilyl group. Of these, a trimethoxysilyl group is preferable.
本発明に係るエポキシ化合物としては、下記式(6-1)又は(6-2)で表される化合物が好適に用いられる。 As the epoxy compound according to the present invention, a compound represented by the following formula (6-1) or (6-2) is preferably used.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(6-1)中、Rは、水素又はメチル基を表す。式(6-2)中、Rは、炭素数が1~10のアルキル基又は炭素数が1~10のアルコキシ基を表す。各Rは、同一であってもよいし、異なっていてもよいが、少なくとも1つのRは、炭素数が1~10のアルコキシ基である。 In formula (6-1), R 1 represents hydrogen or a methyl group. In formula (6-2), R 2 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. Each R 2 may be the same or different, but at least one R 2 is an alkoxy group having 1 to 10 carbon atoms.
上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と本発明に係るエポキシ化合物とを反応させて本発明の重合性単量体を得る方法としては、塩基性触媒の存在下で、上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と本発明に係るエポキシ化合物とを80~130℃の条件で6~72時間撹拌しながら反応させる方法等が挙げられる。
上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と本発明に係るエポキシ化合物との反応は、反応性の観点から、3価の有機リン酸化合物及び/又はアミン化合物の存在下で行うことが好ましい。
As a method of obtaining the polymerizable monomer of the present invention by reacting the dialkylaminobenzoic acid compound or the thioxanthone derivative with the epoxy compound according to the present invention, the dialkylaminobenzoic acid is obtained in the presence of a basic catalyst. And a method of reacting the thioxanthone derivative and the epoxy compound according to the present invention with stirring at a temperature of 80 to 130 ° C. for 6 to 72 hours.
The reaction between the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention is preferably performed in the presence of a trivalent organic phosphoric acid compound and / or an amine compound from the viewpoint of reactivity.
上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と本発明に係るエポキシ化合物とを反応させる際の上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と本発明に係るエポキシ化合物との使用割合としては、モル比で、上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体:本発明に係るエポキシ化合物=1:1~10:1であることが好ましい。上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と本発明に係るエポキシ化合物との使用割合がこの範囲であることにより、光反応性基を有する本発明の重合性単量体を高収率で製造することができる。 As the use ratio of the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention when the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention are reacted, In terms of the ratio, the dialkylaminobenzoic acid compound or the thioxanthone derivative: the epoxy compound according to the present invention is preferably 1: 1 to 10: 1. Production ratio of the dialkylaminobenzoic acid compound or the thioxanthone derivative and the epoxy compound according to the present invention is within this range, thereby producing the polymerizable monomer of the present invention having a photoreactive group in a high yield. can do.
上記ジアルキルアミノ安息香酸系化合物又は上記チオキサントン誘導体と本発明に係るエポキシ化合物とを反応させる際に用いる塩基性触媒としては、例えば、トリフェニルホスフィン、トリエチルアミン、トリプロミルアミン、テトラメチルエチレンジアミン、ジメチルラウリルアミン、トリエチルベンジルアンモニウムクロライド、トリメチルセチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、トリメチルブチルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド等が挙げられる。なかでも、トリフェニルホスフィンが好ましい。
また、上記塩基性触媒は、ポリマーに担持させて、ポリマー担持塩基性触媒として使用することもできる。
Examples of the basic catalyst used when the dialkylaminobenzoic acid compound or the thioxanthone derivative is reacted with the epoxy compound according to the present invention include, for example, triphenylphosphine, triethylamine, tripromylamine, tetramethylethylenediamine, dimethyllaurylamine. , Triethylbenzylammonium chloride, trimethylcetylammonium bromide, tetrabutylammonium bromide, trimethylbutylphosphonium bromide, tetrabutylphosphonium bromide and the like. Of these, triphenylphosphine is preferable.
The basic catalyst can be supported on a polymer and used as a polymer-supported basic catalyst.
上記ジアルキルアミノ安息香酸系化合物と本発明に係るエポキシ化合物とを反応させて得られる本発明の重合性単量体(以下、「ジアルキルアミノ安息香酸系化合物に由来する重合性単量体」ともいう)としては、具体的には例えば、下記式(7-1)~(7-6)で表される化合物等が挙げられる。 The polymerizable monomer of the present invention obtained by reacting the above dialkylaminobenzoic acid compound with the epoxy compound according to the present invention (hereinafter also referred to as “polymerizable monomer derived from a dialkylaminobenzoic acid compound”). Specific examples of () include compounds represented by the following formulas (7-1) to (7-6).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(7-1)~(7-3)中、Rは水素又はメチル基を表す。式(7-4)~(7-6)中、Rは、炭素数が1~10のアルキル基又は炭素数が1~10のアルコキシ基を表す。各Rは、同一であってもよいし、異なっていてもよいが、少なくとも1つのRは、炭素数が1~10のアルコキシ基である。 In formulas (7-1) to (7-3), R 1 represents hydrogen or a methyl group. In formulas (7-4) to (7-6), R 2 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. Each R 2 may be the same or different, but at least one R 2 is an alkoxy group having 1 to 10 carbon atoms.
上記チオキサントン誘導体と本発明に係るエポキシ化合物とを反応させて得られる本発明の重合性単量体(以下、「チオキサントン誘導体に由来する重合性単量体」ともいう)としては、具体的には例えば、下記式(8-1)~(8-4)で表される化合物等が挙げられる。 As the polymerizable monomer of the present invention obtained by reacting the thioxanthone derivative with the epoxy compound according to the present invention (hereinafter also referred to as “polymerizable monomer derived from thioxanthone derivative”), specifically, Examples thereof include compounds represented by the following formulas (8-1) to (8-4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(8-1)、(8-2)中、Rは水素又はメチル基を表す。式(8-3)、(8-4)中、Rは、炭素数が1~10のアルキル基又は炭素数が1~10のアルコキシ基を表す。各Rは、同一であってもよいし、異なっていてもよいが、少なくとも1つのRは、炭素数が1~10のアルコキシ基である。 In formulas (8-1) and (8-2), R 1 represents hydrogen or a methyl group. In formulas (8-3) and (8-4), R 2 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. Each R 2 may be the same or different, but at least one R 2 is an alkoxy group having 1 to 10 carbon atoms.
本発明の重合性単量体を重合して得られる高分子化合物(以下、「本発明の高分子化合物」ともいう)もまた、本発明の1つである。 A polymer compound obtained by polymerizing the polymerizable monomer of the present invention (hereinafter also referred to as “polymer compound of the present invention”) is also one aspect of the present invention.
本発明の重合性単量体のうち、上記ジアルキルアミノ安息香酸系化合物に由来する重合性単量体を重合する方法としては、例えば、カチオン重合、アニオン重合、ラジカル重合等が挙げられる。なかでも、トルエン溶媒中で溶解させた化合物を、アゾビスイソブチルニトリル等のラジカル重合開始剤の存在下で60~100℃の条件で4~12時間撹拌しながら反応させる方法が好ましい。 Among the polymerizable monomers of the present invention, examples of a method for polymerizing a polymerizable monomer derived from the dialkylaminobenzoic acid compound include cationic polymerization, anionic polymerization, and radical polymerization. In particular, a method in which a compound dissolved in a toluene solvent is reacted in the presence of a radical polymerization initiator such as azobisisobutylnitrile with stirring at 60 to 100 ° C. for 4 to 12 hours is preferable.
上記ジアルキルアミノ安息香酸系化合物に由来する重合性単量体をカチオン重合する際に用いるカチオン重合触媒としては、例えば、塩酸、硝酸、硫酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸等のカルボン酸や、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸等のスルホン酸等が挙げられる。なかでも、塩酸が好ましい。 Examples of the cationic polymerization catalyst used for the cationic polymerization of the polymerizable monomer derived from the dialkylaminobenzoic acid compound include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, formic acid, acetic acid and propionic acid. And sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and paratoluenesulfonic acid. Of these, hydrochloric acid is preferred.
上記ジアルキルアミノ安息香酸系化合物に由来する重合性単量体をアニオン重合する際に用いるアニオン重合触媒としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム、1,4-ジリチオブタン等のアルキレンジリチウム、フェニルリチウム、スチルベンリチウム、リチウムナフタレン、ナトリウムナフタレン、カリウムナフタレン、n-ブチルマグネシウム、n-ヘキシルマグネシウム、エトキシカルシウム、ステアリン酸カルシウム、t-ブトキシストロンチウム、エトキシバリウム、イソプロポキシバリウム、エチルメルカプトバリウム、t-ブトキシバリウム、フェノキシバリウム、ジエチルアミノバリウム、ステアリン酸バリウム等を挙げられる。なかでも、n-ブチルリチウムが好ましい。 Examples of the anionic polymerization catalyst used for anionic polymerization of the polymerizable monomer derived from the dialkylaminobenzoic acid compound include alkyllithiums such as n-butyllithium, sec-butyllithium and t-butyllithium, , 4-dilithiobutane, etc., alkylenedilithium, phenyllithium, stilbenelithium, lithium naphthalene, sodium naphthalene, potassium naphthalene, n-butylmagnesium, n-hexylmagnesium, ethoxycalcium, calcium stearate, t-butoxystrontium, ethoxybarium, iso Examples include propoxy barium, ethyl mercapto barium, t-butoxy barium, phenoxy barium, diethylamino barium, and barium stearate. Of these, n-butyllithium is preferable.
上記ジアルキルアミノ安息香酸系化合物に由来する重合性単量体をラジカル重合する際に用いるラジカル重合開始剤としては、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物や、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物等が挙げられる。なかでも、アゾビスイソブチロニトリルが好ましい。 Examples of the radical polymerization initiator used for radical polymerization of the polymerizable monomer derived from the dialkylaminobenzoic acid compound include azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4 -Dimethylvaleronitrile) and other azo compounds, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2 And organic peroxides such as ethyl hexanoate and di-t-butyl peroxide. Of these, azobisisobutyronitrile is preferable.
本発明の重合性単量体のうち、上記チオキサントン誘導体に由来する重合性単量体を重合する方法としては、例えば、酸性触媒や塩基性触媒の存在下でのゾルゲル法による重合等が挙げられるが、エタノール溶媒中に溶解させた本発明の重合性単量体と水とを混合し、酸性触媒下で60~120℃の条件で2~24時間撹拌しながら反応させる方法が好ましい。 Among the polymerizable monomers of the present invention, examples of a method for polymerizing a polymerizable monomer derived from the thioxanthone derivative include polymerization by a sol-gel method in the presence of an acidic catalyst or a basic catalyst. However, a method in which the polymerizable monomer of the present invention dissolved in an ethanol solvent and water are mixed and reacted with stirring under an acidic catalyst at 60 to 120 ° C. for 2 to 24 hours is preferable.
上記チオキサントン誘導体に由来する重合性単量体を重合する際に用いる酸性触媒としては、例えば、塩酸、硝酸、硫酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸等のカルボン酸や、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸等のスルホン酸等が挙げられる。なかでも、塩酸が好ましい。 Examples of the acidic catalyst used when polymerizing the polymerizable monomer derived from the thioxanthone derivative include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, carboxylic acids such as formic acid, acetic acid, and propionic acid, Examples include sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and paratoluenesulfonic acid. Of these, hydrochloric acid is preferred.
上記チオキサントン誘導体に由来する重合性単量体を重合する際に用いる塩基性触媒としては、水酸化ナトリウム、水酸化カリウム、アンモニア等の無機化合物や、アミン化合物等の有機化合物等が挙げられる。なかでも、水酸化ナトリウムが好ましい。 Examples of the basic catalyst used when polymerizing a polymerizable monomer derived from the thioxanthone derivative include inorganic compounds such as sodium hydroxide, potassium hydroxide and ammonia, and organic compounds such as amine compounds. Of these, sodium hydroxide is preferable.
本発明の高分子化合物の重合度の好ましい下限は3である。本発明の高分子化合物の重合度が2、即ち、2量体であると、光重合開始剤又は増感剤として液晶表示素子用シール剤に用いた場合に液晶汚染を充分に抑制できないことがある。本発明の高分子化合物の重合度のより好ましい下限は10である。
また、本発明の高分子化合物の重合度の好ましい上限は1000である。本発明の高分子化合物の重合度が1000を超えると、光重合開始剤又は増感剤として液晶表示素子用シール剤に用いた場合に塗布性が悪化することがある。本発明の高分子化合物の重合度のより好ましい上限は100である。
A preferred lower limit of the degree of polymerization of the polymer compound of the present invention is 3. When the polymerization degree of the polymer compound of the present invention is 2, that is, a dimer, liquid crystal contamination cannot be sufficiently suppressed when used as a photopolymerization initiator or a sensitizer in a liquid crystal display element sealing agent. is there. A more preferred lower limit of the degree of polymerization of the polymer compound of the present invention is 10.
The preferred upper limit of the degree of polymerization of the polymer compound of the present invention is 1000. When the polymerization degree of the polymer compound of the present invention exceeds 1000, when used as a photopolymerization initiator or a sensitizer in a sealing agent for liquid crystal display elements, applicability may be deteriorated. A more preferable upper limit of the degree of polymerization of the polymer compound of the present invention is 100.
本発明の高分子化合物の数平均分子量の好ましい下限は2000、好ましい上限は3万である。本発明の高分子化合物の数平均分子量が2000未満であると、光重合開始剤又は増感剤として液晶表示素子用シール剤に用いた場合に液晶汚染を充分に抑制できないことがある。本発明の高分子化合物の数平均分子量が3万を超えると、光重合開始剤又は増感剤として液晶表示素子用シール剤に用いた場合に塗布性が悪化することがある。本発明の高分子化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は1万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer compound of the present invention is 2000, and the preferable upper limit is 30,000. When the number average molecular weight of the polymer compound of the present invention is less than 2000, liquid crystal contamination may not be sufficiently suppressed when used as a photopolymerization initiator or a sensitizer in a sealing agent for liquid crystal display elements. When the number average molecular weight of the polymer compound of the present invention exceeds 30,000, the coatability may be deteriorated when used as a photopolymerization initiator or a sensitizer in a sealing agent for liquid crystal display elements. The more preferable lower limit of the number average molecular weight of the polymer compound of the present invention is 5000, and the more preferable upper limit is 10,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
本発明の高分子化合物は、長波長の光に対して高感度であり増感効果にも優れるため、光重合開始剤又は増感剤として好適に用いられる。
硬化性樹脂と、本発明の重合性単量体及び/又は本発明の高分子化合物とを含有する光硬化性樹脂組成物もまた、本発明の1つである。
The polymer compound of the present invention is preferably used as a photopolymerization initiator or a sensitizer because it is highly sensitive to long-wavelength light and has an excellent sensitizing effect.
A photocurable resin composition containing a curable resin and the polymerizable monomer of the present invention and / or the polymer compound of the present invention is also one aspect of the present invention.
本発明の光硬化性樹脂組成物は、基板等への塗布直後において硬化性樹脂と未反応であり、かつ、液晶汚染を防止する観点から、本発明の高分子化合物を含有することが好ましい。本発明の高分子化合物は、光重合開始剤又は増感剤としての役割を有する。 The photocurable resin composition of the present invention preferably contains the polymer compound of the present invention from the viewpoint of being unreacted with the curable resin immediately after application to a substrate or the like and preventing liquid crystal contamination. The polymer compound of the present invention has a role as a photopolymerization initiator or a sensitizer.
本発明の光硬化性樹脂組成物における本発明の高分子化合物の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.5重量部、好ましい上限が20重量部である。本発明の高分子化合物の含有量が0.5重量部未満であると、得られる光硬化性樹脂組成物が光硬化性に劣るものとなることがある。本発明の高分子化合物の含有量が20重量部を超えると、得られる光硬化性樹脂組成物が、耐候性や保存安定性に劣るものとなったり、液晶表示素子用シール剤に用いた場合に液晶汚染が発生したりすることがある。本発明の高分子化合物の含有量のより好ましい下限は2重量部、より好ましい上限は10重量部である。 In the photocurable resin composition of the present invention, the content of the polymer compound of the present invention is preferably 0.5 parts by weight and preferably 20 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymer compound of the present invention is less than 0.5 parts by weight, the resulting photocurable resin composition may be inferior in photocurability. When the content of the polymer compound of the present invention exceeds 20 parts by weight, the resulting photocurable resin composition is inferior in weather resistance and storage stability, or when used as a sealant for liquid crystal display elements Liquid crystal contamination may occur. The more preferable lower limit of the content of the polymer compound of the present invention is 2 parts by weight, and the more preferable upper limit is 10 parts by weight.
本発明の光硬化性樹脂組成物は、上記ジアルキルアミノ安息香酸系化合物に由来する重合性単量体を重合して得られる本発明の高分子化合物(以下、「ジアルキルアミノ安息香酸系化合物に由来する高分子化合物」ともいう)と、上記チオキサントン誘導体に由来する重合性単量体を重合して得られる本発明の高分子化合物(以下、「チオキサントン誘導体に由来する高分子化合物」ともいう)との両方を組み合わせて含有することが好ましく、上記ジアルキルアミノ安息香酸系化合物に由来する高分子化合物を光重合開始剤として用い、上記チオキサントン誘導体に由来する高分子化合物を増感剤として用いることがより好ましい。
本発明の光硬化性樹脂組成物が上記ジアルキルアミノ安息香酸系化合物に由来する高分子化合物と上記チオキサントン誘導体に由来する高分子化合物との両方を組み合わせて含有する場合、上記ジアルキルアミノ安息香酸系化合物に由来する高分子化合物と上記チオキサントン誘導体に由来する高分子化合物との含有割合は、重量比で、ジアルキルアミノ安息香酸系化合物に由来する高分子化合物:チオキサントン誘導体に由来する高分子化合物=1:1~5:1であることが好ましい。ジアルキルアミノ安息香酸系化合物に由来する高分子化合物とチオキサントン誘導体に由来する高分子化合物との含有割合がこの範囲であることにより、得られる光硬化性樹脂組成物が長波長の光による光硬化性に特に優れるものとなる。
The photocurable resin composition of the present invention is a polymer compound of the present invention obtained by polymerizing a polymerizable monomer derived from the dialkylaminobenzoic acid compound (hereinafter referred to as “derived from a dialkylaminobenzoic acid compound”). And a polymer compound of the present invention obtained by polymerizing a polymerizable monomer derived from the thioxanthone derivative (hereinafter also referred to as “polymer compound derived from a thioxanthone derivative”), It is preferable to use a combination of both of the above, a polymer compound derived from the dialkylaminobenzoic acid compound is used as a photopolymerization initiator, and a polymer compound derived from the thioxanthone derivative is more preferably used as a sensitizer. preferable.
When the photocurable resin composition of the present invention contains a combination of a polymer compound derived from the dialkylaminobenzoic acid compound and a polymer compound derived from the thioxanthone derivative, the dialkylaminobenzoic acid compound The content ratio of the polymer compound derived from thioxanthone derivative and the polymer compound derived from thioxanthone derivative is, by weight ratio, polymer compound derived from dialkylaminobenzoic acid compound: polymer compound derived from thioxanthone derivative = 1. It is preferably 1 to 5: 1. When the content ratio of the polymer compound derived from the dialkylaminobenzoic acid compound and the polymer compound derived from the thioxanthone derivative is within this range, the resulting photocurable resin composition is photocurable by long-wavelength light. It will be particularly excellent.
本発明の光硬化性樹脂組成物は、液晶表示素子用シール剤に用いた場合に液晶汚染等の悪影響を引き起こさない範囲で、本発明の高分子化合物に加えて、その他の光重合開始剤やその他の増感剤を含有してもよい。 In addition to the polymer compound of the present invention, the photocurable resin composition of the present invention, in addition to the polymer compound of the present invention, does not cause adverse effects such as liquid crystal contamination when used as a sealing agent for liquid crystal display elements. Other sensitizers may be contained.
上記その他の光重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン、下記式(9-1)で表される化合物、下記式(9-2)で表される化合物等が挙げられる。 Examples of the other photopolymerization initiators include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, and the following formula (9- Examples thereof include a compound represented by 1) and a compound represented by the following formula (9-2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
上記その他の光重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)、アデカオプトマーN-1414、アデカオプトマーN-1717、アデカオプトマーN-1919、アデカオプトマーNCI-839、アデカオプトマーNCI-930等(いずれもADEKA社製)が挙げられる。 Examples of other commercially available photopolymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucin TPO ether (all manufactured by Bensoin Methyl). Benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.), Adeka optomer N-1414, Adeka optomer N-1717, Adeka optomer N-1919, Adeka optomer NCI-839, Adeka optomer NCI -930, etc. (all manufactured by ADEKA).
上記その他の増感剤としては、例えば、アントラセン誘導体、アントラキノン誘導体、クマリン誘導体、チオキサントン誘導体、フタロシアニン誘導体、下記式(10-1)で表される化合物、下記式(10-2)で表される化合物等が挙げられる。 Examples of the other sensitizers include anthracene derivatives, anthraquinone derivatives, coumarin derivatives, thioxanthone derivatives, phthalocyanine derivatives, compounds represented by the following formula (10-1), and compounds represented by the following formula (10-2). Compounds and the like.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
上記アントラセン誘導体としては、例えば、9,10-ジブトキシアントラセン、9,10-ジプロキシアントラキノン、9,10-エトキシアントラキノン等が挙げられる。
上記アントラキノン誘導体としては、例えば、2-エチルアントラキノン、1-メチルアントラキノン、1,4-ジヒドロキシアントラキノン、2-(2-ヒドロキシエトキシ)-アントラキノン等が挙げられる。
上記クマリン誘導体としては、例えば、7-ジエチルアミノ-4-メチルクマリン等が挙げられる。
上記チオキサントン誘導体としては、例えば、2,4-ジエチルチオキサントン、2-クロロチオキサントン、4-イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン等が挙げられる。
上記フタロシアニン誘導体としては、例えば、フタロシアニン等が挙げられる。
また、上記その他の光重合開始剤として挙げたベンゾフェノン系化合物を上記その他の増感剤として用いることもできる。
Examples of the anthracene derivative include 9,10-dibutoxyanthracene, 9,10-diproxyanthraquinone, 9,10-ethoxyanthraquinone, and the like.
Examples of the anthraquinone derivative include 2-ethylanthraquinone, 1-methylanthraquinone, 1,4-dihydroxyanthraquinone, 2- (2-hydroxyethoxy) -anthraquinone and the like.
Examples of the coumarin derivative include 7-diethylamino-4-methylcoumarin.
Examples of the thioxanthone derivative include 2,4-diethylthioxanthone, 2-chlorothioxanthone, 4-isopropylthioxanthone, 1-chloro-4-propylthioxanthone and the like.
Examples of the phthalocyanine derivative include phthalocyanine and the like.
Moreover, the benzophenone type compound mentioned as said other photoinitiator can also be used as said other sensitizer.
本発明の光硬化性樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル樹脂を含有することが好ましい。
上記(メタ)アクリル樹脂は、反応性の高さから分子中に(メタ)アクリロイルオキシ基を2~3個有するものが好ましい。
上記(メタ)アクリル樹脂としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル樹脂」とは、(メタ)アクリロイルオキシ基を有する樹脂を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ樹脂中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The photocurable resin composition of the present invention contains a curable resin.
The curable resin preferably contains a (meth) acrylic resin.
The (meth) acrylic resin preferably has 2 to 3 (meth) acryloyloxy groups in the molecule because of its high reactivity.
Examples of the (meth) acrylic resin include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy (meta) obtained by reacting (meth) acrylic acid with an epoxy compound. ) Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with an acrylate or isocyanate compound. Of these, epoxy (meth) acrylate is preferable.
In the present specification, the “(meth) acryl” means acryl or methacryl, and the “(meth) acrylic resin” means a resin having a (meth) acryloyloxy group. The “(meth) acrylate” means acrylate or methacrylate. Further, the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid.
上記エステル化合物のうち単官能のものとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。 Examples of the monofunctional compounds of the ester compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethylcal Tall (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n- Butyl (meth) acrylate, propyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isononyl (meth) acrylate, isomyristyl (Meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, bicyclopentenyl (meth) acrylate, isodecyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, glycidyl (meth) acrylate, 2- ( And (meth) acryloyloxyethyl phosphate.
また、上記エステル化合物のうち2官能のものとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional ester compound include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth). Acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decandiol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene Glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (Meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyl di (meth) acrylate, neo Pentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol di (meth) ) Acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol di (meth) acrylate Etc. The.
また、上記エステル化合物のうち3官能以上のものとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。 Examples of the ester compound having three or more functional groups include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylol. Propane tri (meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (Meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, propylene Oxide addition glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, and the like.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy resin used as a raw material for synthesizing the epoxy (meth) acrylate include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, ortho-cresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Emissions phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱化学社製)、エピクロン850(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
As what is marketed among the said bisphenol A type epoxy resins, jER828EL, jER1004 (all are the Mitsubishi Chemical company make), Epicron 850 (made by DIC company), etc. are mentioned, for example.
As what is marketed among the said bisphenol F-type epoxy resins, jER806, jER4004 (all are the Mitsubishi Chemical company make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
As what is marketed among the said hydrogenated bisphenol type | mold epoxy resins, Epicron EXA7015 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by NS Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
上記エポキシ(メタ)アクリレートを製造する方法としては、具体的には例えば、レゾルシノール型エポキシ樹脂(ナガセケムテックス社製、「EX-201」)360重量部と、重合禁止剤としてp-メトキシフェノール2重量部と、反応触媒としてトリエチルアミン2重量部と、アクリル酸210重量部とを、空気を送り込んで還流撹拌しながら、90℃で5時間反応させることによってレゾルシノール型エポキシアクリレートを得ることができる。 As a method for producing the epoxy (meth) acrylate, specifically, for example, 360 parts by weight of a resorcinol type epoxy resin (manufactured by Nagase ChemteX Corporation, “EX-201”) and p-methoxyphenol 2 as a polymerization inhibitor are used. A resorcinol-type epoxy acrylate can be obtained by reacting 2 parts by weight of triethylamine as a reaction catalyst and 210 parts by weight of acrylic acid at 90 ° C. for 5 hours while feeding and refluxing air.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYLRDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation).
上記イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートとしては、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 Examples of the urethane (meth) acrylate obtained by reacting a hydroxyl group-containing (meth) acrylic acid derivative with the isocyanate compound include, for example, (meth) acrylic having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups. Two equivalents of the acid derivative can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound used as the raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,11-undecanetriiso Aneto and the like.
また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol. It is also possible to use chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds.
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate, include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). Hydroxyalkyl (meth) acrylates such as acrylate and 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, etc. Mono (meth) acrylates of dihydric alcohols, mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin, and bisphenol A type epoxy alcohol Epoxy (meth) acrylate of rate, and the like.
上記ウレタン(メタ)アクリレートは、具体的には例えば、トリメチロールプロパン134重量部、重合禁止剤としてBHT0.2重量部、反応触媒としてジブチル錫ジラウリレート0.01重量部、イソホロンジイソシアネート666重量部を加え、60℃で還流撹拌しながら2時間反応させ、次に、2-ヒドロキシエチルアクリレート51重量部を加え、空気を送り込んで還流撹拌しながら90℃で2時間反応させることにより得ることができる。 Specifically, the urethane (meth) acrylate includes, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and 666 parts by weight of isophorone diisocyanate. The mixture can be reacted at 60 ° C. for 2 hours with stirring under reflux, then 51 parts by weight of 2-hydroxyethyl acrylate is added, and air is fed in and the mixture is reacted at 90 ° C. with stirring under reflux for 2 hours.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-122P, U-108A, U-340P, U- 4HA, U-6HA, U-324A, U-15HA, UA-5201P, UA-W2A, U-1084A, U-6LPA, U-2HA, U-2PHA, UA-4100, UA-7100, UA-4200, UA-4400, UA-340P, U-3HA, UA-7200, U-2061BA, U-10H, U-122A, U-340A, U-108, U-6H, UA-4000 (all Shin-Nakamura Chemical Industries ), AH-600, AT-600, UA-306H, AI-600, UA-101T, UA-101I, A-306T, UA-306I (all manufactured by Kyoeisha Chemical Co., Ltd.).
上記硬化性樹脂は、得られる光硬化性樹脂組成物の接着性を向上させることを目的として、更に、エポキシ樹脂を含有することが好ましい。上記エポキシ樹脂としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂や、部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する樹脂を意味し、例えば、2つ以上のエポキシ樹脂の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
The curable resin preferably further contains an epoxy resin for the purpose of improving the adhesiveness of the resulting photocurable resin composition. As said epoxy resin, the epoxy resin used as the raw material for synthesize | combining the said epoxy (meth) acrylate, a partial (meth) acryl modified epoxy resin, etc. are mentioned, for example.
In the present specification, the partial (meth) acryl-modified epoxy resin means a resin having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two or more epoxy resins. Can be obtained by reacting a part of the epoxy group with (meth) acrylic acid.
本発明の光硬化性樹脂組成物が上記(メタ)アクリル樹脂と上記エポキシ樹脂とを含有する場合、(メタ)アクリロイルオキシ基とエポキシ基との比が50:50~95:5になるように上記(メタ)アクリル樹脂と上記エポキシ樹脂とを配合することが好ましい。(メタ)アクリロイルオキシ基の比率が50%未満であると、重合が完了しても未硬化のエポキシ樹脂成分が多く存在するため、液晶表示素子用シール剤に用いた場合に液晶汚染が発生することがある。(メタ)アクリロイルオキシ基の比率が95%を超えると、得られる光硬化性樹脂組成物が接着性に劣るものとなることがある。 When the photocurable resin composition of the present invention contains the (meth) acrylic resin and the epoxy resin, the ratio of the (meth) acryloyloxy group to the epoxy group is 50:50 to 95: 5. It is preferable to blend the (meth) acrylic resin and the epoxy resin. When the ratio of the (meth) acryloyloxy group is less than 50%, there are many uncured epoxy resin components even when the polymerization is completed, and thus liquid crystal contamination occurs when used as a sealant for liquid crystal display elements. Sometimes. When the ratio of the (meth) acryloyloxy group exceeds 95%, the resulting photocurable resin composition may be inferior in adhesiveness.
上記硬化性樹脂は、液晶表示素子用シール剤に用いた場合の液晶汚染を抑える点で、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The curable resin preferably has a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing liquid crystal contamination when used as a sealant for liquid crystal display elements.
本発明の光硬化性樹脂組成物は、熱ラジカル重合開始剤を含有してもよい。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ開始剤とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The photocurable resin composition of the present invention may contain a thermal radical polymerization initiator.
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among these, an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. .
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量が1000未満であると、液晶表示素子用シール剤に用いた場合に高分子アゾ開始剤が液晶に悪影響を与えることがある。上記高分子アゾ開始剤の数平均分子量が30万を超えると、硬化性樹脂への混合が困難になることがある。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。 The preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. When the polymer azo initiator has a number average molecular weight of less than 1000, the polymer azo initiator may adversely affect the liquid crystal when used as a sealing agent for liquid crystal display elements. When the number average molecular weight of the polymeric azo initiator exceeds 300,000, mixing with the curable resin may be difficult. The more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物としては、例えば、V-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
Examples of the azo compound that is not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱ラジカル重合開始剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が30重量部である。上記熱ラジカル重合開始剤の含有量が0.1重量部未満であると、得られる光硬化性樹脂組成物の熱重合が充分に進行しないことがある。上記熱ラジカル重合開始剤の含有量が30重量部を超えると、液晶表示素子用シール剤に用いた場合に未反応の熱ラジカル重合開始剤によって液晶汚染が生じることがある。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は10重量部である。 The content of the thermal radical polymerization initiator is preferably 0.1 parts by weight and preferably 30 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal radical polymerization initiator is less than 0.1 parts by weight, the thermal polymerization of the resulting photocurable resin composition may not sufficiently proceed. When the content of the thermal radical polymerization initiator exceeds 30 parts by weight, liquid crystal contamination may occur due to the unreacted thermal radical polymerization initiator when used in a sealing agent for liquid crystal display elements. The minimum with more preferable content of the said thermal radical polymerization initiator is 0.5 weight part, and a more preferable upper limit is 10 weight part.
本発明の光硬化性樹脂組成物は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
The photocurable resin composition of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、SDH、ADH(いずれも大塚化学社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH(いずれも味の素ファインテクノ社製)等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
Examples of commercially available organic acid hydrazides include SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.), and the like. It is done.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量が1重量部未満であると、得られる光硬化性樹脂組成物を充分に熱硬化させることができないことがある。上記熱硬化剤の含有量が50重量部を超えると、得られる光硬化性樹脂組成物の粘度が高くなりすぎ、塗布性が悪くなることがある。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. If the content of the thermosetting agent is less than 1 part by weight, the resulting photocurable resin composition may not be sufficiently heat-cured. When content of the said thermosetting agent exceeds 50 weight part, the viscosity of the photocurable resin composition obtained will become high too much, and applicability | paintability may worsen. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
本発明の光硬化性樹脂組成物は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有することが好ましい。 The photocurable resin composition of the present invention preferably contains a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient, improving moisture resistance of the cured product, and the like.
上記充填剤としては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト、活性白土、窒化アルミニウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。これらの充填剤は単独で用いてもよいし、2種以上を併用してもよい。 Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, aluminum nitride, and organic materials such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles A filler is mentioned. These fillers may be used independently and may use 2 or more types together.
本発明の光硬化性樹脂組成物100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量が10重量部未満であると、接着性の改善等の効果が充分に発揮されないことがある。上記充填剤の含有量が70重量部を超えると、得られる光硬化性樹脂組成物の粘度が高くなりすぎ、塗布性が悪くなることがある。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The minimum with preferable content of the said filler in 100 weight part of photocurable resin compositions of this invention is 10 weight part, and a preferable upper limit is 70 weight part. When the content of the filler is less than 10 parts by weight, effects such as improvement of adhesiveness may not be sufficiently exhibited. When content of the said filler exceeds 70 weight part, the viscosity of the photocurable resin composition obtained will become high too much, and applicability | paintability may worsen. The minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
本発明の光硬化性樹脂組成物は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主に本発明の光硬化性樹脂組成物と基板等とを良好に接着するための接着助剤としての役割を有する。 The photocurable resin composition of the present invention preferably contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesion aid for favorably bonding the photocurable resin composition of the present invention to a substrate or the like.
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、液晶表示素子用シール剤として用いた場合の液晶中への硬化性樹脂の流出を抑制する観点から、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は単独で用いてもよいし、2種以上を併用してもよい。 From the viewpoint of suppressing the outflow of the curable resin into the liquid crystal when used as a sealing agent for a liquid crystal display element, the silane coupling agent is excellent in the effect of improving the adhesion with a substrate or the like, for example, 3 -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These silane coupling agents may be used alone or in combination of two or more.
本発明の光硬化性樹脂組成物100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は20重量部である。上記シランカップリング剤の含有量が0.1重量部未満であると、シランカップリング剤を配合することによる効果が充分に発揮されないことがある。上記シランカップリング剤の含有量が20重量部を超えると、得られる光硬化性樹脂組成物を液晶表示素子用シール剤に用いた場合に液晶汚染を引き起こすことがある。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は10重量部である。 The minimum with preferable content of the said silane coupling agent in 100 weight part of photocurable resin compositions of this invention is 0.1 weight part, and a preferable upper limit is 20 weight part. When the content of the silane coupling agent is less than 0.1 parts by weight, the effect of blending the silane coupling agent may not be sufficiently exhibited. When content of the said silane coupling agent exceeds 20 weight part, when the photocurable resin composition obtained is used for the sealing compound for liquid crystal display elements, liquid crystal contamination may be caused. The minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 10 weight part.
本発明の光硬化性樹脂組成物は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の光硬化性樹脂組成物は、遮光シール剤として好適に用いることができる。 The photocurable resin composition of the present invention may contain a light shielding agent. By containing the said light shielding agent, the photocurable resin composition of this invention can be used suitably as a light shielding sealing agent.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の光硬化性樹脂組成物に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の光硬化性樹脂組成物に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。
Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-mentioned titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing light-shielding properties to the photocurable resin composition of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. A shading agent. The light shielding agent contained in the photocurable resin composition of the present invention is preferably a highly insulating material, and titanium black is also suitable as the highly insulating light shielding agent.
The titanium black preferably has an optical density (OD value) per μm of 3 or more, more preferably 4 or more. The higher the light-shielding property of the titanium black, the better. The OD value of the titanium black is not particularly limited, but is usually 5 or less.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の光硬化性樹脂組成物を液晶表示素子用シール剤として用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, a liquid crystal display element manufactured using the photocurable resin composition of the present invention containing titanium black as a light-shielding agent as a sealant for liquid crystal display elements has sufficient light-shielding properties, so that light leaks out. Therefore, a liquid crystal display element having a high contrast and excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N、14M-C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子等の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径が1nm未満であると、得られる光硬化性樹脂組成物の粘度やチクソトロピーが大きく増大してしまい、作業性が悪くなることがある。上記遮光剤の一次粒子径が5μmを超えると、得られる光硬化性樹脂組成物の塗布性が悪くなることがある。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。 Although the primary particle diameter of the said light-shielding agent will not be specifically limited if it is below the distance between board | substrates, such as a liquid crystal display element, A preferable minimum is 1 nm and a preferable upper limit is 5 micrometers. When the primary particle diameter of the light-shielding agent is less than 1 nm, the viscosity and thixotropy of the resulting photocurable resin composition are greatly increased, and workability may be deteriorated. When the primary particle diameter of the light-shielding agent exceeds 5 μm, the applicability of the resulting photocurable resin composition may be deteriorated. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
本発明の光硬化性樹脂組成物100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量が5重量部未満であると、充分な遮光性が得られないことがある。上記遮光剤の含有量が80重量部を超えると、得られる光硬化性樹脂組成物の基板に対する密着性や硬化後の強度が低下したり、描画性が低下したりすることがある。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The minimum with preferable content of the said light-shielding agent in 100 weight part of photocurable resin compositions of this invention is 5 weight part, and a preferable upper limit is 80 weight part. If the content of the light shielding agent is less than 5 parts by weight, sufficient light shielding properties may not be obtained. When the content of the light-shielding agent exceeds 80 parts by weight, the adhesion of the resulting photocurable resin composition to the substrate and the strength after curing may be reduced, or the drawability may be reduced. The more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
本発明の光硬化性樹脂組成物を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、本発明の重合性単量体及び/又は本発明の高分子化合物と、必要に応じて添加するその他の光重合開始剤やその他の増感剤やシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the photocurable resin composition of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, A method of mixing the polymerizable monomer of the invention and / or the polymer compound of the invention with additives such as other photopolymerization initiators, other sensitizers, and silane coupling agents that are added as necessary. Etc.
本発明の光硬化性樹脂組成物は、液晶表示素子用シール剤として好適に用いられる。
本発明の光硬化性樹脂組成物を用いてなる液晶表示素子用シール剤もまた、本発明の1つである。
The photocurable resin composition of the present invention is suitably used as a sealing agent for liquid crystal display elements.
The sealing agent for liquid crystal display elements which uses the photocurable resin composition of this invention is also one of this invention.
本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention. Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いて製造される液晶表示素子もまた、本発明の1つである。 The liquid crystal display element manufactured using the sealing compound for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等の電極付きのガラス基板やポリエチレンテレフタレート基板等の2枚の透明基板の一方に、本発明の液晶表示素子用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程、本発明の液晶表示素子用シール剤等が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程、及び、本発明の液晶表示素子用シール剤等のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。 As a method for producing the liquid crystal display element of the present invention, for example, the sealing agent for the liquid crystal display element of the present invention or the like is applied to one of two transparent substrates such as a glass substrate with an electrode such as an ITO thin film or a polyethylene terephthalate substrate. The process of forming a rectangular seal pattern by screen printing, dispenser application, etc., the liquid crystal display element sealant of the present invention is uncured, and liquid crystal microdrops are dropped on the entire surface of the transparent substrate and applied immediately. A step of superimposing another substrate on the substrate, a step of irradiating the seal pattern portion of the sealant for the liquid crystal display element of the present invention with light such as ultraviolet rays and the like, and a step of temporarily curing the sealant, The method etc. which have the process of heating this and making it harden | cure are mentioned.
本発明によれば、液晶に対する汚染性が低く、長波長の光に対して高感度であり増感効果にも優れる重合性単量体、及び、該重合性単量体を重合して得られる高分子化合物を提供することができる。また、本発明によれば、該重合性単量体及び/又は該高分子化合物を含有する光硬化性樹脂組成物、該光硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、並びに、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, a polymerizable monomer that has low contamination to liquid crystals, is highly sensitive to long-wavelength light, and has an excellent sensitizing effect, and is obtained by polymerizing the polymerizable monomer A polymer compound can be provided. Further, according to the present invention, a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and The vertical conduction material and the liquid crystal display element manufactured using the sealing agent for a liquid crystal display element can be provided.
実施例及び比較例で得られた各液晶表示素子用シール剤を用いて遮光部なしの状態で作製した液晶表示素子を模式的に示す断面図である。It is sectional drawing which shows typically the liquid crystal display element produced in the state without a light-shielding part using each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. 実施例及び比較例で得られた各液晶表示素子用シール剤を用いて遮光部ありの状態で作製した液晶表示素子を模式的に示す断面図である。It is sectional drawing which shows typically the liquid crystal display element produced in the state with a light-shielding part using each sealing compound for liquid crystal display elements obtained by the Example and the comparative example.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(重合性単量体Aの作製)
式(2-1)で表される化合物16.5重量部と、式(6-1)で表され、Rが水素である化合物6.4重量部とを、塩基性触媒としてPS-PPH3(バイオタージ・ジャパン社製、ポリスチレン(PS)にトリフェニルホスフィンを担持した塩基性触媒)0.7重量部の存在下で、110℃で48時間撹拌しながら反応させることにより、式(7-1)で表され、Rが水素である化合物(重合性単量体A)を得た。
なお、式(2-1)で表される化合物と、式(6-1)で表され、Rが水素である化合物との配合割合は、モル比で、式(2-1)で表される化合物:式(6-1)で表され、Rが水素である化合物=2:1である。
(Preparation of polymerizable monomer A)
Using 16.5 parts by weight of the compound represented by the formula (2-1) and 6.4 parts by weight of the compound represented by the formula (6-1), wherein R 1 is hydrogen, PS-PPH 3 (A basic catalyst made of Biotage Japan Co., Ltd., triphenylphosphine supported on polystyrene (PS)) In the presence of 0.7 part by weight, the reaction is carried out at 110 ° C. for 48 hours with stirring to obtain the formula (7- A compound (polymerizable monomer A) represented by 1), wherein R 1 is hydrogen, was obtained.
The compounding ratio of the compound represented by the formula (2-1) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (2-1) in molar ratio. Compound: Compound represented by formula (6-1), wherein R 1 is hydrogen = 2: 1.
(高分子化合物Aの作製)
得られた重合性単量体A10重量部を、重合開始剤としてアゾビスイソブチロニトリル0.5重量部の存在下で、窒素置換しながら70℃で7時間撹拌しながら反応させることにより高分子化合物Aを得た。得られた高分子化合物Aの数平均分子量は14200(重合度50)であった。
(Preparation of polymer compound A)
By reacting 10 parts by weight of the obtained polymerizable monomer A in the presence of 0.5 parts by weight of azobisisobutyronitrile as a polymerization initiator with stirring at 70 ° C. for 7 hours while replacing with nitrogen. Molecular compound A was obtained. The number average molecular weight of the obtained polymer compound A was 14200 (degree of polymerization: 50).
(重合性単量体Bの作製)
式(2-2)で表される化合物16.5重量部と、式(6-1)で表され、Rが水素である化合物5.5重量部とを、塩基性触媒としてPS-PPH3(バイオタージ・ジャパン社製、ポリスチレン(PS)にトリフェニルホスフィンを担持した塩基性触媒)0.7重量部の存在下で、110℃で48時間撹拌しながら反応させることにより、式(7-2)で表され、Rが水素である化合物(重合性単量体B)を得た。
なお、式(2-2)で表される化合物と、式(6-1)で表され、Rが水素である化合物との配合割合は、モル比で、式(2-2)で表される化合物:式(6-1)で表され、Rが水素である化合物=85.3:42.9である。
(Preparation of polymerizable monomer B)
Using 16.5 parts by weight of the compound represented by the formula (2-2) and 5.5 parts by weight of the compound represented by the formula (6-1), wherein R 1 is hydrogen, PS-PPH 3 (A basic catalyst made of Biotage Japan Co., Ltd., triphenylphosphine supported on polystyrene (PS)) In the presence of 0.7 part by weight, the reaction is carried out at 110 ° C. for 48 hours with stirring to obtain the formula (7- 2) and a compound (polymerizable monomer B) in which R 1 is hydrogen was obtained.
Note that the blending ratio of the compound represented by the formula (2-2) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (2-2) in molar ratio. Compound represented by the formula (6-1): R 1 is hydrogen = 85.3: 42.9.
(高分子化合物Bの作製)
得られた重合性単量体B10重量部を、重合開始剤としてアゾビスイソブチロニトリル0.5重量部の存在下で、窒素置換しながら70℃で7時間撹拌しながら反応させることにより高分子化合物Bを得た。得られた高分子化合物Bの数平均分子量は12900(重合度40)であった。
(Preparation of polymer compound B)
By reacting 10 parts by weight of the obtained polymerizable monomer B in the presence of 0.5 parts by weight of azobisisobutyronitrile as a polymerization initiator with stirring at 70 ° C. for 7 hours while purging with nitrogen. Molecular compound B was obtained. The number average molecular weight of the obtained polymer compound B was 12900 (degree of polymerization 40).
(重合性単量体Cの作製)
式(2-3)で表される化合物16.5重量部と、式(6-1)で表され、Rが水素である化合物4.1重量部とを、塩基性触媒としてPS-PPH3(バイオタージ・ジャパン社製、ポリスチレン(PS)にトリフェニルホスフィンを担持した塩基性触媒)0.7重量部の存在下で、110℃で48時間撹拌しながら反応させることにより、式(7-3)で表され、Rが水素である化合物(重合性単量体C)を得た。
なお、式(2-3)で表される化合物と、式(6-1)で表され、Rが水素である化合物との配合割合は、モル比で、式(2-3)で表される化合物:式(6-1)で表され、Rが水素である化合物=63.2:32.0である。
(Preparation of polymerizable monomer C)
Using 16.5 parts by weight of the compound represented by the formula (2-3) and 4.1 parts by weight of the compound represented by the formula (6-1), wherein R 1 is hydrogen, PS-PPH 3 (A basic catalyst made of Biotage Japan Co., Ltd., triphenylphosphine supported on polystyrene (PS)) In the presence of 0.7 part by weight, the reaction is carried out at 110 ° C. for 48 hours with stirring to obtain the formula (7- A compound (polymerizable monomer C) represented by 3), wherein R 1 is hydrogen, was obtained.
The compounding ratio of the compound represented by the formula (2-3) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (2-3) as a molar ratio. Compound: Compound represented by formula (6-1), wherein R 1 is hydrogen = 63.2: 32.0.
(高分子化合物Cの作製)
得られた重合性単量体C10重量部を、重合開始剤としてアゾビスイソブチロニトリル0.5重量部の存在下で、窒素置換しながら70℃で7時間撹拌しながら反応させることにより高分子化合物Cを得た。得られた高分子化合物Cの数平均分子量は10200(重合度26)であった。
(Preparation of polymer compound C)
By reacting 10 parts by weight of the obtained polymerizable monomer C in the presence of 0.5 parts by weight of azobisisobutyronitrile as a polymerization initiator with stirring at 70 ° C. for 7 hours while purging with nitrogen. Molecular compound C was obtained. The number average molecular weight of the obtained polymer compound C was 10200 (degree of polymerization 26).
(重合性単量体Dの作製)
式(2-1)で表される化合物16.5重量部と、式(6-2)で表され、全Rがメトキシ基である化合物11.8重量部とを、塩基性触媒としてPS-PPH3(バイオタージ・ジャパン社製、ポリスチレン(PS)にトリフェニルホスフィンを担持した塩基性触媒)0.7重量部の存在下で、110℃で48時間撹拌しながら反応させることにより、式(7-4)で表される化合物(重合性単量体D)を得た。
なお、式(2-1)で表される化合物と、式(6-2)で表され、全Rがメトキシ基である化合物との配合割合は、モル比で、式(2-1)で表される化合物:式(6-2)で表され、全Rがメトキシ基である化合物=2:1である。
(Preparation of polymerizable monomer D)
As a basic catalyst, 16.5 parts by weight of the compound represented by the formula (2-1) and 11.8 parts by weight of the compound represented by the formula (6-2) in which all R 2 are methoxy groups are used as a basic catalyst. —PPH3 (manufactured by Biotage Japan, basic catalyst having triphenylphosphine supported on polystyrene (PS)) in the presence of 0.7 part by weight, the reaction is carried out at 110 ° C. for 48 hours with stirring. The compound represented by 7-4) (polymerizable monomer D) was obtained.
The compounding ratio of the compound represented by the formula (2-1) and the compound represented by the formula (6-2), in which all R 2 are methoxy groups, is expressed in terms of a molar ratio. Compound represented by formula: Compound represented by formula (6-2), wherein all R 2 are methoxy groups = 2: 1.
(高分子化合物Dの作製)
得られた重合性単量体D10重量部を、重合開始剤としてアゾビスイソブチロニトリル0.5重量部の存在下で、窒素置換しながら70℃で7時間撹拌しながら反応させることにより高分子化合物Dを得た。得られた高分子化合物Dの数平均分子量は8900(重合度22)であった。
(Preparation of polymer compound D)
By reacting 10 parts by weight of the obtained polymerizable monomer D in the presence of 0.5 parts by weight of azobisisobutyronitrile as a polymerization initiator with stirring at 70 ° C. for 7 hours while purging with nitrogen. Molecular compound D was obtained. The number average molecular weight of the obtained polymer compound D was 8900 (degree of polymerization 22).
(重合性単量体Eの作製)
式(5-1)で表される化合物16.5重量部と、式(6-1)で表され、Rが水素である化合物3.7重量部とを、塩基性触媒としてPS-PPH3(バイオタージ・ジャパン社製、ポリスチレン(PS)にトリフェニルホスフィンを担持した塩基性触媒)0.7重量部の存在下で、110℃で48時間撹拌しながら反応させることにより、式(8-1)で表され、Rが水素である化合物(重合性単量体E)を得た。
なお、式(5-1)で表される化合物と、式(6-1)で表され、Rが水素である化合物との配合割合は、モル比で、式(5-1)で表される化合物:式(6-1)で表され、Rが水素である化合物=57.63:28.9である。
(Preparation of polymerizable monomer E)
Using 16.5 parts by weight of the compound represented by the formula (5-1) and 3.7 parts by weight of the compound represented by the formula (6-1), wherein R 1 is hydrogen, PS-PPH 3 (A basic catalyst in which triphenylphosphine is supported on polystyrene (PS), manufactured by Biotage Japan Co., Ltd.) In the presence of 0.7 part by weight, the reaction is carried out at 110 ° C. for 48 hours with stirring to obtain a compound of formula (8- A compound (polymerizable monomer E) represented by 1), wherein R 1 is hydrogen, was obtained.
The compounding ratio of the compound represented by the formula (5-1) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (5-1) as a molar ratio. Compound: Compound represented by formula (6-1) and R 1 is hydrogen = 57.63: 28.9.
(高分子化合物Eの作製)
得られた重合性単量体E10重量部を、エタノール20.0g、水0.5g、及び、酸触媒として6N-塩酸0.6重量部の存在下で、窒素フローしながら70℃で4時間撹拌しながら反応させることにより高分子化合物Eを得た。得られた高分子化合物Eの数平均分子量は15200(重合度37)であった。
(Preparation of polymer compound E)
10 parts by weight of the obtained polymerizable monomer E was added in the presence of 20.0 g of ethanol, 0.5 g of water and 0.6 part by weight of 6N hydrochloric acid as an acid catalyst at 70 ° C. for 4 hours while flowing nitrogen. Polymer compound E was obtained by reacting with stirring. The number average molecular weight of the obtained polymer compound E was 15200 (degree of polymerization 37).
(重合性単量体Fの作製)
式(5-2)で表される化合物16.5重量部と、式(6-1)で表され、Rが水素である化合物4.7重量部とを、塩基性触媒としてPS-PPH3(バイオタージ・ジャパン社製、ポリスチレン(PS)にトリフェニルホスフィンを担持した塩基性触媒)0.7重量部の存在下で、110℃で48時間撹拌しながら反応させることにより、式(8-2)で表され、Rが水素である化合物(重合性単量体F)を得た。
なお、式(5-2)で表される化合物と、式(6-1)で表され、Rが水素である化合物との配合割合は、モル比で、式(5-2)で表される化合物:式(6-1)で表され、Rが水素である化合物=72.3:36.7である。
(Preparation of polymerizable monomer F)
Using 16.5 parts by weight of the compound represented by the formula (5-2) and 4.7 parts by weight of the compound represented by the formula (6-1), wherein R 1 is hydrogen, PS-PPH 3 (A basic catalyst in which triphenylphosphine is supported on polystyrene (PS), manufactured by Biotage Japan Co., Ltd.) In the presence of 0.7 part by weight, the reaction is carried out at 110 ° C. for 48 hours with stirring to obtain a compound of formula (8- 2) and a compound (polymerizable monomer F) in which R 1 is hydrogen was obtained.
Note that the compounding ratio of the compound represented by the formula (5-2) and the compound represented by the formula (6-1), in which R 1 is hydrogen, is represented by the formula (5-2) in molar ratio. Compound: Compound represented by formula (6-1), wherein R 1 is hydrogen = 72.3: 36.7.
(高分子化合物Fの作製)
得られた重合性単量体F10重量部を、エタノール20.0g、水0.5g、及び、酸触媒として6N-塩酸0.6重量部の存在下で、窒素フローしながら70℃で4時間撹拌しながら反応させることにより高分子化合物Fを得た。得られた高分子化合物Fの数平均分子量は16500(重合度46)であった。
(Preparation of polymer compound F)
The obtained polymerizable monomer F (10 parts by weight) was used in the presence of 20.0 g of ethanol, 0.5 g of water, and 0.6 parts by weight of 6N hydrochloric acid as an acid catalyst for 4 hours at 70 ° C. with nitrogen flow. Polymer compound F was obtained by making it react, stirring. The number average molecular weight of the obtained polymer compound F was 16500 (degree of polymerization 46).
(重合性単量体Gの作製)
式(5-1)で表される化合物16.5重量部と、式(6-2)で表され、全Rがメトキシ基である化合物6.8重量部とを、塩基性触媒としてPS-PPH3(バイオタージ・ジャパン社製、ポリスチレン(PS)にトリフェニルホスフィンを担持した塩基性触媒)0.7重量部で、110℃で48時間撹拌しながら反応させることにより、式(8-3)で表される化合物(重合性単量体G)を得た。
なお、式(5-1)で表される化合物と、式(6-2)で表され、全Rがメトキシ基である化合物との配合割合は、モル比で、式(5-1)で表される化合物:式(6-2)で表され、全Rがメトキシ基である化合物=57.6:28.8である。
(Preparation of polymerizable monomer G)
Using 16.5 parts by weight of the compound represented by the formula (5-1) and 6.8 parts by weight of the compound represented by the formula (6-2) in which all R 2 are methoxy groups, PS is used as a basic catalyst. -By reacting with 0.7 parts by weight of PPH3 (manufactured by Biotage Japan Co., Ltd., basic catalyst having triphenylphosphine supported on polystyrene (PS)) at 110 ° C. for 48 hours with stirring, the compound of formula (8-3 ) (Polymerizable monomer G).
The compounding ratio of the compound represented by the formula (5-1) and the compound represented by the formula (6-2), in which all R 2 are methoxy groups, is expressed in terms of a molar ratio. Compound represented by formula: Compound represented by formula (6-2), wherein all R 2 are methoxy groups = 57.6: 28.8.
(高分子化合物Gの作製)
得られた重合性単量体G10重量部を、エタノール20.0g、水0.5g、及び、酸触媒として6N-塩酸0.6重量部の存在下で、窒素フローしながら70℃で4時間撹拌しながら反応させることにより高分子化合物Gを得た。得られた高分子化合物Gの数平均分子量は7600(重合度15)であった。
(Preparation of polymer compound G)
The obtained polymerizable monomer G (10 parts by weight) was stirred at 70 ° C. for 4 hours while flowing nitrogen in the presence of 20.0 g of ethanol, 0.5 g of water and 0.6 part by weight of 6N hydrochloric acid as an acid catalyst. Polymer compound G was obtained by making it react, stirring. The number average molecular weight of the obtained polymer compound G was 7600 (degree of polymerization 15).
(実施例1~17、比較例1)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~17、比較例1の各液晶表示素子用シール剤を調製した。
(Examples 1 to 17, Comparative Example 1)
According to the mixing ratios described in Tables 1 and 2, after mixing each material using a planetary stirrer (“Shinky Co., Ltd.,“ Awatori Netaro ”), by further mixing using three rolls The sealing agents for liquid crystal display elements of Examples 1 to 17 and Comparative Example 1 were prepared.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(光硬化性)
ガラス基板上に、実施例及び比較例で得られた各液晶表示素子用シール剤を、ガラス基板を貼り合わせた後のギャップが約5μmとなるように塗布し、その基板に同サイズのガラス基板を重ね合わせ、次に、メタルハライドランプを用いて100mW/cmの紫外線(波長365nm)を10秒照射した。赤外分光装置(BIORAD社製、「FTS3000」)を用い、(メタ)アクリロイル基由来ピークの光照射前後での変化量を測定することで光硬化性の評価を行った。光照射後に(メタ)アクリロイル基由来のピークが93%以上減少した場合を「◎」、光照射後に(メタ)アクリロイル基由来のピークが85%以上93%未満減少した場合を「○」、光照射後に(メタ)アクリロイル基由来のピークが75%以上85%未満減少した場合を「△」、光照射後の(メタ)アクリロイル基由来のピークの減少が75%未満であった場合を「×」として光硬化性を評価した。
(Photo-curing)
On the glass substrate, each liquid crystal display element sealing agent obtained in Examples and Comparative Examples was applied so that the gap after bonding the glass substrates was about 5 μm, and the same size glass substrate was applied to the substrate. Next, ultraviolet rays (wavelength 365 nm) of 100 mW / cm 2 were irradiated for 10 seconds using a metal halide lamp. Photocurability was evaluated by measuring the amount of change of the (meth) acryloyl group-derived peak before and after light irradiation using an infrared spectroscope (manufactured by BIORAD, “FTS3000”). “◎” when the peak derived from the (meth) acryloyl group is reduced by 93% or more after light irradiation, “◯” when the peak derived from the (meth) acryloyl group is decreased by 85% or more and less than 93% after the light irradiation. The case where the peak derived from the (meth) acryloyl group is reduced by 75% or more and less than 85% after the irradiation is “△”, and the case where the decrease in the peak derived from the (meth) acryloyl group after the light irradiation is less than 75% is “×” The photocurability was evaluated as “
(液晶汚染性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部にスペーサ微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を分散させ、液晶表示素子用シール剤として、2枚のラビング済み配向膜及び透明電極付き基板の一方にシール剤の線幅が1mmになるようにディスペンサーで塗布した。
続いて液晶(チッソ社製、「JC-5004LA」)の微小滴を透明電極付き基板のシール剤の枠内全面に滴下塗布し、すぐにもう一方の透明電極付きカラーフィルター基板を貼り合わせ、シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線(波長365nm)を30秒照射して硬化させ、更に、120℃で1時間加熱して液晶表示素子を得た。
液晶表示素子は、ディスペンサーでシール剤の塗布位置をコントロールし、シール剤に完全に光が当たる液晶表示素子(遮光部なし)と、シール剤がカラーフィルター基板のブラックマトリックスに線幅の50%がかかるように塗布した液晶表示素子(遮光部あり)の2種類を作製した。図1は、実施例及び比較例で得られた各液晶表示素子用シール剤を用いて遮光部なしの状態で作製した液晶表示素子を模式的に示す断面図であり、図2は、実施例及び比較例で得られた各液晶表示素子用シール剤を用いて遮光部ありの状態で作製した液晶表示素子を模式的に示す断面図である。図1に示すように、シール剤1に遮光部がないものは完全にシール剤1が光に当たる状態であり、一方、シール剤1に遮光部がある液晶表示素子は、図2に示すように、液晶3と接する部分のシール剤1は、ブラックマトリックス2で遮蔽されて全く光が当たらない。
得られた液晶表示素子について、100時間動作試験を行った後、80℃で1000時間電圧印加状態とした後のシール剤付近の液晶配向乱れを目視によって確認した。
配向乱れは表示部の色むらにより判断しており、色むらの程度に応じて、色むらが全くなかった場合を「◎」、色むらが微かにあった場合を「○」、色むらが少しあった場合を「△」、色むらがかなりあった場合を「×」として液晶汚染性を評価した。
なお、評価が「◎」、「○」の液晶表示素子は実用に全く問題のないレベルである。
(Liquid crystal contamination)
1 part by weight of spacer fine particles (“Micropearl SI-H050”, manufactured by Sekisui Chemical Co., Ltd.) is dispersed in 100 parts by weight of each liquid crystal display element sealant obtained in Examples and Comparative Examples, and the liquid crystal display element sealant is obtained. As an example, the sealant was applied to one of the two rubbed alignment films and the substrate with a transparent electrode with a dispenser so that the line width of the sealant was 1 mm.
Subsequently, liquid droplets (manufactured by Chisso Corp., “JC-5004LA”) are dropped onto the entire surface of the sealing agent frame of the substrate with the transparent electrode, and the other color filter substrate with the transparent electrode is immediately bonded to the seal. The agent part was cured by irradiating with 100 mW / cm 2 ultraviolet rays (wavelength 365 nm) for 30 seconds using a metal halide lamp, and further heated at 120 ° C. for 1 hour to obtain a liquid crystal display element.
The liquid crystal display element controls the application position of the sealant with a dispenser, and the liquid crystal display element (no light blocking part) where the sealant is completely exposed to light, and the sealant has 50% of the line width on the black matrix of the color filter substrate. Two types of liquid crystal display elements (with light-shielding portions) coated in this way were produced. FIG. 1 is a cross-sectional view schematically showing a liquid crystal display device prepared without using a light-shielding portion using the liquid crystal display device sealants obtained in Examples and Comparative Examples, and FIG. It is sectional drawing which shows typically the liquid crystal display element produced in the state with a light-shielding part using each sealing compound for liquid crystal display elements obtained by the comparative example. As shown in FIG. 1, when the sealing agent 1 does not have a light shielding portion, the sealing agent 1 is completely exposed to light, while the sealing agent 1 has a light shielding portion as shown in FIG. The sealant 1 in contact with the liquid crystal 3 is shielded by the black matrix 2 and does not receive any light.
About the obtained liquid crystal display element, after performing the operation test for 100 hours, the liquid crystal alignment disorder of the sealant vicinity after making it into a voltage application state at 80 degreeC for 1000 hours was confirmed visually.
The alignment disorder is determined by the color unevenness of the display part. Depending on the degree of color unevenness, “◎” indicates that there is no color unevenness, “○” indicates that the color unevenness is slight, and “color unevenness”. The liquid crystal contamination property was evaluated with “△” when there was a little, and “×” when there was considerable color unevenness.
Note that the liquid crystal display elements with the evaluations “◎” and “で” are at a level that causes no problem in practical use.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
本発明によれば、液晶に対する汚染性が低く、長波長の光に対して高感度であり増感効果にも優れる重合性単量体、及び、該重合性単量体を重合して得られる高分子化合物を提供することができる。また、本発明によれば、該重合性単量体及び/又は該高分子化合物を含有する光硬化性樹脂組成物、該光硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、並びに、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, a polymerizable monomer that has low contamination to liquid crystals, is highly sensitive to long-wavelength light, and has an excellent sensitizing effect, and is obtained by polymerizing the polymerizable monomer A polymer compound can be provided. Further, according to the present invention, a photocurable resin composition containing the polymerizable monomer and / or the polymer compound, a sealant for a liquid crystal display device using the photocurable resin composition, and The vertical conduction material and the liquid crystal display element manufactured using the sealing agent for a liquid crystal display element can be provided.
1 シール剤
2 ブラックマトリックス
3 液晶
1 Sealant 2 Black matrix 3 Liquid crystal

Claims (11)

  1. ジアルキルアミノ安息香酸系化合物又はエポキシ基と反応可能な官能基を有するチオキサントン誘導体と、不飽和二重結合を有するエポキシ化合物又はアルコキシシリル基を有するエポキシ化合物とを反応させて得られることを特徴とする重合性単量体。 It is obtained by reacting a dialkylaminobenzoic acid compound or a thioxanthone derivative having a functional group capable of reacting with an epoxy group and an epoxy compound having an unsaturated double bond or an epoxy compound having an alkoxysilyl group. Polymerizable monomer.
  2. ジアルキルアミノ安息香酸系化合物は、下記式(2-1)で表される化合物、(2-2)で表される化合物、又は、(2-3)で表される化合物であることを特徴とする請求項1記載の重合性単量体。
    Figure JPOXMLDOC01-appb-C000001
    The dialkylaminobenzoic acid compound is a compound represented by the following formula (2-1), a compound represented by (2-2), or a compound represented by (2-3), The polymerizable monomer according to claim 1.
    Figure JPOXMLDOC01-appb-C000001
  3. チオキサントン誘導体は、下記式(5-1)又は(5-2)で表される化合物であることを特徴とする請求項1記載の重合性単量体。
    Figure JPOXMLDOC01-appb-C000002
    The polymerizable monomer according to claim 1, wherein the thioxanthone derivative is a compound represented by the following formula (5-1) or (5-2).
    Figure JPOXMLDOC01-appb-C000002
  4. エポキシ化合物は、下記式(6-1)又は(6-2)で表される化合物であることを特徴とする請求項1、2又は3記載の重合性単量体。
    Figure JPOXMLDOC01-appb-C000003
    式(6-1)中、Rは、水素又はメチル基を表す。式(6-2)中、Rは、炭素数が1~10のアルキル基又は炭素数が1~10のアルコキシ基を表す。各Rは、同一であってもよいし、異なっていてもよいが、少なくとも1つのRは、炭素数が1~10のアルコキシ基である。
    4. The polymerizable monomer according to claim 1, wherein the epoxy compound is a compound represented by the following formula (6-1) or (6-2).
    Figure JPOXMLDOC01-appb-C000003
    In formula (6-1), R 1 represents hydrogen or a methyl group. In formula (6-2), R 2 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. Each R 2 may be the same or different, but at least one R 2 is an alkoxy group having 1 to 10 carbon atoms.
  5. 請求項1、2、3又は4記載の重合性単量体を重合して得られることを特徴とする高分子化合物。 A polymer compound obtained by polymerizing the polymerizable monomer according to claim 1, 2, 3 or 4.
  6. 重合度が3以上であることを特徴とする請求項5記載の高分子化合物。 6. The polymer compound according to claim 5, wherein the degree of polymerization is 3 or more.
  7. 硬化性樹脂と、請求項1、2、3若しくは4記載の重合性単量体及び/又は請求項5若しくは6記載の高分子化合物とを含有することを特徴とする光硬化性樹脂組成物。 A photocurable resin composition comprising a curable resin, the polymerizable monomer according to claim 1, 2, 3 or 4 and / or the polymer compound according to claim 5 or 6.
  8. 遮光剤を含有することを特徴とする請求項7記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 7, further comprising a light-shielding agent.
  9. 請求項7又は8記載の光硬化性樹脂組成物を用いてなることを特徴とする液晶表示素子用シール剤。 A sealant for a liquid crystal display device, comprising the photocurable resin composition according to claim 7 or 8.
  10. 請求項9記載の液晶表示素子用シール剤と、導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the sealing agent for a liquid crystal display element according to claim 9 and conductive fine particles.
  11. 請求項9記載の液晶表示素子用シール剤、又は、請求項10記載の上下導通材料を用いて製造されることを特徴とする液晶表示素子。 A liquid crystal display element manufactured using the sealing agent for a liquid crystal display element according to claim 9 or the vertical conduction material according to claim 10.
PCT/JP2014/081737 2013-12-05 2014-12-01 Polymerizable monomer, polymer compound, photocurable resin composition, sealing element for liquid crystal display element, vertical conduction material, and liquid crystal display element WO2015083663A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015501601A JP6434901B2 (en) 2013-12-05 2014-12-01 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN201480058891.4A CN105683225B (en) 2013-12-05 2014-12-01 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element
KR1020167006200A KR102256146B1 (en) 2013-12-05 2014-12-01 Polymerizable monomer, polymer compound, photocurable resin composition, sealing element for liquid crystal display element, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013252325 2013-12-05
JP2013-252325 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083663A1 true WO2015083663A1 (en) 2015-06-11

Family

ID=53273425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081737 WO2015083663A1 (en) 2013-12-05 2014-12-01 Polymerizable monomer, polymer compound, photocurable resin composition, sealing element for liquid crystal display element, vertical conduction material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6434901B2 (en)
KR (1) KR102256146B1 (en)
CN (1) CN105683225B (en)
TW (1) TWI641582B (en)
WO (1) WO2015083663A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084988A1 (en) * 2018-10-26 2020-04-30 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
TWI716440B (en) * 2015-09-02 2021-01-21 日商積水化學工業股份有限公司 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
EP4310105A1 (en) * 2022-07-20 2024-01-24 Arkema France Acrylic copolymers imparting low yellowing after photocuring

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110552A1 (en) * 2016-12-16 2018-06-21 積水化学工業株式会社 Polymerizable compound, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
KR102578300B1 (en) * 2017-07-14 2023-09-13 세키스이가가쿠 고교가부시키가이샤 Sealing agent for liquid crystal display elements, top and bottom conductive materials, and liquid crystal display elements
KR20230078950A (en) * 2020-09-30 2023-06-05 세키스이가가쿠 고교가부시키가이샤 Thioxanthone compound, photopolymerization initiator, curable resin composition, display element composition, liquid crystal display element sealant, upper and lower conduction material, and liquid crystal display element
CN114805296A (en) * 2022-05-10 2022-07-29 艾坚蒙(安庆)科技发展有限公司 Thioxanthone derivative, preparation method and application thereof
CN115322328B (en) * 2022-08-19 2023-07-04 武汉长盈鑫科技有限公司 Preparation method of epoxy modified polyurethane acrylate capable of being rapidly cured with low energy

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513184A (en) * 1966-12-23 1970-05-19 Rhone Poulenc Sa Para-(dialkylamino) benzoates of organosilicon compound
JPS6016958A (en) * 1983-07-07 1985-01-28 Asahi Chem Ind Co Ltd Novel functional monomer and photo-polymerizable composition containing the same
JPS61138610A (en) * 1984-12-11 1986-06-26 Asahi Chem Ind Co Ltd Photo-sensitive composition and laminate containing same
JPH08198882A (en) * 1994-10-04 1996-08-06 Hoechst Ag Silicone-compatible photoreaction initiator and photosensitive mixture containing it
JP2004224993A (en) * 2003-01-27 2004-08-12 Nippon Kayaku Co Ltd Self-polymerization type photopolymerization initiator and photosensitive resin composition by using the same
JP2005202308A (en) * 2004-01-19 2005-07-28 Sekisui Chem Co Ltd Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2009011427A1 (en) * 2007-07-18 2009-01-22 Asahi Glass Company, Limited Compound having fluorescent functional group and method for producing polymer of the same
WO2009101016A2 (en) * 2008-02-12 2009-08-20 Basf Se Modified hybrid nanoparticles
JP2012502131A (en) * 2008-09-09 2012-01-26 アグフア・グラフイクス・ナームローゼ・フエンノートシヤツプ Polymerizable photoinitiator and radiation curable composition
WO2012011220A1 (en) * 2010-07-20 2012-01-26 日本化薬株式会社 Liquid crystal sealing agent and liquid crystal display cell using same
JP2012502130A (en) * 2008-09-09 2012-01-26 アグフア・グラフイクス・ナームローゼ・フエンノートシヤツプ Radiation curable composition
JP2013228709A (en) * 2012-03-26 2013-11-07 Sekisui Chem Co Ltd Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
US7253131B2 (en) 2001-05-16 2007-08-07 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
WO2004108790A1 (en) * 2003-06-04 2004-12-16 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
JP5152868B2 (en) 2009-06-11 2013-02-27 日本化薬株式会社 Visible light curable liquid crystal sealant and liquid crystal display cell using the same
JP5598948B2 (en) 2009-07-01 2014-10-01 独立行政法人産業技術総合研究所 Method for manufacturing piezoelectric thin film and piezoelectric thin film manufactured by the manufacturing method
CN102061065A (en) * 2009-11-12 2011-05-18 咸阳秦河复合材料有限责任公司 Photosensitive cured super resin composition for sealing liquid crystal display (LCD) and preparation method thereof
JP5886758B2 (en) * 2010-12-09 2016-03-16 協立化学産業株式会社 Compound suitable for photopolymerization initiator, photopolymerization initiator, and photocurable resin composition
JP5238909B2 (en) * 2011-04-05 2013-07-17 積水化学工業株式会社 Light-shielding sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513184A (en) * 1966-12-23 1970-05-19 Rhone Poulenc Sa Para-(dialkylamino) benzoates of organosilicon compound
JPS6016958A (en) * 1983-07-07 1985-01-28 Asahi Chem Ind Co Ltd Novel functional monomer and photo-polymerizable composition containing the same
JPS61138610A (en) * 1984-12-11 1986-06-26 Asahi Chem Ind Co Ltd Photo-sensitive composition and laminate containing same
JPH08198882A (en) * 1994-10-04 1996-08-06 Hoechst Ag Silicone-compatible photoreaction initiator and photosensitive mixture containing it
JP2004224993A (en) * 2003-01-27 2004-08-12 Nippon Kayaku Co Ltd Self-polymerization type photopolymerization initiator and photosensitive resin composition by using the same
JP2005202308A (en) * 2004-01-19 2005-07-28 Sekisui Chem Co Ltd Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2009011427A1 (en) * 2007-07-18 2009-01-22 Asahi Glass Company, Limited Compound having fluorescent functional group and method for producing polymer of the same
WO2009101016A2 (en) * 2008-02-12 2009-08-20 Basf Se Modified hybrid nanoparticles
JP2012502131A (en) * 2008-09-09 2012-01-26 アグフア・グラフイクス・ナームローゼ・フエンノートシヤツプ Polymerizable photoinitiator and radiation curable composition
JP2012502130A (en) * 2008-09-09 2012-01-26 アグフア・グラフイクス・ナームローゼ・フエンノートシヤツプ Radiation curable composition
WO2012011220A1 (en) * 2010-07-20 2012-01-26 日本化薬株式会社 Liquid crystal sealing agent and liquid crystal display cell using same
JP2013228709A (en) * 2012-03-26 2013-11-07 Sekisui Chem Co Ltd Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716440B (en) * 2015-09-02 2021-01-21 日商積水化學工業股份有限公司 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2020084988A1 (en) * 2018-10-26 2020-04-30 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP6725771B1 (en) * 2018-10-26 2020-07-22 積水化学工業株式会社 Sealant for liquid crystal display device, vertical conduction material, and liquid crystal display device
EP4310105A1 (en) * 2022-07-20 2024-01-24 Arkema France Acrylic copolymers imparting low yellowing after photocuring
WO2024018039A1 (en) * 2022-07-20 2024-01-25 Arkema France Acrylic copolymers imparting low yellowing after photocuring

Also Published As

Publication number Publication date
CN105683225B (en) 2019-09-03
TWI641582B (en) 2018-11-21
JPWO2015083663A1 (en) 2017-03-16
JP6434901B2 (en) 2018-12-05
CN105683225A (en) 2016-06-15
KR20160094929A (en) 2016-08-10
TW201538461A (en) 2015-10-16
KR102256146B1 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
JP6434901B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP5759638B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
TWI801554B (en) Photopolymerization initiator, sealant for display elements, upper and lower conduction materials, display elements and compounds
JP6454217B2 (en) Modified dialkylaminobenzoic acid-based compound, modified thioxanthone derivative, photocurable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP2013167888A (en) Sealing agent for liquid crystal display element and liquid crystal display element
JP6539160B2 (en) Sealant for liquid crystal display element and vertical conduction material
JP6408983B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP5340502B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6460797B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2016194871A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP5337318B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6126756B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6378970B2 (en) Curable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP6609396B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6046533B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP5337294B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
TWI813686B (en) Sealant for liquid crystal display element, upper and lower conduction material, and liquid crystal display element
WO2017119260A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP6031215B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017003989A (en) Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015501601

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006200

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868548

Country of ref document: EP

Kind code of ref document: A1