WO2015080086A1 - アンダランプロテクタの構造 - Google Patents

アンダランプロテクタの構造 Download PDF

Info

Publication number
WO2015080086A1
WO2015080086A1 PCT/JP2014/081068 JP2014081068W WO2015080086A1 WO 2015080086 A1 WO2015080086 A1 WO 2015080086A1 JP 2014081068 W JP2014081068 W JP 2014081068W WO 2015080086 A1 WO2015080086 A1 WO 2015080086A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
protector
vehicle
underrun protector
underrun
Prior art date
Application number
PCT/JP2014/081068
Other languages
English (en)
French (fr)
Inventor
栗原 茂樹
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
三菱ふそうトラック・バス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト, 三菱ふそうトラック・バス株式会社 filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2015080086A1 publication Critical patent/WO2015080086A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/56Fittings damping bouncing force in truck collisions, e.g. bumpers; Arrangements on high-riding vehicles, e.g. lorries, for preventing vehicles or objects from running thereunder

Definitions

  • the present invention relates to a structure of an underrun protector that suppresses a vehicle having a low vehicle height from entering a lower side of a vehicle having a high vehicle height due to a collision.
  • This under-run protector is required to have at least strength and rigidity sufficient to prevent the vehicle from getting caught. However, if a steel material widely used in vehicles is applied as the material for the underrun protector, the weight increases.
  • Patent Document 1 discloses that an aluminum material is used for an underrun protector. As a result, the required strength and rigidity are secured while suppressing weight.
  • the structure of the underrun protector is capable of reducing the cost while suppressing the weight and ensuring the strength and rigidity. Is to provide.
  • the structure of the underrun protector according to the present invention is a structure of an underrun protector that is attached to the left and right brackets at the front or rear of the vehicle body frame of the vehicle.
  • An underrun made of an ultra-high-strength steel plate having a tensile strength of 980 MPa or more and a plate thickness of 3.2 mm or less, comprising an outer side surface portion, a vehicle front-rear direction inner side surface portion, an upper surface portion and a lower surface portion.
  • a protector main body, and a reinforcing panel disposed so as to overlap with the inner surface of the underside of the vehicle front-rear direction or the inner side of the front-rear direction of the vehicle in the hollow portion of the underrun protector main body.
  • the reinforcing panel has a reinforcing panel outer surface formed in the same or substantially the same shape as the inner surface of the vehicle front-rear direction outer side surface side or the vehicle front-rear direction inner side surface side, and the reinforcing panel outer surface is formed on the inner surface The entire surface or substantially the entire surface may be contacted.
  • the closed cross section of the underrun protector body may be a rectangular closed cross section.
  • the under-run protector main body is configured such that an outer panel disposed on the outer side in the vehicle front-rear direction and an inner panel disposed on the inner side in the vehicle front-rear direction are coupled so as to have a hollow closed cross section. Also good.
  • the outer panel has a channel shape in cross section
  • the inner panel has a channel shape or a straight shape in cross section
  • the reinforcing panel has a reinforcing panel main body having a channel shape in cross section. May be.
  • the reinforcing panel has a reinforcing panel outer surface that is disposed only in a coupling region where the underrun protector is coupled to each bracket, and is formed in the same or substantially the same shape as the inner surface of the inner panel,
  • the reinforcing panel main body disposed in contact with the entire inner surface of the inner panel or the entire outer surface of the reinforcing panel, and the web of the inner panel from the web of the reinforcing panel main body toward the vehicle width direction.
  • a reinforcing panel extending portion that is superposed on the inner surface of the portion may be formed.
  • a lightweight hole may be formed at an end in the vehicle width direction of the reinforcing panel extension.
  • the tensile strength of the under-run protector main body is made of an ultra-high strength steel plate having a thickness of 980 MPa or more and a plate thickness of 3.2 mm or less, so that the weight and cost can be suppressed. Since the reinforcing panel is disposed so as to overlap with the inner surface of the vehicle front-rear direction outer side surface side or the vehicle front-rear direction inner side surface side in the hollow portion of the under-run protector main body, the main part of the under-run protector main body is reinforced. The strength and rigidity of the underrun protector can be ensured. From these, it is possible to reduce the cost while reducing the weight and securing the strength and rigidity.
  • the underrun protector according to the present invention is installed in the front or rear of a vehicle such as a truck (hereinafter simply referred to as “vehicle”).
  • the underrun protector provided at the front of the vehicle is also referred to as “front underrun protector” or “FUP”, and suppresses a vehicle with a low vehicle height from getting under the front of the vehicle.
  • the underrun protector provided at the rear of the vehicle is also referred to as “rear underrun protector”, “RUP”, or the like, and suppresses a vehicle with a low vehicle height from getting under the rear of the vehicle.
  • the front underrun protector is formed such that the end in the vehicle width direction is along the bumper, specifically, the shape is directed toward the rear of the vehicle as it goes outward in the vehicle width direction.
  • the rear underrun protector is generally formed linearly along the vehicle width direction.
  • the forward direction is defined as the front
  • the left and right directions are defined with respect to the front
  • the forward reverse direction is defined as the rear
  • the gravity action direction is defined as the downward direction
  • the reverse direction is defined as the upward direction.
  • the direction perpendicular to both the direction and the vertical direction is defined as the vehicle width direction.
  • the inside of the vehicle means the center side of the vehicle, and conversely, the outside of the vehicle means the opposite side of the center side of the vehicle.
  • the vehicle front-rear direction inner side means the vehicle rear side
  • the vehicle front-rear direction outer side means the vehicle front side.
  • the inner side in the front-rear direction of the vehicle means the front side of the vehicle
  • the outer side in the front-rear direction of the vehicle means the rear side of the vehicle.
  • the hollow space side means the inner side
  • the opposite side means the outer side.
  • a front underrun protector (hereinafter simply referred to as “underrun protector”) provided at the front portion of the vehicle body frame will be described as an example.
  • the peripheral structure of the underrun protector according to the present embodiment will be described.
  • the underrun protector 10 is disposed below the front portion 1 a of the vehicle body frame 1 so that the longitudinal direction thereof extends along the vehicle width direction.
  • the underrun protector 10 is attached to each of brackets 5 and 5 provided in pairs on the left and right of the front portion 1a of the body frame 1 in the vehicle.
  • the vehicle body frame 1 is configured as a so-called ladder frame (also referred to as a “ladder frame”).
  • the vehicle body frame 1 includes a pair of left and right side frames 2 and 2 and a cross member 3.
  • the side frames 2 and 2 are respectively provided along the front-rear direction of the vehicle at a predetermined interval in the vehicle width direction. These side frames 2 and 2 are provided on the center side of the vehicle with respect to the vehicle width (full width of the vehicle). Is arranged.
  • the side frames 2 and 2 are symmetrically arranged and shaped with respect to the center in the vehicle width direction. For this reason, in the following description, it demonstrates paying attention to the side frame 2 of one side (here left), and the description about the other side frame 2 is abbreviate
  • the side frame 2 has a U-shaped vertical section along the vehicle width direction, that is, a channel shape.
  • Each side frame 2 has an upright web portion 2a and flange portions 2b and 2b that are bent in the same direction so as to protrude inward in the vehicle width direction from the upper and lower end edges thereof.
  • the cross member 3 is provided along the vehicle width direction. In FIG. 1, only the cross member 3 provided at the front portion 1a in the body frame 1 is shown. In addition to this, a plurality of cross members (not shown) are provided at predetermined intervals in the front-rear direction. .
  • the cross member 3 has a vertical cross section along the front-rear direction formed into a U-shape, that is, a channel shape. Moreover, the cross member 3 has the web part 3a standingly arranged, and the flange parts 3b and 3b bent and formed in the same direction from the upper-lower-end edge. Here, the flange portions 3b, 3b of the cross member 3 are bent so as to protrude toward the rear side of the vehicle.
  • Each end of the cross member 3 in the vehicle width direction is coupled to the side frames 2 and 2 to connect the side frames 2 and 2 to each other.
  • a gusset (not shown) is interposed between the cross member 3 and the side frames 2 and 2, and the cross member 3 and the side frames 2 and 2 are joined to the gusset, respectively.
  • the side frames 2 and 2 may be combined.
  • a surface portion (not shown) that overlaps with the web portion 2a of the corresponding side frame 2 is formed at each end in the vehicle width direction of the cross member 3, and this surface portion and the web portion 2a of the side frame 2 are joined. May be.
  • Each of the side frames 2 and 2 and the cross member 3 supports and supports components of a driving system such as an engine and a transmission (not shown), a cab (operating cab), a bodywork such as a cargo bed and accessories, and the like.
  • a body frame 1 is formed.
  • the side frames 2 and 2 and the cross member 3 to which heavy objects are attached have sufficient strength and rigidity.
  • the brackets 5 and 5 are provided as a pair of left and right, and are used to attach the underrun protector 10 to the vehicle body frame 1, and are attached to the front portion 1 a of the vehicle body frame 1. Specifically, the left bracket 5 is attached to the front portion of the side frame 2 arranged on the left side, and similarly, the right bracket 5 is attached to the front portion of the side frame 2 arranged on the right side. It has been. In this way, the underrun protector 10 is supported at the locations (two locations) corresponding to the brackets 5 with a predetermined interval in the vehicle width direction.
  • the brackets 5 and 5 are arranged and shaped symmetrically with respect to the center in the vehicle width direction.
  • brackets 5, 5 are provided downward from the vehicle body frame 1 (here, the side frames 2, 2) in order to provide the underrun protector 10 at a lower position than the vehicle body frame 1. Yes. Since the underrun protector 10 is required to resist the load from the front, the underrun protector 10 is coupled to the front of the brackets 5 and 5, and the brackets 5 and 5 connect the underrun protector 10 from the rear. It comes to support.
  • Various structures can be adopted as the structure of the bracket 5, but here, the structure shown below is adopted. Here, description will be given focusing on one bracket 5 (left bracket 5 in FIG. 1).
  • the bracket 5 includes a first panel member 6, a second panel member 7, and a third panel member 8 in order from the inner side in the vehicle width direction.
  • the 1st panel member 6 is provided along the outward surface of the web part 2a arrange
  • the first panel member 6 includes a flat plate-like main body portion 6a joined to the web portion 2a of the side frame 2, a reinforcing flange portion 6b formed by bending at the front edge portion of the main body portion 6a, and a main body.
  • a reinforcing flange portion 6c formed by bending at the rear edge portion of the portion 6a is formed.
  • the upper part of the main body part 6a of the first panel member 6 is joined to the web part 2a of the side frame 2, and the second panel member 7 and the third panel member 8 are superposed and joined to the lower part thereof.
  • the flange portion 6b at the front edge is bent from the main body portion 6a toward the inner side in the vehicle width direction
  • the flange portion 6c at the rear edge is bent toward the outer side in the vehicle width direction over the upper and lower portions of the main body portion 6a. Is formed.
  • the 2nd panel member 7 and the 3rd panel member 8 have the main-body parts 7a and 8a superposed
  • an attachment portion 7 b that has an attachment surface 9 a that extends inward in the vehicle width direction and extends in the left-right direction and the up-down direction is bent and formed on the front edge portion of the third panel member 8.
  • a mounting portion 8b having a mounting surface 9b extending outward in the vehicle width direction and along the left-right direction and the vertical direction.
  • mounting surface 9 The mounting surfaces 9a and 9b (hereinafter collectively referred to as “mounting surface 9”) of the mounting portions 7b and 8b are arranged on the same plane, and the mounting surface 9 has a rear surface portion (an under-mentioned to be described later) of the underrun protector 10. (Corresponding to the rear surface portion 10b of the run protector body 10A) is polymerized and bonded.
  • reinforcing flange portions 7c and 8c are formed to bend outward in the vehicle width direction at the rear edge portion of the second panel member 7 and the rear edge portion of the third panel member 8.
  • various well-known couplings such as coupling by welding such as plug welding and fillet welding, and coupling using rivets, bolts, and nuts. Techniques can be used.
  • the underrun protector 10 is arranged so as to cover the entire region in the vehicle width direction. As shown in FIGS. 1 and 2, the underrun protector 10 includes a region (hereinafter referred to as “joining region”) 11 and 11 between a central portion and both end portions in the longitudinal direction (vehicle width direction). 5, 5 (only the second panel member 7 and the third panel member 8 are shown in FIG. 2, and the first panel member 6 is not shown).
  • the area of the underrun protector 10 is a region between the coupling regions 11 and 11 (hereinafter referred to as “end region”) 12 and the coupling regions 11 and 11. 11, a region 13 (hereinafter referred to as “intermediate region”) 13 inward in the vehicle width direction.
  • the under-run protector 10 is large in five regions in the order of the end region 12, the coupling region 11, the intermediate region 13, the coupling region 11, and the end region 12 from one end to the other end in the longitudinal direction. Can be separated.
  • regions 12 and 12 are provided, the edge part area
  • the loads P1, P2, and P3 are input to the under-run protector 10 from the front in the vehicle width direction portion shown in FIG.
  • the load P1 is input to the end region 12.
  • a description will be given of the case where the load P1 is input to the inner side in the vehicle width direction by a predetermined length from the end portion in the vehicle width direction in the end region 12.
  • the load P2 is input to the coupling area 11.
  • This load P2 is input to the attachment point S of the bracket 5 in the underrun protector 10.
  • the location corresponding to the joint surface between the first panel member 6 (see FIG. 1) and the second panel member 7 of the bracket 5, in other words, the vehicle width direction central portion (face core) of the mounting surface 9 of the bracket 5. Is described as an attachment point S.
  • the load P3 is input to the center portion of the intermediate region 13.
  • the load P3 is input to the center in the longitudinal direction of the intermediate region 13, that is, the center C in the vehicle width direction of the underrun protector 10.
  • a load having a magnitude indicated in a security standard corresponding to the laws and regulations of each country can be used.
  • the surface core can be treated as an input point.
  • the magnitude of this bending moment is not only the input load, but also the support form of the beam structure, the distance from the load input point (so-called force point) and the beam structure fulcrum (here, the attachment point S of the bracket 5).
  • the load P1 is applied to the free end side of the cantilever structure, a very large bending moment acts on the fulcrum (bonding region 11).
  • the load P3 is applied to the center portion of the both-end supported beam structure, the direction of the bending moment is reversed between the input point and both fulcrums, and compared with the bending moment acting on the fulcrum by the load P1, the input point and both fulcrums. The magnitude of the bending moment is suppressed.
  • the underrun protector 10 can cope with the magnitude of the bending moment due to the load P1. Therefore, the description will be made focusing on the bending moment due to the load P1 input to the end region 12 of the cantilever structure. As shown by a thick solid line in FIG. 2, when a load P1 is input in the end region 12 on the left side of the vehicle, the distance between the attachment point S of the bracket 5 and the input point of the load P1 in the connecting region 11 on the left side of the vehicle is determined. Bending moment acts.
  • the largest bending moment acts on the attachment point S of the bracket 5 on the left side of the vehicle.
  • the magnitude of the bending moment when the load P1 is input is linear (linear) as the end region 12 of the underrun protector 10 approaches the attachment point S of the bracket 5 from the input point of the load P1. )
  • the required magnitude of the second moment of section increases as it goes inward in the vehicle width direction.
  • the magnitude of the bending moment when the load P1 is input in the end region 12 on the right side of the vehicle is as follows in the end region 12 on the right side of the vehicle of the underrun protector 10 as shown by a thick broken line in FIG. As the load P1 approaches the attachment point S of the bracket 5 on the right side of the vehicle, the load P1 increases linearly.
  • the magnitude of the bending moment due to the load P1 input to the end region 12 on the left side of the vehicle is as follows.
  • the joint regions 11 and 11 are coupled to the brackets 5 and 5 and supported. Therefore, as shown by a thick solid line in FIG. 2, linearly decreases from the mounting location S of the bracket 5 on the left side of the vehicle toward the mounting location S of the bracket 5 on the right side of the vehicle.
  • the magnitude of the bending moment due to the load P1 input to the end region 12 on the right side of the vehicle is such that in the intermediate region 13 from the attachment point S of the bracket 5 on the right side of the vehicle to the left side of the vehicle. It decreases linearly toward the mounting location S of the bracket 5.
  • the underrun protector 10 When an offset collision occurs between a vehicle equipped with the underrun protector 10 and another vehicle having a low vehicle height, the load is input to one of the left and right end portions of the underrun protector 10. . Therefore, the underrun protector 10 is required to have a rigidity that can be resisted regardless of whether a load is input to the left side or the right side of the vehicle. That is, in the intermediate region 13 of the underrun protector 10, the bending moment when the load P1 is input to the end region 12 on the left side of the vehicle and the bending moment when the load P1 is input to the end region 12 on the right side of the vehicle are Rigidity that can resist the larger bending moment is required. For this reason, in the intermediate region of the under-run protector 10, it can be said that the magnitude of the required cross-sectional secondary moment decreases from the attachment locations S, S of the brackets 5, 5 toward the center C in the vehicle width direction. .
  • the underrun protector 10 is a front under-run protector, the description will be made assuming that the front-rear direction outside of the vehicle is the front side of the vehicle, and the front-rear direction of the vehicle is the rear side of the vehicle.
  • the underrun protector 10 includes an underrun protector main body 10A and reinforcing panel portions 40 and 40 (both shown by broken lines) that reinforce the underrun protector main body 10A.
  • a cap (not shown) that covers each end portion may be provided at an end portion in the longitudinal direction of the underrun protector 10.
  • the underrun protector body 10A includes a front surface portion (vehicle front-rear direction outer surface portion) 10a, a rear surface portion (vehicle front-rear direction inner side surface portion) 10b, an upper surface portion 10c, and a lower surface portion 10d, and these surface portions 10a, 10b, 10c, 10d. Forms a hollow space.
  • the underrun protector body 10A has a hollow closed cross section formed by the surface portions 10a, 10b, 10c, and 10d.
  • the surface portions 10 a, 10 b, 10 c, and 10 d of the underrun protector main body 10 ⁇ / b> A correspond to the respective surface portions of the underrun protector 10.
  • the underrun protector main body 10A is provided over the entire length of the underrun protector 10 in the longitudinal direction, and includes an outer panel 20 and an inner panel 30 provided in the same region. That is, the underrun protector main body 10A is configured by coupling the outer panel 20 disposed on the front side of the vehicle and the inner panel 30 disposed on the rear side of the vehicle.
  • the reinforcing panels 40, 40 reinforce the underrun protector body 10A.
  • the reinforcing panels 40, 40 are symmetrically arranged and shaped with respect to the center in the vehicle width direction. For this reason, in the following description, it demonstrates paying attention to the reinforcement panel 40 of one (here left), and the description about the other reinforcement panel 40 is abbreviate
  • the reinforcing panel 40 is disposed across the end region 12 on the coupling region 11 side and the intermediate region 13 on the coupling region 11 side, when focusing on the longitudinal direction of the underrun protector 10.
  • the reinforcing panel 40 is disposed so that a part (both ends) thereof enters the end region 12 and the intermediate region 13 around the coupling region 11.
  • the reinforcing panel 40 is disposed so as to overlap with the inner surface of the underrun protector body 10A on the rear surface portion 10b side in the hollow portion.
  • the under-run protector 10 in the longitudinal direction (vehicle width direction), a location where the under-run protector main body 10A and the reinforcing panel 40 overlap each other (hereinafter referred to as “reinforced overlapping part”) 81 (see FIG. 6).
  • the region included in the cross section is the multiple panel portion 80 (a part is shown in FIG. 1), and the region where the reinforcing panel 40 is not superposed and the cross section is only the under-run protector main body 10A is the main unit unit 90 (part in FIG. 1). ).
  • the ultra high strength steel here has a tensile strength of 980 MPa or more.
  • These ultra high strength steels include solid solution strengthened and precipitation strengthened steel sheets that are strengthened by adding elements such as nickel (Ni), silicon (Si), manganese (Mn) in addition to carbon (C) to steel sheet materials. And a composite structure steel plate that has been tempered and strengthened after press forming.
  • the ultra-high strength steel includes products having a tensile strength of 1.2 GPa and 1.5 GPa, including those having a tensile strength of 980 MPa.
  • a so-called 980 material (having a tensile strength of 980 MPa) is used as the ultra-high tensile steel plate used for the panels 20, 30, and 40.
  • 3.2 mm is employable as plate
  • each of the panels 20, 30, and 40 constituting the underrun protector 10 can be manufactured by press molding. Hereinafter, each structure is demonstrated in order of the outer side panel 20, the inner side panel 30, and the reinforcement panel 40.
  • the outer panel 20 has a U-shaped cross section (a cross section perpendicular to the longitudinal direction), that is, a channel shape. Accordingly, the outer panel 20 has a standing web portion 21 and flange portions 22 and 23 that are bent in the same direction so as to protrude rearward from the upper and lower edges of the web portion 21. That is, in the outer panel 20, the web part 21 is arrange
  • the outer panel 20 has end bent portions 29 (in FIG. 3, only one place is given a sign) that is bent so as to be close to the inner panel 30 (see FIG. 1 and the like) at both ends in the longitudinal direction. ing.
  • the web portion 21 of the outer panel 20 extends in the vehicle width direction and is provided along the vertical direction.
  • the flange portions 22 and 23 extend in the vehicle width direction and are provided along the front-rear direction.
  • the flange parts 22 and 23 are similarly comprised except the point from which each continuous location with the web part 21 differs in an upper end edge part or a lower end edge part. For this reason, in the following description, it demonstrates paying attention to one flange part 22 (here, the upper one of the flange parts 22 and 23).
  • a plurality of lightweight holes 51, 52, 53 are formed in the flange portion 22 of the outer panel 20.
  • a plurality of lightweight holes are formed on the other flange portion 23 (see FIG. 3 and the like) of the outer panel 20 at positions corresponding to the lightweight holes 51, 52, and 53 of the flange portion 22, that is, vertically symmetrical.
  • the flange portions 22 and 23 of the outer panel 20 include an intermediate portion of the under-run protector 10 in the vehicle front-rear direction, and are equidistant portions 95 having the same distance from the front portion and the rear portion of the under-run protector 10. Is extended to a position including a light-weight hole forming region 96 (see FIG. 6B).
  • the plurality of light-weight holes 51, 52, 53 include intermediate light-weight holes 51, 52 formed in the intermediate region 13 (only one is denoted by a reference numeral in FIG. 4) and end portions formed in the end region 12. It can be roughly divided into lightweight holes 53. Further, the intermediate lightweight holes 51 and 52 are a lightweight hole (hereinafter referred to as “circular intermediate lightweight hole”) 51 formed in a circular shape in a top view and a lightweight hole (hereinafter referred to as “long hole” formed in an oval shape in a top view). 52) (referred to as “circular intermediate lightweight hole”). In FIG.
  • the oval intermediate lightweight hole 52 is exemplified by a shape in which two parallel straight lines extending in the longitudinal direction as an oval shape and the front end portion and the rear end portion of these straight lines are respectively connected by arcs.
  • an ellipse whose major axis is along the longitudinal direction of the under-run protector 10 may be used.
  • the circular intermediate lightweight hole 51 and the oblong intermediate lightweight hole 52 have different hole diameters (lengths) in the longitudinal direction of the underrun protector 10, whereas the hole diameters in the short direction of the underrun protector 10 (vehicle longitudinal direction). Is set to the same diameter.
  • the intermediate lightweight holes 51, 52 are provided symmetrically.
  • the longitudinal center (under the vehicle width direction center C) of the under-run protector 10 and the circular intermediate lightweight hole 51 are arranged concentrically, and in the order from the circular intermediate lightweight hole 51 outward in the vehicle width direction.
  • the light hole 52, the circular intermediate light hole 51, the oval intermediate light hole 52, and the oblong intermediate light hole 52 are illustrated as examples.
  • the present invention is not limited to such an arrangement, and various arrangements can be adopted.
  • the arrangement of the intermediate lightweight holes 51, 52 the interval between the intermediate lightweight holes 51, 52 may be set at an equal interval, or increases from the center C in the vehicle width direction toward the outside in the vehicle width direction. May be set.
  • the top-view shape of the intermediate lightweight holes 51 and 52 is an example, and various top-view shapes can be used.
  • intermediate lightweight holes having different shapes may be formed so that the hole diameter in the longitudinal direction of the underrun protector 10 gradually increases from the center C in the vehicle width direction toward the outside in the vehicle width direction.
  • the interval between the intermediate lightweight holes may be equal, or may be set so as to become longer toward the outside in the vehicle width direction.
  • any of the intermediate lightweight holes may be formed in the same shape.
  • the interval between the intermediate lightweight holes may be equal, or may be set so as to become longer toward the outside in the vehicle width direction.
  • FIG. 4 shows two holes formed in each coupling region 11, but these holes are provided for plug welding for joining the outer panel 20 and the inner panel 30.
  • the end lightweight hole 53 is formed in a circular shape when viewed from above, and is formed in the same manner as the circular intermediate lightweight hole 51.
  • the end lightweight hole 53 is provided on the coupling region 11 side in the end region 12. Note that the end light hole 53 may have a shape different from a circular shape when viewed from above, or may be omitted for simplification of the structure.
  • the inner panel 30 has a U-shaped cross section (transverse cross section perpendicular to the longitudinal direction), that is, a channel shape. Therefore, the inner panel 30 has a web portion 31 that is erected and flange portions 32 and 33 that are bent in the same direction so as to protrude forward from the upper and lower edges of the vehicle. That is, in the inner panel 30, the web portion 31 is disposed on the rear side of the vehicle, and the distal ends of the flange portions 32 and 33 are disposed toward the front of the vehicle.
  • the inner panel 30 is formed in a uniform cross-sectional shape in the longitudinal direction.
  • the web portion 31 extends in the vehicle width direction and is provided along the vertical direction.
  • the flange portions 32 and 33 extend in the vehicle width direction and are provided along the front-rear direction.
  • the flange parts 32 and 33 are similarly comprised except the point from which each continuous location with the web part 31 differs in an upper end edge part or a lower end edge part.
  • a plurality of holes 61 to 65 are formed in the web portion 31 of the inner panel 30 side by side in the longitudinal direction of the underrun protector 10.
  • the plurality of holes 61 to 65 are classified into lightweight holes 61 to 64 for reducing the weight and coupling holes 65 for coupling the members by fastening (in FIG. 7, only one place is given a reference numeral). it can.
  • the lightweight holes 61 and 62 are provided in the main body unit 90 (a part of which is shown in FIG. 7), and each end region 12 in the web portion 31 of the inner panel 30 has a plurality of light holes 61 and 62.
  • End light holes 61 are provided, and a plurality of intermediate light holes 62 are provided in the intermediate region 13 of the web portion 31 of the inner panel 30. Further, as shown in FIG. 7, the lightweight holes 63 and 64 and the coupling hole 65 (see FIG. 5) are provided in the multi-panel portion 80 (a part of which is shown in FIG. 7).
  • each end region 12 is provided with a plurality (three in this case) of end lightweight holes 61.
  • the three end light holes 61 are referred to as a first end light hole 61a, a second end light hole 61b, and a third end light hole 61c from the inside to the outside in the vehicle width direction.
  • These end light holes 61 a, 61 b, 61 c are all arranged in the main body unit 90 outside the reinforcing panel 40 in the vehicle width direction, and the center of the hole is arranged at the substantially vertical center of the web portion 31 of the inner panel 30. Is formed.
  • FIG. 8 is an enlarged view of a portion A in FIG. 7, and is a view showing an end portion in the vehicle width direction (here, the left end portion) of the under-run protector 10 from which the outer panel 20 is removed and its periphery.
  • the first end lightweight hole 61 a has a circular shape when viewed from the front.
  • Each of the second and third end light-weight holes 61b and 61c is a rectangular hole having a rectangular shape when viewed from the front.
  • a bolt for attaching a bumper of a cab (not shown) to the inner panel 30 is disposed between the second and third end light holes 61b and 61c.
  • the end light hole 61 is set to have a larger hole diameter in the vertical direction toward the outer side of the vehicle body that is separated from the coupling region 11.
  • the hole diameters in the vertical direction are gradually increased in the order of the first end lightweight hole 61a, the second end lightweight hole 61b, and the third end lightweight hole 61c.
  • the diameter of the end lightweight hole 61 in the vertical direction is set so as to correspond to the bending moment distribution of the under-run protector 10 with respect to the load P1.
  • the magnitude of the bending moment acting on the underrun protector 10 due to the load P1 is changed from the fulcrum (the attachment point S of the bracket 5 in this case) to the input point of the load P1.
  • the end light holes 61a, 61b, 61c is vertical hole diameter d 1 nears the vehicle body inwardly to the input point of the load P1, d 2 , D 3 are set to increase substantially linearly.
  • each of the hole diameters d 1 , d 2 , d 3 is the center of the lightweight holes 61a to 61c in the vehicle width direction. Therefore, when the upper and lower edge portions of the holes defining the respective hole diameters in the vertical direction are connected, each becomes substantially linear as indicated by a one-dot chain line in FIG.
  • the secondary moment of section in the portion where the end light-weight holes 61a, 61b, 61c of the end region 12 of the underrun protector 10 are provided decreases as the load P1 is approached from the inside of the vehicle body. Therefore, it corresponds to the required bending rigidity.
  • intermediate lightweight hole 62 provided in the main body unit 90
  • a plurality (three in this case) of intermediate lightweight holes 62 are arranged in the intermediate region 13.
  • the three intermediate lightweight holes 62a, 62b and 62c are divided into a first intermediate lightweight hole 62a, a second intermediate lightweight hole 62b, and a third intermediate lightweight hole 62c from the left to the right of the vehicle body, respectively.
  • These intermediate portion lightweight holes 62a, 62b, 62c are all formed side by side in the longitudinal intermediate portion between the coupling regions 11, 11, and the main body unit 90 inward in the vehicle width direction from the reinforcing panels 40, 40.
  • the center of the hole is formed so as to be disposed at the substantially central portion in the vertical direction of the web portion 31 of the inner panel 30.
  • FIG. 9 is an enlarged view of a portion B in FIG. 7 and shows the center in the vehicle width direction of the under-run protector 10 with the outer panel 20 removed and the periphery thereof.
  • the second intermediate light hole 62b is a rectangular hole having a rectangular shape when viewed from the front, and is disposed on the center C in the vehicle width direction.
  • the first and third intermediate lightweight holes 62a and 62c are both circular holes having a circular shape when viewed from the front, have the same opening area, and are spaced from the first intermediate lightweight hole 61b by an equal distance from each other. Separated in the vehicle width direction.
  • the intermediate lightweight hole 62 is set to have a larger hole diameter in the vertical direction as the distance from the coupling region 11 increases.
  • the second intermediate portion lightweight hole 62b disposed on the center C in the vehicle width direction is arranged so that the first and third intermediate portion lightweight holes 62a are disposed adjacent to the coupling regions 11 and 11 side.
  • the hole diameter is smaller in the vertical direction than the hole diameter of 62c.
  • the hole diameter in the vertical direction of the intermediate lightweight hole 62 is set so as to correspond to the bending moment distribution of the under-run protector 10 with respect to the load P1.
  • the magnitude of the bending moment acting on the underrun protector 10 due to the load P ⁇ b> 1 is the fulcrum (in this case, the mounting location of the bracket 5). It decreases linearly as it approaches the center C in the vehicle width direction from S). For this reason, the bending rigidity required for the under-run protector 10 decreases linearly as it approaches the center C in the vehicle width direction from the attachment point S, which is a fulcrum.
  • the intermediate lightweight holes 62a, 62b, and 62c have vertical hole diameters d 4 and d 5 that approach the center C in the vehicle width direction from the attachment point S. , D 6 are set to increase substantially linearly.
  • each of the hole diameters d 4 , d 5 , and d 6 is the center of the lightweight holes 62a to 62c in the vehicle width direction. Therefore, when the upper and lower edge portions of the holes that define the respective hole diameters in the vertical direction are connected, each of them becomes a substantially straight shape that is bent at the center C in the vehicle width direction as indicated by a one-dot chain line in FIG.
  • the cross-sectional secondary moment in the portion where the intermediate lightweight holes 62a, 62b, 62c of the intermediate region 13 of the underrun protector 10 are provided decreases from the attachment point S toward the center C in the vehicle width direction. Therefore, it corresponds to the required bending rigidity.
  • sectional moment of inertia of the underrun protector 10 is not only the web portion 31 of the inner panel 30, but also the flange portions 32 and 33 of the inner panel 30, the web portion 21 and the flange portions 22 and 23 of the outer panel 20, Furthermore, since the reinforcing panel 40 also contributes, it is effective to set the vertical hole diameters of the lightweight holes 61a to 61c and 62a to 62c in consideration of these factors comprehensively.
  • the diameters of the light-weight holes 61a to 61c and 62a to 62c in the vehicle width direction hardly affect the bending rigidity with respect to the horizontal loads P1, P2, and P3, but the external force applied to the under-run protector 10 is Since not only the horizontal direction but also the vertical direction component is included, and even when horizontal loads P1, P2 and P3 are applied, the load of the vertical direction component is also generated when the underrun protector 10 is deformed.
  • the hole diameters in the vehicle width direction of the lightweight holes 61a to 61c and 62a to 62c are also limited.
  • the vicinity of the bent portions of the inner panel 30 that are bent from the web portion 31 to the flange portions 32 and 33 is also light weight holes 61a to 61c, It is necessary to omit from the set points 62a to 62c. Considering these factors comprehensively, it is effective to set the arrangement, size, and shape of the lightweight holes 61a to 61c and 62a to 62c.
  • the lightweight holes 61b, 61c, and 62b are rectangular holes.
  • the rectangular holes are more easily adapted to the required bending rigidity than the circular holes, and the flange 22 , 23 is difficult to access and the hole area can be increased.
  • the four corners of the hole are partially formed in a curved shape such as an arc so that stress concentration can be avoided.
  • the opening area of the rectangular hole is larger than that of the circular hole.
  • the light-weight holes 61 to 64 are rectangular holes, it is possible to further promote weight reduction of the underrun protector 10 as compared to circular holes having the same vertical hole diameter.
  • the light-weight holes 61 to 64 are circular holes, the vertical length of the holes gradually changes along the vehicle width direction, so that a sudden change in the secondary moment of inertia in the longitudinal direction of the under-run protector 10 is suppressed.
  • the lightweight holes 61 to 64 are circular holes, the strength and rigidity of the underrun protector 10 can be prevented from being locally reduced.
  • the lightweight holes 63 and 64 provided in the inner panel 30 of the multiple panel unit 80 will be described.
  • a plurality of (here, two) multiple panel portions 80 formed by overlapping extended portions 42 of reinforcing panels 40 described later with the inner panel 30 are provided in each end region 12.
  • a lightweight hole 63 is provided in the intermediate region 13, a plurality of (in this case, a total of four) lightweight holes 64 are formed on the left and right side of the multiple panel portion 80 formed by overlapping extended portions 42 of the reinforcing panels 40 described later with the inner panel 30.
  • Two panels are arranged on the panel unit 80. These lightweight holes 63 and 64 are formed at positions where they overlap with the reinforcing panel 40 constituting the multiple panel portion 80 in the vehicle front-rear direction.
  • the light-weight holes 63 are formed side by side in the vehicle body in the end region 12 rather than the end light-weight holes 61, and one light-weight hole 63a is connected to the coupling region 11 side (vehicle side). It has a smaller hole diameter in the vertical direction than the other lightweight hole 63b formed on the inner side in the width direction. For this reason, the bending rigidity of only the inner panel 30 is lower in the portion of the lightweight hole 63b near the coupling region 11 than in the portion of the lightweight hole 63a far from the coupling region 11.
  • the bending rigidity in the end region 12 of the underrun protector 10 is such that the portion provided with the lightweight hole 63b is provided with the lightweight hole 63a. Higher than the part.
  • the four lightweight holes 64 are formed side by side on the left and right sides of the outer side of the vehicle body with respect to the intermediate portion lightweight hole 62. Paying attention to the two lightweight holes 64 formed on the left and right sides, one lightweight hole 64a is smaller in the vertical direction than the other lightweight hole 64b formed on the coupling region 11 side (vehicle width direction outer side). Has a hole diameter. For this reason, the bending rigidity of only the inner panel 30 is lower in the portion of the lightweight hole 64 b near the coupling region 11 than in the portion of the lightweight hole 64 a far from the coupling region 11.
  • the portion of the lightweight hole 64b is reinforced by the meat portion of the reinforcing panel 40, the bending rigidity in the intermediate region 13 of the underrun protector 10 is provided with the lightweight hole 64a in the portion where the lightweight hole 64b is provided. Higher than the part.
  • the inner panel 30 is formed with the web portion 31 and the flange portions 32 and 33 by being bent along a line along the longitudinal direction after the above-described holes 61 to 65 are formed in a flat plate member. In this way, the inner panel 30 has the web portion 31 and the flange portions 32 and 33 both extending in a straight line along the longitudinal direction and having a uniform cross-sectional shape in the longitudinal direction.
  • the reinforcing panel 40 has a cross-sectional shape (transverse cross section orthogonal to the longitudinal direction) formed in a channel shape and the same cross section as the main body portion (reinforcing panel main body portion) 41. And an extending portion (reinforcing panel extending portion) 42 extending from the main body portion 41 in the vehicle width direction.
  • the main body 41 is disposed in the coupling region 11 of the under-run protector 10 and has a U-shaped cross section (a cross section perpendicular to the longitudinal direction), that is, a channel shape. Therefore, as shown in FIG. 10, the main body 41 has a web 41a that is erected and flanges 41b and 41c that are bent in the same direction so as to protrude forward from the upper and lower edges of the vehicle. . That is, in the main body portion 41a, the web portion 41a is disposed on the rear side of the vehicle, and the distal ends of the flange portions 41b and 41c are disposed so as to face the front of the vehicle.
  • the web portion 41a extends in the vehicle width direction and is provided along the vertical direction.
  • the web portion 41a is formed with a mounting hole 73 (only one is labeled in FIG. 10), the details of which will be described later.
  • the flange portions 41b and 41c extend in the vehicle width direction and are provided along the front-rear direction.
  • the flange portions 41b and 41c are configured similarly except that each continuous portion with the web portion 41a differs depending on whether the upper end edge portion or the lower end edge portion.
  • the extended portion 42 includes an intermediate extended portion 42 a disposed in a part of the intermediate region 13 on the coupling region 11 (see FIG. 7) side, and an end region 12. It can be roughly divided into an end extending portion 42b disposed on a part of the coupling region 11 (see FIG. 7) side.
  • Lightweight holes 71 and 72 are formed at the ends in the vehicle width direction of the extending portions 42a and 42b. Here, each lightweight hole 71, 72 is formed one by one.
  • each of the light-weight holes 71 and 72 may be formed two by two.
  • both the lightweight holes 71 and 72 are formed so that the lightweight holes 71 a and 72 a on the end side of the reinforcing panel 40 are larger than the lightweight holes 71 b and 72 b on the center side of the reinforcing panel 40.
  • bending rigidity becomes higher in the portion where the lightweight holes 71b and 72b are provided than in the portion where the lightweight holes 71a and 72a are provided.
  • the intermediate extending portion 42 a is a portion extending from the web portion 41 a of the main body portion 41 to the inside in the vehicle width direction. For this reason, as shown in FIG. 7, the intermediate extending portion 42 a is disposed so as to enter the intermediate region 13 from the coupling region 11 in the underrun protector 10. The intermediate extending portion 42 a does not extend to the center C in the vehicle width direction in the intermediate region 13 of the underrun protector 10.
  • one light-weight hole 71a is formed closer to the main body portion 41 side of the reinforcing panel 40 than this. It is formed larger than the other lightweight hole 71b. For this reason, it can be said that the lightweight holes 71a and 71b formed in the intermediate extending portion 42a are formed so as to increase toward the end of the intermediate extending portion 42a.
  • the end extending portion 42b is a portion that extends outward from the web portion 41a of the main body portion 41 in the vehicle width direction. For this reason, as shown in FIG. 7, the end extending portion 42 b is disposed so as to enter the end region 12 from the coupling region 11 in the underrun protector 10. Note that the end extending portion 42 b does not extend to the outer end in the vehicle width direction in the end region 12 of the underrun protector 10.
  • one light-weight hole 72a is reinforced more than this. It is formed larger than the other lightweight hole 72b formed on the main body 41 side of the panel 40. For this reason, it can be said that the lightweight holes 71a and 72b formed in the end extending portion 42b are formed so as to increase toward the end of the end extending portion 42b.
  • 32a and 33a are joined together by being polymerized and joined to each other (hereinafter referred to as “joined polymerization part”) 91 (only the upper part is shown with a reference numeral in FIG. 6) to form a hollow closed cross section.
  • the closed ramp formed by the under-run protector 10 and the under-run protector main body 10A is rectangular and has a mouth shape (box cross-section) as an example.
  • the flange portions 22 and 23 of the outer panel 20 are provided outside the flange portions 32 and 33 of the inner panel 30 so that the outer panel 20 is fitted on the inner panel 30.
  • the front surface portion 10a is composed of the web portion 21 of the outer panel 20
  • the rear surface portion 10b is composed of the web portion 31 of the inner panel 30
  • the upper surface portion 10c is inside the flange portion 22 of the outer panel 20.
  • the lower surface portion 10d is composed of the flange portion 23 of the outer panel 20 and the flange portion 33 of the inner panel 31.
  • FIG.6 it is FIG.6 rather than the front-back length of the flange parts 22 and 23 of the outer side panel 20 in the connection area
  • region 11 (refer FIG.1, FIG.2 and FIG.7) of the underrun protector 10.
  • FIG. 1 region 11
  • region 11 region 11 (refer FIG.1, FIG.2 and FIG.7) of the underrun protector 10.
  • FIG. 1 region 11 (refer FIG.1, FIG.2 and FIG.7) of the underrun protector 10.
  • FIG. As shown in (b), the front and rear lengths of the flange portions 22 and 23 of the outer panel 20 in the end region 12 and the intermediate region 13 (see FIGS. 1, 2, and 7) of the underrun protector 10 are shorter. Is formed. Further, the front and rear lengths of the flange portions 32 and 33 of the inner panel 30 in the end region 12 and the intermediate region 13 are shorter than the front and rear lengths of the flange portions 32 and 33 of the inner panel 30 in the coupling region 11. Yes.
  • the reinforcing panel 40 is entirely formed on the inner surface of the rear portion 10b side in the hollow portion of the underrun protector body 10A, that is, on the inner surface 30a of the inner panel 30.
  • the entire surface of the outer surface 40d of the reinforcing panel 40 here, the outer surface 41d of the main body 41
  • substantially the entire view is placed in contact with the inner surface 30a of the inner panel 30.
  • the main body portion 41 of the reinforcing panel 40 is joined so that the inner surfaces of the web portion 41a and the flange portions 41b and 41c are overlapped with the inner surface of the web portion 31 and the flange portions 32 and 33 of the inner panel 30, respectively.
  • the web portion 41 a in the main body portion 41 of the reinforcing panel 40 and the web portion 31 of the inner panel 30 are overlapped without any gap
  • the flange portions 41 b and 41 c in the main body portion 41 of the reinforcing panel 40 and the inner panel 30 are overlapped.
  • the flange portions 32 and 33 are polymerized without gaps.
  • the reinforcing panel 40 is disposed over the entire longitudinal direction of the coupling region 11 in the under-run protector 10.
  • the portion where the reinforcing panel 40 is disposed is a reinforcing superposition part 81 where the underrun protector main body 10A and the reinforcing panel 40 are superposed, and the cross section is reinforced in the entire longitudinal direction of the coupling region 11 in the underrun protector 10.
  • a multiple panel unit 80 (see FIG. 1) including the overlapping part 81 is disposed.
  • a mounting hole 73 for fixing the inner panel 30 and the reinforcing panel 40 together with the bracket 5 (see FIGS. 1 and 2) to the reinforcing superposition part 81 by fastening members such as common bolts or nuts together.
  • FIG. 6 (b) only one is marked).
  • the reinforcing panel 40 is joined so as to be superposed on the inner surface 30a of the inner panel 30 and the joining superposition part 91, so that a triple multiple panel part 85 is formed.
  • the flange portions 41b and 41c in the main body portion 41 of the reinforcing panel 40, the flange portions 32 and 33 of the inner panel 30, and the flange portions 22 and 23 of the outer panel 20 are overlapped in this order from the hollow inner side. Is done.
  • the flange parts 41b and 41c in the main body part 41 of the reinforcing panel 40, the flange parts 32 and 33 of the inner panel 30, and the flange parts 22 and 23 of the outer panel 20 gradually increase in the vehicle longitudinal direction in this order. Is set to
  • a single panel part 92 including only the outer panel 20 is formed near the vehicle front side, and a plurality of panels 20 are formed near the vehicle rear side. , 30, 40 are formed to form a polymerization panel part 84.
  • a single panel part 92 including only the outer panel 20 is formed on the front side of the vehicle at the lower surface portion of the underrun protector 10 (corresponding to the lower surface portion 10d of the underrun protector 10A), and a plurality of rear panel protectors are formed on the rear side of the vehicle.
  • a superposed panel part 84 formed by superposing the panels 20, 30, 40 is formed.
  • the length L1 of the single panel part 92 in the vehicle front-rear direction is set to be equal to the length L2 of the overlap panel part 84 in the vehicle front-rear direction (L1 ⁇ L2).
  • the overlapping panel part 84 includes a reinforcing overlapping part 81 in which the flange portion 32 of the inner panel 30 and the flange portion 41 b of the reinforcing panel 40 are overlapped, and the edge 22 a and the inner panel 30 of the flange portion 22 of the outer panel 20.
  • the joint overlapping part 91 where the edge portion 32a of the flange portion 32 overlaps is disposed so as to overlap in the vehicle front-rear direction.
  • a multi-panel part 85 is formed at a place where the reinforcement superposition part 81 and the joint superposition part 91 overlap in the vehicle front-rear direction.
  • the multiple panel part 85 includes a reinforcing superposition part 81 in which the flange portions 22 and 23 of the outer panel 20 overlap the flange portions 41 b and 41 c in the main body portion 41 of the reinforcing panel 40 and the flange portions 32 and 33 of the inner panel 30. And is formed by polymerization.
  • the reinforcing panel 40 has a portion other than a portion near the coupling region 11 in each of the end region 12 and the intermediate region 13 in the underrun protector 10 (hereinafter referred to as “other portion”). Is not arranged.
  • unit part 90 which does not have the reinforcement superposition
  • the extending portion 42 of the reinforcing panel 40 is disposed so as to enter a part of each of the end region 12 and the intermediate region 13 from the coupling region 11. Therefore, the extending portion 42 is disposed in a part of each of the end region 12 and the intermediate region 13 on the coupling region 11 side. Specifically, the extending portion 42 is superposed and disposed on the inner inner surface of the web portion 31 of the inner panel 30. For this reason, a reinforcing overlapping part 81 in which the reinforcing panel 40 and the inner panel 30 are overlapped is formed in a part of each of the end region 12 and the intermediate region 13 on the coupling region 11 side. 80 is disposed.
  • the flange portions 22 and 23 of the outer panel 20 constituting the upper and lower portions of the under-run protector 10 are provided.
  • the intermediate lightweight hole 51 (52) described above is formed.
  • These intermediate lightweight holes 51 (52) are intermediate portions of the under-run protector 10 in the vehicle front-rear direction, and include a lightweight hole forming region including an equidistant portion 95 in which the distance to the front surface portion 10a and the distance to the rear surface portion 10b are equal. 96.
  • the edge portions 22a and 23a of the flange portions 22 and 23 of the outer panel 20 extend to a position including the lightweight hole forming region 96 where the intermediate lightweight hole 51 (52) is formed, and the inner surfaces of the edge portions 22a and 23a.
  • the outer surfaces of the edge portions 32a and 33a of the flange portions 32 and 33 of the inner panel 30 are superposed and joined together by welding.
  • polymerization location has comprised the joint superposition
  • the end light hole 53 (see FIG. 4) is also formed in the light hole forming region 96 including the equidistant portion 95 in the underrun protector 10.
  • the underrun protector main body 10A is made of an ultra-high-strength steel plate having a tensile strength of 980 MPa or more and a plate thickness t of 3.2 mm or less, weight and cost can be suppressed. Further, since the reinforcing panel 40 is disposed so as to overlap with the inner surface on the rear surface portion 10b side in the hollow portion of the underrun protector main body 10A, the main portion of the underrun protector main body 10A (in the hollow portion of the underrun protector main body 10A). The rear surface portion 10b side) is reinforced, and the strength and rigidity of the underrun protector 10 can be ensured. From these, it is possible to reduce the cost while reducing the weight and securing the strength and rigidity.
  • the outer panel 20 and the inner panel 30 and the reinforcing panels 40 and 40 constituting the underrun protector main body 10A are all made of ultra-high-strength steel plates, the thickness and thickness are secured after ensuring strength and rigidity.
  • the weight can be reduced by suppressing (thinning), and the cost can be suppressed as compared with the case of using an aluminum material that is more expensive than a steel plate material.
  • the plate thickness t is 3.2 mm and 980 material (SS ⁇ Steal Structure> 980) is used for the panels 20, 30, and 40 of the underrun protector 10 and other plate thicknesses and materials are used. And will be described.
  • an aluminum material is illustrated as another material. This aluminum material is 7000 series.
  • FIGS. 11 to 14 paying attention to the parameters of the tensile strength, thickness and weight of the ultra high strength steel used for the panels 20, 30, and 40 of the underrun protector 10, the comparison is made with other materials. To do.
  • the load P1 in FIGS. 11 to 13 is based on the security standards of each country (for example, Japan).
  • the load P1 is used for a so-called 780 material (SS780) or aluminum material (Al) having a tensile strength of 780 MPa. It can be seen that the 980 material can resist the load P1. Note that the 780 material is not an ultra-high strength steel material because the tensile strength does not reach 980 MPa. However, 780 materials are included in high-tensile steel materials.
  • the load is applied to the input point where the load P1 is inputted.
  • FIG. 12 which shows the upper limit load P that the under-run protector 10 can withstand when the input is input
  • the load P1 cannot be resisted by the 780 material, but the load P1 can be resisted by the 980 material or the aluminum material.
  • the material cost of the aluminum material is higher than that of the ultra-high strength steel plate including 980 material. From these, if 980 material is used for the panels 20, 30, 40, cost can be suppressed while ensuring the required strength and rigidity.
  • FIG. 13 shows the plate thickness t of the panels 20, 30, 40 constituting the underrun protector 10 and the upper limit load P that can be withstood by the underrun protector 10 when a load is inputted to the input point where the load P1 is inputted. Accordingly, it can be seen that if the thickness t of the panels 20, 30 and 40 is 3.2 mm, the panel 20, 30 and 40 can withstand a load larger than the load P ⁇ b> 1. Specifically, it can be seen that the panel 20, 30, 40 can withstand the load P1 if the thickness t is 2.9 mm or more.
  • this plate thickness t is an aluminum material.
  • the 980 material is the thinnest than the 780 material. Specifically, the 980 material can resist the load P1 with a plate thickness of 2.9 mm or more, while the 780 material can counter the load P1 with a plate thickness of 4.7 mm or more, and the aluminum material with a plate thickness of 10.1 mm or more. It becomes possible to do.
  • the plate thickness t of the 980 material (ultra high strength steel plate material) used for the panels 20, 30, and 40 constituting the underrun protector 10 is 3.2 mm, if the plate thickness t is 2.9 mm or more, The required strength and rigidity can be ensured.
  • the outer surface 40d of the reinforcing panel 40 is formed in the same or substantially the same shape as the inner surface 30a of the inner panel 30, and the entire surface or substantially the entire surface is disposed in contact with the inner surface 30a of the inner panel 30.
  • the run protector 10A can be reliably reinforced.
  • the underrun protector 10 since a large bending moment can act on the coupling region 11 when a load is input to the end region 12 that is a cantilever structure, the strength and rigidity required in the coupling region 11.
  • the strength and rigidity required in the end region 12 and the intermediate region 13 are lower than those.
  • the main body unit 90 including only the under-run protector main body 10A is disposed in the end region 12 and the intermediate region 13 where the required strength and rigidity are relatively low and the reinforcing panel 40 is not superposed. Therefore, it can be set as a simple structure and it contributes to reduction of a weight.
  • the coupling region 11 having relatively high required strength and rigidity has a multiplex polymerization part 81 in which the reinforcing panel 40 is entirely superposed on the inner surface on the rear surface portion 10b side in the hollow portion of the underrun protector body 10A. Since the panel part 80 is arrange
  • the closed cross section of the underrun protector body 10A is a rectangular closed cross section, and the rectangular closed cross section is a generally used steel shape, which contributes to a reduction in manufacturing cost.
  • the underrun protector main body 10A is configured by connecting the outer panel 20 disposed on the front side of the vehicle and the inner panel 30 disposed on the rear side of the vehicle, so that the underrun protector main body 10A can be easily manufactured and reduced in cost. Contributes to reduction.
  • the reinforcing panel 40 is first coupled to the inner surface of the inner panel 30, and then the outer panel 20 and the inner panel 30 are coupled.
  • the reinforcing panel 40 can be easily disposed in the hollow portion.
  • the rectangular closed cross section of the underrun protector main body 10A can be configured by combining the outer panel 20 and the inner panel 30 having a generally used cross-sectional channel shape, and the manufacturing cost can be reduced.
  • the reinforcing panel 40 is disposed only in the coupling region 11 and is superposed on the inner surface 30 a of the inner panel 30.
  • the reinforcing panel 40 extends from the web portion 41 a of the main body 41 toward the vehicle width direction and is arranged on the inner panel 30.
  • the underrun protector 10 has a predetermined region in the vehicle width direction (the end region 12 and the intermediate region) with the coupling region 11 as a center. 13 are partially reinforced, and the strength of the underrun protector 10 and the rigidity against the bending moment can be reliably ensured.
  • the lightweight holes 71 and 72 are formed in the vehicle width direction edge part of the extending part 42, weight reduction can be accelerated
  • the lightweight holes 71a and 71b formed in the intermediate extending portion 42a are formed so as to increase toward the end portion of the reinforcing panel 40, and the lightweight holes 72a formed in the end extending portion 42b. , 72b is formed so as to increase toward the end of the reinforcing panel 40, it is possible to reduce the weight while appropriately securing the rigidity against the bending moment.
  • the outer panel 20 has end bent portions 29 that are bent so as to approach the inner panel 30 at both ends in the longitudinal direction, the front bumper to be mounted immediately before the under-run protector 10 is provided.
  • the both ends in the longitudinal direction of the outer panel 20 can be retracted by the end bent portions 29 corresponding to the both left and right end portions that have been retracted.
  • the inner side panel 30 can be formed in a uniform cross-sectional shape in a longitudinal direction, the processing cost of the inner side panel 30 can be held down.
  • the lightweight hole is preferably formed in a portion of the panel that is not bent so that the light hole is not deformed when the panel is bent. Since the panel 30 is formed to have a uniform cross-sectional shape in the longitudinal direction, the processing load of the lightweight holes 61 to 64 on the inner panel 30 can be reduced.
  • the weight and cost can be suppressed.
  • the single panel part 92 has a longer vehicle front-rear direction length, a thinner plate thickness, and a lower vehicle front-rear direction end rigidity, for example, a load in the vehicle front-rear direction such as the load P1.
  • buckling tends to occur.
  • the overlapping panel part 84 formed by overlapping a plurality of panels 20, 30, 40 is formed on the rear side of the vehicle. While suppressing the length, it is possible to improve the rigidity of the under-run protector 10 on the rear side of the vehicle, thereby further suppressing the occurrence of buckling.
  • the length L1 of the single panel part 92 in the vehicle front-rear direction is set to be equal to the length L2 of the overlapping panel part 84 in the vehicle front-rear direction (L1 ⁇ L2). Length L1 is suppressed, which contributes to suppression of occurrence of buckling.
  • a mounting hole 73 for fixing the inner panel 30 and the reinforcing panel 40 to the bracket 5 (see FIGS. 1 and 2) by fastening members such as common bolts or nuts is formed in the reinforcing superposition part 81. Therefore, the fastening member can be reduced and the cost can be reduced compared to the case where the coupling of the reinforcing panel 40 and the inner panel 30 and the coupling of the inner panel 30 and the bracket 5 are made separate. .
  • the reinforcing panel 40 is a fastening member such as a bolt or a nut. Since it functions as a washer, the mounting stability of the underrun protector 10 can be improved and the number of members can be reduced. Thus, since the number of members required for fastening can be reduced, the weight can also be reduced.
  • the flange portions 41b and 41c in the main body portion 41 of the reinforcing panel 40, the flange portions 32 and 33 of the inner panel 30, and the flange portions 22 and 23 of the outer panel 20 are in this order in the longitudinal direction of the vehicle. Therefore, the length of the flange portions 41b and 41c in the reinforcing panel 40 in the vehicle front-rear direction can be suppressed, which contributes to weight reduction.
  • the panels 20, 30, and 40 can be made of the same ultra-high-strength steel plate (same material) and the same plate thickness, and therefore it is necessary to prepare a plurality of materials when manufacturing the underrun protector 10. The material cost can be suppressed.
  • the under-run protector 10 it is more difficult to cause a decrease in rigidity against bending in the vehicle front-rear direction when the light-weight holes are formed on the upper surface portion and the lower surface portion than the light-weight holes are formed on the front surface portion and the rear surface portion.
  • the plurality of lightweight holes 51, 52, 53 are formed in the upper surface portion and the lower surface portion of the under-run protector 10, it is effective while suppressing a decrease in rigidity (a decrease in the secondary moment of section). The weight can be reduced.
  • the longitudinal hole diameters of the flange portions 22 and 23 of the outer panel 20 are different in the plurality of lightweight holes 51, 52, and 53, a plurality of lightweight holes having the same diameter in the longitudinal direction ( (Hereinafter referred to as “light holes with the same diameter”), the degree of freedom in disposing a plurality of light holes 51, 52, 53 in the longitudinal direction of the underrun protector 10 can be improved. . For example, considering that light holes having the same diameter are formed, it is possible to change the interval between the light holes having the same diameter, but the light holes 51, 52, 53 are light weight holes 51, 52.
  • the degree of freedom in disposing the light-weight holes 51, 52, 53 in the underrun protector 10 is increased. Can be improved. That is, in the upper surface portion and the lower surface portion of the underrun protector 10, the region where the lightweight holes 51, 52, 53 are formed and the structure region between the lightweight holes 51, 52, 53 are arranged with a high degree of freedom. be able to. For this reason, the light weight holes 51, 52, and 53 can be disposed in consideration of various factors such as a twist acting on the underrun protector 10 and a bending moment due to a load in the vertical direction. Therefore, the underrun protector 10 can contribute to further weight reduction.
  • the processing cost can be reduced, and foreign matter that has entered the under-run protector 10 can be reduced. Emission can be improved.
  • the lightweight holes 51, 52, 53 are formed in the lower surface portion of the underrun protector 10, foreign matters such as water and mud that have entered the hollow inside of the underrun protector 10 can be discharged, and the underrun protector can be discharged. It is possible to prevent foreign matter from accumulating in the interior of 10. Thereby, corrosion of the underrun protector 10 can be suppressed, which contributes to improvement in durability.
  • the lightweight holes 51, 52, 53 on the lower surface of the under-run protector 10 improve the paint quality by improving the paint removal when the under-run protector is applied.
  • the under-run protector 10 is dip-coated (so-called “simmering coating”), the paint can be reliably discharged from the hollow interior, and the coating quality can be improved.
  • the underrun protector 10 As the rigidity of the corner portion of the rectangular cross section is secured, the secondary moment of the cross section is secured, whereas the rigidity of the intermediate portion of each surface portion constituting the rectangular cross section becomes the secondary moment of the cross section. Hard to influence. As described above, the distance between the under-run protector 10 and the intermediate portion in the vehicle front-rear direction, which is unlikely to affect the moment of inertia of the cross section, specifically, the distance to the front portion 10a and the rear portion 10b of the under-run protector body 10A is equal. Since the lightweight holes 51, 52, 53 are formed in the lightweight hole forming region 96 including the portion 95, it is possible to reduce the weight while effectively suppressing the decrease in the secondary moment of section.
  • these lightweight holes 51, 52, 53 are set to have the same diameter in the vehicle front-rear direction, the processing cost of the lightweight holes 51, 52, 53 is suppressed, and the reduction in the sectional moment of inertia is suppressed. be able to.
  • the edge portions 22a and 23a of the flange portions 22 and 23 of the outer panel 20 extend to a position including the lightweight hole forming region 96 where the lightweight holes 51, 52 and 53 are formed, the lightweight holes 51, 52 and 53 are provided. Can be formed on the flange portions 22 and 23 of the outer panel 20. Thereby, for example, when the outer diameter of the outer panel 20 is cut with a press, the simultaneous processing of the lightweight holes 51, 52, 53 is facilitated.
  • the outer surfaces of the edge portions 32a and 33a of the flange portions 32 and 33 of the inner panel 30 are superposed on the inner surfaces of the edge portions 22a and 23a of the flange portions 22 and 23 of the outer panel 20, they are joined by welding. In this case, the flanges 32 and 33 protruding toward the front of the vehicle are not exposed, and safety can be further improved.
  • the plurality of light-weight holes 61 and 62 formed in the inner panel 30 side by side in the longitudinal direction of the under-run protector 10 are set to have larger hole diameters in the vertical direction as they are separated from the coupling regions 11 and 11. For this reason, in the part on the side adjacent to the coupling regions 11 and 11, strength and rigidity are ensured to be large by setting the hole diameter of the lightweight holes 61 and 62 small in the vertical direction, and the side away from the coupling regions 11 and 11. In this part, weight reduction can be efficiently promoted by setting the hole diameters of the lightweight holes 61 and 62 to be large in the vertical direction. Therefore, weight reduction of the underrun protector 10 can be effectively promoted while ensuring required strength and rigidity.
  • the plurality of light-weight holes 61 and 62 are set to have a larger hole diameter in the vertical direction as they are separated from the coupling regions 11 and 11 so as to correspond to the bending moment distribution of the under-run protector 10 with respect to the load P1.
  • the bending rigidity of each part in the longitudinal direction of the underrun protector 10 can be made to correspond to the bending moment distribution. Therefore, weight reduction can be more effectively promoted by the lightweight holes 61 and 62 while ensuring the bending rigidity required for the bending moment distribution due to the load P1.
  • the lightweight holes 61 and 62 include rectangular holes 61b, 61c, and 62b that are rectangular in front view, a large opening area can be ensured and weight reduction can be promoted more effectively.
  • the plurality of end light holes 61 arranged in each end region 12 are set to have larger hole diameters in the vertical direction toward the outer side of the vehicle body separated from the coupling region 11, the underrun protector 10. The required strength and rigidity can be ensured while effectively promoting weight reduction in each of the end regions 12.
  • the underrun protector 110 according to the present embodiment is different from the underrun protector 10 according to the first embodiment in that a stiffener 100 is provided as shown in FIG. 15, for example.
  • a stiffener 100 is provided as shown in FIG. 15, for example.
  • the configuration of the stiffener 100 will be described, and the elements corresponding to the elements described in the first embodiment and the same elements will be denoted by the same reference numerals and the description thereof will be omitted.
  • the stiffener 100 is formed of an ultra high strength steel plate having a tensile strength of 980 MPa or more and a plate thickness t of 3.2 mm or less.
  • FIG. 15 is a schematic perspective view showing one side (here, the left side) portion of the underrun protector 110 from which the outer panel 20 is omitted.
  • the stiffener 100 has a panel portion 101 that extends in the vehicle width direction and is disposed along the front-rear direction.
  • the two panel portions 101 and 101 are arranged vertically in parallel with each other, and are connected at the respective leading end sides (here, the front side).
  • the stiffener 100 is composed of one plate having panel portions 101 and 101 having a shape as shown in FIG. 16 and a connection portion 113 extending from the panel portions 101 and 101 and connecting the two panel portions 101 and 101 to each other.
  • the connection portion 113 is bent and formed so as to be parallel.
  • the connecting portion 113 is bent so that a flat surface portion 112 a is formed via smooth curved bent portions 116 and 116.
  • the planar portion 112a is formed to form a plane that is perpendicular to the planar panel portions 101, 101.
  • the flat surface portion 112a constitutes the top portion of the stiffener 100 that protrudes most toward the front surface portion 10a.
  • the two panel members 101 and 101 have the same shape, and the arrangement positions in the vertical direction are different, but the arrangement positions in the vehicle front-rear direction and the horizontal direction are the same.
  • the panel part 101 is arrange
  • the planar view shape of the panel portion 101 can be called a mountain shape or a Mt. Fuji shape, and has a leading edge 112 protruding toward the front surface portion 10a.
  • the tip edge 112 is the portion corresponding to the top portion 112a of the stiffener 100 and protrudes most toward the front surface portion 10a, and the most protruded portion and the ridge line portions 112b and 112c that are gently separated from the front surface portion 10a (see FIGS. 15 and 15). 20).
  • the base end portion 111 (corresponding to the base end portion of the stiffener 100) of the panel portion 101 is fixed to the inner surface on the rear surface portion 10b side.
  • the base end portion 111 is coupled to the inner surface side of the web portion 31 of the inner panel 30 by being coupled to the inner surfaces of the web portion 41 a and the extending portion 42 of the reinforcing panel 40.
  • the portion corresponding to the top portion 112a of the stiffener 100 in the front end edge 112 of the panel portion 101 is a portion having the largest protrusion amount toward the front surface portion 10a as described above, and is disposed in the coupling region 11.
  • the front-rear length of the panel portion 101 is maximized in the coupling region 11 corresponding to the position of the top portion 112a.
  • the top 112a extends in the vehicle width direction and is provided along the vertical direction. And in the installation state shown in FIG. 15, this top part 112a is provided in parallel with the inner surface of the web part 21 of the outer side panel 20. As shown in FIG.
  • the panel portion 101 is provided with an oblong or elliptical light hole 115 having a long side in the front-rear direction between a portion corresponding to the top portion 112a of the stiffener 100 and the base end portion 111.
  • the two lightweight holes 115, 115 are arranged side by side in the vehicle width direction so as to be separated from each other by a hole diameter (an oblong short side).
  • the shaft center of each lightweight hole 115 is disposed at a substantially central portion of the under-run protector 110 in the front-rear direction.
  • the ridge line parts 112b and 112c are parts extending from the both ends in the vehicle width direction of the part corresponding to the top part 112a of the stiffener 100 in the left-right direction and toward the rear of the vehicle.
  • one ridge line portion 112 b is disposed so as to enter the intermediate region 13 from the coupling region 11
  • the other ridge line portion 112 c is disposed so as to enter the end region 12 from the coupling region 11. .
  • the dimension of the panel portion 101 in the vehicle front-rear direction gradually decreases. That is, the panel portion 101 is formed in a shape in which the protruding amount of the leading edge 112 decreases as the distance from the coupling region 11 where the top portion 112a of the stiffener 100 is disposed.
  • the protrusion amount of the front end edge 112 of the panel portion 101 decreases as the distance from the attachment point S increases.
  • the protruding amount of the tip edge 112 defined by the top portion 112a and the ridge line portions 112b and 112c can be set so as to correspond to the bending moment distribution of the under-run protector 110.
  • FIGS. 19 and 20 are schematic diagrams respectively showing the relationship between the stiffener 100 and the bending moment distribution with respect to the load P1 when the protrusion amount of the leading edge 112 is set to correspond to the bending moment distribution of the underrun protector 110.
  • FIG. 2 is a schematic top view and perspective view, where elements other than the stiffener 100 of the underrun protector 110 are not shown. In the following, the description will be given focusing on the bending rigidity of the stiffener 100 alone, but the shape of the stiffener 100 is actually set in consideration of the bending rigidity of the reinforcing panel 40 and the like.
  • the stiffener 100 is basically provided corresponding to a range in which the bending moment acting on the under-run protector 110 due to the load P1 is equal to or greater than a predetermined value M 1 . That is, the stiffener 100 is disposed so as to include a portion where the bending moment due to the load P1 is relatively large and reinforcement is required.
  • the top portion 112a of the stiffener 100 is disposed at a location where the bending moment due to the load P1 is maximized (here, a position corresponding to the attachment point S of the bracket 5).
  • the ridgeline parts 112b and 112c of the panel part 101 are arrange
  • the protruding amount of the leading edge 112 of the panel portion 101 is also maximized at a location where the bending moment of the load P1 is maximum, and the leading edge of the panel portion 101 is at a location where the bending moment of the load P1 is reduced.
  • the amount of protrusion 112 also decreases accordingly.
  • the cross-sectional area of the under-run protector 110 (the cross-sectional area orthogonal to the longitudinal direction) increases, so that the bending rigidity of the under-run protector 110 also increases.
  • the protrusion amount of the front end edge 112 of the panel unit 101 corresponds to the bending moment distribution with respect to the load P1
  • the magnitude of the bending rigidity of the underrun protector 110 also corresponds to the distribution of the magnitude of the bending moment with respect to the load P1. It will be a thing.
  • the ridge line portion 112b, the left and right length of 112c is basically bending moment distribution described above is set corresponding to the range of the predetermined value M 1 or more.
  • the bending stiffness in the underrun protector 110 is influenced not only by the stiffener 100 but also by the elements such as the reinforcing panel 40 and the holes of the panels 20, 30, and 40.
  • the left and right lengths of the ridge lines 112b and 112c are set in consideration.
  • the required bending rigidity is ensured by the stiffener 100 and the reinforcing panel 40 in cooperation with each other. Therefore, the left and right lengths of the ridge portions 112b and 112c are determined by the bending of the reinforcing panel 40. It is adjusted in consideration of rigidity.
  • the ridge line portion 112b extending toward the vehicle width direction center side with respect to the top portion 112a is formed longer in the vehicle width direction than the ridge line portion 112c extending outward from the top portion 112a in the vehicle width direction. It is disposed between the region 11 and the intermediate region 13. Further, the ridge line portion 112 c extending outward in the vehicle width direction with respect to the top portion 112 a is extended to the vicinity of the boundary between the coupling region 11 and the end region 12.
  • the two lightweight holes 115 and 115 (see FIGS. 15, 16, and 20) that are formed side by side in the panel portion 101 are arranged with the vehicle width direction position of the attachment point S of the bracket 5 interposed therebetween.
  • the top portion 112a of the stiffener 100 is disposed such that the position in the vehicle width direction of the attachment point S is disposed between the two lightweight holes 115, 115.
  • the ridge portions 112b and 112c extend in a curved shape that is concave toward the front of the vehicle. This is to suppress a sudden change in the moment of inertia in the longitudinal direction of the protector 110.
  • the rate of change of the protrusion amount decreases as the distance from the top portion 112a decreases, and becomes the minimum at the end in the vehicle width direction of the stiffener 100.
  • the bending stiffness when focusing on the stiffener 100 alone is moderately changed at the end in the vehicle width direction of the stiffener 100 in accordance with the protruding amount of the ridge lines 112b and 112c. become. Therefore, also in the under-run protector 110, the change in the cross-sectional area (cross-sectional area perpendicular to the longitudinal direction) of the under-run protector 110 becomes relatively moderate at the end of the stiffener 100 in the vehicle width direction. Sudden changes in the moment of inertia of the cross section are suppressed.
  • the clearance 102 provided between the stiffener 100 and the outer panel 20 will be described with reference to FIG. As shown in FIG. 17, there is a predetermined clearance between the top portion 112a of the stiffener 100 corresponding to the most protruding portion of the panel portion 101 and the inner surface of the web portion 21 of the outer panel 20 (ie, the front portion 10a). 102 is provided.
  • the top portion 112a forms (has) a flat surface
  • a predetermined clearance 102 is provided between the flat surface of the top portion 112a (here, the front surface of the vehicle) parallel to each other and the inner surface of the web portion 21 of the outer panel 20. Yes.
  • the predetermined clearance 102 is preferably set to be larger than the film thickness of the coating liquid to be used and the dimensional error (variation) in the front-rear direction that may occur during molding of the member, and is set to about 5 to 10 mm, for example. If a clearance 102 larger than the coating film thickness is secured, the coating liquid can easily pass through the clearance 102. Further, by setting the predetermined clearance 102 to be larger than the assumed dimensional error (variation) in the front-rear direction of the member, even if some dimensional error occurs during molding of each member, the front surface portion 10a and the stiffener The clearance 102 can be reliably provided between the tops 112a of 100.
  • the base end part 111 of each panel part 101 and the web part 41a of the reinforcement panel 40 can be couple
  • the front end edge 112 of the panel portion 101 of the stiffener 100 protrudes toward the front portion 10a side of the underrun protector main body 10A, and the protruding amount is separated from the coupling region 11. Since the shape of the underrun protector 110 is reduced, the strength and rigidity of the underrun protector 110 can be efficiently improved by suppressing the weight of the stiffener 100, and the required strength while promoting the weight reduction of the underrun protector 110. In addition, rigidity can be ensured.
  • the protrusion amount of the front end edge 112 of the panel portion 101 decreases as the distance from the coupling region 11 decreases so as to correspond to the bending moment distribution of the under-run protector 110 with respect to the load P1, the weight of the stiffener 100 is suppressed.
  • the strength and rigidity of the under-run protector 110 can be improved more efficiently.
  • the weight while avoiding giving the stiffener 100 excessive strength and rigidity by suppressing the protruding amount of the stiffener 100. Can be suppressed.
  • the stiffener 100 is provided corresponding to the distribution of the bending moment so that the bending moment of the under-run protector 110 includes a range in which the bending moment of the underrun protector 110 is equal to or greater than a predetermined value M 1.
  • the strength and rigidity required for the underrun protector 110 can be ensured.
  • a predetermined clearance 102 is provided between the top portion 112a of the stiffener 100 and the inner surface of the front surface portion 10a (here, the web portion 21 of the outer panel 20), the top portion 112a of the stiffener 100 and the front surface portion 10a The inner surface is not in contact.
  • the two members since rubbing during running and generating an abnormal noise, or the paint being peeled off and causing rust.
  • the coating liquid easily enters between the top portion 112a of the stiffener 100 and the inner surface of the front surface portion 10a, it contributes to the improvement of the coating quality.
  • the load is not directly transmitted between the two immediately after the under-run protector 110 receives the load in the vehicle longitudinal direction.
  • the relative deformation of the front surface portion 10a and the stiffener 100 is allowed by the amount of the clear lath 102, so that the buffering property of the underrun protector 110 can be improved.
  • the stiffener 100 is a one-piece configuration formed by bending a single plate in which the tip edges 112 of the two panel portions 101, 101 arranged vertically in parallel with each other are connected by the connection portion 113. Therefore, the strength and rigidity of the underrun protector 110 can be further improved with a simple configuration.
  • the stiffener 100 is formed by bending one plate as shown in FIG. 16 at the leading edge 112 so that the two panel portions 101 and 101 are parallel to each other. And can be manufactured easily. Moreover, since the top part 112a of the stiffener 100 has a plane parallel to the inner surface of the web part 21 of the outer panel 20, when receiving a load in the vehicle front-rear direction, the inner surface and the top part of the web part 21 of the outer panel 20 are provided. The load per unit area transmitted to 112a can be reduced. Thereby, it can suppress that the web part 21 of the outer side panel 20 receives a big load partially, and deform
  • the stiffener 100 can be made of ultra high strength steel having a tensile strength of 980 MPa or more and a plate thickness t of 3.2 mm or less.
  • the plate thickness can be suppressed (thinned) and the weight can be suppressed after securing the rigidity, and the cost can be suppressed as compared to using an aluminum material which is more expensive than a steel plate material.
  • the degree of change (rate of change) of the protruding amount of the front end edge 112 of the panel portion 101 decreases as the distance from the portion corresponding to the top portion 112a of the stiffener 100 decreases (that is, the ridgeline portions 112b and 112c are on the front side of the vehicle). Therefore, a sudden change in the cross-sectional area of the under-run protector 110 at the end in the vehicle width direction of the panel portion 101 is suppressed. That is, a sudden change in the sectional moment of inertia of the under-run protector 110 at the boundary portion between the installation location of the stiffener 100 and other locations is suppressed. As a result, the rigidity and strength are locally increased at the place where the stiffener 100 is installed, and the underrun protector 110 can be prevented from being locally deformed.
  • the stiffener 100 can be reduced in weight.
  • the two lightweight holes 115 are arranged side by side so as to sandwich the position in the vehicle width direction where the bending moment with respect to the load P1 is maximized. In other words, the maximum bending moment acts on the under-run protector 110. Since the portion is not provided with the lightweight hole 115, the rigidity and strength required for this portion can be reliably ensured.
  • the lightweight hole 115 is formed in the middle portion of the under-run protector 110 in the longitudinal direction of the vehicle that does not easily affect the cross-section secondary moment, the weight reduction can be achieved while effectively suppressing the decrease in the cross-section secondary moment. Can be planned.
  • the underrun protector 110 according to the present embodiment the same operations and effects as those of the underrun protector 10 according to the first embodiment can be obtained.
  • the panels 20, 30, 40 and the stiffener 100 are exemplified by using an ultrahigh tensile steel plate material having a tensile strength of 980 MPa.
  • the panels 20, 30, 40 have a tensile strength of 980 MPa or more.
  • Various ultra-high strength steel plate materials (for example, 1.2 GPa and 1.5 GPa) can be used, and depending on the panel, plate materials other than the ultra-high strength steel plate material can be used.
  • the reinforcing panel 40 and the stiffener 100 are not limited to the ultra-high-strength steel plate material, and for example, a steel plate material having a tensile strength of less than 980 MPa or another metal material may be used.
  • the panel 20, 30, 40 or the stiffener 100 has been described as having a thickness t of 3.2 mm, but various thicknesses may be used as long as the required strength and rigidity are satisfied. be able to.
  • various ultra-high strength steel plates having a thickness t of 2.9 mm or more can be used, and when a tensile strength of 980 MPa or more is used.
  • Various ultra-high strength steel plates having a thickness t of 2.9 mm or less can be used.
  • each of the panels 20, 30, 40 may have different tensile strength or thickness.
  • the thickness t of the upper surface portion 10c or the lower surface portion 10d is set in the under-run protector main body 10A composed of the outer panel 20 and the inner panel 30. If the thickness is too thin, buckling due to a load from the front of the vehicle is likely to occur regardless of the tensile strength of the ultra-high strength steel sheet constituting the upper surface portion 10c and the lower surface portion 10d, whereas the front surface portion 10a or the rear surface portion 10b. Even if the plate thickness is reduced, buckling due to a load from the front of the vehicle is unlikely to occur.
  • the plate thickness of the upper surface portion 10c or the lower surface portion 10d is secured (thickened) more than the plate thickness of the front surface portion 10a or the rear surface portion 10b, and the front surface portion 10a or the rear surface portion 10a.
  • a lower limit of the thickness t of the front surface portion 10a or the rear surface portion 10b of the under-run protector 10A may be set.
  • the light-weight holes 51, 52, and 53 are formed symmetrically in the vertical direction on the upper surface portion 10c and the lower surface portion 10d of the under-run protector body 10A. 53 may not be formed symmetrically in the vertical direction, or may be formed only on one of the upper surface portion 10 c and the lower surface portion 10. Furthermore, if the light-weight holes 51, 52, 53 are formed in the upper surface portion 10c and the lower surface portion 10d of the underrun protector body 10A, they may be formed in a region that does not include the equidistant portion 95. The hole diameter in the direction may not be the same diameter.
  • the lightweight holes 51, 52, 53 are formed in the upper surface portion 10c and the lower surface portion 10d, the lightweight holes 61, 62, 63, 64 are formed in the rear surface portion 10b, and the lightweight holes 71, 72 are formed in the reinforcing panel 40.
  • some of these may be selectively formed.
  • the lightweight holes 51, 52, 53 may be formed in the flange portions 32, 33 of the inner panel 30 instead of the flange portions 22, 23 of the outer panel 20.
  • the flange portions 32 and 33 of the inner panel 30 include a middle portion of the under-run protector 10 in the vehicle front-rear direction, and a light weight including an equidistant portion 95 having the same distance from the front and rear portions of the under-run protector 10. It is formed to extend to a position including the hole forming region 96 (see FIG. 6B).
  • the reinforcing panel 40 has been described in which the lightweight holes 71 and 72 are formed, the lightweight holes 71 and 72 may not be entirely or partially formed. If a specific example is given, the lightweight holes 71b and 72b of the center side of the reinforcement panel 40 may not be formed, and all the lightweight holes 71a, 71b, 72a, and 72b may not be formed.
  • the front and rear lengths of the flange portions 41 b and 41 c in the main body portion 41 of the reinforcing panel 40 may be longer than the front and rear lengths of the flange portions 32 and 33 of the inner panel 30.
  • the reinforcing panel 40 when the reinforcing panel 40 is coupled to the inner surface 30 a of the inner panel 30, the reinforcing panel 40 is coupled to the inner surfaces of the flange portions 22 and 23 of the outer panel 20.
  • polymerization panel part 84 will be arrange
  • the reinforcement panel 40 demonstrated what has the extended part 42 extended toward the vehicle width direction from the main-body part 41, this extended part 42 is not provided all or one part. Also good.
  • the reinforcing panel 40 may be configured by the main body portion 41 and the intermediate extending portion 42a or the end extending portion 42b, or may be configured by only the main body portion 41. Further, if attention is paid only to the technology relating to the lightweight hole, it is conceivable to omit the reinforcing panel 40 itself.
  • the outer panel 20 having the channel shape and the inner panel 30 having the channel shape are joined to form the closed section formed by the underrun protector 10 and the underrun protector 10A.
  • the closed cross section formed by the underrun protector 10A is rectangular, the cross sections of the panels 20 and 30 are not limited to the channel shape, and various shapes can be used.
  • each cross section of the panels 20 and 30 may be formed in an L shape, and either one of the panels 20 and 30 is formed in a channel shape and the other cross section of the panels 20 and 30 is a straight line. It may be formed in a shape.
  • various shapes can be adopted as the cross-sectional shape of the reinforcing panel 40.
  • the multiple panel part 85 has been described in which the panels 20, 30, and 40 are superposed in a triple manner.
  • another panel is further superposed inside the reinforcing panel 40, or the inner panel 30.
  • Four or more multi-panel parts may be formed by further polymerizing other panels on the outside.
  • the strength and rigidity of the underrun protector 10 are improved, the weight is increased. Therefore, it is preferable to form the multiple panel part in consideration of both the strength and rigidity to be secured and the weight increase.
  • the closed section formed by the underrun protector 10 and the underrun protector main body 10A has been described as being rectangular, this cross section is not limited to a rectangle, and may be various shapes such as a round shape or a polygon other than a rectangle. Also good.
  • the cross-sectional shapes of the panels 20, 30, and 40 correspond to the shapes of the closed cross sections formed by the under-run protector 10 and the under-run protector main body 10A, and each surface portion 10a, 10b of the under-run protector main body 10A. , 10 c, 10 d correspond to the respective surface portions of the underrun protector 10.
  • the underrun protector main body 10A is not limited to a configuration in which the two panels 20, 30 of the outer panel 20 and the inner panel 30 are combined, and may be configured by a single panel. Three or more panels may be combined.
  • the reinforcing panel 40 has been entirely superposed on the inner surface on the rear surface portion 10b side.
  • the reinforcing panel 40 may be partially superposed on the underrun protector main body 10A. Good.
  • the reinforcing panel is not limited to being superposed so as to reinforce the inner surface of the inner panel 30, that is, the rear surface portion 10b of the under-run protector body 10A, in the under-run protector 10, but the front portion 10a of the under-run protector body 10A. , And may be superposed so as to reinforce at least one of the upper surface portion 10c and the lower surface portion 10d. In this case, it is preferable that the reinforcing part by the reinforcing panel is set according to the assumed vehicle collision state or the under-run protector 10 mounting state.
  • the reinforcing panel 40 may be bonded to the inner surface of the outer panel 40 so as to be polymerized.
  • a single panel part consisting only of the inner panel 30 is formed closer to the rear side of the vehicle, and a single body part consisting of only the underrun protector main body 10A is formed on the rear side of the vehicle without the reinforcement polymerization part 81.
  • a superposed panel part in which a plurality of panels such as the outer panel 20 and the reinforcing panel 40 are superposed is formed on the front side of the vehicle, and a reinforcing superposed part in which the underrun protector body 10A and the reinforcing panel 40 are superposed on the front side of the vehicle. It is formed.
  • the length L1 of the single panel part 92 in the vehicle front-rear direction may be set shorter than the length L2 of the overlapping panel part 84 in the vehicle front-rear direction (L1 ⁇ L2).
  • the underrun protector 10 is illustrated as being coupled to the pair of left and right brackets 5, 5, for example, a plurality of brackets may be provided on each of the left and right, and the underrun protector 10 may be coupled to the left and right pairs of brackets.
  • the lightweight holes 61 and 62 are formed in the rear surface portion 10b of the under-run protector main body 10A, but these lightweight holes 61 and 62 are at least either the rear surface portion 10b or the front surface portion 10a. What is necessary is just to form in either. Further, the end lightweight hole 61 may be omitted.
  • the light-weight holes 61 and 62 should just become so that the hole diameter of an up-down direction may become so large that it is spaced apart from the coupling
  • the lines connecting the upper and lower edges of the lightweight holes 61 and 62 are curved. You may set each hole diameter so that it may become.
  • the vertical hole diameters of the lightweight holes 61 and 62 are not limited to the bending moment distribution of the underrun protector 10 with respect to the load P1, but correspond to, for example, a comprehensive bending moment distribution considering any of the loads P1, P2, and P3. You may set so that it may carry out, and you may set based on elements other than bending moment distribution.
  • the shape and the number of the lightweight holes 61 and 62 shown above are examples and can be changed as appropriate.
  • the lightweight holes 61 and 62 are rectangular holes, weight reduction can be further promoted, and if the circular holes are circular holes, a sudden change in the secondary moment of section can be suppressed.
  • the lightweight holes 61 and 62 are all the same shape, the processing cost can be suppressed. For example, if the length of the light-weight holes 61 and 62 is shortened and the number thereof is increased, the bending rigidity of the under-run protector 10 can be finely adjusted along the longitudinal direction.
  • the front view shapes of the end light holes 61b and 61c and the second intermediate light hole 62b are rectangular, for example, the light holes 61b, 61c and 62b have a square front view. It may be formed in a horizontally long rectangle in the vehicle width direction or a vertically long rectangle in the vertical direction.
  • the stiffener 100 includes the panel portion 101 in which the base end portion 111 is fixed to the inner surface on the rear surface portion 10b side of the underrun protector main body 10A and the front end edge 112 protrudes toward the front end portion 10a side.
  • the panel portion 101 may be disposed such that the base end portion 111 is fixed on the inner surface on the front surface portion 10a side, and the front end edge 112 protrudes toward the rear end portion 10b side.
  • the number of stiffeners 100 is not limited to the one shown above.
  • a plurality of pairs of stiffeners 100 may be provided correspondingly.
  • the shape and the number of the panel portions 101 are not limited to those described above, and these can be appropriately changed according to the strength and rigidity required for the underrun protector 110.
  • the protrusion amount of the front end edge 112 of the panel unit 101 corresponds not only to the bending moment distribution of the under-run protector 110 with respect to the load P1, but also to the total bending moment distribution taking into account any of the loads P1, P2, P3, for example. Alternatively, it may be set based on factors other than the bending moment distribution.
  • the weight can be further reduced by shortening the left and right lengths of the ridge portions 112b and 112c or increasing the number of the lightweight holes 115. it can.
  • the left and right stiffeners 100 and 100 can be shape
  • the front end edge 112 of the panel part 101 may extend linearly so as to correspond to the bending moment distribution with respect to the load P1 described above, for example. That is, the plan view of the panel portion 101 is formed in a triangular shape, the top portion 112a of the stiffener 100 is provided in a dotted shape in the plan view, and the ridge line portions 112b and 112c of the tip edge 112 are straight in the left-right direction with respect to the top portion 112a.
  • the shape extended in the shape may be sufficient.
  • each panel part 101 may have a different shape, but if both have the same shape, the manufacturing cost can be suppressed.
  • the bent portion 116 between the panel portion 101 and the top portion 112a is formed in a gentler curved shape (that is, the curvature of the bent portion 116 is reduced), and the entire connecting portion 113 is protruded outward in the vehicle front-rear direction.
  • a curved surface may be formed.
  • the stiffener 100 is not limited to being formed from a single plate, and may be formed by, for example, configuring each panel portion 101 and the connection portion 113 by individual plates and connecting these plates by welding or the like. . Further, when the reinforcing panel 40 is omitted, the base end portion 111 of the panel portion 101 may be coupled to the inner surface of the web portion 31 of the inner panel 30, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

重量を抑えるとともに強度及び剛性を確保したうえで、コストを抑えることができるようにした、アンダランプロテクタの構造を提供する。  車両の車体フレーム1の前部又は後部の左右のブラケット5,5に取り付けられるアンダランプロテクタ10の構造であって、車両前後方向外側面部10aと車両前後方向内側面部10bと上面部10cと下面部10dとを備え中空の閉断面を有するように構成された引張強度が980MPa以上かつ板厚が3.2mm以下の超高張力鋼板製のアンダランプロテクタ本体10Aと、アンダランプロテクタ本体10Aの中空部内の車両前後方向外側面部10a側又は車両前後方向内側面部10b側の内面に重合するように配設された補強パネル40,40と、を備える。

Description

アンダランプロテクタの構造
 本発明は、車高の低い車両が衝突によって車高の高い車両の下側へもぐり込むのを抑制するアンダランプロテクタの構造に関するものである。
 トラックなどの車高の高い車両の前部又は後部の下側に、普通自動車や軽自動車といった車高の低い車両がもぐり込んでしまうのを防止するために、前者の車体フレームの前部又は後部の下方に、アンダランプロテクタを設ける構造が実用化されている。
 このアンダランプロテクタには、車両のもぐり込みを抑制するだけの強度及び剛性が少なくとも要求される。しかしながら、アンダランプロテクタの材料に、車両に広く用いられている鋼材を適用すると、重量が嵩んでしまう。
 これに関し、重量を抑えつつ要求される強度及び剛性を確保するためのアンダランプロテクタが開発されている。例えば特許文献1には、アルミ材をアンダランプロテクタに用いることが示されている。これにより、重量を抑えつつ要求される強度及び剛性が確保されるとしている。
特開2004-175228号公報
 しかしながら、アルミ材は鋼材よりも製品コストがかかる。このため、特許文献1に示されるように、アンダランプロテクタにアルミ材を使用すると、重量を抑えつつ要求される強度及び剛性を確保することはできるものの、コストの上昇を招いてしまう。
 本発明の目的の一つは、上記のような課題に鑑み創案されたもので、重量を抑えるとともに強度及び剛性を確保したうえで、コストを抑えることができるようにした、アンダランプロテクタの構造を提供することである。
 (1)上記の目的を達成するために、本発明のアンダランプロテクタの構造は、車両の車体フレームの前部又は後部の左右のブラケットに取り付けられるアンダランプロテクタの構造であって、車両前後方向外側面部と車両前後方向内側面部と上面部と下面部とを備え中空の閉断面を有するように構成された引張強度が980MPa以上かつ板厚が3.2mm以下の超高張力鋼板製のアンダランプロテクタ本体と、前記アンダランプロテクタ本体の中空部内の前記車両前後方向外側面部側又は前記車両前後方向内側面部側の内面に重合するように配設された補強パネルと、を備えたことを特徴としている。
 (2)前記補強パネルは、前記車両前後方向外側面部側又は前記車両前後方向内側面部側の前記内面と同一又は略同一形状に形成された補強パネル外面を有し、前記内面に前記補強パネル外面の全面又は略全面を接触させて配設されていてもよい。
 (3)前記アンダランプロテクタ本体の前記閉断面は、矩形閉断面であってもよい。
 (4)前記アンダランプロテクタ本体は、車両前後方向外側に配置された外側パネルと、車両前後方向内側に配置された内側パネルとが、中空の閉断面を有するように結合されて構成されていてもよい。
 (5)前記外側パネルは、断面がチャンネル形状であって、前記内側パネルは、断面がチャンネル形状又は直線形状であって、前記補強パネルは、断面がチャンネル形状の補強パネル本体部を有していてもよい。
 (6)前記補強パネルには、前記アンダランプロテクタが前記各ブラケットにそれぞれ結合される結合領域のみに配置され前記内側パネルの内面と同一又は略同一形状に形成された補強パネル外面を有し、前記内側パネルの内面に前記補強パネル外面の全面又は略全面を接触させて配設される前記補強パネル本体部と、前記補強パネル本体部のウェブ部から車幅方向に向けて前記内側パネルのウェブ部の内面に重合する補強パネル延設部とが形成されていてもよい。
 (7)前記補強パネル延設部の車幅方向端部には、軽量穴が形成されていてもよい。
 本発明のアンダランプロテクタの構造によれば、アンダランプロテクタ本体の引張強度が980MPa以上かつ板厚が3.2mm以下の超高張力鋼板製であるため、重量及びコストを抑えることができ、また、補強パネルが、アンダランプロテクタ本体の中空部内の車両前後方向外側面部側又は車両前後方向内側面部側の内面に重合するように配設されるため、アンダランプロテクタ本体の要部が補強され、アンダランプロテクタの強度及び剛性を確保することができる。これらより、重量を抑えるとともに強度及び剛性を確保したうえで、コストを抑えることができる。
本発明の第一実施形態にかかるアンダランプロテクタ及びその周辺の要部の構造を示す斜視図である。 本発明の第一実施形態にかかるアンダランプロテクタの上面図であり、アンダランプロテクタに作用する曲げモーメントの大きさをアンダランプロテクタに重ねて示している。 本発明の第一実施形態にかかるアンダランプロテクタの外側パネルを単体で示す斜視図である。 本発明の第一実施形態にかかるアンダランプロテクタの外側パネルを単体で示す上面図である。 本発明の第一実施形態にかかるアンダランプロテクタの内側パネルを単体で示す斜視図である。 本発明の第一実施形態にかかるアンダランプロテクタの断面図であり、(a)は結合領域の横断面を示し、(b)は中間領域又は端部領域の横断面を示す。 本発明の第一実施形態にかかるアンダランプロテクタから外側パネルを外して示す正面図であり、アンダランプロテクタに作用する曲げモーメントをともに示す。 本発明の第一実施形態にかかるアンダランプロテクタから外側パネルを外し、車幅方向端部及びその周辺を拡大して示す要部正面図である。 本発明の第一実施形態にかかるアンダランプロテクタから外側パネルを外し、車幅方向中心及びその周辺を拡大して示す要部正面図である。 本発明の第一実施形態にかかるアンダランプロテクタの補強パネルを単体で示す斜視図である。 本発明の第一実施形態にかかるアンダランプロテクタを構成するパネルの板厚tを一定としたうえで、材料或いは材質毎の対抗可能な上限荷重Pを示す図表である。 本発明の第一実施形態にかかるアンダランプロテクタの重量を一定としたうえで、材料或いは材質毎の対抗可能な上限荷重Pを示す図表である。 本発明の第一実施形態にかかるアンダランプロテクタを構成するパネルの板厚tと対抗可能な上限荷重Pとを示す図表である。 本発明の第一実施形態にかかるアンダランプロテクタに荷重P1を入力したときに対抗可能な最も薄い板厚tを、材料或いは材質毎に示す図表である。 本発明の第二実施形態にかかるアンダランプロテクタから外側パネルを外し、車幅方向端部及びその周辺を拡大して示す要部斜視図である。 本発明の第二実施形態にかかるスティフナの展開図である。 本発明の第二実施形態にかかるアンダランプロテクタの結合領域における横断面図である。 本発明の第二実施形態にかかるアンダランプロテクタから外側パネルを外して示す正面図であり、アンダランプロテクタに作用する曲げモーメントをともに示す。 本発明の第二実施形態にかかるスティフナの上面図であり、アンダランプロテクタに作用する曲げモーメントの大きさをスティフナに重ねて示す。 本発明の第二実施形態にかかるスティフナの斜視図であり、アンダランプロテクタに作用する曲げモーメントの大きさをスティフナに重ねて示す。
 以下、図面を参照して本発明の実施の形態を説明する。
 本発明にかかるアンダランプロテクタは、トラックなどの車両(以下、単に「車両」と呼ぶ。)の前部又は後部に装備される。
 車両の前部に設けられたアンダランプロテクタは、「フロントアンダランプロテクタ」や「FUP」などとも称され、車両の前部の下側に車高の低い車両がもぐり込むことを抑制する。また、車両の後部に設けられたアンダランプロテクタは、「リヤアンダランプロテクタ」や「RUP」などとも称され、車両の後部の下側に車高の低い車両がもぐり込むことを抑制する。
 一般的に、フロントアンダランプロテクタは、車幅方向端部がバンパに沿った形状、具体的には車幅方向外側へ向かうに連れて車両後方に向かうような形状に形成されている。一方、リヤアンダランプロテクタは、一般的に、車幅方向に沿って直線状に形成されている。
 以下の説明では、車両において、その前進方向を前方とし、前方を基準に左右方向を定め、前方の逆方向を後方とし、重力の作用方向を下方とし、その逆方向を上方とし、これらの前後方向及び上下方向の何れにも直交する方向を車幅方向とする。
 さらに、車両の内側とは、車両の中心側を意味し、逆に、車両の外側とは、車両の中心側の逆側を意味する。このため、車両の前部に取り付けられるフロントアンダランプロテクタにおいては、車両の前後方向内側が車両後側を意味し、車両の前後方向外側が車両前側を意味する。逆に、車両の後部に取り付けられるリヤアンダランプロテクタにおいては、車両の前後方向内側が車両前側を意味し、車両の前後方向外側が車両後側を意味する。また、アンダランプロテクタにおいて、単に内側及び外側というときには、中空の空間側が内側であり、その逆側が外側を意味する。
 以下の実施形態では、車体フレームの前部に設けられたフロントアンダランプロテクタ(以下、単に「アンダランプロテクタ」という)を例示して説明する。
 〔一実施形態〕
 [1.構成]
 はじめに、本実施形態にかかるアンダランプロテクタの周辺構造について説明する。
 図1に示すように、アンダランプロテクタ10は、その長手方向が車幅方向に沿って延びるように車体フレーム1の前部1aの下方に配設される。このアンダランプロテクタ10は、車両において車体フレーム1の前部1aの左右に対をなして設けられたブラケット5,5のそれぞれに取り付けられる。
 [1-1.周辺構造]
 以下、車体フレーム1,ブラケット5の順に各構成を説明する。
 [1-1-1.車体フレーム]
 車体フレーム1は、いわゆる梯子型フレーム(「ラダーフレーム」とも称される)として構成されている。この車体フレーム1は、左右一対のサイドフレーム2,2と、クロスメンバ3とを備えている。
 サイドフレーム2,2は、互いに車幅方向に所定の間隔をおいて車両の前後方向に沿ってそれぞれ設けられている。これらのサイドフレーム2,2は、車幅(車両の全幅)よりも車両の中心側にそれぞれ設けられ、サイドフレーム2,2よりも車幅方向外側には図示省略する車輪や車体の側部などが配置されている。なお、サイドフレーム2,2は、車幅方向中心を基準に左右対称の配置及び形状とされている。このため、以下の説明では、一方(ここでは左方)のサイドフレーム2に着目して説明し、他方のサイドフレーム2についての説明は省略する。
 サイドフレーム2は、車幅方向に沿った鉛直断面がコの字状、即ち、チャンネル形状に形成されている。各サイドフレーム2は、立設されたウェブ部2aとその上下端縁から車幅方向内側に突出するように同方向に屈曲形成されたフランジ部2b,2bとを有している。
 クロスメンバ3は、車幅方向に沿って設けられている。なお、図1では、車体フレーム1において前部1aに設けられたクロスメンバ3のみを示すが、このほかに、前後方向に所定の間隔を置いて図示省略する複数のクロスメンバが設けられている。
 このクロスメンバ3は、前後方向に沿った鉛直断面がコの字状、即ち、チャンネル形状に形成されている。また、クロスメンバ3は、立設されたウェブ部3aとその上下端縁から同方向に屈曲形成されたフランジ部3b,3bとを有している。なお、ここでは、クロスメンバ3のフランジ部3b,3bは、車両後側へ向けて突出するように屈曲形成されている。
 クロスメンバ3における車幅方向の各端部は、サイドフレーム2,2に結合され、サイドフレーム2,2を相互に接続している。なお、例えば、クロスメンバ3とサイドフレーム2,2との間に図示しないガセットが介装され、このガセットにクロスメンバ3及びサイドフレーム2,2がそれぞれ接合され、ガセットを介してクロスメンバ3とサイドフレーム2,2とが結合されてもよい。また、クロスメンバ3における車幅方向の各端部に、対応するサイドフレーム2のウェブ部2aと重合する面部(図示省略)が形成され、この面部とサイドフレーム2のウェブ部2aとが接合されてもよい。
 サイドフレーム2,2及びクロスメンバ3は、何れも図示省略するエンジンや変速機といった駆動系の各構成,キャブ(運転台),荷台やアクセサリといった架装物などが取り付けられて、これらを支持する車体フレーム1をなしている。このように、重量物が取り付けられるサイドフレーム2,2及びクロスメンバ3は、強度及び剛性が十分に確保されている。
 [1-1-2.ブラケット]
 ブラケット5,5は、左右一対で設けられ、アンダランプロテクタ10を車体フレーム1に取り付けるためのものであり、車体フレーム1の前部1aに取り付けられている。具体的には、左方に配置されたサイドフレーム2の前部に左方のブラケット5が取り付けられ、同様に、右方に配置されたサイドフレーム2の前部に右方のブラケット5が取り付けられている。このように、アンダランプロテクタ10は、車幅方向に所定の間隔をおいて、各ブラケット5に対応する箇所(二箇所)で支持される。なお、ブラケット5,5は、車幅方向中心を基準に左右対称の配置及び形状とされている。
 これらのブラケット5,5は、車体フレーム1に対してこれよりも低い位置にアンダランプロテクタ10を設けるために、車体フレーム1(ここでは、サイドフレーム2,2)から下方に向けて設けられている。また、アンダランプロテクタ10には、前方からの荷重に対抗することが要求されるため、アンダランプロテクタ10がブラケット5,5の前方に結合され、ブラケット5,5がアンダランプロテクタ10を後方から支持するようになっている。
 ブラケット5の構造としては、さまざまなものを採用することができるが、ここでは、以下に示す構造を採用している。なお、ここでは、一つのブラケット5(図1では左方のブラケット5)に着目して説明する。
 ブラケット5は、車幅方向内側から順に、第一パネル部材6,第二パネル部材7,第三パネル部材8を有している。
 第一パネル部材6は、サイドフレーム2において前後方向且つ上下方向に向けて配置されたウェブ部2aの外向き面に沿って設けられている。この第一パネル部材6には、サイドフレーム2のウェブ部2aに接合される平板状の本体部6aと、この本体部6aの前縁部に屈曲形成された補強用のフランジ部6bと、本体部6aの後縁部に屈曲形成された補強用のフランジ部6cとが形成されている。
 第一パネル部材6の本体部6aは、その上部がサイドフレーム2のウェブ部2aに接合され、その下部に第二パネル部材7及び第三パネル部材8が重合され接合されている。ここでは、前縁のフランジ部6bが本体部6aから車幅方向内側に向けて屈曲形成され、後縁のフランジ部6cが本体部6aの上部及び下部に亘って車幅方向外側に向けて屈曲形成されている。
 第二パネル部材7及び第三パネル部材8は、本体部6aの下部の外向き面にこの順で重合され接合される本体部7a,8aを有している。第二パネル部材7の前縁部には、車幅方向内側へ向かうとともに左右方向且つ上下方向に沿った取付面9aを有する取付部7bが屈曲形成され、第三パネル部材8の前縁部には、車幅方向外側へ向かうとともに左右方向且つ上下方向に沿った取付面9bを有する取付部8bが屈曲形成されている。
 取付部7b,8bのそれぞれの取付面9a,9b(以下、まとめて「取付面9」という)は同一平面上に配置され、取付面9には、アンダランプロテクタ10の後面部(後述するアンダランプロテクタ本体10Aの後面部10bに対応)が重合され結合されている。
 また、第二パネル部材7の後縁部及び第三パネル部材8の後縁部には、補強用のフランジ部7c,8cが車幅方向外側に向けて屈曲形成されている。
 なお、サイドフレーム2,クロスメンバ3,ブラケット5といった各部材どうしの接合手法としては、プラグ溶接や隅肉溶接といった溶接による結合や、リベット,ボルト及びナットを用いた結合などのさまざまな公知の結合手法を用いることができる。
 [1-2.アンダランプロテクタ]
 次に、アンダランプロテクタ10の構造について説明する。
 アンダランプロテクタ10は、車幅方向全域に亘るように配置されている。このアンダランプロテクタ10は、図1及び図2に示すように、その長手方向(車幅方向)の中心部分と両端部分との間の領域(以下、「結合領域」という)11,11がブラケット5,5(図2では第二パネル部材7及び第三パネル部材8のみを図示し、第一パネル部材6は図示省略する)に対してそれぞれ結合されている。このアンダランプロテクタ10の領域としては、結合領域11,11よりも車幅方向外方の領域(以下、「端部領域」という)12と、結合領域11,11の相互間であって結合領域11,11よりも車幅方向内方の領域(以下、「中間領域」という)13とが挙げられる。
 つまり、アンダランプロテクタ10は、その長手方向の一端部から他端部へ向けて、端部領域12,結合領域11,中間領域13,結合領域11,端部領域12の順の五領域に大別することができる。
 中間領域13の車幅方向外方には、左右のブラケット5,5にそれぞれ結合され支持される結合領域11,11が設けられているため、中間領域13は両持ち梁の構造となっている。また、端部領域12,12の車幅方向内方には、それぞれに対応する結合領域11,11が設けられているため、端部領域12,12は片持ち梁の構造となっている。
 ところで、アンダランプロテクタ10に要求される強度及び剛性を計る指針としては、例えば、保安基準の試験方法で示されるような図2に示す荷重P1,P2,P3を用いることが挙げられる。具体的には、荷重P1,P2,P3をアンダランプロテクタ10に入力し、これらの荷重P1,P2,P3にアンダランプロテクタ10が耐える(持ちこたえる)ことができれば、要求される強度及び剛性が確保されたものとすることができる。
 荷重P1,P2,P3は、アンダランプロテクタ10の図2に示す車幅方向個所において、何れも前後方向且つ水平方向に沿った方向で前方からアンダランプロテクタ10に入力される。
 荷重P1は、端部領域12に入力されるものである。ここでは、荷重P1が、端部領域12において車幅方向端部から所定長さだけ車幅方向内側に入力されるものを説明する。
 荷重P2は、結合領域11に入力されるものである。この荷重P2は、アンダランプロテクタ10におけるブラケット5の取付点Sに入力される。ここでは、ブラケット5の第一パネル部材6(図1参照)と第二パネル部材7との接合面に対応する箇所、言い換えれば、ブラケット5の取付面9の車幅方向中央部(面芯)を取付点Sとして説明する。
 荷重P3は、中間領域13の中心部に入力されるものである。この荷重P3は、中間領域13の長手方向中央、即ち、アンダランプロテクタ10における車幅方向中心Cに入力される。
 荷重P1,P2,P3のそれぞれには、各国の法規に対応した保安基準などに示された大きさの荷重を用いることができる。なお、荷重P1,P2,P3が面状に入力される場合には、その面芯を入力点として扱うことができる。
 このように、荷重P2はブラケット5に支持される結合領域11に入力されるのに対し、荷重P1及び荷重P3はブラケット5から梁構造の端部領域12及び中間領域13に入力される。このため、アンダランプロテクタ10には、荷重P1,P3による曲げモーメントが作用する。
 この曲げモーメントの大きさは、入力される荷重のみならず、梁構造の支持形態や、荷重の入力点(いわば力点)や梁構造の支点(ここではブラケット5の取付点S)からの距離に応じて異なる。荷重P1は片持ち梁構造の自由端側に加わるので支点(結合領域11)に極めて大きな曲げモーメントが作用する。一方、荷重P3は、両持ち梁構造の中心部分に加わるのでこの入力点と両支点とで曲げモーメントの方向が反転し、荷重P1によって支点に作用する曲げモーメントに比べ、入力点及び両支点での曲げモーメントの大きさは抑えられる。
 したがって、アンダランプロテクタ10において、荷重P1による曲げモーメントの大きさに対応できることが重要である。そこで、片持ち梁構造の端部領域12に入力される荷重P1による曲げモーメントに着目して説明する。
 図2に太実線で示すように、車両左側の端部領域12において荷重P1が入力されたときには、車両左側の結合領域11におけるブラケット5の取付点Sと荷重P1の入力点との距離に応じて曲げモーメントが作用する。
 したがって、車両左側の端部領域12に荷重P1が入力されたときには、車両左側のブラケット5の取付点Sに最も大きな曲げモーメントが作用する。言い換えれば、荷重P1が入力されたときの曲げモーメントの大きさは、アンダランプロテクタ10の端部領域12において、荷重P1の入力点からブラケット5の取付点Sに近づくに連れてリニア(直線状)に増加する。このため、アンダランプロテクタ10の端部領域12(ここでは車両左側)では、車幅方向内方に向かうに連れて、要求される断面二次モーメントの大きさが増大するものといえる。
 同様に、車両右側の端部領域12において荷重P1が入力されたときの曲げモーメントの大きさは、図2に太破線で示すように、アンダランプロテクタ10の車両右側の端部領域12において、荷重P1の入力点から車両右側のブラケット5の取付点Sに近づくに連れてリニアに増加する。
 車両左側の端部領域12に入力された荷重P1による曲げモーメントの大きさは、アンダランプロテクタ10の中間領域13では結合領域11,11がブラケット5,5に結合されて支持された両持ち梁の構造となっているため、図2に太実線で示すように、車両左側のブラケット5の取付箇所Sから車両右側のブラケット5の取付箇所Sへ向けてリニアに減少する。また、図2に太破線で示すように、車両右側の端部領域12に入力された荷重P1による曲げモーメントの大きさは、中間領域13では車両右側のブラケット5の取付箇所Sから車両左側のブラケット5の取付箇所Sへ向けてリニアに減少する。
 アンダランプロテクタ10が装備される車両と他の車高の低い車両とがオフセット衝突する際には、アンダランプロテクタ10において車両左側及び車両右側の何れか一方の端部側に荷重が入力される。したがって、アンダランプロテクタ10には、車両左側及び車両右側の何れに荷重が入力されたとしても対抗可能な剛性が要求される。すなわち、アンダランプロテクタ10の中間領域13では、車両左側の端部領域12に荷重P1が入力されたときの曲げモーメントと車両右側の端部領域12に荷重P1が入力されたときの曲げモーメントとのうち大きい方の曲げモーメントに対抗可能な剛性が要求される。このため、アンダランプロテクタ10の中間領域では、ブラケット5,5の取付箇所S,Sから車幅方向中心Cに向かうに連れて、要求される断面二次モーメントの大きさが減少するものといえる。
 以下、アンダランプロテクタ10を構成する各部材を説明する。
 なお、アンダランプロテクタ10はフロントアンダランプロテクタなので、車両の前後方向外側を車両前側とし、車両の前後方向内側を車両後側として説明する。
 図1に示すように、アンダランプロテクタ10は、アンダランプロテクタ本体10Aと、このアンダランプロテクタ本体10Aを補強する補強パネル部40,40(何れも破線で示す)とを備えている。なお、アンダランプロテクタ10における長手方向の端部には、各端部を覆う図示しないキャップが設けられていてもよい。
 アンダランプロテクタ本体10Aは、前面部(車両前後方向外側面部)10aと後面部(車両前後方向内側面部)10bと上面部10cと下面部10dとを備え、これらの面部10a,10b,10c,10dが中空の空間を形成している。言い換えれば、アンダランプロテクタ本体10Aは、面部10a,10b,10c,10dによって形成された中空の閉断面を有する。なお、アンダランプロテクタ本体10Aの各面部10a,10b,10c,10dは、アンダランプロテクタ10の各面部に対応している。
 このアンダランプロテクタ本体10Aは、アンダランプロテクタ10における長手方向全域に亘って設けられ、同領域に設けられる外側パネル20及び内側パネル30から構成されている。すなわち、アンダランプロテクタ本体10Aは、車両前側に配置された外側パネル20と車両後側に配置された内側パネル30とが相互に結合されて構成されている。
 補強パネル40,40は、アンダランプロテクタ本体10Aを補強するものである。なお、補強パネル40,40は、車幅方向中心を基準に左右対称の配置及び形状とされている。このため、以下の説明では、一方(ここでは左方)の補強パネル40に着目して説明し、他方の補強パネル40についての説明は省略する。
 詳細は後述するが、補強パネル40は、アンダランプロテクタ10の長手方向に着目すれば、結合領域11側の端部領域12と結合領域11側の中間領域13とに亘って配設される。言い換えれば、補強パネル40は、結合領域11を中心にその一部(両端部)が端部領域12及び中間領域13に進入するように配設されている。
 また、補強パネル40は、アンダランプロテクタ本体10Aにおける中空部内の後面部10b側の内面に重合するように配設されている。
 なお、アンダランプロテクタ10では、その長手方向(車幅方向)において、アンダランプロテクタ本体10Aと補強パネル40とが互いに重合した箇所(以下、「補強重合パート」という)81(図6参照)を横断面に含む領域を多重パネル部80(図1では一部を示す)とし、補強パネル40が重合されず横断面がアンダランプロテクタ本体10Aのみの領域を本体単体部90(図1では一部を示す)とする。
 これらのパネル20,30,40は何れも、超高張力鋼板製である。ここでいう超高張力鋼は、引張強さが980MPa以上のものとする。この超高張力鋼としては、炭素(C)の他にニッケル(Ni),シリコン(Si),マンガン(Mn)などの元素を鋼板材に添加して強化した固溶強化型や析出強化型鋼板、プレス成形後に焼入れして強化した複合組織鋼板などが挙げられる。また、超高張力鋼は、製品レベルで、その引張強さが、980MPaのものをはじめとして、1.2GPaや1.5GPaのものなどが挙げられる。
 ここでは、パネル20,30,40に用いる超高張力鋼板として、いわゆる980材(引張強さが980MPaのもの)を用いている。また、この超高張力鋼板の板厚tとしては、3.2mmを採用することができる。すなわち、パネル20,30,40には、同一の超高張力鋼板(同一材料)であって同一の板厚のものを用いることができる。
 なお、アンダランプロテクタ10を構成する各パネル20,30,40は、何れもプレス成形により製造することができる。
 以下、外側パネル20,内側パネル30,補強パネル40の順に各構成を説明する。
 [1-2-1.外側パネル]
 図3に示すように、外側パネル20は、その断面(長手方向と直交する横断面)がコの字型、即ち、チャンネル形状に形成されている。したがって、この外側パネル20は、立設されたウェブ部21とその上下端縁から車両後方に突出するように同方向に屈曲形成されたフランジ部22,23とを有している。すなわち、外側パネル20では、ウェブ部21が車両前側に配置され、フランジ部22,23の先端部が車両後方に向かうように配置されている。なお、外側パネル20は、長手方向両端部に内側パネル30(図1等参照)に近接するように屈曲形成された端部屈曲部29(図3では一箇所のみに符号を付す)を有している。
 外側パネル20のウェブ部21は、車幅方向に延びるとともに上下方向に沿って設けられている。
 フランジ部22,23は、車幅方向に延びるとともに前後方向に沿って設けられている。なお、フランジ部22,23は、ウェブ部21との各連続箇所が上端縁部か下端縁部かで異なる点を除いて、同様に構成されている。このため、以下の説明では、一方のフランジ部22(ここではフランジ部22,23のうちの上側のもの)に着目して説明する。
 図4に示すように、外側パネル20のフランジ部22には、複数の軽量穴51,52,53が形成されている。なお、外側パネル20のもう一つのフランジ部23(図3等参照)にも、フランジ部22の軽量穴51,52,53と対応する位置に、即ち上下対称に複数の軽量穴が形成されている。
 詳細は後述するが、外側パネル20のフランジ部22,23は、アンダランプロテクタ10の車両前後方向の中間部を含み、アンダランプロテクタ10の前面部及び後面部からの距離が等しい等距離部95を含む軽量穴形成領域96(何れも図6(b)参照)を包含する位置まで延在している。
 複数の軽量穴51,52,53は、中間領域13に形成された中間軽量穴51,52(図4では何れも一つだけに符号を付す)と、端部領域12に形成された端部軽量穴53とに大別することができる。さらに、中間軽量穴51,52は、上面視で円形に形成された軽量穴(以下、「円形中間軽量穴」という)51と、上面視で長円形に形成された軽量穴(以下、「長円形中間軽量穴」という)52とに類別することができる。なお、図4では、長円形中間軽量穴52として、長円形として長手方向に延びる平行な2本の直線とこれらの直線の前端部及び後端部をそれぞれ円弧で結んだ形状のものを例示するが、長径がアンダランプロテクタ10の長手方向に沿った楕円形のものを用いてもよい。
 円形中間軽量穴51と長円形中間軽量穴52とでは、アンダランプロテクタ10の長手方向の穴径(長さ)が異なるのに対し、アンダランプロテクタ10の短手方向の穴径(車両前後方向の長さ)が同径に設定されている。なお、中間軽量穴51,52は、左右対称に設けられている。
 図4では、アンダランプロテクタ10の長手方向中心(車幅方向中心C)と円形中間軽量穴51とが同心に配置され、この円形中間軽量穴51から車幅方向外側に向かう順に、長円形中間軽量穴52,円形中間軽量穴51,長円形中間軽量穴52,長円形中間軽量穴52が配置されたものを例示するが、かかる配列に限らず、種々の配列を採ることができる。
 中間軽量穴51,52の配列としては、中間軽量穴51,52どうしの間隔が、等間隔に設定されてもよいし、車幅方向中心Cから車幅方向外側に向かうに連れて大きくなるように設定されてもよい。
 更に言えば、中間軽量穴51,52の上面視形状は例示でありさまざまな上面視形状とすることができる。例えば、車幅方向中心Cから車幅方向外側に向かうに連れて、アンダランプロテクタ10の長手方向の穴径が次第に大きくなるように形状の異なる中間軽量穴が形成されてもよい。この場合、中間軽量穴どうしの間隔は、等間隔であってもよく、車幅方向外側に向かうに連れて長くなるように設定されてもよい。
 一方で、中間軽量穴の何れもが同形状に形成されていてもよい。この場合の中間軽量穴どうしの間隔についても、等間隔であってもよいし、車幅方向外側に向かうに連れて長くなるように設定されてもよい。
 なお、図4では、各結合領域11に穴が二つ形成されたものを示すが、これらの穴は、外側パネル20と内側パネル30とを接合するプラグ溶接用に設けられたものである。
 端部軽量穴53は、ここでは上面視で円形に形成されており、円形中間軽量穴51と同様に形成されている。この端部軽量穴53は、端部領域12のなかで結合領域11側に設けられている。なお、端部軽量穴53は、上面視の形状が円形と異なるものでもよいし、構造の簡素化のために省略してもよい。
 [1-2-2.内側パネル]
 図5に示すように、内側パネル30は、その断面(長手方向と直交する横断面)がコの字型、即ち、チャンネル形状に形成されている。したがって、この内側パネル30は、立設されたウェブ部31とその上下端縁から車両前方に突出するように同方向に屈曲形成されたフランジ部32,33とを有している。すなわち、内側パネル30では、ウェブ部31が車両後側に配置され、フランジ部32,33の先端部が車両前方に向かうように配置されている。なお、内側パネル30は、長手方向に均一断面形状に形成されている。
 ウェブ部31は、車幅方向に延びるとともに上下方向に沿って設けられている。
 フランジ部32,33は、車幅方向に延びるとともに前後方向に沿って設けられている。なお、フランジ部32,33は、ウェブ部31との各連続箇所が上端縁部か下端縁部かで異なる点を除いて、同様に構成されている。
 図5,図7に示すように、内側パネル30のウェブ部31には、アンダランプロテクタ10の長手方向に並んで複数の穴61~65が形成されている。これらの複数の穴61~65は、軽量化を図るための軽量穴61~64と、部材同士を締結によって結合するための結合穴65(図7では一箇所のみに符号を付す)とに分類できる。軽量穴61,62は、図7に示すように、本体単体部90(図7では一部を示す)に設けられており、内側パネル30のウェブ部31における各端部領域12には複数の端部軽量穴61が配設され、内側パネル30のウェブ部31における中間領域13には複数の中間部軽量穴62が配設されている。また、軽量穴63,64及び結合穴65(図5参照)は、図7に示すように、多重パネル部80(図7では一部を示す)に設けられている。
 まず、本体単体部90に設けられた端部軽量穴61について説明する。
 図7に示すように、各端部領域12には、複数(ここでは三つ)の端部軽量穴61が配設されている。なお、ここでは三つの端部軽量穴61を、車幅方向内方から外方に向かってそれぞれ第一端部軽量穴61a,第二端部軽量穴61b,第三端部軽量穴61cと呼んで区別する。これら端部軽量穴61a,61b,61cは、何れも補強パネル40よりも車幅方向外方の本体単体部90において、穴の中心が内側パネル30のウェブ部31の上下方向略中央部に配置され形成されている。
 図8は、図7のA部の拡大図であり、外側パネル20を外したアンダランプロテクタ10の車幅方向端部(ここでは左側端部)及びその周辺を示す図である。図8に示すように、一方(ここでは左方)の端部領域12の本体単体部90に形成された端部軽量穴61のうち、第一端部軽量穴61aは正面視が円形の円形形状穴であり、第二,第三端部軽量穴61b,61cは、何れも正面視が矩形の矩形形状穴である。なお、第二,第三端部軽量穴61b,61cの間には、図示しないキャブのバンパを内側パネル30に取り付けるためのボルトが配設される。
 端部軽量穴61は、結合領域11から離隔する車体外方のものほど上下方向に大きな穴径に設定されている。即ち、ここでは第一端部軽量穴61a,第二端部軽量穴61b,第三端部軽量穴61cの順に上下方向の穴径が次第に大きく形成されている。
 このような端部軽量穴61の上下方向の穴径は、前記の荷重P1に対するアンダランプロテクタ10の曲げモーメント分布に対応するように設定されている。上述したように、端部領域12では、荷重P1によってアンダランプロテクタ10に作用する曲げモーメントの大きさが、車体内方の支点(ここではブラケット5の取付点S)から荷重P1の入力点に近づくに連れてリニアに減少する(図2及び図7参照)。このため、アンダランプロテクタ10に要求される曲げ剛性は、支点である取付点Sから荷重P1の入力点に近づくに連れてリニアに低くなる。
 この要求される曲げ剛性のリニアな変化に対応して、端部軽量穴61a,61b,61cは、車体内方から荷重P1の入力点に近づくに連れて上下方向の穴径d1,d2,d3が略リニアに増加するように設定されている。この場合の各穴径d1,d2,d3は、軽量穴61a~61cの車幅方向中央におけるものである。したがって、それぞれの上下方向の穴径を規定する穴の上下各縁部を結ぶと、図8にそれぞれ一点鎖線で示すように何れも略直線状になる。これによって、アンダランプロテクタ10の端部領域12の端部軽量穴61a,61b,61cを設けた部分における断面二次モーメントは、車体内方から荷重P1の入力点に近づくに連れて減少するようになり、要求される曲げ剛性の大きさに対応したものとなる。
 次に、本体単体部90に設けられた中間部軽量穴62について説明する。
 図7に示すように、中間領域13には、複数(ここでは三つ)の中間部軽量穴62が配設されている。なお、ここでは三つの中間部軽量穴62a,62b,62cを、車体左方から右方に向かってそれぞれ第一中間部軽量穴62a,第二中間部軽量穴62b,第三中間部軽量穴62cと呼ぶ。これら中間部軽量穴62a,62b,62cは、何れも結合領域11,11の相互間の長手方向中間部に横並びに形成され、補強パネル40,40よりも車幅方向内方の本体単体部90において、穴の中心が内側パネル30のウェブ部31の上下方向略中央部に配置されて形成されている。
 図9は、図7のB部の拡大図であり、外側パネル20を外したアンダランプロテクタ10の車幅方向中心及びその周辺を示す図である。図9に示すように、第二中間部軽量穴62bは、正面視が矩形の矩形形状穴であり、車幅方向中心C上に配置されている。また、第一,第三中間部軽量穴62a,62cは、何れも正面視が円形の円形形状穴であり、互いに等しい開口面積を有し、互いに等しい距離だけ第一中間部軽量穴61bからそれぞれ車幅方向に離隔している。
 中間部軽量穴62は、結合領域11から離隔するほど上下方向に大きな穴径に設定されている。即ち、ここでは車幅方向中心C上に配置された第二中間部軽量穴62bが、これよりも結合領域11,11側に隣接して配置された第一,第三中間部軽量穴62a,62cの穴径よりも、上下方向に小さい穴径を有している。
 このような中間部軽量穴62の上下方向の穴径は、前記の荷重P1に対するアンダランプロテクタ10の曲げモーメント分布に対応するように設定されている。図2や図7を参照して上述したように、中間部領域13では、荷重P1によってアンダランプロテクタ10に作用する曲げモーメントの大きさが、車体内方の支点(ここではブラケット5の取付箇所S)から車幅方向中心Cに近づくに連れてリニアに減少する。このため、アンダランプロテクタ10に要求される曲げ剛性は、支点である取付点Sから車幅方向中心Cに近づくに連れてリニアに低くなる。
 この要求される曲げ剛性のリニアな変化に対応して、中間部軽量穴62a,62b,62cは、取付点Sから車幅方向中心Cに近づくに連れて上下方向の穴径d4,d5,d6が略リニアに増加するように設定されている。この場合の各穴径d4,d5,d6は、軽量穴62a~62cの車幅方向中央におけるものである。したがって、それぞれの上下方向の穴径を規定する穴の上下各縁部を結ぶと、図9にそれぞれ一点鎖線で示すように何れも車幅方向中心Cで屈曲する略直線状になる。これによって、アンダランプロテクタ10の中間領域13の中間部軽量穴62a,62b,62cを設けた部分における断面二次モーメントは、取付点Sから車幅方向中心Cに向かうに連れて減少するようになり、要求される曲げ剛性に対応したものとなる。
 なお、アンダランプロテクタ10の断面二次モーメントは、内側パネル30のウェブ部31だけでなく、内側パネル30のフランジ部32,33や、外側パネル20のウェブ部21やフランジ部22,23や、更には、補強パネル40も寄与するので、これらを総合的に考慮して軽量穴61a~61c,62a~62cの上下方向の穴径を設定することが有効である。
 また、軽量穴61a~61c,62a~62cの車幅方向の穴径は、上記の水平方向への荷重P1,P2,P3に対する曲げ剛性に関しては影響し難いが、アンダランプロテクタ10に加わる外力は水平方向だけでなく鉛直方向成分も含み、また、水平方向の荷重P1,P2,P3が加わった場合にも、アンダランプロテクタ10が変形する際に鉛直方向成分の荷重も発生するので、この点を考慮すると、軽量穴61a~61c,62a~62cの車幅方向の穴径も制限される。
 また、このような鉛直方向成分の荷重を含んで三次元的な剛性を考慮すると、内側パネル30のウェブ部31からフランジ部32,33に屈曲する屈曲部分の近傍も、軽量穴61a~61c,62a~62cの設定個所から省く必要がある。これらを総合的に考慮して、軽量穴61a~61c,62a~62cの配置や大きさや形状を設定することが有効である。
 ここでは軽量穴61b,61c,62bを矩形形状穴としているが、これは、矩形形状穴の方が、円形形状穴よりも、上記の要求される曲げ剛性に対応しやすく、また、フランジ部22,23につながる屈曲部分に接近し難く、且つ穴面積を大きくすることができるためである。ただし、矩形形状穴の場合も、穴の四隅は部分的に円弧等の曲線状に形成され応力集中を回避できるようになっている。
 なお、例えば上下方向の穴径が等しい円形形状穴と矩形(正方形)形状穴とを比較すると、その開口面積は円形形状穴よりも矩形形状穴の方が大きくなる。このため、軽量穴61~64を矩形形状穴とすれば、等しい上下方向の穴径を有する円形形状穴と比べて、アンダランプロテクタ10の軽量化をより促進することができる。
 一方、軽量穴61~64が円形形状穴であれば、穴の上下長さが車幅方向に沿って緩やかに変化するため、アンダランプロテクタ10の長手方向における断面二次モーメントの急変が抑制される。このため、軽量穴61~64を円形形状穴とすれば、アンダランプロテクタ10の強度や剛性が局部的に低下することを抑制できる。
 次に、多重パネル部80の内側パネル30に設けられた軽量穴63,64について説明する。
 図7に示すように、各端部領域12において、後述の補強パネル40の延設部42が内側パネル30と重合して形成された多重パネル部80には、複数(ここでは二つ)の軽量穴63が配設される。中間領域13において、後述の各補強パネル40の延設部42が内側パネル30と重合して形成された多重パネル部80には、複数(ここでは合計四つ)の軽量穴64が左右の多重パネル部80に二つずつ配設されている。これらの軽量穴63,64は、何れも多重パネル部80を構成する補強パネル40と車両前後方向に重なる位置に形成されている。
 図8に示すように、軽量穴63は、端部領域12において、端部軽量穴61よりも車体内方で横並びに形成され、一方の軽量穴63aが、これよりも結合領域11側(車幅方向内側)に形成された他方の軽量穴63bよりも上下方向に小さな穴径を有している。このため、内側パネル30のみの曲げ剛性は、結合領域11に近い軽量穴63bの部分が、結合領域11から遠い軽量穴63aの部分よりも低下する。しかし、軽量穴63bの部分は補強パネル40の肉部によって補強されるため、アンダランプロテクタ10の端部領域12における曲げ剛性は、軽量穴63bを設けた部分の方が軽量穴63aを設けた部分に比べて高くなる。
 また、図9に示すように、中間部領域13において、四つの軽量穴64は、中間部軽量穴62よりも車体外方の左右それぞれに、二つずつ横並びに形成されている。左右一方に形成された二つの軽量穴64に着目すると、一方の軽量穴64aが、これよりも結合領域11側(車幅方向外側)に形成された他方の軽量穴64bよりも上下方向に小さな穴径を有している。このため、内側パネル30のみの曲げ剛性は、結合領域11に近い軽量穴64bの部分が、結合領域11から遠い軽量穴64aの部分よりも低下する。しかし、軽量穴64bの部分は、補強パネル40の肉部によって補強されるため、アンダランプロテクタ10の中間領域13における曲げ剛性は、軽量穴64bを設けた部分の方が軽量穴64aを設けた部分に比べて高くなる。
 内側パネル30は、平面状のプレート部材に上述の穴61~65がそれぞれ形成された後、長手方向に沿う線で屈曲されることによりウェブ部31及びフランジ部32,33が形成される。このようにして内側パネル30は、ウェブ部31及びフランジ部32,33が何れも長手方向に沿って直線上に延び、長手方向に均一な断面形状に形成される。
 [1-2-3.補強パネル]
 図7及び図10に示すように、補強パネル40は、その断面(長手方向と直交する横断面)がチャンネル形状に形成された本体部(補強パネル本体部)41と同断面が直線形状に形成され本体部41から車幅方向に向けて延設された延設部(補強パネル延設部)42とを有する。
 本体部41は、アンダランプロテクタ10の結合領域11に配設され、その断面(長手方向と直交する横断面)がコの字型、即ち、チャンネル形状に形成されている。したがって、この本体部41は、図10に示すように、立設されたウェブ部41aとその上下端縁から車両前方に突出するように同方向に屈曲形成されたフランジ部41b,41cとを有する。すなわち、本体部41aでは、ウェブ部41aが車両後側に配置され、フランジ部41b,41cの先端部が車両前方に向かうように配置されている。
 ウェブ部41aは、車幅方向に延びるとともに上下方向に沿って設けられている。このウェブ部41aには、詳細を後述する取付穴73(図10では一つだけに符号を付す)が形成されている。
 フランジ部41b,41cは、車幅方向に延びるとともに前後方向に沿って設けられている。なお、フランジ部41b,41cは、ウェブ部41aとの各連続箇所が上端縁部か下端縁部かで異なる点を除いて、同様に構成されている。
 延設部42は、図7及び図10などに示すように、中間領域13において結合領域11(図7参照)側の一部に配設される中間延設部42aと、端部領域12において結合領域11(図7参照)側の一部に配設される端部延設部42bとに大別することができる。
 各延設部42a,42bの車幅方向端部には、軽量穴71,72が形成されている。ここでは、各軽量穴71,72がそれぞれ1つずつ形成されている。
 なお、内側パネル30の軽量穴63b,64bを設けずに軽量穴63a,64aのみ設ける場合や、内側パネル30の軽量穴63a,63b,64a,64bを何れも設けない場合には、図7及び図10などに二点鎖線で示すように、各軽量穴71,72をそれぞれ二つずつ形成してもよい。この場合、軽量穴71,72の何れも補強パネル40の端部側の軽量穴71a,72aの方が補強パネル40の中心部側の軽量穴71b,72bよりも大きく形成される。これにより、曲げ剛性は、軽量穴71b,72bを設けた部分の方が、軽量穴71a,72aを設けた部分に比べて高くなる。
 図10に示すように、中間延設部42aは、本体部41のウェブ部41aから車幅方向内側に延設された部分である。このため、中間延設部42aは、図7に示すように、アンダランプロテクタ10において、結合領域11から中間領域13に進入するように配設されている。なお、中間延設部42aは、アンダランプロテクタ10の中間領域13における車幅方向中心Cまでは延びていない。
 中間延設部42aの端部(ここでは車幅内側端部)に二つの軽量穴71a,71bを形成する場合、一方の軽量穴71aは、これよりも補強パネル40の本体部41側に形成された他方の軽量穴71bよりも大きく形成される。このため、中間延設部42aに形成された軽量穴71a,71bは、中間延設部42aの端部に向かうに連れて大きくなるように形成されたものといえる。
 端部延設部42bは、本体部41のウェブ部41aから車幅方向外側に延設した部分である。このため、端部延設部42bは、図7に示すように、アンダランプロテクタ10において、結合領域11から端部領域12に進入するように配設されている。なお、端部延設部42bは、アンダランプロテクタ10の端部領域12における車幅方向外側の端部までは延びていない。
 図10に示すように、端部延設部42bの端部(ここでは車幅方向外側端部)に二つの軽量穴72a,72bを形成する場合、一方の軽量穴72aは、これよりも補強パネル40の本体部41側に形成された他方の軽量穴72bよりも大きく形成される。このため、端部延設部42bに形成された軽量穴71a,72bは、端部延設部42bの端部に向かうに連れて大きくなるように形成されたものといえる。
[1-3.外側パネル,内側パネル及び補強パネルの配置]
 次に、外側パネル20,内側パネル30及び補強パネル40の相互の配置について説明する。
 まず、アンダランプロテクタ10の長手方向全域において共通の構造を、図6(a)及び(b)を参照して説明する。
 アンダランプロテクタ10のアンダランプロテクタ本体10Aでは、外側パネル20のフランジ部22,23における縁部(端縁部)22a,23aと内側パネル30のフランジ部32,33における縁部(端縁部)32a,33aとが重合されて結合された部分(以下、「結合重合パート」という)91(図6では上部のみ符号を付けて示す)を有して結合され、中空の閉断面が形成されている。ここでは、アンダランプロテクタ10及びアンダランプロテクタ本体10Aが形成する閉断面が、矩形であり口の字型(ボックス断面)のものを例に挙げて説明する。なお、外側パネル20が内側パネル30を外嵌するように、外側パネル20のフランジ部22,23は内側パネル30のフランジ部32,33の外側に設けられる。
 アンダランプロテクタ本体10Aは、前面部10aが外側パネル20のウェブ部21で構成され、後面部10bが内側パネル30のウェブ部31で構成され、上面部10cが外側パネル20のフランジ部22と内側パネル31のフランジ部32とで構成され、下面部10dが外側パネル20のフランジ部23と内側パネル31のフランジ部33とで構成されている。これらの面部10a,10b,10c,10dは、何れも平板状に形成されている。
 ここでは、図6(a)に示すように、アンダランプロテクタ10の結合領域11(図1,図2及び図7参照)における外側パネル20のフランジ部22,23の前後長さよりも、図6(b)に示すように、アンダランプロテクタ10の端部領域12及び中間領域13(図1,図2及び図7参照)における外側パネル20のフランジ部22,23の前後長さの方が短く形成されている。また、結合領域11における内側パネル30のフランジ部32,33の前後長さよりも、端部領域12及び中間領域13における内側パネル30のフランジ部32,33の前後長さの方が短く形成されている。
 次に、アンダランプロテクタ10の結合領域11(図1,図2及び図7等参照)の構造について図6(a)を参照して説明し、アンダランプロテクタ10の端部領域12及び中間領域13(何れも図1,図2及び図7等参照)の構造について図6(b)を参照して説明する。
 アンダランプロテクタ10の結合領域11では、図6(a)に示すように、補強パネル40が、アンダランプロテクタ本体10Aの中空部内の後面部10b側の内面、即ち内側パネル30の内面30aに全面的に重合するように配設されている。言い換えれば、内側パネル30の内面30aに、補強パネル40の外面40d(ここでは本体部41の外面41d)の全面又は略全図を接触させて配設される。なお、全面的に重合するとは、部材どうし(ここでは内側パネル30及び補強パネル40)の製造誤差により重合せずに浮いているものや、部材の曲げ部などで部材どうしを重合させるのに精度が要求される箇所では、予め内側の部材(ここでは補強パネル40)を外側の部材(ここでは内側パネル30)から僅かに離隔するように形状設定して平面部が離隔しないようにしばしば処理されるが、このような箇所については重合していなくてもよいことを意味している。
 ここでは、補強パネル40の本体部41は、ウェブ部41a及びフランジ部41b,41cの内面を、内側パネル30のウェブ部31及びフランジ部32,33の内面にそれぞれ重合するように結合されている。具体的には、補強パネル40の本体部41におけるウェブ部41aと内側パネル30のウェブ部31とが隙間なく重合され、また、補強パネル40の本体部41におけるフランジ部41b,41cと内側パネル30のフランジ部32,33とが隙間なく重合されている。
 補強パネル40は、アンダランプロテクタ10における結合領域11の長手方向全域に亘って配設される。補強パネル40が配設される部分は、アンダランプロテクタ本体10Aと補強パネル40とが重合する補強重合パート81であり、アンダランプロテクタ10における結合領域11の長手方向全域に、その横断面に補強重合パート81が含まれる多重パネル部80(図1参照)が配設される。
 ここでは、補強重合パート81に、共通のボルト或いはナットなどの締結部材によって内側パネル30及び補強パネル40をブラケット5(図1及び図2参照)に共締めして固定するための取付穴73(図6(b)では一つのみに符号を付す)が形成されている。
 またここでは、補強パネル40が内側パネル30の内面30aかつ結合重合パート91に重合するように結合され、3重の多重パネルパート85が形成されている。この多重パネルパート85では、補強パネル40の本体部41におけるフランジ部41b,41c、内側パネル30のフランジ部32,33、外側パネル20のフランジ部22,23が、この順で中空の内側から重合される。なお、補強パネル40の本体部41におけるフランジ部41b,41c、内側パネル30のフランジ部32,33、外側パネル20のフランジ部22,23は、この順で車両前後方向の長さが次第に長くなるように設定されている。
 アンダランプロテクタ10の上面部(アンダランプロテクタ10Aの上面部10cに対応)においては、車両前側寄りに外側パネル20のみからなるシングルパネルパート92が形成され、車両後側寄りには複数のパネル20,30,40が重合してなる重合パネルパート84が形成されている。
 同様に、アンダランプロテクタ10の下面部(アンダランプロテクタ10Aの下面部10dに対応)においては、車両前側には外側パネル20のみからなるシングルパネルパート92が形成され、車両後側には複数のパネル20,30,40が重合してなる重合パネルパート84が形成されている。
 シングルパネルパート92の車両前後方向の長さL1は、重合パネルパート84の車両前後方向の長さL2と同等(L1≒L2)に設定されている。
 重合パネルパート84には、内側パネル30のフランジ部32と補強パネル40のフランジ部41bとが重合している補強重合パート81と、外側パネル20のフランジ部22における縁部22aと内側パネル30のフランジ部32における縁部32aとが重合している結合重合パート91とが、車両前後方向に重複するように配設されている。この重合パネルパート84において補強重合パート81と結合重合パート91とが車両前後方向に重複する箇所に、多重パネルパート85が形成されている。
 言い換えれば、多重パネルパート85は、外側パネル20のフランジ部22,23が補強パネル40の本体部41におけるフランジ部41b,41cと内側パネル30のフランジ部32,33とが重合する補強重合パート81まで延びて重合して形成されている。
 一方、補強パネル40は、図6(b)に示すように、アンダランプロテクタ10における端部領域12及び中間領域13それぞれにおける結合領域11寄りの一部以外(以下、「他部」という)には配設されていない。言い換えれば、アンダランプロテクタ10における端部領域12及び中間領域13のそれぞれの他部には、補強重合パート81がなくアンダランプロテクタ本体10Aのみからなる本体単体部90が配設される。
 ただし、図6(b)に二点鎖線で示すように、補強パネル40の延設部42は、結合領域11から端部領域12及び中間領域13それぞれの一部に進入するように配設されるため、端部領域12及び中間領域13それぞれの結合領域11側の一部では、延設部42が配設される。具体的には、延設部42が内側パネル30のウェブ部31の内側の内面に重合されて配設される。このため、端部領域12及び中間領域13それぞれの結合領域11側の一部には、補強パネル40と内側パネル30とが重合された補強重合パート81が形成され、かかる領域にも多重パネル部80が配設される。
 また、アンダランプロテクタ10における中間領域13においては、図6(b)に二点鎖線で示すように、アンダランプロテクタ10の上面部及び下面部を構成する外側パネル20のフランジ部22,23に上述した中間軽量穴51(52)が形成されている。
 これらの中間軽量穴51(52)は、アンダランプロテクタ10の車両前後方向の中間部であって、前面部10aに対する距離と後面部10bに対する距離とが等しい等距離部95を含む軽量穴形成領域96に形成されている。
 外側パネル20のフランジ部22,23の縁部22a,23aは、中間軽量穴51(52)が形成される軽量穴形成領域96を包含する位置まで延在し、かかる縁部22a,23aの内面に内側パネル30のフランジ部32,33の縁部32a,33aの外面が重合され溶接により結合されている。この重合箇所が、上述した結合重合パート91をなしており、ここでは、上述したシングルパネルパート92に軽量穴51(52)が形成されている。
 なお、端部軽量穴53(図4参照)についても、アンダランプロテクタ10において等距離部95を含む軽量穴形成領域96に形成されている。
 [2.作用及び効果]
 本実施形態のアンダランプロテクタ10の構造は、上述したように構成されるため、以下に示す作用及び効果を得ることができる。
 アンダランプロテクタ本体10Aの引張強度が980MPa以上かつ板厚tが3.2mm以下の超高張力鋼板製であるため、重量及びコストを抑えることができる。また、補強パネル40が、アンダランプロテクタ本体10Aの中空部内の後面部10b側の内面に重合するように配設されるため、アンダランプロテクタ本体10Aの要部(アンダランプロテクタ本体10Aの中空部内の後面部10b側)が補強され、アンダランプロテクタ10の強度及び剛性を確保することができる。これらより、重量を抑えるとともに強度及び剛性を確保したうえで、コストを抑えることができる。
 具体的には、アンダランプロテクタ本体10Aを構成する外側パネル20及び内側パネル30と補強パネル40,40とが何れも超高張力鋼板製であるため、強度及び剛性を確保したうえで板厚を抑えて(薄くして)重量を抑えることができ、鋼板材よりもコストのかかるアルミ材を用いるのに比較して、コストを抑制することができる。
 以下、本アンダランプロテクタ10のパネル20,30,40に、板厚tが3.2mmであって980材(SS〈Steal Structure〉980)を用いる場合と他の板厚や材料を用いた場合とを比較して説明する。ここでは、他の材料として、アルミ材を例示する。このアルミ材には、7000系のものを用いている。
 以下、図11~14を参照して、本アンダランプロテクタ10のパネル20,30,40に用いる超高張力鋼の引張強度,板厚及び重量の各パラメータに着目して、他の材料と比較する。なお、図11~13の荷重P1は、各国(例えば日本)の保安基準に基づくものである。
 はじめに、他の材料との比較を図11及び図12を参照して説明する。
 アンダランプロテクタ10を構成するパネル20,30,40の板厚tを一定(ここでは3.2mm)としたうえで、パネル20,30,40の材料或いは材質を変更した場合に、荷重P1が入力される入力点に荷重を入力したときにアンダランプロテクタ10が耐えうる上限荷重Pを示す図11によれば、引張強度が780MPaのいわゆる780材(SS780)やアルミ材(Al)では荷重P1に対抗不能であるのに対し、980材では荷重P1に対抗可能なことがわかる。なお、780材は、引張強度が980MPaに達せず超高張力鋼材ではない。ただし、780材は高張力鋼材に含まれる。
 また、アンダランプロテクタ10を構成するパネル20,30,40の重量を一定としたうえで、パネル20,30,40の材料或いは材質を変更した場合に、荷重P1が入力される入力点に荷重を入力したときにアンダランプロテクタ10が耐えうる上限荷重Pを示す図12によれば、780材では荷重P1に対抗不能であるのに対し、980材やアルミ材では荷重P1に対抗可能なことがわかる。すなわち、パネル20,30,40にアルミ材及び980材の何れも用いた場合であっても、重量は同等であることがわかる。ただし、アルミ材は980材をはじめとした超高張力鋼板よりも材料コストが高い。
 これらより、パネル20,30,40に980材を用いれば、要求される強度及び剛性を確保したうえで、コストを抑えることができる。
 次に、板厚の違いによる比較を図13及び図14を参照して説明する。
 アンダランプロテクタ10を構成するパネル20,30,40の板厚tと、荷重P1が入力される入力点に荷重を入力したときにアンダランプロテクタ10が耐えうる上限荷重Pとを示す図13によれば、パネル20,30,40の板厚tが3.2mmであれば、荷重P1よりも大きい荷重に耐えることがわかる。詳細には、パネル20,30,40の板厚tが2.9mm以上であれば、荷重P1に耐えることがわかる。
 また、アンダランプロテクタ10の材料或いは材質を変更した場合に、荷重P1に対抗可能なパネル20,30,40の最も薄い板厚tを示す図14によれば、この板厚tは、アルミ材や780材よりも980材が最も薄い。具体的にいえば、980材では板厚2.9mm以上で荷重P1に対抗可能なのに対し、780材では板厚4.7mm以上、また、アルミ材では板厚10.1mm以上で荷重P1に対抗することが可能となる。
 アンダランプロテクタ10を構成するパネル20,30,40に用いられる980材(超高張力鋼板材)の板厚tが3.2mmであればもちろん、板厚tが2.9mm以上であれば、要求される強度及び剛性を確保することができる。
 補強パネル40の外面40dは、内側パネル30の内面30aと同一又は略同一形状に形成されており、その全面又は略全面を内側パネル30の内面30aに接触させて配設されているため、アンダランプロテクタ10Aを確実に補強することができる。
 アンダランプロテクタ10においては、片持ち梁の構造である端部領域12に荷重が入力されたときに結合領域11には大きな曲げモーメントが作用しうるため、結合領域11で要求される強度及び剛性よりも端部領域12及び中間領域13で要求される強度及び剛性の方が低い。
 このように、要求される強度及び剛性が比較的に低い端部領域12及び中間領域13には、補強パネル40が重合されずアンダランプロテクタ本体10Aのみからなる本体単体部90が配設されるため、簡素な構成とすることができ、重量の軽減に寄与する。また、要求される強度及び剛性が比較的高い結合領域11には、アンダランプロテクタ本体10Aの中空部内において後面部10b側の内面に補強パネル40が全面的に重合した補強重合パート81を有する多重パネル部80が配設されるため、簡素な構成ながら補強パネル40による断面二次モーメントの増大を図ることで要求される強度及び剛性を確保することができる。
 また、要求される強度及び剛性に応じて、アンダランプロテクタ10の各領域(結合領域11,端部領域12,中間領域13)に補強パネル40が重合された多重パネル部80とアンダランプロテクタ本体10Aが単体の本体単体部90とが配設されるため、要求される強度及び剛性を確保したうえで、重量を抑えることができる。
 アンダランプロテクタ本体10Aの閉断面は、矩形閉断面であり、矩形閉断面は一般的に用いられる鋼材の形状であるため、製造コストの低減に寄与する。
 アンダランプロテクタ本体10Aは、車両前側に配置された外側パネル20と車両後側に配置された内側パネル30とが相互に結合されて構成されているため、容易に製造することができ、コストの低減に寄与する。例えば、上記の補強パネル40を備えるアンダランプロテクタ10の場合、まず内側パネル30の内面に補強パネル40を結合してから外側パネル20と内側パネル30とを結合することによって、アンダランプロテクタ10の中空部内に補強パネル40を容易に配設することができる。また、アンダランプロテクタ本体10Aの矩形閉断面は、一般的に用いられる断面チャンネル形状をなす外側パネル20及び内側パネル30を組み合わせて構成することができ、製造コストを低減させることができる。
 補強パネル40は、結合領域11のみに配置されるとともに内側パネル30の内面30aに重合する本体部41と、本体部41のウェブ部41aから車幅方向に向けて延設されるとともに内側パネル30のウェブ部31の内面(30a)に重合する延設部42とが形成されているため、アンダランプロテクタ10では、結合領域11を中心に車幅方向の所定領域(端部領域12及び中間領域13それぞれの結合領域11側の一部領域)が補強され、アンダランプロテクタ10の強度や曲げモーメントに対する剛性を確実に確保することができる。
 延設部42の車幅方向端部には、軽量穴71,72が形成されているため、軽量化を促進することができる。例えば、中間延設部42aに形成された軽量穴71a,71bが補強パネル40の端部に向かうに連れて大きくなるように形成され、また、端部延設部42bに形成された軽量穴72a,72bが補強パネル40の端部に向かうに連れて大きくなるように形成されていれば、曲げモーメントに対する剛性を適切に確保しながら、軽量化を図ることができる。
 また、外側パネル20が、長手方向両端部に内側パネル30へ接近するように屈曲形成された端部屈曲部29を有しているため、アンダランプロテクタ10の直前方に装着されるフロントバンパの後退した左右両端部に対応して、外側パネル20の長手方向両端部を端部屈曲部29で後退させることができる。これにより、内側パネル30は長手方向に均一断面形状に形成することができるため、内側パネル30の加工コストを抑えることができる。
 また、軽量穴は、パネルが屈曲形成される場合に変形してしまうことがないように、パネルのうち屈曲加工されない個所に対して形成されることが好ましいが、上記の構成によれば、内側パネル30が長手方向に均一断面形状に形成されるため、内側パネル30への軽量穴61~64の加工負担を軽減することできる。
 一般に、荷重の入力される対象部材の支持剛性が高いほど、座屈の発生は抑制されるが、結合重合パート91にはパネル20,30,40が3重に重合している多重パネルパート85が形成されるため、多重パネルパート85及びその周辺部位の剛性を向上させることができ、座屈の発生を抑えることができる。同時に、パネル20,30,40に板厚tが3.2mmの薄い板材を用いることで、重量及びコストを抑えることができる。
 例えば、アンダランプロテクタ10に荷重P1が入力されたときのように、結合領域11に大きな曲げモーメントが作用したとしても、多重パネルパート85及びその周辺部位の剛性が向上されているため、座屈の発生を抑えることができる。
 シングルパネルパート92は、車両前後方向の長さが長いほど、また、その板厚が薄いほど、更に、その車両前後方向端部の剛性が低いほど、例えば荷重P1などの車両前後方向の荷重に対して座屈が発生しやすくなる。かかる点を考慮すれば、アンダランプロテクタ10において、車両後側に複数のパネル20,30,40が重合してなる重合パネルパート84が形成されているため、シングルパネルパート92の車両前後方向の長さを抑えるとともにアンダランプロテクタ10の車両後部側の剛性を向上させることができ、座屈の発生を更に抑制することができる。
 また、シングルパネルパート92の車両前後方向の長さL1は、重合パネルパート84の車両前後方向の長さL2と同等(L1≒L2)に設定されているため、シングルパネルパート92の車両前後方向の長さL1が抑えられ、座屈発生の抑制に寄与する。
 補強重合パート81に、共通のボルト或いはナットなどの締結部材によって内側パネル30及び補強パネル40をブラケット5(図1及び図2参照)に共締めして固定するための取付穴73が形成されているため、補強パネル40及び内側パネル30の結合と内側パネル30及びブラケット5の結合とのをそれぞれ別個にするのに比較して、締結部材を削減することができ、コストを軽減させることができる。
 また、ボルト或いはナットなどの締結部材によって内側パネル30及び補強パネル40をブラケット5(図1及び図2参照)に共締めして固定するときに、補強パネル40がボルト或いはナットなどの締結部材の座金として機能するため、アンダランプロテクタ10の取付安定性を向上させるとともに、部材点数を低減させることができる。
 このように、締結にかかる部材の点数を低減させることできるため、重量を軽減させることもできる。
 アンダランプロテクタ10では、補強パネル40の本体部41におけるフランジ部41b,41c、内側パネル30のフランジ部32,33、外側パネル20のフランジ部22,23が、この順で車両前後方向の長さが次第に長くなるように設定されているため、補強パネル40におけるフランジ部41b,41cの車両前後方向の長さを抑えることができ、軽量化に寄与する。
 パネル20,30,40には、同一の超高張力鋼板(同一材料)であって同一の板厚のものを用いることができるため、アンダランプロテクタ10の製造にあたって、複数の材料を用意する必要がなく、材料コストを抑制することができる。
 アンダランプロテクタ10においては、前面部や後面部に軽量穴を形成するよりも、上面部や下面部に軽量穴を形成した方が、車両前後方向の曲げに対する剛性の低下を招く難い。かかる点を考慮すれば、アンダランプロテクタ10の上面部及び下面部に複数の軽量穴51,52,53が形成されているため、剛性の低下(断面二次モーメントの減少)を抑えながら効果的に重量を抑えることができる。
 アンダランプロテクタ10において、外側パネル20のフランジ部22,23における長手方向の穴径が複数の軽量穴51,52,53では異なるため、長手方向の穴径が同径である複数の軽量穴(以下、「同径軽量穴」という)が形成されるのに比較して、アンダランプロテクタ10の長手方向における複数の軽量穴51,52,53の配設にかかる自由度を向上させることができる。例えば、同径軽量穴が形成されることを考えてみると、同径軽量穴どうしの間隔を変更することまでは可能であるが、本軽量穴51,52,53は、軽量穴51,52,53どうしの間隔が変更可能であるのに加え、軽量穴51,52,53によって長手方向の穴径が異なるため、アンダランプロテクタ10における軽量穴51,52,53の配置にかかる自由度を向上させることができる。つまり、アンダランプロテクタ10の上面部及び下面部において、軽量穴51,52,53が形成される領域と軽量穴51,52,53どうしの間の構造体の領域とを自由度高く配設することができる。このため、アンダランプロテクタ10に作用する捩れや鉛直方向の荷重による曲げモーメントといったさまざまな要因を考慮して、軽量穴51,52,53を配設することができる。よって、アンダランプロテクタ10の更なる軽量化に寄与しうる。
 軽量穴51,52,53は、外側パネル20のフランジ部22,23のそれぞれに上下対称に設定されているため、加工コストを低減させることができ、アンダランプロテクタ10の内部に浸入した異物の排出性を向上させることができる。
 また、アンダランプロテクタ10の下面部に軽量穴51,52,53が形成されているため、アンダランプロテクタ10の中空内部に浸入した水や泥などの異物を排出することができ、アンダランプロテクタ10の内部に異物が溜まることを防ぐことができる。これにより、アンダランプロテクタ10の腐食を抑制することができ、耐久性の向上に寄与する。
 さらに、アンダランプロテクタ10の下面部に軽量穴51,52,53は、アンダランプロテクタを塗装したときの塗料の抜けを良好にして、塗装品質の向上に寄与する。特に、アンダランプロテクタ10を浸漬塗り(いわゆる「どぶ漬け塗装」)するときには、塗料を中空内部から確実に排出させることができ、塗装品質を向上させることができる。
 アンダランプロテクタ10においては、矩形断面の角部の剛性が確保されるほど、断面二次モーメントが確保されるのに対し、矩形断面を構成する各面部の中間部の剛性は断面二次モーメントに影響を与えにくい。このように、断面二次モーメントに影響を与えにくいアンダランプロテクタ10の車両前後方向の中間部、具体的には、アンダランプロテクタ本体10Aの前面部10a及び後面部10bそれぞれに対する距離が等しい等距離部95を含む軽量穴形成領域96に、軽量穴51,52,53が形成されているため、断面二次モーメントの低下を効果的に抑制しつつ軽量化を図ることができる。さらに、これらの軽量穴51,52,53が車両前後方向の穴径が同径に設定されているため、軽量穴51,52,53の加工コストを抑えるとともに、断面二次モーメントの低下を抑えることができる。
 外側パネル20のフランジ部22,23の縁部22a,23aは、軽量穴51,52,53が形成される軽量穴形成領域96を包含する位置まで延在するため、軽量穴51,52,53を外側パネル20のフランジ部22,23に形成することができる。これにより、例えば、外側パネル20の外径をプレスでカットする際に軽量穴51,52,53の同時加工が容易になる。
 また、外側パネル20のフランジ部22,23の縁部22a,23aの内面に内側パネル30のフランジ部32,33の縁部32a,33aの外面が重合され溶接により結合されるため、内側パネル30において車両前方に向けて突き出したフランジ部32,33が露出することがなく、安全性を更に高めることができる。
 アンダランプロテクタ10の長手方向に並んで内側パネル30に形成された複数の軽量穴61,62が、結合領域11,11から離隔するほど上下方向に大きな穴径に設定されている。このため、結合領域11,11に隣接する側の部分では、軽量穴61,62の穴径を上下方向に小さく設定することによって強度や剛性を大きく確保し、結合領域11,11から離隔する側の部分では、軽量穴61,62の穴径を上下方向に大きく設定することによって軽量化を効率的に促進することができる。したがって、要求される強度や剛性を確保しながら、アンダランプロテクタ10の軽量化を効果的に促進することができる。
 つまり、複数の軽量穴61,62が、荷重P1に対するアンダランプロテクタ10の曲げモーメント分布に対応するように、結合領域11,11から離隔するほど上下方向に大きな穴径に設定されているので、アンダランプロテクタ10の長手方向各部の曲げ剛性を曲げモーメント分布に対応させることができる。したがって、荷重P1による曲げモーメント分布に対して要求される曲げ剛性を確実に確保しながら、軽量穴61,62によって軽量化をより効果的に促進することができる。
 軽量穴61,62には、正面視が矩形の矩形形状穴61b,61c,62bが含まれているので、開口面積を大きく確保してより効果的に軽量化を促進することができる。
 また、各端部領域12に配設された複数の端部軽量穴61が、結合領域11から離隔する車体外方のものほど上下方向に大きな穴径に設定されているため、アンダランプロテクタ10の各端部領域12において軽量化を効果的に促進しながら要求される強度や剛性を確保することができる。
 〔第二実施形態〕
 次に、図15~図20を参照して、本発明の第二実施形態にかかる構造を説明する。本実施形態にかかるアンダランプロテクタ110は、上記の第一実施形態にかかるアンダランプロテクタ10に対して、例えば図15に示すように、スティフナ100を備えている点が異なっている。以下、スティフナ100にかかる構成について説明し、上記第一実施形態で説明された要素に対応する要素や同一の要素には、同一の符号を付してそれらの説明を省略する。
 ここでは、スティフナ100が、引張強度が980MPa以上かつ板厚tが3.2mm以下の超高張力鋼板で形成されている。
 図15は、外側パネル20を省略したアンダランプロテクタ110の片側(ここでは左側)部分を示す模式的な斜視図である。図15に示すように、スティフナ100は、車幅方向に延びるとともに前後方向に沿って配設されるパネル部101を有している。ここでは二枚のパネル部101,101が、互いに平行に上下に配置され、それぞれの先端側(ここでは前側)で接続されている。
 スティフナ100は、図16に示すような形状のパネル部101,101とこれらから延設されてこれらを接続する接続部113とを有する一枚のプレートを、二枚のパネル部101,101が互いに平行になるように、接続部113において屈曲されて形成されている。接続部113は、図17に示すように、滑らかな曲面状の屈曲部116,116を介して平面部112aが形成されるように屈曲される。平面部112aは、平面状のパネル部101,101と直角に向く平面をなすように形成される。なお、平面部112aは、スティフナ100で最も前面部10a側に向かって突出した頂部を構成する。
 ここでは、二枚のパネル部材101,101は同じ形状を有し、上下方向の配置位置は異なるが車両前後方向及び左右方向の配置位置は一致している。以下、一方のパネル部101に着目してその形状及び配置を説明する。
 パネル部101は、結合領域11(図18参照)を中心にアンダランプロテクタ110の長手方向に沿って配設される。パネル部101の平面視形状は山型又は富士山型と呼ぶことができ、前面部10a側に向かって突出した先端縁112を有している。先端縁112は、スティフナ100の頂部112aに対応する部分で前面部10a側に最も突出しており、この最も突出した部分とこれから緩やかに前面部10aから離隔する稜線部112b,112c(図15及び図20参照)とを含んで構成される。また、パネル部101の基端部111(スティフナ100の基端部に対応)は、後面部10b側の内面に固設されている。ここでは基端部111が、補強パネル40のウェブ部41a及び延設部42の内面に結合されることによって、内側パネル30のウェブ部31の内面側に結合されている。
 パネル部101の先端縁112のうち、スティフナ100の頂部112aに対応する部分は、前記の通り前面部10a側への突出量が最も大きい部位であり、結合領域11に配置される。言い換えると、パネル部101の前後長さは頂部112aの位置に対応する結合領域11において最大となる。ここでは頂部112aが、車幅方向に延びるとともに上下方向に沿って設けられている。そして、図15に示す設置状態では、この頂部112aが外側パネル20のウェブ部21の内面と平行に設けられている。
 なお、パネル部101には、スティフナ100の頂部112aに対応する部分と基端部111との間に、前後方向に長辺を有する長円形又は楕円形の軽量穴115が穿設されている。ここでは二つの軽量穴115,115が、互いに穴径(長円形の短辺)程度離隔して、車幅方向に並設されている。各軽量穴115の軸心は、アンダランプロテクタ110の前後方向の略中央部に配置されている。
 パネル部101の先端縁112のうち、稜線部112b,112cは、スティフナ100の頂部112aに対応する箇所の車幅方向両端部からそれぞれ左右方向且つ車両後方に向かって延びる部位である。ここでは一方の稜線部112bが、結合領域11から中間領域13に進入するように配設され、他方の稜線部112cが、結合領域11から端部領域12に進入するように配設されている。
 稜線部112b,112cでは、パネル部101の車両前後方向の寸法が次第に減少する。つまり、パネル部101は、スティフナ100の頂部112aが配置される結合領域11から離隔するほど、先端縁112の突出量が減少する形状に形成されている。ここでは結合領域11におけるブラケット5の取付点Sを基準として、この取付点Sから離隔するほど、パネル部101の先端縁112の突出量が減少するように形成されている。
 これら頂部112a及び稜線部112b,112cによって規定される先端縁112の突出量は、アンダランプロテクタ110の曲げモーメント分布に対応するように設定することができる。これについて図19及び図20を参照して説明する。
 なお、図19及び図20は、先端縁112の突出量をアンダランプロテクタ110の曲げモーメント分布に対応するように設定する場合において、スティフナ100と荷重P1に対する曲げモーメント分布との関係をそれぞれ示す模式的な上面図及び斜視図であり、ここではアンダランプロテクタ110のスティフナ100以外の要素については図示を省略している。また、以下ではスティフナ100単体の曲げ剛性に着目して説明するが、実際には補強パネル40の曲げ剛性なども考慮したうえでスティフナ100の形状が設定される。
 図19に示すように、スティフナ100は、基本的には、荷重P1によってアンダランプロテクタ110に作用する曲げモーメントが所定の値M1以上となる範囲に対応して設けられる。つまり、荷重P1による曲げモーメントが比較的大きく、補強が必要とされる箇所を含むように、スティフナ100が配設される。
 スティフナ100の頂部112aは、荷重P1による曲げモーメントが最大となる箇所(ここではブラケット5の取付点Sに対応する位置)に配置される。また、パネル部101の稜線部112b,112cは、荷重P1に対する曲げモーメントが減少する箇所に配置される。これによって、アンダランプロテクタ110において、荷重P1の曲げモーメントが最大となる箇所ではパネル部101の先端縁112の突出量も最大となり、荷重P1の曲げモーメントが減少する箇所ではパネル部101の先端縁112の突出量もこれに応じて減少する。
 スティフナ100におけるパネル部101の先端縁112の突出量が大きいほど、アンダランプロテクタ110の横断面積(長手方向に直交する断面の面積)が大きくなるため、アンダランプロテクタ110の曲げ剛性も大きくなる。このため、パネル部101の先端縁112の突出量が、荷重P1に対する曲げモーメント分布に対応する場合、アンダランプロテクタ110の曲げ剛性の大きさも、荷重P1に対する曲げモーメントの大きさの分布に対応するものとなる。
 なお、稜線部112b,112cの左右長さは、基本的には、上述の曲げモーメント分布が所定の値M1以上となる範囲に対応して設定される。ただし、アンダランプロテクタ110における曲げ剛性は、スティフナ100だけでなく補強パネル40や各パネル20,30,40の穴などの要素によっても影響されるため、実際には、これらの要素を総合的に考慮したうえで稜線部112b,112cの左右長さが設定される。本アンダランプロクタ110においては、要求される曲げ剛性をスティフナ100と補強パネル40とが協働して確保するようにしているため、稜線部112b,112cの左右長さは、補強パネル40の曲げ剛性も考慮して調整されている。
 図18に示すように、ここでは、頂部112aに対して車幅方向中心側に延びる稜線部112bが、頂部112aから車幅方向外側に延びる稜線部112cよりも車幅方向に長く形成され、結合領域11と中間領域13との間に跨って配設されている。また、頂部112aに対して車幅方向外側に延びる稜線部112cは、結合領域11と端部領域12との境目付近まで延設されている。
 また、パネル部101に横並びに形成された二つの軽量穴115,115(図15,図16及び図20参照)は、ブラケット5の取付点Sの車幅方向位置を挟んで配置される。言い換えると、二つの軽量穴115,115の間に取付点Sの車幅方向位置が配設されるように、スティフナ100の頂部112aが配置される。
 なお、ここでは荷重P1に対するアンダランプロテクタ110の曲げモーメント分布が直線的であるのに対し、稜線部112b,112cは車両前側に凹となるような曲線状に延びているが、これはアンダランプロテクタ110の長手方向における断面二次モーメントの急変を抑制するためである。稜線部112b,112cがこのような曲線状である場合、その突出量の変化率は、頂部112aに対して離隔するほど小さくなり、スティフナ100の車幅方向端部において最小となる。
 したがって、例えば図20に二点鎖線で示すように、スティフナ100単体に着目した場合の曲げ剛性は、スティフナ100の車幅方向端部では稜線部112b,112cの突出量に対応して変化が緩やかになる。このため、アンダランプロテクタ110においても、スティフナ100の車幅方向端部では、アンダランプロテクタ110の横断面積(長手方向と直交する断面積)の変化が比較的緩やかになり、アンダランプロテクタ110の断面二次モーメントの急変が抑えられる。
 次に、図17を参照してスティフナ100と外側パネル20との間に設けられるクリアランス102について説明する。
 図17に示すように、パネル部101の最も突出した部分に対応するスティフナ100の頂部112aと、外側パネル20のウェブ部21(即ち、前面部10a)の内面との間には、所定のクリアランス102が設けられている。ここでは頂部112aが平面をなす(有する)ため、互いに平行な頂部112aの平面(ここでは車両前側面)と外側パネル20のウェブ部21の内面との間に、所定のクリアランス102が設けられている。
 所定のクリアランス102は、使用する塗装液の膜厚や、部材の成形時に生じうる前後方向の寸法誤差(ばらつき)よりも大きく設定されることが好ましく、例えば5~10mm程度に設定される。塗装液の膜厚よりも大きいクリアランス102が確保されれば、塗装液がクリアランス102を通り易くなる。また、所定のクリアランス102を部材の前後方向の想定される寸法誤差(ばらつき)よりも大きく設定しておくことによって、各部材の成形時に多少の寸法誤差が生じたとしても、前面部10aとスティフナ100の頂部112aとの間に確実にクリアランス102を設けることができる。
 なお、各パネル部101の基端部111と補強パネル40のウェブ部41aとの結合は、例えば溶接によって行うことができるが、その結合方法はこれに限られない。
 本実施形態にかかるアンダランプロテクタ110によれば、スティフナ100におけるパネル部101の先端縁112が、アンダランプロテクタ本体10Aの前面部10a側に向かって突出し、この突出量が結合領域11から離隔するほど減少する形状に形成されているため、スティフナ100の重量を抑えてアンダランプロテクタ110の強度及び剛性を効率よく向上させることができ、アンダランプロテクタ110の軽量化を促進しながら要求される強度及び剛性を確保することができる。
 また、パネル部101の先端縁112の突出量が、荷重P1に対するアンダランプロテクタ110の曲げモーメント分布に対応するように、結合領域11から離隔するほど減少しているので、スティフナ100の重量を抑えてアンダランプロテクタ110の強度及び剛性をより効率よく向上させることができる。
 つまり、荷重P1による曲げモーメントが比較的小さく、要求される強度及び剛性も比較的小さい箇所では、スティフナ100の突出量を抑えることによってスティフナ100に過剰な強度及び剛性を与えることを回避しながら重量を抑制することができる。特に上記のスティフナ100は、アンダランプロテクタ110の曲げモーメントが所定の値M1以上となる範囲を含むように曲げモーメントの分布に対応して設けられているため、スティフナ100の軽量化をより促進しながらアンダランプロテクタ110に要求される強度及び剛性を確保することができる。
 また、スティフナ100の頂部112aと前面部10a(ここでは外側パネル20のウェブ部21)の内面との間に、所定のクリアランス102が設けられているので、スティフナ100の頂部112aと前面部10aの内面とが非接触となる。これによって、走行時に両者が擦れて異音が生じたり、塗装が剥がれて錆が発生したりすることを防止できる。また、塗装液がスティフナ100の頂部112aと前面部10aの内面との間に進入し易いため、塗装品質の向上に寄与する。
 また、前面部10aと頂部112aとが非接触であるため、アンダランプロテクタ110が車両前後方向の荷重を受けた直後に両者間を荷重が直接伝わることがない。この場合、クリアラス102分だけ前面部10aとスティフナ100との相対的な変形が許容されるので、アンダランプロテクタ110の緩衝性を向上させることができる。
 また、スティフナ100が、互いに平行に上下に配置された二枚のパネル部101,101の先端縁112が接続部113で接続された一枚のプレートを屈曲して形成した一部品の構成であるため、シンプルな構成でアンダランプロテクタ110の強度及び剛性をより向上させることができる。
 また、スティフナ100が、図16に示すような1枚のプレートを、2枚のパネル部101,101が互いに平行になるように先端縁112において屈曲されて形成されているので、スティフナ100をシンプルに構成でき、その製造が容易になる。
 また、スティフナ100の頂部112aは、外側パネル20のウェブ部21の内面と平行な平面を有しているので、車両前後方向の荷重を受けた場合、外側パネル20のウェブ部21の内面と頂部112aとの間で伝達される単位面積当たりの荷重を低減させることができる。これにより、外側パネル20のウェブ部21が部分的に大きな荷重を受けて局部変形することを抑制することができる。
 また、アンダランプロテクタ本体10Aだけでなく、スティフナ100にも引張強度が980MPa以上かつ板厚tが3.2mm以下の超高張力鋼が用いることができるので、この場合、スティフナ100においても、強度及び剛性を確保したうえで板厚を抑えて(薄くして)重量を抑えることができ、鋼板材よりもコストのかかるアルミ材を用いるのに比較して、コストを抑制することができる。
 また、パネル部101の先端縁112の突出量は、スティフナ100の頂部112aに対応する部分から離隔するほど減少する度合い(変化率)が小さくなっている(即ち、稜線部112b,112cが車両前側に凹となるような曲線状に延びている)ため、アンダランプロテクタ110の横断面積がパネル部101の車幅方向端部において急変することが抑制される。つまり、スティフナ100の設置箇所とそれ以外の箇所との境界部分における、アンダランプロテクタ110の断面二次モーメントの急変が抑制される。これによって、スティフナ100の設置箇所で剛性,強度が局部的に大きくなりアンダランプロテクタ110が局部的に変形することを抑制できる。
 また、パネル部101に軽量穴115が穿設されているため、スティフナ100の軽量化を図ることができる。さらに、二つの軽量穴115,115が、荷重P1に対する曲げモーメントが最大となる車幅方向位置を挟むように並設されている、換言すれば、アンダランプロテクタ110において最大の曲げモーメントが作用する部分には軽量穴115が設けられていないため、この部分に要求される剛性及び強度を確実に確保することができる。また、軽量穴115が、断面二次モーメントに影響を与えにくいアンダランプロテクタ110の車両前後方向の中間部に形成されているため、断面二次モーメントの低下を効果的に抑制しつつ軽量化を図ることができる。
 その他、本実施形態にかかるアンダランプロテクタ110によれば、上記の第一実施形態にかかるアンダランプロテクタ10と同様の作用,効果を得ることができる。
〔その他〕
 以上、本発明の実施形態について説明したが、本発明は上述の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。また、上述した実施形態の各構成は、必要に応じて取捨選択することができ、適宜組み合わせてもよい。
 上述の各実施形態では、パネル20,30,40やスティフナ100に、引張強度が980MPaの超高張力鋼板材を用いるものを例示したが、パネル20,30,40には、引張強度が980MPa以上(例えば1.2GPaや1.5GPa)のさまざまな超高張力鋼板材を用いることができ、パネルによっては超高張力鋼板材以外の板材を用いることもできる。
 一方、補強パネル40やスティフナ100については、超高張力鋼板材に限らず、例えば引張強度が980MPa未満の鋼板材製のものや他の金属材製のものを用いてもよい。
 また、パネル20,30,40やスティフナ100の板厚tが3.2mmのものを用いることができると説明したが、要求される強度及び剛性を満たしていればさまざまな板厚のものを用いることができる。例えば、パネル20,30,40として、980材を用いる場合には板厚tが2.9mm以上のさまざまな超高張力鋼板を用いることができ、引張強度が980MPa以上のものを用いる場合には板厚tが2.9mm以下のさまざま超高張力鋼板を用いることができる。もちろん、パネル20,30,40のそれぞれで、異なる引張強度又は板厚のものを用いてもよい。
 例えば、アンダランプロテクタ10における座屈の発生を抑えることを考慮すれば、外側パネル20及び内側パネル30から構成されるアンダランプロテクタ本体10Aにおいては、上面部10c又は下面部10dの板厚tを薄くし過ぎると、上面部10c及び下面部10dを構成する超高張力鋼板材の引張強度に依らず車両前方からの荷重による座屈が発生しやくなるのに対し、前面部10a又は後面部10bの板厚を薄くしたとしても車両前方からの荷重による座屈は発生し難い。このような点を考慮し、アンダランプロテクタ10Aにおいて、前面部10a又は後面部10bの板厚よりも上面部10c又は下面部10dの板厚を確保する(厚くする)とともに、前面部10a又は後面部10bに上面部10c又は下面部10dよりも引張強度の大きい超高張力鋼板材を用いてもよい。座屈を考慮して、アンダランプロテクタ10Aにおける前面部10a又は後面部10bの板厚tの下限が設定されていてもよい。
 上述の実施形態では、アンダランプロテクタ本体10Aの上面部10c及び下面部10dのそれぞれに上下対称に軽量穴51,52,53が形成されるものを説明したが、これらの軽量穴51,52,53は、上下対称に形成されていなくてもよいし、上面部10c及び下面部10の何れか一方にだけ形成されていてもよい。更に言えば、軽量穴51,52,53は、アンダランプロテクタ本体10Aの上面部10c及び下面部10dに形成されていれば、等距離部95を含まない領域に形成されてもよく、車両前後方向の穴径は同径でなくてもよい。
 また、上述の実施形態では、上面部10c及び下面部10dに軽量穴51,52,53を、後面部10bに軽量穴61,62,63,64を、補強パネル40に軽量穴71,72を、それぞれ形成しているが、これらの一部を選択的に形成しても良い。
 また、軽量穴51,52,53は、外側パネル20のフランジ部22,23ではなく、内側パネル30のフランジ部32,33に形成されてもよい。この場合、内側パネル30のフランジ部32,33は、アンダランプロテクタ10の車両前後方向の中間部を含み、アンダランプロテクタ10の前面部及び後面部からの距離が等しい等距離部95を含む軽量穴形成領域96(図6(b)参照)を包含する位置まで延在するように形成される。
 補強パネル40には、軽量穴71,72が形成されたものを説明したが、かかる軽量穴71,72は全部又は一部が形成されていなくてもよい。具体例を挙げれば、補強パネル40の中心側の軽量穴71b,72bが形成されていなくてもよいし、軽量穴71a,71b,72a,72bの全てが形成されていなくてもよい。
 また、補強パネル40の本体部41におけるフランジ部41b,41cの前後長さは、内側パネル30のフランジ部32,33の前後長さよりも長く形成されていてもよい。この場合、補強パネル40が内側パネル30の内面30aに結合されたもとでは、外側パネル20のフランジ部22,23の内面に重合するように結合される。このため、重合パネルパート84が結合重合パート91の車両後方のみならず車両前方にも配設されることになる。
 更に言えば、補強パネル40が本体部41から車幅方向に向けて延設された延設部42を有するものを説明したが、この延設部42は全部又は一部が設けられていなくてもよい。例えば、補強パネル40は、本体部41と中間延設部42a又は端部延設部42bとから構成されてもよいし、本体部41のみから構成されてもよい。また、軽量穴に関する技術のみに着目すれば、補強パネル40自体を省略することも考えられる。
 断面がチャンネル形状の外側パネル20と断面がチャンネル形状の内側パネル30とが結合されてアンダランプロテクタ10及びアンダランプロテクタ10Aが形成する閉断面が矩形となるものを説明したが、アンダランプロテクタ10及びアンダランプロテクタ10Aが形成する閉断面が矩形であれば、パネル20,30の各断面はチャンネル形状に限らず種々の形状のものを用いることができる。例えば、パネル20,30の各断面がL字に形成されてもよいし、パネル20,30の何れか一方の断面がチャンネル形状に形成されるとともにパネル20,30の何れか他方の断面が直線状に形成さていていもよい。同様に、補強パネル40の断面形状も、種々の形状を採用することができる。
 上述の実施形態では、多重パネルパート85が、パネル20,30,40が3重に重合したものを説明したが、例えば、補強パネル40の内側に他のパネルを更に重合したり、内側パネル30の外側に他のパネルが更に重合するなどして、4重以上の多重パネルパートが形成されたりしていてもよい。この場合、アンダランプロテクタ10の強度及び剛性は向上するものの、重量の増加を招いてしまうため、確保する強度及び剛性と重量増との双方を考慮して多重パネルパートを形成することが好ましい。
 アンダランプロテクタ10及びアンダランプロテクタ本体10Aが形成する閉断面が矩形のものを説明したが、この断面形状は、矩形に限らず、例えば丸形や矩形以外の多角形といったさまざまな形状であってもよい。この場合、パネル20,30,40の断面形状は、アンダランプロテクタ10及びアンダランプロテクタ本体10Aが形成する閉断面の形状に応じたものとなり、また、アンダランプロテクタ本体10Aの各面部10a,10b,10c,10dは、アンダランプロテクタ10の各面部に対応している。
 アンダランプロテクタ10の各パネル20,30,40どうしの結合或いは接合や、アンダランプロテクタ10とブラケット5,5との結合には、プラグ溶接や隅肉溶接といった溶接による結合や、リベット,ボルト及びナットを用いた結合などのさまざまな公知の手法を用いることができる。このため、締結部材を用いてアンダランプロテクタ10とブラケット5,5とを結合するための取付穴73は必須ではない。
 更に言えば、アンダランプロテクタ本体10Aは、外側パネル20及び内側パネル30の二枚のパネル20,30が結合されて構成されるものに限らず、一枚のパネルで構成されてもよいし、三枚以上のパネルが結合されて構成されてもよい。なお、一枚のパネルでアンダランプロテクタ本体10Aを構成するには、横断面の端部どうしを結合したり押出し成形などの手法を採用したりすることができる。
 アンダランプロテクタ本体10Aの中空部内の後面部10b側の内面に補強パネル40が全面的に重合するものを説明したが、補強パネル40は、アンダランプロテクタ本体10Aに部分的に重合していてもよい。
アンダランプロテクタ10にさまざまな方向から荷重が入力されうる。このため、アンダランプロテクタ10において強度及び剛性を確保すべき箇所、即ち、補強すべき箇所として、種々の箇所を想定することができる。よって、補強パネルは、アンダランプロテクタ10において、内側パネル30の内面、即ちアンダランプロテクタ本体10Aの後面部10bを補強するように重合されるものに限らず、アンダランプロテクタ本体10Aの前面部10a,上面部10c,下面部10dの少なくとも何れかを補強するように重合されていてもよい。この場合、想定される車両の衝突状態やアンダランプロテクタ10の取付状態によって、補強パネルによる補強箇所が設定されることが好ましい。
 例えば、補強パネル40が外側パネル40の内面に重合するように結合されてもよい。この場合、アンダランプロテクタ10では、内側パネル30のみからなるシングルパネルパートが車両後側寄りに形成され、補強重合パート81がなくアンダランプロテクタ本体10Aのみからなる本体単体部が車両後側に形成されるとともに、外側パネル20や補強パネル40などの複数のパネルが重合する重合パネルパートが車両前側寄りに形成され、アンダランプロテクタ本体10Aと補強パネル40とが重合する補強重合パートが車両前側に形成される。
 また、シングルパネルパート92の車両前後方向の長さL1は、重合パネルパート84の車両前後方向の長さL2よりも短く(L1<L2)設定されていてもよい。
 アンダランプロテクタ10が左右一対のブラケット5,5に結合されるものを示したが、例えば左右それぞれに複数のブラケットが設けられ、左右複数対のブラケットにアンダランプロテクタ10が結合されてもよい。
 上述の実施形態では、アンダランプロテクタ本体10Aの後面部10bに軽量穴61,62が形成されるものを説明したが、これらの軽量穴61,62は、後面部10b又は前面部10aの少なくとも何れか一方に形成されればよい。また、端部軽量穴61は省略してもよい。
 また、軽量穴61,62は、結合領域11から離隔するほど上下方向の穴径が大きくなればよく、穴61,62の上下各縁部を結んだ線は直線状のものに限られない。例えば、アンダランプロテクタの長手方向両端部に車両前後方向外側から加わる荷重に対するアンダランプロテクタの曲げモーメント分布が曲線状の場合、軽量穴61,62の上下各縁部を結んだ線が曲線状になるように各穴径を設定してもよい。
 なお、軽量穴61,62の上下方向の穴径は、荷重P1に対するアンダランプロテクタ10の曲げモーメント分布に限らず、例えば荷重P1,P2,P3の何れも考慮した総合的な曲げモーメント分布に対応するように設定してもよいし、曲げモーメント分布以外の要素に基づいて設定してもよい。
 また、上記に示した軽量穴61,62の形状や個数は一例であり適宜変更することができる。ただし上述のように、軽量穴61,62を矩形形状穴とすれば軽量化をより促進することができ、円形形状穴とすれば断面二次モーメントの急変を抑制できる。また、例えば軽量穴61,62を全て同一形状とすれば加工コストを抑制することができる。また、例えば軽量穴61,62の左右方向長さを短くしてその個数を増やせば、アンダランプロテクタ10の曲げ剛性を長手方向に沿ってより細かく調整することが可能になる。
 また、端部軽量穴61b,61cや第二中間部軽量穴62bの正面視形状は、矩形形状であるが、例えば、これらの軽量穴61b,61c,62bは、正面視形状が正方形となるように形成されてもよいし、車幅方向に長い横長の矩形や上下方向に長い縦長の矩形となるように形成されてもよい。
 また、第二実施形態では、アンダランプロテクタ本体10Aの後面部10b側の内面に基端部111が固設され、先端縁112が前端部10a側に向けて突出したパネル部101を有するスティフナ100を例示したが、パネル部101は、前面部10a側の内面に基端部111が固設され、先端縁112が後端部10b側に向けて突出するように配設されてもよい。
 また、スティフナ100の個数は上記に示したものに限定されず、例えば結合領域11が複数対ある場合には、これに対応して複数対のスティフナ100が備えられてもよい。さらに、パネル部101の形状及び枚数も上記のものに限定されず、これらはアンダランプロテクタ110に要求される強度及び剛性に応じて適宜変更することができる。例えば、パネル部101の先端縁112の突出量は、荷重P1に対するアンダランプロテクタ110の曲げモーメント分布に限らず、例えば荷重P1,P2,P3の何れも考慮した総合的な曲げモーメント分布に対応するように設定してもよいし、曲げモーメント分布以外の要素に基づいて設定してもよい。また、アンダランプロテクタ110に要求される強度及び剛性が低い場合、稜線部112b,112cの左右長さを短くしたり、軽量穴115の個数を増やしたりすれば、更なる軽量化を図ることができる。
 また、上記の各パネル部101の稜線部112bを車幅方向中心Cまで延設し、左右の稜線部112bがそれぞれ接続する形状とすれば、左右のスティフナ100,100を一体に成形することができ、生産性を向上させることができる。
 また、パネル部101の先端縁112は、例えば上述の荷重P1に対する曲げモーメント分布に対応するように、直線状に延びていてもよい。つまり、パネル部101の平面視が三角形状に形成され、スティフナ100の頂部112aが平面視で点状に設けられるとともに、先端縁112の稜線部112b,112cは頂部112aに対して左右方向に直線状に延びた形状であってもよい。
 なお、上記のようにパネル部101が二枚設けられる場合、各パネル部101は、それぞれ異なる形状であってもよいが、何れも同様の形状であれば製造コストを抑制できる。また、例えばパネル部101と頂部112aとの間の屈曲部116をより緩やかな曲面状として(即ち、屈曲部116の曲率を小さくして)、接続部113全体を車両前後方向外側に凸となる曲面状に形成してもよい。この場合、アンダランプロクタ10が車両前後方向の荷重を受けると、外側パネル20のウェブ部21の内面と曲面状の接続部113とが次第に接触面積を増加させるため、外側パネル20のウェブ部21からスティフナ100に対して徐々に荷重を伝達することができる。
 さらに、スティフナ100は一枚のプレートから形成されるものに限らず、例えば各パネル部101や接続部113を個々のプレートで構成し、これらのプレートを溶接等によって接続して形成してもよい。
 また、補強パネル40を省略する場合、パネル部101の基端部111は、例えば内側パネル30のウェブ部31の内面に対して結合されてもよい。
 1 車体フレーム
 2 サイドフレーム
 3 クロスメンバ
 5 ラケット
 10,110 アンダランプロテクタ
 10A アンダランプロテクタ本体
 10a 前面部(車両前後方向外側面部)
 10b 後面部(車両前後方向内側面部)
 10c 上面部
 10d 下面部
 11 結合領域
 12 端部領域
 13 中間領域
 20 外側パネル
 21 ウェブ部
 22 フランジ部
 22a 縁部(端縁部)
 23 フランジ部
 23a 縁部(端縁部)
 29 端部屈曲部
 30 内側パネル
 30a 内面
 31 ウェブ部
 32 フランジ部
 32a 縁部(端縁部)
 33 フランジ部
 33a 縁部(端縁部)
 40 補強パネル
 40d 外面(補強パネル外面)
 41 本体部(補強パネル本体部)
 41a ウェブ部
 41b フランジ部
 41c フランジ部
 41d 外面(補強パネル外面)
 42 延設部(補強パネル延設部)
 50 軽量穴
 51 円形中間軽量穴
 52 長円形中間軽量穴
 53 端部軽量穴
 60 軽量穴
 61 端部軽量穴
 61a 第一端部軽量穴
 61b 第二端部軽量穴
 61c 第三端部軽量穴
 62 中間部軽量穴
 62a 第一中間部軽量穴
 62b 第二中間部軽量穴
 62c 第三中間部軽量穴
 63a,63b 多重パネル部の軽量穴
 64a,64b 多重パネル部の軽量穴
 65 結合穴
 71,72 軽量穴
 73 取付穴
 80 多重パネル部
 81 補強重合パート
 84 重合パネルパート
 85 (3重の)多重パネルパート
 90 本体単体部
 91 結合重合パート
 92 シングルパネルパート
 95 等距離部
 96 軽量穴形成領域
 100 スティフナ
 101 パネル部
 111 基端部
 112 先端縁
 112a 頂部,平面部
 112b,112c 稜線部
 113 接続部
 115 軽量穴
 116 屈曲部
 102 所定のクリアランス
 C 車幅方向中心
 L1 シングルパネルパートの車両前後長さ
 L2 多重パネルパートの車両前後長さ
 P1 荷重
 P2 荷重
 P3 荷重
 S ブラケットの取付点

Claims (7)

  1.  車両の車体フレームの前部又は後部の左右のブラケットに取り付けられるアンダランプロテクタの構造であって、
     車両前後方向外側面部と車両前後方向内側面部と上面部と下面部とを備え中空の閉断面を有するように構成された引張強度が980MPa以上かつ板厚が3.2mm以下の超高張力鋼板製のアンダランプロテクタ本体と、
     前記アンダランプロテクタ本体の中空部内の前記車両前後方向外側面部側又は前記車両前後方向内側面部側の内面に重合するように配設された補強パネルと、を備えた
    ことを特徴とする、アンダランプロテクタの構造。
  2.  前記補強パネルは、前記車両前後方向外側面部側又は前記車両前後方向内側面部側の前記内面と同一又は略同一形状に形成された補強パネル外面を有し、前記内面に前記補強パネル外面の全面又は略全面を接触させて配設される
    ことを特徴とする、請求項1記載のアンダランプロテクタの構造。
  3.  前記アンダランプロテクタ本体の前記閉断面は、矩形閉断面である
    ことを特徴とする、請求項1又は2の何れか1項に記載のアンダランプロテクタの構造。
  4.  前記アンダランプロテクタ本体は、車両前後方向外側に配置された外側パネルと、車両前後方向内側に配置された内側パネルとが、中空の閉断面を有するように結合されて構成されている
    ことを特徴とする、請求項1~3の何れか1項に記載のアンダランプロテクタの構造。
  5.  前記外側パネルは、断面がチャンネル形状であって、
     前記内側パネルは、断面がチャンネル形状又は直線形状であって、
     前記補強パネルは、断面がチャンネル形状の補強パネル本体部を有している
    ことを特徴とする、請求項4記載のアンダランプロテクタの構造。
  6.  前記補強パネルには、前記アンダランプロテクタが前記各ブラケットにそれぞれ結合される結合領域のみに配置され前記内側パネルの内面と同一又は略同一形状に形成された補強パネル外面を有し、前記内側パネルの内面に前記補強パネル外面の全面又は略全面を接触させて配設される前記補強パネル本体部と、前記補強パネル本体部のウェブ部から車幅方向に向けて前記内側パネルのウェブ部の内面に重合する補強パネル延設部とが形成されている
    ことを特徴とする、請求項5記載のアンダランプロテクタの構造。
  7.  前記補強パネル延設部の車幅方向端部には、軽量穴が形成されている
    ことを特徴とする、請求項6記載のアンダランプロテクタの構造。
PCT/JP2014/081068 2013-11-29 2014-11-25 アンダランプロテクタの構造 WO2015080086A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-247939 2013-11-29
JP2013247939A JP2015105003A (ja) 2013-11-29 2013-11-29 アンダランプロテクタの構造

Publications (1)

Publication Number Publication Date
WO2015080086A1 true WO2015080086A1 (ja) 2015-06-04

Family

ID=53199026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081068 WO2015080086A1 (ja) 2013-11-29 2014-11-25 アンダランプロテクタの構造

Country Status (2)

Country Link
JP (1) JP2015105003A (ja)
WO (1) WO2015080086A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052850B1 (en) * 2019-12-12 2021-07-06 Utility Trailer Manufacturing Company Underride guard
US11691583B1 (en) 2021-02-17 2023-07-04 Utility Trailer Manufacturing Company Side underride guards
US11713013B2 (en) 2020-07-09 2023-08-01 Fontaine Commercial Trailer, Inc. Side underride guard assembly for a trailer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839690A2 (de) * 1996-10-18 1998-05-06 Daimler-Benz Aktiengesellschaft Stossfänger und Unterfahrschutz für ein Kraftfahrzeug, insbesondere für ein Nutzkraftfahrzeug
JP2003276536A (ja) * 2002-03-22 2003-10-02 Press Kogyo Co Ltd フロントアンダランプロテクタ
JP2004237878A (ja) * 2003-02-06 2004-08-26 Press Kogyo Co Ltd フロント・アンダーラン・プロテクタ
JP2008024023A (ja) * 2006-07-18 2008-02-07 Mitsubishi Alum Co Ltd バンパ構造体
JP2009120095A (ja) * 2007-11-16 2009-06-04 Takebe Tekkosho:Kk アンダーラン・プロテクタ
JP2010120512A (ja) * 2008-11-19 2010-06-03 Nippon Steel Corp 耐座屈特性に優れた車両用アンダーラン・プロテクタ
JP2012171390A (ja) * 2011-02-17 2012-09-10 Press Kogyo Co Ltd リヤ・アンダラン・プロテクタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839690A2 (de) * 1996-10-18 1998-05-06 Daimler-Benz Aktiengesellschaft Stossfänger und Unterfahrschutz für ein Kraftfahrzeug, insbesondere für ein Nutzkraftfahrzeug
JP2003276536A (ja) * 2002-03-22 2003-10-02 Press Kogyo Co Ltd フロントアンダランプロテクタ
JP2004237878A (ja) * 2003-02-06 2004-08-26 Press Kogyo Co Ltd フロント・アンダーラン・プロテクタ
JP2008024023A (ja) * 2006-07-18 2008-02-07 Mitsubishi Alum Co Ltd バンパ構造体
JP2009120095A (ja) * 2007-11-16 2009-06-04 Takebe Tekkosho:Kk アンダーラン・プロテクタ
JP2010120512A (ja) * 2008-11-19 2010-06-03 Nippon Steel Corp 耐座屈特性に優れた車両用アンダーラン・プロテクタ
JP2012171390A (ja) * 2011-02-17 2012-09-10 Press Kogyo Co Ltd リヤ・アンダラン・プロテクタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052850B1 (en) * 2019-12-12 2021-07-06 Utility Trailer Manufacturing Company Underride guard
US11713013B2 (en) 2020-07-09 2023-08-01 Fontaine Commercial Trailer, Inc. Side underride guard assembly for a trailer
US11691583B1 (en) 2021-02-17 2023-07-04 Utility Trailer Manufacturing Company Side underride guards

Also Published As

Publication number Publication date
JP2015105003A (ja) 2015-06-08

Similar Documents

Publication Publication Date Title
JP5953887B2 (ja) 車両の車体前部構造
JP5327614B2 (ja) 車体のピラー構造
WO2015080088A1 (ja) アンダランプロテクタの構造
JP6243717B2 (ja) アンダランプロテクタの構造
WO2015080086A1 (ja) アンダランプロテクタの構造
US9676268B2 (en) Vehicle front section structure
JP6103085B2 (ja) 車両の車体前部構造
JP6356959B2 (ja) アンダランプロテクタの構造
JP2015105004A (ja) アンダランプロテクタの構造
JP6406379B2 (ja) 車両の車体前部構造
JP6065994B2 (ja) 車両の車体前部構造
JP6384562B2 (ja) 車両の車体前部構造
JP6137354B2 (ja) 車両の車体前部構造
JP2010006278A (ja) 車両のアンダーランプロテクタ
JP5659932B2 (ja) 車両端部構造
JP2015104946A (ja) アンダランプロテクタの構造
JP6418267B2 (ja) 車両の車体前部構造
JP6384560B2 (ja) 車両の車体前部構造
JP6384561B2 (ja) 車両の車体前部構造
JP6733560B2 (ja) 車体骨格構造
JP6103084B2 (ja) 車両の車体前部構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865717

Country of ref document: EP

Kind code of ref document: A1