WO2015081630A1 - 一种反激式快速启动驱动电路及驱动方法 - Google Patents

一种反激式快速启动驱动电路及驱动方法 Download PDF

Info

Publication number
WO2015081630A1
WO2015081630A1 PCT/CN2014/071049 CN2014071049W WO2015081630A1 WO 2015081630 A1 WO2015081630 A1 WO 2015081630A1 CN 2014071049 W CN2014071049 W CN 2014071049W WO 2015081630 A1 WO2015081630 A1 WO 2015081630A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
electrically connected
pull
terminal
Prior art date
Application number
PCT/CN2014/071049
Other languages
English (en)
French (fr)
Inventor
王照
曹丹
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to RU2016121672A priority Critical patent/RU2637775C2/ru
Priority to KR1020167017984A priority patent/KR101872627B1/ko
Priority to GB1609274.4A priority patent/GB2534816B/en
Priority to US14/240,367 priority patent/US9225189B2/en
Priority to JP2016536944A priority patent/JP6251395B2/ja
Publication of WO2015081630A1 publication Critical patent/WO2015081630A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present invention relates to a load start drive technology, and more particularly to a flyback fast start drive circuit and a drive method. Background technique
  • the driving circuit for driving a high-power load (for example, an LED tube as a backlight of a liquid crystal display device) needs to meet requirements such as high power factor, output constant current, electrical isolation, fast start, and low power consumption.
  • the flyback fast-start drive circuit is widely used for the driving work of the above-mentioned high-power load because of its simple circuit, good voltage regulation, strong load capacity and strong anti-interference ability.
  • 1 is a schematic diagram of a structure of a flyback fast start drive circuit in the prior art, wherein an input end of the drive circuit is an AC voltage and a full bridge rectification filter circuit 10, and an output end of the full bridge rectification filter circuit 10 is electrically connected to the transformer.
  • the first end of the primary winding 21 of 20, the second end of the primary winding 21 of the transformer 20 is electrically connected to the first end of the switching transistor ⁇ 1, and the second end of the switching transistor ⁇ 1 is electrically grounded through the voltage dividing resistor R11, the switching transistor
  • the control terminal of ⁇ 1 is electrically connected to the driving chip 30 for receiving the driving signal output by the driving chip 30.
  • Two series of pull-up resistors R12 and R13 are electrically connected between the output end of the full-bridge rectifying and filtering circuit 10 and the first pole of the stabilizing capacitor C11, and the second pole of the stabilizing capacitor C11 is electrically grounded, and the stabilizing capacitor C11
  • the first pole is electrically connected to the power terminal of the driving chip 30.
  • the first end of the auxiliary winding 22 of the transformer 20 is electrically grounded, the second end is adjacent to the second end of the primary winding 21 and is the same name end, and is also electrically connected to the anode of the diode D11 through the detecting resistor R14, the cathode of the diode D11
  • the power supply terminal of the driving chip 30 is electrically connected.
  • the first end of the secondary winding 23 of the transformer 20 is electrically connected to the anode of the diode D12, and the two poles of the filter capacitor C12 are electrically connected to the cathode of the diode D2 and the second end of the secondary winding 23 of the transformer 20, respectively.
  • the AC voltage is rectified by the full-bridge rectifier module 101 and converted into a DC voltage output, and the DC voltage is charged to the Zener capacitor C11 through two pull-up resistors R12 and R13, when the first pole of the Zener capacitor C11 After the voltage reaches the starting voltage Vcc required for the operation of the driving chip 30, the circuit starts to work normally and enters the stable phase.
  • the present invention provides a flyback fast start drive circuit and a drive method, which can achieve both a fast start and a reduction in its own power loss under the action of the drive method.
  • the invention provides a flyback fast start driving circuit, which comprises:
  • a voltage input unit that provides a DC voltage
  • a transformer comprising a first-side coupled primary winding and a secondary winding, and an auxiliary winding coupled to the same side of the primary winding, the first end of the primary winding being electrically coupled to the voltage input unit to receive the DC voltage;
  • a voltage pull-up unit whose input terminal is electrically connected to the voltage input unit to receive the DC voltage, and performs a charging process under the action of the DC voltage to pull the output voltage to a starting voltage;
  • the power terminal is electrically connected to the voltage pull-up unit to receive the output voltage, and the output terminal is electrically connected to the second end of the primary winding of the transformer, and starts to work when the voltage of the power terminal reaches the starting voltage.
  • a feedback control unit the input end of which is electrically connected to the auxiliary winding of the transformer to obtain the auxiliary winding voltage, and the output end is electrically connected to the control end of the voltage pull-up unit to output corresponding control according to the magnitude of the auxiliary winding voltage a signal, controlling the voltage pull-up unit to stop or resume charging; and when the voltage pull-up unit stops charging, the feedback control unit further provides an auxiliary winding voltage to the driving unit to maintain the driving unit to continue to work.
  • the voltage pull-up unit includes a voltage dividing resistor and two series-connected pull-up resistors, and the voltage dividing resistor and a first end of the pull-up resistor function as the voltage pull-up unit
  • the input end is connected to the voltage input unit, and the second end of the voltage dividing resistor and the other of the pull-up resistors are respectively electrically connected to a first end of the switching transistor and the control end, and the control of the switching transistor
  • the terminal is electrically connected to the output end of the feedback control unit, the second end of the switching transistor is electrically connected to the anode of a diode, and the cathode of the diode is electrically connected to a voltage stabilizing capacitor.
  • the driving unit includes a driving chip, and a power end of the driving chip is used as a power terminal of the driving unit, and is electrically connected to an output end of the voltage pulling unit, and the driving chip is controlled.
  • the signal output end is electrically connected to the control end of a switching transistor, the first end of the switching transistor is used as an output end of the driving unit, electrically connected to the second end of the primary winding of the transformer, and the second end of the switching transistor Electrically grounded through a voltage divider resistor.
  • the feedback control unit includes a detecting resistor, and the first end of the detecting resistor is used as an input end of the feedback control unit, and is electrically connected to an auxiliary winding of the transformer, and the detecting resistor is The two ends are electrically connected to the anode of one diode, the cathode of the diode is electrically grounded through two series-connected voltage dividing resistors, and the voltage between the two divided voltages is input as a feedback voltage to a comparator, the comparator The other input terminal inputs a preset reference voltage, the output end of the comparator is electrically connected to the control end of a switching transistor, the first end of the switching transistor is electrically grounded, and the second end is used as the feedback control The output end of the unit is electrically connected to the control end of the voltage pull-up unit; and the cathode of the diode is also electrically connected to the power end of the drive unit.
  • the voltage input unit comprises a full bridge rectification filter circuit.
  • the flyback quick start drive circuit may further include: a voltage output unit disposed between the transformer secondary winding and the load for voltage stabilization isolation.
  • a voltage output unit disposed between the transformer secondary winding and the load for voltage stabilization isolation.
  • the first end of the auxiliary winding is electrically grounded, and the second end is adjacent to the second end of the primary winding and is the same end of each other, and the auxiliary winding is The two ends are also electrically connected to the input of the feedback control unit.
  • the voltage dividing resistor is a kiloohm resistor, and the two pull-up resistors are megaohm resistors.
  • the present invention further provides a driving method for the flyback quick start driving circuit, comprising: pulling up a voltage of a power terminal of the driving unit to a starting voltage by charging to drive the driving unit to operate;
  • the driving unit drives the primary winding of the transformer to operate, and the auxiliary winding of the transformer thereby generates an auxiliary winding voltage
  • the auxiliary winding voltage is collected, and whether charging is stopped is determined according to the magnitude of the auxiliary winding voltage: if the charging is stopped, the driving unit continues to operate by the auxiliary winding voltage.
  • the flyback quick start drive circuit provided by the present invention simultaneously has a quick start And the advantage of low power consumption, in the circuit starting phase, the voltage required to start the driving unit is quickly pulled up to the starting voltage by charging; in the circuit stabilization phase, the voltage of the auxiliary winding of the transformer is judged, and the driving unit is maintained. At the same time, the charging process is stopped, and the circuit enters a low standby power state.
  • the invention is particularly suitable for driving high power loads requiring fast start-up, such as liquid crystal display panel LCD backlights.
  • FIG. 1 is a schematic structural view of a flyback quick start drive circuit in the prior art
  • FIG. 2 is a schematic diagram showing the composition of a flyback fast start driving circuit provided by the present invention.
  • Fig. 3 is a schematic view showing the circuit configuration of a specific embodiment of the flyback type quick start drive circuit shown in Fig. 2. Specific form
  • FIG. 2 it is a schematic diagram of a composition of a flyback quick start drive circuit provided by the present invention.
  • the circuit includes a voltage input unit 100, a transformer 200, a voltage pull-up unit 300, a drive unit 400, and a feedback control unit 500. among them:
  • a voltage input unit 100 that provides a DC voltage.
  • a transformer 200 including a first-side coupled primary winding 201 and a secondary winding 202, and an auxiliary winding 203 coupled to the same side of the primary winding 201, the first end of the primary winding 201 being electrically connected to the voltage input unit 100, Receive DC voltage.
  • the voltage pull-up unit 300 has an input terminal electrically connected to the voltage input unit 100 to receive a DC voltage, and an output terminal electrically connected to the power terminal of the driving unit 400 to perform a charging process according to the DC voltage, and the voltage supplied to the power terminal of the driving unit 400 Quickly pull up to a startup voltage Vcc.
  • the driving unit 400 has an output end electrically connected to the second end of the primary winding 201 of the transformer 200. After the voltage of the power terminal reaches the starting voltage Vcc, the driving unit 400 starts to work, and outputs a corresponding driving signal to drive the primary winding 201 of the transformer 200. jobs.
  • the feedback control unit 500 has an input terminal electrically connected to the auxiliary winding 203 of the transformer 200 to obtain an auxiliary winding voltage, and the output end is electrically connected to the control end of the voltage pull-up unit 300 to determine whether to output a corresponding control signal according to the magnitude of the auxiliary winding voltage. , the control voltage pull-up unit 300 stops or resumes charging; Moreover, when the voltage pull-up unit 300 stops charging, the feedback control unit 500 also supplies an auxiliary winding voltage to the driving unit 400 to maintain the driving unit 400 to continue to operate.
  • the functional modules of the flyback quick start drive circuit may further include other functional modules, such as a voltage output module 600 for voltage isolation isolation between the secondary winding 202 of the transformer 200 and the load, as needed.
  • the driving method of the above-described flyback fast start driving circuit includes:
  • the driving unit drives the primary winding of the transformer to operate, and the auxiliary winding of the transformer thereby generates an auxiliary winding voltage
  • the auxiliary winding voltage is collected, and whether charging is stopped is determined according to the magnitude of the auxiliary winding voltage: if the charging is stopped, the driving unit continues to operate by the auxiliary winding voltage.
  • FIG. 3 it is a schematic diagram of a specific embodiment of the flyback quick start drive circuit for driving an LED backlight of a liquid crystal display panel. among them:
  • the voltage input unit 100 is constructed by a full-bridge rectifying and filtering circuit 101.
  • the full-bridge rectifying and filtering circuit 101 converts the received AC voltage into a stable DC voltage and outputs it.
  • the first end of the primary winding 201 of the transformer 200 is electrically connected to the voltage input unit 100 to receive a DC voltage; the first end of the auxiliary winding 203 is electrically grounded, and the second end is adjacent to the second end of the primary winding 201 and has the same name end.
  • the voltage pull-up unit 300 includes a voltage dividing resistor R1 and two series-connected pull-up resistors R2 and R3. The first ends of the voltage dividing resistor R1 and the pull-up resistor R2 serve as input terminals of the voltage pull-up unit 300, and are connected to the voltage.
  • the output end of the input unit 100 receives the DC voltage, and the second ends of the voltage dividing resistor R1 and the pull-up resistor R3 are respectively electrically connected to the first end of the switching transistor ⁇ and the control terminal, and the control terminal of the switching transistor ⁇ also serves as a voltage
  • the control terminal of the pull-up unit 300, the second end of the switching transistor ⁇ is electrically connected to the anode of a diode D1
  • the cathode of the diode D1 is electrically connected to the first pole of a voltage stabilizing capacitor C1
  • the second pole of the voltage stabilizing capacitor C1 is electrically grounded.
  • the first pole of the voltage stabilizing capacitor C1 is also used as the output end of the voltage pull-up unit 300, and is electrically connected to the power terminal of the driving unit 400.
  • the pull-up resistors R2 and R3 in this embodiment are preferably ohm-ohm resistors, and the voltage-dividing resistor R1 is relatively small. For example, a resistor of a magnitude of ohms is selected to stabilize the capacitor.
  • the first pole voltage of CI rises rapidly to a starting voltage Vcc.
  • the driving unit 400 includes a driving chip Drive IC.
  • the driving chip Drive IC is a driving chip in the liquid crystal display template backlight module, and needs to operate under the function of the starting voltage Vcc to output a corresponding control signal.
  • the power supply end of the driving chip Drive IC is electrically connected to the output end of the voltage pull-up unit 300.
  • the control signal output end of the driving chip Drive IC is electrically connected to the control end of a switching transistor T2, and the switching transistor T2
  • the first end of the driving unit 400 is electrically connected to the second end of the primary winding 201 of the transformer 200, and the second end of the switching transistor T2 is electrically grounded through a voltage dividing resistor R4.
  • the switching transistor T2 is turned on or off by the control signal output from the driving chip Drive IC, thereby controlling the circuit connection of the second end to the ground of the primary winding 201 of the transformer 200 to be connected or disconnected.
  • the feedback control unit 500 includes a detecting resistor R5.
  • the first end of the detecting resistor R5 serves as an input end of the feedback control unit 500, and electrically connects the second end of the auxiliary winding 201 of the transformer 200 to obtain the auxiliary winding voltage, and the detecting resistor R5.
  • the two ends are electrically connected to the anode of a diode D2, and the cathode of the diode D2 is electrically connected to the power terminal of the driving unit 400 (that is, the power terminal of the driving chip Drive IC), and the cathode of the diode D2 also passes through two series-connected voltage dividing resistors R6 and R7 is electrically grounded.
  • the voltage dividing resistors R6 and R7 function to divide the auxiliary winding voltage, and the voltage between the voltage dividing resistors R6 and R7 is input as a feedback voltage to a comparator Comp, and the other input of the comparator Comp is input into a pre-load
  • the reference voltage is set, the output end of the comparator Comp is electrically connected to the control end of a switching transistor T3, the first end of the switching transistor T3 is electrically grounded, and the second end is used as an output end of the feedback control unit 500, and the voltage is connected to the voltage pull-up unit.
  • the control terminal of 300 i.e., the control terminal of the switching transistor ⁇ of the voltage pull-up unit 300).
  • the control signal output by the comparator Comp controls the switching transistor T3 to be turned on, thereby pulling down the voltage of the control terminal of the switching transistor ⁇ of the voltage pull-up unit 300 to zero.
  • the switching transistor ⁇ is turned off, that is, the charging path of the voltage stabilizing capacitor C1 in the voltage pull-up unit 300 is turned off.
  • the working principle of the flyback fast start driving circuit shown in FIG. 3 is as follows: In the circuit starting phase, the voltage pull-up unit 300 receives the DC voltage supplied by the voltage input unit 100 through the potentials of the pull-up resistors R2 and R3. Pulling, turning on the switching transistor ⁇ , and then turning on the charging path of the voltage stabilizing capacitor C1, and at the same time, because the voltage dividing resistor R1 has a small resistance value, the charging current of the voltage stabilizing capacitor C1 is large, so that the first step of the voltage stabilizing capacitor C1 The voltage of the pole rises rapidly to a starting voltage Vcc, so that the driving chip Drive IC can be quickly started.
  • the voltage of the power supply terminal of the driving chip Drive IC When the voltage of the first pole of the voltage stabilizing capacitor reaches the starting voltage Vcc, the voltage of the power supply terminal of the driving chip Drive IC also reaches the starting voltage Vcc accordingly, so that the driving chip Drive IC starts to work, and the output control signal is sent to the switching transistor T2, the switch The transistor ⁇ 2 is turned on by the control signal, thereby causing the voltage input unit 100, the primary winding 201 of the transformer 200, and the voltage dividing resistor R4 to form a closed circuit loop, and the primary winding 201 of the transformer 200 starts to work, providing the primary winding voltage. .
  • the auxiliary winding 203 of the transformer 200 has a corresponding auxiliary winding voltage in response to the primary winding voltage provided by the primary winding 201.
  • the auxiliary winding voltage is divided by the voltage dividing resistors R6 and R7 and fed back to the comparator Comp, with preset Comparing the reference voltage, when greater than the reference voltage, the comparator Comp outputs a corresponding control signal to control the switching transistor T3 to be turned on, thereby pulling down the voltage of the control terminal of the switching transistor ⁇ to a zero level, thereby turning the switching transistor ⁇ off,
  • the charging path of the voltage stabilizing capacitor C1 in the voltage pull-up unit 300 is turned off.
  • the voltage pull-up unit 300 stops charging the voltage stabilizing capacitor C1
  • the feedback control unit 500 leads the auxiliary winding voltage to the power supply terminal of the driving chip Drive IC through the detecting resistor R5 and the diode D2
  • the driving chip Drive IC will be in the auxiliary winding. Continue working under the influence of voltage without affecting the operation of the circuit.
  • the comparator Comp outputs a corresponding control signal to control the switching transistor T3 to be turned off, thereby causing the switching transistor T1 to be turned back on, and the voltage pull-up unit 300 is restored.
  • the stabilizing capacitor C1 is charged, and the charging process of the stabilizing capacitor C1 at this time is the same as the charging process at the start-up phase of the circuit.
  • the flyback fast start drive circuit of the prior art is difficult to achieve a good compromise effect on the startup time and the standby power consumption, and the flyback fast start drive circuit provided by the above invention can At the same time, it has the advantages of fast start-up and low standby power consumption, and the overall efficiency of the circuit is high and has significant progress.
  • the present invention can be used to drive other types of load operations in addition to driving LED lamps, for example, as a backlight of a liquid crystal display device, and the parameters of the circuit components can be selected and set according to the specific requirements of the load. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 本发明涉及一种反激式快速启动驱动电路及驱动方法。该电路包括电压输入单元,具有初级、次级和辅助绕组的变压器,控制变压器初级绕组工作的驱动单元,电压上拉单元和反馈控制单元。电压上拉单元根据电压输入单元提供的直流电压执行充电过程,将输出电压上拉至一启动电压提供给驱动单元,以使驱动单元启动工作,输出驱动信号而驱动变压器初级绕组工作,变压器的辅助绕组由此产生辅助绕组电压,反馈控制单元获取辅助绕组电压,并根据辅助绕组电压的大小判断是否停止电压上拉单元的充电动作,且当停止电压上拉单元的充电动作时,反馈控制单元提供辅助绕组电压给驱动单元,以维持驱动单元继续工作。本发明能够在快速启动负载的同时保持自身较低的功率损耗。

Description

一种反激式快速启动驱动电路及驱动方法 技术领域
本发明涉及一种负载启动驱动技术, 特别是关于一种反激式快速启动驱动电 路及驱动方法。 背景技术
用于驱动大功率负载 (例如作为液晶显示装置背光源的 LED灯管) 的驱动电 路需要满足如高功率因数、 输出恒流、 电气隔离、 快速启动和低功耗等要求。 目 前, 反激式快速启动驱动电路因其电路简单, 稳压性好, 负载能力强, 抗干扰能 力强的优点被广泛用于上述大功率负载的驱动工作。 图 1所示是现有技术中一种 反激式快速启动驱动电路结构示意图, 其中驱动电路的输入端是交流电压和全桥 整流滤波电路 10, 全桥整流滤波电路 10 的输出端电连接变压器 20 的初级绕组 21的第一端,变压器 20的初级绕组 21的第二端电连接开关晶体管 Π 1的第一端, 开关晶体管 Π 1的第二端通过分压电阻 R11电性接地, 开关晶体管 Π 1的控制端 电连接驱动芯片 30, 用于接收驱动芯片 30输出的驱动信号。 两个串联的上拉电 阻 R12和 R13电连接全桥整流滤波电路 10的输出端与稳压电容 C11的第一极之 间, 稳压电容 C11的第二极电性接地, 且稳压电容 C11的第一极电连接驱动芯片 30的电源端。 变压器 20的辅助绕组 22的第一端电性接地, 第二端与初级绕组 21的第二端相邻且互为同名端,同时还通过检测电阻 R14电连接二极管 D11的阳 极, 二极管 D11的阴极电连接驱动芯片 30的电源端。 此外, 变压器 20的次级绕 组 23的第一端电连接二极管 D12的阳极, 滤波电容 C12的两极分别电连接二极 管 D2的阴极和变压器 20的次级绕组 23的第二端。 上述驱动电路在启动阶段, 交流电压经全桥整流模块 101整流后转换为直流电压输出, 直流电压通过两个上 拉电阻 R12和 R13对稳压电容 C11充电, 当稳压电容 C11的第一极的电压达到驱 动芯片 30工作所需的启动电压 Vcc后电路开始正常工作, 进入稳定阶段。 其中, 如果两个上拉电阻 R12和 R13设置为高阻值电阻, 例如兆欧级的电阻, 会导致稳 压电容 C11的充电时间较长, 进而导致电路启动时间较长, 但是如果两个上拉电 阻 R12和 R13设置为低阻值电阻, 例如千欧级的电阻, 虽然可以缩短电路启动时 间, 但代价就是导致较高的待机功耗。 因此, 现有技术的反激式快速启动驱动电 路在启动时间和待机功耗上难以取得一个较好的折中效果。 发明内容
针对上述问题, 本发明提供了一种反激式快速启动驱动电路及驱动方法, 该 驱动电路在驱动方法的作用下, 既能实现快速启动又能降低自身的功率损耗。
本发明提供一种反激式快速启动驱动电路, 其中包括:
电压输入单元, 其提供直流电压;
变压器, 其包括异侧耦接的初级绕组和次级绕组, 以及与所述初级绕组同侧 耦接的辅助绕组, 所述初级绕组的第一端电连接所述电压输入单元, 以接收所述 直流电压;
电压上拉单元, 其输入端电连接所述电压输入单元, 以接收所述直流电压, 并在所述直流电压的作用下执行充电过程, 以将输出电压上拉至一启动电压; 驱动单元, 其电源端电连接所述电压上拉单元, 以接收所述输出电压, 输出 端电连接所述变压器的初级绕组的第二端, 并在所述电源端的电压达到所述启动 电压时启动工作, 驱动所述变压器的初级绕组工作;
反馈控制单元, 其输入端电连接所述变压器的辅助绕组, 以获取辅助绕组电 压, 输出端电连接与所述电压上拉单元的控制端, 以根据所述辅助绕组电压的大 小输出相应的控制信号, 控制所述电压上拉单元停止或者恢复充电; 且当所述电 压上拉单元停止充电时, 所述反馈控制单元还提供辅助绕组电压给所述驱动单 元, 以维持所述驱动单元继续工作。
根据本发明的实施例, 所述电压上拉单元包括一个分压电阻以及两个串联的 上拉电阻, 所述分压电阻和一所述上拉电阻的第一端作为所述电压上拉单元的输 入端, 并接所述电压输入单元, 所述分压电阻和另一所述上拉电阻的第二端则分 别电连接一个开关晶体管的第一端和控制端, 所述开关晶体管的控制端作为所述 电压上拉单元的控制端, 电连接所述反馈控制单元的输出端, 所述开关晶体管的 第二端电连接一个二极管的阳极, 所述二极管的阴极电连接一个稳压电容的第一 极, 所述稳压电容的第二极电性接地, 同时所述稳压电容的第一极还作为所述电 压上拉单元的输出端, 电连接所述驱动单元的电源端。 根据本发明的实施例, 所述驱动单元包括一个驱动芯片, 所述驱动芯片的电 源端作为所述驱动单元的电源端, 电连接所述电压上拉单元的输出端, 所述驱动 芯片的控制信号输出端电连接一个开关晶体管的控制端, 所述开关晶体管的第一 端作为所述驱动单元的输出端, 电连接所述变压器的初级绕组的第二端, 所述开 关晶体管的第二端通过一个分压电阻电性接地。
根据本发明的实施例, 所述反馈控制单元包括一个检测电阻, 所述检测电阻 的第一端作为所述反馈控制单元的输入端, 电连接所述变压器的辅助绕组, 所述 检测电阻的第二端电连接一个二极管的阳极, 所述二极管的阴极通过两个串联的 分压电阻电性接地, 两个所述分压电之间的电压作为反馈电压输入给一个比较 器, 所述比较器的另一输入端输入一个预设的参考电压, 所述比较器的输出端电 连接一个开关晶体管的控制端, 所述开关晶体管的第一端电性接地, 第二端则作 为所述反馈控制单元的输出端, 电连接所述电压上拉单元的的控制端; 且所述二 极管的阴极还电连接所述驱动单元的电源端。
根据本发明的实施例, 所述电压输入单元包括全桥整流滤波电路。
根据本发明的实施例, 上述反激式快速启动驱动电路还可以包括: 电压输出单元, 其设置在所述变压器次级绕组与负载之间, 用于稳压隔离。 根据本发明的实施例, 上述变压器中, 所述辅助绕组的第一端电性接地, 第 二端与所述初级绕组的第二端相邻且互为同名端, 同时所述辅助绕组的第二端还 电性连接所述反馈控制单元的输入端。
根据本发明的实施例,上述电压上拉单元中,所述分压电阻为千欧级的电阻, 两个所述上拉电阻为兆欧级的电阻。
此外, 本发明还提供上述反激式快速启动驱动电路的驱动方法, 包括: 利用充电将所述驱动单元的电源端的电压上拉至一启动电压, 以驱动所述驱 动单元工作;
所述驱动单元驱动所述变压器的初极绕组工作, 所述变压器的辅助绕组由此 产生辅助绕组电压;
采集所述辅助绕组电压, 并根据所述辅助绕组电压的大小判断是否停止充 电: 如果停止充电, 由所述辅助绕组电压维持所述驱动单元继续工作。
且进一步地, 当所述辅助绕组电压的大于预设的参考电压时, 停止充电。 与现有技术相比, 本发明提供的反激式快速启动驱动电路同时兼具快速启动 和功耗较低的优点, 在电路启动阶段, 利用充电将驱动单元启动工作所需电压快 速上拉至启动电压; 在电路稳定阶段, 根据变压器辅助绕组的电压进行判断, 在 维持驱动单元工作的同时停止充电过程, 使电路进入低待机功耗状态。 本发明特 别适合用于驱动例如液晶显示面板 LCD背光源的要求快速启动的大功率负载。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明 的实施例共同用于解释本发明, 并不构成对本发明的限制。 在附图中:
图 1是现有技术中一种反激式快速启动驱动电路的结构示意图;
图 2是本发明提供的反激式快速启动驱动电路的组成示意图;
图 3是图 2所示反激式快速启动驱动电路的一个具体实施例的电路结构示意 图。 具体实 式
如图 2所示, 是本发明提供的反激式快速启动驱动电路的组成示意图, 该电 路包括电压输入单元 100、 变压器 200、 电压上拉单元 300、 驱动单元 400和反馈 控制单元 500。 其中:
电压输入单元 100, 其提供直流电压。
变压器 200, 其包括异侧耦接的初级绕组 201和次级绕组 202, 以及与初级 绕组 201同侧耦接的辅助绕组 203, 所述初级绕组 201的第一端电连接电压输入 单元 100, 以接收直流电压。
电压上拉单元 300, 其输入端电连接电压输入单元 100, 以接收直流电压, 输出端电连接驱动单元 400的电源端, 以根据直流电压执行充电过程, 将提供给 驱动单元 400的电源端的电压快速上拉至一启动电压 Vcc。
驱动单元 400, 其输出端电连接变压器 200的初级绕组 201的第二端, 当电 源端的电压达到启动电压 Vcc后,驱动单元 400开始工作,输出相应的驱动信号, 以驱动变压器 200的初级绕组 201工作。
反馈控制单元 500, 其输入端电连接变压器 200的辅助绕组 203, 以获取辅 助绕组电压, 输出端电连接电压上拉单元 300的控制端, 以根据辅助绕组电压的 大小判断是否输出相应的控制信号, 控制电压上拉单元 300停止或者恢复充电,; 而且, 当电压上拉单元 300停止充电时, 反馈控制单元 500还提供辅助绕组电压 给驱动单元 400, 以维持驱动单元 400继续工作。
当然, 根据需要, 上述反激式快速启动驱动电路的功能模块还可以进一步地 包括其他功能模块, 例如在变压器 200的次级绕组 202与负载之间设置一稳压隔 离用的电压输出模块 600。
上述反激式快速启动驱动电路的驱动方法, 包括:
利用充电将所述驱动单元的电源端的电压上拉至一启动电压, 以驱动所述驱 动单元工作;
所述驱动单元驱动所述变压器的初极绕组工作, 所述变压器的辅助绕组由此 产生辅助绕组电压;
采集所述辅助绕组电压, 并根据所述辅助绕组电压的大小判断是否停止充 电: 如果停止充电, 由所述辅助绕组电压维持所述驱动单元继续工作。
为使本发明的目的、 技术方案和优点更加清楚, 以下结合具体实施例对本发 明作进一步地详细说明。
如图 3所示, 是上述反激式快速启动驱动电路的一个具体实施例的示意图, 该电路用于驱动液晶显示面板的 LED背光源。 其中:
电压输入单元 100采用全桥整流滤波电路 101构成, 全桥整流滤波电路 101 将接收的交流电压转换成稳定的直流电压后输出。
变压器 200的初级绕组 201的第一端电连接电压输入单元 100, 以接收直流 电压; 辅助绕组 203的第一端电性接地, 第二端与初级绕组 201的第二端相邻且 互为同名端。
电压上拉单元 300包括一个分压电阻 R1以及两个串联的上拉电阻 R2和 R3, 分压电阻 R1和上拉电阻 R2的第一端作为电压上拉单元 300的输入端, 并接在电 压输入单元 100的输出端, 以接收直流电压, 分压电阻 R1和上拉电阻 R3的第二 端分别电连接一个开关晶体管 Π的第一端和控制端, 开关晶体管 Π的控制端同 时还作为电压上拉单元 300的控制端, 开关晶体管 Π 的第二端电连接一个二极 管 D1的阳极, 二极管 D1的阴极电连接一个稳压电容 C1的第一极, 稳压电容 C1 的第二极电性接地, 同时稳压电容 C1 的第一极还作为电压上拉单元 300的输出 端, 电连接驱动单元 400的电源端。 其中, 本实施例中的上拉电阻 R2和 R3优选 兆欧级的电阻, 分压电阻 R1 相对较小, 选取例如千欧级的电阻, 以使稳压电容 CI的第一极电压快速地上升至一启动电压 Vcc。
驱动单元 400包括一个驱动芯片 Drive IC,在本实施例中,该驱动芯片 Drive IC是液晶显示模板背光模组中的驱动芯片, 需要在启动电压 Vcc的作用下工作, 输出相应的控制信号。 该驱动芯片 Drive IC的电源端作为驱动单元 400的电源 端, 电连接电压上拉单元 300的输出端, 该驱动芯片 Drive IC的控制信号输出 端电连接一个开关晶体管 T2的控制端,开关晶体管 T2的第一端作为驱动单元 400 的输出端, 电连接变压器 200的初级绕组 201的第二端, 开关晶体管 T2的第二 端通过一个分压电阻 R4电性接地。 在驱动芯片 Drive IC输出的控制信号的作用 下, 开关晶体管 T2导通或者截止, 从而控制变压器 200的初级绕组 201的第二 端对地的电路连接连通或者断开。
反馈控制单元 500包括一个检测电阻 R5, 检测电阻 R5的第一端作为反馈控 制单元 500的输入端, 电连接变压器 200的辅助绕组 201的第二端, 以获取辅助 绕组电压, 检测电阻 R5的第二端电连接一个二极管 D2的阳极, 二极管 D2的阴 极电连接驱动单元 400的电源端 (也即驱动芯片 Drive IC的电源端), 同时二极 管 D2的阴极还通过两个串联的分压电阻 R6和 R7电性接地。 其中, 分压电阻 R6 和 R7的作用是对辅助绕组电压进行分压, 分压电阻 R6和 R7之间的电压作为反 馈电压输入给一个比较器 Comp, 比较器 Comp的另一输入端输入一个预设的参考 电压, 比较器 Comp的输出端电连接一个开关晶体管 T3的控制端, 开关晶体管 T3 的第一端电性接地, 第二端作为反馈控制单元 500的输出端, 电连接电压上拉单 元 300的控制端 (也即电压上拉单元 300的开关晶体管 Π的控制端)。 在本实施 例中, 当反馈电压大于预设的参考电压时, 比较器 Comp输出的控制信号控制开 关晶体管 T3导通, 从而将电压上拉单元 300的开关晶体管 Π的控制端的电压下 拉至零电平, 进而使开关晶体管 Π截止, 也即断开电压上拉单元 300中稳压电 容 C1的充电路径。
具体地, 上述图 3所示的反激式快速启动驱动电路的工作原理如下: 电路启动阶段, 电压上拉单元 300接收电压输入单元 100提供的直流电压, 通过上拉电阻 R2和 R3的电位上拉作用, 导通开关晶体管 Π, 进而导通稳压电容 C1的充电路径, 同时由于分压电阻 R1阻值较小, 因此稳压电容 C1的充电电流较 大, 使稳压电容 C1的第一极的电压快速地上升至一启动电压 Vcc, 从而能够快速 启动驱动芯片 Drive IC工作。 当稳压电容的第一极的电压达到启动电压 Vcc时, 驱动芯片 Drive IC的电 源端的电压也相应地达到启动电压 Vcc, 由此驱动芯片 Drive IC开始工作, 输出 控制信号给开关晶体管 T2, 开关晶体管 Τ2在控制信号的作用下导通, 进而使电 压输入单元 100、 变压器 200的初级绕组 201、 分压电阻 R4至地形成闭合的电路 回路, 变压器 200的初级绕组 201开始工作, 提供初级绕组电压。
电路稳定阶段, 变压器 200的辅助绕组 203响应初级绕组 201提供的初级绕 组电压而具有相应的辅助绕组电压, 该辅助绕组电压经分压电阻 R6和 R7分压后 反馈至比较器 Comp, 与预设的参考电压进行比较, 当大于参考电压时, 比较器 Comp输出相应的控制信号控制开关晶体管 T3导通,从而将开关晶体管 Π的控制 端的电压下拉至零电平, 进而使开关晶体管 Π 截止, 也就断开了电压上拉单元 300中稳压电容 C1的充电路径。虽然电压上拉单元 300停止向稳压电容 C1充电, 但是由于反馈控制单元 500通过检测电阻 R5和二极管 D2将辅助绕组电压引至驱 动芯片 Drive IC的电源端, 因此驱动芯片 Drive IC会在辅助绕组电压的作用下 继续工作, 不会影响电路的运作。
当然, 如果辅助绕组电压下降, 导致相应的反馈电压小于等于参考电压时, 比较器 Comp会输出相应的控制信号控制开关晶体管 T3截止, 从而使开关晶体管 T1重新导通, 电压上拉单元 300恢复向稳压电容 C1充电, 稳压电容 C1此时的充 电过程与电路启动阶段时的充电过程相同。
正如背景技术提及的, 现有技术的反激式快速启动驱动电路在启动时间和待 机功耗上难以取得一个较好的折中效果, 而上述本发明提供的反激式快速启动驱 动电路能够同时兼具快速启动和低待机功耗的优点, 电路的整体效率高, 具有显 著的进步。
需要说明的是, 本发明除了用于驱动例如作为液晶显示装置背光源的 LED灯 管工作, 还可以用于驱动其他类型的负载工作, 而电路元件的参数可以根据负载 的具体要求进行选取和设置。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉该技术的人员在本发明所揭露的技术范围内, 可轻易想到的变化 或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权 利要求的保护范围为准。

Claims

权利要求书
1、 一种反激式快速启动驱动电路, 其中包括:
电压输入单元, 其提供直流电压;
变压器, 其包括异侧耦接的初级绕组和次级绕组, 以及与所述初级绕组同侧 耦接的辅助绕组, 所述初级绕组的第一端电连接所述电压输入单元, 以接收所述 直流电压;
电压上拉单元, 其输入端电连接所述电压输入单元, 以接收所述直流电压, 并在所述直流电压的作用下执行充电过程, 以将输出电压上拉至一启动电压; 驱动单元, 其电源端电连接所述电压上拉单元, 以接收所述输出电压, 输出 端电连接所述变压器的初级绕组的第二端, 并在所述电源端的电压达到所述启动 电压时启动工作, 驱动所述变压器的初级绕组工作;
反馈控制单元, 其输入端电连接所述变压器的辅助绕组, 以获取辅助绕组电 压, 输出端电连接与所述电压上拉单元的控制端, 以根据所述辅助绕组电压的大 小输出相应的控制信号, 控制所述电压上拉单元停止或者恢复充电; 且当所述电 压上拉单元停止充电时, 所述反馈控制单元还提供辅助绕组电压给所述驱动单 元, 以维持所述驱动单元继续工作。
2、 如权利要求 1所述的反激式快速启动驱动电路, 其中:
所述电压上拉单元包括一个分压电阻以及两个串联的上拉电阻, 所述分压电 阻和一所述上拉电阻的第一端作为所述电压上拉单元的输入端, 并接所述电压输 入单元, 所述分压电阻和另一所述上拉电阻的第二端则分别电连接一个开关晶体 管的第一端和控制端, 所述开关晶体管的控制端作为所述电压上拉单元的控制 端, 电连接所述反馈控制单元的输出端, 所述开关晶体管的第二端电连接一个二 极管的阳极, 所述二极管的阴极电连接一个稳压电容的第一极, 所述稳压电容的 第二极电性接地, 同时所述稳压电容的第一极还作为所述电压上拉单元的输出 端, 电连接所述驱动单元的电源端。
3、 如权利要求 2所述的反激式快速启动驱动电路, 其中:
所述驱动单元包括一个驱动芯片, 所述驱动芯片的电源端作为所述驱动单元 的电源端, 电连接所述电压上拉单元的输出端, 所述驱动芯片的控制信号输出端 电连接一个开关晶体管的控制端, 所述开关晶体管的第一端作为所述驱动单元的 输出端, 电连接所述变压器的初级绕组的第二端, 所述开关晶体管的第二端通过 一个分压电阻电性接地。
4、 如权利要求 3所述的反激式快速启动驱动电路, 其中:
所述反馈控制单元包括一个检测电阻, 所述检测电阻的第一端作为所述反馈 控制单元的输入端, 电连接所述变压器的辅助绕组, 所述检测电阻的第二端电连 接一个二极管的阳极, 所述二极管的阴极通过两个串联的分压电阻电性接地, 两 个所述分压电之间的电压作为反馈电压输入给一个比较器, 所述比较器的另一输 入端输入一个预设的参考电压, 所述比较器的输出端电连接一个开关晶体管的控 制端, 所述开关晶体管的第一端电性接地, 第二端则作为所述反馈控制单元的输 出端, 电连接所述电压上拉单元的的控制端; 且所述二极管的阴极还电连接所述 驱动单元的电源端。
5、 如权利要求 4所述的反激式快速启动驱动电路, 其中:
所述电压输入单元包括全桥整流滤波电路。
6、 如权利要求 1所述的反激式快速启动驱动电路, 其中还包括: 电压输出单元, 其设置在所述变压器次级绕组与负载之间, 用于稳压隔离。
7、 如权利要求 1所述的反激式快速启动驱动电路, 其中:
所述变压器中, 所述辅助绕组的第一端电性接地, 第二端与所述初级绕组的 第二端相邻且互为同名端, 同时所述辅助绕组的第二端还电性连接所述反馈控制 单元的输入端。
8、 如权利要求 2所述的反激式快速启动驱动电路, 其中:
所述变压器中, 所述辅助绕组的第一端电性接地, 第二端与所述初级绕组的 第二端相邻且互为同名端, 同时所述辅助绕组的第二端还电性连接所述反馈控制 单元的输入端。
9、 如权利要求 3所述的反激式快速启动驱动电路, 其中:
所述变压器中, 所述辅助绕组的第一端电性接地, 第二端与所述初级绕组的 第二端相邻且互为同名端, 同时所述辅助绕组的第二端还电性连接所述反馈控制 单元的输入端。
10、 如权利要求 4所述的反激式快速启动驱动电路, 其中:
所述变压器中, 所述辅助绕组的第一端电性接地, 第二端与所述初级绕组的 第二端相邻且互为同名端, 同时所述辅助绕组的第二端还电性连接所述反馈控制 单元的输入端。
11、 如权利要求 2所述的反激式快速启动驱动电路, 其中:
所述电压上拉单元中, 所述分压电阻为千欧级的电阻, 两个所述上拉电阻为 兆欧级的电阻。
12、 一种反激式快速启动驱动电路的驱动方法, 所述反激式快速启动驱动电 路, 其中包括:
电压输入单元, 其提供直流电压;
变压器, 其包括异侧耦接的初级绕组和次级绕组, 以及与所述初级绕组同侧 耦接的辅助绕组, 所述初级绕组的第一端电连接所述电压输入单元, 以接收所述 直流电压;
电压上拉单元, 其输入端电连接所述电压输入单元, 以接收所述直流电压, 并在所述直流电压的作用下执行充电过程, 以将输出电压上拉至一启动电压; 驱动单元, 其电源端电连接所述电压上拉单元, 以接收所述输出电压, 输出 端电连接所述变压器的初级绕组的第二端, 并在所述电源端的电压达到所述启动 电压时启动工作, 驱动所述变压器的初级绕组工作;
反馈控制单元, 其输入端电连接所述变压器的辅助绕组, 以获取辅助绕组电 压, 输出端电连接与所述电压上拉单元的控制端, 以根据所述辅助绕组电压的大 小输出相应的控制信号, 控制所述电压上拉单元停止或者恢复充电; 且当所述电 压上拉单元停止充电时, 所述反馈控制单元还提供辅助绕组电压给所述驱动单 元, 以维持所述驱动单元继续工作;
所述驱动方法包括以下步骤:
利用充电将所述驱动单元的电源端的电压上拉至一启动电压, 以驱动所述驱 动单元工作;
所述驱动单元驱动所述变压器的初极绕组工作, 所述变压器的辅助绕组由此 产生辅助绕组电压;
采集所述辅助绕组电压, 并根据所述辅助绕组电压的大小判断是否停止充 电: 如果停止充电, 由所述辅助绕组电压维持所述驱动单元继续工作。
13、 如权利要求 12所述的驱动方法, 其中:
所述反激式快速启动驱动电路的电压上拉单元包括一个分压电阻以及两个 串联的上拉电阻, 所述分压电阻和一所述上拉电阻的第一端作为所述电压上拉单 元的输入端, 并接所述电压输入单元, 所述分压电阻和另一所述上拉电阻的第二 端则分别电连接一个开关晶体管的第一端和控制端, 所述开关晶体管的控制端作 为所述电压上拉单元的控制端, 电连接所述反馈控制单元的输出端, 所述开关晶 体管的第二端电连接一个二极管的阳极, 所述二极管的阴极电连接一个稳压电容 的第一极, 所述稳压电容的第二极电性接地, 同时所述稳压电容的第一极还作为 所述电压上拉单元的输出端, 电连接所述驱动单元的电源端。
14、 如权利要求 13所述的驱动方法, 其中:
所述反激式快速启动驱动电路的驱动单元包括一个驱动芯片, 所述驱动芯片 的电源端作为所述驱动单元的电源端, 电连接所述电压上拉单元的输出端, 所述 驱动芯片的控制信号输出端电连接一个开关晶体管的控制端, 所述开关晶体管的 第一端作为所述驱动单元的输出端, 电连接所述变压器的初级绕组的第二端, 所 述开关晶体管的第二端通过一个分压电阻电性接地。
15、 如权利要求 14所述的驱动方法, 其中:
所述反激式快速启动驱动电路的反馈控制单元包括一个检测电阻, 所述检测 电阻的第一端作为所述反馈控制单元的输入端, 电连接所述变压器的辅助绕组, 所述检测电阻的第二端电连接一个二极管的阳极, 所述二极管的阴极通过两个串 联的分压电阻电性接地, 两个所述分压电之间的电压作为反馈电压输入给一个比 较器, 所述比较器的另一输入端输入一个预设的参考电压, 所述比较器的输出端 电连接一个开关晶体管的控制端, 所述开关晶体管的第一端电性接地, 第二端则 作为所述反馈控制单元的输出端, 电连接所述电压上拉单元的的控制端; 且所述 二极管的阴极还电连接所述驱动单元的电源端。
16、 如权利要求 15所述的驱动方法, 其中:
所述反激式快速启动驱动电路的电压输入单元包括全桥整流滤波电路。
17、 如权利要求 12所述的驱动方法, 其中, 所述反激式快速启动驱动电路 还包括:
电压输出单元, 其设置在所述变压器次级绕组与负载之间, 用于稳压隔离。
18、 如权利要求 12所述的驱动方法, 其中:
所述反激式快速启动驱动电路的变压器中, 所述辅助绕组的第一端电性接 地, 第二端与所述初级绕组的第二端相邻且互为同名端, 同时所述辅助绕组的第 二端还电性连接所述反馈控制单元的输入端。
19、 如权利要求 13所述的驱动方法, 其中: 所述反激式快速启动驱动电路的电压上拉单元中, 所述分压电阻为千欧级的 电阻, 两个所述上拉电阻为兆欧级的电阻。
20、 如权利要求 12所述的驱动方法, 其中:
当所述辅助绕组电压的大于预设的参考电压时, 停止充电。
PCT/CN2014/071049 2013-12-06 2014-01-22 一种反激式快速启动驱动电路及驱动方法 WO2015081630A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2016121672A RU2637775C2 (ru) 2013-12-06 2014-01-22 Схема обратноходового драйвера быстрого пуска и способ возбуждения
KR1020167017984A KR101872627B1 (ko) 2013-12-06 2014-01-22 플라이백 쾌속시동 구동회로 및 구동방법
GB1609274.4A GB2534816B (en) 2013-12-06 2014-01-22 Flyback quick start driving circuit and driving method
US14/240,367 US9225189B2 (en) 2013-12-06 2014-01-22 Flyback quick start driving circuit and driving method
JP2016536944A JP6251395B2 (ja) 2013-12-06 2014-01-22 フライバック方式の快速起動駆動回路及び駆動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310655787.0A CN103683890A (zh) 2013-12-06 2013-12-06 一种反激式快速启动驱动电路及驱动方法
CN201310655787.0 2013-12-06

Publications (1)

Publication Number Publication Date
WO2015081630A1 true WO2015081630A1 (zh) 2015-06-11

Family

ID=50320476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071049 WO2015081630A1 (zh) 2013-12-06 2014-01-22 一种反激式快速启动驱动电路及驱动方法

Country Status (6)

Country Link
JP (1) JP6251395B2 (zh)
KR (1) KR101872627B1 (zh)
CN (1) CN103683890A (zh)
GB (1) GB2534816B (zh)
RU (1) RU2637775C2 (zh)
WO (1) WO2015081630A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712045B2 (en) * 2014-11-17 2017-07-18 Infineon Technologies Austria Ag System and method for a startup cell circuit
CN106655749B (zh) * 2016-11-16 2023-09-22 杰华特微电子股份有限公司 一种电源控制电路及应用其的开关电源
CN107888065A (zh) * 2017-12-22 2018-04-06 佛山市顺德区美的电热电器制造有限公司 一种动态嵌位电路
CN108449822A (zh) * 2018-04-26 2018-08-24 广东美的厨房电器制造有限公司 供电装置和微波烹饪电器
KR102663510B1 (ko) * 2018-07-16 2024-05-09 삼성전자주식회사 전자장치 및 그 제어방법
CN109462386B (zh) * 2018-09-10 2020-12-01 西安电子科技大学 一种应用于高温环境的SiC MOSFET驱动电路
CN109245513B (zh) * 2018-11-09 2024-04-09 深圳南云微电子有限公司 一种启动电路
US11831234B2 (en) * 2019-08-12 2023-11-28 Eldolab Holding B.V. Neutral-less power supply with buck converter
CN113423156A (zh) * 2021-06-19 2021-09-21 浙江榆阳电子有限公司 Led调光电源低调光率快速启动电路及其启动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307390B2 (en) * 2005-06-16 2007-12-11 Active-Semi International, Inc. Primary side constant output voltage controller
US20080094047A1 (en) * 2006-01-06 2008-04-24 Active-Semi International, Inc. Primary side constant output voltage controller
CN101841250A (zh) * 2010-04-27 2010-09-22 上海新进半导体制造有限公司 一种开关电源控制电路及原边控制的反激式开关电源
CN102075071A (zh) * 2011-01-20 2011-05-25 浙江大学 利于有源反激式功率因数校正装置谐波削减补偿控制电路
CN102290995A (zh) * 2011-07-16 2011-12-21 西安电子科技大学 反激式变换器中整流二极管温度补偿电路
CN102802318A (zh) * 2012-08-28 2012-11-28 绍兴光大芯业微电子有限公司 反激式快速启动led驱动电路结构
CN103001463A (zh) * 2012-12-25 2013-03-27 杭州士兰微电子股份有限公司 开关电源控制器及包含该开关电源控制器的开关电源

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197530A (ja) * 1992-12-25 1994-07-15 Sony Corp スイッチングレギュレータ
JPH073292U (ja) * 1993-06-04 1995-01-17 東光株式会社 スイッチング電源
US5856917A (en) * 1994-09-05 1999-01-05 Tdk Corporation Electric power device with improved power factor
TW432276B (en) * 1997-03-08 2001-05-01 Acer Peripherals Inc Power-saving type power-supply with the capability of quickly restoring the start
JP2000175449A (ja) * 1998-12-07 2000-06-23 Nec Eng Ltd スイッチング電源回路
JP2001309653A (ja) * 2000-04-20 2001-11-02 Sony Corp スイッチング電源回路
JP2005151659A (ja) * 2003-11-13 2005-06-09 Shindengen Electric Mfg Co Ltd 省電力回路
US7974110B2 (en) * 2006-11-02 2011-07-05 Ecopower Design Co., Ltd. Switching power supply unit and method for setting switching frequency
EP2458940A1 (en) * 2007-05-07 2012-05-30 Koninklijke Philips Electronics N.V. Power control methods and apparatus
WO2009095890A2 (en) * 2008-02-01 2009-08-06 Koninklijke Philips Electronics N.V. Switched-mode power supply
US7746673B2 (en) * 2008-05-10 2010-06-29 Active-Semi, Inc. Flyback constant voltage converter having both a PWFM mode and a PWM mode
RU2396685C1 (ru) * 2009-07-24 2010-08-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Преобразователь напряжения с индуктивно связанными рекуперационными цепями
US8213192B2 (en) * 2009-12-30 2012-07-03 Silicon Laboratories Inc. Primary side sensing for isolated fly-back converters
US8059429B2 (en) * 2009-12-31 2011-11-15 Active-Semi, Inc. Using output drop detection pulses to achieve fast transient response from a low-power mode
CN101771353B (zh) * 2010-02-24 2011-12-14 英飞特电子(杭州)有限公司 一种适用于开关电源的辅助源电路
TW201141303A (en) * 2010-05-07 2011-11-16 Light Engine Ltd Triac dimmable power supply unit for LED
CN102130596B (zh) * 2011-01-27 2013-04-24 广州金升阳科技有限公司 一种宽输入电压范围的开关变换器
RU119186U1 (ru) * 2012-02-17 2012-08-10 Общество с ограниченной ответственностью "СКом" Импульсный источник питания для светодиодов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307390B2 (en) * 2005-06-16 2007-12-11 Active-Semi International, Inc. Primary side constant output voltage controller
US20080094047A1 (en) * 2006-01-06 2008-04-24 Active-Semi International, Inc. Primary side constant output voltage controller
CN101841250A (zh) * 2010-04-27 2010-09-22 上海新进半导体制造有限公司 一种开关电源控制电路及原边控制的反激式开关电源
CN102075071A (zh) * 2011-01-20 2011-05-25 浙江大学 利于有源反激式功率因数校正装置谐波削减补偿控制电路
CN102290995A (zh) * 2011-07-16 2011-12-21 西安电子科技大学 反激式变换器中整流二极管温度补偿电路
CN102802318A (zh) * 2012-08-28 2012-11-28 绍兴光大芯业微电子有限公司 反激式快速启动led驱动电路结构
CN103001463A (zh) * 2012-12-25 2013-03-27 杭州士兰微电子股份有限公司 开关电源控制器及包含该开关电源控制器的开关电源

Also Published As

Publication number Publication date
KR101872627B1 (ko) 2018-06-28
GB201609274D0 (en) 2016-07-13
RU2637775C2 (ru) 2017-12-07
GB2534816A (en) 2016-08-03
GB2534816B (en) 2021-03-03
JP2016540481A (ja) 2016-12-22
KR20160093713A (ko) 2016-08-08
RU2016121672A (ru) 2017-12-06
CN103683890A (zh) 2014-03-26
JP6251395B2 (ja) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2015081630A1 (zh) 一种反激式快速启动驱动电路及驱动方法
TWI577115B (zh) 開關電源及用於開關電源的母線電容電壓控制方法
US10075081B2 (en) Insulated synchronous rectification DC/DC converter
JP6191020B2 (ja) スイッチング電源装置
JP5632664B2 (ja) 半導体発光素子の点灯装置およびそれを用いた照明器具
CN101640485B (zh) 开关电源装置
US20130033110A1 (en) Power supply circuit with low-voltage control and producing method thereof
TW201605151A (zh) 快速啟動備援的冗餘式電源供應系統
WO2004051835A1 (ja) 直流−交流変換装置、及びそのコントローラic
TW201141029A (en) Start-up supply
JP5619953B2 (ja) スイッチング電力変換回路およびこれを用いた電源供給器
JP2010153599A (ja) 電源回路およびそれを備えた電子機器
US7974110B2 (en) Switching power supply unit and method for setting switching frequency
CN106655749B (zh) 一种电源控制电路及应用其的开关电源
US8213196B2 (en) Power supply circuit with protecting circuit having switch element for protecting pulse width modulation circuit
TWI439183B (zh) 多燈管驅動系統
TWI396888B (zh) 電源電路及電源電路控制方法
WO2021047387A1 (zh) 用于供电的buck拓扑电路
JP2003338552A (ja) 半導体装置
JP2012050160A (ja) Led駆動用スイッチング電源装置及びそれを用いたled照明装置
TWM485439U (zh) 電源供應系統及其線性控制模組
TWI680624B (zh) 電池管理電路的啟動裝置及具有其的電池管理系統
KR101177556B1 (ko) 전원장치의 기동회로
CN102843847B (zh) 萤光灯管的驱动装置
TWI551979B (zh) 電源供應系統、線性控制模組及開關元件之控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14240367

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201609274

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140122

ENP Entry into the national phase

Ref document number: 2016121672

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016536944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167017984

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14866930

Country of ref document: EP

Kind code of ref document: A1