WO2020084988A1 - Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element - Google Patents

Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element Download PDF

Info

Publication number
WO2020084988A1
WO2020084988A1 PCT/JP2019/037512 JP2019037512W WO2020084988A1 WO 2020084988 A1 WO2020084988 A1 WO 2020084988A1 JP 2019037512 W JP2019037512 W JP 2019037512W WO 2020084988 A1 WO2020084988 A1 WO 2020084988A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
meth
crystal display
acrylate
sealant
Prior art date
Application number
PCT/JP2019/037512
Other languages
French (fr)
Japanese (ja)
Inventor
信烈 梁
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980013366.3A priority Critical patent/CN111742258A/en
Priority to JP2019555501A priority patent/JP6725771B1/en
Priority to KR1020207019760A priority patent/KR20210082126A/en
Publication of WO2020084988A1 publication Critical patent/WO2020084988A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties

Definitions

  • the present invention relates to a sealant for liquid crystal display devices, which has excellent curability with respect to long-wavelength light and has excellent low liquid crystal contamination.
  • the present invention also relates to a vertical conduction material and a liquid crystal display element using the sealant for a liquid crystal display element.
  • a photothermal combined curing type seal as disclosed in Patent Document 1 and Patent Document 2 is used.
  • a liquid crystal dropping method called a dropping method using an agent is used.
  • the dropping method first, a frame-shaped seal pattern is formed on one of the two transparent substrates with electrodes by dispensing. Next, while the sealant is uncured, liquid crystal microdroplets are dropped on the entire surface of the frame of the transparent substrate, the other transparent substrate is immediately bonded, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing. .
  • the liquid crystal display device is manufactured by heating at the time of liquid crystal annealing to perform main curing. If the substrates are bonded together under reduced pressure, a liquid crystal display device can be manufactured with extremely high efficiency, and this dropping method is now the mainstream of manufacturing methods for liquid crystal display devices.
  • a liquid crystal display unit can be narrowed down.
  • the position of the seal portion is arranged under a black matrix (hereinafter, also referred to as narrow framed design).
  • the sealant is placed directly under the black matrix, so when the dropping method is performed, the light irradiated when the sealant is photocured is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient.
  • the present invention is a sealant for a liquid crystal display device, which contains a curable resin and a photopolymerization initiator, wherein the photopolymerization initiator contains a compound represented by the following formula (1). It is an agent.
  • R 1 and R 8 are each independently a hydrogen atom or a group having a nitrogen atom at the bonding position with the aromatic ring of the thioxanthone skeleton, and at least one of R 1 and R 8 Is a group having the nitrogen atom.
  • R 2 and R 7 are each independently a hydrogen atom or a hydroxyl group, and at least one of R 2 and R 7 is a hydroxyl group.
  • R 3 to R 6 are each independently a hydrogen atom or an optional substituent. The present invention is described in detail below.
  • the sealant for liquid crystal display elements of the present invention contains a photopolymerization initiator.
  • the photopolymerization initiator includes the compound represented by the formula (1).
  • the sealant for a liquid crystal display device of the present invention is excellent in curability with respect to long wavelength light and excellent in low liquid crystal contamination. Will be things.
  • R 1 and R 8 are each independently a hydrogen atom or a group having a nitrogen atom at the bonding position with the aromatic ring of the thioxanthone skeleton, and at least one of R 1 and R 8 One is a group having the nitrogen atom.
  • the compound represented by the above formula (1) has excellent reactivity to long-wavelength light.
  • Examples of the group having a nitrogen atom include an amino group and a nitro group. Of these, an amino group is preferable. Examples of the amino group include an —NH 2 group, an —NH (CH 3 ) group, an —NH (C 2 H 5 ) group, an —N (CH 3 ) 2 group, and an —N (C 2 H 5 ) 2 group. Etc.
  • R 2 and R 7 are each independently a hydrogen atom or a hydroxyl group, and at least one of R 2 and R 7 is a hydroxyl group.
  • the compound represented by the above formula (1) has excellent low liquid crystal contamination.
  • R 3 to R 6 are each independently a hydrogen atom or an optional substituent.
  • examples of the substituent include an amino group and a nitro group.
  • the compound represented by the above formula (1) is excellent in reactivity to long-wavelength light and low liquid crystal contamination, and thus R 1 is a group having the nitrogen atom and R 2 is a hydroxyl group.
  • R 1 is a group having the nitrogen atom and R 2 is a hydroxyl group.
  • R 2 is a hydroxyl group.
  • the content of the compound represented by the formula (1) is reduced within a range capable of maintaining photocurability, so that the resulting sealant for a liquid crystal display device is a low liquid crystal. It becomes more excellent in contamination.
  • the content of the compound represented by the above formula (1) is preferably 0.05 parts by weight and 2.0 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the compound represented by the above formula (1) is 0.05 parts by weight or more, the obtained sealant for a liquid crystal display device is more excellent in curability with respect to light having a long wavelength.
  • the obtained sealant for a liquid crystal display device becomes excellent in low liquid crystal contamination.
  • the more preferable lower limit of the content of the compound represented by the above formula (1) is 0.1 part by weight, and the more preferable upper limit thereof is 1.0 part by weight.
  • the sealant for a liquid crystal display element of the present invention contains a curable resin.
  • the curable resin preferably contains a (meth) acrylic compound.
  • the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable.
  • the above-mentioned (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acryl compound” means a compound having a (meth) acryloyl group
  • the “( "Meth) acryloyl” means acryloyl or methacryloyl
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the “epoxy (meth) acrylate” refers to a compound obtained by reacting all the epoxy groups in the epoxy compound with (meth) acrylic acid.
  • Examples of monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate.
  • bifunctional compounds of the (meth) acrylic acid ester compound include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • trifunctional or higher functional compounds of the (meth) acrylic acid ester compound examples include trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, and propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol penta (meth
  • Examples of the above-mentioned epoxy (meth) acrylate include those obtained by reacting an epoxy compound with (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, and 2,2′-diallyl bisphenol A type epoxy compounds. , Hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novolac type epoxy compound, biphenyl Novolac-type epoxy compounds, naphthalene phenol novolac-type epoxy compounds, glycidyl amine type epoxy compounds, alkyl polyol type epoxy compound, a rubber-modified epoxy compounds, glycidyl ester compounds.
  • Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation) and the like.
  • Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC) and the like.
  • Examples of commercially available 2,2′-diallyl bisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC).
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA) and the like.
  • Examples of commercially available resorcinol type epoxy compounds include EX-201 (manufactured by Nagase Chemtex).
  • Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
  • Examples of commercially available sulfide type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
  • Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
  • Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA) and the like.
  • Examples of commercially available naphthalene type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC).
  • Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC).
  • Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC) and the like.
  • Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC).
  • Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company) and the like.
  • commercially available compounds include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC Co., Ltd.), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX-611.
  • Rubber-modified epoxy compounds include, for example, YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and Epolide PB (manufactured by Daicel).
  • Epolide PB manufactured by Daicel
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase Chemtex) and the like.
  • epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (any of them). And Mitsubishi Chemical Co., Ltd.), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical Co., Ltd.) and the like.
  • epoxy (meth) acrylates include, for example, epoxy (meth) acrylate manufactured by Daicel Ornex Co., epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., and epoxy (meth) manufactured by Kyoeisha Chemical Co., Ltd. Examples thereof include (meth) acrylate and epoxy (meth) acrylate manufactured by Nagase Chemtex.
  • the epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182 and the like.
  • Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020.
  • Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, Epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA, etc. are mentioned.
  • Examples of the epoxy (meth) acrylate manufactured by Nagase Chemtex include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
  • the urethane (meth) acrylate can be obtained, for example, by reacting a polyfunctional isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
  • polyfunctional isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), Hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophosphate, tetramethyl Examples include xylylene diisocyanate and 1,6,11-undecane triisocyanate.
  • polyfunctional isocyanate compound a chain-extended polyfunctional isocyanate compound obtained by reacting a polyol with an excess polyfunctional isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, monohydric alcohol mono (meth) acrylate, trihydric alcohol mono (meth) acrylate or di (meth) acrylate. , Epoxy (meth) acrylate and the like.
  • Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
  • Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate.
  • urethane (meth) acrylates examples include, for example, urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex Co., and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like. Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd.
  • the urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like.
  • urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T.
  • the curable resin may contain an epoxy compound for the purpose of, for example, improving the adhesiveness of the obtained liquid crystal display element sealant.
  • the epoxy compound include an epoxy compound which is a raw material for synthesizing the above-mentioned epoxy (meth) acrylate, a partial (meth) acryl-modified epoxy compound, and the like.
  • the partial (meth) acryl-modified epoxy compound means, for example, reacting a part of epoxy groups of an epoxy compound having two or more epoxy groups in one molecule with (meth) acrylic acid. Means a compound having one or more epoxy group and one or more (meth) acryloyl group in one molecule.
  • the (meth) acrylic compound and the epoxy compound are contained as the curable resin, or when the partial (meth) acrylic modified epoxy compound is contained, the (meth) acryloyl group and epoxy in the curable resin are contained.
  • the ratio of the (meth) acryloyl group in the total of the groups is preferably 30 mol% or more and 95 mol% or less. When the ratio of the (meth) acryloyl group is within this range, the resulting sealant for a liquid crystal display device is more excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
  • the above-mentioned curable resin has a hydrogen bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of making the obtained sealant for liquid crystal display device more excellent in low liquid crystal contamination. Is preferred.
  • the above curable resins may be used alone or in combination of two or more.
  • the liquid crystal display element sealant of the present invention may contain a sensitizer.
  • the sensitizer has a role of further improving the polymerization initiation efficiency of the photopolymerization initiator and further promoting the curing reaction of the sealant for a liquid crystal display device of the present invention.
  • sensitizer examples include ethyl 4- (dimethylamino) benzoate, 9,10-dibutoxyanthracene, 2,4-diethylthioxanthone, 2,2-dimethoxy-1,2-diphenylethan-1-one. , Benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4-benzoyl-4′-methyldiphenylsulfide and the like.
  • the content of the sensitizer is preferably 0.01 part by weight and 3 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the sensitizer is 0.01 part by weight or more, the sensitizing effect is further exhibited.
  • the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep portion without excessive absorption.
  • the more preferable lower limit of the content of the sensitizer is 0.1 part by weight, and the more preferable upper limit thereof is 1 part by weight.
  • the sealant for liquid crystal display device of the present invention may contain a thermal polymerization initiator within the range not impairing the object of the present invention.
  • the thermal polymerization initiator include those containing azo compounds, organic peroxides and the like. Among them, a polymer azo initiator composed of a polymer azo compound is preferable.
  • the above thermal polymerization initiators may be used alone or in combination of two or more.
  • the “polymer azo compound” refers to a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth) acryloyloxy group by heat. means.
  • the preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 1,000, and the preferable upper limit thereof is 300,000.
  • the more preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 5000, the more preferable upper limit thereof is 100,000, the still more preferable lower limit thereof is 10,000, and the still more preferable upper limit thereof is 90,000.
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Specific examples of the polymer azo compound include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid). And a polycondensation product of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available high-molecular azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • Examples of the azo compound which is not a polymer include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, peroxydicarbonate and the like.
  • a preferable lower limit is 0.05 part by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the sealing agent for a liquid crystal display device of the present invention becomes more excellent in thermosetting property.
  • the liquid crystal display device sealant of the present invention is excellent in low liquid crystal contamination and storage stability.
  • the more preferable lower limit of the content of the thermal polymerization initiator is 0.1 parts by weight, and the more preferable upper limit thereof is 5 parts by weight.
  • the sealant for liquid crystal display element of the present invention may contain a thermosetting agent.
  • the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazides are preferably used.
  • the above thermosetting agents may be used alone or in combination of two or more.
  • Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like.
  • Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine-Techno Inc., and the like.
  • Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
  • Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J and the like.
  • the content of the thermosetting agent is preferably 1 part by weight and 50 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermosetting agent is within this range, it is possible to make the thermosetting property more excellent without deteriorating the coating property and the like of the obtained sealant for liquid crystal display element. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
  • the sealant for liquid crystal display element of the present invention preferably contains a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient and the like.
  • An inorganic filler or an organic filler can be used as the filler.
  • the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like. The fillers may be used alone or in combination of two or more.
  • the content of the filler is preferably 30 parts by weight and 80 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the above-mentioned filler is in this range, it is more excellent in the effect of improving the adhesiveness without deteriorating the coating property and the like.
  • the more preferable lower limit of the content of the filler is 45 parts by weight, and the more preferable upper limit thereof is 65 parts by weight.
  • the sealant for a liquid crystal display device of the present invention preferably contains a silane coupling agent.
  • the above-mentioned silane coupling agent mainly has a role as an adhesion aid for favorably adhering the sealant to the substrate and the like.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to the substrate and the like, and by chemically bonding with the curable resin, the curable resin can be prevented from flowing out into the liquid crystal.
  • the silane coupling agent may be used alone or in combination of two or more kinds.
  • the preferred lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a liquid crystal display device of the present invention is 0.1 part by weight, and the preferred upper limit is 10 parts by weight.
  • the content of the silane coupling agent is within this range, the effect of improving adhesiveness while suppressing the occurrence of liquid crystal contamination is more excellent.
  • the more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit thereof is 5 parts by weight.
  • the liquid crystal display element sealant of the present invention further contains additives such as a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. May be.
  • the method for producing the sealant for a liquid crystal display element of the present invention includes, for example, a curable resin and a light curable resin using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls. Examples thereof include a method of mixing a polymerization initiator and a silane coupling agent or the like added as necessary.
  • a vertically conductive material can be produced by blending conductive fine particles with the liquid crystal display device sealant of the present invention.
  • the vertical conduction material containing the sealant for liquid crystal display element of the present invention and the conductive fine particles is also one aspect of the present invention.
  • conductive fine particles metal balls, resin fine particles having a conductive metal layer formed on the surface thereof, or the like can be used.
  • a resin fine particle having a conductive metal layer formed on the surface thereof is preferable because conductive elasticity can be achieved without damaging the transparent substrate or the like due to the excellent elasticity of the resin fine particle.
  • a liquid crystal display device having the cured product of the sealant for a liquid crystal display device of the present invention or the cured product of the vertically conductive material of the present invention is also one aspect of the present invention.
  • a liquid crystal display element of the present invention a liquid crystal display element having a narrow frame design is preferable.
  • the width of the frame portion around the liquid crystal display portion is preferably 2 mm or less.
  • the coating width of the sealant for a liquid crystal display device of the present invention when manufacturing the liquid crystal display device of the present invention is preferably 1 mm or less.
  • a liquid crystal dropping method is preferably used, and specific examples thereof include a method including the following steps. First, a step of forming a frame-shaped seal pattern by applying the liquid crystal display element sealant of the present invention to one of two transparent substrates having an electrode such as an ITO thin film and an alignment film by screen printing or dispenser application. I do. Next, a step of applying fine droplets of liquid crystal to the inside of the frame of the seal pattern of the substrate in a uncured state with the sealant for a liquid crystal display element of the present invention being applied and superimposing the other transparent substrate under vacuum is performed.
  • a liquid crystal display is obtained by a method of performing a step of photocuring the sealant by irradiating the seal pattern portion of the sealant for liquid crystal display element of the present invention with ultraviolet rays or light of a long wavelength through a cut filter or the like. An element can be obtained.
  • a step of heating the sealant to heat-cure it may be performed.
  • the sealing agent for liquid crystal display elements which is excellent in curability with respect to a long wavelength light, and excellent in low liquid crystal contamination can be provided. Further, according to the present invention, it is possible to provide a vertical conduction material and a liquid crystal display element using the sealant for a liquid crystal display element.
  • the obtained solid, 58 g of zinc powder, and 95 g of ammonium chloride were added to 700 mL of methanol, and the mixture was stirred at room temperature for 1 hour.
  • the obtained reaction liquid was filtered, the filtrate was dried under reduced pressure, and then purified by silica column chromatography to obtain a compound represented by the above formula (2).
  • the structure of the obtained compound represented by the above formula (2) was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
  • Examples 1 to 9 and Comparative Examples 1 to 7 According to the compounding ratios shown in Tables 1 and 2, the materials were mixed using a planetary stirrer and then further mixed using a three-roll mill to prepare liquid crystals of Examples 1 to 9 and Comparative Examples 1 to 7. A sealant for a display element was prepared. As the planetary stirrer, Awatori Rentaro (manufactured by Shinky Co.) was used.
  • Spacer fine particles 1 part by weight of spacer fine particles was dispersed in 100 parts by weight of the sealing agent for each liquid crystal display device obtained in Examples and Comparative Examples.
  • spacer fine particles Micropearl SI-H050 (manufactured by Sekisui Chemical Co., Ltd.) was used.
  • the sealant was filled in a dispensing syringe, defoamed, and then applied onto a glass substrate with a dispenser.
  • PSY-10E manufactured by Musashi Engineering Co., Ltd.
  • SHOTMASTER 300 manufactured by Musashi Engineering Co., Ltd.
  • a glass substrate of the same size was bonded to the substrate coated with the sealing agent under a reduced pressure of 5 Pa using a vacuum bonding device.
  • the sealing agent portion of the laminated glass substrates was irradiated with light of 100 mW / cm 2 for 10 seconds using a metal halide lamp.
  • the light irradiation was performed through a cut filter (420 nm cut filter) that cuts light having a wavelength of 420 nm or less.
  • FT-IR measurement of the sealant was performed using an infrared spectroscope, and the amount of change in the peak derived from the (meth) acryloyl group before and after light irradiation was measured.
  • FTS3000 manufactured by BIORAD
  • the peak derived from the (meth) acryloyl group is reduced by 80% or more, " ⁇ ", when decreased by 70% or more and less than 80%, " ⁇ ", and when reduced by 60% or more and less than 70%, " ⁇ ".
  • the photocurability was evaluated as "x”.
  • Spacer fine particles 1 part by weight of spacer fine particles was dispersed in 100 parts by weight of the sealant for each liquid crystal display device obtained in the examples and comparative examples, and finely dropped on one of two glass substrates with ITO thin film (30 ⁇ 40 mm).
  • the spacer fine particles Micropearl SI-H050 (manufactured by Sekisui Chemical Co., Ltd.) was used.
  • the other glass substrate with the ITO thin film was attached thereto in a cross shape, irradiated with light of 100 mW / cm 2 for 30 seconds by a metal halide lamp, and then heated at 120 ° C. for 60 minutes to obtain an adhesive test piece. .
  • the light irradiation was performed through a cut filter (420 nm cut filter) that cuts light having a wavelength of 420 nm or less.
  • a tensile test (5 mm / sec) was performed on the obtained adhesive test pieces by using chucks arranged above and below.
  • the defoaming treatment sealant was applied to one of the two rubbing-oriented films and the transparent electrode-attached substrate with a dispenser so as to form a frame having a line width of 1 mm.
  • a dispenser As the dispenser, SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used. Subsequently, minute droplets of liquid crystal were dropped and applied onto the entire surface of the frame of the sealant on the substrate with the transparent electrode, and the other substrate was immediately bonded.
  • As the liquid crystal JC-5004LA (manufactured by Chisso Corporation) was used.
  • the sealant portion was irradiated with light of 100 mW / cm 2 for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 60 minutes to obtain a liquid crystal display element.
  • the light irradiation was performed through a cut filter (420 nm cut filter) that cuts light having a wavelength of 420 nm or less.
  • the liquid crystal alignment disorder (display unevenness) after visually applying a voltage for 1 hour in an environment of 80 ° C. and 90% RH was visually confirmed. If there is no display unevenness on the liquid crystal display element, it is " ⁇ ", and if there is display unevenness near the sealant (peripheral part) of the liquid crystal display element, it is " ⁇ ".
  • the low liquid crystal contamination property was evaluated as "x" when it spread to the central part.
  • the liquid crystal display element with an evaluation of " ⁇ ” has no problem in practical use, the liquid crystal display element with " ⁇ ” has a possibility of causing a problem depending on the design, and the liquid crystal display element with "x” is displayed.
  • the device is at a level that cannot be put to practical use.
  • the sealing agent for liquid crystal display elements which is excellent in curability with respect to a long wavelength light, and excellent in low liquid crystal contamination can be provided. Further, according to the present invention, it is possible to provide a vertical conduction material and a liquid crystal display element using the sealant for a liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

One purpose of the present invention is to provide a sealing agent for liquid crystal display elements, which has excellent curability with respect to light having a long wavelength, while having excellently low possibility of liquid crystal contamination. Another purpose of the present invention is to provide a vertically conducting material and a liquid crystal display element, each of which uses this sealing agent for liquid crystal display elements. The present invention is a sealing agent for liquid crystal display elements, which contains a curable resin and a photopolymerization initiator, and which is configured such that the photopolymerization initiator contains a compound represented by formula (1). In formula (1), each of R1 and R8 independently represents a hydrogen atom or a group that has a nitrogen atom at a bonding position of a thioxanthone skeleton with an aromatic ring; at least one of R1 and R8 is the group having a nitrogen atom; each of R2 and R7 independently represents a hydrogen atom or a hydroxyl group; at least one of R2 and R7 is a hydroxyl group; and each of R3-R6 independently represents a hydrogen atom or an arbitrary substituent.

Description

液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
本発明は、長波長の光に対する硬化性に優れ、かつ、低液晶汚染性に優れる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 TECHNICAL FIELD The present invention relates to a sealant for liquid crystal display devices, which has excellent curability with respect to long-wavelength light and has excellent low liquid crystal contamination. The present invention also relates to a vertical conduction material and a liquid crystal display element using the sealant for a liquid crystal display element.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を貼り合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method of manufacturing a liquid crystal display element such as a liquid crystal display cell, from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used, a photothermal combined curing type seal as disclosed in Patent Document 1 and Patent Document 2 is used. A liquid crystal dropping method called a dropping method using an agent is used.
In the dropping method, first, a frame-shaped seal pattern is formed on one of the two transparent substrates with electrodes by dispensing. Next, while the sealant is uncured, liquid crystal microdroplets are dropped on the entire surface of the frame of the transparent substrate, the other transparent substrate is immediately bonded, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing. . After that, the liquid crystal display device is manufactured by heating at the time of liquid crystal annealing to perform main curing. If the substrates are bonded together under reduced pressure, a liquid crystal display device can be manufactured with extremely high efficiency, and this dropping method is now the mainstream of manufacturing methods for liquid crystal display devices.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718
携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出し、液晶汚染が発生するという問題があった。
また、通常、シール剤を光硬化させる方法として紫外線の照射が行われているが、特に液晶滴下工法おいては、液晶を滴下した後にシール剤を硬化させるため、紫外線を照射することによって液晶が劣化するという問題があった。そこで、紫外線による液晶の劣化を防止するため、可視光領域の長波長の光に対する反応性に優れる光重合開始剤を配合し、カットフィルター等を介した長波長の光により光硬化させることが行われている。
In the modern era where mobile devices with various liquid crystal panels such as mobile phones and portable game machines have become widespread, miniaturization of devices is the most demanded issue. As a method for downsizing the device, a liquid crystal display unit can be narrowed down. For example, the position of the seal portion is arranged under a black matrix (hereinafter, also referred to as narrow framed design).
However, in the narrow frame design, the sealant is placed directly under the black matrix, so when the dropping method is performed, the light irradiated when the sealant is photocured is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. When the curing of the sealant is insufficient in this way, there is a problem that the uncured sealant component is eluted into the liquid crystal and the liquid crystal is contaminated.
Further, UV irradiation is usually performed as a method of photo-curing the sealant, but particularly in the liquid crystal dropping method, the sealant is cured after the liquid crystal is dropped. There was a problem of deterioration. Therefore, in order to prevent deterioration of the liquid crystal due to ultraviolet rays, a photopolymerization initiator having excellent reactivity with long-wavelength light in the visible light region may be blended and photocured with long-wavelength light through a cut filter or the like. It is being appreciated.
本発明は、長波長の光に対する硬化性に優れ、かつ、低液晶汚染性に優れる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a sealant for a liquid crystal display device, which is excellent in curability for long-wavelength light and excellent in low liquid crystal contamination. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealant for a liquid crystal display element.
本発明は、硬化性樹脂と光重合開始剤とを含有する液晶表示素子用シール剤であって、上記光重合開始剤は、下記式(1)で表される化合物を含む液晶表示素子用シール剤である。 The present invention is a sealant for a liquid crystal display device, which contains a curable resin and a photopolymerization initiator, wherein the photopolymerization initiator contains a compound represented by the following formula (1). It is an agent.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(1)中、R及びRは、それぞれ独立して、水素原子、又は、チオキサントン骨格の芳香環との結合位置に窒素原子を有する基であり、R及びRのうち少なくとも一方は、該窒素原子を有する基である。R及びRは、それぞれ独立して、水素原子又は水酸基であり、R及びRのうち少なくとも一方は、水酸基である。R~Rは、それぞれ独立して、水素原子又は任意の置換基である。
以下に本発明を詳述する。
In formula (1), R 1 and R 8 are each independently a hydrogen atom or a group having a nitrogen atom at the bonding position with the aromatic ring of the thioxanthone skeleton, and at least one of R 1 and R 8 Is a group having the nitrogen atom. R 2 and R 7 are each independently a hydrogen atom or a hydroxyl group, and at least one of R 2 and R 7 is a hydroxyl group. R 3 to R 6 are each independently a hydrogen atom or an optional substituent.
The present invention is described in detail below.
液晶表示素子用シール剤に長波長の光に対する反応性に優れる光重合開始剤を配合し、長波長の光により光硬化させた場合、シール剤により液晶が汚染されることがあるという問題があった。そこで本発明者は、シール剤に用いる光重合開始剤として特定の構造を有する化合物を用いることを検討した。その結果、長波長の光に対する硬化性に優れ、かつ、低液晶汚染性に優れる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。 When a photopolymerization initiator having excellent reactivity with long-wavelength light is mixed with a sealant for a liquid crystal display device and photocured with long-wavelength light, there is a problem that the liquid crystal may be contaminated by the sealant. It was Therefore, the present inventor examined the use of a compound having a specific structure as the photopolymerization initiator used for the sealant. As a result, they have found that it is possible to obtain a sealant for liquid crystal display devices, which has excellent curability with respect to long-wavelength light and excellent low liquid crystal contamination, and has completed the present invention.
本発明の液晶表示素子用シール剤は、光重合開始剤を含有する。
上記光重合開始剤は、上記式(1)で表される化合物を含む。上記光重合開始剤として上記式(1)で表される化合物を用いることにより、本発明の液晶表示素子用シール剤は、長波長の光に対する硬化性に優れ、かつ、低液晶汚染性に優れるものとなる。
The sealant for liquid crystal display elements of the present invention contains a photopolymerization initiator.
The photopolymerization initiator includes the compound represented by the formula (1). By using the compound represented by the formula (1) as the photopolymerization initiator, the sealant for a liquid crystal display device of the present invention is excellent in curability with respect to long wavelength light and excellent in low liquid crystal contamination. Will be things.
上記式(1)中、R及びRは、それぞれ独立して、水素原子、又は、チオキサントン骨格の芳香環との結合位置に窒素原子を有する基であり、R及びRのうち少なくとも一方は、該窒素原子を有する基である。R及びRのうち少なくとも一方が上記窒素原子を有する基であることにより、上記式(1)で表される化合物は、長波長の光に対する反応性に優れるものとなる。 In the formula (1), R 1 and R 8 are each independently a hydrogen atom or a group having a nitrogen atom at the bonding position with the aromatic ring of the thioxanthone skeleton, and at least one of R 1 and R 8 One is a group having the nitrogen atom. When at least one of R 1 and R 8 is a group having the above nitrogen atom, the compound represented by the above formula (1) has excellent reactivity to long-wavelength light.
上記窒素原子を有する基としては、例えば、アミノ基、ニトロ基等が挙げられる。なかでも、アミノ基が好ましい。
上記アミノ基としては、例えば、-NH基、-NH(CH)基、-NH(C)基、-N(CH基、-N(C基等が挙げられる。
Examples of the group having a nitrogen atom include an amino group and a nitro group. Of these, an amino group is preferable.
Examples of the amino group include an —NH 2 group, an —NH (CH 3 ) group, an —NH (C 2 H 5 ) group, an —N (CH 3 ) 2 group, and an —N (C 2 H 5 ) 2 group. Etc.
上記式(1)中、R及びRは、それぞれ独立して、水素原子又は水酸基であり、R及びRのうち少なくとも一方は、水酸基である。R及びRのうち少なくとも一方が水酸基であることにより、上記式(1)で表される化合物は、低液晶汚染性に優れるものとなる。 In the above formula (1), R 2 and R 7 are each independently a hydrogen atom or a hydroxyl group, and at least one of R 2 and R 7 is a hydroxyl group. When at least one of R 2 and R 7 is a hydroxyl group, the compound represented by the above formula (1) has excellent low liquid crystal contamination.
上記式(1)中、R~Rは、それぞれ独立して、水素原子又は任意の置換基である。
上記式(1)中、R~Rが任意の置換基である場合の当該置換基としては、例えば、アミノ基、ニトロ基等が挙げられる。
In the above formula (1), R 3 to R 6 are each independently a hydrogen atom or an optional substituent.
In the above formula (1), when R 3 to R 6 are arbitrary substituents, examples of the substituent include an amino group and a nitro group.
上記式(1)で表される化合物は、長波長の光に対する反応性及び低液晶汚染性により優れることから、Rが上記窒素原子を有する基であり、かつ、Rが水酸基である化合物であることが好ましく、下記式(2)~(7)で表される化合物がより好ましい。 The compound represented by the above formula (1) is excellent in reactivity to long-wavelength light and low liquid crystal contamination, and thus R 1 is a group having the nitrogen atom and R 2 is a hydroxyl group. Are preferred, and compounds represented by the following formulas (2) to (7) are more preferred.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
上記式(1)で表される化合物は、長波長の光に対する反応性に優れるため、光硬化性を維持できる範囲で含有量を少なくすることで、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。
上記式(1)で表される化合物の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が2.0重量部である。上記式(1)で表される化合物の含有量が0.05重量部以上であることにより、得られる液晶表示素子用シール剤が長波長の光に対する硬化性により優れるものとなる。上記式(1)で表される化合物の含有量が2.0重量部以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記式(1)で表される化合物の含有量のより好ましい下限は0.1重量部、より好ましい上限は1.0重量部である。
Since the compound represented by the above formula (1) has excellent reactivity to long-wavelength light, the content of the compound represented by the formula (1) is reduced within a range capable of maintaining photocurability, so that the resulting sealant for a liquid crystal display device is a low liquid crystal. It becomes more excellent in contamination.
The content of the compound represented by the above formula (1) is preferably 0.05 parts by weight and 2.0 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the compound represented by the above formula (1) is 0.05 parts by weight or more, the obtained sealant for a liquid crystal display device is more excellent in curability with respect to light having a long wavelength. When the content of the compound represented by the above formula (1) is 2.0 parts by weight or less, the obtained sealant for a liquid crystal display device becomes excellent in low liquid crystal contamination. The more preferable lower limit of the content of the compound represented by the above formula (1) is 0.1 part by weight, and the more preferable upper limit thereof is 1.0 part by weight.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル化合物を含有することが好ましい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から1分子中に(メタ)アクリロイル基を2つ以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The sealant for a liquid crystal display element of the present invention contains a curable resin.
The curable resin preferably contains a (meth) acrylic compound.
Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable. Further, the above-mentioned (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
In the present specification, the “(meth) acryl” means acryl or methacryl, the “(meth) acryl compound” means a compound having a (meth) acryloyl group, and the “( "Meth) acryloyl" means acryloyl or methacryloyl. Further, the “(meth) acrylate” means acrylate or methacrylate. Furthermore, the "epoxy (meth) acrylate" refers to a compound obtained by reacting all the epoxy groups in the epoxy compound with (meth) acrylic acid.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy Cyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2 -Butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofur Furyl (meth) acrylate, ethyl carbitol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acryl 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth ) Acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, 2- (meth) acryl Examples thereof include loyloxyethyl phosphate and glycidyl (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional compounds of the (meth) acrylic acid ester compound include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth ) Acrylate, poly Ropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol Dicyclopentadienyl di (meth) acrylate, ethylene oxide-modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol Di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol (Meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of trifunctional or higher functional compounds of the (meth) acrylic acid ester compound include trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, and propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the above-mentioned epoxy (meth) acrylate include those obtained by reacting an epoxy compound with (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, and 2,2′-diallyl bisphenol A type epoxy compounds. , Hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novolac type epoxy compound, biphenyl Novolac-type epoxy compounds, naphthalene phenol novolac-type epoxy compounds, glycidyl amine type epoxy compounds, alkyl polyol type epoxy compound, a rubber-modified epoxy compounds, glycidyl ester compounds.
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON EXA-850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON 430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、EPICLON 726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation) and the like.
Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC) and the like.
Examples of commercially available 2,2′-diallyl bisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC).
Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA) and the like.
Examples of commercially available resorcinol type epoxy compounds include EX-201 (manufactured by Nagase Chemtex).
Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
Examples of commercially available sulfide type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA) and the like.
Examples of commercially available naphthalene type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC).
Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC).
Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC) and the like.
Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC).
Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company) and the like.
Among the above-mentioned alkyl polyol type epoxy compounds, commercially available compounds include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC Co., Ltd.), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX-611. (Manufactured by Nagase Chemtex) and the like.
Commercially available rubber-modified epoxy compounds include, for example, YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and Epolide PB (manufactured by Daicel).
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase Chemtex) and the like.
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (any of them). And Mitsubishi Chemical Co., Ltd.), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical Co., Ltd.) and the like.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Commercially available epoxy (meth) acrylates include, for example, epoxy (meth) acrylate manufactured by Daicel Ornex Co., epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., and epoxy (meth) manufactured by Kyoeisha Chemical Co., Ltd. Examples thereof include (meth) acrylate and epoxy (meth) acrylate manufactured by Nagase Chemtex.
The epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182 and the like.
Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020.
Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, Epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA, etc. are mentioned.
Examples of the epoxy (meth) acrylate manufactured by Nagase Chemtex include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
上記ウレタン(メタ)アクリレートは、例えば、多官能イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate can be obtained, for example, by reacting a polyfunctional isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
上記多官能イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the polyfunctional isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), Hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophosphate, tetramethyl Examples include xylylene diisocyanate and 1,6,11-undecane triisocyanate.
また、上記多官能イソシアネート化合物としては、ポリオールと過剰の多官能イソシアネート化合物との反応により得られる鎖延長された多官能イソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
Further, as the above-mentioned polyfunctional isocyanate compound, a chain-extended polyfunctional isocyanate compound obtained by reacting a polyol with an excess polyfunctional isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol and polycaprolactone diol.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, monohydric alcohol mono (meth) acrylate, trihydric alcohol mono (meth) acrylate or di (meth) acrylate. , Epoxy (meth) acrylate and the like.
Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Examples of commercially available urethane (meth) acrylates include, for example, urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex Co., and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth) acrylate manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210, M-1600 and the like.
The urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like.
Examples of the urethane (meth) acrylates manufactured by Shin Nakamura Chemical Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A and the like.
Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T. To be
上記硬化性樹脂は、得られる液晶表示素子用シール剤の接着性を向上させること等を目的として、エポキシ化合物を含有してもよい。上記エポキシ化合物としては、例えば、上述したエポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物や、部分(メタ)アクリル変性エポキシ化合物等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ化合物とは、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
The curable resin may contain an epoxy compound for the purpose of, for example, improving the adhesiveness of the obtained liquid crystal display element sealant. Examples of the epoxy compound include an epoxy compound which is a raw material for synthesizing the above-mentioned epoxy (meth) acrylate, a partial (meth) acryl-modified epoxy compound, and the like.
In the present specification, the partial (meth) acryl-modified epoxy compound means, for example, reacting a part of epoxy groups of an epoxy compound having two or more epoxy groups in one molecule with (meth) acrylic acid. Means a compound having one or more epoxy group and one or more (meth) acryloyl group in one molecule.
上記硬化性樹脂として上記(メタ)アクリル化合物と上記エポキシ化合物とを含有する場合、又は、上記部分(メタ)アクリル変性エポキシ化合物を含有する場合、上記硬化性樹脂中の(メタ)アクリロイル基とエポキシ基との合計中における(メタ)アクリロイル基の比率を30モル%以上95モル%以下になるようにすることが好ましい。上記(メタ)アクリロイル基の比率がこの範囲であることにより、液晶汚染の発生を抑制しつつ、得られる液晶表示素子用シール剤が接着性により優れるものとなる。 When the (meth) acrylic compound and the epoxy compound are contained as the curable resin, or when the partial (meth) acrylic modified epoxy compound is contained, the (meth) acryloyl group and epoxy in the curable resin are contained. The ratio of the (meth) acryloyl group in the total of the groups is preferably 30 mol% or more and 95 mol% or less. When the ratio of the (meth) acryloyl group is within this range, the resulting sealant for a liquid crystal display device is more excellent in adhesiveness while suppressing the occurrence of liquid crystal contamination.
上記硬化性樹脂は、得られる液晶表示素子用シール剤を低液晶汚染性により優れるものとする観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The above-mentioned curable resin has a hydrogen bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of making the obtained sealant for liquid crystal display device more excellent in low liquid crystal contamination. Is preferred.
上記硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The above curable resins may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤は、増感剤を含有してもよい。上記増感剤は、上記光重合開始剤の重合開始効率をより向上させて、本発明の液晶表示素子用シール剤の硬化反応をより促進させる役割を有する。 The liquid crystal display element sealant of the present invention may contain a sensitizer. The sensitizer has a role of further improving the polymerization initiation efficiency of the photopolymerization initiator and further promoting the curing reaction of the sealant for a liquid crystal display device of the present invention.
上記増感剤としては、例えば、4-(ジメチルアミノ)安息香酸エチル、9,10-ジブトキシアントラセン、2,4-ジエチルチオキサントン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等が挙げられる。 Examples of the sensitizer include ethyl 4- (dimethylamino) benzoate, 9,10-dibutoxyanthracene, 2,4-diethylthioxanthone, 2,2-dimethoxy-1,2-diphenylethan-1-one. , Benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4-benzoyl-4′-methyldiphenylsulfide and the like.
上記増感剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が3重量部である。上記増感剤の含有量が0.01重量部以上であることにより、増感効果がより発揮される。上記増感剤の含有量が3重量部以下であることにより、吸収が大きくなり過ぎずに深部まで光を伝えることができる。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。 The content of the sensitizer is preferably 0.01 part by weight and 3 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the sensitizer is 0.01 part by weight or more, the sensitizing effect is further exhibited. When the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep portion without excessive absorption. The more preferable lower limit of the content of the sensitizer is 0.1 part by weight, and the more preferable upper limit thereof is 1 part by weight.
本発明の液晶表示素子用シール剤は、本発明の目的を阻害しない範囲で、熱重合開始剤を含有してもよい。
上記熱重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。
上記熱重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealant for liquid crystal display device of the present invention may contain a thermal polymerization initiator within the range not impairing the object of the present invention.
Examples of the thermal polymerization initiator include those containing azo compounds, organic peroxides and the like. Among them, a polymer azo initiator composed of a polymer azo compound is preferable.
The above thermal polymerization initiators may be used alone or in combination of two or more.
In the present specification, the “polymer azo compound” refers to a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth) acryloyloxy group by heat. means.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。 The preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 1,000, and the preferable upper limit thereof is 300,000. When the number average molecular weight of the high molecular weight azo compound is within this range, it can be easily mixed with the curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 5000, the more preferable upper limit thereof is 100,000, the still more preferable lower limit thereof is 10,000, and the still more preferable upper limit thereof is 90,000.
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ化合物としては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid). And a polycondensation product of polydimethylsiloxane having a terminal amino group.
Examples of commercially available high-molecular azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). To be
Examples of the azo compound which is not a polymer include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, peroxydicarbonate and the like.
上記熱重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱重合開始剤の含有量が0.05重量部以上であることにより、本発明の液晶表示素子用シール剤が熱硬化性により優れるものとなる。上記熱重合開始剤の含有量が10重量部以下であることにより、本発明の液晶表示素子用シール剤が低液晶汚染性や保存安定性により優れるものとなる。上記熱重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 Regarding the content of the thermal polymerization initiator, a preferable lower limit is 0.05 part by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal polymerization initiator is 0.05 parts by weight or more, the sealing agent for a liquid crystal display device of the present invention becomes more excellent in thermosetting property. When the content of the thermal polymerization initiator is 10 parts by weight or less, the liquid crystal display device sealant of the present invention is excellent in low liquid crystal contamination and storage stability. The more preferable lower limit of the content of the thermal polymerization initiator is 0.1 parts by weight, and the more preferable upper limit thereof is 5 parts by weight.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
上記熱硬化剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealant for liquid crystal display element of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazides are preferably used.
The above thermosetting agents may be used alone or in combination of two or more.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like.
Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine-Techno Inc., and the like.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J and the like.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、熱硬化性により優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight and 50 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermosetting agent is within this range, it is possible to make the thermosetting property more excellent without deteriorating the coating property and the like of the obtained sealant for liquid crystal display element. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善等を目的として充填剤を含有することが好ましい。 The sealant for liquid crystal display element of the present invention preferably contains a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient and the like.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
An inorganic filler or an organic filler can be used as the filler.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
The fillers may be used alone or in combination of two or more.
上記充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が30重量部、好ましい上限が80重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は45重量部、より好ましい上限は65重量部である。 The content of the filler is preferably 30 parts by weight and 80 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the above-mentioned filler is in this range, it is more excellent in the effect of improving the adhesiveness without deteriorating the coating property and the like. The more preferable lower limit of the content of the filler is 45 parts by weight, and the more preferable upper limit thereof is 65 parts by weight.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealant for a liquid crystal display device of the present invention preferably contains a silane coupling agent. The above-mentioned silane coupling agent mainly has a role as an adhesion aid for favorably adhering the sealant to the substrate and the like.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to the substrate and the like, and by chemically bonding with the curable resin, the curable resin can be prevented from flowing out into the liquid crystal.
The silane coupling agent may be used alone or in combination of two or more kinds.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferred lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a liquid crystal display device of the present invention is 0.1 part by weight, and the preferred upper limit is 10 parts by weight. When the content of the silane coupling agent is within this range, the effect of improving adhesiveness while suppressing the occurrence of liquid crystal contamination is more excellent. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit thereof is 5 parts by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The liquid crystal display element sealant of the present invention further contains additives such as a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. May be.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、光重合開始剤と、必要に応じて添加するシランカップリング剤等とを混合する方法等が挙げられる。 The method for producing the sealant for a liquid crystal display element of the present invention includes, for example, a curable resin and a light curable resin using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls. Examples thereof include a method of mixing a polymerization initiator and a silane coupling agent or the like added as necessary.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertically conductive material can be produced by blending conductive fine particles with the liquid crystal display device sealant of the present invention. The vertical conduction material containing the sealant for liquid crystal display element of the present invention and the conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, metal balls, resin fine particles having a conductive metal layer formed on the surface thereof, or the like can be used. Of these, a resin fine particle having a conductive metal layer formed on the surface thereof is preferable because conductive elasticity can be achieved without damaging the transparent substrate or the like due to the excellent elasticity of the resin fine particle.
本発明の液晶表示素子用シール剤の硬化物、又は、本発明の上下導通材料の硬化物を有する液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子としては、狭額縁設計の液晶表示素子が好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の液晶表示素子を製造する際の本発明の液晶表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
A liquid crystal display device having the cured product of the sealant for a liquid crystal display device of the present invention or the cured product of the vertically conductive material of the present invention is also one aspect of the present invention.
As the liquid crystal display element of the present invention, a liquid crystal display element having a narrow frame design is preferable. Specifically, the width of the frame portion around the liquid crystal display portion is preferably 2 mm or less.
The coating width of the sealant for a liquid crystal display device of the present invention when manufacturing the liquid crystal display device of the present invention is preferably 1 mm or less.
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極及び配向膜を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、本発明の液晶表示素子用シール剤のシールパターン部分に紫外線、又は、カットフィルター等を介して長波長の光を照射することにより、シール剤を光硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、上記シール剤を光硬化させる工程に加えて、シール剤を加熱して熱硬化させる工程を行ってもよい。
As a method for manufacturing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used, and specific examples thereof include a method including the following steps.
First, a step of forming a frame-shaped seal pattern by applying the liquid crystal display element sealant of the present invention to one of two transparent substrates having an electrode such as an ITO thin film and an alignment film by screen printing or dispenser application. I do. Next, a step of applying fine droplets of liquid crystal to the inside of the frame of the seal pattern of the substrate in a uncured state with the sealant for a liquid crystal display element of the present invention being applied and superimposing the other transparent substrate under vacuum is performed. After that, a liquid crystal display is obtained by a method of performing a step of photocuring the sealant by irradiating the seal pattern portion of the sealant for liquid crystal display element of the present invention with ultraviolet rays or light of a long wavelength through a cut filter or the like. An element can be obtained. In addition to the step of photo-curing the sealant, a step of heating the sealant to heat-cure it may be performed.
本発明によれば、長波長の光に対する硬化性に優れ、かつ、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing agent for liquid crystal display elements which is excellent in curability with respect to a long wavelength light, and excellent in low liquid crystal contamination can be provided. Further, according to the present invention, it is possible to provide a vertical conduction material and a liquid crystal display element using the sealant for a liquid crystal display element.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(式(2)で表される化合物の作製)
2-ヒドロキシチオキサントン20gと硝酸セリウムアンモニウム12gとを酢酸58mLに加え、室温で1時間撹拌した。2-ヒドロキシチオキサントンは、特開昭58-79991号公報に開示された方法により合成した。
その後、得られた混合液に1mol/Lの水酸化ナトリウム水溶液300mLを加えて沈殿を析出させた後、濾過して固液分離を行った。得られた固体と亜鉛粉体58gと塩化アンモニウム95gとをメタノール700mLに加え、室温で1時間撹拌した。得られた反応液を濾過し、ろ液を減圧乾燥させた後、シリカカラムクロマトグラフィーで精製し、上記式(2)で表される化合物を得た。
なお、得られた上記式(2)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of Compound Represented by Formula (2))
20 g of 2-hydroxythioxanthone and 12 g of cerium ammonium nitrate were added to 58 mL of acetic acid, and the mixture was stirred at room temperature for 1 hour. 2-Hydroxythioxanthone was synthesized by the method disclosed in JP-A-58-79991.
Thereafter, 300 mL of a 1 mol / L sodium hydroxide aqueous solution was added to the obtained mixed liquid to precipitate a precipitate, which was then filtered to perform solid-liquid separation. The obtained solid, 58 g of zinc powder, and 95 g of ammonium chloride were added to 700 mL of methanol, and the mixture was stirred at room temperature for 1 hour. The obtained reaction liquid was filtered, the filtrate was dried under reduced pressure, and then purified by silica column chromatography to obtain a compound represented by the above formula (2).
The structure of the obtained compound represented by the above formula (2) was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
(式(3)、(4)、(5)、(6)で表される化合物の作製)
1.5mol/Lの硝酸水溶液50mLにパラホルムアルデヒド25gを加えて、80℃に加熱してパラホルムアルデヒドを完全に溶解させた後、放冷し室温に戻した。得られた水溶液に対して、式(2)で表される化合物5gと水酸化ホウ素ナトリウム5gとをテトラヒドロフラン100mLに溶解させた水溶液をゆっくりと滴下した。その後、得られた溶液を1mol/Lの水酸化ナトリウム水溶液で中和し、酢酸エチルで抽出した。続いて、シリカカラムクロマトグラフィーで精製し、上記式(3)、(4)、(5)、(6)で表される化合物をそれぞれ得た。
なお、得られた上記式(3)、(4)、(5)、(6)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of compounds represented by formulas (3), (4), (5) and (6))
Paraformaldehyde (25 g) was added to a 1.5 mol / L nitric acid aqueous solution (50 mL), and the mixture was heated to 80 ° C. to completely dissolve paraformaldehyde, and then allowed to cool to room temperature. An aqueous solution obtained by dissolving 5 g of the compound represented by the formula (2) and 5 g of sodium borohydride in 100 mL of tetrahydrofuran was slowly added dropwise to the obtained aqueous solution. Then, the obtained solution was neutralized with a 1 mol / L sodium hydroxide aqueous solution and extracted with ethyl acetate. Subsequently, the product was purified by silica column chromatography to obtain the compounds represented by the above formulas (3), (4), (5) and (6), respectively.
The structures of the obtained compounds represented by the above formulas (3), (4), (5) and (6) were confirmed by 1 H-NMR, 13 C-NMR and FT-IR.
(式(7)で表される化合物の作製)
パラホルムアルデヒド25gをアセトアルデヒド25gに変更したこと以外は、上記「(式(3)、(4)、(5)、(6)で表される化合物の作製)」と同様にして上記式(7)で表される化合物を得た。
なお、得られた上記式(7)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of Compound Represented by Formula (7))
The above formula (7) was carried out in the same manner as in the above "(Preparation of compound represented by formula (3), (4), (5), (6))" except that 25 g of paraformaldehyde was changed to 25 g of acetaldehyde. A compound represented by
The structure of the obtained compound represented by the above formula (7) was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
(式(8)で表される化合物の作製)
ジクロロメタン100重量部に、4-(ジメチルアミノ)ベンゾイルクロリド10重量部と、触媒であるピリジン0.5重量部とを加えて、0℃の環境下にてグリシドール1重量部を滴下し、放冷後、室温にて終夜撹拌した。得られた反応液からジクロロメタンを除去することにより反応生成物を得た。
N,N-ジメチルホルムアミド100重量部に、得られた反応生成物10重量部と、2-ヒドロキシ-9H-チオキサンテン-9-オン5重量部とを添加し、塩基性触媒として炭酸カリウム存在下で、120℃で48時間撹拌しながら反応させた。得られた反応液からN,N-ジメチルホルムアミドを除去し、カラムクロマトグラフィで精製することにより、下記式(8)で表される化合物を得た。
なお、得られた下記式(8)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of Compound Represented by Formula (8))
To 100 parts by weight of dichloromethane, 10 parts by weight of 4- (dimethylamino) benzoyl chloride and 0.5 part by weight of pyridine as a catalyst were added, and 1 part by weight of glycidol was added dropwise under an environment of 0 ° C., and allowed to cool. After that, the mixture was stirred at room temperature overnight. A reaction product was obtained by removing dichloromethane from the obtained reaction solution.
To 100 parts by weight of N, N-dimethylformamide, 10 parts by weight of the obtained reaction product and 5 parts by weight of 2-hydroxy-9H-thioxanthen-9-one were added, and potassium carbonate was used as a basic catalyst. Then, the reaction was carried out at 120 ° C. for 48 hours with stirring. N, N-dimethylformamide was removed from the obtained reaction solution and purified by column chromatography to obtain a compound represented by the following formula (8).
The structure of the obtained compound represented by the following formula (8) was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(9)で表される化合物の作製)
特開昭58-79991号公報に開示された方法により、下記式(9)で表される化合物(2-ヒドロキシチオキサントン)を合成した。
(Preparation of Compound Represented by Formula (9))
A compound (2-hydroxythioxanthone) represented by the following formula (9) was synthesized by the method disclosed in JP-A-58-79991.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(10)で表される化合物の作製)
2-ヒドロキシチオキサントン20gをチオキサントン20gに変更したこと以外は、上記「(式(3)、(4)、(5)、(6)で表される化合物の作製)」と同様にして、下記式(10)で表される化合物を得た。
なお、得られた下記式(10)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Preparation of Compound Represented by Formula (10))
In the same manner as in the above “(Preparation of compound represented by formula (3), (4), (5), (6))” except that 20 g of 2-hydroxythioxanthone was changed to 20 g of thioxanthone, the following formula A compound represented by (10) was obtained.
The structure of the obtained compound represented by the following formula (10) was confirmed by 1 H-NMR, 13 C-NMR, and FT-IR.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(実施例1~9及び比較例1~7)
表1、2に記載された配合比に従い、各材料を遊星式撹拌機を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~9及び比較例1~7の液晶表示素子用シール剤を調製した。遊星式撹拌機としては、あわとり練太郎(シンキー社製)を用いた。
(Examples 1 to 9 and Comparative Examples 1 to 7)
According to the compounding ratios shown in Tables 1 and 2, the materials were mixed using a planetary stirrer and then further mixed using a three-roll mill to prepare liquid crystals of Examples 1 to 9 and Comparative Examples 1 to 7. A sealant for a display element was prepared. As the planetary stirrer, Awatori Rentaro (manufactured by Shinky Co.) was used.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluations were carried out on the respective sealants for liquid crystal display elements obtained in the examples and comparative examples. The results are shown in Tables 1 and 2.
(光硬化性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部にスペーサー微粒子1重量部を分散させた。スペーサー微粒子としては、ミクロパールSI-H050(積水化学工業社製)を用いた。次いで、シール剤をディスペンス用のシリンジに充填し、脱泡処理を行ってから、ディスペンサーにてガラス基板上に塗布した。ディスペンス用のシリンジとしては、PSY-10E(武蔵エンジニアリング社製)を用い、ディスペンサーとしては、SHOTMASTER300(武蔵エンジニアリング社製)を用いた。シール剤を塗布した基板に、真空貼り合わせ装置にて5Paの減圧下にて同サイズのガラス基板を貼り合わせた。貼り合わせたガラス基板のシール剤部分にメタルハライドランプを用いて100mW/cmの光を10秒照射した。光照射は、波長420nm以下の光をカットするカットフィルター(420nmカットフィルター)を介して行った。
赤外分光装置を用いてシール剤のFT-IR測定を行い、(メタ)アクリロイル基由来ピークの光照射前後での変化量を測定した。赤外分光装置としては、FTS3000(BIORAD社製)を用いた。光照射後に(メタ)アクリロイル基由来のピークが80%以上減少した場合を「◎」、70%以上80%未満減少した場合を「○」、60%以上70%未満減少した場合を「△」、光照射後の(メタ)アクリロイル基由来のピークの減少が60%未満であった場合を「×」として光硬化性を評価した。
(Photocurable)
1 part by weight of spacer fine particles was dispersed in 100 parts by weight of the sealing agent for each liquid crystal display device obtained in Examples and Comparative Examples. As the spacer fine particles, Micropearl SI-H050 (manufactured by Sekisui Chemical Co., Ltd.) was used. Next, the sealant was filled in a dispensing syringe, defoamed, and then applied onto a glass substrate with a dispenser. As the dispensing syringe, PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used, and as the dispenser, SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used. A glass substrate of the same size was bonded to the substrate coated with the sealing agent under a reduced pressure of 5 Pa using a vacuum bonding device. The sealing agent portion of the laminated glass substrates was irradiated with light of 100 mW / cm 2 for 10 seconds using a metal halide lamp. The light irradiation was performed through a cut filter (420 nm cut filter) that cuts light having a wavelength of 420 nm or less.
FT-IR measurement of the sealant was performed using an infrared spectroscope, and the amount of change in the peak derived from the (meth) acryloyl group before and after light irradiation was measured. As the infrared spectroscope, FTS3000 (manufactured by BIORAD) was used. After the light irradiation, the peak derived from the (meth) acryloyl group is reduced by 80% or more, "○", when decreased by 70% or more and less than 80%, "○", and when reduced by 60% or more and less than 70%, "△". When the decrease in the peak derived from the (meth) acryloyl group after light irradiation was less than 60%, the photocurability was evaluated as "x".
(接着性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部にスペーサー微粒子1重量部を分散させ、2枚のITO薄膜付きガラス基板(30×40mm)のうちの一方に微小滴下した。スペーサー微粒子としては、ミクロパールSI-H050(積水化学工業社製)を用いた。これにもう一方のITO薄膜付きガラス基板を十字状に貼り合わせ、メタルハライドランプにて100mW/cmの光を30秒照射した後、120℃で60分加熱することによって接着性試験片を得た。光照射は、波長420nm以下の光をカットするカットフィルター(420nmカットフィルター)を介して行った。
得られた接着性試験片について、上下に配したチャックにて引っ張り試験(5mm/sec)を行った。得られた測定値(kgf)をシール塗布断面積(cm)で除した値が、2.5kgf/cm以上であった場合を「○」、1.5kgf/cm以上2.5kgf/cm未満であった場合を「△」、1.5kgf/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
1 part by weight of spacer fine particles was dispersed in 100 parts by weight of the sealant for each liquid crystal display device obtained in the examples and comparative examples, and finely dropped on one of two glass substrates with ITO thin film (30 × 40 mm). . As the spacer fine particles, Micropearl SI-H050 (manufactured by Sekisui Chemical Co., Ltd.) was used. The other glass substrate with the ITO thin film was attached thereto in a cross shape, irradiated with light of 100 mW / cm 2 for 30 seconds by a metal halide lamp, and then heated at 120 ° C. for 60 minutes to obtain an adhesive test piece. . The light irradiation was performed through a cut filter (420 nm cut filter) that cuts light having a wavelength of 420 nm or less.
A tensile test (5 mm / sec) was performed on the obtained adhesive test pieces by using chucks arranged above and below. A value obtained by dividing the obtained measured values (kgf) a seal coating cross sectional area (cm 2), a case was 2.5 kgf / cm 2 or more "○", 1.5 kgf / cm 2 or more 2.5 kgf / the case was less than cm 2 "△", and evaluated the adhesiveness of the case was less than 1.5 kgf / cm 2 as "×".
(低液晶汚染性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部にスペーサー微粒子1重量部を分散させた。スペーサー微粒子としては、ミクロパールSP-250(積水化学工業社製)を用いた。次いで、シール剤をディスペンス用のシリンジに充填し、脱泡処理を行った。ディスペンス用のシリンジとしては、PSY-10E(武蔵エンジニアリング社製)を用いた。脱泡処理後のシール剤を、2枚のラビング済み配向膜及び透明電極付き基板の一方に線幅が1mmの枠状となるようにディスペンサーで塗布した。ディスペンサーとしては、SHOTMASTER300(武蔵エンジニアリング社製)を用いた。
続いて液晶の微小滴を透明電極付き基板のシール剤の枠内全面に滴下塗布し、すぐに他方の基板を貼り合わせた。液晶としては、JC-5004LA(チッソ社製)を用いた。その後、シール剤部分にメタルハライドランプを用いて100mW/cmの光を30秒照射した後、120℃で60分加熱することによって液晶表示素子を得た。光照射は、波長420nm以下の光をカットするカットフィルター(420nmカットフィルター)を介して行った。
得られた液晶表示素子について、80℃、90%RHの環境下にて1時間電圧印加状態とした後の液晶配向乱れ(表示むら)を目視にて確認した。
液晶表示素子に表示むらが全く見られなかった場合を「○」、液晶表示素子のシール剤付近(周辺部)に表示むらが見られた場合を「△」、表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として低液晶汚染性を評価した。
なお、評価が「○」の液晶表示素子は実用に全く問題のないレベルであり、「△」の液晶表示素子は設計によっては問題になる可能性があるレベルであり、「×」の液晶表示素子は実用に耐えないレベルである。
(Low liquid crystal contamination)
1 part by weight of spacer fine particles was dispersed in 100 parts by weight of the sealing agent for each liquid crystal display device obtained in Examples and Comparative Examples. Micropearl SP-250 (manufactured by Sekisui Chemical Co., Ltd.) was used as the spacer fine particles. Next, the sealing agent was filled in a dispensing syringe, and defoaming treatment was performed. As a syringe for dispensing, PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used. The defoaming treatment sealant was applied to one of the two rubbing-oriented films and the transparent electrode-attached substrate with a dispenser so as to form a frame having a line width of 1 mm. As the dispenser, SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used.
Subsequently, minute droplets of liquid crystal were dropped and applied onto the entire surface of the frame of the sealant on the substrate with the transparent electrode, and the other substrate was immediately bonded. As the liquid crystal, JC-5004LA (manufactured by Chisso Corporation) was used. Then, the sealant portion was irradiated with light of 100 mW / cm 2 for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 60 minutes to obtain a liquid crystal display element. The light irradiation was performed through a cut filter (420 nm cut filter) that cuts light having a wavelength of 420 nm or less.
With respect to the obtained liquid crystal display element, the liquid crystal alignment disorder (display unevenness) after visually applying a voltage for 1 hour in an environment of 80 ° C. and 90% RH was visually confirmed.
If there is no display unevenness on the liquid crystal display element, it is "○", and if there is display unevenness near the sealant (peripheral part) of the liquid crystal display element, it is "△". The low liquid crystal contamination property was evaluated as "x" when it spread to the central part.
The liquid crystal display element with an evaluation of "○" has no problem in practical use, the liquid crystal display element with "△" has a possibility of causing a problem depending on the design, and the liquid crystal display element with "x" is displayed. The device is at a level that cannot be put to practical use.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
本発明によれば、長波長の光に対する硬化性に優れ、かつ、低液晶汚染性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing agent for liquid crystal display elements which is excellent in curability with respect to a long wavelength light, and excellent in low liquid crystal contamination can be provided. Further, according to the present invention, it is possible to provide a vertical conduction material and a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (5)

  1. 硬化性樹脂と光重合開始剤とを含有する液晶表示素子用シール剤であって、
    前記光重合開始剤は、下記式(1)で表される化合物を含むことを特徴とする液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、R及びRは、それぞれ独立して、水素原子、又は、チオキサントン骨格の芳香環との結合位置に窒素原子を有する基であり、R及びRのうち少なくとも一方は、該窒素原子を有する基である。R及びRは、それぞれ独立して、水素原子又は水酸基であり、R及びRのうち少なくとも一方は、水酸基である。R~Rは、それぞれ独立して、水素原子又は任意の置換基である。
    A sealant for a liquid crystal display device, which contains a curable resin and a photopolymerization initiator,
    The photopolymerization initiator contains a compound represented by the following formula (1), which is a sealant for a liquid crystal display device.
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), R 1 and R 8 are each independently a hydrogen atom or a group having a nitrogen atom at the bonding position with the aromatic ring of the thioxanthone skeleton, and at least one of R 1 and R 8 Is a group having the nitrogen atom. R 2 and R 7 are each independently a hydrogen atom or a hydroxyl group, and at least one of R 2 and R 7 is a hydroxyl group. R 3 to R 6 are each independently a hydrogen atom or an optional substituent.
  2. 前記窒素原子を有する基は、アミノ基である請求項1記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, wherein the group having a nitrogen atom is an amino group.
  3. 前記式(1)で表される化合物の含有量が、前記硬化性樹脂100重量部に対して0.05重量部以上2.0重量部以下である請求項1又は2記載の液晶表示素子用シール剤。 The liquid crystal display device according to claim 1, wherein the content of the compound represented by the formula (1) is 0.05 parts by weight or more and 2.0 parts by weight or less with respect to 100 parts by weight of the curable resin. Sealing agent.
  4. 請求項1、2又は3記載の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料。 A vertical conduction material containing the sealant for liquid crystal display device according to claim 1, 2 or 3 and conductive fine particles.
  5. 請求項1、2若しくは3記載の液晶表示素子用シール剤の硬化物又は請求項4記載の上下導通材料の硬化物を有する液晶表示素子。 A liquid crystal display device comprising the cured product of the sealant for a liquid crystal display device according to claim 1, 2 or 3 or the cured product of the vertical conduction material according to claim 4.
PCT/JP2019/037512 2018-10-26 2019-09-25 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element WO2020084988A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980013366.3A CN111742258A (en) 2018-10-26 2019-09-25 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2019555501A JP6725771B1 (en) 2018-10-26 2019-09-25 Sealant for liquid crystal display device, vertical conduction material, and liquid crystal display device
KR1020207019760A KR20210082126A (en) 2018-10-26 2019-09-25 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018201727 2018-10-26
JP2018-201727 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020084988A1 true WO2020084988A1 (en) 2020-04-30

Family

ID=70331556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037512 WO2020084988A1 (en) 2018-10-26 2019-09-25 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6725771B1 (en)
KR (1) KR20210082126A (en)
CN (1) CN111742258A (en)
TW (1) TWI809206B (en)
WO (1) WO2020084988A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071116A1 (en) * 2020-09-30 2022-04-07 積水化学工業株式会社 Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083663A1 (en) * 2013-12-05 2015-06-11 積水化学工業株式会社 Polymerizable monomer, polymer compound, photocurable resin composition, sealing element for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2017002362A1 (en) * 2015-06-30 2017-01-05 三井化学株式会社 Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, liquid crystal display panel and method for producing liquid crystal display panel
WO2017104391A1 (en) * 2015-12-17 2017-06-22 三井化学株式会社 Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, and liquid crystal display panel and method for producing same
JP2018104662A (en) * 2016-12-22 2018-07-05 日本化薬株式会社 Photocurable resin composition and electronic component sealant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
EP1405888A1 (en) 2001-05-16 2004-04-07 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
JP5152868B2 (en) * 2009-06-11 2013-02-27 日本化薬株式会社 Visible light curable liquid crystal sealant and liquid crystal display cell using the same
WO2012137749A1 (en) * 2011-04-05 2012-10-11 積水化学工業株式会社 Light-shielding sealing agent for liquid crystal display element, top-to-bottom conductive material, and liquid crystal display element
KR102255550B1 (en) * 2013-11-13 2021-05-24 세키스이가가쿠 고교가부시키가이샤 Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element
KR102588717B1 (en) * 2015-06-02 2023-10-12 세키스이가가쿠 고교가부시키가이샤 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083663A1 (en) * 2013-12-05 2015-06-11 積水化学工業株式会社 Polymerizable monomer, polymer compound, photocurable resin composition, sealing element for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2017002362A1 (en) * 2015-06-30 2017-01-05 三井化学株式会社 Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, liquid crystal display panel and method for producing liquid crystal display panel
WO2017104391A1 (en) * 2015-12-17 2017-06-22 三井化学株式会社 Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, and liquid crystal display panel and method for producing same
JP2018104662A (en) * 2016-12-22 2018-07-05 日本化薬株式会社 Photocurable resin composition and electronic component sealant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071116A1 (en) * 2020-09-30 2022-04-07 積水化学工業株式会社 Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2022071116A1 (en) * 2020-09-30 2022-04-07
JP7144627B2 (en) 2020-09-30 2022-09-29 積水化学工業株式会社 Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN115996959A (en) * 2020-09-30 2023-04-21 积水化学工业株式会社 Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Also Published As

Publication number Publication date
TW202028408A (en) 2020-08-01
JPWO2020084988A1 (en) 2021-02-15
TWI809206B (en) 2023-07-21
JP6725771B1 (en) 2020-07-22
KR20210082126A (en) 2021-07-02
CN111742258A (en) 2020-10-02

Similar Documents

Publication Publication Date Title
JP6655219B1 (en) Photopolymerization initiator, sealant for display element, vertical conductive material, display element, and compound
JPWO2015083663A1 (en) Polymerizable monomer, polymer compound, photocurable resin composition, sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6454217B2 (en) Modified dialkylaminobenzoic acid-based compound, modified thioxanthone derivative, photocurable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP7084550B2 (en) Sealant for liquid crystal display element, vertical conduction material, display element
JP7000158B2 (en) Sealing agent for liquid crystal display element, vertical conduction material and liquid crystal display element
JP6703650B1 (en) Liquid crystal element sealant, vertical conduction material, and liquid crystal element
JP5340502B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7084560B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6725771B1 (en) Sealant for liquid crystal display device, vertical conduction material, and liquid crystal display device
WO2016194871A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JPWO2019013194A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7253117B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP6997359B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6821102B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6849866B1 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
WO2022255452A1 (en) Sealing agent for liquid crystal display elements and liquid crystal display element
WO2021177314A1 (en) Curable resin composition, display element sealant, liquid crystal display element sealant, vertical conductive material, display element, electronic component adhesive, and electronic component
JP6031215B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2016044187A (en) Curable resin composition, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2023032543A1 (en) Liquid crystal display element sealant and liquid crystal display element
JPWO2017119407A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019555501

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875890

Country of ref document: EP

Kind code of ref document: A1