WO2022255452A1 - Sealing agent for liquid crystal display elements and liquid crystal display element - Google Patents

Sealing agent for liquid crystal display elements and liquid crystal display element Download PDF

Info

Publication number
WO2022255452A1
WO2022255452A1 PCT/JP2022/022496 JP2022022496W WO2022255452A1 WO 2022255452 A1 WO2022255452 A1 WO 2022255452A1 JP 2022022496 W JP2022022496 W JP 2022022496W WO 2022255452 A1 WO2022255452 A1 WO 2022255452A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
meth
crystal display
acrylate
sealant
Prior art date
Application number
PCT/JP2022/022496
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 山脇
秀幸 林
剛 大浦
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022537078A priority Critical patent/JP7201881B1/en
Priority to CN202280023421.9A priority patent/CN117043670A/en
Priority to KR1020247000209A priority patent/KR20240017908A/en
Publication of WO2022255452A1 publication Critical patent/WO2022255452A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0625Polyacrylic esters or derivatives thereof

Definitions

  • the present invention relates to a sealant for liquid crystal display elements, which is excellent in visible light curability and low liquid crystal contamination, and which can suppress nozzle clogging during application.
  • the present invention also relates to a liquid crystal display element using the sealant for a liquid crystal display element.
  • a photo-heat curing type seal disclosed in Patent Document 1 and Patent Document 2
  • a liquid crystal dropping method called a dropping method using an agent is used.
  • the dripping method first, a frame-shaped seal pattern is formed on one of two electrode-attached transparent substrates by dispensing.
  • the sealant is not yet cured, liquid crystal microdroplets are dropped on the entire surface of the frame of the transparent substrate, the other transparent substrate is immediately attached, and the sealant is irradiated with light such as ultraviolet rays for temporary curing. .
  • the liquid crystal is annealed for final curing by heating, and a liquid crystal display element is produced. If the bonding of the substrates is performed under reduced pressure, the liquid crystal display element can be manufactured with extremely high efficiency.
  • Patent Document 3 discloses a camphorquinone-based compound and the like.
  • the present disclosure 1 is a sealant for liquid crystal display elements containing a curable resin and a photopolymerization initiator,
  • the gel fraction is 70% or more when irradiated with light of 100 mW/cm 2 for 30 seconds using an LED lamp having a peak top at a wavelength of 450 nm, and
  • the sealant for liquid crystal display elements has a gel fraction of less than 10% when irradiated with light of 400 lux for 48 hours using an LED lamp having a peak top at a wavelength of 580 nm.
  • a second aspect of the present disclosure is a liquid crystal display device having a cured product of the sealant for a liquid crystal display device of the first disclosure. The present invention will be described in detail below.
  • the present inventors irradiate the sealant by using an LED lamp having a peak top at a long wavelength (for example, a wavelength of 450 nm) without passing through a cut filter. It was considered to harden to produce a liquid crystal display element.
  • a sealant containing a camphorquinone-based compound is used as a photopolymerization initiator and such an LED lamp is used to fabricate a liquid crystal display element, it has become clear that liquid crystal contamination occurs.
  • the present inventors used a sealant containing a camphorquinone-based compound as a photopolymerization initiator, and produced a liquid crystal display device using an LED lamp having a peak top in the wavelength region on the longer wavelength side without a cut filter. It was thought that the cause of the liquid crystal contamination in some cases was that the sealant was not sufficiently cured due to the low reactivity of the camphorquinone compound. Therefore, the present inventors have investigated the use of a photopolymerization initiator such as a titanocene compound, which is superior in reactivity to visible light. The sealant sometimes clogged the nozzle of the device.
  • the application of a sealant using a photopolymerization initiator that is highly reactive to visible light is performed under a yellow lamp designed so that light with a wavelength of 500 nm or less is not irradiated in order to prevent the reaction of the photopolymerization initiator.
  • the present inventors considered that the cause of nozzle clogging during application of the sealant is that the photopolymerization initiator reacts even with the light from the yellow lamp. Therefore, the present inventors have found that the gel fraction when irradiated with light of 100 mW / cm 2 for 30 seconds using an LED lamp having a peak top at 450 nm is a specific value or more, and has a peak top at a wavelength of 580 nm.
  • the sealant for a liquid crystal display element of the present invention has a gel fraction of 70% or more. With a gel fraction of 70% or more when irradiated with light of 100 mW/cm 2 for 30 seconds using the 450 nm LED lamp, the sealant for a liquid crystal display element of the present invention has visible light curability and low liquid crystal contamination. It will be excellent in quality.
  • a preferred lower limit of the gel fraction is 80%, and a more preferred lower limit is 85%, when irradiated with light of 100 mW/cm 2 for 30 seconds using the 450 nm LED lamp.
  • the "gel fraction" means the degree to which the curable resin contained in the sealant is crosslinked and polymerized.
  • the filler and the like mixed at this time are gelled at the same time by being taken into the polymer.
  • the gel fraction can be calculated by the following formula.
  • Gel fraction (% by weight) ((G2-G0)/(G1-G0)) x 100
  • Specific work is as follows. A sealant is spread between two polyethylene terephthalate (PET) films to a thickness of 300 ⁇ m.
  • PET film include PET5011 (manufactured by Lintec Corporation). After irradiating light from one side of the PET film with a designated LED lamp and metal halide lamp, the two PET films are peeled off.
  • the sealant does not have tackiness, the cured sealant is peeled off from the PET film and then cut into strips of 1 cm x 2 cm. prevent it from being released from any other location.
  • the sealant is tacky, the sealant is collected on the plane of the microspatula and wrapped in a 200-mesh metal mesh so that the sealant is not released outside the lattice of the mesh.
  • the weight of the metal mesh to be used is measured as G0
  • the total weight of the sealant and the metal mesh is measured as G1. Note that G0 should be 1 g or more and less than 3 g, and (G1-G0) should be 0.2 g or more and less than 0.4 g.
  • 200 mesh is an index representing the fineness of the mesh, and indicates that the number of metal threads per inch is 200.
  • a metal mesh wrapped with a sealing agent is attached to a screw tube No. 1. 8 (manufactured by Maruem), 70 g of acetone is added to the screw tube and allowed to stand for 3 hours. The metal mesh enveloping the sealing agent present in the acetone is taken out with tweezers and a new screw tube No. 8 (manufactured by Maruem), 70 g of fresh acetone is added to the screw tube, and the tube is allowed to stand for another 2 hours. After taking out the metal mesh wrapped with the sealant with tweezers, it is dried in an oven at 80° C. under normal pressure for 2 hours.
  • FIG. 1 shows the emission spectrum of UELCL-P-450-X.
  • the illuminance of the 450 nm LED lamp is expressed in units of mW/cm 2 when the absolute value calibration wavelength is set to 450 nm using an ultraviolet thin illuminance meter UIT- ⁇ LED (manufactured by Ushio Inc.).
  • the liquid crystal display element sealing agent of the present invention has a gel fraction of 10% when irradiated with light of 400 lux for 48 hours using an LED lamp having a peak top at a wavelength of 580 nm (hereinafter also referred to as "580 nm LED lamp"). is less than When the gel fraction is less than 10% when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp, the sealant for liquid crystal display elements of the present invention can suppress nozzle clogging during application. becomes possible.
  • a preferred upper limit of the gel fraction is 7%, and a more preferred upper limit is 3%, when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp.
  • Examples of the 580 nm LED lamp include ECOHILUX HES-YF LDG32T Y22/22 (manufactured by Iris Ohyama Co., Ltd.).
  • FIG. 2 shows the emission spectrum of ECOHILUX HES-YF LDG32T ⁇ Y22/22.
  • the illuminance of the 580 nm LED lamp is expressed in units of lux (lx) when using a digital illuminance meter TM-201L (manufactured by TENMARS).
  • the sealant for liquid crystal display elements of the present invention contains a curable resin.
  • the curable resin preferably contains a (meth)acrylic compound.
  • the (meth)acrylic compound include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, and urethane (meth)acrylates. Among them, epoxy (meth)acrylate is preferred.
  • the (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule from the viewpoint of reactivity.
  • the above “(meth)acryl” means acrylic or methacryl
  • the above “(meth)acrylic compound” means a compound having a (meth)acryloyl group
  • the above “( meth)acryloyl” means acryloyl or methacryloyl.
  • the above-mentioned “(meth)acrylate” means acrylate or methacrylate.
  • the above-mentioned “epoxy (meth)acrylate” represents a compound obtained by reacting all epoxy groups in an epoxy compound with (meth)acrylic acid.
  • monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • t-butyl (meth)acrylate 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, iso myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate,
  • bifunctional ones include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) acrylate, polypropylene glycol di(meth)acrylate, neopen
  • trifunctional or higher ones include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri( meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol penta(meth)acryl
  • Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
  • epoxy compounds that are raw materials for synthesizing the epoxy (meth)acrylate include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, and 2,2′-diallylbisphenol A type epoxy compounds. , hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolac-type epoxy compounds, ortho-cresol novolac-type epoxy compounds, dicyclopentadiene novolak-type epoxy compounds, biphenyl novolak-type epoxy compounds, naphthalenephenol novolak-type epoxy compounds, glycidylamine-type epoxy compounds, alkylpolyol-type epoxy compounds, rubber-modified epoxy compounds , glycidyl ester compounds, and the like.
  • bisphenol A type epoxy compounds include, for example, jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC Corporation).
  • Examples of commercially available 2,2'-diallylbisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC Corporation).
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
  • Commercially available resorcinol-type epoxy compounds include, for example, EX-201 (manufactured by Nagase ChemteX Corporation).
  • commercially available biphenyl-type epoxy compounds include, for example, jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.). Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA). Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation). Examples of commercially available phenolic novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation). Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation).
  • Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC Corporation).
  • Commercially available biphenyl novolac type epoxy compounds include, for example, NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
  • Examples of commercially available alkyl polyol type epoxy compounds include ZX-1542 (manufactured by Nippon Steel Chemical & Materials), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX. -611 (manufactured by Nagase ChemteX Corporation) and the like.
  • Examples of commercially available rubber-modified epoxy compounds include YR-450 and YR-207 (both manufactured by Nippon Steel Chemical & Materials) and Epolead PB (manufactured by Daicel).
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Other commercially available epoxy compounds include YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei), jER1031, and jER1032. (all manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
  • epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Allnex, epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Industry, epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. ( meth) acrylate, epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation, and the like.
  • Epoxy Ester M-600A Epoxy Ester 40EM, Epoxy Ester 70PA, Epoxy Ester 200PA, Epoxy Ester 80MFA, Epoxy Ester 3002M, Epoxy Ester 3002A, Epoxy Ester 1600A, Epoxy Ester 3000M, Epoxy Ester 3000A, Epoxy Ester 200EA, Epoxy Ester 400EA and the like.
  • Examples of epoxy (meth)acrylates manufactured by Nagase ChemteX Co., Ltd. include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
  • the urethane (meth)acrylate can be obtained, for example, by reacting a polyfunctional isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
  • polyfunctional isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), Hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris(isocyanatophenyl) thiophosphate, tetramethyl xylylene diisocyanate, 1,6,11-undecane triisocyanate, and the like.
  • MDI diphenylmethane-4,4'-diisocyanate
  • polyfunctional isocyanate compound a chain-extended polyfunctional isocyanate compound obtained by reacting a polyol with an excess polyfunctional isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and the like.
  • Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylates, dihydric alcohol mono(meth)acrylates, trihydric alcohol mono(meth)acrylates and di(meth)acrylates. , epoxy (meth)acrylate, and the like.
  • Examples of the hydroxyalkyl mono(meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. mentioned.
  • Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, glycerin and the like.
  • Examples of the epoxy (meth)acrylate include bisphenol A type epoxy acrylate.
  • urethane (meth) acrylates examples include urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Allnex, and urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
  • Examples of the urethane (meth)acrylates manufactured by Toagosei Co., Ltd. examples include M-1100, M-1200, M-1210 and M-1600.
  • urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. be done.
  • the curable resin may contain an epoxy compound for the purpose of improving the adhesiveness of the obtained sealing agent for liquid crystal display elements.
  • the epoxy compound include an epoxy compound that serves as a raw material for synthesizing the epoxy (meth)acrylate described above, a partially (meth)acryl-modified epoxy compound, and the like.
  • the partially (meth)acrylic-modified epoxy compound means, for example, reacting a part of the epoxy group of an epoxy compound having two or more epoxy groups in one molecule with (meth)acrylic acid. means a compound having one or more epoxy groups and one or more (meth)acryloyl groups in one molecule, which can be obtained by
  • the curable resin contains the (meth)acrylic compound and the epoxy compound, or when the partially (meth)acryl-modified epoxy compound is contained, the (meth)acryloyl group in the curable resin and the epoxy It is preferable that the ratio of the (meth)acryloyl group in the total of the groups is 30 mol % or more and 95 mol % or less. When the ratio of the (meth)acryloyl group is within this range, the resulting sealant for liquid crystal display elements has excellent adhesion while suppressing the occurrence of liquid crystal contamination.
  • the curable resin has a hydrogen-bonding unit such as —OH group, —NH— group, or —NH 2 group, from the viewpoint of making the obtained sealing agent for liquid crystal display element more excellent in low liquid crystal contamination resistance. is preferred.
  • the curable resins may be used alone, or two or more of them may be used in combination.
  • the sealant for liquid crystal display elements of the present invention contains a photopolymerization initiator.
  • the initiator or the combination of the photopolymerization initiator and the sensitizer described below can be adjusted by adjusting the type and content ratio.
  • the gel fraction when irradiated with light of 100 mW / cm 2 for 30 seconds using the 450 nm LED lamp, and the gel fraction when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp Compounds represented by the following formulas (1-1) to (1-3) are preferred because they facilitate adjustment of the gel fractions within the respective ranges described above.
  • Camphorquinone is also preferable as the photopolymerization initiator when it is used in combination with a sensitizer described later.
  • a preferable lower limit is 0.3 parts by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the photopolymerization initiator is 0.3 parts by weight or more, the obtained sealing agent for liquid crystal display elements is excellent in visible light curability and low liquid crystal contamination resistance.
  • the content of the photopolymerization initiator is 10 parts by weight or less, the resulting sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination.
  • a more preferable lower limit to the content of the photopolymerization initiator is 0.5 parts by weight, and a more preferable upper limit is 4 parts by weight.
  • the sealing compound for liquid crystal display elements of the present invention may contain a sensitizer.
  • the sensitizer in combination with the camphorquinone, the gel fraction when 100 mW/cm 2 light is irradiated for 30 seconds using the 450 nm LED lamp , and the gel fraction when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp can be easily adjusted.
  • the sensitizer when used in combination with the camphorquinone, the gel fraction when irradiated with light of 100 mW / cm 2 for 30 seconds using the 450 nm LED lamp, and 400 lux using the 580 nm LED lamp When the light is irradiated for 48 hours, it becomes easy to adjust the gel fraction to the range described above, so the compound represented by the following formula (2-1), the following formula (2-2) are preferred.
  • the content of the sensitizer has a preferred lower limit of 0.001 parts by weight and a preferred upper limit of 0.5 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the sensitizer is within this range, the obtained sealing agent for liquid crystal display elements is excellent in visible light curability and low liquid crystal contamination, and also has the effect of suppressing nozzle clogging during coating. become excellent.
  • a more preferable lower limit to the content of the sensitizer is 0.005 parts by weight, and a more preferable upper limit is 0.1 parts by weight.
  • the sealant for liquid crystal display elements of the present invention may contain a thermal polymerization initiator as long as the object of the present invention is not impaired.
  • the thermal polymerization initiator include those composed of azo compounds, organic peroxides, and the like. Among them, a polymeric azo initiator composed of a polymeric azo compound is preferable.
  • the above thermal polymerization initiators may be used alone, or two or more of them may be used in combination.
  • the term "polymeric azo compound” refers to a compound having an azo group and a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth)acryloyloxy group by heat. means.
  • a preferable lower limit of the number average molecular weight of the above high-molecular azo compound is 1,000, and a preferable upper limit thereof is 300,000.
  • the lower limit of the number average molecular weight of the high-molecular azo compound is more preferably 5,000, the upper limit is 100,000, the lower limit is still more preferably 10,000, and the upper limit is still more preferably 90,000.
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group one having a polyethylene oxide structure is preferable.
  • Specific examples of the high-molecular azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis(4-cyanopentanoic acid). and a polycondensate of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available polymeric azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). be done.
  • Examples of non-polymeric azo compounds include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • organic peroxides examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides and peroxydicarbonates.
  • the content of the thermal polymerization initiator has a preferable lower limit of 0.05 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the sealing agent for liquid crystal display elements of the present invention becomes excellent in thermosetting property.
  • the sealant for liquid crystal display elements of the present invention is excellent in low liquid crystal contamination and storage stability.
  • a more preferred lower limit to the content of the thermal polymerization initiator is 0.1 parts by weight, and a more preferred upper limit is 5 parts by weight.
  • the sealing compound for liquid crystal display elements of the present invention may contain a thermosetting agent.
  • the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among them, organic acid hydrazides are preferably used.
  • the thermosetting agents may be used alone, or two or more of them may be used in combination.
  • Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide.
  • Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Ltd., and the like.
  • Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
  • Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH, and Amicure UDH-J.
  • the content of the thermosetting agent has a preferable lower limit of 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermosetting agent is within this range, the obtained sealing compound for liquid crystal display elements can be made more excellent in thermosetting properties without deteriorating the applicability and the like.
  • a more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
  • the sealant for liquid crystal display elements of the present invention preferably contains a filler for the purpose of improving viscosity, improving adhesiveness due to a stress dispersion effect, improving coefficient of linear expansion, and the like.
  • An inorganic filler or an organic filler can be used as the filler.
  • inorganic fillers include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
  • the filler is preferable because it has the effect of promoting light scattering and improving the gel fraction when irradiated with light of 100 mW/cm 2 for 30 seconds using a 450 nm LED lamp.
  • organic fillers are more preferable than inorganic fillers from the viewpoint of ensuring light transmittance at the same time.
  • the above fillers may be used alone, or two or more of them may be used in combination.
  • a preferable lower limit is 10 parts by weight and a preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the filler is within this range, the effect of improving adhesiveness and the like is excellent without deteriorating coatability and the like.
  • a more preferable lower limit of the filler content is 20 parts by weight, and a more preferable upper limit thereof is 50 parts by weight.
  • the sealing compound for liquid crystal display elements of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent mainly serves as an adhesion assistant for good adhesion between the sealing agent and the substrate.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
  • the silane coupling agents may be used alone, or two or more of them may be used in combination.
  • a preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the liquid crystal display element sealing compound of the present invention is 0.1 parts by weight, and a preferable upper limit thereof is 10 parts by weight.
  • the content of the silane coupling agent is within this range, the effect of improving adhesion while suppressing the occurrence of liquid crystal contamination is more excellent.
  • a more preferable lower limit to the content of the silane coupling agent is 0.3 parts by weight, and a more preferable upper limit is 5 parts by weight.
  • the sealing agent for liquid crystal display elements of the present invention further contains additives such as reactive diluents, thixotropic agents, spacers, curing accelerators, antifoaming agents, leveling agents and polymerization inhibitors, if necessary. may
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three-roll mixer is used to mix a curable resin with light.
  • the conductive fine particles a metal ball, a resin fine particle having a conductive metal layer formed on its surface, or the like can be used.
  • the one in which a conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
  • a liquid crystal display element having a cured product of the sealant for a liquid crystal display element of the present invention is also one aspect of the present invention.
  • a liquid crystal display element having a narrow frame design is preferable.
  • the width of the frame portion around the liquid crystal display section is 2 mm or less.
  • the coating width of the sealant for a liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is 1 mm or less.
  • a liquid crystal dropping method is preferably used, and specific examples thereof include a method including the following steps.
  • a step is performed in which the liquid crystal liquid crystal sealing agent of the present invention is in an uncured state, and liquid crystal microdroplets are applied dropwise within the frame of the seal pattern of the substrate, and the other transparent substrate is superimposed under vacuum.
  • a liquid crystal display element can be obtained by a method of performing a step of photocuring the sealing agent by irradiating the sealing pattern portion of the sealing agent for a liquid crystal display element of the present invention with light through a cut filter or the like.
  • a step of heating the sealant to thermally cure it may be performed.
  • the sealing compound for liquid crystal display elements which is excellent in visible light curability and low liquid-crystal contamination property, and can suppress the nozzle clogging at the time of application
  • the extracted solution was washed with saturated aqueous sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and concentrated to obtain product (A2).
  • 3 parts by weight of the obtained product (A2), 0.76 parts by weight of hydroxylammonium chloride, and 0.86 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours.
  • the resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous magnesium sulfate and concentrated to obtain the product (B2).
  • Examples 1 to 10 and Comparative Examples 1 to 6 According to the compounding ratio described in Tables 1 and 2, after mixing each material using a planetary stirrer, the liquid crystals of Examples 1 to 10 and Comparative Examples 1 to 6 were further mixed using three rolls. A sealant for display elements was prepared. Awatori Mixer (manufactured by Thinky Corporation) was used as the planetary stirrer. As a pretreatment, the resulting liquid crystal display element sealing compound was defoamed with ARV-310LED (manufactured by Thinky Corporation). Each liquid crystal display element sealant was spread between two polyethylene terephthalate (PET) films (“PET5011” manufactured by Lintec Corporation) so as to have a thickness of 300 ⁇ m.
  • PET polyethylene terephthalate
  • the two PET films were separated. If the sealant does not have tackiness, the cured sealant is peeled off from the PET film and then cut into strips of 1 cm x 2 cm. Prevented from being emitted from other places. On the other hand, when the sealant had tack, the sealant was collected on the plane of the microspatula and wrapped with a 200-mesh metal mesh so that the sealant was not released from places other than the grid of the mesh. At this time, the weight of the metal mesh used was measured as G0, and the total weight of the sealant and the metal mesh was measured as G1.
  • G0 was set to 1 g or more and less than 3 g
  • (G1-G0) was set to 0.2 g or more and less than 0.4 g.
  • a metal mesh wrapped with a sealing agent is attached to a screw tube No. 1. 8 (manufactured by Maruem), 70 g of acetone was added to the screw tube and allowed to stand for 3 hours. The metal mesh enveloping the sealing agent present in the acetone is taken out with tweezers and a new screw tube No. 8 (manufactured by Maruem), 70 g of new acetone was added to the screw tube, and the tube was allowed to stand for another 2 hours.
  • the metal mesh wrapped with the sealant was taken out with tweezers, it was dried in an oven at 80° C. under normal pressure for 2 hours. After drying, the weight of the metal mesh wrapped with the sealant was measured and designated as G2.
  • the above work was performed in a darkroom of 1 lux or less.
  • a TENMARS digital illuminance meter TM-201L (manufactured by TENMARS) was used to measure the illuminance of the work environment.
  • the gel fraction was measured by inserting the obtained values of G0 to G2 into the above formula.
  • UELCL-P-450-X manufactured by iGraphics
  • a 580 nm LED lamp was used in place of the 450 nm LED lamp, and light of 400 lux was irradiated for 48 hours, and the gel fraction of the sealing agent after light irradiation was measured in the same manner.
  • the 580 nm LED lamp ECOHILUX HES-YF LDG32T Y22/22 (manufactured by Iris Ohyama Co., Ltd.) was used.
  • a metal halide lamp was used to irradiate light of 100 mW/cm 2 for 30 seconds through a cut filter that cuts light of 340 nm or less (340 nm cut filter). was used to measure the gel fraction.
  • the liquid crystal display element sealants obtained in Examples 7, 9, and 10 were irradiated with light of 100 mW/cm 2 for 30 seconds through a 340 nm cut filter, and the gel fraction was not measured. .
  • Each obtained gel fraction is shown in Tables 1 and 2.
  • the inside of the syringe was decompressed at a pressure at which the sealant did not drip from the tip of the nozzle and the sealant did not disappear from the tip of the nozzle, and the syringe was allowed to stand still for 48 hours while being sucked back. After that, a pressure of 100 kPa was applied to the inside of the syringe, and nozzle clogging was evaluated as " ⁇ " when the sealant was ejected from the tip of the nozzle, and "x" when it was not ejected.
  • PSY-10EU-OR manufactured by Musashi Engineering Co., Ltd.
  • HN-0.3N manufactured by Musashi Engineering Co., Ltd.
  • SHOTMASTER 300 manufactured by Musashi Engineering Co., Ltd.
  • Engineering Co., Ltd. was used. This evaluation was performed under the environment of irradiating light of 400 lux using a 580 nm LED lamp.
  • ECOHILUX HES-YF LDG32T Y22/22 manufactured by Iris Ohyama
  • TM-201L manufactured by TENMARS
  • sealant was performed under an environment in which light of 1 lux or less was irradiated using a 580 nm LED lamp.
  • a 580 nm LED lamp As the 580 nm LED lamp, ECOHILUX HES-YF LDG32T Y22/22 (manufactured by Iris Ohyama Co., Ltd.) was used. Subsequently, microdroplets of the liquid crystal taken out from the sample bottle were dropped and applied to the entire surface of the frame on the substrate, and another glass substrate was superimposed in a vacuum. The vacuum was released and a 450 nm LED lamp was used to irradiate 100 mW/cm 2 light for 30 seconds.
  • UELCL-P-450-X manufactured by iGraphics
  • the sealant was thermally cured by heating at 120° C. for 1 hour to obtain a liquid crystal display element.
  • a liquid crystal property evaluation system manufactured by Toyo Technica Co., Ltd., "6254 type"
  • an AC voltage of 5 V and 1 Hz is applied to the obtained liquid crystal display element at 25° C., and the holding voltage is measured after 1 second.
  • the voltage holding ratio of the liquid crystal was calculated.
  • the voltage holding rate was 95% or more, " ⁇ ", when it was 80% or more and less than 95%, " ⁇ ", and when it was less than 80%, " ⁇ ", Low liquid crystal contamination was evaluated. did.
  • the sealing compound for liquid crystal display elements which is excellent in visible light curability and low liquid-crystal contamination property, and can suppress the nozzle clogging at the time of application

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)

Abstract

The purpose of the present invention is to provide a sealing agent for liquid crystal display elements, the sealing agent having excellent visible light curability and low liquid crystal staining property and capable of suppressing nozzle clogging when applied. Another purpose of the present invention is to provide a liquid crystal display element which is formed using said sealing agent for liquid crystal display elements. The present invention pertains to a sealing agent for liquid crystal display elements, the sealing agent containing a curable resin and a photopolymerization initiator, wherein the gel fraction when light of 100 mW/cm2 is applied for 30 seconds using an LED lamp having a peak top at a wavelength of 450 nm is 70% or more, and the gel fraction when light of 400 lux is applied for 48 hours using an LED lamp having a peak top at a wavelength of 580 nm is less than 10%.

Description

液晶表示素子用シール剤及び液晶表示素子Sealant for liquid crystal display element and liquid crystal display element
本発明は、可視光硬化性及び低液晶汚染性に優れ、かつ、塗布時のノズル詰まりを抑制することができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる液晶表示素子に関する。 TECHNICAL FIELD The present invention relates to a sealant for liquid crystal display elements, which is excellent in visible light curability and low liquid crystal contamination, and which can suppress nozzle clogging during application. The present invention also relates to a liquid crystal display element using the sealant for a liquid crystal display element.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を貼り合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used, a photo-heat curing type seal disclosed in Patent Document 1 and Patent Document 2 A liquid crystal dropping method called a dropping method using an agent is used.
In the dripping method, first, a frame-shaped seal pattern is formed on one of two electrode-attached transparent substrates by dispensing. Next, while the sealant is not yet cured, liquid crystal microdroplets are dropped on the entire surface of the frame of the transparent substrate, the other transparent substrate is immediately attached, and the sealant is irradiated with light such as ultraviolet rays for temporary curing. . After that, the liquid crystal is annealed for final curing by heating, and a liquid crystal display element is produced. If the bonding of the substrates is performed under reduced pressure, the liquid crystal display element can be manufactured with extremely high efficiency.
特開2001-133794号公報JP-A-2001-133794 国際公開第02/092718号WO 02/092718 国際公開第2018/038016号WO2018/038016
携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出し、液晶汚染が発生するという問題があった。
通常、シール剤を光硬化させる方法として紫外線の照射が行われているが、特に液晶滴下工法においては、液晶を滴下した後にシール剤を硬化させるため、紫外線を照射することによって液晶が劣化するという問題があった。そこで、紫外線による液晶の劣化を防止するため、シール剤に可視光領域の光に対して反応性を有する光重合開始剤を配合し、カットフィルターを介した光の照射によりシール剤を硬化させることが行われており、このような光重合開始剤として、特許文献3には、カンファーキノン系化合物等が開示されている。
2. Description of the Related Art In today's world where mobile devices with liquid crystal panels such as mobile phones and portable game machines are widely used, miniaturization of devices is the most demanded issue. As a method for miniaturizing the device, narrowing the frame of the liquid crystal display portion is mentioned, and for example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as narrow frame design).
However, in the narrow frame design, the sealant is placed directly under the black matrix, so if the drip method is used, the light emitted during the photo-curing of the sealant is blocked and does not reach the inside of the sealant. There was a problem that curing was insufficient. When the curing of the sealant is insufficient, the uncured sealant component dissolves into the liquid crystal, causing a problem of liquid crystal contamination.
Normally, UV irradiation is used to photo-cure the sealant, but especially in the liquid crystal dropping method, the sealant is cured after the liquid crystal is dropped, so the UV irradiation causes the liquid crystal to deteriorate. I had a problem. Therefore, in order to prevent deterioration of the liquid crystal due to ultraviolet rays, a photopolymerization initiator that is reactive to light in the visible light region is added to the sealant, and the sealant is cured by irradiation with light through a cut filter. As such a photopolymerization initiator, Patent Document 3 discloses a camphorquinone-based compound and the like.
本発明は、可視光硬化性及び低液晶汚染性に優れ、かつ、塗布時のノズル詰まりを抑制することができる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a sealant for a liquid crystal display element, which is excellent in visible light curability and low liquid crystal contamination, and which can suppress nozzle clogging during application. Another object of the present invention is to provide a liquid crystal display device using the sealant for a liquid crystal display device.
本開示1は、硬化性樹脂と光重合開始剤とを含有する液晶表示素子用シール剤であって、
波長450nmにピークトップを有するLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率が70%以上であり、かつ、
波長580nmにピークトップを有するLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率が10%未満である液晶表示素子用シール剤である。
本開示2は、本開示1の液晶表示素子用シール剤の硬化物を有する液晶表示素子である。
以下に本発明を詳述する。
The present disclosure 1 is a sealant for liquid crystal display elements containing a curable resin and a photopolymerization initiator,
The gel fraction is 70% or more when irradiated with light of 100 mW/cm 2 for 30 seconds using an LED lamp having a peak top at a wavelength of 450 nm, and
The sealant for liquid crystal display elements has a gel fraction of less than 10% when irradiated with light of 400 lux for 48 hours using an LED lamp having a peak top at a wavelength of 580 nm.
A second aspect of the present disclosure is a liquid crystal display device having a cured product of the sealant for a liquid crystal display device of the first disclosure.
The present invention will be described in detail below.
本発明者らは、エネルギーロスや製造コストを低減する観点から、カットフィルターを介さずに長波長(例えば、波長450nm)にピークトップを有するLEDランプを用いて光照射を行うことでシール剤を硬化させて液晶表示素子を作製することを検討した。しかしながら、光重合開始剤としてカンファーキノン系化合物を含むシール剤を用い、このようなLEDランプを用いて液晶表示素子を作製した場合、液晶汚染が発生することが明らかとなった。
本発明者らは、光重合開始剤としてカンファーキノン系化合物を含むシール剤を用い、カットフィルターを介さずに長波長側の波長領域にピークトップを有するLEDランプを用いて液晶表示素子を作製した場合に液晶汚染が発生する原因が、該カンファーキノン系化合物の反応性が低いため、シール剤が充分に硬化できていないことにあると考えた。そこで本発明者らは、可視光に対する反応性により優れるチタノセン化合物等の光重合開始剤を用いることを検討したが、このような光重合開始剤を用いた場合、シール剤を塗布する際に塗布装置のノズルにシール剤が詰まることがあった。通常、可視光に対する反応性に優れる光重合開始剤を用いたシール剤の塗布は、該光重合開始剤の反応を防止するため波長500nm以下の光が照射されないように設計されたイエローランプ下にて行われるが、本発明者らは、シール剤を塗布する際のノズル詰まりの原因が、該イエローランプの光でも該光重合開始剤が反応していることにあると考えた。そこで本発明者らは、450nmにピークトップを有するLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率が特定値以上であり、かつ、波長580nmにピークトップを有するLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率が特定値未満となるようにシール剤を調製することを検討した。その結果、可視光硬化性及び低液晶汚染性に優れ、かつ、塗布時のノズル詰まりを抑制することができる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
From the viewpoint of reducing energy loss and manufacturing costs, the present inventors irradiate the sealant by using an LED lamp having a peak top at a long wavelength (for example, a wavelength of 450 nm) without passing through a cut filter. It was considered to harden to produce a liquid crystal display element. However, when a sealant containing a camphorquinone-based compound is used as a photopolymerization initiator and such an LED lamp is used to fabricate a liquid crystal display element, it has become clear that liquid crystal contamination occurs.
The present inventors used a sealant containing a camphorquinone-based compound as a photopolymerization initiator, and produced a liquid crystal display device using an LED lamp having a peak top in the wavelength region on the longer wavelength side without a cut filter. It was thought that the cause of the liquid crystal contamination in some cases was that the sealant was not sufficiently cured due to the low reactivity of the camphorquinone compound. Therefore, the present inventors have investigated the use of a photopolymerization initiator such as a titanocene compound, which is superior in reactivity to visible light. The sealant sometimes clogged the nozzle of the device. Normally, the application of a sealant using a photopolymerization initiator that is highly reactive to visible light is performed under a yellow lamp designed so that light with a wavelength of 500 nm or less is not irradiated in order to prevent the reaction of the photopolymerization initiator. However, the present inventors considered that the cause of nozzle clogging during application of the sealant is that the photopolymerization initiator reacts even with the light from the yellow lamp. Therefore, the present inventors have found that the gel fraction when irradiated with light of 100 mW / cm 2 for 30 seconds using an LED lamp having a peak top at 450 nm is a specific value or more, and has a peak top at a wavelength of 580 nm. Preparation of the sealant was investigated so that the gel fraction would be less than a specific value when irradiated with light of 400 lux for 48 hours using an LED lamp. As a result, the present inventors have found that it is possible to obtain a sealant for liquid crystal display elements which is excellent in visible light curability and low liquid crystal staining property and which can suppress nozzle clogging during application, and has completed the present invention. .
本発明の液晶表示素子用シール剤は、波長450nmにピークトップを有するLEDランプ(以下、「450nmLEDランプ」ともいう)を用いて100mW/cmの光を30秒間照射した際のゲル分率が70%以上である。上記450nmLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率が70%以上であることにより、本発明の液晶表示素子用シール剤は、可視光硬化性及び低液晶汚染性に優れるものとなる。上記450nmLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率の好ましい下限は80%、より好ましい下限は85%である。
なお、本明細書において上記「ゲル分率」は、シール剤中に含まれる硬化性樹脂が架橋しポリマー化している度合いを意味する。なお、この際混合している充填剤等もポリマーの中に取り込まれることで同時にゲル化したものと見なすことができる。
また、上記ゲル分率は、次式で算出することができる。
 ゲル分率(重量%)=((G2-G0)÷(G1-G0))×100
具体的な作業としては、次に示す通りである。
2枚のポリエチレンテレフタラート(PET)フィルムの間に300μmの厚みになるようにシール剤を塗り広げる。上記PETフィルムとしては、PET5011(リンテック社製)等が挙げられる。PETフィルムの片面側から指定のLEDランプ及びメタルハライドランプで光を照射した後、2枚のPETフィルムの間を引き剥がす。シール剤にタックが無い場合はシール硬化物をPETフィルムより剥がした後1cm×2cmの短冊状に切り分け、得られた短冊状の試験片を200メッシュの金属メッシュで包み、シール剤がメッシュの格子以外の場所から放出されないようにする。一方、シール剤にタックがある場合はシール剤をミクロスパーテルの平面で採取し200メッシュの金属メッシュで包み、シール剤がメッシュの格子以外の場所から放出されないようにする。この際、使用する金属メッシュの重量を測定してG0とし、シール剤と金属メッシュの重量の合計重量を測定してG1とする。なお、G0は1g以上3g未満とし、(G1-G0)は0.2g以上0.4g未満になるようにする。また、200メッシュとは、メッシュの細かさを表す指標であり、1インチ間の金属糸の本数が200本であることを表す。シール剤を包んだ金属メッシュをスクリュー管No.8(マルエム社製)の中に入れた後、該スクリュー管にアセトンを70g加えて3時間静置する。アセトン中に存在するシール剤を包んだ金属メッシュをピンセットで取り出し、新しいスクリュー管No.8(マルエム社製)の中に入れた後、該スクリュー管に新しいアセトンを70g加えて更に2時間静置する。シール剤を包んだ金属メッシュをピンセットで取り出した後、80℃のオーブンで常圧のまま2時間乾燥させる。乾燥後、シール剤を包んだ金属メッシュの重量を測定してG2とする。なお、上記作業は1ルクス以下の暗室で実施する。また、作業環境の照度の測定には、デジタル照度計TM-201L(TENMERS社製)を用いる。
上記450nmLEDランプとしては、例えば、UELCL-P-450-X(アイグラフィクス社製)等が挙げられる。UELCL-P-450-Xの発光スペクトルを図1に示した。
450nmLEDランプの照度は、紫外線薄型照度計UIT-θ LED(ウシオ電機社製)を用いて、絶対値校正波長450nmに設定した際の照度をmW/cmの単位で表記する。
The sealant for a liquid crystal display element of the present invention has a gel fraction of 70% or more. With a gel fraction of 70% or more when irradiated with light of 100 mW/cm 2 for 30 seconds using the 450 nm LED lamp, the sealant for a liquid crystal display element of the present invention has visible light curability and low liquid crystal contamination. It will be excellent in quality. A preferred lower limit of the gel fraction is 80%, and a more preferred lower limit is 85%, when irradiated with light of 100 mW/cm 2 for 30 seconds using the 450 nm LED lamp.
In this specification, the "gel fraction" means the degree to which the curable resin contained in the sealant is crosslinked and polymerized. In addition, it can be considered that the filler and the like mixed at this time are gelled at the same time by being taken into the polymer.
Further, the gel fraction can be calculated by the following formula.
Gel fraction (% by weight) = ((G2-G0)/(G1-G0)) x 100
Specific work is as follows.
A sealant is spread between two polyethylene terephthalate (PET) films to a thickness of 300 μm. Examples of the PET film include PET5011 (manufactured by Lintec Corporation). After irradiating light from one side of the PET film with a designated LED lamp and metal halide lamp, the two PET films are peeled off. If the sealant does not have tackiness, the cured sealant is peeled off from the PET film and then cut into strips of 1 cm x 2 cm. prevent it from being released from any other location. On the other hand, if the sealant is tacky, the sealant is collected on the plane of the microspatula and wrapped in a 200-mesh metal mesh so that the sealant is not released outside the lattice of the mesh. At this time, the weight of the metal mesh to be used is measured as G0, and the total weight of the sealant and the metal mesh is measured as G1. Note that G0 should be 1 g or more and less than 3 g, and (G1-G0) should be 0.2 g or more and less than 0.4 g. In addition, 200 mesh is an index representing the fineness of the mesh, and indicates that the number of metal threads per inch is 200. A metal mesh wrapped with a sealing agent is attached to a screw tube No. 1. 8 (manufactured by Maruem), 70 g of acetone is added to the screw tube and allowed to stand for 3 hours. The metal mesh enveloping the sealing agent present in the acetone is taken out with tweezers and a new screw tube No. 8 (manufactured by Maruem), 70 g of fresh acetone is added to the screw tube, and the tube is allowed to stand for another 2 hours. After taking out the metal mesh wrapped with the sealant with tweezers, it is dried in an oven at 80° C. under normal pressure for 2 hours. After drying, the weight of the metal mesh wrapped with the sealant is measured and taken as G2. The above work is performed in a darkroom of 1 lux or less. A digital illuminance meter TM-201L (manufactured by TENMERS) is used to measure the illuminance of the work environment.
Examples of the 450 nm LED lamp include UELCL-P-450-X (manufactured by iGraphics). FIG. 1 shows the emission spectrum of UELCL-P-450-X.
The illuminance of the 450 nm LED lamp is expressed in units of mW/cm 2 when the absolute value calibration wavelength is set to 450 nm using an ultraviolet thin illuminance meter UIT-θ LED (manufactured by Ushio Inc.).
本発明の液晶表示素子用シール剤は、波長580nmにピークトップを有するLEDランプ(以下、「580nmLEDランプ」ともいう)を用いて400ルクスの光を48時間照射した際のゲル分率が10%未満である。上記580nmLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率が10%未満であることにより、本発明の液晶表示素子用シール剤は、塗布時のノズル詰まりを抑制することができるものとなる。上記580nmLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率の好ましい上限は7%、より好ましい上限は3%である。
上記580nmLEDランプとしては、例えば、ECOHILUX HES-YF LDG32T・Y22/22(アイリスオーヤマ社製)等が挙げられる。ECOHILUX HES-YF LDG32T・Y22/22の発光スペクトルを図2に示した。
580nmLEDランプの照度は、デジタル照度計TM-201L(TENMARS社製)を使用した際の照度をルクス(lx)の単位で表記する。
The liquid crystal display element sealing agent of the present invention has a gel fraction of 10% when irradiated with light of 400 lux for 48 hours using an LED lamp having a peak top at a wavelength of 580 nm (hereinafter also referred to as "580 nm LED lamp"). is less than When the gel fraction is less than 10% when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp, the sealant for liquid crystal display elements of the present invention can suppress nozzle clogging during application. becomes possible. A preferred upper limit of the gel fraction is 7%, and a more preferred upper limit is 3%, when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp.
Examples of the 580 nm LED lamp include ECOHILUX HES-YF LDG32T Y22/22 (manufactured by Iris Ohyama Co., Ltd.). FIG. 2 shows the emission spectrum of ECOHILUX HES-YF LDG32T·Y22/22.
The illuminance of the 580 nm LED lamp is expressed in units of lux (lx) when using a digital illuminance meter TM-201L (manufactured by TENMARS).
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル化合物を含有することが好ましい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から1分子中に(メタ)アクリロイル基を2つ以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The sealant for liquid crystal display elements of the present invention contains a curable resin.
The curable resin preferably contains a (meth)acrylic compound.
Examples of the (meth)acrylic compound include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, and urethane (meth)acrylates. Among them, epoxy (meth)acrylate is preferred. The (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule from the viewpoint of reactivity.
In the present specification, the above "(meth)acryl" means acrylic or methacryl, the above "(meth)acrylic compound" means a compound having a (meth)acryloyl group, and the above "( meth)acryloyl" means acryloyl or methacryloyl. Moreover, the above-mentioned "(meth)acrylate" means acrylate or methacrylate. Furthermore, the above-mentioned "epoxy (meth)acrylate" represents a compound obtained by reacting all epoxy groups in an epoxy compound with (meth)acrylic acid.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth)acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. , t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, iso myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, 2-Phenoxyethyl (meth)acrylate, methoxyethylene glycol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, phenoxydiethyleneglycol (meth)acrylate, phenoxypolyethyleneglycol (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, ethyl carbi tall (meth)acrylate, 2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3-tetrafluoropropyl (meth)acrylate, 1H,1H,5H-octafluoropentyl (meth)acrylate, imido (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, 2-(meth)acryloyloxyethyl succinic acid, 2-(meth)acryloyloxyethylhexahydrophthalate, 2-( meth)acryloyloxyethyl 2-hydroxypropyl phthalate, 2-(meth)acryloyloxyethyl phosphate, glycidyl (meth)acrylate and the like.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Among the above (meth)acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, ethylene oxide-added bisphenol F di(meth)acrylate , dimethyloldicyclopentadienyl di(meth)acrylate, ethylene oxide-modified isocyanuric acid di(meth)acrylate, 2-hydroxy-3-(meth)acryloyloxypropyl (meth)acrylate, carbonate diol di(meth)acrylate, polyether diol di(meth)acrylate, polyester diol di(meth)acrylate, polycaprolactone diol di(meth)acrylate, polybutadiene diol di(meth)acrylate and the like.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, among the above (meth)acrylic acid ester compounds, trifunctional or higher ones include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri( meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。 Examples of epoxy compounds that are raw materials for synthesizing the epoxy (meth)acrylate include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, and 2,2′-diallylbisphenol A type epoxy compounds. , hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolac-type epoxy compounds, ortho-cresol novolac-type epoxy compounds, dicyclopentadiene novolak-type epoxy compounds, biphenyl novolak-type epoxy compounds, naphthalenephenol novolak-type epoxy compounds, glycidylamine-type epoxy compounds, alkylpolyol-type epoxy compounds, rubber-modified epoxy compounds , glycidyl ester compounds, and the like.
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON EXA-850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON 430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(日鉄ケミカル&マテリアル社製)、EPICLON 726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも日鉄ケミカル&マテリアル社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも日鉄ケミカル&マテリアル社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Commercially available bisphenol A type epoxy compounds include, for example, jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC Corporation).
Examples of commercially available 2,2'-diallylbisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC Corporation).
Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
Commercially available resorcinol-type epoxy compounds include, for example, EX-201 (manufactured by Nagase ChemteX Corporation).
Commercially available biphenyl-type epoxy compounds include, for example, jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenolic novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation).
Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation).
Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC Corporation).
Commercially available biphenyl novolac type epoxy compounds include, for example, NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
Examples of commercially available alkyl polyol type epoxy compounds include ZX-1542 (manufactured by Nippon Steel Chemical & Materials), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX. -611 (manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available rubber-modified epoxy compounds include YR-450 and YR-207 (both manufactured by Nippon Steel Chemical & Materials) and Epolead PB (manufactured by Daicel).
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy compounds include YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei), jER1031, and jER1032. (all manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Commercially available epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Allnex, epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Industry, epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. ( meth) acrylate, epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation, and the like.
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
Examples of epoxy (meth)acrylates manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
Examples of the epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include, for example, Epoxy Ester M-600A, Epoxy Ester 40EM, Epoxy Ester 70PA, Epoxy Ester 200PA, Epoxy Ester 80MFA, Epoxy Ester 3002M, Epoxy Ester 3002A, Epoxy Ester 1600A, Epoxy Ester 3000M, Epoxy Ester 3000A, Epoxy Ester 200EA, Epoxy Ester 400EA and the like.
Examples of epoxy (meth)acrylates manufactured by Nagase ChemteX Co., Ltd. include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
上記ウレタン(メタ)アクリレートは、例えば、多官能イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth)acrylate can be obtained, for example, by reacting a polyfunctional isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
上記多官能イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the polyfunctional isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), Hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris(isocyanatophenyl) thiophosphate, tetramethyl xylylene diisocyanate, 1,6,11-undecane triisocyanate, and the like.
また、上記多官能イソシアネート化合物としては、ポリオールと過剰の多官能イソシアネート化合物との反応により得られる鎖延長された多官能イソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
As the polyfunctional isocyanate compound, a chain-extended polyfunctional isocyanate compound obtained by reacting a polyol with an excess polyfunctional isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and the like.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylates, dihydric alcohol mono(meth)acrylates, trihydric alcohol mono(meth)acrylates and di(meth)acrylates. , epoxy (meth)acrylate, and the like.
Examples of the hydroxyalkyl mono(meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. mentioned.
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, glycerin and the like.
Examples of the epoxy (meth)acrylate include bisphenol A type epoxy acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Examples of commercially available urethane (meth) acrylates include urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Allnex, and urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth)acrylates manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210 and M-1600.
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等がmentioned.
Examples of the urethane (meth)acrylate manufactured by Neagari Kogyo Co., Ltd. include, for example, Artresin UN-330, Artresin SH-500B, Artresin UN-1200TPK, Artresin UN-1255, Artresin UN-3320HB, Artresin UN- 7100, Artresin UN-9000A, Artresin UN-9000H and the like.
The urethane (meth)acrylates manufactured by Shin-Nakamura Chemical Co., Ltd. include, for example, U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A and the like.
Examples of the urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. be done.
上記硬化性樹脂は、得られる液晶表示素子用シール剤の接着性を向上させること等を目的として、エポキシ化合物を含有してもよい。上記エポキシ化合物としては、例えば、上述したエポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物や、部分(メタ)アクリル変性エポキシ化合物等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ化合物とは、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
The curable resin may contain an epoxy compound for the purpose of improving the adhesiveness of the obtained sealing agent for liquid crystal display elements. Examples of the epoxy compound include an epoxy compound that serves as a raw material for synthesizing the epoxy (meth)acrylate described above, a partially (meth)acryl-modified epoxy compound, and the like.
In the present specification, the partially (meth)acrylic-modified epoxy compound means, for example, reacting a part of the epoxy group of an epoxy compound having two or more epoxy groups in one molecule with (meth)acrylic acid. means a compound having one or more epoxy groups and one or more (meth)acryloyl groups in one molecule, which can be obtained by
上記硬化性樹脂として上記(メタ)アクリル化合物と上記エポキシ化合物とを含有する場合、又は、上記部分(メタ)アクリル変性エポキシ化合物を含有する場合、上記硬化性樹脂中の(メタ)アクリロイル基とエポキシ基との合計中における(メタ)アクリロイル基の比率を30モル%以上95モル%以下になるようにすることが好ましい。上記(メタ)アクリロイル基の比率がこの範囲であることにより、液晶汚染の発生を抑制しつつ、得られる液晶表示素子用シール剤が接着性により優れるものとなる。 When the curable resin contains the (meth)acrylic compound and the epoxy compound, or when the partially (meth)acryl-modified epoxy compound is contained, the (meth)acryloyl group in the curable resin and the epoxy It is preferable that the ratio of the (meth)acryloyl group in the total of the groups is 30 mol % or more and 95 mol % or less. When the ratio of the (meth)acryloyl group is within this range, the resulting sealant for liquid crystal display elements has excellent adhesion while suppressing the occurrence of liquid crystal contamination.
上記硬化性樹脂は、得られる液晶表示素子用シール剤を低液晶汚染性により優れるものとする観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The curable resin has a hydrogen-bonding unit such as —OH group, —NH— group, or —NH 2 group, from the viewpoint of making the obtained sealing agent for liquid crystal display element more excellent in low liquid crystal contamination resistance. is preferred.
上記硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The curable resins may be used alone, or two or more of them may be used in combination.
本発明の液晶表示素子用シール剤は、光重合開始剤を含有する。
上記450nmLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率、及び、上記580nmLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率は、上記光重合開始剤や上記光重合開始剤と後述する増感剤との組み合わせについて、種類や含有割合を調整することによって調整することができる。
The sealant for liquid crystal display elements of the present invention contains a photopolymerization initiator.
The gel fraction when irradiated with light of 100 mW / cm for 30 seconds using the 450 nm LED lamp, and the gel fraction when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp. The initiator or the combination of the photopolymerization initiator and the sensitizer described below can be adjusted by adjusting the type and content ratio.
上記光重合開始剤としては、上記450nmLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率、及び、上記580nmLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率をそれぞれ上述した範囲に調整することが容易となることから、下記式(1-1)~(1-3)で表される化合物が好ましい。また、後述する増感剤と組み合わせて含有する場合は、上記光重合開始剤としては、カンファーキノンも好ましい。 As the photopolymerization initiator, the gel fraction when irradiated with light of 100 mW / cm 2 for 30 seconds using the 450 nm LED lamp, and the gel fraction when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp Compounds represented by the following formulas (1-1) to (1-3) are preferred because they facilitate adjustment of the gel fractions within the respective ranges described above. Camphorquinone is also preferable as the photopolymerization initiator when it is used in combination with a sensitizer described later.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
上記光重合開始剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.3重量部、好ましい上限が10重量部である。上記光重合開始剤の含有量が0.3重量部以上であることにより、得られる液晶表示素子用シール剤が可視光硬化性及び低液晶汚染性により優れるものとなる。上記光重合開始剤の含有量が10重量部以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記光重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は4重量部である。 As for the content of the photopolymerization initiator, a preferable lower limit is 0.3 parts by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the photopolymerization initiator is 0.3 parts by weight or more, the obtained sealing agent for liquid crystal display elements is excellent in visible light curability and low liquid crystal contamination resistance. When the content of the photopolymerization initiator is 10 parts by weight or less, the resulting sealing agent for liquid crystal display elements is excellent in low liquid crystal contamination. A more preferable lower limit to the content of the photopolymerization initiator is 0.5 parts by weight, and a more preferable upper limit is 4 parts by weight.
本発明の液晶表示素子用シール剤は、増感剤を含有してもよい。
上記光重合開始剤として上記カンファーキノンを用いる場合に該カンファーキノンと組み合わせて上記増感剤を用いることにより、上記450nmLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率、及び、上記580nmLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率を容易に調整できる。
The sealing compound for liquid crystal display elements of the present invention may contain a sensitizer.
When the camphorquinone is used as the photopolymerization initiator, by using the sensitizer in combination with the camphorquinone, the gel fraction when 100 mW/cm 2 light is irradiated for 30 seconds using the 450 nm LED lamp , and the gel fraction when irradiated with light of 400 lux for 48 hours using the 580 nm LED lamp can be easily adjusted.
上記増感剤としては、上記カンファーキノンと組み合わせて用いることで、上記450nmLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率、及び、上記580nmLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率をそれぞれ上述した範囲に調整することが容易となることから、下記式(2-1)で表される化合物、下記式(2-2)で表される化合物が好ましい。 As the sensitizer, when used in combination with the camphorquinone, the gel fraction when irradiated with light of 100 mW / cm 2 for 30 seconds using the 450 nm LED lamp, and 400 lux using the 580 nm LED lamp When the light is irradiated for 48 hours, it becomes easy to adjust the gel fraction to the range described above, so the compound represented by the following formula (2-1), the following formula (2-2) are preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
上記増感剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.001重量部、好ましい上限が0.5重量部である。上記増感剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が可視光硬化性及び低液晶汚染性により優れるものとなり、かつ、塗布時のノズル詰まりを抑制する効果により優れるものとなる。上記増感剤の含有量のより好ましい下限は0.005重量部、より好ましい上限は0.1重量部である。 The content of the sensitizer has a preferred lower limit of 0.001 parts by weight and a preferred upper limit of 0.5 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the sensitizer is within this range, the obtained sealing agent for liquid crystal display elements is excellent in visible light curability and low liquid crystal contamination, and also has the effect of suppressing nozzle clogging during coating. become excellent. A more preferable lower limit to the content of the sensitizer is 0.005 parts by weight, and a more preferable upper limit is 0.1 parts by weight.
本発明の液晶表示素子用シール剤は、本発明の目的を阻害しない範囲で、熱重合開始剤を含有してもよい。
上記熱重合開始剤としては、例えば、アゾ化合物、有機過酸化物等で構成されるものが挙げられる。なかでも、高分子アゾ化合物で構成される高分子アゾ開始剤が好ましい。
上記熱重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealant for liquid crystal display elements of the present invention may contain a thermal polymerization initiator as long as the object of the present invention is not impaired.
Examples of the thermal polymerization initiator include those composed of azo compounds, organic peroxides, and the like. Among them, a polymeric azo initiator composed of a polymeric azo compound is preferable.
The above thermal polymerization initiators may be used alone, or two or more of them may be used in combination.
As used herein, the term "polymeric azo compound" refers to a compound having an azo group and a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth)acryloyloxy group by heat. means.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。 A preferable lower limit of the number average molecular weight of the above high-molecular azo compound is 1,000, and a preferable upper limit thereof is 300,000. When the number average molecular weight of the high-molecular-weight azo compound is within this range, it can be easily mixed with the curable resin while suppressing liquid crystal contamination. The lower limit of the number average molecular weight of the high-molecular azo compound is more preferably 5,000, the upper limit is 100,000, the lower limit is still more preferably 10,000, and the upper limit is still more preferably 90,000.
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ化合物としては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, one having a polyethylene oxide structure is preferable.
Specific examples of the high-molecular azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis(4-cyanopentanoic acid). and a polycondensate of polydimethylsiloxane having a terminal amino group.
Examples of commercially available polymeric azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). be done.
Examples of non-polymeric azo compounds include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides and peroxydicarbonates.
上記熱重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱重合開始剤の含有量が0.05重量部以上であることにより、本発明の液晶表示素子用シール剤が熱硬化性により優れるものとなる。上記熱重合開始剤の含有量が10重量部以下であることにより、本発明の液晶表示素子用シール剤が低液晶汚染性や保存安定性により優れるものとなる。上記熱重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the thermal polymerization initiator has a preferable lower limit of 0.05 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal polymerization initiator is 0.05 parts by weight or more, the sealing agent for liquid crystal display elements of the present invention becomes excellent in thermosetting property. When the content of the thermal polymerization initiator is 10 parts by weight or less, the sealant for liquid crystal display elements of the present invention is excellent in low liquid crystal contamination and storage stability. A more preferred lower limit to the content of the thermal polymerization initiator is 0.1 parts by weight, and a more preferred upper limit is 5 parts by weight.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
上記熱硬化剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealing compound for liquid crystal display elements of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among them, organic acid hydrazides are preferably used.
The thermosetting agents may be used alone, or two or more of them may be used in combination.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide.
Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Ltd., and the like.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH, and Amicure UDH-J.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、熱硬化性により優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent has a preferable lower limit of 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermosetting agent is within this range, the obtained sealing compound for liquid crystal display elements can be made more excellent in thermosetting properties without deteriorating the applicability and the like. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善等を目的として充填剤を含有することが好ましい。 The sealant for liquid crystal display elements of the present invention preferably contains a filler for the purpose of improving viscosity, improving adhesiveness due to a stress dispersion effect, improving coefficient of linear expansion, and the like.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
上記充填剤は、450nmLEDランプを用いて100mW/cmの光を30秒間照射した際に光の散乱を助長してゲル分率を向上させる効果も有するため、好ましい。特に、有機充填剤は、無機充填剤と比較して光の透過性も同時に確保できる観点からより好ましい。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
An inorganic filler or an organic filler can be used as the filler.
Examples of inorganic fillers include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
The filler is preferable because it has the effect of promoting light scattering and improving the gel fraction when irradiated with light of 100 mW/cm 2 for 30 seconds using a 450 nm LED lamp. In particular, organic fillers are more preferable than inorganic fillers from the viewpoint of ensuring light transmittance at the same time.
The above fillers may be used alone, or two or more of them may be used in combination.
上記充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が10重量部、好ましい上限が60重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は50重量部である。 As for the content of the filler, a preferable lower limit is 10 parts by weight and a preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the filler is within this range, the effect of improving adhesiveness and the like is excellent without deteriorating coatability and the like. A more preferable lower limit of the filler content is 20 parts by weight, and a more preferable upper limit thereof is 50 parts by weight.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealing compound for liquid crystal display elements of the present invention preferably contains a silane coupling agent. The silane coupling agent mainly serves as an adhesion assistant for good adhesion between the sealing agent and the substrate.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
The silane coupling agents may be used alone, or two or more of them may be used in combination.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 A preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the liquid crystal display element sealing compound of the present invention is 0.1 parts by weight, and a preferable upper limit thereof is 10 parts by weight. When the content of the silane coupling agent is within this range, the effect of improving adhesion while suppressing the occurrence of liquid crystal contamination is more excellent. A more preferable lower limit to the content of the silane coupling agent is 0.3 parts by weight, and a more preferable upper limit is 5 parts by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention further contains additives such as reactive diluents, thixotropic agents, spacers, curing accelerators, antifoaming agents, leveling agents and polymerization inhibitors, if necessary. may
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、光重合開始剤と、増感剤や必要に応じて添加するシランカップリング剤等とを混合する方法等が挙げられる。 As a method for producing the sealing agent for a liquid crystal display element of the present invention, for example, a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three-roll mixer is used to mix a curable resin with light. For example, a method of mixing a polymerization initiator with a sensitizer or a silane coupling agent to be added as necessary.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。 By blending the conductive fine particles into the liquid crystal display element sealant of the present invention, a vertically conductive material can be produced.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle having a conductive metal layer formed on its surface, or the like can be used. Among them, the one in which a conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
本発明の液晶表示素子用シール剤の硬化物を有する液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子としては、狭額縁設計の液晶表示素子が好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の液晶表示素子を製造する際の本発明の液晶表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
A liquid crystal display element having a cured product of the sealant for a liquid crystal display element of the present invention is also one aspect of the present invention.
As the liquid crystal display element of the present invention, a liquid crystal display element having a narrow frame design is preferable. Specifically, it is preferable that the width of the frame portion around the liquid crystal display section is 2 mm or less.
Moreover, it is preferable that the coating width of the sealant for a liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is 1 mm or less.
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極及び配向膜を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、本発明の液晶表示素子用シール剤のシールパターン部分にカットフィルター等を介して光を照射することにより、シール剤を光硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、上記シール剤を光硬化させる工程に加えて、シール剤を加熱して熱硬化させる工程を行ってもよい。
As a method for manufacturing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used, and specific examples thereof include a method including the following steps.
First, a step of applying the sealant for a liquid crystal display element of the present invention by screen printing, dispenser coating, or the like to one of two transparent substrates having an electrode such as an ITO thin film and an alignment film to form a frame-shaped seal pattern. I do. Next, a step is performed in which the liquid crystal liquid crystal sealing agent of the present invention is in an uncured state, and liquid crystal microdroplets are applied dropwise within the frame of the seal pattern of the substrate, and the other transparent substrate is superimposed under vacuum. Thereafter, a liquid crystal display element can be obtained by a method of performing a step of photocuring the sealing agent by irradiating the sealing pattern portion of the sealing agent for a liquid crystal display element of the present invention with light through a cut filter or the like. In addition to the step of photocuring the sealant, a step of heating the sealant to thermally cure it may be performed.
本発明によれば、可視光硬化性及び低液晶汚染性に優れ、かつ、塗布時のノズル詰まりを抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in visible light curability and low liquid-crystal contamination property, and can suppress the nozzle clogging at the time of application|coating can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealant for a liquid crystal display element.
UELCL-P-450-Xの発光スペクトルである。Emission spectrum of UELCL-P-450-X. ECOHILUX HES-YF LDG32T・Y22/22の発光スペクトルである。This is the emission spectrum of ECOHILUX HES-YF LDG32T/Y22/22.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(式(1-1)で表される化合物の合成)
N-エチルカルバゾール5重量部と、2,5-チオフェンジカルボン酸ジクロリド2.81重量部と、塩化アルミニウム3.76重量部とを、ジクロロメタン40mLに加え、室温にて終夜撹拌した。得られた反応液に、アセチルクロリド2.21重量部と、塩化アルミニウム3.76重量部とを加え、室温で更に4時間撹拌した。得られた反応液を氷水へと注いだ後、有機層を酢酸エチルで抽出した。抽出した溶液を飽和炭酸水素ナトリウム水溶液及び食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(A1)を得た。
得られた生成物(A1)3重量部と、塩化ヒドロキシルアンモニウム0.76重量部と、ピリジン0.86重量部とを、エタノール30mLに加え、10時間還流撹拌した。得られた反応液を氷水へと注いだ後、濾過した。濾物を水で洗浄した後、酢酸エチルに溶解し、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(B1)を得た。
得られた生成物(B1)1.5重量部をN,N-ジメチルホルムアミド25重量部に溶解した後、アセチルクロリド0.59重量部を加えた。得られた溶液を10℃以下に冷却しながらトリエチルアミン0.78重量部を滴下し、室温で4時間撹拌した。得られた反応液を水へと注いだ後、濾過した。濾物を、ジクロロメタンとヘキサンとの混合溶媒(ジクロロメタン:ヘキサン=2:1)を用いたシリカゲルカラムクロマトグラフィーで精製することにより、上記式(1-1)で表される化合物を得た。
なお、得られた上記式(1-1)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Synthesis of compound represented by formula (1-1))
5 parts by weight of N-ethylcarbazole, 2.81 parts by weight of 2,5-thiophenedicarboxylic acid dichloride, and 3.76 parts by weight of aluminum chloride were added to 40 mL of dichloromethane and stirred overnight at room temperature. 2.21 parts by weight of acetyl chloride and 3.76 parts by weight of aluminum chloride were added to the obtained reaction solution, and the mixture was further stirred at room temperature for 4 hours. After the resulting reaction solution was poured into ice water, the organic layer was extracted with ethyl acetate. The extracted solution was washed with saturated aqueous sodium bicarbonate and brine, dried over anhydrous magnesium sulfate and concentrated to give product (A1).
3 parts by weight of the obtained product (A1), 0.76 parts by weight of hydroxylammonium chloride, and 0.86 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours. The resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous magnesium sulfate and concentrated to obtain the product (B1).
After 1.5 parts by weight of the obtained product (B1) was dissolved in 25 parts by weight of N,N-dimethylformamide, 0.59 parts by weight of acetyl chloride was added. 0.78 parts by weight of triethylamine was added dropwise to the resulting solution while cooling to 10° C. or lower, and the mixture was stirred at room temperature for 4 hours. The resulting reaction solution was poured into water and then filtered. The filtrate was purified by silica gel column chromatography using a mixed solvent of dichloromethane and hexane (dichloromethane:hexane=2:1) to obtain the compound represented by the above formula (1-1).
The structure of the obtained compound represented by formula (1-1) was confirmed by 1 H-NMR, 13 C-NMR and FT-IR.
(式(1-2)で表される化合物の合成)
N-(2-エチルヘキシル)カルバゾール5重量部と、2,5-チオフェンジカルボン酸ジクロリド2.81重量部と、塩化アルミニウム3.76重量部とを、ジクロロメタン40mLに加え、室温にて終夜撹拌した。得られた反応液に、アセチルクロリド2.21重量部と、塩化アルミニウム3.76重量部とを加え、室温で更に4時間撹拌した。得られた反応液を氷水へと注いだ後、有機層を酢酸エチルで抽出した。抽出した溶液を飽和炭酸水素ナトリウム水溶液及び食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(A2)を得た。
得られた生成物(A2)3重量部と、塩化ヒドロキシルアンモニウム0.76重量部と、ピリジン0.86重量部とを、エタノール30mLに加え、10時間還流撹拌した。得られた反応液を氷水へと注いだ後、濾過した。濾物を水で洗浄した後、酢酸エチルに溶解し、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(B2)を得た。
得られた生成物(B2)1.5重量部をN,N-ジメチルホルムアミド25重量部に溶解した後、アセチルクロリド0.59重量部を加えた。得られた溶液を10℃以下に冷却しながらトリエチルアミン0.78重量部を滴下し、室温で4時間撹拌した。得られた反応液を水へと注いだ後、濾過した。濾物を、ジクロロメタンとヘキサンとの混合溶媒(ジクロロメタン:ヘキサン=2:1)を用いたシリカゲルカラムクロマトグラフィーで精製することにより、上記式(1-2)で表される化合物を得た。
なお、得られた上記式(1-2)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Synthesis of compound represented by formula (1-2))
5 parts by weight of N-(2-ethylhexyl)carbazole, 2.81 parts by weight of 2,5-thiophenedicarboxylic acid dichloride, and 3.76 parts by weight of aluminum chloride were added to 40 mL of dichloromethane and stirred overnight at room temperature. 2.21 parts by weight of acetyl chloride and 3.76 parts by weight of aluminum chloride were added to the obtained reaction solution, and the mixture was further stirred at room temperature for 4 hours. After the resulting reaction solution was poured into ice water, the organic layer was extracted with ethyl acetate. The extracted solution was washed with saturated aqueous sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and concentrated to obtain product (A2).
3 parts by weight of the obtained product (A2), 0.76 parts by weight of hydroxylammonium chloride, and 0.86 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours. The resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous magnesium sulfate and concentrated to obtain the product (B2).
After 1.5 parts by weight of the obtained product (B2) was dissolved in 25 parts by weight of N,N-dimethylformamide, 0.59 parts by weight of acetyl chloride was added. 0.78 parts by weight of triethylamine was added dropwise to the resulting solution while cooling to 10° C. or lower, and the mixture was stirred at room temperature for 4 hours. The resulting reaction solution was poured into water and then filtered. The filtrate was purified by silica gel column chromatography using a mixed solvent of dichloromethane and hexane (dichloromethane:hexane=2:1) to obtain the compound represented by the above formula (1-2).
The structure of the obtained compound represented by the above formula (1-2) was confirmed by 1 H-NMR, 13 C-NMR and FT-IR.
(式(1-3)で表される化合物の合成)
3-(9H-カルバゾール-9-イル)プロピオン酸エチル5重量部と、ヘキサノイルクロリド2.64重量部と、塩化アルミニウム2.62重量部とを、ジクロロメタン80mLに加え、室温にて終夜撹拌した。得られた反応液に、2,5-チオフェンジカルボン酸ジクロリド1.84重量部と、塩化アルミニウム5.24重量部とを加え、室温で更に4時間撹拌した。得られた反応液を氷水へと注いだ後、有機層を酢酸エチルで抽出した。抽出した溶液を飽和炭酸水素ナトリウム水溶液及び食塩水で洗浄した後、無水硫酸ナトリウムを用いて乾燥させて濃縮し、生成物(A3)を得た。
エタノール20mL中の生成物(A3)4.0重量部に、20%水酸化ナトリウム水溶液2.77重量部を加え、3時間還流した。反応終了後、水50mLを加え、濃塩酸で酸性にした後、酢酸エチルで抽出した。酢酸エチル層を水及び食塩水で洗浄し、その後、無水硫酸ナトリウムで乾燥させて濃縮し、生成物(B3)を得た。
得られた生成物(B3)3重量部と、塩化ヒドロキシルアンモニウム0.58重量部と、ピリジン0.65重量部とを、エタノール30mLに加え、10時間還流撹拌した。得られた反応液を氷水へと注いだ後、濾過した。濾物を水で洗浄した後、酢酸エチルに溶解し、無水硫酸ナトリウムを用いて乾燥させて濃縮し、生成物(C3)を得た。
得られた生成物(C3)1.5重量部をN,N-ジメチルホルムアミド20量部に溶解した後、アセチルクロリド0.45重量部を加えた。得られた溶液を10℃以下に冷却しながらトリエチルアミン0.59重量部を滴下し、室温で4時間撹拌した。得られた反応液を水へと注いだ後、ろ過した。シリカゲルカラムクロマトグラフィーにより化合物を単離することにより、上記式(1-3)で表される化合物を得た。
なお、得られた上記式(1-3)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Synthesis of compound represented by formula (1-3))
5 parts by weight of ethyl 3-(9H-carbazol-9-yl)propionate, 2.64 parts by weight of hexanoyl chloride, and 2.62 parts by weight of aluminum chloride were added to 80 mL of dichloromethane and stirred overnight at room temperature. . 1.84 parts by weight of 2,5-thiophenedicarboxylic acid dichloride and 5.24 parts by weight of aluminum chloride were added to the resulting reaction solution, and the mixture was further stirred at room temperature for 4 hours. After the resulting reaction solution was poured into ice water, the organic layer was extracted with ethyl acetate. The extracted solution was washed with saturated aqueous sodium bicarbonate and brine, dried over anhydrous sodium sulfate and concentrated to give product (A3).
To 4.0 parts by weight of product (A3) in 20 mL of ethanol was added 2.77 parts by weight of 20% aqueous sodium hydroxide solution and refluxed for 3 hours. After completion of the reaction, 50 mL of water was added, acidified with concentrated hydrochloric acid, and extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, then dried over anhydrous sodium sulfate and concentrated to give the product (B3).
3 parts by weight of the obtained product (B3), 0.58 parts by weight of hydroxylammonium chloride, and 0.65 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours. The resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous sodium sulfate and concentrated to obtain the product (C3).
After 1.5 parts by weight of the obtained product (C3) was dissolved in 20 parts by weight of N,N-dimethylformamide, 0.45 parts by weight of acetyl chloride was added. 0.59 parts by weight of triethylamine was added dropwise to the obtained solution while cooling to 10° C. or lower, and the mixture was stirred at room temperature for 4 hours. The resulting reaction solution was poured into water and then filtered. By isolating the compound by silica gel column chromatography, the compound represented by the above formula (1-3) was obtained.
The structure of the obtained compound represented by formula (1-3) was confirmed by 1 H-NMR, 13 C-NMR and FT-IR.
(実施例1~10及び比較例1~6)
表1、2に記載された配合比に従い、各材料を遊星式撹拌機を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~10及び比較例1~6の液晶表示素子用シール剤を調製した。遊星式撹拌機としては、あわとり練太郎(シンキー社製)を用いた。得られた液晶表示素子用シール剤を前処理としてARV-310LED(シンキー社製)で脱泡処理した。
2枚のポリエチレンテレフタラート(PET)フィルム(リンテック社製、「PET5011」)の間に300μmの厚みになるように得られた各液晶表示素子用シール剤を塗り広げた。PETフィルムの片面側から450nmLEDランプを用いて100mW/cm2の光を30秒間照射した後、2枚のPETフィルムの間を引き剥がした。シール剤にタックが無い場合はシール硬化物をPETフィルムより剥がした後1cm×2cmの短冊状に切り分け、得られた短冊状の試験片を200メッシュの金属メッシュで包み、シール剤がメッシュの格子以外の場所から放出されないようにした。一方、シール剤にタックがある場合はシール剤をミクロスパーテルの平面で採取し200メッシュの金属メッシュで包み、シール剤がメッシュの格子以外の場所から放出されないようにした。この際、使用する金属メッシュの重量を測定してG0とし、シール剤と金属メッシュの重量の合計重量を測定してG1とした。なお、G0は1g以上3g未満とし、(G1-G0)は0.2g以上0.4g未満になるようにした。シール剤を包んだ金属メッシュをスクリュー管No.8(マルエム社製)の中に入れた後、該スクリュー管にアセトンを70g加えて3時間静置した。アセトン中に存在するシール剤を包んだ金属メッシュをピンセットで取り出し、新しいスクリュー管No.8(マルエム社製)の中に入れた後、該スクリュー管に新しいアセトンを70g加えて更に2時間静置した。シール剤を包んだ金属メッシュをピンセットで取り出した後、80℃のオーブンで常圧のまま2時間乾燥させた。乾燥後、シール剤を包んだ金属メッシュの重量を測定してG2とした。なお、上記作業は1ルクス以下の暗室で実施した。また、作業環境の照度の測定には、TENMARS製のデジタル照度計TM-201L(TENMARS社製)を用いた。得られたG0~G2の値を上述した式に入れることでゲル分率を測定した。
450nmLEDランプとしては、UELCL-P-450-X(アイグラフィクス社製)を用いた。
また、450nmLEDランプに代えて580nmLEDランプを用いて400ルクスの光を48時間照射し、光照射後のシール剤について同様にしてゲル分率を測定した。580nmLEDランプとしては、ECOHILUX HES-YF LDG32T・Y22/22(アイリスオーヤマ社製)を用いた。
更に、450nmLEDランプに代えてメタルハライドランプを用いて340nm以下の光をカットするカットフィルター(340nmカットフィルター)を介して100mW/cmの光を30秒間照射し、光照射後のシール剤について同様にしてゲル分率を測定した。なお、実施例7、9、10で得られた各液晶表示素子用シール剤については、340nmカットフィルターを介して100mW/cmの光を30秒間照射した際のゲル分率は測定しなかった。
得られた各ゲル分率を表1、2に示した。
(Examples 1 to 10 and Comparative Examples 1 to 6)
According to the compounding ratio described in Tables 1 and 2, after mixing each material using a planetary stirrer, the liquid crystals of Examples 1 to 10 and Comparative Examples 1 to 6 were further mixed using three rolls. A sealant for display elements was prepared. Awatori Mixer (manufactured by Thinky Corporation) was used as the planetary stirrer. As a pretreatment, the resulting liquid crystal display element sealing compound was defoamed with ARV-310LED (manufactured by Thinky Corporation).
Each liquid crystal display element sealant was spread between two polyethylene terephthalate (PET) films (“PET5011” manufactured by Lintec Corporation) so as to have a thickness of 300 μm. After irradiating one side of the PET film with light of 100 mW/cm 2 using a 450 nm LED lamp for 30 seconds, the two PET films were separated. If the sealant does not have tackiness, the cured sealant is peeled off from the PET film and then cut into strips of 1 cm x 2 cm. Prevented from being emitted from other places. On the other hand, when the sealant had tack, the sealant was collected on the plane of the microspatula and wrapped with a 200-mesh metal mesh so that the sealant was not released from places other than the grid of the mesh. At this time, the weight of the metal mesh used was measured as G0, and the total weight of the sealant and the metal mesh was measured as G1. Note that G0 was set to 1 g or more and less than 3 g, and (G1-G0) was set to 0.2 g or more and less than 0.4 g. A metal mesh wrapped with a sealing agent is attached to a screw tube No. 1. 8 (manufactured by Maruem), 70 g of acetone was added to the screw tube and allowed to stand for 3 hours. The metal mesh enveloping the sealing agent present in the acetone is taken out with tweezers and a new screw tube No. 8 (manufactured by Maruem), 70 g of new acetone was added to the screw tube, and the tube was allowed to stand for another 2 hours. After the metal mesh wrapped with the sealant was taken out with tweezers, it was dried in an oven at 80° C. under normal pressure for 2 hours. After drying, the weight of the metal mesh wrapped with the sealant was measured and designated as G2. The above work was performed in a darkroom of 1 lux or less. A TENMARS digital illuminance meter TM-201L (manufactured by TENMARS) was used to measure the illuminance of the work environment. The gel fraction was measured by inserting the obtained values of G0 to G2 into the above formula.
As the 450 nm LED lamp, UELCL-P-450-X (manufactured by iGraphics) was used.
Also, a 580 nm LED lamp was used in place of the 450 nm LED lamp, and light of 400 lux was irradiated for 48 hours, and the gel fraction of the sealing agent after light irradiation was measured in the same manner. As the 580 nm LED lamp, ECOHILUX HES-YF LDG32T Y22/22 (manufactured by Iris Ohyama Co., Ltd.) was used.
Furthermore, instead of the 450 nm LED lamp, a metal halide lamp was used to irradiate light of 100 mW/cm 2 for 30 seconds through a cut filter that cuts light of 340 nm or less (340 nm cut filter). was used to measure the gel fraction. The liquid crystal display element sealants obtained in Examples 7, 9, and 10 were irradiated with light of 100 mW/cm 2 for 30 seconds through a 340 nm cut filter, and the gel fraction was not measured. .
Each obtained gel fraction is shown in Tables 1 and 2.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
Each sealant for liquid crystal display elements obtained in Examples and Comparative Examples was evaluated as follows. The results are shown in Tables 1 and 2.
(ノズル詰まり)
実施例及び比較例で得られた各液晶表示素子用シール剤をディスペンス用のシリンジに充填し、脱泡処理を行ってから、該シリンジにノズルをセットした。次いで、ノズルをセットしたシリンジをディスペンサーにセットした。ノズルの先端までシール剤を充填するため、シリンジに圧空を加えてノズルの先端からシール剤を吐出させた。その後、圧空を停止させ、ノズルの先端をベンコットで拭き取った。
ノズルの先端からシール剤が垂れず、かつ、ノズルの先端からシール剤が無くならない圧力でシリンジ内を減圧し、サックバックを行った状態で48時間静置した。その後、シリンジ内に100kPaの圧力を加え、ノズル先端よりシール剤が吐出された場合を「○」、吐出されなかった場合を「×」としてノズル詰まりを評価した。
ディスペンス用のシリンジとしては、PSY-10EU-OR(武蔵エンジニアリング社製)を用い、シリンジにセットするノズルとしては、HN-0.3N(武蔵エンジニアリング社製)を用い、ディスペンサーとしては、SHOTMASTER300(武蔵エンジニアリング社製)を用いた。本評価は、580nmLEDランプを用いて400ルクスの光を照射する環境下にて行った。580nmLEDランプとしては、ECOHILUX HES-YF LDG32T・Y22/22(アイリスオーヤマ社製)を使用し照度はTM-201L(TENMARS社製)を用いて測定した。
(nozzle clogging)
Each sealant for liquid crystal display elements obtained in Examples and Comparative Examples was filled in a syringe for dispensing, subjected to a defoaming treatment, and then a nozzle was set in the syringe. Then, the syringe with the nozzle set was set in the dispenser. In order to fill the sealant up to the tip of the nozzle, compressed air was applied to the syringe to eject the sealant from the tip of the nozzle. After that, the compressed air was stopped, and the tip of the nozzle was wiped off with BEMCOT.
The inside of the syringe was decompressed at a pressure at which the sealant did not drip from the tip of the nozzle and the sealant did not disappear from the tip of the nozzle, and the syringe was allowed to stand still for 48 hours while being sucked back. After that, a pressure of 100 kPa was applied to the inside of the syringe, and nozzle clogging was evaluated as "◯" when the sealant was ejected from the tip of the nozzle, and "x" when it was not ejected.
PSY-10EU-OR (manufactured by Musashi Engineering Co., Ltd.) is used as a syringe for dispensing, HN-0.3N (manufactured by Musashi Engineering Co., Ltd.) is used as a nozzle to be set on the syringe, and SHOTMASTER 300 (Musashi Engineering Co., Ltd.) is used as a dispenser. Engineering Co., Ltd.) was used. This evaluation was performed under the environment of irradiating light of 400 lux using a 580 nm LED lamp. As the 580 nm LED lamp, ECOHILUX HES-YF LDG32T Y22/22 (manufactured by Iris Ohyama) was used, and the illuminance was measured using TM-201L (manufactured by TENMARS).
(低液晶汚染性)
サンプル瓶にネガ型液晶(JNC石油化学社製、「JC-7129XX」)0.5gを入れ、実施例及び比較例で得られた各液晶表示素子用シール剤0.1gを加えて振とうした後、120℃で1時間加熱し、室温(25℃)に戻した。透明電極と配向処理を行った配向膜(日産化学社製、「RB-089」)とを有するガラス基板の配向膜上に、実施例及び比較例で得られた各液晶表示素子用シール剤を正方形の枠を描くようにディスペンサーで塗布した。シール剤の塗布は、580nmLEDランプを用いて1ルクス以下の光を照射する環境下にて行った。580nmLEDランプとしては、ECOHILUX HES-YF LDG32T・Y22/22(アイリスオーヤマ社製)を用いた。続いて、上記サンプル瓶から取り出した液晶の微小滴を基板上の枠内全面に滴下塗布し、真空中にて別のガラス基板を重ね合わせた。真空を解除し、450nmLEDランプを用いて100mW/cmの光を30秒間照射した。450nmLEDランプとしては、UELCL-P-450-X(アイグラフィクス社製)を用いた。その後、120℃で1時間加熱することによりシール剤を熱硬化させて液晶表示素子を得た。
得られた液晶表示素子について、液晶物性評価システム(東陽テクニカ社製、「6254型」)を用いて、25℃において、5V、1Hzの交流電圧を印加し、1秒後の保持電圧を測定することによって、液晶の電圧保持率を算出した。電圧保持率が95%以上であった場合を「◎」、80%以上95%未満であった場合を「○」、80%未満であった場合を「×」として、低液晶汚染性を評価した。
(low liquid crystal contamination)
0.5 g of a negative liquid crystal ("JC-7129XX" manufactured by JNC Petrochemical Co., Ltd.) was placed in a sample bottle, and 0.1 g of each sealing agent for liquid crystal display elements obtained in Examples and Comparative Examples was added and shaken. After that, the mixture was heated at 120°C for 1 hour and returned to room temperature (25°C). Each sealant for liquid crystal display elements obtained in Examples and Comparative Examples was applied on an alignment film of a glass substrate having a transparent electrode and an alignment film subjected to alignment treatment (manufactured by Nissan Chemical Industries, Ltd., "RB-089"). It was applied with a dispenser so as to draw a square frame. Application of the sealant was performed under an environment in which light of 1 lux or less was irradiated using a 580 nm LED lamp. As the 580 nm LED lamp, ECOHILUX HES-YF LDG32T Y22/22 (manufactured by Iris Ohyama Co., Ltd.) was used. Subsequently, microdroplets of the liquid crystal taken out from the sample bottle were dropped and applied to the entire surface of the frame on the substrate, and another glass substrate was superimposed in a vacuum. The vacuum was released and a 450 nm LED lamp was used to irradiate 100 mW/cm 2 light for 30 seconds. As the 450 nm LED lamp, UELCL-P-450-X (manufactured by iGraphics) was used. After that, the sealant was thermally cured by heating at 120° C. for 1 hour to obtain a liquid crystal display element.
Using a liquid crystal property evaluation system (manufactured by Toyo Technica Co., Ltd., "6254 type"), an AC voltage of 5 V and 1 Hz is applied to the obtained liquid crystal display element at 25° C., and the holding voltage is measured after 1 second. Thus, the voltage holding ratio of the liquid crystal was calculated. When the voltage holding rate was 95% or more, "⊚", when it was 80% or more and less than 95%, "○", and when it was less than 80%, "×", Low liquid crystal contamination was evaluated. did.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
本発明によれば、可視光硬化性及び低液晶汚染性に優れ、かつ、塗布時のノズル詰まりを抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in visible light curability and low liquid-crystal contamination property, and can suppress the nozzle clogging at the time of application|coating can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (2)

  1. 硬化性樹脂と光重合開始剤とを含有する液晶表示素子用シール剤であって、
    波長450nmにピークトップを有するLEDランプを用いて100mW/cmの光を30秒間照射した際のゲル分率が70%以上であり、かつ、
    波長580nmにピークトップを有するLEDランプを用いて400ルクスの光を48時間照射した際のゲル分率が10%未満である
    ことを特徴とする液晶表示素子用シール剤。
    A sealant for a liquid crystal display element containing a curable resin and a photopolymerization initiator,
    The gel fraction is 70% or more when irradiated with light of 100 mW/cm 2 for 30 seconds using an LED lamp having a peak top at a wavelength of 450 nm, and
    A sealant for a liquid crystal display element, wherein the gel fraction is less than 10% when irradiated with light of 400 lux for 48 hours using an LED lamp having a peak top at a wavelength of 580 nm.
  2. 請求項1記載の液晶表示素子用シール剤の硬化物を有する液晶表示素子。 A liquid crystal display device comprising a cured product of the sealant for a liquid crystal display device according to claim 1 .
PCT/JP2022/022496 2021-06-04 2022-06-02 Sealing agent for liquid crystal display elements and liquid crystal display element WO2022255452A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022537078A JP7201881B1 (en) 2021-06-04 2022-06-02 Sealant for liquid crystal display element and liquid crystal display element
CN202280023421.9A CN117043670A (en) 2021-06-04 2022-06-02 Sealing agent for liquid crystal display element and liquid crystal display element
KR1020247000209A KR20240017908A (en) 2021-06-04 2022-06-02 Sealing agent for liquid crystal display elements and liquid crystal display elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021094542 2021-06-04
JP2021-094542 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022255452A1 true WO2022255452A1 (en) 2022-12-08

Family

ID=84324263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022496 WO2022255452A1 (en) 2021-06-04 2022-06-02 Sealing agent for liquid crystal display elements and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7201881B1 (en)
KR (1) KR20240017908A (en)
CN (1) CN117043670A (en)
TW (1) TW202313921A (en)
WO (1) WO2022255452A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313216A (en) * 2002-04-18 2003-11-06 Henkel Loctite Corp Visual light curable resin composition
JP2010189279A (en) * 2009-02-16 2010-09-02 Nippon Kagaku Kogyosho:Kk Oxime ester compound and photosensitive resin composition comprising the same
CN106405946A (en) * 2016-11-29 2017-02-15 深圳市华星光电技术有限公司 Sealant curing method and liquid crystal panel manufacturing method
JP2020170120A (en) * 2019-04-04 2020-10-15 東京応化工業株式会社 Photosensitive resin composition, production method of patterned cured film, and patterned cured film
WO2021177316A1 (en) * 2020-03-03 2021-09-10 積水化学工業株式会社 Curable resin composition, sealing agent for display elements, sealing agent for liquid crystal display elements, vertically conductive material, display element, adhesive for electronic components, and electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
KR100906926B1 (en) 2001-05-16 2009-07-10 세키스이가가쿠 고교가부시키가이샤 Curing Resin Composition and Sealants and End-Sealing Materials for Displays
WO2018038016A1 (en) 2016-08-26 2018-03-01 シャープ株式会社 Seal material composition, liquid crystal cell, and method for producing liquid crystal cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313216A (en) * 2002-04-18 2003-11-06 Henkel Loctite Corp Visual light curable resin composition
JP2010189279A (en) * 2009-02-16 2010-09-02 Nippon Kagaku Kogyosho:Kk Oxime ester compound and photosensitive resin composition comprising the same
CN106405946A (en) * 2016-11-29 2017-02-15 深圳市华星光电技术有限公司 Sealant curing method and liquid crystal panel manufacturing method
JP2020170120A (en) * 2019-04-04 2020-10-15 東京応化工業株式会社 Photosensitive resin composition, production method of patterned cured film, and patterned cured film
WO2021177316A1 (en) * 2020-03-03 2021-09-10 積水化学工業株式会社 Curable resin composition, sealing agent for display elements, sealing agent for liquid crystal display elements, vertically conductive material, display element, adhesive for electronic components, and electronic component

Also Published As

Publication number Publication date
JP7201881B1 (en) 2023-01-10
KR20240017908A (en) 2024-02-08
JPWO2022255452A1 (en) 2022-12-08
TW202313921A (en) 2023-04-01
CN117043670A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP6798978B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
TWI801554B (en) Photopolymerization initiator, sealant for display elements, upper and lower conduction materials, display elements and compounds
JP7112604B1 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
CN114667302B (en) Curable resin composition, sealant for display element, sealant for liquid crystal display element, vertically conductive material, display element, adhesive for electronic component, and electronic component
JP6703650B1 (en) Liquid crystal element sealant, vertical conduction material, and liquid crystal element
JP7219370B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP7084560B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6725771B1 (en) Sealant for liquid crystal display device, vertical conduction material, and liquid crystal display device
JP7201881B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP7160907B2 (en) Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
JP7156946B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7117128B2 (en) Sealant for liquid crystal display element, epoxy compound, method for producing epoxy compound, vertical conduction material, and liquid crystal display element
JP7253117B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7185103B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP6997359B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6849866B1 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7007524B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7148332B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7144627B2 (en) Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2023032543A1 (en) Liquid crystal display element sealant and liquid crystal display element
JP6821102B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7053262B2 (en) Manufacturing method of sealant for liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022537078

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280023421.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247000209

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000209

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816197

Country of ref document: EP

Kind code of ref document: A1