WO2017073548A1 - Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element - Google Patents

Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element Download PDF

Info

Publication number
WO2017073548A1
WO2017073548A1 PCT/JP2016/081549 JP2016081549W WO2017073548A1 WO 2017073548 A1 WO2017073548 A1 WO 2017073548A1 JP 2016081549 W JP2016081549 W JP 2016081549W WO 2017073548 A1 WO2017073548 A1 WO 2017073548A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
meth
acrylate
compound
Prior art date
Application number
PCT/JP2016/081549
Other languages
French (fr)
Japanese (ja)
Inventor
洋 小林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680030279.5A priority Critical patent/CN107615151A/en
Priority to KR1020177024404A priority patent/KR20180075431A/en
Priority to JP2016566830A priority patent/JP6114893B1/en
Publication of WO2017073548A1 publication Critical patent/WO2017073548A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal display element that can achieve both low-temperature curability and storage stability. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
  • liquid crystal microdrops are dropped into the sealing frame of the substrate in a state where the sealing agent is uncured, the other substrate is superposed under vacuum, and the sealing portion is irradiated with light such as ultraviolet rays to perform temporary curing. Thereafter, heating is performed to perform main curing, and a liquid crystal display element is manufactured.
  • this dripping method has become the mainstream method for manufacturing liquid crystal display elements.
  • the sealant be thermally cured by heating at a low temperature for a short time.
  • a thermosetting agent or a curing accelerator having a low melting point has been used as a method for curing the sealing agent by heating at a low temperature for a short time.
  • the reaction is likely to occur even near room temperature, so that the storage stability of the sealing agent is lowered.
  • An object of this invention is to provide the sealing compound for liquid crystal display elements which can make low temperature sclerosis
  • hardenability and storage stability compatible. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
  • the present invention is a liquid crystal display element sealing agent containing a curable resin and a thermosetting agent, wherein the curable resin contains a curable resin having an epoxy group, and the thermosetting agent is an epoxy resin.
  • a liquid crystal display device comprising an amine adduct compound having a structure derived from and a structure derived from an amine compound, wherein the amine compound from which the amine adduct compound is derived is an alkyl imidazole having an alkyl group having 1 to 20 carbon atoms Sealing agent.
  • the present inventor has disclosed a sealing agent for liquid crystal display elements that can achieve both low-temperature curability and storage stability by using an adduct of an alkylimidazole having an alkyl chain having a specific length and an epoxy resin as a thermosetting agent.
  • the inventors have found that the present invention can be obtained and have completed the present invention.
  • the sealing agent for liquid crystal display elements of this invention contains a thermosetting agent.
  • the said thermosetting agent has the structure derived from an epoxy resin, and the structure derived from an amine compound, and this amine compound contains the amine adduct compound which is the alkyl imidazole mentioned later.
  • the epoxy resin from which the amine adduct compound is derived for example, those described later as the curable resin having an epoxy group can be used. Among these, an epoxy resin having an aromatic ring is preferable. When the epoxy resin from which the amine adduct compound is derived has an aromatic ring, the storage stability of the obtained sealing agent for liquid crystal display elements can be further enhanced.
  • the epoxy resin from which the amine adduct compound is derived is more preferably at least one selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol E type epoxy resins.
  • the amine compound from which the amine adduct compound is derived is an alkylimidazole having an alkyl group with 1 to 20 carbon atoms.
  • alkyl imidazole in which the alkyl group has 1 to 20 carbon atoms those having 1 to 2 carbon atoms in the alkyl group are preferable, and 2-methylimidazole is more preferable.
  • a compound represented by the following formula (1-1) and / or a compound represented by the following formula (1-2) is preferably used.
  • a sealing agent for a liquid crystal display element comprising a curable resin and a thermosetting agent, wherein the curable resin contains a curable resin having an epoxy group, and the thermosetting agent is represented by the following formula (1-1):
  • a sealant for a liquid crystal display device containing a compound represented by formula (1) and / or a compound represented by the following formula (1-2) is also one aspect of the present invention.
  • R 1 is an alkyl group having 1 to 20 carbon atoms.
  • R 2 and R 3 are hydrogen or methyl. Each group may be the same or different.
  • thermosetting agent includes a compound represented by the following formula (2-1) as a compound represented by the above formula (1-1) and / or a compound represented by the above formula (1-2), At least one selected from the group consisting of a compound represented by the following formula (2-2), a compound represented by the following formula (2-3), and a compound represented by the following formula (2-4) It is preferable to contain.
  • a preferable upper limit of the average particle size of the amine adduct compound is 3 ⁇ m.
  • the gap defect of the obtained liquid crystal display element can be suppressed because the average particle diameter of the said amine adduct compound is 3 micrometers or less.
  • the substantial lower limit is 0.1 ⁇ m.
  • the average particle diameter can be reduced to 3 ⁇ m or less by performing treatments such as pulverization and classification.
  • the average particle size of the amine adduct compound and the maximum particle size described later are obtained by measuring the amine adduct compound before blending with the sealant using a laser diffraction particle size distribution analyzer.
  • a preferable upper limit of the maximum particle size of the amine adduct compound is 5.0 ⁇ m.
  • the maximum particle size of the amine adduct compound is 5.0 ⁇ m or less, the obtained liquid crystal display device is more excellent in gap retention.
  • a more preferable upper limit of the maximum particle size of the amine adduct compound is 4.5 ⁇ m.
  • the substantial lower limit is 0.1 ⁇ m.
  • the content ratio of particles having a particle diameter of 3.0 ⁇ m or less is 99% or more by volume frequency. preferable.
  • the content ratio of the particles having a particle diameter of 3.0 ⁇ m or less is 99% or more by volume frequency, the obtained liquid crystal display element is more excellent in gap retention.
  • the content ratio of particles having a particle diameter of 3.0 ⁇ m or less is most preferably 100%.
  • the content of the amine adduct compound is preferably 0.3 parts by weight and preferably 15 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the amine adduct compound is within this range, the obtained sealing agent for liquid crystal display elements is excellent in low-temperature curability and excellent in the effect of suppressing liquid crystal contamination.
  • a more preferred lower limit of the content of the amine adduct compound is 0.4 parts by weight, a more preferred upper limit is 12 parts by weight, a still more preferred lower limit is 0.5 parts by weight, and a still more preferred upper limit is 10 parts by weight.
  • the thermosetting agent may contain other thermosetting agents in addition to the amine adduct compound.
  • curing agent an imidazole type hardening
  • hydrazide-based curing agents are preferably used.
  • hydrazide-based curing agent examples include 1,3-bis (hydrazinocarboethyl-5-isopropylhydantoin), sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • examples thereof include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), MDH (manufactured by Nippon Finechem Co., Ltd.), and the like.
  • the total content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the content of the entire thermosetting agent is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting and coating properties.
  • the upper limit with more preferable content of the said whole thermosetting agent is 30 weight part.
  • the sealing agent for liquid crystal display elements of this invention contains curable resin.
  • the curable resin contains a curable resin having an epoxy group.
  • the curable resin having an epoxy group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, water Bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type Epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalene fe
  • Examples include a novolac epoxy resin, a glycidyl amine epoxy resin, an alkyl polyol epoxy resin, a
  • Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.). As what is marketed among the said hydrogenated bisphenol type
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
  • Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation). Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC). As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
  • Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.). Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • epoxy compounds include, for example, YH-300, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031 JER1032 (all manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.), and the like.
  • the curable resin having an epoxy group may be a partial (meth) acryl-modified epoxy resin.
  • the partial (meth) acryl-modified epoxy resin means a compound having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, having two or more epoxy groups in one molecule. It can be obtained by reacting a part of the epoxy group of the epoxy compound with (meth) acrylic acid.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acryloyl group” means an acryloyl group or a methacryloyl group.
  • UVACURE1561 made by Daicel Ornex
  • the preferable lower limit of the content of the curable resin having an epoxy group in 100 parts by weight of the curable resin is 1 part by weight, and the preferable upper limit is 100 parts by weight.
  • the content of the curable resin having an epoxy group is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in adhesiveness.
  • the minimum with more preferable content of the said curable resin which has an epoxy group is 2 weight part.
  • the curable resin may contain another curable resin in addition to the curable resin having an epoxy group.
  • a (meth) acryl compound is preferable.
  • the (meth) acrylic compound for example, (meth) acrylic acid ester compound obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, (meth) acrylic acid and epoxy compound are reacted.
  • examples include epoxy (meth) acrylates obtained, urethane (meth) acrylates obtained by reacting an isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group. Of these, epoxy (meth) acrylate is more preferable.
  • the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in the molecule because of its high reactivity.
  • Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol pen
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Den
  • the urethane (meth) acrylate obtained by reacting the above-mentioned isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group is, for example, (meth) acrylic acid having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups. Two equivalents of the derivative can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
  • isocyanate compound used as the raw material for the urethane (meth) acrylate examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantrie Cyanate, and the like.
  • MDI '-Diisocyanate
  • XDI xylylene diisocyanate
  • XDI hydrogenated XDI
  • lysine diisocyanate triphenylmethane triisocyanate
  • tris (isocyanate) Phenyl) thiophosphate tetramethylxylylene diisocyanate, 1,6,11-und
  • Examples of the isocyanate compound that is a raw material for the urethane (meth) acrylate include, for example, polyols such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol. Chain-extended isocyanate compounds obtained by reaction with excess isocyanate compounds can also be used.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material for the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth).
  • Hydroxyalkyl mono (meth) acrylates such as acrylate, 4-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol Mono (meth) acrylates of dihydric alcohols such as mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin, and bisphenol A type epoxy Epoxy (meth) acrylates such as acrylate and the like.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8804 , Art resin N-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9000A, Art Resin UN-9000H (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U- 4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U
  • the ratio of the epoxy group to the (meth) acryloyl group in the curable resin is 30:70 to 95: 5 is preferable.
  • the ratio of the epoxy group to the (meth) acryloyl group is within this range, the adhesive property of the obtained liquid crystal display element sealant and the display performance of the liquid crystal display element using the obtained liquid crystal display element sealant are improved. Can be improved.
  • the curable resin preferably has a hydrogen bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing liquid crystal contamination.
  • the sealing agent for liquid crystal display elements of the present invention may contain a radical polymerization initiator.
  • a radical polymerization initiator a thermal radical polymerization initiator or a photo radical polymerization initiator can be used.
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • an initiator composed of an azo compound (hereinafter also referred to as “azo initiator”) is preferable, and an initiator composed of a polymer azo compound (hereinafter referred to as “polymer azo initiator”). More preferred).
  • the “polymer azo compound” means a compound having an azo group and generating a radical capable of curing a (meth) acryloyl group by heat and having a number average molecular weight of 300 or more. To do.
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. Liquid crystal contamination can be suppressed because the number average molecular weight of the said polymeric azo initiator is 1000 or more. When the number average molecular weight of the polymeric azo initiator is within this range, it can be more easily mixed into the curable resin while preventing adverse effects on the liquid crystal.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • GPC gel permeation chromatography
  • Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
  • Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • Examples of the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
  • Examples of the azo initiator other than the polymer azo initiator include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the thermal radical polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermal radical polymerization initiator is 0.05 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting.
  • the content of the thermal radical polymerization initiator is 10 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of suppressing liquid crystal contamination.
  • the minimum with more preferable content of the said thermal radical polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, and the like.
  • radical photopolymerization initiators examples include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 2959, IRGACURE OXE01, IRGACURE OXE01, IRGACURE OXE02, Rusine FOXE02
  • examples include methyl ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
  • the content of the photo radical polymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the radical photopolymerization initiator is 0.1 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in photocurability.
  • the content of the radical photopolymerization initiator is 10 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in weather resistance.
  • the minimum with more preferable content of the said radical photopolymerization initiator is 0.2 weight part, and a more preferable upper limit is 8 weight part. *
  • the sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and further improving the moisture resistance of the cured product. Good.
  • Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, core shell acrylate Examples include organic fillers such as copolymer fine particles. These fillers may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the content of the filler is 10 parts by weight or more, effects such as improvement in adhesiveness can be further enhanced.
  • the content of the filler is 70 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in applicability.
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • As said silane coupling agent since it is excellent in the effect which improves adhesiveness with a board
  • silane coupling agents may be used alone or in combination of two or more.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of sealing agents for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 20 weight part. Adhesiveness with a board
  • substrate etc. can be improved more because content of the said silane coupling agent is 0.1 weight part or more.
  • the content of the silane coupling agent is 20 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of suppressing liquid crystal contamination.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 10 weight part.
  • the sealing agent for liquid crystal display elements of the present invention further comprises a reactive diluent for adjusting the viscosity, a spacer such as polymer beads for adjusting the panel gap, 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea and isocyanuric carboxylic acid, an antifoamer, a leveling agent, a polymerization inhibitor, and another coupling agent.
  • a reactive diluent for adjusting the viscosity
  • a spacer such as polymer beads for adjusting the panel gap
  • 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea and isocyanuric carboxylic acid, an antifoamer, a leveling agent, a polymerization inhibitor, and another coupling agent.
  • a method for producing the sealing agent for liquid crystal display elements of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and a heat
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and a heat
  • examples include a method of mixing a curing agent with an additive such as a filler or a silane coupling agent added as necessary.
  • a vertical conduction material can be produced by blending conductive fine particles with the sealing agent for liquid crystal display elements of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles are not particularly limited, and metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
  • a liquid crystal dropping method is preferably used. Specifically, for example, a step of forming a frame-shaped seal pattern on one of two transparent substrates having electrodes such as an ITO thin film by screen printing, dispenser application, etc. of the liquid crystal display element of the present invention, liquid crystal And applying the microdroplets to the entire surface of the seal pattern frame, overlaying the other substrate under vacuum, and irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant, and The method etc. which have the process of heating and hardening
  • the sealing compound for liquid crystal display elements which can make low-temperature curability and storage stability compatible can be provided.
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
  • amine adduct compound B (Production of amine adduct compound B) 300 mL of a mixed solution of n-butanol / toluene having a mixing ratio of 1: 1 was put into a three-necked flask, and further 30.0 parts by weight of an aliphatic epoxy resin (“YH-300” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and 2-methylimidazole ( 4.1 parts by weight of Tokyo Chemical Industry Co., Ltd. was charged. After stirring for 4 hours at 65 ° C., solvent removal and vacuum drying were performed to obtain amine adduct compound B having a structure derived from an aliphatic epoxy resin and a structure derived from 2-methylimidazole. The obtained amine adduct compound B was confirmed to be a compound represented by the above formula (2-2) by 1 H-NMR, 13 C-NMR, and IR measurements.
  • amine adduct compound C having a structure derived from a bisphenol A type epoxy resin and a structure derived from 2-heptadecylimidazole.
  • the obtained amine adduct compound C was confirmed to be a compound represented by the above formula (2-3) by 1 H-NMR, 13 C-NMR, and IR measurement.
  • amine adduct compound D having a structure derived from an aliphatic epoxy resin and a structure derived from 2-heptadecylimidazole.
  • the obtained amine adduct compound D was confirmed to be a compound represented by the above formula (2-4) by 1 H-NMR, 13 C-NMR and IR measurements.
  • amine adduct compound E (Production of amine adduct compound E) 300 mL of a mixed solution of n-butanol / toluene having a mixing ratio of 1: 1 was put into a three-necked flask, and further 38.0 parts by weight of a bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., “jER828”) and 2-phenylimidazole (Wako Pure) 7.2 parts by weight of Yakuhin Kogyo Co., Ltd. was charged. After stirring for 4 hours at 65 ° C., solvent removal and vacuum drying were performed to obtain an amine adduct compound E having a structure derived from a bisphenol A type epoxy resin and a structure derived from 2-phenylimidazole. The obtained amine adduct compound E was confirmed to be a compound represented by the following formula (3) by performing 1 H-NMR, 13 C-NMR, and IR measurement.
  • Examples 1 to 7, Comparative Examples 1 to 4 According to the blending ratio described in Table 1, each material was mixed using a planetary stirrer (“Shinky Co., Ltd.,“ Awatori Nertaro ”), and then mixed using three rolls. The sealing agents for liquid crystal display elements 1 to 7 and Comparative Examples 1 to 4 were prepared.
  • the cell after bonding was irradiated with 3000 mJ / cm 2 of ultraviolet rays with a metal halide lamp, and then the sealing agent was thermally cured by heating at 100 ° C. for 60 minutes, thereby producing a liquid crystal display element.
  • Irradiation with ultraviolet rays was performed by cutting light having a wavelength of 340 nm or less with a filter.
  • the obtained liquid crystal display element was stored at a temperature of 80 ° C. for 100 hours, and then was driven with a voltage of AC 3.5 V and visually observed.
  • “ ⁇ ” indicates no display unevenness (color unevenness) at the periphery of the liquid crystal display element, “ ⁇ ” indicates a slight display unevenness, and “o” indicates a clear dark display unevenness.
  • “ ⁇ ” the display performance of the liquid crystal display element was evaluated with “ ⁇ ” when the clear dark display unevenness spread not only in the peripheral part but also in the central part.
  • Each liquid crystal display element sealant obtained in Example 5 was coated on a glass substrate by about 5 ⁇ m, and a glass substrate of the same size was superposed on the substrate, and then light of 100 mW / cm 2 using a metal halide lamp. Was irradiated for 10 seconds. Light irradiation was performed by cutting light having a wavelength of 380 nm or less with a filter. The peak derived from the acryloyl group before and after the light irradiation was measured using an infrared spectroscope (manufactured by BIORAD, “FTS3000”), and the reduction rate of the peak derived from the acryloyl group after the light irradiation was derived.
  • FTS3000 infrared spectroscope
  • the sealing compound for liquid crystal display elements which can make low-temperature curability and storage stability compatible can be provided.
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Abstract

One purpose of the present invention is to provide a sealing agent for liquid crystal display elements, which is capable of achieving a good balance between curability at low temperatures and storage stability. Another purpose of the present invention is to provide: a vertically conducting material which is obtained using this sealing agent for liquid crystal display elements; and a liquid crystal display element. The present invention is a sealing agent for liquid crystal display elements, which contains a curable resin and a thermal curing agent, and wherein: the curable resin contains a curable resin having an epoxy group; the thermal curing agent contains an amine adduct compound that has a structure derived from an epoxy resin and a structure derived from an amine compound; and an amine compound, from which the amine adduct compound is derived, is an alkyl imidazole having an alkyl group with 1-20 carbon atoms.

Description

液晶表示素子用シール剤、上下導通材料及び液晶表示素子Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、低温硬化性と保存安定性とを両立できる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element that can achieve both low-temperature curability and storage stability. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を基板のシール枠内に滴下し、真空下で他方の基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、加熱して本硬化を行い、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method of manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin and a light as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A system called a dripping method using a photothermal combination curing type sealant containing a polymerization initiator and a thermosetting agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of the two substrates with electrodes by dispensing. Next, liquid crystal microdrops are dropped into the sealing frame of the substrate in a state where the sealing agent is uncured, the other substrate is superposed under vacuum, and the sealing portion is irradiated with light such as ultraviolet rays to perform temporary curing. Thereafter, heating is performed to perform main curing, and a liquid crystal display element is manufactured. At present, this dripping method has become the mainstream method for manufacturing liquid crystal display elements.
上記シール剤は、省エネルギー化や液晶の安定性の観点から、低温かつ短時間の加熱で熱硬化させることが望まれている。シール剤を低温かつ短時間の加熱で硬化させるための方法として、従来、融点の低い熱硬化剤や硬化促進剤が用いられている。しかしながら、融点の低い熱硬化剤や硬化促進剤を用いると、室温付近においても反応が起こりやすくなってしまうため、シール剤の保存安定性が低下してしまうという問題があった。 From the viewpoint of energy saving and liquid crystal stability, it is desired that the sealant be thermally cured by heating at a low temperature for a short time. Conventionally, a thermosetting agent or a curing accelerator having a low melting point has been used as a method for curing the sealing agent by heating at a low temperature for a short time. However, when a thermosetting agent or a curing accelerator having a low melting point is used, the reaction is likely to occur even near room temperature, so that the storage stability of the sealing agent is lowered.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718
本発明は、低温硬化性と保存安定性とを両立できる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of this invention is to provide the sealing compound for liquid crystal display elements which can make low temperature sclerosis | hardenability and storage stability compatible. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
本発明は、硬化性樹脂と熱硬化剤を含有する液晶表示素子用シール剤であって、上記硬化性樹脂は、エポキシ基を有する硬化性樹脂を含有し、上記熱硬化剤は、エポキシ樹脂に由来する構造とアミン化合物に由来する構造とを有するアミンアダクト化合物を含有し、上記アミンアダクト化合物の由来となるアミン化合物は、アルキル基の炭素数が1~20であるアルキルイミダゾールである液晶表示素子用シール剤である。
以下に本発明を詳述する。
The present invention is a liquid crystal display element sealing agent containing a curable resin and a thermosetting agent, wherein the curable resin contains a curable resin having an epoxy group, and the thermosetting agent is an epoxy resin. A liquid crystal display device comprising an amine adduct compound having a structure derived from and a structure derived from an amine compound, wherein the amine compound from which the amine adduct compound is derived is an alkyl imidazole having an alkyl group having 1 to 20 carbon atoms Sealing agent.
The present invention is described in detail below.
本発明者は、特定の長さのアルキル鎖を持つアルキルイミダゾールとエポキシ樹脂とのアダクト体を熱硬化剤として用いることによって、低温硬化性と保存安定性とを両立できる液晶表示素子用シール剤が得られることを見出し、本発明を完成させるに至った。 The present inventor has disclosed a sealing agent for liquid crystal display elements that can achieve both low-temperature curability and storage stability by using an adduct of an alkylimidazole having an alkyl chain having a specific length and an epoxy resin as a thermosetting agent. The inventors have found that the present invention can be obtained and have completed the present invention.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有する。
上記熱硬化剤は、エポキシ樹脂に由来する構造とアミン化合物に由来する構造とを有し、該アミン化合物が後述するアルキルイミダゾールであるアミンアダクト化合物を含有する。上記熱硬化剤としてこのようなアミンアダクト化合物を用いることによって、優れた保存安定性を維持しつつ低温における硬化性を高めることができる。
The sealing agent for liquid crystal display elements of this invention contains a thermosetting agent.
The said thermosetting agent has the structure derived from an epoxy resin, and the structure derived from an amine compound, and this amine compound contains the amine adduct compound which is the alkyl imidazole mentioned later. By using such an amine adduct compound as the thermosetting agent, it is possible to enhance curability at low temperatures while maintaining excellent storage stability.
上記アミンアダクト化合物の由来となるエポキシ樹脂としては、例えば、エポキシ基を有する硬化性樹脂として後述するものと同様のものを用いることができる。なかでも、芳香環を有するエポキシ樹脂であることが好ましい。上記アミンアダクト化合物の由来となるエポキシ樹脂が芳香環を有することで、得られる液晶表示素子用シール剤の保存安定性をより高めることができる。上記アミンアダクト化合物の由来となるエポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び、ビスフェノールE型エポキシ樹脂からなる群より選択される少なくとも1種であることがより好ましい。 As the epoxy resin from which the amine adduct compound is derived, for example, those described later as the curable resin having an epoxy group can be used. Among these, an epoxy resin having an aromatic ring is preferable. When the epoxy resin from which the amine adduct compound is derived has an aromatic ring, the storage stability of the obtained sealing agent for liquid crystal display elements can be further enhanced. The epoxy resin from which the amine adduct compound is derived is more preferably at least one selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol E type epoxy resins.
上記アミンアダクト化合物の由来となるアミン化合物は、アルキル基の炭素数が1~20であるアルキルイミダゾールである。
上記アルキル基の炭素数が1~20であるアルキルイミダゾールとしては、アルキル基の炭素数が1~2であるものが好ましく、2-メチルイミダゾールがより好ましい。
The amine compound from which the amine adduct compound is derived is an alkylimidazole having an alkyl group with 1 to 20 carbon atoms.
As the alkyl imidazole in which the alkyl group has 1 to 20 carbon atoms, those having 1 to 2 carbon atoms in the alkyl group are preferable, and 2-methylimidazole is more preferable.
上記アミンアダクト化合物としては、下記式(1-1)で表される化合物及び/又は下記式(1-2)で表される化合物が好適に用いられる。
硬化性樹脂と熱硬化剤を含有する液晶表示素子用シール剤であって、上記硬化性樹脂は、エポキシ基を有する硬化性樹脂を含有し、上記熱硬化剤は、下記式(1-1)で表される化合物及び/又は下記式(1-2)で表される化合物を含有する液晶表示素子用シール剤もまた、本発明の1つである。
As the amine adduct compound, a compound represented by the following formula (1-1) and / or a compound represented by the following formula (1-2) is preferably used.
A sealing agent for a liquid crystal display element comprising a curable resin and a thermosetting agent, wherein the curable resin contains a curable resin having an epoxy group, and the thermosetting agent is represented by the following formula (1-1): A sealant for a liquid crystal display device containing a compound represented by formula (1) and / or a compound represented by the following formula (1-2) is also one aspect of the present invention.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(1-1)及び式(1-2)中、Rは、炭素数が1~20であるアルキル基であり、式(1-1)中、R及びRは、水素又はメチル基であり、それぞれ同一であってもよいし異なっていてもよい。 In Formula (1-1) and Formula (1-2), R 1 is an alkyl group having 1 to 20 carbon atoms. In Formula (1-1), R 2 and R 3 are hydrogen or methyl. Each group may be the same or different.
また、上記熱硬化剤は、上記式(1-1)で表される化合物及び/又は上記式(1-2)で表される化合物として、下記式(2-1)で表される化合物、下記式(2-2)で表される化合物、下記式(2-3)で表される化合物、及び、下記式(2-4)で表される化合物からなる群より選択される少なくとも1種を含有することが好ましい。 In addition, the thermosetting agent includes a compound represented by the following formula (2-1) as a compound represented by the above formula (1-1) and / or a compound represented by the above formula (1-2), At least one selected from the group consisting of a compound represented by the following formula (2-2), a compound represented by the following formula (2-3), and a compound represented by the following formula (2-4) It is preferable to contain.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
上記アミンアダクト化合物の平均粒子径の好ましい上限は3μmである。上記アミンアダクト化合物の平均粒子径が3μm以下であることで、得られる液晶表示素子のギャップ不良を抑制することができる。上記アミンアダクト化合物の平均粒子径の好ましい下限は特にないが、実質的な下限は0.1μmである。
なお、市販の平均粒子径が3μmを超えるアミンアダクト化合物を用いる場合、粉砕や分級等の処理を行うことにより、平均粒子径を3μm以下とすることができる。
なお、本明細書において、上記アミンアダクト化合物の平均粒子径及び後述する最大粒子径は、シール剤に配合する前のアミンアダクト化合物について、レーザー回折式粒度分布測定装置を用いて測定することにより得られる値を意味する。上記レーザー回折式粒度分布測定装置としては、マスターサイザー2000(マルバーン社製)等を用いることができる。
A preferable upper limit of the average particle size of the amine adduct compound is 3 μm. The gap defect of the obtained liquid crystal display element can be suppressed because the average particle diameter of the said amine adduct compound is 3 micrometers or less. Although there is no particular lower limit of the average particle size of the amine adduct compound, the substantial lower limit is 0.1 μm.
When a commercially available amine adduct compound having an average particle diameter exceeding 3 μm is used, the average particle diameter can be reduced to 3 μm or less by performing treatments such as pulverization and classification.
In the present specification, the average particle size of the amine adduct compound and the maximum particle size described later are obtained by measuring the amine adduct compound before blending with the sealant using a laser diffraction particle size distribution analyzer. Means the value to be As the laser diffraction particle size distribution measuring device, Mastersizer 2000 (manufactured by Malvern) or the like can be used.
上記アミンアダクト化合物の最大粒子径の好ましい上限は、5.0μmである。上記アミンアダクト化合物の最大粒子径が5.0μm以下であることで、得られる液晶表示素子がギャップ保持性により優れるものとなる。上記アミンアダクト化合物の最大粒子径のより好ましい上限は4.5μmである。上記アミンアダクト化合物の最大粒子径の好ましい下限は特にないが、実質的な下限は0.1μmである。 A preferable upper limit of the maximum particle size of the amine adduct compound is 5.0 μm. When the maximum particle size of the amine adduct compound is 5.0 μm or less, the obtained liquid crystal display device is more excellent in gap retention. A more preferable upper limit of the maximum particle size of the amine adduct compound is 4.5 μm. There is no particular lower limit for the maximum particle size of the amine adduct compound, but the substantial lower limit is 0.1 μm.
上記アミンアダクト化合物は、上記レーザー回折式粒度分布測定装置により測定されたアミンアダクト化合物の粒度分布のうち、3.0μm以下の粒子径の粒子の含有割合が体積頻度で99%以上であることが好ましい。3.0μm以下の粒子径の粒子の含有割合が体積頻度で99%以上であることで、得られる液晶表示素子がギャップ保持性により優れるものとなる。3.0μm以下の粒子径の粒子の含有割合は、100%であることが最も好ましい。 In the amine adduct compound, in the particle size distribution of the amine adduct compound measured by the laser diffraction particle size distribution analyzer, the content ratio of particles having a particle diameter of 3.0 μm or less is 99% or more by volume frequency. preferable. When the content ratio of the particles having a particle diameter of 3.0 μm or less is 99% or more by volume frequency, the obtained liquid crystal display element is more excellent in gap retention. The content ratio of particles having a particle diameter of 3.0 μm or less is most preferably 100%.
上記アミンアダクト化合物の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.3重量部、好ましい上限が15重量部である。上記アミンアダクト化合物の含有量がこの範囲であることで、得られる液晶表示素子用シール剤が低温硬化性により優れ、かつ、液晶汚染を抑制する効果により優れるものとなる。上記アミンアダクト化合物の含有量のより好ましい下限は0.4重量部、より好ましい上限は12重量部、更に好ましい下限は0.5重量部、更に好ましい上限は10重量部である。 The content of the amine adduct compound is preferably 0.3 parts by weight and preferably 15 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the amine adduct compound is within this range, the obtained sealing agent for liquid crystal display elements is excellent in low-temperature curability and excellent in the effect of suppressing liquid crystal contamination. A more preferred lower limit of the content of the amine adduct compound is 0.4 parts by weight, a more preferred upper limit is 12 parts by weight, a still more preferred lower limit is 0.5 parts by weight, and a still more preferred upper limit is 10 parts by weight.
上記熱硬化剤は、上記アミンアダクト化合物に加えて、その他の熱硬化剤を含有してもよい。
上記その他の熱硬化剤としては、例えば、ヒドラジド系硬化剤、イミダゾール系硬化剤、多価フェノール系硬化剤、酸無水物系硬化剤等が挙げられる。なかでも、ヒドラジド系硬化剤が好適に用いられる。
The thermosetting agent may contain other thermosetting agents in addition to the amine adduct compound.
As said other thermosetting agent, a hydrazide type hardening | curing agent, an imidazole type hardening | curing agent, a polyhydric phenol type hardening | curing agent, an acid anhydride type hardening | curing agent etc. are mentioned, for example. Of these, hydrazide-based curing agents are preferably used.
上記ヒドラジド系硬化剤としては、例えば、1,3-ビス(ヒドラジノカルボエチル-5-イソプロピルヒダントイン)、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられ、市販されているものとしては、例えば、アミキュアVDH、アミキュアUDH(いずれも味の素ファインテクノ社製)、SDH、IDH、ADH(いずれも大塚化学社製)、MDH(日本ファインケム社製)等が挙げられる。 Examples of the hydrazide-based curing agent include 1,3-bis (hydrazinocarboethyl-5-isopropylhydantoin), sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like. Examples thereof include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), MDH (manufactured by Nippon Finechem Co., Ltd.), and the like.
上記その他の熱硬化剤を含有する場合、上記熱硬化剤全体の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤全体の含有量がこの範囲であることで、得られる液晶表示素子用シール剤が熱硬化性及び塗布性により優れるものとなる。上記熱硬化剤全体の含有量のより好ましい上限は30重量部である。 When the other thermosetting agent is contained, the total content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. When the content of the entire thermosetting agent is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting and coating properties. The upper limit with more preferable content of the said whole thermosetting agent is 30 weight part.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、エポキシ基を有する硬化性樹脂を含有する。
上記エポキシ基を有する硬化性樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。
The sealing agent for liquid crystal display elements of this invention contains curable resin.
The curable resin contains a curable resin having an epoxy group.
Examples of the curable resin having an epoxy group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, water Bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type Epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalene fe Examples include a novolac epoxy resin, a glycidyl amine epoxy resin, an alkyl polyol epoxy resin, a rubber-modified epoxy resin, and a glycidyl ester compound.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828、jER828EL、jER1004(いずれも三菱化学社製)、エピクロン850(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールE型エポキシ樹脂のうち市販されているものとしては、例えば、EPOX-MK R710、EPOX-MK R1710(いずれもプリンテック社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YH-300、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
As what is marketed among the said bisphenol A type epoxy resins, jER828, jER828EL, jER1004 (all are the Mitsubishi Chemical company make), Epicron 850 (made by DIC company), etc. are mentioned, for example.
As what is marketed among the said bisphenol F-type epoxy resins, jER806, jER4004 (all are the Mitsubishi Chemical company make) etc. are mentioned, for example.
Examples of commercially available bisphenol E type epoxy resins include EPOX-MK R710, EPOX-MK R1710 (both manufactured by Printec Co., Ltd.) and the like.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
As what is marketed among the said hydrogenated bisphenol type | mold epoxy resins, Epicron EXA7015 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy compounds include, for example, YH-300, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031 JER1032 (all manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.), and the like.
上記エポキシ基を有する硬化性樹脂は、部分(メタ)アクリル変性エポキシ樹脂であってもよい。上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味し、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味する。
The curable resin having an epoxy group may be a partial (meth) acryl-modified epoxy resin. The partial (meth) acryl-modified epoxy resin means a compound having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, having two or more epoxy groups in one molecule. It can be obtained by reacting a part of the epoxy group of the epoxy compound with (meth) acrylic acid.
In the present specification, the “(meth) acryl” means acryl or methacryl, and the “(meth) acryloyl group” means an acryloyl group or a methacryloyl group.
上記部分(メタ)アクリル変性エポキシ樹脂のうち市販されているものとしては、例えば、UVACURE1561(ダイセル・オルネクス社製)等が挙げられる。 As what is marketed among the said partial (meth) acryl modified epoxy resins, UVACURE1561 (made by Daicel Ornex) etc. are mentioned, for example.
上記硬化性樹脂100重量部における上記エポキシ基を有する硬化性樹脂の含有量の好ましい下限は1重量部、好ましい上限は100重量部である。上記エポキシ基を有する硬化性樹脂の含有量がこの範囲であることで、得られる液晶表示素子用シール剤が接着性により優れるものとなる。上記エポキシ基を有する硬化性樹脂の含有量のより好ましい下限は2重量部である。 The preferable lower limit of the content of the curable resin having an epoxy group in 100 parts by weight of the curable resin is 1 part by weight, and the preferable upper limit is 100 parts by weight. When the content of the curable resin having an epoxy group is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in adhesiveness. The minimum with more preferable content of the said curable resin which has an epoxy group is 2 weight part.
上記硬化性樹脂は、上記エポキシ基を有する硬化性樹脂以外にその他の硬化性樹脂を含有してもよい。上記その他の硬化性樹脂としては、(メタ)アクリル化合物が好ましい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られる(メタ)アクリル酸エステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートがより好ましい。また、上記(メタ)アクリル化合物は、反応性の高さから分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
The curable resin may contain another curable resin in addition to the curable resin having an epoxy group. As said other curable resin, a (meth) acryl compound is preferable.
As the (meth) acrylic compound, for example, (meth) acrylic acid ester compound obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, (meth) acrylic acid and epoxy compound are reacted. Examples include epoxy (meth) acrylates obtained, urethane (meth) acrylates obtained by reacting an isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group. Of these, epoxy (meth) acrylate is more preferable. The (meth) acrylic compound preferably has two or more (meth) acryloyl groups in the molecule because of its high reactivity.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy Til (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2 -Butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofur Furyl (meth) acrylate, ethyl carbitol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) ) Acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, 2- (meth) acrylic Examples include leuoxyethyl phosphate and glycidyl (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, poly Lopylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol Dicyclopentadienyl di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol Di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol (Meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, among the above (meth) acrylic acid ester compounds, those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、上記エポキシ基を有する硬化性樹脂として挙げたものと同様のもの等を用いることができる。 As an epoxy compound used as a raw material for synthesize | combining the said epoxy (meth) acrylate, the thing similar to what was mentioned as curable resin which has the said epoxy group, etc. can be used.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYLRDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation).
上記イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate obtained by reacting the above-mentioned isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group is, for example, (meth) acrylic acid having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups. Two equivalents of the derivative can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound used as the raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantrie Cyanate, and the like.
また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 Examples of the isocyanate compound that is a raw material for the urethane (meth) acrylate include, for example, polyols such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol. Chain-extended isocyanate compounds obtained by reaction with excess isocyanate compounds can also be used.
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキルモノ(メタ)アクリレートや、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material for the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth). Hydroxyalkyl mono (meth) acrylates such as acrylate, 4-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol Mono (meth) acrylates of dihydric alcohols such as mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin, and bisphenol A type epoxy Epoxy (meth) acrylates such as acrylate and the like.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8804 , Art resin N-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9000A, Art Resin UN-9000H (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U- 4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA-4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all Shin-Nakamura Chemical Industries AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, A-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.).
上記硬化性樹脂が上記部分(メタ)アクリル変性エポキシ樹脂や上記(メタ)アクリル化合物を含有する場合、上記硬化性樹脂中のエポキシ基と(メタ)アクリロイル基との比が30:70~95:5になることが好ましい。エポキシ基と(メタ)アクリロイル基との比がこの範囲であることで、得られる液晶表示素子用シール剤の接着性や得られる液晶表示素子用シール剤を用いた液晶表示素子の表示性能をより向上させることができる。 When the curable resin contains the partial (meth) acryl-modified epoxy resin or the (meth) acrylic compound, the ratio of the epoxy group to the (meth) acryloyl group in the curable resin is 30:70 to 95: 5 is preferable. When the ratio of the epoxy group to the (meth) acryloyl group is within this range, the adhesive property of the obtained liquid crystal display element sealant and the display performance of the liquid crystal display element using the obtained liquid crystal display element sealant are improved. Can be improved.
上記硬化性樹脂は、液晶汚染を抑制する観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The curable resin preferably has a hydrogen bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing liquid crystal contamination.
本発明の液晶表示素子用シール剤は、ラジカル重合開始剤を含有してもよい。
上記ラジカル重合開始剤としては、熱ラジカル重合開始剤や光ラジカル重合開始剤を用いることができる。
The sealing agent for liquid crystal display elements of the present invention may contain a radical polymerization initiator.
As the radical polymerization initiator, a thermal radical polymerization initiator or a photo radical polymerization initiator can be used.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物や有機過酸化物等からなるものが挙げられる。なかでも、液晶汚染を抑制する観点から、アゾ化合物からなる開始剤(以下、「アゾ開始剤」ともいう)が好ましく、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)がより好ましい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイル基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among them, from the viewpoint of suppressing liquid crystal contamination, an initiator composed of an azo compound (hereinafter also referred to as “azo initiator”) is preferable, and an initiator composed of a polymer azo compound (hereinafter referred to as “polymer azo initiator”). More preferred).
In the present specification, the “polymer azo compound” means a compound having an azo group and generating a radical capable of curing a (meth) acryloyl group by heat and having a number average molecular weight of 300 or more. To do.
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量が1000以上であることで、液晶汚染を抑制することができる。上記高分子アゾ開始剤の数平均分子量がこの範囲であることにより、液晶への悪影響を防止しつつ、硬化性樹脂へより容易に混合することができる。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. Liquid crystal contamination can be suppressed because the number average molecular weight of the said polymeric azo initiator is 1000 or more. When the number average molecular weight of the polymeric azo initiator is within this range, it can be more easily mixed into the curable resin while preventing adverse effects on the liquid crystal. The more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子アゾ開始剤以外のアゾ開始剤の例としては、例えば、V-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
Examples of the azo initiator other than the polymer azo initiator include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱ラジカル重合開始剤の含有量が0.05重量部以上であることで、得られる液晶表示素子用シール剤が熱硬化性により優れるものとなる。上記熱ラジカル重合開始剤の含有量が10重量部以下であることで、得られる液晶表示素子用シール剤が液晶汚染を抑制する効果により優れるものとなる。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the thermal radical polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal radical polymerization initiator is 0.05 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting. When the content of the thermal radical polymerization initiator is 10 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of suppressing liquid crystal contamination. The minimum with more preferable content of the said thermal radical polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン等が挙げられる。 Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、IRGACURE OXE02、ルシリンTPO(いずれもBASF社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Examples of commercially available radical photopolymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 2959, IRGACURE OXE01, IRGACURE OXE01, IRGACURE OXE02, Rusine FOXE02 Examples include methyl ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
上記光ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量が0.1重量部以上であることで、得られる液晶表示素子用シール剤が光硬化性により優れるものとなる。上記光ラジカル重合開始剤の含有量が10重量部以下であることで、得られる液晶表示素子用シール剤が耐候性により優れるものとなる。上記光ラジカル重合開始剤の含有量のより好ましい下限は0.2重量部、より好ましい上限は8重量部である。  The content of the photo radical polymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the radical photopolymerization initiator is 0.1 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in photocurability. When the content of the radical photopolymerization initiator is 10 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in weather resistance. The minimum with more preferable content of the said radical photopolymerization initiator is 0.2 weight part, and a more preferable upper limit is 8 weight part. *
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の更なる向上等を目的として充填剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and further improving the moisture resistance of the cured product. Good.
上記充填剤としては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト、活性白土、窒化アルミニウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子、コアシェルアクリレート共重合体微粒子等の有機充填剤等が挙げられる。これらの充填剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, core shell acrylate Examples include organic fillers such as copolymer fine particles. These fillers may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量が10重量部以上であることで、接着性の改善等の効果をより高めることができる。上記充填剤の含有量が70重量部以下であることで、得られる液晶表示素子用シール剤が塗布性により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is 10 parts by weight or more, effects such as improvement in adhesiveness can be further enhanced. When the content of the filler is 70 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in applicability. The minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The sealing agent for liquid crystal display elements of the present invention may contain a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
As said silane coupling agent, since it is excellent in the effect which improves adhesiveness with a board | substrate etc. and it can suppress the outflow of curable resin in a liquid crystal by chemically bonding with curable resin, it is N, for example. -Phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, etc. are preferably used . These silane coupling agents may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は20重量部である。上記シランカップリング剤の含有量が0.1重量部以上であることで、基板等との接着性をより向上させることができる。上記シランカップリング剤の含有量が20重量部以下であることで、得られる液晶表示素子用シール剤が液晶汚染を抑制する効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は10重量部である。 The minimum with preferable content of the said silane coupling agent in 100 weight part of sealing agents for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 20 weight part. Adhesiveness with a board | substrate etc. can be improved more because content of the said silane coupling agent is 0.1 weight part or more. When the content of the silane coupling agent is 20 parts by weight or less, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of suppressing liquid crystal contamination. The minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 10 weight part.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、3-P-クロロフェニル-1,1-ジメチル尿素、イソシアヌルカルボン酸等の硬化促進剤、消泡剤、レベリング剤、重合禁止剤、その他のカップリング剤等の添加剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention further comprises a reactive diluent for adjusting the viscosity, a spacer such as polymer beads for adjusting the panel gap, 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea and isocyanuric carboxylic acid, an antifoamer, a leveling agent, a polymerization inhibitor, and another coupling agent.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、熱硬化剤と、必要に応じて添加する充填剤やシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for liquid crystal display elements of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and a heat Examples include a method of mixing a curing agent with an additive such as a filler or a silane coupling agent added as necessary.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conduction material can be produced by blending conductive fine particles with the sealing agent for liquid crystal display elements of the present invention. Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子は特に限定されず、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 The conductive fine particles are not particularly limited, and metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられる。具体的には例えば、ITO薄膜等の電極を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により枠状のシールパターンを形成する工程、液晶の微小滴をシールパターンの枠内全面に滴下塗布し、真空下で他方の基板を重ね合わせる工程、及び、シールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。
The liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
As a method for producing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used. Specifically, for example, a step of forming a frame-shaped seal pattern on one of two transparent substrates having electrodes such as an ITO thin film by screen printing, dispenser application, etc. of the liquid crystal display element of the present invention, liquid crystal And applying the microdroplets to the entire surface of the seal pattern frame, overlaying the other substrate under vacuum, and irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealant, and The method etc. which have the process of heating and hardening | curing the sealing agent temporarily hardened are mentioned.
本発明によれば、低温硬化性と保存安定性とを両立できる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which can make low-temperature curability and storage stability compatible can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(アミンアダクト化合物Aの製造)
混合比1:1のn-ブタノール/トルエン混合溶液300mLを三口フラスコに投入し、更にビスフェノールA型エポキシ樹脂(三菱化学社製、「jER828」)38.0重量部と2-メチルイミダゾール(東京化成工業社製)4.1重量部とを投入した。65℃で4時間加熱撹拌を行った後、溶媒除去と真空乾燥を行い、ビスフェノールA型エポキシ樹脂に由来する構造と2-メチルイミダゾールに由来する構造とを有するアミンアダクト化合物Aを得た。
得られたアミンアダクト化合物Aについて、H-NMR、13C-NMR、及び、IR測定を行うことにより、上記式(2-1)で表される化合物であることを確認した。
(Production of amine adduct compound A)
300 mL of a mixed solution of n-butanol / toluene having a mixing ratio of 1: 1 was put into a three-necked flask, and further 38.0 parts by weight of bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., “jER828”) and 2-methylimidazole (Tokyo Kasei). Kogyo Co., Ltd.) 4.1 parts by weight were charged. After stirring with heating at 65 ° C. for 4 hours, solvent removal and vacuum drying were performed to obtain amine adduct compound A having a structure derived from bisphenol A type epoxy resin and a structure derived from 2-methylimidazole.
The obtained amine adduct compound A was confirmed to be a compound represented by the above formula (2-1) by performing 1 H-NMR, 13 C-NMR, and IR measurement.
(アミンアダクト化合物Bの製造)
混合比1:1のn-ブタノール/トルエン混合溶液300mLを三口フラスコに投入し、更に脂肪族エポキシ樹脂(新日鉄住金化学社製、「YH-300」)30.0重量部と2-メチルイミダゾール(東京化成工業社製)4.1重量部とを投入した。65℃で4時間加熱撹拌を行った後、溶媒除去と真空乾燥を行い、脂肪族エポキシ樹脂に由来する構造と2-メチルイミダゾールに由来する構造とを有するアミンアダクト化合物Bを得た。
得られたアミンアダクト化合物Bについて、H-NMR、13C-NMR、及び、IR測定を行うことにより、上記式(2-2)で表される化合物であることを確認した。
(Production of amine adduct compound B)
300 mL of a mixed solution of n-butanol / toluene having a mixing ratio of 1: 1 was put into a three-necked flask, and further 30.0 parts by weight of an aliphatic epoxy resin (“YH-300” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and 2-methylimidazole ( 4.1 parts by weight of Tokyo Chemical Industry Co., Ltd. was charged. After stirring for 4 hours at 65 ° C., solvent removal and vacuum drying were performed to obtain amine adduct compound B having a structure derived from an aliphatic epoxy resin and a structure derived from 2-methylimidazole.
The obtained amine adduct compound B was confirmed to be a compound represented by the above formula (2-2) by 1 H-NMR, 13 C-NMR, and IR measurements.
(アミンアダクト化合物Cの製造)
混合比1:1のn-ブタノール/トルエン混合溶液300mLを三口フラスコに投入し、更にビスフェノールA型エポキシ樹脂(三菱化学社製、「jER828」)38.0重量部と2-ヘプタデシルイミダゾール(四国化成工業社製、「C17Z」)20.3重量部とを投入した。65℃で4時間加熱撹拌を行った後、溶媒除去と真空乾燥を行いビスフェノールA型エポキシ樹脂に由来する構造と、2-ヘプタデシルイミダゾールに由来する構造とを有するアミンアダクト化合物Cを得た。
得られたアミンアダクト化合物Cについて、H-NMR、13C-NMR、及び、IR測定を行うことにより、上記式(2-3)で表される化合物であることを確認した。
(Production of amine adduct compound C)
300 ml of a mixed solution of n-butanol / toluene with a mixing ratio of 1: 1 was put into a three-necked flask, and further 38.0 parts by weight of a bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “jER828”) and 2-heptadecylimidazole (Shikoku) 20.3 parts by weight of “C17Z” manufactured by Kasei Kogyo Co., Ltd. was added. After stirring for 4 hours at 65 ° C., solvent removal and vacuum drying were performed to obtain an amine adduct compound C having a structure derived from a bisphenol A type epoxy resin and a structure derived from 2-heptadecylimidazole.
The obtained amine adduct compound C was confirmed to be a compound represented by the above formula (2-3) by 1 H-NMR, 13 C-NMR, and IR measurement.
(アミンアダクト化合物Dの製造)
混合比1:1のn-ブタノール/トルエン混合溶液300mLを三口フラスコに投入し、更に脂肪族エポキシ樹脂(新日鉄住金化学社製、「YH-300」)30.0重量部と2-ヘプタデシルイミダゾール(四国化成工業社製、「C17Z」)20.3重量部とを投入した。65℃で4時間加熱撹拌を行った後、溶媒除去と真空乾燥を行い脂肪族エポキシ樹脂に由来する構造と2-ヘプタデシルイミダゾールに由来する構造とを有するアミンアダクト化合物Dを得た。
得られたアミンアダクト化合物Dについて、H-NMR、13C-NMR、及び、IR測定を行うことにより、上記式(2-4)で表される化合物であることを確認した。
(Production of amine adduct compound D)
300 mL of a mixed solution of n-butanol / toluene with a mixing ratio of 1: 1 is put into a three-necked flask, and further 30.0 parts by weight of an aliphatic epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., “YH-300”) and 2-heptadecylimidazole 20.3 parts by weight (“C17Z” manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added. After stirring for 4 hours at 65 ° C., solvent removal and vacuum drying were performed to obtain an amine adduct compound D having a structure derived from an aliphatic epoxy resin and a structure derived from 2-heptadecylimidazole.
The obtained amine adduct compound D was confirmed to be a compound represented by the above formula (2-4) by 1 H-NMR, 13 C-NMR and IR measurements.
(アミンアダクト化合物Eの製造)
混合比1:1のn-ブタノール/トルエン混合溶液300mLを三口フラスコに投入し、更にビスフェノールA型エポキシ樹脂(三菱化学社製、「jER828」)38.0重量部と2-フェニルイミダゾール(和光純薬工業社製)7.2重量部を投入した。65℃で4時間加熱撹拌を行った後、溶媒除去と真空乾燥を行い、ビスフェノールA型エポキシ樹脂に由来する構造と2-フェニルイミダゾールに由来する構造とを有するアミンアダクト化合物Eを得た。
得られたアミンアダクト化合物Eについて、H-NMR、13C-NMR、及び、IR測定を行うことにより、下記式(3)で表される化合物であることを確認した。
(Production of amine adduct compound E)
300 mL of a mixed solution of n-butanol / toluene having a mixing ratio of 1: 1 was put into a three-necked flask, and further 38.0 parts by weight of a bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., “jER828”) and 2-phenylimidazole (Wako Pure) 7.2 parts by weight of Yakuhin Kogyo Co., Ltd. was charged. After stirring for 4 hours at 65 ° C., solvent removal and vacuum drying were performed to obtain an amine adduct compound E having a structure derived from a bisphenol A type epoxy resin and a structure derived from 2-phenylimidazole.
The obtained amine adduct compound E was confirmed to be a compound represented by the following formula (3) by performing 1 H-NMR, 13 C-NMR, and IR measurement.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(実施例1~7、比較例1~4)
表1に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~7、比較例1~4の各液晶表示素子用シール剤を調製した。
(Examples 1 to 7, Comparative Examples 1 to 4)
According to the blending ratio described in Table 1, each material was mixed using a planetary stirrer (“Shinky Co., Ltd.,“ Awatori Nertaro ”), and then mixed using three rolls. The sealing agents for liquid crystal display elements 1 to 7 and Comparative Examples 1 to 4 were prepared.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Table 1.
(保存安定性)
実施例及び比較例で得られた各液晶表示素子用シール剤について、製造直後の初期粘度と、25℃で3日間保管したときの粘度とを測定し、(25℃、3日間保管後の粘度)/(初期粘度)を粘度変化率とし、粘度変化率が1.3未満であったものを「◎」、1.3以上1.5未満であったものを「○」、1.5以上2.0未満であったものを「△」、2.0以上であったものを「×」として保存安定性を評価した。
なお、シール剤の粘度は、E型粘度計(BROOK FIELD社製、「DV-III」)を用い、25℃において回転速度1.0rpmの条件で測定した。
(Storage stability)
About each liquid crystal display element sealing agent obtained in Examples and Comparative Examples, the initial viscosity immediately after production and the viscosity when stored at 25 ° C. for 3 days were measured, and the viscosity after storage at 25 ° C. for 3 days was measured. ) / (Initial viscosity) is the rate of change in viscosity, the rate of change in viscosity was less than 1.3, “◎”, the rate of 1.3 or more and less than 1.5 being “◯”, 1.5 or more The storage stability was evaluated as “△” when it was less than 2.0, and “×” when it was 2.0 or more.
The viscosity of the sealing agent was measured using an E-type viscometer (manufactured by BROOK FIELD, “DV-III”) at 25 ° C. and a rotation speed of 1.0 rpm.
(低温硬化性)
実施例及び比較例で得られた各液晶表示素子用シール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いて2枚のITO薄膜付きの透明電極基板の一方に長方形の枠を描く様にシール剤を塗布した。続いて、形成したシール剤の枠内にTN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にて滴下塗布し、他方の透明基板を、真空貼り合わせ装置にて5Paの減圧下にて貼り合わせた。貼り合わせた後のセルに、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、100℃で60分加熱することによってシール剤を熱硬化させ、液晶表示素子を作製した。紫外線の照射は、フィルターにより340nm以下の波長の光をカットして行った。得られた液晶表示素子を温度80℃で100時間保管した後、AC3.5Vの電圧駆動をさせ、目視で観察した。液晶表示素子の周辺部に表示むら(色むら)が全く見られなかった場合を「◎」、少し薄い表示むらが見えた場合を「○」、はっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
(Low temperature curability)
Each liquid crystal display element sealant obtained in Examples and Comparative Examples was filled in a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and subjected to defoaming treatment. Next, a sealant was applied so as to draw a rectangular frame on one of two transparent electrode substrates with an ITO thin film using a dispenser (manufactured by Musashi Engineering, “SHOTMASTER300”). Subsequently, fine droplets of TN liquid crystal (manufactured by Chisso, “JC-5001LA”) are dropped on the formed sealant frame with a liquid crystal dropping device, and the other transparent substrate is placed at 5 Pa with a vacuum bonding device. Were bonded together under reduced pressure. The cell after bonding was irradiated with 3000 mJ / cm 2 of ultraviolet rays with a metal halide lamp, and then the sealing agent was thermally cured by heating at 100 ° C. for 60 minutes, thereby producing a liquid crystal display element. Irradiation with ultraviolet rays was performed by cutting light having a wavelength of 340 nm or less with a filter. The obtained liquid crystal display element was stored at a temperature of 80 ° C. for 100 hours, and then was driven with a voltage of AC 3.5 V and visually observed. “◎” indicates no display unevenness (color unevenness) at the periphery of the liquid crystal display element, “○” indicates a slight display unevenness, and “o” indicates a clear dark display unevenness. “Δ”, the display performance of the liquid crystal display element was evaluated with “×” when the clear dark display unevenness spread not only in the peripheral part but also in the central part.
(可視光硬化性)
実施例5で得られた各液晶表示素子用シール剤をガラス基板上に約5μm塗布し、その基板に同サイズのガラス基板を重ね合わせ、次に、メタルハライドランプを用いて100mW/cmの光を10秒照射した。光照射は、フィルターにより380nm以下の波長の光をカットして行った。赤外分光装置(BIORAD社製、「FTS3000」)を用いて、光照射前後におけるアクリロイル基由来のピークを測定し、光照射後のアクリロイル基由来のピークの減少率を導出した。光照射後のアクリロイル基由来のピークの減少率が93%以上であった場合を「◎」、85%以上93%未満であった場合を「○」、75%以上85%未満であった場合を「△」、75%未満であった場合を「×」として可視光硬化性を評価した。
(Visible light curable)
Each liquid crystal display element sealant obtained in Example 5 was coated on a glass substrate by about 5 μm, and a glass substrate of the same size was superposed on the substrate, and then light of 100 mW / cm 2 using a metal halide lamp. Was irradiated for 10 seconds. Light irradiation was performed by cutting light having a wavelength of 380 nm or less with a filter. The peak derived from the acryloyl group before and after the light irradiation was measured using an infrared spectroscope (manufactured by BIORAD, “FTS3000”), and the reduction rate of the peak derived from the acryloyl group after the light irradiation was derived. When the rate of decrease in the peak derived from the acryloyl group after light irradiation is 93% or more, “「 ”, when it is 85% or more and less than 93%,“ ◯ ”, when it is 75% or more and less than 85% Visible light curability was evaluated as “Δ”, where “×” was less than 75%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
本発明によれば、低温硬化性と保存安定性とを両立できる液晶表示素子用シール剤を提供することができる。また、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which can make low-temperature curability and storage stability compatible can be provided. Moreover, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Claims (7)

  1. 硬化性樹脂と熱硬化剤を含有する液晶表示素子用シール剤であって、
    前記硬化性樹脂は、エポキシ基を有する硬化性樹脂を含有し、
    前記熱硬化剤は、エポキシ樹脂に由来する構造とアミン化合物に由来する構造とを有するアミンアダクト化合物を含有し、
    前記アミンアダクト化合物の由来となるアミン化合物は、アルキル基の炭素数が1~20であるアルキルイミダゾールである
    ことを特徴とする液晶表示素子用シール剤。
    A sealing agent for a liquid crystal display element containing a curable resin and a thermosetting agent,
    The curable resin contains a curable resin having an epoxy group,
    The thermosetting agent contains an amine adduct compound having a structure derived from an epoxy resin and a structure derived from an amine compound,
    A sealing agent for a liquid crystal display device, wherein the amine compound from which the amine adduct compound is derived is an alkyl imidazole having an alkyl group having 1 to 20 carbon atoms.
  2. アルキル基の炭素数が1~20であるアルキルイミダゾールは、2-メチルイミダゾールであることを特徴とする請求項1記載の液晶表示素子用シール剤。 2. The sealant for a liquid crystal display element according to claim 1, wherein the alkylimidazole having 1 to 20 carbon atoms in the alkyl group is 2-methylimidazole.
  3. アミンアダクト化合物の由来となるエポキシ樹脂は、芳香環を有することを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 3. The sealing agent for liquid crystal display elements according to claim 1, wherein the epoxy resin from which the amine adduct compound is derived has an aromatic ring.
  4. アミンアダクト化合物の由来となるエポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び、ビスフェノールE型エポキシ樹脂からなる群より選択される少なくとも1種であることを特徴とする請求項1、2又は3記載の液晶表示素子用シール剤。 The epoxy resin from which the amine adduct compound is derived is at least one selected from the group consisting of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol E type epoxy resin. The sealing agent for liquid crystal display elements of 2 or 3.
  5. 硬化性樹脂と熱硬化剤を含有する液晶表示素子用シール剤であって、
    前記硬化性樹脂は、エポキシ基を有する硬化性樹脂を含有し、前記熱硬化剤は、下記式(1-1)で表される化合物及び/又は下記式(1-2)で表される化合物を含有する
    ことを特徴とする液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)及び式(1-2)中、Rは、炭素数が1~20であるアルキル基であり、式(1-1)中、R及びRは、水素又はメチル基であり、それぞれ同一であってもよいし異なっていてもよい。
    A sealing agent for a liquid crystal display element containing a curable resin and a thermosetting agent,
    The curable resin contains a curable resin having an epoxy group, and the thermosetting agent is a compound represented by the following formula (1-1) and / or a compound represented by the following formula (1-2): A sealing agent for liquid crystal display elements, comprising:
    Figure JPOXMLDOC01-appb-C000001
    In Formula (1-1) and Formula (1-2), R 1 is an alkyl group having 1 to 20 carbon atoms. In Formula (1-1), R 2 and R 3 are hydrogen or methyl. Each group may be the same or different.
  6. 請求項1、2、3、4又は5記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the liquid crystal display element sealant according to claim 1, and conductive fine particles.
  7. 請求項1、2、3、4若しくは5記載の液晶表示素子用シール剤又は請求項6記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element comprising the sealant for a liquid crystal display element according to claim 1, 2, 3, 4, or 5, or the vertical conduction material according to claim 6.
PCT/JP2016/081549 2015-10-26 2016-10-25 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element WO2017073548A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680030279.5A CN107615151A (en) 2015-10-26 2016-10-25 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display cells
KR1020177024404A KR20180075431A (en) 2015-10-26 2016-10-25 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP2016566830A JP6114893B1 (en) 2015-10-26 2016-10-25 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-210051 2015-10-26
JP2015210051 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017073548A1 true WO2017073548A1 (en) 2017-05-04

Family

ID=58631992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081549 WO2017073548A1 (en) 2015-10-26 2016-10-25 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6114893B1 (en)
KR (1) KR20180075431A (en)
CN (1) CN107615151A (en)
TW (1) TWI723060B (en)
WO (1) WO2017073548A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143038A (en) * 2018-02-20 2019-08-29 ヘンケルジャパン株式会社 UV thermosetting adhesive composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181789A1 (en) * 2018-03-23 2019-09-26 味の素株式会社 Sealing adhesive
CN111164178B (en) * 2018-03-28 2021-03-16 积水化学工业株式会社 Composition for electronic material, sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN116790214B (en) * 2023-05-18 2024-04-12 浙江羲和新材料科技有限公司 Sealant composition and application thereof in liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713175A (en) * 1993-06-22 1995-01-17 Three Bond Co Ltd Sealing agent for liquid crystal
JP2008116825A (en) * 2006-11-07 2008-05-22 Sekisui Chem Co Ltd Sealing agent for liquid crystal display element, vertical conducting material and liquid crystal display element
WO2009128470A1 (en) * 2008-04-18 2009-10-22 積水化学工業株式会社 Sealing agent for use in liquid crystal dropping process, sealing agent for liquid crystal panel, vertical-conduction material, and liquid crystal display element
WO2012002028A1 (en) * 2010-06-28 2012-01-05 株式会社Adeka Curable resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168120A (en) * 1990-10-31 1992-06-16 Toshiba Corp Liquid epoxy sealing resin composition and resin sealed type semiconductor device using the same composition
KR960005064B1 (en) * 1991-09-26 1996-04-20 제일모직주식회사 Imid-epoxy resin and method for preparation thereof
CA2561414A1 (en) * 2004-03-31 2005-10-13 Asahi Kasei Chemicals Corporation Hardener for epoxy resin and epoxy resin composition
JP5417715B2 (en) * 2008-02-20 2014-02-19 デクセリアルズ株式会社 Microencapsulated silane coupling agent
CN104932155B (en) * 2011-04-08 2018-04-03 积水化学工业株式会社 Sealant for liquid crystal dripping process, upper and lower conductive material and liquid crystal display cells
CN103827741B (en) * 2011-09-27 2016-06-22 日本化药株式会社 Liquid crystal sealing agent and use its liquid crystal display
KR101474648B1 (en) * 2013-06-17 2014-12-17 삼성전기주식회사 Insulating resin composition for printed circuit board, insulating film, prepreg and printed circuit board
JP2015168803A (en) * 2014-03-10 2015-09-28 日立化成株式会社 Conductive adhesive composition, connection body, solar cell module and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713175A (en) * 1993-06-22 1995-01-17 Three Bond Co Ltd Sealing agent for liquid crystal
JP2008116825A (en) * 2006-11-07 2008-05-22 Sekisui Chem Co Ltd Sealing agent for liquid crystal display element, vertical conducting material and liquid crystal display element
WO2009128470A1 (en) * 2008-04-18 2009-10-22 積水化学工業株式会社 Sealing agent for use in liquid crystal dropping process, sealing agent for liquid crystal panel, vertical-conduction material, and liquid crystal display element
WO2012002028A1 (en) * 2010-06-28 2012-01-05 株式会社Adeka Curable resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143038A (en) * 2018-02-20 2019-08-29 ヘンケルジャパン株式会社 UV thermosetting adhesive composition
WO2019163629A1 (en) * 2018-02-20 2019-08-29 Henkel Ag & Co. Kgaa Thermal- and uv-curing adhesive composition
CN111712764A (en) * 2018-02-20 2020-09-25 汉高股份有限及两合公司 Heat-and UV-curable adhesive compositions
KR20200123180A (en) * 2018-02-20 2020-10-28 헨켈 아게 운트 코. 카게아아 Thermal and UV curing adhesive composition
US11111421B2 (en) 2018-02-20 2021-09-07 Henkel Ag & Co. Kgaa Thermal- and UV-curing adhesive composition
JP7146409B2 (en) 2018-02-20 2022-10-04 ヘンケルジャパン株式会社 UV thermosetting adhesive composition
KR102629106B1 (en) 2018-02-20 2024-01-24 헨켈 아게 운트 코. 카게아아 Heat and UV curing adhesive compositions

Also Published As

Publication number Publication date
TW201728662A (en) 2017-08-16
KR20180075431A (en) 2018-07-04
JPWO2017073548A1 (en) 2017-11-02
TWI723060B (en) 2021-04-01
JP6114893B1 (en) 2017-04-12
CN107615151A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP5827752B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2017119406A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6114893B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6539160B2 (en) Sealant for liquid crystal display element and vertical conduction material
JP6046866B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6523167B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP6046868B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP5386012B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2015152030A1 (en) Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2020013128A1 (en) Liquid crystal element sealant, vertical conduction material, and liquid crystal element
CN108292067B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
TWI716440B (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6078698B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2017119260A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP6378970B2 (en) Curable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP5337294B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
TW202208587A (en) Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
TW202003623A (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2017119407A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017132863A (en) Oxime ester initiator, curable resin composition, sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016566830

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177024404

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859778

Country of ref document: EP

Kind code of ref document: A1