WO2023032543A1 - Liquid crystal display element sealant and liquid crystal display element - Google Patents

Liquid crystal display element sealant and liquid crystal display element Download PDF

Info

Publication number
WO2023032543A1
WO2023032543A1 PCT/JP2022/029229 JP2022029229W WO2023032543A1 WO 2023032543 A1 WO2023032543 A1 WO 2023032543A1 JP 2022029229 W JP2022029229 W JP 2022029229W WO 2023032543 A1 WO2023032543 A1 WO 2023032543A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
meth
crystal display
acrylate
Prior art date
Application number
PCT/JP2022/029229
Other languages
French (fr)
Japanese (ja)
Inventor
剛 大浦
啓太 鈴木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022551776A priority Critical patent/JP7512404B2/en
Publication of WO2023032543A1 publication Critical patent/WO2023032543A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for liquid crystal display elements.
  • the present invention also relates to a liquid crystal display element using the sealant for a liquid crystal display element.
  • a photo-heat curing type seal disclosed in Patent Document 1 and Patent Document 2
  • a liquid crystal dropping method called a dropping method using an agent is used.
  • the dripping method first, a frame-shaped seal pattern is formed on one of two electrode-attached transparent substrates by dispensing.
  • the sealant is not yet cured, liquid crystal microdroplets are dropped on the entire surface of the frame of the transparent substrate, the other transparent substrate is immediately attached, and the sealant is irradiated with light such as ultraviolet rays for temporary curing. .
  • the liquid crystal is annealed for final curing by heating, and a liquid crystal display element is produced. If the bonding of the substrates is performed under reduced pressure, the liquid crystal display element can be manufactured with extremely high efficiency.
  • ultraviolet irradiation is usually used as a method for photocuring sealants, but in recent years, from the viewpoint of eliminating the photomask process and reducing energy consumption, manufacturing liquid crystal display elements using visible light. is in progress.
  • the wavelength of the light irradiated to cure the sealant is becoming longer year by year, and there has been a demand for a sealant that can be cured with light of a longer wavelength.
  • the present disclosure 1 is a sealant for a liquid crystal display element containing a curable resin, a photopolymerization initiator and a filler, wherein the photopolymerization initiator is a compound having two or more carbazole skeletons in one molecule, and , at least one selected from the group consisting of titanocene compounds, and the filler has a sphericity of 1.00 or more and 1.05 or less and an average particle size of 1.0 ⁇ m or less. It is a sealant for devices.
  • Present Disclosure 2 is a sealant for a liquid crystal display element according to Present Disclosure 1, which contains a compound represented by the following formula (1).
  • the photopolymerization initiator is a compound represented by the following formula (4-1), a compound represented by the following formula (4-2), and a compound represented by the following formula (4-3).
  • the present disclosure 4 is the sealant for a liquid crystal display element of the present disclosure 1, 2 or 3 containing a thermal polymerization initiator.
  • 5 of the present disclosure is a liquid crystal display device having a cured product of the sealant for a liquid crystal display device of 1, 2, 3 or 4 of the present disclosure.
  • each R 1 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond.
  • an aryl group optionally having a bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups; may have.
  • each R 2 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond.
  • each R 3 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond.
  • R 4 is a bond, a structure having an arylene group, or a structure having a heteroarylene group.
  • the present invention will be described in detail below.
  • the inventors of the present invention have investigated the production of a liquid crystal display device by curing a sealant by irradiating light with a longer wavelength than in the past.
  • the sealant cannot be sufficiently cured when irradiated with light of such a long wavelength, resulting in liquid crystal contamination. could cause
  • the wiring of the liquid crystal display element has become complicated and the wiring density has increased, so the light incidence efficiency of the incident light to the sealant has decreased.
  • the inventors of the present invention have found that the causes of liquid crystal contamination when irradiated with long-wavelength light are that the incident light cannot be uniformly scattered and the uncured portion of the sealant increases, and that the long-wavelength light When irradiated with light, although the surface curability is excellent, the surface curability is reduced. Therefore, the liquid crystal is inserted during heating, and the contact area with the liquid crystal increases.
  • the present inventors have found that by using a combination of a specific photopolymerization initiator and a filler having a specific range of sphericity and average particle size, the curability to long-wavelength light (light-shielding part curing).
  • the inventors have found that it is possible to obtain a sealant for a liquid crystal display element which is excellent in (hardness, deep-part curability, and surface curability), and have completed the present invention.
  • the case where the sealant is cured by irradiation with light having a long wavelength means the case where the sealant is cured by irradiation with visible light, specifically light with a wavelength of 450 nm.
  • the sealant for liquid crystal display elements of the present invention contains a photopolymerization initiator.
  • the photopolymerization initiator contains at least one selected from the group consisting of compounds having two or more carbazole skeletons in one molecule and titanocene compounds.
  • the photopolymerization initiator By using at least one selected from the group consisting of a compound having two or more carbazole skeletons in one molecule and a titanocene compound as the photopolymerization initiator in combination with a filler described later, the liquid crystal display of the present invention can be obtained.
  • the element sealant has excellent curability with respect to long-wavelength light.
  • the photopolymerization initiator has excellent reactivity to light in a wide range of wavelengths from ultraviolet rays (specifically, a wavelength of 340 nm) to visible light (specifically, a wavelength of 450 nm), and can store the sealant. Since it has almost no reactivity to light with a wavelength of a yellow lamp (specifically, a wavelength of 580 nm) that is irradiated when doing so, it is preferable that the compound represented by the above formula (1) is included. .
  • each R 1 is independently an alkyl group having 1 to 20 carbon atoms which may have an ether bond or an amide bond, a cycloalkyl group, an aralkyl group, a heterocyclic group, or an aryl group optionally having an ether bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups may have
  • R 1 is an alkyl group having 1 to 20 carbon atoms
  • the alkyl group is preferably a methyl group or an ethyl group.
  • R 1 is a cycloalkyl group
  • examples of the cycloalkyl group include a cyclohexyl group and a cyclobutyl group.
  • examples of the aralkyl group include a phenylmethyl group and a 2-naphthylmethyl group.
  • the heterocyclic group includes, for example, a 2-benzofuranyl group.
  • examples of the aryl group include a phenyl group and a 1-naphthyl group. Among them, a phenyl group is preferred.
  • Examples of the polar group include a hydroxy group, a carboxyl group, and an amino group.
  • a carboxyl group is preferable from the viewpoint that the cationic component can be supplemented because the surrounding environment contains a large amount of cationic component.
  • each R 2 is independently an alkyl group having 1 to 20 carbon atoms which may have an ether bond or an amide bond, a cycloalkyl group, an aralkyl group, a heterocyclic group, or an aryl group optionally having an ether bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups may have
  • R 2 is an alkyl group
  • the alkyl group includes, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a 2-ethylhexyl group and the like.
  • a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group are preferable.
  • R 2 is a cycloalkyl group
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • the cycloalkyl group may have an alkyl group.
  • examples of the aralkyl group include a phenylmethyl group.
  • R 2 is a heterocyclic group
  • the heterocyclic group includes, for example, a 2-benzothiophenyl group.
  • R 2 is an aryl group
  • examples of the aryl group include a phenyl group.
  • examples of the polar group include a hydroxy group, a carboxyl group, and an amino group.
  • a carboxyl group is preferable from the viewpoint that the cationic component can be supplemented because the surrounding environment contains a large amount of cationic component.
  • examples of the alkyl group having a polar group include a carboxymethyl group and a 2-carboxyethyl group.
  • R 2 is a cycloalkyl group having a polar group
  • examples of the cycloalkyl group having a polar group include a 2-carboxycyclohexyl group and a 2-carboxy-4-methylcyclohexyl group.
  • each R 3 is independently an alkyl group having 1 to 20 carbon atoms which may have an ether bond or an amide bond, a cycloalkyl group, an aralkyl group, a heterocyclic group, or an aryl group optionally having an ether bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups may have
  • R 3 is an alkyl group
  • examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, 2-ethylhexyl group and the like.
  • the alkyl group may have an aryl group.
  • R 3 is a cycloalkyl group
  • examples of the cycloalkyl group include a cyclohexyl group.
  • the aralkyl group includes, for example, a 2-naphthylmethyl group.
  • R 3 is a heterocyclic group
  • the heterocyclic group includes, for example, a 2-thienyl group.
  • examples of the aryl group include a phenyl group.
  • Examples of the polar group include a hydroxy group, a carboxyl group, and an amino group.
  • a carboxyl group is preferable from the viewpoint that the cationic component can be supplemented because the surrounding environment contains a large amount of cationic component.
  • R 3 is an alkyl group having a polar group
  • examples of the alkyl group having a polar group include 1-carboxyethyl group, 2-carboxyethyl group, 1-carboxypropyl group, 3-carboxypropyl group, 1-carboxypentyl group, carboxy(phenyl)methyl group and the like.
  • R 4 is a bond, a structure having an arylene group, or a structure having a heteroarylene group.
  • examples of the arylene group include 1,3-phenylene group, 1,4-phenylene group and 1,4-naphthylene group.
  • Specific examples of the structure having an arylene group include structures represented by the following formulas (2-1) to (2-5).
  • examples of the heteroarylene group include a thienylene group, a furanylene group and a pyridylene group. Among them, a thienylene group is preferred.
  • Specific examples of the structure having the heteroarylene group include structures represented by the following formulas (3-1) to (3-6).
  • the photopolymerization initiator has excellent reactivity to light with a long wavelength (e.g., a wavelength of 450 nm) and excellent stability under a yellow lamp, so the photopolymerization initiator is a compound represented by the above formula (1).
  • the compound represented by the formula (4-1), the compound represented by the formula (4-2), and at least one selected from the group consisting of the compound represented by the formula (4-3) It preferably contains seeds.
  • the content of the compound represented by the above formula (1) has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 5 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the compound represented by the above formula (1) is 0.01 parts by weight or more, the obtained sealing agent for liquid crystal display elements has excellent curability to long-wave light.
  • the content of the compound represented by the above formula (1) is 5 parts by weight or less, the obtained sealing compound for liquid crystal display elements is excellent in low liquid crystal contamination.
  • a more preferred lower limit to the content of the compound represented by formula (1) is 0.1 parts by weight, and a more preferred upper limit is 2 parts by weight.
  • the sealing compound for liquid crystal display elements of the present invention contains a filler.
  • the filler has a sphericity of 1.00 or more and 1.05 or less and an average particle diameter of 1.0 ⁇ m or less.
  • the liquid crystal display of the present invention can be obtained.
  • the element sealant has excellent curability with respect to long-wavelength light.
  • the filler has a sphericity of 1.00 or more and 1.05 or less. Since the sphericity of the filler is within this range, the sealant for a liquid crystal display element of the present invention can uniformly scatter incident light even with long-wavelength light, and the light-shielding portion curability is improved. become excellent.
  • a preferable upper limit of the sphericity is 1.04, and a more preferable upper limit is 1.02.
  • the sphericity is most preferably 1.00.
  • the above-mentioned "sphericity" means the average value of the ratio of the major axis to the minor axis (major axis/minor axis) of particles.
  • it means the average value of (major axis/minor axis) measured for the cross section having the maximum cross-sectional area in 10 particles observed at a magnification of 10,000 using a scanning electron microscope. At this time, particles for which the cross-section with the maximum cross-sectional area cannot be observed are not taken as targets for deriving the sphericity.
  • a field emission scanning electron microscope S-4800 manufactured by Hitachi High-Technologies Corporation or the like can be used.
  • the filler has an average particle size of 1.0 ⁇ m or less.
  • the sealant for liquid crystal display elements of the present invention is excellent in deep-part curability.
  • a preferable upper limit of the average particle size of the filler is 0.9 ⁇ m, and a more preferable upper limit is 0.8 ⁇ m.
  • the average particle size of the filler means a value obtained by measuring the particles before being mixed with the sealant using a laser diffraction particle size distribution analyzer.
  • the particles contained in the sealant were obtained by dispersing the uncured sealant in a mixed solvent of water and acetonitrile, and dispersing the above-mentioned filler, using a laser diffraction particle size distribution analyzer.
  • a laser diffraction particle size distribution analyzer can be measured by Mastersizer 2000 (manufactured by Malvern) or the like can be used as the laser diffraction particle size distribution analyzer.
  • An inorganic filler or an organic filler can be used as the filler.
  • inorganic fillers include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and core-shell particles thereof. The above fillers may be used alone, or two or more of them may be used in combination.
  • a preferable lower limit is 1 part by weight and a preferable upper limit is 40 parts by weight with respect to 100 parts by weight of the curable resin.
  • a preferable lower limit of the content of the filler is 3 parts by weight.
  • the sealant for liquid crystal display elements of the present invention contains a curable resin.
  • the curable resin preferably contains a (meth)acrylic compound.
  • the (meth)acrylic compound include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, and urethane (meth)acrylates. Among them, epoxy (meth)acrylate is preferred.
  • the (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule from the viewpoint of reactivity.
  • the above “(meth)acryl” means acrylic or methacryl
  • the above “(meth)acrylic compound” means a compound having a (meth)acryloyl group
  • the above “( meth)acryloyl” means acryloyl or methacryloyl.
  • the above-mentioned “(meth)acrylate” means acrylate or methacrylate.
  • the above-mentioned “epoxy (meth)acrylate” represents a compound obtained by reacting all epoxy groups in an epoxy compound with (meth)acrylic acid.
  • monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • t-butyl (meth)acrylate 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, iso myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate,
  • bifunctional ones include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) acrylate, polypropylene glycol di(meth)acrylate, neopen
  • trifunctional or higher ones include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri( meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol penta(meth)acryl
  • Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
  • epoxy compounds that are raw materials for synthesizing the epoxy (meth)acrylate include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, and 2,2′-diallylbisphenol A type epoxy compounds. , hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolac-type epoxy compounds, ortho-cresol novolac-type epoxy compounds, dicyclopentadiene novolak-type epoxy compounds, biphenyl novolak-type epoxy compounds, naphthalenephenol novolak-type epoxy compounds, glycidylamine-type epoxy compounds, alkylpolyol-type epoxy compounds, rubber-modified epoxy compounds , glycidyl ester compounds, and the like.
  • bisphenol A type epoxy compounds include, for example, jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC Corporation).
  • Examples of commercially available 2,2'-diallylbisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC Corporation).
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
  • Commercially available resorcinol-type epoxy compounds include, for example, EX-201 (manufactured by Nagase ChemteX Corporation).
  • commercially available biphenyl-type epoxy compounds include, for example, jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.). Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA). Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation). Examples of commercially available phenolic novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation). Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation).
  • Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC Corporation).
  • Commercially available biphenyl novolac type epoxy compounds include, for example, NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
  • Examples of commercially available alkyl polyol type epoxy compounds include ZX-1542 (manufactured by Nippon Steel Chemical & Materials), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX. -611 (manufactured by Nagase ChemteX Corporation) and the like.
  • Examples of commercially available rubber-modified epoxy compounds include YR-450 and YR-207 (both manufactured by Nippon Steel Chemical & Materials) and Epolead PB (manufactured by Daicel).
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Other commercially available epoxy compounds include YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei), jER1031, and jER1032. (all manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
  • epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Allnex, epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Industry, epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. ( meth) acrylate, epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation, and the like.
  • Epoxy Ester M-600A Epoxy Ester 40EM, Epoxy Ester 70PA, Epoxy Ester 200PA, Epoxy Ester 80MFA, Epoxy Ester 3002M, Epoxy Ester 3002A, Epoxy Ester 1600A, Epoxy Ester 3000M, Epoxy Ester 3000A, Epoxy Ester 200EA, Epoxy Ester 400EA and the like.
  • Examples of epoxy (meth)acrylates manufactured by Nagase ChemteX Co., Ltd. include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
  • the urethane (meth)acrylate can be obtained, for example, by reacting a polyfunctional isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
  • polyfunctional isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), Hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris(isocyanatophenyl) thiophosphate, tetramethyl xylylene diisocyanate, 1,6,11-undecane triisocyanate, and the like.
  • MDI diphenylmethane-4,4'-diisocyanate
  • polyfunctional isocyanate compound a chain-extended polyfunctional isocyanate compound obtained by reacting a polyol with an excess polyfunctional isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and the like.
  • Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylates, dihydric alcohol mono(meth)acrylates, trihydric alcohol mono(meth)acrylates and di(meth)acrylates. , epoxy (meth)acrylate, and the like.
  • Examples of the hydroxyalkyl mono(meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. mentioned.
  • Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, glycerin and the like.
  • Examples of the epoxy (meth)acrylate include bisphenol A type epoxy acrylate.
  • urethane (meth) acrylates examples include urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Allnex, and urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
  • Examples of the urethane (meth)acrylates manufactured by Toagosei Co., Ltd. examples include M-1100, M-1200, M-1210 and M-1600.
  • urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. be done.
  • the curable resin may contain an epoxy compound for the purpose of improving the adhesiveness of the obtained sealing agent for liquid crystal display elements.
  • the epoxy compound include an epoxy compound that serves as a raw material for synthesizing the epoxy (meth)acrylate described above, a partially (meth)acryl-modified epoxy compound, and the like.
  • the partially (meth)acrylic-modified epoxy compound means, for example, reacting a part of the epoxy group of an epoxy compound having two or more epoxy groups in one molecule with (meth)acrylic acid. means a compound having one or more epoxy groups and one or more (meth)acryloyl groups in one molecule, which can be obtained by
  • the curable resin contains the (meth)acrylic compound and the epoxy compound, or when the partially (meth)acryl-modified epoxy compound is contained, the (meth)acryloyl group in the curable resin and the epoxy It is preferable that the ratio of the (meth)acryloyl group in the total of the groups is 30 mol % or more and 95 mol % or less. When the ratio of the (meth)acryloyl group is within this range, the resulting sealant for liquid crystal display elements has excellent adhesion while suppressing the occurrence of liquid crystal contamination.
  • the curable resin has a hydrogen-bonding unit such as —OH group, —NH— group, or —NH 2 group, from the viewpoint of making the obtained sealing agent for liquid crystal display element more excellent in low liquid crystal contamination resistance. is preferred.
  • the curable resins may be used alone, or two or more of them may be used in combination.
  • the sealing compound for liquid crystal display elements of the present invention preferably contains a thermal polymerization initiator.
  • a thermal polymerization initiator By containing the above thermal polymerization initiator, the obtained sealing compound for a liquid crystal display element cures quickly when heated, and has excellent surface curability, and is more excellent in the effect of suppressing penetration of the liquid crystal.
  • thermal polymerization initiator examples include those composed of azo compounds, organic peroxides, and the like. Among them, a polymeric azo initiator composed of a polymeric azo compound is preferable. The above thermal polymerization initiators may be used alone, or two or more of them may be used in combination.
  • polymeric azo compound refers to a compound having an azo group and a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth)acryloyloxy group by heat. means.
  • a preferable lower limit of the number average molecular weight of the above high-molecular azo compound is 1,000, and a preferable upper limit thereof is 300,000.
  • the lower limit of the number average molecular weight of the high-molecular azo compound is more preferably 5,000, the upper limit is 100,000, the lower limit is still more preferably 10,000, and the upper limit is still more preferably 90,000.
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group one having a polyethylene oxide structure is preferable.
  • Specific examples of the high-molecular azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis(4-cyanopentanoic acid). and a polycondensate of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available polymeric azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). be done.
  • Examples of non-polymeric azo compounds include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • organic peroxides examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides and peroxydicarbonates.
  • the content of the thermal polymerization initiator has a preferable lower limit of 0.05 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the sealing agent for liquid crystal display elements of the present invention becomes excellent in thermosetting property.
  • the sealant for liquid crystal display elements of the present invention is excellent in low liquid crystal contamination and storage stability.
  • a more preferred lower limit to the content of the thermal polymerization initiator is 0.1 parts by weight, and a more preferred upper limit is 5 parts by weight.
  • the sealing compound for liquid crystal display elements of the present invention may contain a thermosetting agent.
  • the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among them, organic acid hydrazides are preferably used.
  • the thermosetting agents may be used alone, or two or more of them may be used in combination.
  • Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide.
  • Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Ltd., and the like.
  • Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
  • Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH, and Amicure UDH-J.
  • the content of the thermosetting agent has a preferable lower limit of 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermosetting agent is within this range, the obtained sealing compound for liquid crystal display elements can be made more excellent in thermosetting properties without deteriorating the applicability and the like.
  • a more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
  • the sealing compound for liquid crystal display elements of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent mainly serves as an adhesion assistant for good adhesion between the sealing agent and the substrate.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
  • the silane coupling agents may be used alone, or two or more of them may be used in combination.
  • a preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the liquid crystal display element sealing compound of the present invention is 0.1 parts by weight, and a preferable upper limit thereof is 10 parts by weight.
  • the content of the silane coupling agent is within this range, the effect of improving adhesion while suppressing the occurrence of liquid crystal contamination is more excellent.
  • a more preferable lower limit to the content of the silane coupling agent is 0.3 parts by weight, and a more preferable upper limit is 5 parts by weight.
  • the sealing agent for liquid crystal display elements of the present invention further contains additives such as reactive diluents, thixotropic agents, spacers, curing accelerators, antifoaming agents, leveling agents and polymerization inhibitors, if necessary. may
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three-roll mixer is used to mix a curable resin with light.
  • the conductive fine particles a metal ball, a resin fine particle having a conductive metal layer formed on its surface, or the like can be used.
  • the one in which a conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
  • a liquid crystal display element having a cured product of the sealant for a liquid crystal display element of the present invention is also one aspect of the present invention.
  • a liquid crystal display element having a narrow frame design is preferable.
  • the width of the frame portion around the liquid crystal display section is 2 mm or less.
  • the coating width of the sealant for a liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is 1 mm or less.
  • a liquid crystal dropping method is preferably used, and specific examples thereof include a method including the following steps.
  • a step is performed in which the liquid crystal liquid crystal sealing agent of the present invention is in an uncured state, and liquid crystal microdroplets are applied dropwise within the frame of the seal pattern of the substrate, and the other transparent substrate is superimposed under vacuum.
  • a liquid crystal display element can be obtained by a method of performing a step of photocuring the sealing agent by irradiating the sealing pattern portion of the sealing agent for a liquid crystal display element of the present invention with light through a cut filter or the like.
  • a step of heating the sealant to thermally cure it may be performed.
  • the sealing compound for liquid crystal display elements which is excellent in curability with respect to the light of a long wavelength can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealant for a liquid crystal display element.
  • the extracted solution was washed with saturated aqueous sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and concentrated to obtain product (A2).
  • 3 parts by weight of the obtained product (A2), 0.76 parts by weight of hydroxylammonium chloride, and 0.86 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours.
  • the resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous magnesium sulfate and concentrated to obtain the product (B2).
  • Examples 1 to 27 and Comparative Examples 1 to 7 According to the compounding ratio described in Tables 1 to 3, after mixing each material using a planetary stirrer, the liquid crystals of Examples 1 to 27 and Comparative Examples 1 to 7 were further mixed using three rolls. A sealant for display elements was prepared. Awatori Mixer (manufactured by Thinky Corporation) was used as the planetary stirrer.
  • Each liquid crystal display element sealant obtained in Examples and Comparative Examples was filled in a syringe for dispensing, subjected to defoaming treatment, and then spread on a glass substrate with a dispenser so that the thickness of the sealant was 4 ⁇ m.
  • PSY-10E manufactured by Musashi Engineering Co., Ltd.
  • SHOTMASTER 300 manufactured by Musashi Engineering Co., Ltd.
  • a slit glass having a thickness of 500 ⁇ m having an opening with a slit width of 100 ⁇ m was placed on the sealing agent of the substrate coated with the sealing agent, and light of 100 mW/cm 2 was applied from above the slit glass using a metal halide lamp for 30 seconds. After irradiation, a test piece for measuring the curability of the light shielding portion was obtained. Light irradiation was performed through a cut filter (340 nm cut filter) that cuts light with a wavelength of 340 nm or less.
  • the slit glass was removed from the obtained test piece, and the distance (curing distance) where the sealant was cured from directly below the slit glass opening toward the slit glass light shielding portion was measured when the slit glass opening was set to 0 ⁇ m.
  • the curing distance is measured by FT-IR measurement of the sealant using an infrared spectrometer, measuring the amount of change in the peak derived from the (meth)acryloyl group, and measuring the peak derived from the (meth)acryloyl group after light irradiation. % or more was judged to be cured.
  • FTS3000 manufactured by BIORAD
  • the slit glass was removed from the obtained test piece, and the distance (curing distance) where the sealant was cured from directly below the slit glass opening toward the slit glass light shielding portion was measured when the slit glass opening was set to 0 ⁇ m.
  • the curing distance is measured by FT-IR measurement of the sealant using an infrared spectrometer, measuring the amount of change in the peak derived from the (meth)acryloyl group, and measuring the peak derived from the (meth)acryloyl group after light irradiation. % or more was judged to be cured.
  • FTS3000 manufactured by BIORAD
  • tacking tester TAC-II tacking tester
  • the surface curability was evaluated as “ ⁇ ” when the measured value was 5 gf or less, “ ⁇ ” when the measured value was more than 5 gf and less than 10 gf, and “X” when the measured value was 10 gf or more.
  • the sealing compound for liquid crystal display elements which is excellent in curability with respect to the light of a long wavelength can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealant for a liquid crystal display element.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

A purpose of the present invention is to provide a liquid crystal display element sealant having excellent curability with respect to long wavelength light. Another purpose of the present invention is to provide a liquid crystal display element formed by using said liquid crystal display element sealant. A liquid crystal display element sealant according to the present invention contains a curable resin, a photopolymerization initiator, and a filler. The photopolymerization initiator contains at least one selected from the group consisting of titanocene compounds and compounds having two or more carbazole backbones per molecule. The filler has a sphericity of 1.00-1.05 and a mean particle diameter of 1.0 μm or less.

Description

液晶表示素子用シール剤及び液晶表示素子Sealant for liquid crystal display element and liquid crystal display element
本発明は、液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる液晶表示素子に関する。 The present invention relates to a sealant for liquid crystal display elements. The present invention also relates to a liquid crystal display element using the sealant for a liquid crystal display element.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を貼り合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used, a photo-heat curing type seal disclosed in Patent Document 1 and Patent Document 2 A liquid crystal dropping method called a dropping method using an agent is used.
In the dripping method, first, a frame-shaped seal pattern is formed on one of two electrode-attached transparent substrates by dispensing. Next, while the sealant is not yet cured, liquid crystal microdroplets are dropped on the entire surface of the frame of the transparent substrate, the other transparent substrate is immediately attached, and the sealant is irradiated with light such as ultraviolet rays for temporary curing. . After that, the liquid crystal is annealed for final curing by heating, and a liquid crystal display element is produced. If the bonding of the substrates is performed under reduced pressure, the liquid crystal display element can be manufactured with extremely high efficiency.
特開2001-133794号公報JP-A-2001-133794 国際公開第02/092718号WO 02/092718
携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られることとなる。今後、狭額縁化が進み液晶材料が変更される場合、従来は問題のなかったシール剤であっても、未硬化のシール剤成分が液晶中に溶出することによる液晶汚染が発生するおそれがある。そのため、より低液晶汚染性に優れるシール剤が求められていた。
2. Description of the Related Art In today's world where mobile devices with liquid crystal panels such as mobile phones and portable game machines are widely used, miniaturization of devices is the most demanded issue. As a method for miniaturizing the device, narrowing the frame of the liquid crystal display portion is mentioned, and for example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as narrow frame design).
However, in the narrow frame design, the sealant is placed directly under the black matrix, so if the dripping method is used, the light emitted during photocuring of the sealant will be blocked. In the future, if the frame becomes narrower and the liquid crystal material is changed, there is a risk that liquid crystal contamination will occur due to the uncured sealant component eluting into the liquid crystal, even if the sealant has no problems in the past. . Therefore, there has been a demand for a sealant that is more excellent in reducing liquid crystal contamination.
また、通常、シール剤を光硬化させる方法として紫外線の照射が行われているが、近年、フォトマスク工程のレス化や消費エネルギーの低減等の観点から、可視光を用いた液晶表示素子の製造が進められている。シール剤を硬化させるために照射される光の波長は年々長波長化しており、より長波長の光で硬化させることが可能なシール剤が求められていた。 In addition, ultraviolet irradiation is usually used as a method for photocuring sealants, but in recent years, from the viewpoint of eliminating the photomask process and reducing energy consumption, manufacturing liquid crystal display elements using visible light. is in progress. The wavelength of the light irradiated to cure the sealant is becoming longer year by year, and there has been a demand for a sealant that can be cured with light of a longer wavelength.
本発明は、長波長の光に対する硬化性に優れる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a sealant for a liquid crystal display device that exhibits excellent curability with respect to long-wavelength light. Another object of the present invention is to provide a liquid crystal display device using the sealant for a liquid crystal display device.
本開示1は、硬化性樹脂と光重合開始剤と充填剤を含有する液晶表示素子用シール剤であって、上記光重合開始剤は、1分子中に2以上のカルバゾール骨格を有する化合物、及び、チタノセン化合物からなる群より選択される少なくとも1種を含み、上記充填剤は、真球度が1.00以上1.05以下であり、かつ、平均粒子径が1.0μm以下である液晶表示素子用シール剤である。
本開示2は、下記式(1)で表される化合物を含む本開示1の液晶表示素子用シール剤である。
本開示3は、上記光重合開始剤は、下記式(4-1)で表される化合物、下記式(4-2)で表される化合物、及び、下記式(4-3)で表される化合物からなる群より選択される少なくとも1種を含む本開示1又は2の液晶表示素子用シール剤である。
本開示4は、熱重合開始剤を含有する本開示1、2又は3の液晶表示素子用シール剤である。
本開示5は、本開示1、2、3又は4の液晶表示素子用シール剤の硬化物を有する液晶表示素子である。
The present disclosure 1 is a sealant for a liquid crystal display element containing a curable resin, a photopolymerization initiator and a filler, wherein the photopolymerization initiator is a compound having two or more carbazole skeletons in one molecule, and , at least one selected from the group consisting of titanocene compounds, and the filler has a sphericity of 1.00 or more and 1.05 or less and an average particle size of 1.0 μm or less. It is a sealant for devices.
Present Disclosure 2 is a sealant for a liquid crystal display element according to Present Disclosure 1, which contains a compound represented by the following formula (1).
In the present disclosure 3, the photopolymerization initiator is a compound represented by the following formula (4-1), a compound represented by the following formula (4-2), and a compound represented by the following formula (4-3). The sealant for a liquid crystal display element according to the present disclosure 1 or 2, containing at least one selected from the group consisting of the compounds.
The present disclosure 4 is the sealant for a liquid crystal display element of the present disclosure 1, 2 or 3 containing a thermal polymerization initiator.
5 of the present disclosure is a liquid crystal display device having a cured product of the sealant for a liquid crystal display device of 1, 2, 3 or 4 of the present disclosure.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。式(1)中、Rは、結合手、アリーレン基を有する構造、又は、ヘテロアリーレン基を有する構造である。 In formula (1), each R 1 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond. an aryl group optionally having a bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups; may have. In formula (1), each R 2 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond. an aryl group optionally having a bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups; may have. In formula (1), each R 3 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond. an aryl group optionally having a bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups; may have. In formula (1), R 4 is a bond, a structure having an arylene group, or a structure having a heteroarylene group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
以下に本発明を詳述する。
本発明者らは、従来よりも長波長の光の照射によりシール剤を硬化させて液晶表示素子を作製することを検討した。しかしながら、可視光に対する反応性により優れるとされる公知の光重合開始剤を用いた場合でも、このような長波長の光を照射した場合、シール剤を充分に硬化させることができずに液晶汚染を生じさせることがあった。近年、液晶表示素子の配線が複雑化し、配線密度が増加しているため、シール剤への入射光の入光効率が低下している。本発明者らは、長波長の光を照射した場合に液晶汚染が生じる原因が、入射光を均一に散乱させることができずにシール剤の未硬化部分が増えたこと、及び、長波長の光を照射した場合は深部硬化性に優れるものの表面硬化性が低下することから、加熱時に液晶の差し込みが生じ、液晶との接触面積が増加するためであると考えた。そこで本発明者らは、特定の光重合開始剤と、真球度及び平均粒子径がそれぞれ特定の範囲である充填剤とを組み合わせて用いることにより、長波長の光に対する硬化性(遮光部硬化性、深部硬化性、及び、表面硬化性)に優れる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
なお、長波長の光の照射によりシール剤を硬化させる場合とは、可視光、具体的には波長450nmの光の照射によりシール剤を硬化させる場合を意味する。
The present invention will be described in detail below.
The inventors of the present invention have investigated the production of a liquid crystal display device by curing a sealant by irradiating light with a longer wavelength than in the past. However, even when a known photopolymerization initiator that is said to be more reactive to visible light is used, the sealant cannot be sufficiently cured when irradiated with light of such a long wavelength, resulting in liquid crystal contamination. could cause In recent years, the wiring of the liquid crystal display element has become complicated and the wiring density has increased, so the light incidence efficiency of the incident light to the sealant has decreased. The inventors of the present invention have found that the causes of liquid crystal contamination when irradiated with long-wavelength light are that the incident light cannot be uniformly scattered and the uncured portion of the sealant increases, and that the long-wavelength light When irradiated with light, although the surface curability is excellent, the surface curability is reduced. Therefore, the liquid crystal is inserted during heating, and the contact area with the liquid crystal increases. Therefore, the present inventors have found that by using a combination of a specific photopolymerization initiator and a filler having a specific range of sphericity and average particle size, the curability to long-wavelength light (light-shielding part curing The inventors have found that it is possible to obtain a sealant for a liquid crystal display element which is excellent in (hardness, deep-part curability, and surface curability), and have completed the present invention.
The case where the sealant is cured by irradiation with light having a long wavelength means the case where the sealant is cured by irradiation with visible light, specifically light with a wavelength of 450 nm.
本発明の液晶表示素子用シール剤は、光重合開始剤を含有する。
上記光重合開始剤は、1分子中に2以上のカルバゾール骨格を有する化合物、及び、チタノセン化合物からなる群より選択される少なくとも1種を含む。上記光重合開始剤として1分子中に2以上のカルバゾール骨格を有する化合物、及び、チタノセン化合物からなる群より選択される少なくとも1種を後述する充填剤と組み合わせて用いることにより、本発明の液晶表示素子用シール剤は、長波長の光に対する硬化性に優れるものとなる。なかでも、上記光重合開始剤は、紫外線(具体的には波長340nm)から可視光(具体的には波長450nm)までの広い範囲の波長の光に対する反応性に優れ、かつ、シール剤を保管する際等に照射されるイエローランプの波長(具体的には波長580nm)の光に対しては反応性をほとんど有さないことから、上記式(1)で表される化合物を含むことが好ましい。
The sealant for liquid crystal display elements of the present invention contains a photopolymerization initiator.
The photopolymerization initiator contains at least one selected from the group consisting of compounds having two or more carbazole skeletons in one molecule and titanocene compounds. By using at least one selected from the group consisting of a compound having two or more carbazole skeletons in one molecule and a titanocene compound as the photopolymerization initiator in combination with a filler described later, the liquid crystal display of the present invention can be obtained. The element sealant has excellent curability with respect to long-wavelength light. Among them, the photopolymerization initiator has excellent reactivity to light in a wide range of wavelengths from ultraviolet rays (specifically, a wavelength of 340 nm) to visible light (specifically, a wavelength of 450 nm), and can store the sealant. Since it has almost no reactivity to light with a wavelength of a yellow lamp (specifically, a wavelength of 580 nm) that is irradiated when doing so, it is preferable that the compound represented by the above formula (1) is included. .
上記式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。
上記Rが炭素数1~20のアルキル基である場合、該アルキル基としては、メチル基、エチル基が好ましい。
上記Rがシクロアルキル基である場合、該シクロアルキル基としては、例えば、シクロヘキシル基、シクロブチル基等が挙げられる。
上記Rがアラルキル基である場合、該アラルキル基としては、例えば、フェニルメチル基、2-ナフチルメチル基等が挙げられる。
上記Rが複素環基である場合、該複素環基としては、例えば、2-ベンゾフラニル基等が挙げられる。
上記Rがアリール基である場合、該アリール基としては、例えば、フェニル基、1-ナフチル基等が挙げられる。なかでも、フェニル基が好ましい。
上記極性基としては、例えば、ヒドロキシ基、カルボキシル基、アミノ基等が挙げられる。なかでも、本発明の液晶表示素子用シール剤を電子部品の接着等に用いる場合、周辺環境にカチオン成分が多くなることから、該カチオン成分の補足が可能であるという観点でカルボキシル基が好ましい。
In the above formula (1), each R 1 is independently an alkyl group having 1 to 20 carbon atoms which may have an ether bond or an amide bond, a cycloalkyl group, an aralkyl group, a heterocyclic group, or an aryl group optionally having an ether bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups may have
When R 1 is an alkyl group having 1 to 20 carbon atoms, the alkyl group is preferably a methyl group or an ethyl group.
When R 1 is a cycloalkyl group, examples of the cycloalkyl group include a cyclohexyl group and a cyclobutyl group.
When R 1 is an aralkyl group, examples of the aralkyl group include a phenylmethyl group and a 2-naphthylmethyl group.
When R 1 is a heterocyclic group, the heterocyclic group includes, for example, a 2-benzofuranyl group.
When R 1 is an aryl group, examples of the aryl group include a phenyl group and a 1-naphthyl group. Among them, a phenyl group is preferred.
Examples of the polar group include a hydroxy group, a carboxyl group, and an amino group. Among them, when the sealing agent for a liquid crystal display element of the present invention is used for adhesion of electronic parts, etc., a carboxyl group is preferable from the viewpoint that the cationic component can be supplemented because the surrounding environment contains a large amount of cationic component.
上記式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。
上記Rがアルキル基である場合、該アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、2-エチルヘキシル基等が挙げられる。なかでも、メチル基、エチル基、プロピル基、ブチル基、ペンチル基が好ましい。
上記Rがシクロアルキル基である場合、該シクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。上記シクロアルキル基は、アルキル基を有していてもよい。
上記Rがアラルキル基である場合、該アラルキル基としては、例えば、フェニルメチル基等が挙げられる。
上記Rが複素環基である場合、該複素環基としては、例えば、2-ベンゾチオフェニル基等が挙げられる。
上記Rがアリール基である場合、該アリール基としては、フェニル基等が挙げられる。
上記極性基としては、例えば、ヒドロキシ基、カルボキシル基、アミノ基等が挙げられる。なかでも、本発明の液晶表示素子用シール剤を電子部品の接着等に用いる場合、周辺環境にカチオン成分が多くなることから、該カチオン成分の補足が可能であるという観点でカルボキシル基が好ましい。
上記Rが極性基を有するアルキル基である場合、該極性基を有するアルキル基としては、例えば、カルボキシメチル基、2-カルボキシエチル基等が挙げられる。
上記Rが極性基を有するシクロアルキル基である場合、該極性基を有するシクロアルキル基としては、例えば、2-カルボキシシクロヘキシル基、2-カルボキシ-4-メチルシクロヘキシル基等が挙げられる。
In the above formula (1), each R 2 is independently an alkyl group having 1 to 20 carbon atoms which may have an ether bond or an amide bond, a cycloalkyl group, an aralkyl group, a heterocyclic group, or an aryl group optionally having an ether bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups may have
When R 2 is an alkyl group, the alkyl group includes, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a 2-ethylhexyl group and the like. Among them, a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group are preferable.
When R 2 is a cycloalkyl group, examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. The cycloalkyl group may have an alkyl group.
When R 2 is an aralkyl group, examples of the aralkyl group include a phenylmethyl group.
When R 2 is a heterocyclic group, the heterocyclic group includes, for example, a 2-benzothiophenyl group.
When R 2 is an aryl group, examples of the aryl group include a phenyl group.
Examples of the polar group include a hydroxy group, a carboxyl group, and an amino group. Among them, when the sealing agent for a liquid crystal display element of the present invention is used for adhesion of electronic parts, etc., a carboxyl group is preferable from the viewpoint that the cationic component can be supplemented because the surrounding environment contains a large amount of cationic component.
When R 2 is an alkyl group having a polar group, examples of the alkyl group having a polar group include a carboxymethyl group and a 2-carboxyethyl group.
When R 2 is a cycloalkyl group having a polar group, examples of the cycloalkyl group having a polar group include a 2-carboxycyclohexyl group and a 2-carboxy-4-methylcyclohexyl group.
上記式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。
上記Rがアルキル基である場合、該アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、2-エチルヘキシル基等が挙げられる。なかでも、メチル基、エチル基、プロピル基、ブチル基、ペンチル基が好ましい。上記アルキル基は、アリール基を有していてもよい。
上記Rがシクロアルキル基である場合、該シクロアルキル基としては、シクロヘキシル基等が挙げられる。
上記Rがアラルキル基である場合、該アラルキル基としては、例えば、2-ナフチルメチル基等が挙げられる。
上記Rが複素環基である場合、該複素環基としては、例えば、2-チエニル基等が挙げられる。
上記Rがアリール基である場合、該アリール基としては、フェニル基等が挙げられる。上記極性基としては、例えば、ヒドロキシ基、カルボキシル基、アミノ基等が挙げられる。なかでも、本発明の液晶表示素子用シール剤を電子部品の接着等に用いる場合、周辺環境にカチオン成分が多くなることから、該カチオン成分の補足が可能であるという観点でカルボキシル基が好ましい。
上記Rが極性基を有するアルキル基である場合、該極性基を有するアルキル基としては、例えば、1-カルボキシエチル基、2-カルボキシエチル基、1-カルボキシプロピル基、3-カルボキシプロピル基、1-カルボキシペンチル基、カルボキシ(フェニル)メチル基等が挙げられる。
In the above formula (1), each R 3 is independently an alkyl group having 1 to 20 carbon atoms which may have an ether bond or an amide bond, a cycloalkyl group, an aralkyl group, a heterocyclic group, or an aryl group optionally having an ether bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups may have
When R 3 is an alkyl group, examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, 2-ethylhexyl group and the like. Among them, a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group are preferable. The alkyl group may have an aryl group.
When R 3 is a cycloalkyl group, examples of the cycloalkyl group include a cyclohexyl group.
When R 3 is an aralkyl group, the aralkyl group includes, for example, a 2-naphthylmethyl group.
When R 3 is a heterocyclic group, the heterocyclic group includes, for example, a 2-thienyl group.
When R 3 is an aryl group, examples of the aryl group include a phenyl group. Examples of the polar group include a hydroxy group, a carboxyl group, and an amino group. Among them, when the sealing agent for a liquid crystal display element of the present invention is used for adhesion of electronic parts, etc., a carboxyl group is preferable from the viewpoint that the cationic component can be supplemented because the surrounding environment contains a large amount of cationic component.
When R 3 is an alkyl group having a polar group, examples of the alkyl group having a polar group include 1-carboxyethyl group, 2-carboxyethyl group, 1-carboxypropyl group, 3-carboxypropyl group, 1-carboxypentyl group, carboxy(phenyl)methyl group and the like.
上記式(1)中、Rは、結合手、アリーレン基を有する構造、又は、ヘテロアリーレン基を有する構造である。
上記Rがアリーレン基を有する構造である場合、該アリーレン基としては、例えば、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基等が挙げられる。上記アリーレン基を有する構造としては、具体的には例えば、下記式(2-1)~(2-5)で表される構造等が挙げられる。
上記Rがヘテロアリーレン基を有する構造である場合、該ヘテロアリーレン基としては、例えば、チエニレン基、フラニレン基、ピリジレン基等が挙げられる。なかでも、チエニレン基が好ましい。上記ヘテロアリーレン基を有する構造としては、具体的には例えば、下記式(3-1)~(3-6)で表される構造等が挙げられる。
In formula (1) above, R 4 is a bond, a structure having an arylene group, or a structure having a heteroarylene group.
When R 4 is a structure having an arylene group, examples of the arylene group include 1,3-phenylene group, 1,4-phenylene group and 1,4-naphthylene group. Specific examples of the structure having an arylene group include structures represented by the following formulas (2-1) to (2-5).
When R 4 is a structure having a heteroarylene group, examples of the heteroarylene group include a thienylene group, a furanylene group and a pyridylene group. Among them, a thienylene group is preferred. Specific examples of the structure having the heteroarylene group include structures represented by the following formulas (3-1) to (3-6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(2-1)~(2-5)中、*は、結合位置を表す。 In formulas (2-1) to (2-5), * represents a bonding position.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(3-1)~(3-6)中、*は、結合位置を表す。 In formulas (3-1) to (3-6), * represents a bonding position.
なかでも、長波長(例えば、波長450nm)の光に対する反応性に優れ、かつ、イエローランプ下における安定性に優れることから、上記光重合開始剤は、上記式(1)で表される化合物として、上記式(4-1)で表される化合物、上記式(4-2)で表される化合物、及び、上記式(4-3)で表される化合物からなる群より選択される少なくとも1種を含むことが好ましい。 Among them, the photopolymerization initiator has excellent reactivity to light with a long wavelength (e.g., a wavelength of 450 nm) and excellent stability under a yellow lamp, so the photopolymerization initiator is a compound represented by the above formula (1). , the compound represented by the formula (4-1), the compound represented by the formula (4-2), and at least one selected from the group consisting of the compound represented by the formula (4-3) It preferably contains seeds.
上記式(1)で表される化合物の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が5重量部である。上記式(1)で表される化合物の含有量が0.01重量部以上であることにより、得られる液晶表示素子用シール剤が長波長の光に対する硬化性により優れるものとなる。上記式(1)で表される化合物の含有量が5重量部以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記式(1)で表される化合物の含有量のより好ましい下限は0.1重量部、より好ましい上限は2重量部である。 The content of the compound represented by the above formula (1) has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 5 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the compound represented by the above formula (1) is 0.01 parts by weight or more, the obtained sealing agent for liquid crystal display elements has excellent curability to long-wave light. When the content of the compound represented by the above formula (1) is 5 parts by weight or less, the obtained sealing compound for liquid crystal display elements is excellent in low liquid crystal contamination. A more preferred lower limit to the content of the compound represented by formula (1) is 0.1 parts by weight, and a more preferred upper limit is 2 parts by weight.
本発明の液晶表示素子用シール剤は、充填剤を含有する。
上記充填剤は、真球度が1.00以上1.05以下であり、かつ、平均粒子径が1.0μm以下である。真球度が1.00以上1.05以下であり、かつ、平均粒子径が1.0μm以下である充填剤と、上述した光重合開始剤とを組み合わせて用いることにより、本発明の液晶表示素子用シール剤は、長波長の光に対する硬化性に優れるものとなる。
The sealing compound for liquid crystal display elements of the present invention contains a filler.
The filler has a sphericity of 1.00 or more and 1.05 or less and an average particle diameter of 1.0 μm or less. By using a filler having a sphericity of 1.00 or more and 1.05 or less and an average particle diameter of 1.0 μm or less in combination with the above photopolymerization initiator, the liquid crystal display of the present invention can be obtained. The element sealant has excellent curability with respect to long-wavelength light.
上記充填剤は、真球度が1.00以上1.05以下である。上記充填剤の真球度がこの範囲であることにより、本発明の液晶表示素子用シール剤は、長波長の光であっても入射光を均一に散乱させることができ、遮光部硬化性に優れるものとなる。上記真球度の好ましい上限は1.04、より好ましい上限は1.02である。上記真球度は、1.00であることが最も好ましい。
なお、本明細書において上記「真球度」は、粒子の長径と短径との比(長径/短径)の平均値を意味する。具体的には、走査型電子顕微鏡を用いて、1万倍の倍率で観察した10個の粒子における、断面積が最大となる断面について測定した(長径/短径)の平均値を意味する。この際、断面積が最大となる断面が観察できていない粒子については、真球度を導出する対象とはしないものとする。上記走査型電子顕微鏡としては、電界放出形走査電子顕微鏡S-4800(日立ハイテクノロジーズ社製)等を用いることができる。
The filler has a sphericity of 1.00 or more and 1.05 or less. Since the sphericity of the filler is within this range, the sealant for a liquid crystal display element of the present invention can uniformly scatter incident light even with long-wavelength light, and the light-shielding portion curability is improved. become excellent. A preferable upper limit of the sphericity is 1.04, and a more preferable upper limit is 1.02. The sphericity is most preferably 1.00.
In this specification, the above-mentioned "sphericity" means the average value of the ratio of the major axis to the minor axis (major axis/minor axis) of particles. Specifically, it means the average value of (major axis/minor axis) measured for the cross section having the maximum cross-sectional area in 10 particles observed at a magnification of 10,000 using a scanning electron microscope. At this time, particles for which the cross-section with the maximum cross-sectional area cannot be observed are not taken as targets for deriving the sphericity. As the scanning electron microscope, a field emission scanning electron microscope S-4800 (manufactured by Hitachi High-Technologies Corporation) or the like can be used.
上記充填剤は、平均粒子径が1.0μm以下である。上記充填剤の平均粒子径が1.0μm以下であることにより、本発明の液晶表示素子用シール剤は、深部硬化性に優れるものとなる。上記充填剤の平均粒子径の好ましい上限は0.9μm、より好ましい上限は0.8μmである。
なお、本明細書において、上記充填剤の平均粒子径は、シール剤に配合する前の粒子については、レーザー回折式粒度分布測定装置を用いて測定することにより得られる値を意味する。また、シール剤に含まれる粒子については、硬化前のシール剤を水とアセトニトリルの混合溶媒に分散し、上記充填剤を分散させて得られた分散液について、レーザー回折式粒度分布測定装置を用いて測定することができる。上記レーザー回折式粒度分布測定装置としては、マスターサイザー2000(マルバーン社製)等を用いることができる。
The filler has an average particle size of 1.0 μm or less. When the average particle size of the filler is 1.0 μm or less, the sealant for liquid crystal display elements of the present invention is excellent in deep-part curability. A preferable upper limit of the average particle size of the filler is 0.9 μm, and a more preferable upper limit is 0.8 μm.
In this specification, the average particle size of the filler means a value obtained by measuring the particles before being mixed with the sealant using a laser diffraction particle size distribution analyzer. In addition, the particles contained in the sealant were obtained by dispersing the uncured sealant in a mixed solvent of water and acetonitrile, and dispersing the above-mentioned filler, using a laser diffraction particle size distribution analyzer. can be measured by Mastersizer 2000 (manufactured by Malvern) or the like can be used as the laser diffraction particle size distribution analyzer.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子、及び、これらのコアシェル粒子等が挙げられる。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
An inorganic filler or an organic filler can be used as the filler.
Examples of inorganic fillers include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and core-shell particles thereof.
The above fillers may be used alone, or two or more of them may be used in combination.
上記充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が40重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、長波長の光に対する硬化性を向上させる効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は3重量部である。 As for the content of the filler, a preferable lower limit is 1 part by weight and a preferable upper limit is 40 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the filler is within this range, the effect of improving the curability with respect to long-wavelength light is excellent without deteriorating the applicability and the like. A more preferable lower limit of the content of the filler is 3 parts by weight.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル化合物を含有することが好ましい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から1分子中に(メタ)アクリロイル基を2つ以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The sealant for liquid crystal display elements of the present invention contains a curable resin.
The curable resin preferably contains a (meth)acrylic compound.
Examples of the (meth)acrylic compound include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, and urethane (meth)acrylates. Among them, epoxy (meth)acrylate is preferred. The (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule from the viewpoint of reactivity.
In the present specification, the above "(meth)acryl" means acrylic or methacryl, the above "(meth)acrylic compound" means a compound having a (meth)acryloyl group, and the above "( meth)acryloyl" means acryloyl or methacryloyl. Moreover, the above-mentioned "(meth)acrylate" means acrylate or methacrylate. Furthermore, the above-mentioned "epoxy (meth)acrylate" represents a compound obtained by reacting all epoxy groups in an epoxy compound with (meth)acrylic acid.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth)acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. , t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, iso myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, 2-Phenoxyethyl (meth)acrylate, methoxyethylene glycol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, phenoxydiethyleneglycol (meth)acrylate, phenoxypolyethyleneglycol (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, ethyl carbi tall (meth)acrylate, 2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3-tetrafluoropropyl (meth)acrylate, 1H,1H,5H-octafluoropentyl (meth)acrylate, imido (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, 2-(meth)acryloyloxyethyl succinic acid, 2-(meth)acryloyloxyethylhexahydrophthalate, 2-( meth)acryloyloxyethyl 2-hydroxypropyl phthalate, 2-(meth)acryloyloxyethyl phosphate, glycidyl (meth)acrylate and the like.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Among the above (meth)acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, ethylene oxide-added bisphenol F di(meth)acrylate , dimethyloldicyclopentadienyl di(meth)acrylate, ethylene oxide-modified isocyanuric acid di(meth)acrylate, 2-hydroxy-3-(meth)acryloyloxypropyl (meth)acrylate, carbonate diol di(meth)acrylate, polyether diol di(meth)acrylate, polyester diol di(meth)acrylate, polycaprolactone diol di(meth)acrylate, polybutadiene diol di(meth)acrylate and the like.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイロキシエチルホスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, among the above (meth)acrylic acid ester compounds, trifunctional or higher ones include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri( meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。 Examples of epoxy compounds that are raw materials for synthesizing the epoxy (meth)acrylate include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, and 2,2′-diallylbisphenol A type epoxy compounds. , hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolac-type epoxy compounds, ortho-cresol novolac-type epoxy compounds, dicyclopentadiene novolak-type epoxy compounds, biphenyl novolak-type epoxy compounds, naphthalenephenol novolak-type epoxy compounds, glycidylamine-type epoxy compounds, alkylpolyol-type epoxy compounds, rubber-modified epoxy compounds , glycidyl ester compounds, and the like.
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON EXA-850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON 430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(日鉄ケミカル&マテリアル社製)、EPICLON 726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも日鉄ケミカル&マテリアル社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも日鉄ケミカル&マテリアル社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Commercially available bisphenol A type epoxy compounds include, for example, jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
Examples of commercially available bisphenol F-type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC Corporation).
Examples of commercially available 2,2'-diallylbisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC Corporation).
Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
Commercially available resorcinol-type epoxy compounds include, for example, EX-201 (manufactured by Nagase ChemteX Corporation).
Commercially available biphenyl-type epoxy compounds include, for example, jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene-type epoxy compounds include EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC Corporation).
Examples of commercially available phenolic novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC Corporation).
Examples of commercially available ortho-cresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC Corporation).
Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC Corporation).
Commercially available biphenyl novolac type epoxy compounds include, for example, NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
Examples of commercially available alkyl polyol type epoxy compounds include ZX-1542 (manufactured by Nippon Steel Chemical & Materials), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX. -611 (manufactured by Nagase ChemteX Corporation) and the like.
Examples of commercially available rubber-modified epoxy compounds include YR-450 and YR-207 (both manufactured by Nippon Steel Chemical & Materials) and Epolead PB (manufactured by Daicel).
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy compounds include YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei), jER1031, and jER1032. (all manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Commercially available epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Allnex, epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Industry, epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. ( meth) acrylate, epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation, and the like.
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
Examples of epoxy (meth)acrylates manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020.
Examples of the epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include, for example, Epoxy Ester M-600A, Epoxy Ester 40EM, Epoxy Ester 70PA, Epoxy Ester 200PA, Epoxy Ester 80MFA, Epoxy Ester 3002M, Epoxy Ester 3002A, Epoxy Ester 1600A, Epoxy Ester 3000M, Epoxy Ester 3000A, Epoxy Ester 200EA, Epoxy Ester 400EA and the like.
Examples of epoxy (meth)acrylates manufactured by Nagase ChemteX Co., Ltd. include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
上記ウレタン(メタ)アクリレートは、例えば、多官能イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth)acrylate can be obtained, for example, by reacting a polyfunctional isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
上記多官能イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the polyfunctional isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), Hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris(isocyanatophenyl) thiophosphate, tetramethyl xylylene diisocyanate, 1,6,11-undecane triisocyanate, and the like.
また、上記多官能イソシアネート化合物としては、ポリオールと過剰の多官能イソシアネート化合物との反応により得られる鎖延長された多官能イソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
As the polyfunctional isocyanate compound, a chain-extended polyfunctional isocyanate compound obtained by reacting a polyol with an excess polyfunctional isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and the like.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylates, dihydric alcohol mono(meth)acrylates, trihydric alcohol mono(meth)acrylates and di(meth)acrylates. , epoxy (meth)acrylate, and the like.
Examples of the hydroxyalkyl mono(meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. mentioned.
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, glycerin and the like.
Examples of the epoxy (meth)acrylate include bisphenol A type epoxy acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Examples of commercially available urethane (meth) acrylates include urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Allnex, and urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth)acrylates manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210 and M-1600.
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等がmentioned.
Examples of the urethane (meth)acrylate manufactured by Neagari Kogyo Co., Ltd. include, for example, Artresin UN-330, Artresin SH-500B, Artresin UN-1200TPK, Artresin UN-1255, Artresin UN-3320HB, Artresin UN- 7100, Artresin UN-9000A, Artresin UN-9000H and the like.
The urethane (meth)acrylates manufactured by Shin-Nakamura Chemical Co., Ltd. include, for example, U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A and the like.
Examples of the urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. be done.
上記硬化性樹脂は、得られる液晶表示素子用シール剤の接着性を向上させること等を目的として、エポキシ化合物を含有してもよい。上記エポキシ化合物としては、例えば、上述したエポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物や、部分(メタ)アクリル変性エポキシ化合物等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ化合物とは、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
The curable resin may contain an epoxy compound for the purpose of improving the adhesiveness of the obtained sealing agent for liquid crystal display elements. Examples of the epoxy compound include an epoxy compound that serves as a raw material for synthesizing the epoxy (meth)acrylate described above, a partially (meth)acryl-modified epoxy compound, and the like.
In the present specification, the partially (meth)acrylic-modified epoxy compound means, for example, reacting a part of the epoxy group of an epoxy compound having two or more epoxy groups in one molecule with (meth)acrylic acid. means a compound having one or more epoxy groups and one or more (meth)acryloyl groups in one molecule, which can be obtained by
上記硬化性樹脂として上記(メタ)アクリル化合物と上記エポキシ化合物とを含有する場合、又は、上記部分(メタ)アクリル変性エポキシ化合物を含有する場合、上記硬化性樹脂中の(メタ)アクリロイル基とエポキシ基との合計中における(メタ)アクリロイル基の比率を30モル%以上95モル%以下になるようにすることが好ましい。上記(メタ)アクリロイル基の比率がこの範囲であることにより、液晶汚染の発生を抑制しつつ、得られる液晶表示素子用シール剤が接着性により優れるものとなる。 When the curable resin contains the (meth)acrylic compound and the epoxy compound, or when the partially (meth)acryl-modified epoxy compound is contained, the (meth)acryloyl group in the curable resin and the epoxy It is preferable that the ratio of the (meth)acryloyl group in the total of the groups is 30 mol % or more and 95 mol % or less. When the ratio of the (meth)acryloyl group is within this range, the resulting sealant for liquid crystal display elements has excellent adhesion while suppressing the occurrence of liquid crystal contamination.
上記硬化性樹脂は、得られる液晶表示素子用シール剤を低液晶汚染性により優れるものとする観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The curable resin has a hydrogen-bonding unit such as —OH group, —NH— group, or —NH 2 group, from the viewpoint of making the obtained sealing agent for liquid crystal display element more excellent in low liquid crystal contamination resistance. is preferred.
上記硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The curable resins may be used alone, or two or more of them may be used in combination.
本発明の液晶表示素子用シール剤は、熱重合開始剤を含有することが好ましい。
上記熱重合開始剤を含有することにより、得られる液晶表示素子用シール剤が加熱時に速やかに硬化して表面硬化性に優れるものとなり、液晶の差し込みを抑制する効果により優れるものとなる。
The sealing compound for liquid crystal display elements of the present invention preferably contains a thermal polymerization initiator.
By containing the above thermal polymerization initiator, the obtained sealing compound for a liquid crystal display element cures quickly when heated, and has excellent surface curability, and is more excellent in the effect of suppressing penetration of the liquid crystal.
上記熱重合開始剤としては、例えば、アゾ化合物、有機過酸化物等で構成されるものが挙げられる。なかでも、高分子アゾ化合物で構成される高分子アゾ開始剤が好ましい。
上記熱重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
Examples of the thermal polymerization initiator include those composed of azo compounds, organic peroxides, and the like. Among them, a polymeric azo initiator composed of a polymeric azo compound is preferable.
The above thermal polymerization initiators may be used alone, or two or more of them may be used in combination.
As used herein, the term "polymeric azo compound" refers to a compound having an azo group and a number average molecular weight of 300 or more, which generates a radical capable of curing a (meth)acryloyloxy group by heat. means.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。 A preferable lower limit of the number average molecular weight of the above high-molecular azo compound is 1,000, and a preferable upper limit thereof is 300,000. When the number average molecular weight of the high-molecular-weight azo compound is within this range, it can be easily mixed with the curable resin while suppressing liquid crystal contamination. The lower limit of the number average molecular weight of the high-molecular azo compound is more preferably 5,000, the upper limit is 100,000, the lower limit is still more preferably 10,000, and the upper limit is still more preferably 90,000.
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ化合物としては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, one having a polyethylene oxide structure is preferable.
Specific examples of the high-molecular azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis(4-cyanopentanoic acid). and a polycondensate of polydimethylsiloxane having a terminal amino group.
Examples of commercially available polymeric azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). be done.
Examples of non-polymeric azo compounds include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides and peroxydicarbonates.
上記熱重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱重合開始剤の含有量が0.05重量部以上であることにより、本発明の液晶表示素子用シール剤が熱硬化性により優れるものとなる。上記熱重合開始剤の含有量が10重量部以下であることにより、本発明の液晶表示素子用シール剤が低液晶汚染性や保存安定性により優れるものとなる。上記熱重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the thermal polymerization initiator has a preferable lower limit of 0.05 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal polymerization initiator is 0.05 parts by weight or more, the sealing agent for liquid crystal display elements of the present invention becomes excellent in thermosetting property. When the content of the thermal polymerization initiator is 10 parts by weight or less, the sealant for liquid crystal display elements of the present invention is excellent in low liquid crystal contamination and storage stability. A more preferred lower limit to the content of the thermal polymerization initiator is 0.1 parts by weight, and a more preferred upper limit is 5 parts by weight.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
上記熱硬化剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealing compound for liquid crystal display elements of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among them, organic acid hydrazides are preferably used.
The thermosetting agents may be used alone, or two or more of them may be used in combination.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide.
Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Ltd., and the like.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH, and Amicure UDH-J.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、熱硬化性により優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent has a preferable lower limit of 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermosetting agent is within this range, the obtained sealing compound for liquid crystal display elements can be made more excellent in thermosetting properties without deteriorating the applicability and the like. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealing compound for liquid crystal display elements of the present invention preferably contains a silane coupling agent. The silane coupling agent mainly serves as an adhesion assistant for good adhesion between the sealing agent and the substrate.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
The silane coupling agents may be used alone, or two or more of them may be used in combination.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 A preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the liquid crystal display element sealing compound of the present invention is 0.1 parts by weight, and a preferable upper limit thereof is 10 parts by weight. When the content of the silane coupling agent is within this range, the effect of improving adhesion while suppressing the occurrence of liquid crystal contamination is more excellent. A more preferable lower limit to the content of the silane coupling agent is 0.3 parts by weight, and a more preferable upper limit is 5 parts by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention further contains additives such as reactive diluents, thixotropic agents, spacers, curing accelerators, antifoaming agents, leveling agents and polymerization inhibitors, if necessary. may
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、光重合開始剤と、増感剤や必要に応じて添加するシランカップリング剤等とを混合する方法等が挙げられる。 As a method for producing the sealing agent for a liquid crystal display element of the present invention, for example, a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three-roll mixer is used to mix a curable resin with light. For example, a method of mixing a polymerization initiator with a sensitizer or a silane coupling agent to be added as necessary.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。 By blending the conductive fine particles into the liquid crystal display element sealant of the present invention, a vertically conductive material can be produced.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle having a conductive metal layer formed on its surface, or the like can be used. Among them, the one in which a conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.
本発明の液晶表示素子用シール剤の硬化物を有する液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子としては、狭額縁設計の液晶表示素子が好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の液晶表示素子を製造する際の本発明の液晶表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
A liquid crystal display element having a cured product of the sealant for a liquid crystal display element of the present invention is also one aspect of the present invention.
As the liquid crystal display element of the present invention, a liquid crystal display element having a narrow frame design is preferable. Specifically, it is preferable that the width of the frame portion around the liquid crystal display section is 2 mm or less.
Moreover, it is preferable that the coating width of the sealant for a liquid crystal display element of the present invention when manufacturing the liquid crystal display element of the present invention is 1 mm or less.
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極及び配向膜を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、本発明の液晶表示素子用シール剤のシールパターン部分にカットフィルター等を介して光を照射することにより、シール剤を光硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、上記シール剤を光硬化させる工程に加えて、シール剤を加熱して熱硬化させる工程を行ってもよい。
As a method for manufacturing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used, and specific examples thereof include a method including the following steps.
First, a step of applying the sealant for a liquid crystal display element of the present invention by screen printing, dispenser coating, or the like to one of two transparent substrates having an electrode such as an ITO thin film and an alignment film to form a frame-shaped seal pattern. I do. Next, a step is performed in which the liquid crystal liquid crystal sealing agent of the present invention is in an uncured state, and liquid crystal microdroplets are applied dropwise within the frame of the seal pattern of the substrate, and the other transparent substrate is superimposed under vacuum. Thereafter, a liquid crystal display element can be obtained by a method of performing a step of photocuring the sealing agent by irradiating the sealing pattern portion of the sealing agent for a liquid crystal display element of the present invention with light through a cut filter or the like. In addition to the step of photocuring the sealant, a step of heating the sealant to thermally cure it may be performed.
本発明によれば、長波長の光に対する硬化性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in curability with respect to the light of a long wavelength can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealant for a liquid crystal display element.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(式(4-1)で表される化合物の合成)
N-エチルカルバゾール5重量部と、2,5-チオフェンジカルボン酸ジクロリド2.81重量部と、塩化アルミニウム3.76重量部とを、ジクロロメタン40mLに加え、室温にて終夜撹拌した。得られた反応液に、アセチルクロリド2.21重量部と、塩化アルミニウム3.76重量部とを加え、室温で更に4時間撹拌した。得られた反応液を氷水へと注いだ後、有機層を酢酸エチルで抽出した。抽出した溶液を飽和炭酸水素ナトリウム水溶液及び食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(A1)を得た。
得られた生成物(A1)3重量部と、塩化ヒドロキシルアンモニウム0.76重量部と、ピリジン0.86重量部とを、エタノール30mLに加え、10時間還流撹拌した。得られた反応液を氷水へと注いだ後、濾過した。濾物を水で洗浄した後、酢酸エチルに溶解し、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(B1)を得た。
得られた生成物(B1)1.5重量部をN,N-ジメチルホルムアミド25重量部に溶解した後、アセチルクロリド0.59重量部を加えた。得られた溶液を10℃以下に冷却しながらトリエチルアミン0.78重量部を滴下し、室温で4時間撹拌した。得られた反応液を水へと注いだ後、濾過した。濾物を、ジクロロメタンとヘキサンとの混合溶媒(ジクロロメタン:ヘキサン=2:1)を用いたシリカゲルカラムクロマトグラフィーで精製することにより、上記式(4-1)で表される化合物を得た。
なお、得られた上記式(4-1)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Synthesis of compound represented by formula (4-1))
5 parts by weight of N-ethylcarbazole, 2.81 parts by weight of 2,5-thiophenedicarboxylic acid dichloride, and 3.76 parts by weight of aluminum chloride were added to 40 mL of dichloromethane and stirred overnight at room temperature. 2.21 parts by weight of acetyl chloride and 3.76 parts by weight of aluminum chloride were added to the obtained reaction solution, and the mixture was further stirred at room temperature for 4 hours. After the resulting reaction solution was poured into ice water, the organic layer was extracted with ethyl acetate. The extracted solution was washed with saturated aqueous sodium bicarbonate and brine, dried over anhydrous magnesium sulfate and concentrated to give product (A1).
3 parts by weight of the obtained product (A1), 0.76 parts by weight of hydroxylammonium chloride, and 0.86 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours. The resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous magnesium sulfate and concentrated to obtain the product (B1).
After 1.5 parts by weight of the obtained product (B1) was dissolved in 25 parts by weight of N,N-dimethylformamide, 0.59 parts by weight of acetyl chloride was added. 0.78 parts by weight of triethylamine was added dropwise to the resulting solution while cooling to 10° C. or lower, and the mixture was stirred at room temperature for 4 hours. The resulting reaction solution was poured into water and then filtered. The filtrate was purified by silica gel column chromatography using a mixed solvent of dichloromethane and hexane (dichloromethane:hexane=2:1) to obtain the compound represented by the above formula (4-1).
The structure of the obtained compound represented by formula (4-1) was confirmed by 1 H-NMR, 13 C-NMR and FT-IR.
(式(4-2)で表される化合物の合成)
N-(2-エチルヘキシル)カルバゾール5重量部と、2,5-チオフェンジカルボン酸ジクロリド2.81重量部と、塩化アルミニウム3.76重量部とを、ジクロロメタン40mLに加え、室温にて終夜撹拌した。得られた反応液に、アセチルクロリド2.21重量部と、塩化アルミニウム3.76重量部とを加え、室温で更に4時間撹拌した。得られた反応液を氷水へと注いだ後、有機層を酢酸エチルで抽出した。抽出した溶液を飽和炭酸水素ナトリウム水溶液及び食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(A2)を得た。
得られた生成物(A2)3重量部と、塩化ヒドロキシルアンモニウム0.76重量部と、ピリジン0.86重量部とを、エタノール30mLに加え、10時間還流撹拌した。得られた反応液を氷水へと注いだ後、濾過した。濾物を水で洗浄した後、酢酸エチルに溶解し、無水硫酸マグネシウムを用いて乾燥させて濃縮し、生成物(B2)を得た。
得られた生成物(B2)1.5重量部をN,N-ジメチルホルムアミド25重量部に溶解した後、アセチルクロリド0.59重量部を加えた。得られた溶液を10℃以下に冷却しながらトリエチルアミン0.78重量部を滴下し、室温で4時間撹拌した。得られた反応液を水へと注いだ後、濾過した。濾物を、ジクロロメタンとヘキサンとの混合溶媒(ジクロロメタン:ヘキサン=2:1)を用いたシリカゲルカラムクロマトグラフィーで精製することにより、上記式(4-2)で表される化合物を得た。
なお、得られた上記式(4-2)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Synthesis of compound represented by formula (4-2))
5 parts by weight of N-(2-ethylhexyl)carbazole, 2.81 parts by weight of 2,5-thiophenedicarboxylic acid dichloride, and 3.76 parts by weight of aluminum chloride were added to 40 mL of dichloromethane and stirred overnight at room temperature. 2.21 parts by weight of acetyl chloride and 3.76 parts by weight of aluminum chloride were added to the obtained reaction solution, and the mixture was further stirred at room temperature for 4 hours. After the resulting reaction solution was poured into ice water, the organic layer was extracted with ethyl acetate. The extracted solution was washed with saturated aqueous sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and concentrated to obtain product (A2).
3 parts by weight of the obtained product (A2), 0.76 parts by weight of hydroxylammonium chloride, and 0.86 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours. The resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous magnesium sulfate and concentrated to obtain the product (B2).
After 1.5 parts by weight of the obtained product (B2) was dissolved in 25 parts by weight of N,N-dimethylformamide, 0.59 parts by weight of acetyl chloride was added. 0.78 parts by weight of triethylamine was added dropwise to the resulting solution while cooling to 10° C. or lower, and the mixture was stirred at room temperature for 4 hours. The resulting reaction solution was poured into water and then filtered. The filtrate was purified by silica gel column chromatography using a mixed solvent of dichloromethane and hexane (dichloromethane:hexane=2:1) to obtain the compound represented by the above formula (4-2).
The structure of the obtained compound represented by formula (4-2) was confirmed by 1 H-NMR, 13 C-NMR and FT-IR.
(式(4-3)で表される化合物の合成)
3-(9H-カルバゾール-9-イル)プロピオン酸エチル5重量部と、ヘキサノイルクロリド2.64重量部と、塩化アルミニウム2.62重量部とを、ジクロロメタン80mLに加え、室温にて終夜撹拌した。得られた反応液に、2,5-チオフェンジカルボン酸ジクロリド1.84重量部と、塩化アルミニウム5.24重量部とを加え、室温で更に4時間撹拌した。得られた反応液を氷水へと注いだ後、有機層を酢酸エチルで抽出した。抽出した溶液を飽和炭酸水素ナトリウム水溶液及び食塩水で洗浄した後、無水硫酸ナトリウムを用いて乾燥させて濃縮し、生成物(A3)を得た。
エタノール20mL中の生成物(A3)4.0重量部に、濃度20重量%の水酸化ナトリウム水溶液2.77重量部を加え、3時間還流した。反応終了後、水50mLを加え、濃塩酸で酸性にした後、酢酸エチルで抽出した。酢酸エチル層を水及び食塩水で洗浄し、その後、無水硫酸ナトリウムで乾燥させて濃縮し、生成物(B3)を得た。
得られた生成物(B3)3重量部と、塩化ヒドロキシルアンモニウム0.58重量部と、ピリジン0.65重量部とを、エタノール30mLに加え、10時間還流撹拌した。得られた反応液を氷水へと注いだ後、濾過した。濾物を水で洗浄した後、酢酸エチルに溶解し、無水硫酸ナトリウムを用いて乾燥させて濃縮し、生成物(C3)を得た。
得られた生成物(C3)1.5重量部をN,N-ジメチルホルムアミド20重量部に溶解した後、アセチルクロリド0.45重量部を加えた。得られた溶液を10℃以下に冷却しながらトリエチルアミン0.59重量部を滴下し、室温で4時間撹拌した。得られた反応液を水へと注いだ後、ろ過した。シリカゲルカラムクロマトグラフィーにより化合物を単離することにより、上記式(4-3)で表される化合物を得た。
なお、得られた上記式(4-3)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
(Synthesis of compound represented by formula (4-3))
5 parts by weight of ethyl 3-(9H-carbazol-9-yl)propionate, 2.64 parts by weight of hexanoyl chloride, and 2.62 parts by weight of aluminum chloride were added to 80 mL of dichloromethane and stirred overnight at room temperature. . 1.84 parts by weight of 2,5-thiophenedicarboxylic acid dichloride and 5.24 parts by weight of aluminum chloride were added to the resulting reaction solution, and the mixture was further stirred at room temperature for 4 hours. After the resulting reaction solution was poured into ice water, the organic layer was extracted with ethyl acetate. The extracted solution was washed with saturated aqueous sodium bicarbonate and brine, dried over anhydrous sodium sulfate and concentrated to give product (A3).
To 4.0 parts by weight of product (A3) in 20 mL of ethanol was added 2.77 parts by weight of an aqueous sodium hydroxide solution having a concentration of 20% by weight, and the mixture was refluxed for 3 hours. After completion of the reaction, 50 mL of water was added, acidified with concentrated hydrochloric acid, and extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, then dried over anhydrous sodium sulfate and concentrated to give the product (B3).
3 parts by weight of the obtained product (B3), 0.58 parts by weight of hydroxylammonium chloride, and 0.65 parts by weight of pyridine were added to 30 mL of ethanol and stirred under reflux for 10 hours. The resulting reaction solution was poured into ice water and then filtered. After the filtrate was washed with water, it was dissolved in ethyl acetate, dried with anhydrous sodium sulfate and concentrated to obtain the product (C3).
After 1.5 parts by weight of the obtained product (C3) was dissolved in 20 parts by weight of N,N-dimethylformamide, 0.45 parts by weight of acetyl chloride was added. 0.59 parts by weight of triethylamine was added dropwise to the obtained solution while cooling to 10° C. or lower, and the mixture was stirred at room temperature for 4 hours. The resulting reaction solution was poured into water and then filtered. By isolating the compound by silica gel column chromatography, the compound represented by the above formula (4-3) was obtained.
The structure of the obtained compound represented by the above formula (4-3) was confirmed by 1 H-NMR, 13 C-NMR and FT-IR.
(実施例1~27及び比較例1~7)
表1~3に記載された配合比に従い、各材料を遊星式撹拌機を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~27及び比較例1~7の液晶表示素子用シール剤を調製した。遊星式撹拌機としては、あわとり練太郎(シンキー社製)を用いた。
(Examples 1 to 27 and Comparative Examples 1 to 7)
According to the compounding ratio described in Tables 1 to 3, after mixing each material using a planetary stirrer, the liquid crystals of Examples 1 to 27 and Comparative Examples 1 to 7 were further mixed using three rolls. A sealant for display elements was prepared. Awatori Mixer (manufactured by Thinky Corporation) was used as the planetary stirrer.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1~3に示した。
<Evaluation>
Each sealant for liquid crystal display elements obtained in Examples and Comparative Examples was evaluated as follows. The results are shown in Tables 1-3.
(波長340nmの光に対する遮光部硬化性)
実施例及び比較例で得られた各液晶表示素子用シール剤をディスペンス用のシリンジに充填し、脱泡処理を行ってから、ディスペンサーにてシール剤の厚さが4μmとなるようにガラス基板上に塗布した。ディスペンス用のシリンジとしては、PSY-10E(武蔵エンジニアリング社製)を用い、ディスペンサーとしては、SHOTMASTER300(武蔵エンジニアリング社製)を用いた。シール剤を塗布した基板の該シール剤上に、スリット幅100μmの開口部を有する厚さ500μmのスリットガラスを被せ、該スリットガラスの上からメタルハライドランプを用いて100mW/cmの光を30秒照射し、遮光部硬化性測定用試験片を得た。光照射は、波長340nm以下の光をカットするカットフィルター(340nmカットフィルター)を介して行った。得られた試験片からスリットガラスを外し、スリットガラス開口部直下を0μmとしたときスリットガラス開口部直下からスリットガラス遮光部方向へのシール剤が硬化した距離(硬化距離)を測定した。硬化距離の測定は、赤外分光装置を用いてシール剤のFT-IR測定を行い、(メタ)アクリロイル基由来ピークの変化量を測定し、光照射後に(メタ)アクリロイル基由来のピークが50%以上減少した場合を硬化していると判定して行った。赤外分光装置としては、FTS3000(BIORAD社製)を用いた。
(Light shielding part curability for light with a wavelength of 340 nm)
Each liquid crystal display element sealant obtained in Examples and Comparative Examples was filled in a syringe for dispensing, subjected to defoaming treatment, and then spread on a glass substrate with a dispenser so that the thickness of the sealant was 4 μm. was applied to PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used as a syringe for dispensing, and SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used as a dispenser. A slit glass having a thickness of 500 μm having an opening with a slit width of 100 μm was placed on the sealing agent of the substrate coated with the sealing agent, and light of 100 mW/cm 2 was applied from above the slit glass using a metal halide lamp for 30 seconds. After irradiation, a test piece for measuring the curability of the light shielding portion was obtained. Light irradiation was performed through a cut filter (340 nm cut filter) that cuts light with a wavelength of 340 nm or less. The slit glass was removed from the obtained test piece, and the distance (curing distance) where the sealant was cured from directly below the slit glass opening toward the slit glass light shielding portion was measured when the slit glass opening was set to 0 μm. The curing distance is measured by FT-IR measurement of the sealant using an infrared spectrometer, measuring the amount of change in the peak derived from the (meth)acryloyl group, and measuring the peak derived from the (meth)acryloyl group after light irradiation. % or more was judged to be cured. As an infrared spectrometer, FTS3000 (manufactured by BIORAD) was used.
(波長450nmの光に対する遮光部硬化性)
メタルハライドランプ及び340nmカットフィルターを用いず、450nmLEDランプを用いて100mW/cmの光を10秒照射したこと以外は、上記「(波長340nmの光に対する遮光部硬化性)」と同様にして遮光部硬化性測定用試験片を得た。450nmLEDランプとしては、UELCL-P-450-X(アイグラフィクス社製)を用いた。得られた試験片からスリットガラスを外し、スリットガラス開口部直下を0μmとしたときスリットガラス開口部直下からスリットガラス遮光部方向へのシール剤が硬化した距離(硬化距離)を測定した。硬化距離の測定は、赤外分光装置を用いてシール剤のFT-IR測定を行い、(メタ)アクリロイル基由来ピークの変化量を測定し、光照射後に(メタ)アクリロイル基由来のピークが50%以上減少した場合を硬化していると判定して行った。赤外分光装置としては、FTS3000(BIORAD社製)を用いた。
(Light shielding part curability for light with a wavelength of 450 nm)
Except that the metal halide lamp and the 340 nm cut filter were not used and the light of 100 mW / cm was irradiated for 10 seconds using a 450 nm LED lamp, the light shielding part was performed in the same manner as in the above "(Light shielding part curability for light with a wavelength of 340 nm)". A test piece for measuring curability was obtained. As the 450 nm LED lamp, UELCL-P-450-X (manufactured by iGraphics) was used. The slit glass was removed from the obtained test piece, and the distance (curing distance) where the sealant was cured from directly below the slit glass opening toward the slit glass light shielding portion was measured when the slit glass opening was set to 0 μm. The curing distance is measured by FT-IR measurement of the sealant using an infrared spectrometer, measuring the amount of change in the peak derived from the (meth)acryloyl group, and measuring the peak derived from the (meth)acryloyl group after light irradiation. % or more was judged to be cured. As an infrared spectrometer, FTS3000 (manufactured by BIORAD) was used.
(イエローランプ下での安定性(580nm硬化防止性))
実施例及び比較例で得られた各液晶表示素子用シール剤を離型フィルムに厚み300μmで塗工し、イエロールームに8時間静置した。8時間静置した後のシール剤の形状を保持できない場合を「○」、シール剤の形状を保持できる場合を「△」としてイエローランプ下における安定性(580nm硬化防止性)を評価した。
(Stability under yellow lamp (580 nm anti-cure property))
Each of the sealants for liquid crystal display elements obtained in Examples and Comparative Examples was applied to a release film in a thickness of 300 μm and allowed to stand in a yellow room for 8 hours. The stability under a yellow lamp (580 nm anti-curing property) was evaluated as "○" when the shape of the sealant after standing for 8 hours could not be maintained, and "Δ" when the shape of the sealant could be maintained.
(表面硬化性)
実施例及び比較例で得られた各液晶表示素子用シール剤を、塗工機を用いて厚み100μmでガラス基板上に塗布した。シール剤を塗工した基板の該シール剤部分に、450nmLEDランプを用いて100mW/cmの光を3秒照射した。450nmLEDランプとしては、UELCL-P-450-X(アイグラフィクス社製)を用いた。次いで、80℃で10分間加熱することにより、表面硬化性測定用試験片を得た。得られた試験片について、タックテスター(レスカ社製、「タッキング試験機TAC-II」)を用いてシール剤部分の粘着力を測定した。
測定値が5gf以下であった場合を「◎」、5gfを超え10gf未満であった場合を「○」、10gf以上であった場合を「×」として表面硬化性を評価した。
(Surface Curability)
Each liquid crystal display element sealant obtained in Examples and Comparative Examples was applied onto a glass substrate in a thickness of 100 μm using a coating machine. A 450 nm LED lamp was used to irradiate the sealant portion of the substrate coated with the sealant with light of 100 mW/cm 2 for 3 seconds. As the 450 nm LED lamp, UELCL-P-450-X (manufactured by iGraphics) was used. Then, by heating at 80° C. for 10 minutes, a test piece for measuring surface curability was obtained. Using a tack tester (manufactured by Lesca Co., Ltd., "tacking tester TAC-II"), the adhesive force of the sealant portion of the obtained test piece was measured.
The surface curability was evaluated as “⊚” when the measured value was 5 gf or less, “◯” when the measured value was more than 5 gf and less than 10 gf, and “X” when the measured value was 10 gf or more.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
本発明によれば、長波長の光に対する硬化性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in curability with respect to the light of a long wavelength can be provided. Further, according to the present invention, it is possible to provide a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (5)

  1. 硬化性樹脂と光重合開始剤と充填剤を含有する液晶表示素子用シール剤であって、
    前記光重合開始剤は、1分子中に2以上のカルバゾール骨格を有する化合物、及び、チタノセン化合物からなる群より選択される少なくとも1種を含み、
    前記充填剤は、真球度が1.00以上1.05以下であり、かつ、平均粒子径が1.0μm以下である
    ことを特徴とする液晶表示素子用シール剤。
    A sealant for a liquid crystal display element containing a curable resin, a photopolymerization initiator and a filler,
    The photopolymerization initiator contains at least one selected from the group consisting of a compound having two or more carbazole skeletons in one molecule and a titanocene compound,
    A sealant for a liquid crystal display element, wherein the filler has a sphericity of 1.00 or more and 1.05 or less and an average particle diameter of 1.0 µm or less.
  2. 前記光重合開始剤は、下記式(1)で表される化合物を含む請求項1記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。式(1)中、Rは、それぞれ独立して、エーテル結合若しくはアミド結合を有していてもよい炭素数1~20のアルキル基、シクロアルキル基、アラルキル基、複素環基、又は、エーテル結合若しくはアミド結合を有していてもよいアリール基であり、該炭素数1~20のアルキル基、該シクロアルキル基、該アラルキル基、該複素環基、及び、該アリール基は、極性基を有していてもよい。式(1)中、Rは、結合手、アリーレン基を有する構造、又は、ヘテロアリーレン基を有する構造である。
    The sealant for liquid crystal display elements according to claim 1, wherein the photopolymerization initiator contains a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), each R 1 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond. an aryl group optionally having a bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups; may have. In formula (1), each R 2 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond. an aryl group optionally having a bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups; may have. In formula (1), each R 3 is independently an alkyl group, cycloalkyl group, aralkyl group, heterocyclic group, or ether having 1 to 20 carbon atoms which may have an ether bond or an amide bond. an aryl group optionally having a bond or an amide bond, wherein the alkyl group having 1 to 20 carbon atoms, the cycloalkyl group, the aralkyl group, the heterocyclic group, and the aryl group are polar groups; may have. In formula (1), R 4 is a bond, a structure having an arylene group, or a structure having a heteroarylene group.
  3. 前記光重合開始剤は、下記式(4-1)で表される化合物、下記式(4-2)で表される化合物、及び、下記式(4-3)で表される化合物からなる群より選択される少なくとも1種を含む請求項1又は2記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000002
    The photopolymerization initiator is a compound represented by the following formula (4-1), a compound represented by the following formula (4-2), and a group consisting of a compound represented by the following formula (4-3). 3. The sealant for a liquid crystal display element according to claim 1 or 2, comprising at least one selected from.
    Figure JPOXMLDOC01-appb-C000002
  4. 熱重合開始剤を含有する請求項1、2又は3記載の液晶表示素子用シール剤。 4. The sealant for liquid crystal display elements according to claim 1, 2 or 3, which contains a thermal polymerization initiator.
  5. 請求項1、2、3又は4記載の液晶表示素子用シール剤の硬化物を有する液晶表示素子。 A liquid crystal display device comprising a cured product of the liquid crystal display device sealant according to claim 1, 2, 3 or 4.
PCT/JP2022/029229 2021-09-03 2022-07-29 Liquid crystal display element sealant and liquid crystal display element WO2023032543A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551776A JP7512404B2 (en) 2021-09-03 2022-07-29 Sealant for liquid crystal display element and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144022 2021-09-03
JP2021144022 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023032543A1 true WO2023032543A1 (en) 2023-03-09

Family

ID=85411218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029229 WO2023032543A1 (en) 2021-09-03 2022-07-29 Liquid crystal display element sealant and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP7512404B2 (en)
TW (1) TW202323492A (en)
WO (1) WO2023032543A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179797A (en) * 2006-12-28 2008-08-07 Jsr Corp Sealing agent for liquid crystal display element, and liquid crystal display element
JP2009114424A (en) * 2007-10-19 2009-05-28 Jsr Corp Sealing agent for liquid crystal display element, and liquid crystal display element
JP2009227955A (en) * 2008-02-25 2009-10-08 Jsr Corp Curable composition, liquid crystal sealant, and liquid crystal display element
WO2011122025A1 (en) * 2010-03-31 2011-10-06 太陽ホールディングス株式会社 Photocurable resin composition
JP2011215362A (en) * 2010-03-31 2011-10-27 Taiyo Holdings Co Ltd Photocurable resin composition
WO2020235357A1 (en) * 2019-05-17 2020-11-26 三井化学株式会社 Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same
WO2021177316A1 (en) * 2020-03-03 2021-09-10 積水化学工業株式会社 Curable resin composition, sealing agent for display elements, sealing agent for liquid crystal display elements, vertically conductive material, display element, adhesive for electronic components, and electronic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995876B2 (en) 2012-01-13 2016-09-21 日本化薬株式会社 Optical member and ultraviolet curable adhesive used in the production thereof
US10234761B2 (en) 2013-07-08 2019-03-19 Basf Se Oxime ester photoinitiators

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179797A (en) * 2006-12-28 2008-08-07 Jsr Corp Sealing agent for liquid crystal display element, and liquid crystal display element
JP2009114424A (en) * 2007-10-19 2009-05-28 Jsr Corp Sealing agent for liquid crystal display element, and liquid crystal display element
JP2009227955A (en) * 2008-02-25 2009-10-08 Jsr Corp Curable composition, liquid crystal sealant, and liquid crystal display element
WO2011122025A1 (en) * 2010-03-31 2011-10-06 太陽ホールディングス株式会社 Photocurable resin composition
JP2011215362A (en) * 2010-03-31 2011-10-27 Taiyo Holdings Co Ltd Photocurable resin composition
WO2020235357A1 (en) * 2019-05-17 2020-11-26 三井化学株式会社 Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same
WO2021177316A1 (en) * 2020-03-03 2021-09-10 積水化学工業株式会社 Curable resin composition, sealing agent for display elements, sealing agent for liquid crystal display elements, vertically conductive material, display element, adhesive for electronic components, and electronic component

Also Published As

Publication number Publication date
JP7512404B2 (en) 2024-07-08
JPWO2023032543A1 (en) 2023-03-09
TW202323492A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP6798978B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
TWI801554B (en) Photopolymerization initiator, sealant for display elements, upper and lower conduction materials, display elements and compounds
JP7084550B2 (en) Sealant for liquid crystal display element, vertical conduction material, display element
WO2017073548A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP7219370B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JPWO2020013128A1 (en) Liquid crystal element sealant, vertical conduction material, and liquid crystal element
JP7084560B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6725771B1 (en) Sealant for liquid crystal display device, vertical conduction material, and liquid crystal display device
JP7160907B2 (en) Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
JP7156946B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP7512404B2 (en) Sealant for liquid crystal display element and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7201881B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP7253117B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7144627B2 (en) Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6378970B2 (en) Curable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP6997359B1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7148332B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
WO2021177314A1 (en) Curable resin composition, display element sealant, liquid crystal display element sealant, vertical conductive material, display element, electronic component adhesive, and electronic component
WO2024154662A1 (en) Sealing agent for liquid crystal display element
JP2014208725A (en) Oxime ester initiator, curable resin composition, sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022551776

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864131

Country of ref document: EP

Kind code of ref document: A1