WO2015076299A1 - 金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法 - Google Patents

金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法 Download PDF

Info

Publication number
WO2015076299A1
WO2015076299A1 PCT/JP2014/080637 JP2014080637W WO2015076299A1 WO 2015076299 A1 WO2015076299 A1 WO 2015076299A1 JP 2014080637 W JP2014080637 W JP 2014080637W WO 2015076299 A1 WO2015076299 A1 WO 2015076299A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electrolytic solution
metal electrode
electrode
container
Prior art date
Application number
PCT/JP2014/080637
Other languages
English (en)
French (fr)
Inventor
将史 村岡
吉田 章人
宏隆 水畑
忍 竹中
俊輔 佐多
正樹 加賀
友春 新井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015076299A1 publication Critical patent/WO2015076299A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal electrode cartridge, a metal-air battery including the metal electrode cartridge, and a method for charging the metal electrode cartridge.
  • a metal-air battery generates electricity by using a metal electrode containing an electrode active material and being disposed in an electrolyte as an anode and an air electrode as a cathode.
  • a zinc-air battery using metal zinc as an electrode active material can be mentioned.
  • an electrode reaction of the following chemical formula 1 proceeds at the cathode.
  • an electrode reaction as represented by the following chemical formula 2 proceeds at the anode.
  • Chemical formula 2 Zn + 4OH ⁇ ⁇ Zn (OH) 4 2 ⁇ + 2e ⁇
  • the metal electrode cartridge of the present invention is a metal electrode cartridge comprising a support, one or more metal electrodes connected to the support and containing at least an electrode active material, and one or more containers for storing the metal electrodes.
  • the container is characterized in that it has a filtration part that does not allow permeation of the electrode active material and the precipitate generated from the electrode active material and permeates the electrolytic solution.
  • the electrode active material preferably contains at least a metal species selected from Zn, Mg, Fe and Al, an alloy or a compound thereof.
  • the precipitate is preferably an oxide or hydroxide of the metal species.
  • the said electrolyte solution is alkaline aqueous solution.
  • at least a part of the filtration part includes a porous filter.
  • the porous filter includes a first porous filter provided on the bottom surface portion of the container, and a second porous filter provided on the side surface portion of the container, wherein the first porous filter is the above-mentioned It is preferable that the pore diameter is smaller than that of the second porous filter. Furthermore, the pore size of the porous filter is preferably 0.001 ⁇ m or more and 20 ⁇ m or less. Furthermore, it is preferable that at least a part of the filtration unit includes an anion exchange membrane and is in contact with the metal electrode. Furthermore, it is preferable to form a housing in which the support and the container are integrated. Furthermore, it is preferable that the container has a bag shape, and a spacer is provided between the container and the metal electrode. Furthermore, it is preferable that the container has a bag shape, and further includes a throttle portion provided so as to squeeze the container when the container is taken out from the electrolytic solution tank.
  • the metal-air battery of the present invention includes an electrolytic solution tank that stores an electrolytic solution, an air electrode that forms part of the wall of the electrolytic solution tank, and a metal electrode cartridge that is inserted into the electrolytic solution tank.
  • the metal electrode cartridge comprises a support, one or more metal electrodes connected to the support and including at least an electrode active material, and a container connected to the support.
  • the electrode active material and the precipitate generated from the electrode active material are not allowed to permeate, and have a filtration part through which the electrolyte solution permeates.
  • the container accommodates the metal electrode.
  • a circulation channel connected to the electrolytic solution tank is further provided, and the circulation channel is connected to the container. Furthermore, it is preferable to form a metal-air battery stack in which a plurality of unit cells of the metal-air battery of the present invention are connected. Furthermore, the electrolytic solution tank is preferably provided with a discharge port for discharging the electrolytic solution.
  • the method for charging a metal electrode cartridge of the present invention comprises a support, one or more metal electrodes connected to the support and containing at least an electrode active material, and one or more containers for storing the metal electrodes
  • a container is a method for charging a metal electrode cartridge having an electrode active material and a filtration part that does not allow permeation of precipitates generated from the electrode active material and permeates the electrolyte, and after discharging the metal electrode cartridge, the container is And after the dissolution step, the metal electrode is electrically connected to the positive electrode, and the electrode active material dissolved in the electrolyte is electrically connected to the metal electrode. And an electrodeposition step of depositing.
  • the metal-air battery includes a container having a filtration part that does not permeate the electrode active material and the precipitate generated from the electrode active material and permeates the electrolytic solution. After the discharge, the container is removed from the electrolytic solution, whereby the electrode active material and the precipitate generated from the electrode active material can be easily removed from the electrolytic solution tank.
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode cartridge taken out from the metal air battery shown to (a).
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode cartridge taken out from the metal air battery shown to (a).
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode cartridge taken out from the metal air battery shown to (a).
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode cartridge taken out from the metal air battery shown to (a).
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode cartridge taken out from the metal air battery shown to (a). It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. It is a schematic sectional drawing of the metal electrode cartridge taken out from the metal air battery shown in FIG.
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is the metal air after discharging
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode cartridge taken out from the metal air battery shown to (a).
  • the metal electrode cartridge of the present invention is a metal electrode cartridge comprising a support, a metal electrode connected to the support and containing at least an electrode active material, and a container for housing the metal electrode, It has a filtration part which does not permeate
  • the metal-air battery of the present invention includes an electrolytic solution tank that stores an electrolytic solution, an air electrode that forms part of the wall of the electrolytic solution tank, and a metal electrode cartridge that is inserted into the electrolytic solution tank.
  • the metal electrode cartridge comprises a support, one or more metal electrodes connected to the support and including at least an electrode active material, and a container connected to the support. The electrode active material and the precipitate generated from the electrode active material are not allowed to permeate, and have a filtration part through which the electrolyte solution permeates.
  • the metal electrode cartridge according to the present invention is provided so as to be removable from the electrolyte bath. According to such a configuration, by removing the metal electrode cartridge from the electrolytic solution, the metal electrode and the filtration unit can be taken out together with the container from the electrolytic solution tank. As a result, the replacement of the metal electrode and the removal of the precipitate from the electrolytic solution tank can be performed simultaneously, and the precipitate can be collected without making the user aware of the removal of the precipitate. Moreover, the stop time of the metal air battery required for replacement
  • the container has a bag shape, is disposed so that the bottom of the filtration part is on the bottom side of the electrolytic solution tank, and is provided so as to accommodate the metal electrode.
  • the metal-containing ion concentration of the electrolytic solution in the filtration unit is higher than that of the electrolytic solution outside the filtration unit, so that precipitates can be preferentially deposited in the electrolytic solution in the filtration unit. it can. For this reason, the deposit can be efficiently removed from the electrolytic solution tank by taking out from the electrolytic solution tank the filtration part in which the precipitate has accumulated.
  • the metal electrode cartridge of this invention WHEREIN: It is preferable to provide a spacer between the said metal electrode and the said filtration part. According to such a structure, it can prevent that a metal electrode and a filtration part stick, and a space
  • the filter included in the filtration unit is disposed at the bottom of the filtration unit and is provided so that the electrolytic solution can pass through more easily than other parts of the filtration unit. .
  • the electrolytic solution easily flows into the filtration unit.
  • the time for which the electrolyte solution inside a filtration part is filtered can be shortened.
  • the installation time of the filtration unit and the filtration time of the electrolytic solution in the filtration unit can be shortened, and the time required for replacement of the filtration unit can be shortened.
  • the metal-air battery of the present invention further includes a circulation channel for circulating the electrolyte solution, and the circulation channel discharges the electrolyte solution from the supply port for supplying the electrolyte solution to the electrolyte solution tank and the electrolyte solution tank.
  • the filtration part is provided so that the electrolytic solution supplied from the supply port flows into the filtration part. According to such a configuration, the precipitate generated in the electrolytic solution tank can be circulated together with the electrolytic solution, and the precipitate that has flowed into the filtration unit can be filtered out by the filtration unit. Therefore, the precipitate generated in the electrolytic solution tank can be accumulated in the filtration unit.
  • the metal-air battery of the present invention it is preferable that the metal-air battery further includes a throttle portion provided so as to squeeze the filtration portion containing the electrolytic solution and the precipitate when the filtration portion is taken out from the electrolytic solution tank.
  • the filtration unit containing the electrolytic solution and the precipitate can be squeezed by the throttle unit, and the filtration of the electrolytic solution and the precipitate can be promoted. it can. Thereby, the time required for filtration can be shortened. Moreover, the deposit remaining as a residue can be surely removed, and the safety when the filtration part is taken out from the electrolytic solution tank can be improved.
  • FIG. 9A is a schematic cross-sectional view of the metal-air battery of this embodiment
  • FIG. 1B, FIG. 2B, FIG. 3B, FIG. 4B, and FIG. 7 and FIG. 9B are schematic cross-sectional views of the metal electrode cartridge taken out from the metal-air battery of this embodiment.
  • the metal electrode cartridge 23 of the present embodiment is a container that contains a support 13, a metal electrode 5 connected to the support 13, and the metal electrode 5, and has a filtration unit 27. 15 is provided.
  • the metal-air battery 25 of the present embodiment includes an electrolytic solution tank 2 that stores the electrolytic solution 3, a metal electrode 5 that is provided in the electrolytic solution tank 2 and has an electrode active material and serves as an anode, a cathode, And the metal electrode cartridge 23 provided so as to be able to be taken out into the electrolytic solution tank 2.
  • the container 15 has a shape that allows the electrolytic solution 3 to pass therethrough and accommodates the precipitate 17 generated from the electrolytic solution 3 and the electrode active material therein, and the container 15 is taken out from the electrolytic solution tank 2 or the electrolytic solution. It has the filtration part 27 which filters the electrolyte solution 3 and the deposit 17 inside the container 15 by discharging
  • the filtration part 27 which FIG. 1 discloses forms all the containers 15, the filtration part 27 should just form a part of container 15. FIG. Hereinafter, the metal-air battery 25 of the present embodiment will be described.
  • the metal-air battery 25 of the present embodiment is a battery in which the metal electrode 5 containing a metal serving as an electrode active material is a negative electrode (anode) and the air electrode 9 is a positive electrode (cathode).
  • the metal-air battery 25 of the present embodiment may be a primary battery.
  • the metal-air battery 25 has an electrolyte solution tank 2 (housing 1) having an air electrode 9 that accommodates the electrolyte solution 3 and forms a part of the wall, and a structure that can be attached to and detached from the electrolyte solution tank 2.
  • the metal electrode cartridge 23 may be composed of the metal electrode 5, the support 13, the container 15 having the filtration unit 27, and the like.
  • the metal-air battery 25 has an electrolyte solution tank 2 (housing 1) having an air electrode 9 that accommodates the electrolyte solution 3 and forms a part of the wall, and a structure that can be attached to and detached from the electrolyte solution tank 2.
  • the container 15 having the filtration unit 27 and the container 15 may be configured by inserting the metal electrode 5 into the container 15 after the container 15 is attached to and detached from the electrolytic solution tank 2.
  • the metal-air battery 25 shown in FIGS. 1 (a), 2 (a), 3 (a), 4 (a), 5 (a), 6 and 9 (a) has an electrolyte solution.
  • the tank 2 (metal-air battery main body 24) and the metal electrode cartridge 23 are comprised.
  • the metal electrode cartridge 23 is shown in FIGS. 1B, 2B, 3B, and 4 (FIG. b), FIG. 5 (b), FIG. 7 and FIG. 9 (b).
  • the metal air battery 25 shown to Fig.8 (a) (b) is comprised from the metal air battery main body 24, the metal electrode cartridge 23, and the 2nd electrolyte solution tank 40, respectively.
  • FIG. 1B corresponds to a cross-sectional view taken along a broken line AA in FIG. 1A corresponds to a cross-sectional view taken along broken line BB in FIG.
  • FIG. 2B corresponds to a cross-sectional view taken along a broken line CC in FIG.
  • FIG. 2A corresponds to a cross-sectional view taken along a broken line DD in FIG.
  • FIG. 3B corresponds to a cross-sectional view taken along a broken line EE in FIG.
  • FIG. 3A corresponds to a cross-sectional view taken along a broken line FF in FIG.
  • FIG. 4B corresponds to a cross-sectional view taken along the broken line GG in FIG.
  • FIG. 4A corresponds to a cross-sectional view taken along broken line HH in FIG.
  • FIG. 5B corresponds to a cross-sectional view taken along broken line JJ in FIG.
  • FIG. 5A corresponds to a cross-sectional view taken along a broken line KK in FIG.
  • FIG. 9B corresponds to a cross-sectional view taken along the broken line LL in FIG.
  • FIG. 9A corresponds to a cross-sectional view taken along broken line MM in FIG. 9B.
  • the metal-air battery main body 24 can include an electrode insertion port for inserting the metal electrode 5 or the filtration unit 27 into the electrolytic solution tank 2 or the electrolytic solution chamber 16.
  • the electrode insertion port can be provided, for example, in the upper part of the electrolytic solution chamber 16.
  • the metal-air battery 25 may have a single cell structure including one cell 4 like the metal-air battery 25 shown in FIG. 1 (a), and like the metal-air battery 25 shown in FIG. A cell assembly (stack structure) in which a plurality of cells 4a to 4c are stacked on each other may be provided.
  • the metal-air battery 25 may have a circulation channel 33 for circulating the electrolytic solution. As a result, the electrolytic solution in the electrolytic solution tank 2 can be circulated.
  • the circulation flow path 33 can have a supply port 36 for supplying the electrolytic solution to the electrolytic solution tank 2 and a discharge port 37 for discharging the electrolytic solution from the electrolytic solution tank.
  • the metal-air battery 25 may have a second electrolytic solution tank 40.
  • the electrolytic solution flow path 33 allows the electrolytic solution 3 discharged from the electrolytic solution tank 2 to flow into the second electrolytic solution tank 40 like the metal-air battery 25 shown in FIG.
  • the electrolytic solution 3 discharged from 40 may be configured to flow into the electrolytic solution tank 2.
  • the cell 4 is a structural unit of the metal-air battery 25.
  • the cell 4 includes an electrode pair that is provided in the electrolyte bath 2 (electrolyte chamber 16) and includes the metal electrode 5 serving as an anode and the air electrode 9 serving as a cathode.
  • the cell 4 may have, for example, an electrode pair in which one air electrode 9 and one metal electrode 5 are provided so as to sandwich the electrolytic solution 3, and the metal-air battery 25 shown in FIG.
  • the two air electrodes 9 may have an electrode pair provided so as to sandwich one metal electrode 5.
  • the cell 4 includes an electrolytic solution tank 2 or an electrolytic solution chamber 16, a metal electrode 5 provided in the electrolytic solution tank 2 or the electrolytic solution chamber 16 and serving as an anode, and an air electrode 9 serving as a cathode. Also good.
  • the cell assembly has a stack structure in which a plurality of cells 4 are stacked.
  • a plurality of cells 4 may be provided in one electrolytic solution tank 2, and each cell 4 may have the electrolytic solution tank 2 or the electrolytic solution chamber 16.
  • the number of cells 4 constituting the cell assembly is not particularly limited, and the number of cells 4 may be determined according to the required power generation capacity.
  • the electrolytic solution tank 2 included in each cell 4 may be provided in the common housing 1, and each cell 4 is disposed in the housing. 1, and the electrolytic solution tank 2 may be provided in the housing 1.
  • two or three cells 4 may be provided in one casing 1 and a plurality of such casings 1 may be combined to form a cell aggregate.
  • the electrode pairs of the plurality of cells 4 included in the cell assembly may be connected in series or in parallel.
  • Electrolytic Solution is a liquid having an ionic conductivity by dissolving an electrolyte in a solvent.
  • the electrolytic solution 3 is stored in the electrolytic solution tank 2 or circulates in the electrolytic solution tank 2.
  • the type of the electrolytic solution 3 is different depending on the type of the electrode active material contained in the metal electrode 5, but may be an electrolytic solution (aqueous electrolyte solution) using a water solvent.
  • an electrolytic solution aqueous electrolyte solution
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used as the electrolytic solution.
  • An aqueous sodium chloride solution can be used.
  • the electrolytic solution tank 2 is an electrolytic cell that stores or distributes the electrolytic solution 3 and has corrosion resistance to the electrolytic solution.
  • the electrolytic solution tank 2 can have an electrolytic solution chamber 16.
  • the electrolytic solution tank 2 or the electrolytic solution chamber 16 has a structure in which the metal electrode 5 can be installed in a removable manner.
  • the electrolytic solution tank 2 can be provided in the metal-air battery main body 24. Further, the electrolytic solution tank 2 may have a plurality of electrolytic solution chambers 16.
  • a part of the bottom and side wall of the electrolyte chamber 16 is the casing 1
  • a part of the side wall of the electrolyte chamber 16 is the air electrode 9.
  • the metal-air battery 25 may have a mechanism for causing the electrolytic solution in the electrolytic solution tank 2 to flow. As a result, the anode reaction at the metal electrode 5 can be promoted, and the performance of the metal-air battery 25 can be improved.
  • the electrolytic solution 3 may be circulated using the pump 34 and the circulation flow path 33, and the electrolytic solution 3 in the electrolytic solution tank 2 may be flowed.
  • the metal-air battery 25 may include a movable part that can physically move the electrolyte 3 in the electrolyte bath 2 such as a stirrer and a vibrator.
  • the metal-air battery 25 may be provided so that most of the electrolyte solution in the electrolyte solution tank 2 can be discharged. Thereby, since the amount of the electrolytic solution in the electrolytic solution tank 2 is reduced, the electrolytic solution 3 and the precipitate 17 in the filtration unit 27 can be filtered by the filter.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • polyvinyl chloride (PVC) polyvinyl alcohol (PVA), polyvinyl acetate, ABS, vinylidene chloride, polyacetal, polyethylene, polypropylene, polyisobutylene, fluororesin, epoxy resin, etc.
  • the metal electrode 5 is an electrode that serves as an anode, and includes a metal that is an electrode active material of the anode. Moreover, the metal electrode 5 is provided in the electrolyte solution tank 2 so that it can be taken out.
  • the metal electrode 5 may be, for example, a metal plate containing a metal that is an electrode active material, or may be formed by pressing and solidifying a particulate metal.
  • the metal electrode 5 may have, for example, a plate-shaped metal electrode current collector and an electrode active material layer provided on the metal electrode current collector.
  • the electrode active material contained in the metal electrode 5 is a metal species that generates a charge in the metal electrode 5 by an anodic reaction and dissolves in the electrolyte as metal-containing ions.
  • the metal species as the electrode active material include zinc (Zn), aluminum (Al), iron (Fe), tin (Sn), lithium (Li), sodium (Na), calcium (Ca), and magnesium (Mg). Etc.
  • the electrode active material may be an alloy or compound containing at least the metal species mentioned above.
  • a metal electrode containing an electrode active material containing a metal species selected from zinc (Zn), aluminum (Al), iron (Fe) and tin (Sn) can be safely transported even in the air. To preferred.
  • the charge generated in the metal electrode 5 is output to the outside and then used for the cathode reaction in the air electrode 9.
  • concentration of the metal-containing ions in the electrolytic solution 3 exceeds the saturation concentration, the metal-containing ions are deposited in the electrolytic solution 3 as fine particles of metal oxide or metal hydroxide (precipitate 17).
  • precipitate 17 is deposited on the surface of the metal electrode 5 and covers the surface of the metal electrode 5, the anode reaction on the surface of the metal electrode 5 is inhibited, and the output of the metal-air battery 25 is reduced.
  • the precipitate 17 is deposited in the pores of the air electrode 9, the cathode reaction in the air electrode 9 is inhibited, and the output of the metal-air battery 25 is reduced.
  • the ion conduction path of OH ⁇ is hindered, the reaction resistance increases, and the output decreases.
  • the electrode active material contained in the metal electrode 5 is gradually consumed as the anode reaction proceeds. For this reason, when the electrode active material contained in the metal electrode 5 decreases, the charge generated in the metal electrode 5 decreases and the output of the metal-air battery 25 decreases, so that the metal electrode 5 is used.
  • the used metal electrode 5 is removed from the electrolytic solution tank 2 through the electrode insertion port, and a new metal electrode 5 is inserted into the electrolytic solution tank 2 through the electrode insertion port. Further, when the deposit 17 is deposited on the surface of the metal electrode 5 or the like, the output of the metal-air battery 25 is lowered, and therefore the deposit 17 needs to be removed from the electrolytic solution.
  • the electrode active material is mainly metallic zinc, and zinc hydroxide or zinc oxide is deposited in the electrolytic solution.
  • the electrode active material is mainly metallic aluminum, and aluminum hydroxide is deposited in the electrolytic solution.
  • the electrode active material is mainly metallic iron, and iron oxide hydroxide or iron oxide is deposited in the electrolytic solution.
  • the electrode active material is mainly metallic magnesium, and magnesium hydroxide is deposited in the electrolytic solution.
  • the electrode active materials are mainly metal lithium, metal sodium, and metal calcium, respectively, and these metal oxides, hydroxides, etc. Precipitates.
  • a solid electrolyte membrane may be provided between the metal electrode 5 and the electrolytic solution. Thereby, it can suppress that an electrode active material is corroded by electrolyte solution. In this case, the electrode active material is dissolved in the electrolytic solution after ion conduction through the solid electrolyte membrane.
  • an electrode active material is not limited to these examples, What is necessary is just a metal air battery.
  • the electrode active material contained in the metal electrode 5 mentioned the metal which consists of a kind of metal element in said example, the electrode active material contained in the metal electrode 5 may be an alloy.
  • the particle size of the precipitate 17 varies depending on the type of the electrode active material contained in the metal electrode 5. For example, when the electrode active material is metallic zinc, the particle of the precipitate 17 deposited in the electrolytic solution 3 by the anode reaction. The diameter is measured by a zeta potential / particle size measurement system ELSZ-1000 manufactured by Otsuka Electronics Co., Ltd., and the particle size is 5 ⁇ m to 20 ⁇ m.
  • the metal electrode current collector has conductivity. Further, the shape of the metal electrode current collector is preferably a plate shape, a shape provided with a hole penetrating in the thickness direction of the plate, an expanded metal or a mesh. In addition, the metal electrode current collector can be formed of, for example, a metal plate having corrosion resistance against the electrolytic solution.
  • the material of the metal electrode current collector is, for example, nickel, gold, silver, copper, stainless steel or the like.
  • the metal electrode current collector may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
  • the electrode active material layer may be fixed on the main surface of the metal electrode current collector by, for example, pressing metal particles or lumps that are electrode active materials against the surface of the metal electrode current collector.
  • a metal may be deposited on the current collector by plating or the like.
  • the shape of the metal electrode current collector the plate shape is preferable from the viewpoint of conductivity when the electrode active material is deposited by plating, and when the metal particles or lump is fixed, the particles or lump is dropped. From the viewpoint of preventing this, a plate provided with a through hole, or an expanded metal or mesh is preferable.
  • the metal electrode 5 can constitute a metal electrode cartridge 23 together with the metal electrode support 13.
  • the metal electrode cartridge 23 is provided so that the metal electrode 5 can be inserted into the electrolyte bath 2 and the used metal electrode 5 can be extracted from the electrolyte bath 2.
  • the electrode active material can be supplied to the metal-air battery 25.
  • the metal electrode cartridge 23 has a structure in which the metal electrode 5 is mounted substantially vertically on the main surface of the metal electrode support 13 as in the metal electrode cartridge 23 shown in FIG. May be. By having such a structure, the metal electrode 5 can be inserted into the electrolytic solution tank 2 through the electrode insertion port.
  • the used metal electrode 5 can be easily removed from the electrolytic solution tank 2, and a new metal electrode 5 is inserted into the electrolytic solution tank 2. Can do. As a result, the electrode active material can be supplied to the metal-air battery 25.
  • the support 13 can be provided so as to be a lid for the electrode insertion opening provided in the metal-air battery main body 24.
  • the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the electrode insertion port can be covered, and the reaction between the components in the atmosphere and the electrolytic solution 3 can be suppressed.
  • the reaction between the components in the atmosphere and the electrolytic solution 3 can be suppressed.
  • an alkaline electrolyte is used as the electrolyte
  • carbon dioxide gas in the atmosphere dissolves in the electrolyte and neutralizes the alkaline electrolyte.
  • the electrolytic solution can be prevented from evaporating or absorbing moisture in the air, changes in physical properties such as the electrolytic solution concentration can be prevented.
  • the metal electrode cartridge 23 may include a filtration unit 27, a spacer 22, and the like.
  • Filtration unit 27 is provided in the electrolytic solution tank 2 and has a shape that accommodates the precipitate 17 generated from the electrolytic solution 3 and the electrode active material therein. Moreover, the filtration part 27 is provided so that it can be taken out from the electrolytic solution tank 2, and the filtration part 27 is taken out from the electrolytic solution tank 2 or the electrolytic solution 3 in the electrolytic solution tank 2 is discharged. It is preferable to have a filter that filters the electrolytic solution 3 and the precipitate 17 inside the filtration unit 27 and collects the precipitate 17 as a residue, such as a porous filter 30 or an anion exchange membrane 31.
  • the electrolytic solution accommodated in the filtering unit 27 can be filtered by taking out the filtering unit 27 from the electrolytic solution tank 2 or discharging the electrolytic solution 3 in the electrolytic solution tank 2.
  • the precipitate 17 in the liquid can be collected on the filter 28 as a residue.
  • the precipitate 17 can be easily removed from the electrolytic solution tank 2, and accumulation of the precipitate 17 in the electrolytic solution tank 2 can be suppressed.
  • the collected precipitate 17 can be used as a raw material for a new metal electrode 5.
  • the electrolytic solution 3 separated as the filtrate can be returned to the electrolytic solution tank 2.
  • FIG. Examples of the porous filter 30 include polyethylene, polypropylene, nylon 6, nylon 66, polyolefin, a polyvinyl alcohol-based porous film or a nonwoven fabric.
  • the pore diameter of the pores of the porous filter 30 can be appropriately selected depending on the electrode active material contained in the metal electrode 5, but is 0.001 ⁇ m or more from the viewpoint of permeation of the electrolytic solution and hydroxide ions.
  • anion exchange membrane 31 examples include perfluorosulfonic acid-based, perfluorocarboxylic acid-based, styrene vinylbenzene-based, and quaternary ammonium-based solid polymer electrolyte membranes.
  • the shape of the container 15 or the filtration part 27 will not be specifically limited if the electrolyte solution 3 and the precipitate 17 can be accommodated in the inside,
  • a bag shape may be sufficient and a container shape may be sufficient.
  • the filtration part 27 has electrical insulation. Thereby, it is possible to suppress the leakage current from flowing between the metal electrode 5 and the air electrode 9.
  • the filtration unit 27 may be composed of a bag-like porous filter 31, may be composed of a filter on which a plurality of porous filters 31 are installed, and is composed of a porous filter 30 and an anion exchange membrane 31. Also good.
  • the filter included in the filtration unit 27 is not particularly limited as long as the electrolytic solution 3 penetrates, has corrosion resistance to the electrolytic solution 3, and can separate the electrolytic solution 3 and the precipitate 17.
  • a cellulose filter, a glass, etc. It may be a porous filter such as a fiber filter or a membrane filter.
  • the filter contained in the filtration part 27 can select a fine thing so that the precipitate 17 may not be allowed to pass through. Fine items are likely to be clogged when used repeatedly, but this problem is unlikely to occur because they are replaced with new ones during collection.
  • the filter contained in the filtration part 27 has hydrophilicity. As a result, the electrolytic solution 3 can be transmitted through the filter.
  • the hydrophilization treatment include surfactant application, corona discharge treatment, plasma treatment, fluorine gas treatment, acrylic acid graft polymerization treatment, and sulfonation treatment.
  • the filtration part 27 can be provided such that the bottom of the filtration part 27 is easier to permeate the electrolyte than the upper part of the filtration part 27.
  • the pore size of the filter at the bottom of the filtration unit 27 can be made larger than the pore size of the filter at the portion of the filtration unit 27 sandwiched between the metal electrode 5 and the air electrode 9. Accordingly, when the filtration unit 27 is inserted into the electrolytic solution tank 2, the electrolytic solution easily flows into the filtration unit 27. Moreover, when taking out the filtration part 27 from the inside of the electrolytic solution tank 2, the time for which the electrolytic solution 3 inside the filtration part 27 is filtered can be shortened. As a result, the installation time of the filtration unit 27 and the filtration time of the electrolytic solution in the filtration unit 27 can be shortened, and the time required for replacement of the filtration unit 27 can be shortened.
  • the container 15 includes a second filter 28 that is disposed on the side surface of the container 15, that is, between the metal electrode 5 and the air electrode 9 and has a small pore diameter.
  • FIG. According to such a configuration of the first filter, the filtration time of the electrolytic solution 3 in the container 15 can be shortened. Further, by disposing the second filter 28 having a small pore diameter between the metal electrode 5 and the air electrode 9, it is possible to suppress an increase in the concentration of metal-containing ions in the electrolyte solution 3 adjacent to the air electrode 9.
  • the filtration unit 27 is disposed at the bottom of the container 15 by the particle size of the precipitate 17 than the side surface of the container 15, that is, the pore diameter of the porous filter disposed between the metal electrode 5 and the air electrode 9. Further, the pore size of the porous filter may be designed to be small. In this case, the filtering unit 27 can easily pass the electrolytic solution 3 from the side surface of the filtering unit 27.
  • the container 15 includes, for example, an anion exchange membrane 31 disposed between the metal electrode 5 and the air electrode 9 and a porous filter 30 disposed at the bottom, like the metal electrode cartridge 23 shown in FIG. It may be configured.
  • the anion exchange membrane 31 may be non-porous and has a property that a metal-containing ion having a relatively large ionic radius such as a zinc ion or a tetrahydroxozincate ion, in particular, a polyvalent ion is difficult to conduct. According to such a configuration, the electrolytic solution 3 in the filtration unit 27 can be filtered by the porous filter 30.
  • the anion exchange membrane 31 having the above-described properties between the metal electrode 5 and the air electrode 9, it is possible to suppress an increase in the metal-containing ion concentration of the electrolyte solution 3 in the vicinity of the air electrode 9. It is possible to suppress the deposit 17 from adhering to the air electrode 9. Further, the anion exchange membrane 31 does not hinder the permeation of OH ⁇ ions, and therefore does not inhibit the battery reaction.
  • the filtration part 27 may be provided so that the internal electrolyte solution 3 may be naturally filtered by removing the filtration part 27 from the electrolyte solution tank 2 or discharging the electrolyte solution 3 in the electrolyte solution tank 2. It may be provided so that it may carry out, and it may be provided so that pressure filtration may be carried out.
  • the filtration part 27 can be provided so that it may connect with the metal electrode 5 provided so that extraction from the electrolyte tank 2 was possible. Thereby, the metal electrode 5 and the filtration part 27 can be taken out from the electrolytic solution tank 2 together. Thus, when the used metal electrode 5 is replaced with a new metal electrode 5, the filtration unit 27 can be taken out from the electrolytic solution tank 2, and the precipitate 17 can be removed from the electrolytic solution tank 2. it can.
  • the container 15 or the filtration unit 27 may be directly connected to the metal electrode 5.
  • the container 15 is directly connected to the metal electrode 5 by the clip 20. Further, the container 15 may be indirectly connected to the metal electrode 5.
  • a plurality of metal electrodes 5 are bonded to one support body 13, and the container 15 is also bonded to the metal electrode support body 13. Therefore, in the metal electrode cartridge 23 shown in FIGS. 6 and 7, the container 15 is connected to the metal electrode 5 via the support 13.
  • the container 15 has a bag shape, is disposed so that the bottom of the container 15 is on the bottom side of the electrolytic solution tank 2, and can be provided so as to accommodate the metal electrode 5.
  • the electrolytic solution 3 in the electrolytic solution tank 2 can be divided into an electrolytic solution 3 inside the filtering unit 27 and an electrolytic solution outside the filtering unit 27. Since the filtration part 27 has a filter, the electrolyte solution 3 inside and outside the filtration part 27 can circulate with each other.
  • the metal electrode 5 that generates metal-containing ions as the anode reaction proceeds is provided inside the filtration unit 27, the metal-containing ion concentration of the electrolyte solution 3 inside the filtration unit 27 is 27 is higher than the metal-containing ion concentration of the electrolytic solution 3 outside. For this reason, the precipitate 17 can be preferentially deposited in the electrolytic solution 3 inside the filtration unit 27. Therefore, the filtration part 27 is taken out from the electrolytic solution tank 2 or the electrolytic solution 3 in the electrolytic solution tank 2 is discharged, and the precipitate 17 inside the filtration part 27 is recovered as a residue, thereby removing the electrolytic solution 3 from the electrolytic solution tank 2. The precipitate 17 can be efficiently removed.
  • a space can be provided between the bottom of the filtration unit 27 and the lower end of the metal electrode 5. Thereby, even when the precipitate 17 accumulates in the bottom of the filtration part 27, it can suppress that the precipitate 17 and the metal electrode 5 contact. Thereby, it can suppress that the precipitate 17 adheres on the surface of the metal electrode 5 as a nucleus of passive formation. Further, a polymer additive that suppresses the deposit 17 from adhering to the surface of the metal electrode 5 as a nucleus for formation of a passive state or the precipitation of metal-containing ions as a nucleus for formation of a passive state is added to the inside of the filtration unit 27. You may add to.
  • the polymer additive may be attached to the metal electrode 5 or may be attached to the inside of the filtration unit 27. Thereby, it is possible to suppress the deposit 17 from adhering to the surface of the metal electrode 5 as a nucleus for forming a passive state or depositing metal-containing ions as a nucleus for forming a passive state. It can suppress that an anode reaction is inhibited.
  • the polymer additive has a problem in use in that it deteriorates quickly in a strong alkaline electrolyte. However, by adding the polymer additive to the inside of the filtration unit 27, the polymer additive deteriorated by collecting the filtration unit 27 from the electrolytic solution tank 2 can be collected from the electrolytic solution 3.
  • a new polymer additive can be supplied into the electrolytic solution tank 2 by inserting a new filtration unit 27 into the electrolytic solution tank 2. This suppresses the deposit 17 from adhering to the surface of the metal electrode 5 as a passive formation nucleus by the polymer additive without leaving the degraded polymer additive in the electrolyte bath 2. Or the precipitation of metal-containing ions as nuclei for passive formation can be suppressed.
  • the polymer additive can be, for example, PEG (polyethylene glycol), polyethyleneimine, or glue.
  • the metal-air battery 25 shown in FIG. 1A includes a metal-air battery body 24 and a metal electrode cartridge 23, and a bag-like container 15 made of a filter accommodates the metal electrode 5, and the clip 20 It is connected to the metal electrode 5.
  • the metal electrode 5 undergoes an anodic reaction to generate metal-containing ions from the electrode active material contained in the metal electrode 5, and the metal-containing ion concentration of the electrolytic solution 3.
  • the metal electrode 5 is surrounded by the bag-like container 15, the metal-containing ion concentration of the electrolytic solution inside the container 15 reaches the saturation concentration earlier than the electrolytic solution 3 outside the container 15.
  • the generated precipitate 17 precipitates and accumulates at the bottom of the bag-like container 15 or the filtration unit 27.
  • the metal electrode cartridge 23 in which the precipitate 17 is accumulated on the bottom of the filtration unit 27 is removed from the metal-air battery main body 24 and the filtration unit 27 is raised, the electrolyte 3 and the precipitate 17 inside the filtration unit 27 are naturally filtered by a filter. Then, the electrolytic solution 3 returns to the electrolytic solution tank 2 as a filtrate. Then, like the metal electrode cartridge 23 shown in FIG. 1B, the precipitate 17 is drained and collected as a residue on the bottom of the filtration unit 27.
  • a bag-like container composed of the metal-air battery main body 24, the metal electrode cartridge 23, and the second electrolytic solution tank 40 and made of a filter. 15 and the filtration part 27 accommodate the metal electrode 5, and are connected to the metal electrode 5 by the clip 20. Further, the electrolytic solution tank 2 of the metal-air battery main body 24 and the second electrolytic solution tank 40 are connected by a circulation channel 33.
  • the precipitate 17 is generated in the electrolytic solution inside the container 15 and the filtration unit 27 and accumulates at the bottom of the bag-like container 15 and the filtration unit 27.
  • the pump 34 is stopped, and most of the electrolytic solution 3 in the electrolytic solution tank 2 is moved to the second electrolytic solution tank 40 through the circulation channel 33 as in the metal-air battery 25 shown in FIG. Then, the electrolytic solution 3 and the precipitate 17 inside the container 15 and the filtration unit 27 are naturally filtered by the filter, and the electrolytic solution 3 flows to the bottom of the electrolytic solution tank 2 as a filtrate and is discharged from the electrolytic solution tank 2. The precipitate 17 is drained and remains as a residue on the bottom of the filtration unit 27. Thereafter, the deposit 17 that has been drained by removing the metal electrode cartridge 23 from the metal-air battery main body 24 can be recovered from the electrolytic solution tank 2.
  • the metal-air battery 25 In such a metal-air battery 25, most of the electrolytic solution 3 in the electrolytic solution tank 2 is moved to the second electrolytic solution tank 40, and then the electrolytic solution 3 and the precipitate 17 inside the filtration unit 27 are filtered. It takes some time to finish. For this reason, it is necessary to remove the metal electrode cartridge 23 from the metal air battery body 24 after the filtration is completed. In addition, by removing the metal electrode cartridge 23 after the filtration is completed, it is possible to prevent the user or the operator from touching the electrolyte solution by dripping the electrolyte solution, and safety when taking out the container 15 and the filtration unit 27 is improved. Can be improved. Further, the metal-air battery 25 may be provided so that the user can know the end of the filtration.
  • the metal-air battery 25 may include a timer that predicts the time required for filtration and notifies the user of the end of filtration after the predicted time has elapsed. Further, the metal-air battery 25 may be provided so as to notify the user of the end of filtration by providing a sensor that detects the filtrate that has passed through the filter of the filtration unit 27. By providing the metal-air battery 25 in this manner, the user can know whether or not the metal electrode cartridge 23 can be pulled out, and the safety when taking out the container 15 and the filtration unit 27 can be improved. Moreover, the precipitate 17 collect
  • recovered precipitate 17 can be decreased, the weight of the collect
  • the metal electrode cartridge 23 can have a spacer 22 between the metal electrode 5 and the container 15. Thereby, a space can be provided between the metal electrode 5 and the container 15. For this reason, sticking of the container 15 or the filtration part 27 to the metal electrode 5 can be suppressed, and the precipitate 17 deposited in the electrolytic solution 3 inside the filtration part 27 is allowed to settle to the bottom of the filtration part 27. Can do. As a result, the deposit 17 can be prevented from adhering to the surface of the metal electrode 5, and the anode reaction can be prevented from being inhibited by the deposit 17. Further, when the spacer 22 is provided, the amount of the electrolytic solution in the container 15 can be increased. Thereby, the time until the metal-containing ion concentration of the electrolytic solution 3 in the container 15 or the filtration unit 27 reaches the saturation dissolution concentration can be increased, and the discharge time of the metal-air battery 25 can be increased.
  • hydrogen gas bubbles may be generated on the electrode surface due to self-corrosion of the electrode active material. Since the hydrogen generation overvoltage is high, the amount of hydrogen gas generated is very small. However, if hydrogen gas bubbles stay on the electrode surface, the anode reaction may be hindered.
  • a space can be provided between the metal electrode 5 and the container 15 or the filtration unit 27, so that bubbles stay on the surface of the metal electrode 5. Can be suppressed.
  • the heat convection of the electrolyte solution 3 in the container 15 or the filtration part 27 can be anticipated by the space which the spacer 22 receives.
  • the electrolyte 3 is warmed by this heat and undergoes thermal convection. Thereby, since the electrolyte solution 3 is stirred, melt
  • the shape of the spacer 22 is not particularly limited as long as a space can be provided between the metal electrode 5 and the container 15.
  • the spacer 22 may have an elongated shape extending from the upper part to the lower part.
  • the spacer 22 may be provided in a protruding shape so as to protrude from the main surface of the metal electrode 5 like the metal electrode cartridge 23 shown in FIGS.
  • the spacer 22 can be provided so that the area of contact between the spacer 22 and the metal electrode 5 is reduced.
  • the spacer 22 may be made of an elastic material.
  • the container 15 and the filtering unit 27 may be provided so that the electrolyte solution containing the precipitate 17 flows into the inside thereof, like the metal-air battery 25 shown in FIG. 6 and the metal electrode cartridge 23 shown in FIG. .
  • the electrolytic solution 3 containing the precipitate 17 can be filtered by the filtration unit 27, and the precipitate 17 deposited in the electrolytic solution 3 accommodated in the electrolytic solution tank 2 is accumulated in the container 15 or the filtration unit 27. can do.
  • the precipitate 17 in the electrolyte solution 3 adjacent to the metal electrode 5 can be reduced, and the metal electrode 5 It can suppress that the precipitate 17 adheres to the surface of this as a nucleus of passive formation.
  • the precipitates 17 of the plurality of cells 4 can be collected in one place, so that a small amount of filter is required and the cost can be reduced.
  • FIG. 7 is a schematic cross-sectional view of the metal electrode cartridge 23 taken out from the metal-air battery 25 shown in FIG.
  • the metal-air battery 25 shown in FIG. 6 has three cells 4 a, 4 b and 4 c, and each cell 4 has an electrolyte chamber 16. Further, the metal-air battery 25 has an electrolyte chamber 16 d in which a filtration unit 27 is disposed in addition to the electrolyte chamber 16 of each cell 4.
  • the electrolyte chambers 16a, 16b, 16c, and 16d communicate with each other through an electrolyte channel.
  • the electrolytic solution chamber 16 a and the electrolytic solution chamber 16 d are connected by a circulation channel 33 including a pump 34, and the electrolytic solution 3 is circulated by the power of the pump 34.
  • the filtering unit 27 is provided in the electrolytic solution chamber 16 d so that the electrolyte flowing through the circulation channel 33 flows into the filtering unit 27 from the supply port 36.
  • the filtration part 27 is arrange
  • the filtration unit 27 may be provided on the discharge port 37 side, or may be provided between the cells 4a, 4b, and 4c.
  • the electrolyte solution chamber communicates between the cells 4a, 4b, and 4c, the flow path of the electrolyte solution is not limited to this.
  • a liquid distributor may be provided above the cells 4a, 4b, and 4c, and the electrolytic solution may be supplied to each cell so that droplets are dropped from the liquid distributor.
  • the electrolytic solution supplied to each cell may be gathered in one place in the same manner as a droplet is dropped, and the electrolytic solution may be sent to the liquid distributor using the pump 34.
  • the filtration unit 27 may be provided between the pump 34 and the liquid distribution unit.
  • the metal-containing ions are generated in the electrolytic solution 3 as the anode reaction proceeds, so that it is considered that the precipitate 17 is deposited.
  • the precipitate 17 circulates on the flow of the electrolytic solution 3, flows into the filtration unit 27, and is filtered by the filtration unit 27. Therefore, the precipitate 17 generated in the electrolytic solution tank 2 can be accumulated in the filtration unit 27. Then, when the metal electrode cartridge 23 is removed from the metal-air battery main body 24 and the filtration unit 27 is pulled up from the electrolyte solution 3, the electrolyte solution 3 inside the filtration unit 27 is filtered, as in the metal electrode cartridge 23 shown in FIG. The precipitate 17 can be recovered at the bottom of the filtration unit 27 as a residue obtained by draining. Further, the replacement of the metal electrode 5 and the recovery of the precipitation portion 17 can be performed simultaneously.
  • the metal-air battery 25 can include a constricting unit 42 provided to constrict the filtering unit 27 containing the electrolytic solution 3 and the precipitate 17 when the container 15 and the filtering unit 27 are taken out from the electrolytic solution tank 2.
  • the throttle part 42 can be provided close to the upper opening of the electrolytic solution tank 2, for example. Further, the throttling part 42 can be provided so as to be in pressure contact with the filtering part 27 when at least the filtering part 27 is taken out from the electrolytic solution tank 2.
  • the collected precipitate 17 can be reliably drained. Thereby, it is possible to prevent the user or worker from touching the electrolyte solution by dripping the electrolyte solution, and the safety when collecting the precipitate 17 can be improved. Moreover, the quantity of the electrolyte solution contained in the collected deposit 17 can be reduced, the weight of the collected deposit 17 can be reduced, and the transportation cost of the collected product can be reduced. Moreover, the loss of the electrolyte solution from the metal-air battery 25 accompanying the collection of the precipitate 17 can be reduced.
  • the diaphragm unit 42 may be movable.
  • the throttle portion 42 when the metal electrode cartridge 23 is attached to the metal-air battery main body 24 and during power generation, the throttle portion 42 is in an open state, and when the metal electrode cartridge 23 is removed from the metal-air battery main body 24, it is in a closed state.
  • 27 can be provided so as to be able to press-contact with 27.
  • the throttle unit 42 can be provided, for example, like the metal-air battery 25 shown in FIG. In the metal-air battery 25, a throttle part 42 is provided in a part close to the opening of the electrolytic solution tank 2 so as to sandwich the filtering part 27.
  • the filtering unit 27 is pulled up from the electrolytic solution tank 2, the upper opening of the filtering unit 27 is closed by the throttle unit 24, so that the hydraulic pressure of the electrolytic solution 3 in the filtering unit 27 can be increased.
  • filtration of the electrolyte solution 3 and the precipitate 17 by a filter can be accelerated
  • the filtration unit 27 containing the drained deposit 17 can be removed from the metal-air battery main body 24 together with the metal electrode cartridge 23.
  • the air electrode 9 is an electrode serving as a cathode.
  • the air electrode 9 may have a gas diffusion layer and an air electrode catalyst layer provided on the gas diffusion layer.
  • hydroxide ions (OH ⁇ ) are generated from oxygen gas, water, and electrons in the atmosphere.
  • the air electrode catalyst layer may include, for example, a conductive porous carrier and an air electrode catalyst supported on the porous carrier. As a result, oxygen gas, water, and electrons can coexist on the air electrode catalyst, and the electrode reaction can proceed.
  • the water used for the electrode reaction may be supplied from the atmosphere or supplied from the electrolytic solution 3.
  • the air electrode 9 may be produced by applying a porous carrier carrying an air electrode catalyst to a conductive porous substrate (gas diffusion layer).
  • a porous carrier carrying an air electrode catalyst to a conductive porous substrate (gas diffusion layer).
  • the air electrode 9 can be produced by applying carbon carrying an air electrode catalyst to carbon paper or carbon felt. This gas diffusion layer may function as the air electrode current collector 10.
  • the metal-air battery 25 may include the air electrode current collector 10 that collects the charge of the air electrode catalyst layer. As a result, charges generated in the air electrode catalyst layer can be efficiently taken out to the external circuit.
  • the air electrode current collector 10 may be the same member as the member that forms the air flow path 12.
  • the material of the air electrode current collector 10 is not particularly limited as long as it has corrosion resistance with respect to the electrolytic solution 3, and examples thereof include nickel, gold, silver, copper, and stainless steel.
  • the air electrode current collector 10 may be a conductive base material subjected to nickel plating, gold plating, silver plating, or copper plating. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
  • the shape of the air electrode current collector 10 can be, for example, a plate shape, a mesh shape, a punching metal, or the like.
  • a method of joining the air electrode current collector 10 to the porous carrier or the conductive porous substrate (gas diffusion layer) a method of bonding by screwing through a frame, or a conductive adhesive can be used. The method of using and combining is mentioned.
  • the air electrode 9 included in one cell 4 may be provided only on one side of the metal electrode 5 or may be provided on both sides of the metal electrode 5 as shown in FIG.
  • Examples of the porous carrier contained in the air electrode catalyst layer include carbon black such as acetylene black, furnace black, channel black and ketjen black, and conductive carbon particles such as graphite and activated carbon.
  • carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
  • the air electrode catalyst is not particularly limited as long as it is generally used in the art.
  • This alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel.
  • platinum-iron alloy, platinum-cobalt alloy, iron-cobalt alloy, cobalt-nickel alloy, iron-nickel alloy And iron-cobalt-nickel alloy you may use the oxide of iron, manganese, or cobalt for an air catalyst.
  • the porous carrier contained in the air electrode catalyst layer may be subjected to a surface treatment so that a cationic group exists as a fixed ion on the surface thereof.
  • hydroxide ions can be conducted on the surface of the porous carrier, so that the hydroxide ions generated on the air electrode catalyst can easily move.
  • the air electrode catalyst layer may have an anion exchange resin supported on a porous carrier. Thereby, since hydroxide ions can be conducted through the anion exchange resin, the hydroxide ions generated on the air electrode catalyst are easily moved.
  • the air electrode catalyst layer may be provided so as to be in direct contact with the atmosphere, or may be provided so that air flowing through the air flow path 12 is supplied to the air electrode catalyst layer.
  • oxygen gas can be supplied to the air electrode 9.
  • water can be supplied to the air electrode 9 together with oxygen gas by flowing humidified air through the air flow path 12.
  • the air electrode catalyst layer may be provided so as to be in contact with the electrolytic solution 3 in the electrolytic solution tank 2.
  • hydroxide ions generated in the air electrode catalyst layer can easily move to the electrolyte solution 3.
  • water necessary for the electrode reaction in the air electrode catalyst layer is easily supplied from the electrolyte 3 to the air electrode catalyst layer.
  • the air electrode catalyst layer may be provided so as to be in contact with a porous resin or an ion exchange membrane that is in contact with the electrolytic solution 3 stored in the electrolytic solution tank 2.
  • the porous resin or the ion exchange membrane can be provided so as to partition the electrolytic solution 3 in the electrolytic solution tank 2 and the air electrode catalyst layer.
  • the ion exchange membrane may be an anion exchange membrane.
  • hydroxide ions generated in the air electrode catalyst layer can be conducted through the anion exchange membrane and transferred to the electrolytic solution.
  • the porous resin it is possible to suppress adhesion of extremely fine particles moving between the air electrode catalyst layer and the electrolytic solution 3 to the air electrode 9.
  • the ion exchange membrane By providing the ion exchange membrane, the ion species moving between the air electrode catalyst layer and the electrolytic solution 3 can be limited.
  • the ion exchange membrane is an anion exchange membrane, since the anion exchange membrane has a cation group that is a fixed ion, the cation in the electrolytic solution cannot be conducted to the air electrode catalyst layer.
  • the hydroxide ion generated in the air electrode catalyst layer is an anion, it can be conducted to the electrolytic solution.
  • the battery reaction of the metal-air battery 25 can proceed, and the cations in the electrolytic solution 3 can be prevented from moving to the air electrode catalyst layer. Thereby, precipitation of the metal and a carbonate compound in an air electrode catalyst layer can be suppressed.
  • the porous resin or the ion exchange membrane can suppress that the water contained in the electrolyte solution 3 is supplied excessively to the air electrode catalyst layer by providing the porous resin or the ion exchange membrane.
  • the porous resin include polyethylene, polypropylene, nylon 6, nylon 66, polyolefin, polyvinyl alcohol-based porous film or non-woven fabric.
  • the pore diameter is not particularly limited, but is preferably 30 ⁇ m or less. It is preferable that a hydrophilic treatment is performed so as to improve the flow of the electrolytic solution.
  • the ion exchange membrane include perfluorosulfonic acid, perfluorocarboxylic acid, styrene vinylbenzene, and quaternary ammonium solid polymer electrolyte membranes (anion exchange membranes).
  • the metal-air battery 25 according to the present invention can be re-discharged by replacing the used metal electrode cartridge 23 with a new metal electrode cartridge 23 after discharge.
  • the electrode active material is consumed in the metal electrode 5 due to the anode reaction, and the precipitate 17 is deposited on the surface of the metal electrode 5, and is deposited inside the container 15.
  • An object 17 is accommodated.
  • charging can be performed while the deposit 17 is housed in the container 15.
  • a method for charging the metal electrode cartridge 23 according to the present invention will be described.
  • the used metal electrode cartridge 23 is immersed in an electrolytic solution by discharge in the metal-air battery 25, and electrolysis has penetrated into the container 15 through the filtration unit 27.
  • the container 15 of the used metal electrode cartridge 23 is immersed in an electrolytic solution tank containing the same electrolytic solution as the electrolytic solution 3 stored in the electrolytic solution tank 2 of the metal-air battery 25.
  • the electrolytic solution penetrates into the container 15 through the filtration unit 27 and fills the container 15. Therefore, the metal electrode 5 is in contact with the electrolytic solution inside the container 15 because the container 15 is immersed in the electrolytic solution.
  • the precipitate 17 is dissolved in the electrolytic solution that has permeated the container 15 and exists as metal-containing ions in the electrolytic solution filled in the container 15.
  • the metal electrode 5 of the metal electrode cartridge 23 is connected to the cathode of the external power source, another electrode is connected to the anode of the external electrode, and the electrode is put into the electrolyte.
  • a voltage is applied to the metal electrode 5 and the electrode to an external power source so that the metal electrode 5 and the electrode are electrically connected via the electrolytic solution.
  • the electrode used in the electrodeposition step is not particularly limited as long as it is an electrode used in electrolysis or electrodeposition, and examples thereof include a nickel electrode, a carbon electrode, and a stainless electrode.
  • a voltage is applied between the metal electrode 5 and the electrode, the electrode active material contained in the metal-containing ions dissolved in the container 15 is electrodeposited on the surface of the metal electrode 5. Therefore, after the electrodeposition process, the metal electrode cartridge 23 taken out from the electrolytic solution is again immersed in the electrolytic solution 3 in the electrolytic solution tank 2 of the metal-air battery 25, so that it is charged in a dischargeable state.
  • the amount of metal-containing ions in the electrolytic solution 3 changes before and after charging. Therefore, another used metal electrode cartridge 23 can be immersed in the electrolytic solution 3 in the electrolytic solution tank and repeatedly charged.
  • a metal oxide or metal hydroxide having the same component as that of the precipitate 17 may be dissolved in advance in the electrolytic solution 3. .
  • the metal oxide or metal hydroxide is dissolved as a metal-containing ion.
  • the metal oxide or metal hydroxide is chemically stable as long as it is dissolved below the saturated dissolution amount, and therefore does not precipitate in the electrolytic solution.
  • the electrode active material contained in the dissolved metal-containing ions is electrodeposited on the surface of the metal electrode 5.
  • the metal-containing ion concentration in the electrolytic solution 3 decreases, so that the precipitate 17 accommodated in the container 15 is dissolved in the electrolytic solution.
  • Zinc-air battery discharge experiment 1 A zinc-air battery as shown in FIG. 1A was produced, and a discharge experiment was performed.
  • the metal electrode 5 a zinc plate having a thickness of 10 mm was used. Further, the size of the portion of the metal electrode 5 immersed in the electrolytic solution was 50 mm ⁇ 50 mm.
  • the metal electrode 5 having a shape in which a part of one side is extended is attached to the metal electrode support 13.
  • the filtration part 27 used the tube-shaped thing whose length of the length direction is 70 mm and whose length of the width direction is 60 mm. One end of the filtration unit 27 in the length direction was closed and the other end was opened.
  • the metal electrode 5 was inserted into the inside of the filtration part 27 from the opened end, and the opened end was attached to the upper part of the metal electrode 5 with a clip 20 as shown in FIG.
  • a filtration membrane made of Kuraray Co., Ltd. PVA fiber was used for the filtration unit 27.
  • This filtration membrane has pores communicating in the thickness direction, and OH - ions can move through the electrolyte in the pores.
  • the average pore diameter of this filtration membrane is 8 ⁇ m. Since the length of the metal electrode 5 is 50 mm and the length of the filtration part 27 is 70 mm, a space of about 20 mm is provided in the lower part of the filtration part 27. In this space, zinc oxide generated from the metal electrode 5 is deposited by the anode reaction. This is because when the deposited zinc oxide comes into contact with the metal electrode 5, it becomes a nucleus for passive formation of zinc oxide, the inactivation of the metal electrode 5 is accelerated, and the discharge time is shortened.
  • the air electrode 9 was formed by laminating an air electrode catalyst layer and a gas diffusion layer.
  • the air electrode 9 had a thickness of about 300 ⁇ m and a size of 50 mm ⁇ 50 mm.
  • 35BC made of SGL carbon was used.
  • 35BC consists of a carbon fiber and a microporous layer, and the microporous layer is a layer made of carbon black and a water repellent resin (PTFE).
  • the water repellent resin functions as gas-liquid separation because it does not get wet with the electrolyte. That is, the electrolytic solution is prevented from leaking from the electrolytic solution tank 2 and does not hinder the supply of oxygen to the air electrode catalyst layer.
  • As the air electrode catalyst layer one containing Pt-supported carbon and water repellent resin (PTFE) was used. In order to increase the reaction surface area, Pt is supported as fine particles on carbon having a large surface area.
  • the air electrode current collector 10 was a Ni-plated stainless steel plate having a plurality of openings.
  • the stainless steel plate has a thickness of 1 mm and an aperture ratio of 60%.
  • the air electrode 9 and the air electrode current collector 10 were fixed to the housing 1 that also served as the electrolyte solution tank 2.
  • the depth of the electrolytic bath 2 was 100 mm, and the width of the electrolytic bath 2 (distance between the facing air electrodes 9) was 16 mm.
  • the housing 1 was made of polypropylene. A 7M KOH aqueous solution was used as the electrolytic solution.
  • a discharge experiment was conducted using such a zinc-air battery. As soon as the electrolyte was put into the electrolyte bath 2, an electromotive force was generated between the metal electrode 5 and the air electrode 9. The open circuit voltage at this time was 1.6V. As described above, the metal electrode 5 has a size of 50 ⁇ 50 mm. However, since both sides of the air electrode 9 are opposed to each other, the area contributing to the reaction is 25 cm 2 ⁇ 2 and 50 cm 2 . The constant current load test was performed with a current load during discharge of 1.5 A (the current per unit area of the metal electrode 5 corresponds to 30 mA / cm 2 ). The voltage was stable at about 1.2 V, and the discharge time was 3.5 hours. The voltage decreased when the discharge time exceeded 3.5 hours. This is considered to be caused by the inactivation of the electrode active material due to the formation of the passive state.
  • Zinc-air battery discharge experiment 2 A zinc-air battery as shown in FIG. 2A was produced, and a discharge experiment was performed. Between the metal electrode 5 and the filtration part 27, it has the elongate spacer 22 extended from the upper part to the lower part of the filtration part 27, and a structure and members other than the spacer 22 are based on the zinc air battery discharge experiment 1.
  • FIG. The electrolytic solution is the same as that in the zinc-air battery discharge experiment 1.
  • the spacer 22 was made of polypropylene and had a thickness of 3 mm.
  • a discharge experiment was conducted using such a zinc-air battery. As soon as the electrolyte was put into the electrolyte bath 2, an electromotive force was generated between the metal electrode 5 and the air electrode 9. The open circuit voltage at this time was 1.6V. As in the zinc-air battery discharge experiment 1, the current load during discharge was 1.5 A (the current per unit area of the metal electrode 5 was equivalent to 30 mA / cm 2 ), and a constant current load test was performed. The voltage was stable at about 1.23 V, and the discharge time was 4.0 hours. When the discharge time exceeded 4.0 hours, the voltage decreased.
  • the voltage was higher than that of the zinc-air battery discharge experiment 1 because hydrogen generated due to self-corrosion of the electrode active material of the metal electrode 5 was retained due to the distance between the metal electrode 5 formed by the spacer 22 and the filtration part 27. It is considered that the characteristics of the anode reaction were improved because the electrolyte solution was stirred by heat convection and the dissolution of zinc-containing ions was promoted. The discharge of hydrogen gas could be confirmed visually. The discharge time was further extended because the precipitate 17 deposited in the electrolyte 3 inside the filtration unit 27 was allowed to settle to the bottom of the filtration unit 27 due to the above-described interval. This is considered to be because the formation of passives was alleviated by reducing oxide adhesion. Thus, the use efficiency of the electrode active material could be improved by extending the discharge time.
  • Electrolyte tank 3 Electrolyte 4, 4a, 4b, 4c: Cell 5, 5a, 5b, 5c: Metal electrode 9, 9a, 9b, 9c: Air electrode 10, 10a, 10b, 10c: Air current collector 12: Air flow path 13: Support 15: Filtration section 16, 16a, 16b, 16c, 16d: Electrolyte chamber 17: Precipitate (used active material) 20: Clip 22: Spacer 23: Metal Electrode cartridge 24: Metal-air battery body 25: Metal-air battery 27: Filtration part (filter, first filter) 28: Second filter 30: Porous filter 31: Anion exchange membrane 33: Circulation channel 34: Pump 36: Supply Mouth 37: Discharge port 40: Second electrolyte bath 42: Throttle section

Abstract

本発明は、電解液槽内から使用済み活物質を容易に除去することができる金属空気電池を提供する。本発明の金属電極カートリッジは、支持体と、支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、金属電極を収容する1以上の容器と、を備えた金属電極カートリッジであって、容器は、電極活物質および電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有することを特徴とする。

Description

金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法
 本発明は、金属電極カートリッジ、または金属電極カートリッジを備えた金属空気電池、金属電極カートリッジの充電方法に関する。
 金属空気電池は高いエネルギー密度を有するため、次世代の電池として注目されている。金属空気電池は、電極活物質を含み電解液中に配置される金属電極をアノードとし、空気極をカソードとすることにより発電する。
 代表的な金属空気電池として、金属亜鉛を電極活物質とする亜鉛空気電池が挙げられる。亜鉛空気電池では、カソードにおいて以下の化学式1のような電極反応が進行すると考えられる。
(化学式1):O2+2H2O+4e-→4OH-
 また、アノードにおいて以下の化学式2のような電極反応が進行すると考えられる。
(化学式2):Zn+4OH-→Zn(OH)4 2-+2e-
 このような化学反応が進行すると金属電極の電極活物質は消費され徐々に減少していく。また、電解液の金属含有イオン(Zn(OH)4 2-)濃度は徐々に高くなっていき、そして、飽和に達すると以下の化学式3のような反応が進行し均一核生成または不均一核生成が生じる。そして、生成した核が結晶成長することにより金属酸化物または金属水酸化物の微粒子(析出物)が析出し使用済み活物質として電解液槽内に蓄積する。
(化学式3):Zn(OH)4 2-→ZnO+2OH-+H2O
 このような使用済み活物質が電解液槽内に蓄積すると、使用済み活物質が金属電極の表面に付着しアノード反応を阻害する問題や、空気極の細孔を塞ぎカソード反応を阻害する問題が生じる。このため、使用済み活物質を電解液槽内から除去する必要がある。使用済み活物質を電解液槽内から除去する方法として、電解液を循環させて、使用済み活物質を含む電解液を電解液槽内から外部の電解液容器に移動させる方法が知られている(たとえば、特許文献1参照)。
米国特許第8173307号
 しかし、外部の電解液容器を利用して使用済み活物質を除去する方法では、外部電解液容器および電解液循環機構が必要となるため、金属空気電池が大型化するという問題および維持コストが高くなるという問題がある。
 本発明は、このような事情に鑑みてなされたものであり、電解液槽内から使用済み活物質を容易に除去することができる金属電極カートリッジまたは金属空気電池を提供する。
 本発明の金属電極カートリッジは、支持体と、支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、金属電極を収容する1以上の容器と、を備えた金属電極カートリッジであり、容器は、電極活物質および前記電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有することを特徴とする。
 また、電極活物質は、少なくともZn、Mg、FeおよびAlから選択される金属種、それらの合金または化合物を含むことが好ましい。
 また、析出物は、前記金属種の酸化物または水酸化物であることが好ましい。
 また、前記電解液がアルカリ性水溶液であることが好ましい。
 また、前記ろ過部の少なくとも一部が多孔質フィルターを備えていることが好ましい。
 さらに、多孔質フィルターが、容器の底面部に設けられた第1の多孔質フィルターと、容器の側面部に設けられた第2の多孔質フィルターと、を含み、第1の多孔質フィルターは前記第2の多孔質フィルターに比べ孔径が小さいことが好ましい。
 さらに、多孔質フィルターの孔径が0.001μm以上20μm以下であることが好ましい。
 さらに、ろ過部の少なくとも一部は、アニオン交換膜を備え、金属電極と接触していることが好ましい。
 さらに、支持体と、容器が一体となった筺体を形成することが好ましい。
 さらに、容器は袋状であって、容器と金属電極との間にスペーサが設けられていることが好ましい。
 さらに、容器は袋状であって、容器を前記電解液槽中から取り出す際に容器を絞るように設けられた絞り部をさらに備えることが好ましい。
 また、本発明の金属空気電池は、電解液を収容する電解液槽と、電解液槽の壁部の一部を形成する空気極と、電解液槽に挿入される金属電極カートリッジと、を備えた金属空気電池であって、金属電極カートリッジは、支持体と、支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、支持体に接続された容器と、を備え、容器は、電極活物質および電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有することを特徴とする。
 また、容器は、前記金属電極を収容していることが好ましい。
 また、電解液槽と循環流路により接続された第2の電解液槽とを備えることが好ましい。
 また、電解液槽と接続された循環流路とをさらに備え、循環流路が前記容器に接続されていることが好ましい。
 さらに、本発明の金属空気電池の単位セルが複数連なった金属空気電池スタックを形成していることが好ましい。
 さらに、電解液槽は、電解液を排出する排出口を備えていることが好ましい。
 さらに、本発明の金属電極カートリッジの充電方法は、支持体と、支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、金属電極を収容する1以上の容器と、を備え、容器は、電極活物質および電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有する金属電極カートリッジの充電方法であって、金属電極カートリッジの放電後、容器を電解液に浸漬させ、容器の中に含まれる析出物を電解液に溶かす溶解工程と、溶解工程の後、金属電極を正極と電気的に接続させ、電解液に溶解した電極活物質を金属電極に電析させる電析工程とを含むことを特徴とする。
 本発明の金属電極カートリッジまたは金属空気電池によれば、前記電極活物質および前記電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有する容器を備えるため、金属空気電池の放電後、該容器を電解液から取り除くことで、電解液槽内から電極活物質および電極活物質から生成する析出物を容易に除去することができる。
(a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池から取り出した金属電極カートリッジの概略断面図である。 (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池から取り出した金属電極カートリッジの概略断面図である。 (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池から取り出した金属電極カートリッジの概略断面図である。 (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池から取り出した金属電極カートリッジの概略断面図である。 (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池から取り出した金属電極カートリッジの概略断面図である。 本発明の一実施形態の金属空気電池の概略断面図である。 図6に示した金属空気電池から取り出した金属電極カートリッジの概略断面図である。 (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池に含まれる電解液槽から電解液を排出した後の金属空気電池の概略断面図である。 (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池から取り出した金属電極カートリッジの概略断面図である。
  本発明の金属電極カートリッジは、支持体と、支持体に接続され、少なくとも電極活物質を含む金属電極と、金属電極を収容する容器と、を備えた金属電極カートリッジであって、容器は、前記電極活物質および前記電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有することを特徴とする。
 また、本発明の金属空気電池は、電解液を収容する電解液槽と、電解液槽の壁部の一部を形成する空気極と、電解液槽に挿入される金属電極カートリッジと、を備えた金属空気電池であって、金属電極カートリッジは、支持体と、支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、支持体に接続された容器と、を備え、容器は、電極活物質および電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有することを特徴とする。
 本発明の金属空気電池において、本発明に係る前記金属電極カートリッジは、前記電解液槽中に取り出し可能に設けられたことが好ましい。
 このような構成によれば、金属電極カートリッジを電解液から取り出すことで、金属電極とろ過部とを容器ごと一緒に電解液槽から取り出すことができる。このことにより、金属電極の交換と電解液槽内からの析出物の除去を同時に行うことができ、ユーザーに析出物の除去を意識させることなく析出物を回収することができる。また、金属電極の交換および析出物の回収のために要する金属空気電池の停止時間を短くすることができる。
 本発明の金属電極カートリッジにおいて、前記容器は、袋状であり、かつ、前記ろ過部の底が前記電解液槽の底側となるように配置され、かつ、前記金属電極を収容するように設けられたことが好ましい。
 このような構成によれば、ろ過部中の電解液の金属含有イオン濃度がろ過部の外側の電解液に比べ高くなるため、ろ過部中の電解液において優先的に析出物を析出させることができる。このため、析出物が内部に蓄積したろ過部を電解液槽から取り出すことにより、電解液槽から析出物を効率的に除去することができる。
 本発明の金属電極カートリッジにおいて、前記金属電極と前記ろ過部との間にスペーサを備えることが好ましい。
 このような構成によれば、金属電極とろ過部とが貼りつくことを防止することができ、金属電極とろ過部との間に間隔を空けることができる。このことにより、ろ過部中の電解液に析出した析出物をろ過部の底へ素早く沈降させることができる。また、ろ過部中の電解液量を多くすることができ、ろ過部中において金属含有イオン濃度が飽和溶解濃度に達するまでの時間を長くすることができる。このことにより、金属空気電池の放電時間を長くすることができる。
 本発明の金属電極カートリッジにおいて、前記ろ過部が有するフィルターは、前記ろ過部の底に配置され、かつ、前記ろ過部のほかの部分に比べ電解液が透過しやすいように設けられたことが好ましい。
 このような構成によれば、ろ過部を電解液槽内に挿入した際、ろ過部内に電解液が流入しやすくなる。また、ろ過部を電解液槽内から取り出す際、ろ過部の内部の電解液がろ過される時間を短くすることができる。これらの結果、ろ過部の設置時間およびろ過部内の電解液のろ過時間を短くすることができ、ろ過部の交換に要する時間を短くすることができる。
 本発明の金属空気電池において、電解液を循環させる循環流路をさらに備え、前記循環流路は、前記電解液槽に電解液を供給する供給口と、前記電解液槽から電解液を排出する排出口とを備え、前記ろ過部は、前記ろ過部の内部に前記供給口から供給される電解液が流入するように設けられたことが好ましい。
 このような構成によれば、電解液槽中で生じた析出物を電解液と共に循環させることができ、ろ過部の内部に流入させた析出物をろ過部によって濾し取ることができる。従って、電解液槽中で生じた析出物をろ過部内に蓄積することができる。そして、ろ過部を電解液槽から取り出すことにより析出物を回収することができる。
 本発明の金属空気電池において、前記ろ過部を前記電解液槽中から取り出す際に前記電解液および前記析出物を収容した前記ろ過部を絞るように設けられた絞り部をさらに備えることが好ましい。
 このような構成によれば、ろ過部を電解液槽中から取り出す際に電解液および析出物を収容したろ過部を絞り部により絞ることができ、電解液および析出物のろ過を促進することができる。このことにより、ろ過に要する時間を短縮することができる。また、残渣として残る析出物の脱液を確実に行うことができ、ろ過部を電解液槽中から取り出す際の安全性を向上させることができる。
 以下、本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
金属電極カートリッジおよび金属空気電池の構成
 図1(a)、図2(a)、図3(a)、図4(a)、図5(a)、図6、図8(a)(b)、図9(a)は本実施形態の金属空気電池の概略断面図であり、図1(b)、図2(b)、図3(b)、図4(b)、図5(b)、図7、図9(b)は本実施形態の金属空気電池から取り出した金属電極カートリッジの概略断面図である。
 本実施形態の金属電極カートリッジ23は、図1(b)が示すように、支持体13と、支持体13に接続された金属電極5と、金属電極5を収容し、ろ過部27を有する容器15を備えている。
 また、本実施形態の金属空気電池25は、電解液3を収容する電解液槽2と、電解液槽2中に設けられかつ電極活物質を有しかつアノードとなる金属電極5と、カソードとなる空気極9と、電解液槽2中に取り出し可能に設けられた金属電極カートリッジ23とを備えている。
 容器15は、電解液3を透過させ、その内部に電解液3および電極活物質から生成する析出物17を収容する形状を有し、かつ、容器15を電解液槽2から取り出すこと又は電解液槽2内の電解液3を排出することにより容器15の内部の電解液3および析出物17をろ過し析出物17を残渣として回収するろ過部27を有することを特徴とする。
 なお、図1が開示するろ過部27は、容器15のすべてを形成するが、ろ過部27は、容器15の一部を形成すればよい。
 以下、本実施形態の金属空気電池25について説明する。
1.金属空気電池
 本実施形態の金属空気電池25は、電極活物質となる金属を含む金属電極5を負極(アノード)とし、空気極9を正極(カソード)とする電池である。たとえば、亜鉛空気電池、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池、マグネシウム空気電池、アルミニウム空気電池、鉄空気電池などである。また、本実施形態の金属空気電池25は、一次電池であってもよい。
 また、金属空気電池25は、電解液3を収容し、壁部の一部を形成する空気極9を備えた電解液槽2(筺体1)と、電解液槽2に着脱可能な構造を有し、金属電極5、支持体13、ろ過部27を有する容器15などからなる金属電極カートリッジ23とから構成されてもよい。
 また、金属空気電池25は、電解液3を収容し、壁部の一部を形成する空気極9を備えた電解液槽2(筺体1)と、電解液槽2に着脱可能な構造を有し、ろ過部27を有する容器15と、容器15を電解液槽2に着脱後、金属電極5を容器15に挿入することで構成されてもよい。
 図1(a)、図2(a)、図3(a)、図4(a)、図5(a)、図6、図9(a)に示した金属空気電池25は、それぞれ電解液槽2(金属空気電池本体24)と金属電極カートリッジ23とから構成される。また、金属電極カートリッジ23を電解液槽2(金属空気電池本体24)から取り外すと、金属電極カートリッジ23は、それぞれ図1(b)、図2(b)、図3(b)、図4(b)、図5(b)、図7、図9(b)のような構造を有する。また、図8(a)(b)に示した金属空気電池25は、それぞれ金属空気電池本体24と金属電極カートリッジ23と第2電解液槽40とから構成される。
 なお、図1(b)は、図1(a)の破線A-Aにおける断面図に対応する。また、図1(a)は、図1(b)の破線B-Bにおける断面図に対応する。図2(b)は、図2(a)の破線C-Cにおける断面図に対応する。また、図2(a)は、図2(b)の破線D-Dにおける断面図に対応する。図3(b)は、図3(a)の破線E-Eにおける断面図に対応する。また、図3(a)は、図3(b)の破線F-Fにおける断面図に対応する。図4(b)は、図4(a)の破線G-Gにおける断面図に対応する。また、図4(a)は、図4(b)の破線H-Hにおける断面図に対応する。図5(b)は、図5(a)の破線J-Jにおける断面図に対応する。また、図5(a)は、図5(b)の破線K-Kにおける断面図に対応する。図9(b)は、図9(a)の破線L-Lにおける断面図に対応する。また、図9(a)は、図9(b)の破線M-Mにおける断面図に対応する。
 金属空気電池本体24は、金属電極5またはろ過部27を電解液槽2中または電解液室16中に挿入するための電極挿入口を備えることができる。電極挿入口は、たとえば、電解液室16の上部に設けることができる。
 この構成により、電極活物質が消費された金属電極5を電解液槽2中から除去し、新たな電極活物質を有する金属電極5を電解液槽2中に挿入することができる。このことにより、電極活物質をセル4(金属空気電池25)に供給することができる。また、ろ過部27を電解液槽2から取り出すことができ、電解液槽2中の析出物17を除去することができる。
 また、金属空気電池25は、図1(a)に示した金属空気電池25のように1つのセル4を含む単セル構造を有してもよく、図6に示した金属空気電池25のように複数のセル4a~4cが重ねられたセル集合体(スタック構造)を有してもよい。
 また、金属空気電池25は、電解液を循環させる循環流路33を有してもよい。このことにより電解液槽2内の電解液を循環させることができる。循環流路33は、電解液槽2に電解液を供給する供給口36と、電解液槽から電解液を排出する排出口37とを有することができる。
 また、金属空気電池25は、第2電解液槽40を有してもよい。電解液流路33は、たとえば、図8(a)に示した金属空気電池25のように電解液槽2から排出した電解液3を第2電解液槽40に流入させ、第2電解液槽40から排出した電解液3を電解液槽2に流入させるように構成されてもよい。
2.セル
 セル4は、金属空気電池25の構成単位であり、電解液槽2(電解液室16)中に設けられかつアノードとなる金属電極5と、カソードとなる空気極9とからなる電極対を有する。セル4は、たとえば、1つの空気極9と1つの金属電極5とが電解液3を挟むように設けられた電極対を有してもよく、図1(a)に示した金属空気電池25のように2つの空気極9が1つの金属電極5を挟むように設けられた電極対を有してもよい。
 また、セル4は、電解液槽2又は電解液室16と、電解液槽2中又は電解液室16中に設けられかつアノードとなる金属電極5と、カソードとなる空気極9とを備えてもよい。
3.セル集合体
 セル集合体は、複数のセル4を重ねたスタック構造を有する。セル集合体は、複数のセル4が1つの電解液槽2内に設けられてもよく、それぞれのセル4が電解液槽2または電解液室16を有してもよい。なお、セル集合体を構成するセル4の数は特に限定されず、必要となる発電能力に応じてセル4の数量を決定すればよい。
 また、セル集合体を構成する複数のセル4がそれぞれ電解液槽2を有する場合、各セル4が有する電解液槽2は共通の筐体1に設けられてもよく、各セル4が筐体1を有し、この筐体1に電解液槽2が設けられてもよい。
 なお、1つの筐体1に2個または3個のセル4を設け、このような筐体1を複数組み合わせることによりセル集合体を形成してもよい。
 セル集合体に含まれる複数のセル4の電極対は、直列接続してもよく、並列接続してもよい。
4.電解液、電解液槽
 電解液3は、溶媒に電解質が溶解しイオン導電性を有する液体である。電解液3は、電解液槽2内に溜められる、または電解液槽2内を流通する。電解液3の種類は、金属電極5に含まれる電極活物質の種類によって異なるが、水溶媒を用いた電解液(電解質水溶液)であってもよい。
 たとえば、亜鉛空気電池、アルミニウム空気電池、鉄空気電池の場合、電解液には、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ性水溶液を用いることができ、マグネシウム空気電池の場合、電解液には塩化ナトリウム水溶液を用いることができる。
 電解液槽2は、電解液3を溜める又は流通させる電解槽であり、 電解液に対して耐食性を有する。また、電解液槽2は、電解液室16を有することができる。
 電解液槽2または電解液室16は、その中に金属電極5を取り出し可能に設置することができる構造を有する。電解液槽2は、金属空気電池本体24に設けることができる。また、電解液槽2は、複数の電解液室16を有してもよい。なお、図1(a)に示した金属空気電池25では、電解液室16の底部および側壁の一部が筐体1であり、電解液室16の側壁の一部が空気極9である。
 金属空気電池25が電解液槽2内の電解液を流動させる機構を有してもよい。このことにより金属電極5でのアノード反応を促進することができ、金属空気電池25の性能を向上させることができる。電解液を流動させる機構としては、ポンプ34および循環流路33を用いて電解液3を循環させ、電解液槽2内の電解液3を流動させてもよい。
 また、金属空気電池25が攪拌機、バイブレーターなどの電解液槽2内の電解液3を物理的に動かすことのできる可動部を備えてもよい。
 また、金属空気電池25は、電解液槽2内の電解液の大部分を排出できるように設けられてもよい。このことにより、電解液槽2内の電解液の量は減少するため、ろ過部27内の電解液3および析出物17をフィルターによりろ過することができる。
 電解液槽2を構成する筐体1の材料は、電解液に対して耐食性を有する材料であれば特に限定されず、たとえば、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ABS、塩化ビニリデン、ポリアセタール、ポリエチレン、ポリプロピレン、ポリイソブチレン、フッ素樹脂、エポキシ樹脂などである。
5.金属電極、金属電極カートリッジ
 金属電極5は、アノードとなる電極であり、アノードの電極活物質である金属を含む。また、金属電極5は、電解液槽2中に取り出し可能に設けられる。
 金属電極5は、たとえば、電極活物質である金属を含む金属板であってもよく、粒子状の金属を押し固めて形成してもよい。また、金属電極5は、たとえば、板状の金属電極集電体と金属電極集電体上に設けられた電極活物質層とを有してもよい。
 金属電極5に含まれる電極活物質は、アノード反応により金属電極5中に電荷を発生させ金属含有イオンとして電解液に溶解する金属種である。電極活物質としての金属種は、たとえば、亜鉛(Zn)、アルミニウム(Al)、鉄(Fe)、スズ(Sn)、リチウム(Li)、ナトリウム(Na)、カルシウム(Ca)、マグネシウム(Mg)などが挙げられる。また、電極活物質としては、挙げた上記金属種を少なくとも含む合金、または化合物であってもよい。さらに、上記金属種の中では、亜鉛(Zn)、アルミニウム(Al)、鉄(Fe)およびスズ(Sn)から選ばれる金属種を含む電極活物質を含む金属電極が空気中でも安全に運搬できる点から好ましい。なお、金属電極5中に発生した電荷は、外部出力された後、空気極9におけるカソード反応に利用される。
 電解液3中の金属含有イオンは、その濃度が飽和濃度を超えると電解液3中に金属酸化物または金属水酸化物の微粒子など(析出物17)として析出する。また、析出物17が金属電極5の表面上に析出し金属電極5の表面を覆うと、金属電極5の表面におけるアノード反応を阻害し金属空気電池25の出力が低下する。さらに、析出物17が空気極9の細孔内に析出すると、空気極9におけるカソード反応を阻害し金属空気電池25の出力が低下する。さらに、金属電極5近傍の電解液3中に過剰な析出物17があるとOH-のイオン伝導パスが妨げられ、反応抵抗が増大し出力が低下する。
 従って、金属電極5に含まれる電極活物質はアノード反応の進行に伴い徐々に消費されていく。このため、金属電極5に含まれる電極活物質が少なくなると、金属電極5に発生する電荷が少なくなり金属空気電池25の出力が低下するため、金属電極5は使用済みとなる。使用済みとなった金属電極5は、電極挿入口を介して電解液槽2中から除去され、新たな金属電極5が電極挿入口を介して電解液槽2中に挿入される。
 また、析出物17が金属電極5の表面上などに析出すると金属空気電池25の出力が低下するため、析出物17を電解液中から除去する必要がある。
 たとえば、亜鉛空気電池の場合、電極活物質は主として金属亜鉛であり、電解液中には水酸化亜鉛または酸化亜鉛が析出する。アルミニウム空気電池の場合、電極活物質は主として金属アルミニウムであり、電解液中には水酸化アルミニウムが析出する。鉄空気電池の場合、電極活物質は主として金属鉄であり、電解液中には酸化水酸化鉄または酸化鉄が析出する。マグネシウム空気電池の場合、電極活物質は主として金属マグネシウムであり、電解液中には水酸化マグネシウムが析出する。
 また、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、電極活物質は主としてそれぞれ、金属リチウム、金属ナトリウム、金属カルシウムであり、電解液中にはこれらの金属の酸化物、水酸化物などが析出する。なお、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、金属電極5と電解液との間に固体電解質膜を有してもよい。このことにより、電極活物質が電解液により腐食されることを抑制することができる。また、この場合、電極活物質は固体電解質膜をイオン伝導した後電解液に溶解する。
 なお、電極活物質は、これらの例には限定されず、金属空気電池となるものであればよい。また、金属電極5に含まれる電極活物質は、上記の例では一種の金属元素からなる金属を挙げたが、金属電極5に含まれる電極活物質は合金であってもよい。
 析出物17の粒径は、金属電極5に含まれる電極活物質の種類によって異なるが、たとえば、電極活物質が金属亜鉛ある場合、アノード反応により電解液3中に析出される析出物17の粒径は、大塚電子製のゼータ電位・粒径測定システムELSZ―1000により測定するところ、粒径は5μm~20μmである。
 金属電極集電体は、導電性を有する。また、金属電極集電体の形状は板状、または板の厚み方向に貫通した孔が設けられた形状、またはエキスパンドメタルやメッシュが好ましい。また、この金属電極集電体は、たとえば、電解液に対して耐食性を有する金属板により形成することができる。金属電極集電体の材料は、たとえば、ニッケル、金、銀、銅、ステンレスなどである。また、金属電極集電体は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 このことにより、アノード反応により金属電極5に生じた電荷を金属電極集電体により集電することができ、発生させた電荷を外部回路に出力することができる。金属電極集電体の主要面上への電極活物質層の固定は、たとえば、電極活物質である金属の粒子や塊を金属電極集電体の表面に押し付けて固定してもよく、金属電極集電体上にめっき法などにより金属を析出させてもよい。なお、金属電極集電体の形状に関して、めっき法で電極活物質を析出させる場合には導電性の観点で板形状が好ましく、金属の粒子や塊を固定させる場合には、粒子や塊の脱落を防止する観点で板に貫通孔が設けられたもの、またはエキスパンドメタルやメッシュが好ましい。
 金属電極5は、金属電極支持体13と共に金属電極カートリッジ23を構成することができる。金属電極カートリッジ23は、金属電極5を電解液槽2内に挿入することができ、使用済みの金属電極5を電解液槽2内から抜き出せるように設けられる。このことにより、金属空気電池25に電極活物質を供給することができる。
 金属電極カートリッジ23は、たとえば、図1(a)に示した金属電極カートリッジ23のように、金属電極支持体13の主要面上に金属電極5が実質的に垂直に取り付けられた構造を有してもよい。このような構造を有することにより、電極挿入口を介して金属電極5を電解液槽2中に挿入できる。また、金属電極支持体13を操作することにより、使用済みとなった金属電極5を電解液槽2中から容易に取り除くことができ、新たな金属電極5を電解液槽2中に挿入することができる。このことにより、金属空気電池25に電極活物質を供給することができる。
 支持体13は、金属空気電池本体24に設けられた電極挿入口の蓋となるように設けることができる。このことにより、電解液槽2に金属電極5を挿入すると共に電極挿入口に蓋をすることができ、大気中の成分と電解液3とが反応することを抑制することができる。たとえば、電解液にアルカリ性電解液を用いた場合、大気中の二酸化炭素ガスが電解液に溶け込み、アルカリ性電解液を中和することを抑制することができる。また、電解液が蒸散したり、空気中の水分を吸湿したりするのを抑制することができるので、電解液濃度など物性が変化するのを防ぐことができる。また、電極挿入口からの電解液の飛散や液漏れを防ぐことができるので、電池に振動が加えられた場合であっても、ユーザーの安全性を確保することができる。また、金属電極支持体13に取手を付けることで、ユーザーによる電極の抜き差しも容易となる。
 また、金属電極カートリッジ23は、ろ過部27、スペーサ22などを有してもよい。
6.ろ過部
 ろ過部27は、電解液槽2中に設けられ、かつ、その内部に電解液3および電極活物質から生成する析出物17を収容する形状を有する。また、ろ過部27は、電解液槽2から取り出すことができるように設けられ、かつ、ろ過部27を電解液槽2中から取り出すこと又は電解液槽2内の電解液3を排出することによりろ過部27の内部の電解液3および析出物17をろ過し析出物17を残渣として回収するフィルター、たとえば、多孔質フィルター30あるいはアニオン交換膜31を有することが好ましい。このような構成により、ろ過部27を電解液槽2中から取り出すこと又は電解液槽2内の電解液3を排出することにより、ろ過部27に収容した電解液をろ過することができ、電解液中の析出物17を残渣としてフィルター28上に回収することができる。このことにより、電解液槽2中から容易に析出物17を除去することができ、電解液槽2中に析出物17が蓄積することを抑制することができる。また、回収した析出物17は、新たな金属電極5の原料とすることができる。
 また、ろ液として分離した電解液3は、電解液槽2中に戻すことができる。このことにより、電解液槽2からの析出物17の除去に伴い、電解液槽2中の電解液3が減少することを抑制することができる。
 多孔質フィルター30は、たとえば、ポリエチレン、ポリプロピレン、ナイロン6、ナイロン66、ポリオレフィン、ポリビニルアルコール系の多孔膜もしくは不織布が挙げられる。
 多孔質フィルター30が有する細孔の孔径は、金属電極5に含まれる電極活物質によって、適宜選択させ得るが、電解液や水酸化物イオンの透過の観点から0.001μm以上であり、析出物17の除去の観点から1mm以下であればよく、好ましくは0.001μm以上20μm、さらに好ましくは0,001μm以上5μm以下である。
 アニオン交換膜31は、たとえば、パーフルオロスルホン酸系、パーフルオロカルボン酸系、スチレンビニルベンゼン系、第4級アンモニウム系の固体高分子電解質膜などが挙げられる
 容器15またはろ過部27の形状は、その内部に電解液3および析出物17を収容することができれば特に限定されないが、たとえば、袋状であってもよく、容器状であってもよい。
 ろ過部27は、電気的絶縁性を有することが好ましい。このことにより、金属電極5と空気極9との間にリーク電流が流れることを抑制することができる。
 ろ過部27は、袋状の多孔質フィルター31からなってもよく、複数枚の多孔質フィルター31を設置するろ過器とからなってもよく、多孔質フィルター30とアニオン交換膜31とからなってもよい。
 ろ過部27に含まれるフィルターは、電解液3が浸透し、電解液3に対する耐食性を有し、電解液3と析出物17とを分離することができれば特に限定されないが、たとえば、セルロースフィルター、ガラス繊維フィルター、メンブレンフィルターなどの多孔質フィルターであってもよい。また、ろ過部27に含まれるフィルターは、析出物17を通過させないように目の細かいものを選択することができる。目の細かいものは、繰り返し使用すると目詰まりを起こしやすいが、回収の際に新しいものと交換されるため、この問題は起きにくい。
 また、ろ過部27に含まれるフィルターは、親水性を有することが好ましい。このことにより、電解液3をフィルターに透過させることができる。親水化処理法としては、たとえば界面活性剤付与、コロナ放電処理、プラズマ処理、フッ素ガス処理、アクリル酸グラフト重合処理、スルホン化処理がある。
 ろ過部27は、ろ過部27の底部がろ過部27の上部に比べ電解液が透過しやすいように設けることができる。たとえば、金属電極5と空気極9とに挟まれたろ過部27の部分におけるフィルターの細孔径よりもろ過部27の底部におけるフィルターの細孔径を大きくすることができる。このことにより、ろ過部27を電解液槽2内に挿入した際、ろ過部27内に電解液が流入しやすくなる。また、ろ過部27を電解液槽2内から取り出す際、ろ過部27の内部の電解液3がろ過される時間を短くすることができる。これらの結果、ろ過部27の設置時間およびろ過部27内の電解液のろ過時間を短くすることができ、ろ過部27の交換に要する時間を短くすることができる。
 容器15は、たとえば、図4に示した金属電極カートリッジ23のように、容器15の側面部、すなわち金属電極5と空気極9との間に配置されかつ細孔径が小さい第2フィルター28と、底部に配置されかつ第2フィルター28よりも細孔径が大きい第1フィルターからなるろ過部27とから構成されてもよい。第1フィルターのこのような構成によれば、容器15内の電解液3のろ過時間などを短くすることができる。また、金属電極5と空気極9との間に細孔径の小さい第2フィルター28を配置することにより、空気極9に近接した電解液3の金属含有イオン濃度が上昇することを抑制することができ、空気極9に析出物17が付着することを抑制することができる。このことにより、析出物17が空気極9におけるカソード反応を阻害することを抑制することができる。
 一方で、ろ過部27は、析出物17の粒径によって容器15の側面部、すなわち金属電極5と空気極9との間に配置された多孔質フィルターの孔径よりも容器15の底部に配置された多孔質フィルターの孔径を小さく設計してもよい。この場合、ろ過部27の側面部からの電解液3をろ過部27が通しやすくなる。
 容器15は、たとえば、図5に示した金属電極カートリッジ23のように、金属電極5と空気極9との間に配置されたアニオン交換膜31と、底部に配置された多孔質フィルター30とから構成されてもよい。アニオン交換膜31は、無孔であってもよく、亜鉛イオン、あるいはテトラヒドロキソ亜鉛酸イオンのような比較的大きなイオン半径を有する金属含有イオン、とりわけ多価イオンは伝導しにくい性質がある。このような構成によれば、多孔質フィルター30によりろ過部27内の電解液3をろ過することが可能である。また、金属電極5と空気極9との間に前述の性質を有するアニオン交換膜31を配置することにより、空気極9に近接した電解液3の金属含有イオン濃度が上昇することを抑制することができ、空気極9に析出物17が付着することを抑制することができる。また、アニオン交換膜31は、OH-イオンの透過を妨げないため、電池反応を阻害することはない。
 ろ過部27は、ろ過部27を電解液槽2から取り出すこと又は電解液槽2内の電解液3を排出することにより内部の電解液3を自然ろ過するように設けられてもよく、減圧ろ過するように設けられてもよく、加圧ろ過するように設けられてもよい。
 ろ過部27は、電解液槽2中から取り出し可能に設けられた金属電極5と接続するように設けることができる。このことにより、電解液槽2中から金属電極5とろ過部27を一緒に取り出すことができる。このことにより、使用済みの金属電極5を新たな金属電極5に交換する際にろ過部27を電解液槽2中から取り出すことができ、電解液槽2中から析出物17を除去することができる。
 容器15またはろ過部27は、金属電極5と直接接続してもよい。たとえば、図1~図5、図8、図9に示した金属電極カートリッジ23では、容器15がクリップ20により直接金属電極5に接続されている。
 また、容器15は、金属電極5と間接的に接続してもよい。たとえば、図6、7に示した金属電極カートリッジ23では、複数の金属電極5が1つの支持体13に接合しており、容器15もこの金属電極支持体13に接合している。従って、図6、7に示した金属電極カートリッジ23では、容器15は、支持体13を介して金属電極5と接続している。
 容器15は、袋状であり、かつ、容器15の底が電解液槽2の底側となるように配置され、かつ、金属電極5を収容するように設けることができる。このような構成によると、電解液槽2内の電解液3をろ過部27の内側の電解液3と、ろ過部27の外側の電解液とに分けることができる。
 ろ過部27はフィルターを有するため、ろ過部27の内側と外側の電解液3は互いに流通することができる。しかし、ろ過部27の内部には、アノード反応の進行に伴い金属含有イオンを発生させる金属電極5が設けられているため、ろ過部27の内側の電解液3の金属含有イオン濃度は、ろ過部27の外側の電解液3の金属含有イオン濃度に比べ高くなる。このため、ろ過部27の内側の電解液3中に優先的に析出物17を析出させることができる。従って、ろ過部27を電解液槽2中から取り出し又は電解液槽2内の電解液3を排出し、ろ過部27の内部の析出物17を残渣として回収することにより、電解液槽2中から効率的に析出物17を除去することができる。
 ろ過部27の底と金属電極5の下端との間に空間を設けることができる。このことにより、析出物17がろ過部27の底に溜まった場合でも析出物17と金属電極5とが接触することを抑制することができる。このことにより、金属電極5の表面上に析出物17が不動態形成の核として付着することを抑制することができる。
 また、金属電極5の表面上に析出物17が不動態形成の核として付着すること、または金属含有イオンが不動態形成の核として析出することを抑制する高分子添加剤をろ過部27の内部に添加してもよい。高分子添加剤は、金属電極5に付着させてもよく、ろ過部27の内側に付着させてもよい。このことにより、金属電極5の表面上に析出物17が不動態形成の核として付着すること、または金属含有イオンが不動態形成の核として析出することを抑制することができ、析出物17によりアノード反応が阻害されることを抑制することができる。
 なお、高分子添加剤は、強アルカリ性の電解液中では劣化が早いという使用上の問題がある。しかし、高分子添加剤をろ過部27の内部に添加することにより、ろ過部27を電解液槽2中から回収することにより劣化した高分子添加剤を電解液3中から回収することができ、新たなろ過部27を電解液槽2中に挿入することにより新たな高分子添加剤を電解液槽2中に供給することができる。このことにより、劣化した高分子添加剤を電解液槽2中に残留させることなく、高分子添加剤により金属電極5の表面上に析出物17が不動態形成の核として付着することを抑制することができ、または金属含有イオンが不動態形成の核として析出することを抑制することができる。
 高分子添加剤は、たとえば、PEG(ポリエチレングリコール)、ポリエチレンイミン、ニカワとすることができる。
 たとえば、図1(a)に示した金属空気電池25は、金属空気電池本体24と金属電極カートリッジ23とにより構成され、フィルターからなる袋状の容器15が金属電極5を収容し、クリップ20により金属電極5に接続されている。図1(a)に示した金属空気電池25により発電すると、金属電極5ではアノード反応が進行し金属電極5に含まれる電極活物質から金属含有イオンが生成され、電解液3の金属含有イオン濃度が上昇する。金属電極5は、袋状の容器15により囲まれているため、容器15の内部の電解液の金属含有イオン濃度が、容器15の外側の電解液3に比べ先に飽和濃度に達する。このため、容器15の内部において、均一核生成または不均一核生成を生じさせることができ、析出物17が生成する。この生成した析出物17は、沈殿し袋状の容器15ないしろ過部27の底に溜まる。
 ろ過部27の底に析出物17が溜まった金属電極カートリッジ23を金属空気電池本体24から取り外しろ過部27を上昇させると、ろ過部27の内部の電解液3および析出物17はフィルターにより自然ろ過され、電解液3はろ液として電解液槽2に戻る。そして図1(b)に示した金属電極カートリッジ23のように、析出物17は、脱液されろ過部27の底に残渣として回収される。
 また、たとえば、図8(a)(b)に示した金属空気電池25では、金属空気電池本体24と金属電極カートリッジ23と第2電解液槽40とにより構成され、フィルターからなる袋状の容器15およびろ過部27が金属電極5を収容し、クリップ20により金属電極5に接続されている。また、金属空気電池本体24の電解液槽2と、第2電解液槽40とは、循環流路33により接続されている。図8(a)に示した金属空気電池25により発電すると、容器15およびろ過部27の内部の電解液中において析出物17が生成し袋状の容器15およびろ過部27の底に溜まる。この状態で、ポンプ34を止め、図8(b)に示した金属空気電池25のように電解液槽2内の電解液3の大部分を循環流路33により第2電解液槽40に移動させると、容器15およびろ過部27の内部の電解液3および析出物17はフィルターにより自然ろ過され、電解液3はろ液として電解液槽2の底へ流れ電解液槽2から排出される。また、析出物17は、脱液されろ過部27の底に残渣として残る。その後、金属電極カートリッジ23を金属空気電池本体24から取り外すことにより脱液された析出物17を電解液槽2内から回収することができる。
 このような金属空気電池25では、電解液槽2内の電解液3の大部分を第2電解液槽40に移動させた後、ろ過部27の内部の電解液3および析出物17のろ過が終了するまでにある程度の時間がかかる。このため、ろ過が終了した後に金属電極カートリッジ23を金属空気電池本体24から取り外す必要がある。また、ろ過終了後に金属電極カートリッジ23を取り外すことにより、ユーザー又は作業者が電解液の滴り等で電解液に触れることを防止することができ、容器15およびろ過部27を取り出す際の安全性を向上させることができる。
 また、金属空気電池25は、ろ過の終了をユーザーが知ることができるように設けられてもよい。たとえば、金属空気電池25は、ろ過に要する時間を予測し、予測した時間が経過した後にユーザーにろ過の終了を知らせるタイマーを有してもよい。また、金属空気電池25は、ろ過部27の有するフィルターを通過したろ液を検知するセンサーを設けてユーザーにろ過の終了を知らせるように設けてもよい。金属空気電池25をこのように設けることにより、ユーザーが金属電極カートリッジ23の引き抜きの可否を知ることができ、容器15およびろ過部27を取り出す際の安全性を向上させることができる。
 また、電解液槽2内においてろ過を行うことにより、残渣として回収する析出物17を確実に脱液することができる。このため、回収した析出物17に含まれる電解液の量を少なくすることができ、回収した析出物17の重量を低減し回収物の運搬コストを低減することができる。また、析出物17の回収に伴う金属空気電池25からの電解液の損失を低減することができる。
 金属電極カートリッジ23は、金属電極5と容器15との間にスペーサ22を有することができる。このことにより、金属電極5と容器15との間に間隔を空けることができる。このため、金属電極5に容器15またはろ過部27が貼りつくことを抑制することができ、ろ過部27の内部の電解液3中で析出した析出物17をろ過部27の底に沈降させることができる。この結果、金属電極5の表面に析出物17が付着することを抑制することができ、アノード反応が析出物17により阻害されることを抑制することができる。また、スペーサ22を設けると、容器15中の電解液量を多くすることができる。このことにより、容器15またはろ過部27中の電解液3の金属含有イオン濃度が飽和溶解濃度に達するまでの時間を長くすることができ、金属空気電池25の放電時間を長くすることができる。
 また、金属電極5では、電極活物質の自己腐食のため電極表面において水素ガスの気泡が生じる場合がある。水素発生過電圧が高いため、水素ガス発生量は微量であるが、電極表面に水素ガスの気泡が滞留するとアノード反応を阻害するおそれがある。金属電極5と容器15との間にスペーサ22を設けることにより、金属電極5と容器15またはろ過部27との間に間隔を空けることができるため、気泡が金属電極5の表面に滞留することを抑制することができる。
 また、スペーサ22がうむ空間によって、容器15またはろ過部27内の電解液3の熱対流を期待できる。アノード反応で熱が生じるが、この熱によって電解液3が温められ熱対流をうむ。これにより、電解液3がかき混ぜられるので、亜鉛含有イオンの溶解が促進される。また、前述の水素ガスの気泡によっても電解液3がかき混ぜられる。これら複合的な効果により、放電時間が長くなることが期待される。
 スペーサ22の形状は、金属電極5と容器15との間に間隔を空けることができれば特に限定されないが、たとえば、図2(a)(b)に示した金属電極カートリッジ23のように、容器15の上部から下部に伸びる細長い形状を有してもよい。また、スペーサ22は、図3(a)(b)に示した金属電極カートリッジ23のように、金属電極5の主要面から突出するように突起状に設けられてもよい。
 また、金属電極5の表面の電解液3と接触する面積を広くするために、スペーサ22と金属電極5とが接触する面積が狭くなるようにスペーサ22を設けることができる。また、スペーサ22の材料に多孔質材料を設けることにより、金属電極5の表面の電解液3と接触する面積を広くしてもよい。また、スペーサ22は弾性材料からなってもよい。
 容器15およびろ過部27は、図6に示した金属空気電池25、図7に示した金属電極カートリッジ23のように、その内部に析出物17を含む電解液が流入するように設けてもよい。このことにより、ろ過部27により析出物17を含む電解液3をろ過することができ、電解液槽2に収容した電解液3中に析出した析出物17を容器15またはろ過部27中に蓄積することができる。また、ろ過部27に含まれるフィルターを透過した電解液3には析出物17が含まれていないため、金属電極5に近接する電解液3中の析出物17を減らすことができ、金属電極5の表面に析出物17が不動態形成の核として付着することを抑制することができる。この形態においては複数のセル4の析出物17を一カ所に集約することができるため、フィルターが少量でよく低コスト化が可能である。また、析出物17の回収後に金属電極カートリッジ23との切り離しの手間が一カ所で済むためより簡易である。
 更に、集約された析出物17を含むろ過部27に電解液が流入する構造であるため、析出物17が電解液中の金属含有イオンの析出を促すための結晶核として作用し(これを不均一核生成という)、金属含有イオンの析出の速度が向上する。これにより、析出物17を効率よく回収することが可能である。
 この形態においては、ろ過部27は、金属電極5を収容していなくてもよい。
 なお、図7は、図6に示した金属空気電池25から取り出した金属電極カートリッジ23の概略断面図である。
 図6に示した金属空気電池25は、3つのセル4a、4b、4cを有しており、それぞれのセル4が電解液室16を有している。また、金属空気電池25は、各セル4が有する電解液室16の他にろ過部27を配置した電解液室16dを有している。電解液室16a、16b、16c、16dは、電解液流路により連通している。そして、電解液室16aと電解液室16dがポンプ34を備えた循環流路33により接続されており、ポンプ34の動力により電解液3を循環させている。ろ過部27は、循環流路33を流れた電解液が供給口36からろ過部27の内部に流入するように電解液室16d内に設けられている。ここで、図6において、ろ過部27が供給口36に接続されるよう配置されるが、電解液流路は連通しているためろ過部27の位置はこれに限らない。たとえば、ろ過部27を排出口37側に設けてもよく、セル4a、4b、4cの間に設けてもよい。
 また、図6において、セル4a、4b、4c間で電解液室が連通しているが、電解液の流路はこれに限らない。たとえば、セル4a、4b、4cの上部に液分配部を設け、液分配部から液滴を垂らすように各セルに電解液を供給しても良い。各セルに供給した電解液は、同様に液滴を垂らすようにして一カ所に集約し、またポンプ34を使って液分配部に電解液を送液するなどしてもよい。ろ過部27はポンプ34と液分配部の間に設けるようにしてもよい。このように液分配部から各セルに電解液を供給することで、各セルの液絡(電解液による短絡)を防ぐことができるので出力を向上させることができる。
 また、ろ過部27は、金属電極支持体13に固定されている。セル4a、4b、4cでは、アノード反応の進行に伴い金属含有イオンが電解液3中に生成するため、析出物17が析出すると考えられる。この析出物17は、電解液3の流れに乗って循環しろ過部27の内部に流入しろ過部27によって濾し取られる。従って、電解液槽2中で生じた析出物17をろ過部27内に蓄積することができる。そして、金属電極カートリッジ23を金属空気電池本体24から取り外し、ろ過部27を電解液3中から引き上げるとろ過部27の内部の電解液3はろ過され、図7に示した金属電極カートリッジ23のように析出物17を脱液された残渣としてろ過部27の底に回収することができる。また、金属電極5の交換と、析出部17の回収とを同時に行うことができる。
 金属空気電池25は、容器15およびろ過部27を電解液槽2中から取り出す際に電解液3および析出物17を収容したろ過部27を絞るように設けられた絞り部42を備えることができる。
 絞り部42は、たとえば、電解液槽2の上部開口に近接して設けることができる。また、絞り部42は、少なくともろ過部27を電解液槽2中から取り出す際にろ過部27に圧接するように設けることができる。
 このような絞り部42を設け、容器15およびろ過部27を電解液槽2中から引き上げると、電解液3および析出物17を収容したろ過部27は絞り部42により絞られ、フィルターによる電解液3および析出物17のろ過を促進することができる。このことにより、ろ過に要する時間を短縮することができる。
 また、絞り部42を設けることにより、回収する析出物17を確実に脱液することができる。このことにより、ユーザー又は作業者が電解液の滴り等で電解液に触れることを防止することができ、析出物17を回収する際の安全性を向上させることができる。また、回収した析出物17に含まれる電解液の量を少なくすることができ、回収した析出物17の重量を低減し回収物の運搬コストを低減することができる。また、析出物17の回収に伴う金属空気電池25からの電解液の損失を低減することができる。
 絞り部42は、可動式であってもよい。たとえば、金属電極カートリッジ23を金属空気電池本体24に取り付ける際および発電中は、絞り部42は開いた状態であり、金属電極カートリッジ23を金属空気電池本体24から取り外す際に閉じた状態となりろ過部27に圧接することができるように設けることができる。
 絞り部42は、たとえば、図9(a)に示した金属空気電池25のように設けることができる。この金属空気電池25では、電解液槽2の開口に近接する部分に、絞り部42がろ過部27を挟むように設けられている。このろ過部27を電解液槽2から引き上げると、ろ過部27の上部開口が絞り部24により閉じているため、ろ過部27内の電解液3の液圧が上昇させることができる。このことによりフィルターによる電解液3および析出物17のろ過を促進することができ、ろ過部27を絞ることができる。そして、図9(b)に示した金属電極カートリッジ23のように、脱液された析出物17を収容したろ過部27を金属電極カートリッジ23と共に、金属空気電池本体24から取り外すことができる。
7.空気極、空気極集電体、イオン交換膜
 空気極9は、カソードとなる電極である。また、空気極9は、ガス拡散層と、ガス拡散層上に設けられた空気極触媒層とを有してもよい。空気極9では、大気中の酸素ガスと水と電子から水酸化物イオン(OH-)を生成する。空気極触媒層は、たとえば、導電性の多孔性担体と多孔性担体に担持された空気極触媒とを含んでもよい。このことにより、空気極触媒上において、酸素ガスと水と電子を共存させることが可能になり、電極反応を進行させることが可能になる。電極反応に使われる水は、大気中から供給されてもよく、電解液3から供給されてもよい。
 また、空気極9は、空気極触媒を担持した多孔性担体を導電性多孔性基材(ガス拡散層)に塗布することにより作製されてもよい。たとえば、空気極9は、空気極触媒を担持したカーボンをカーボンペーパーやカーボンフェルトに塗布することにより作製することができる。このガス拡散層は、空気極集電体10として機能してもよい。
 金属空気電池25は、空気極触媒層の電荷を集電する空気極集電体10を備えてもよい。このことにより、空気極触媒層で生じた電荷を効率よく外部回路へと取り出すことができる。また、空気極集電体10は、空気流路12を形成する部材と同じ部材であってもよい。
 空気極集電体10の材料としては、電解液3に対して耐食性すれば特に限定されないが、たとえば、ニッケル、金、銀、銅、ステンレスなどである。また、空気極集電体10は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 また、空気極集電体10の形状は、たとえば、板状、メッシュ状、パンチングメタルなどとすることができる。
 また、空気極集電体10と、多孔性担体又は導電性多孔性基材(ガス拡散層)とを接合する方法としては、フレームを介してネジ止めにより圧着する方法や、導電性接着剤を用いて結合させる方法などが挙げられる。
 1つのセル4に含まれる空気極9は、金属電極5の一方側にのみ設けられてもよく、図1(a)のように金属電極5の両側にそれぞれ設けられてもよい。
 空気極触媒層に含まれる多孔性担体には、たとえば、アセチレンブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等のカーボンブラック、黒鉛、活性炭等の導電性カーボン粒子が挙げられる。また、気相法炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノワイヤー等の炭素繊維を用いることもできる。
 空気極触媒には、当分野で一般的に使用されるものであれば特に限定されず、たとえば、白金、鉄、コバルト、ニッケル、パラジウム、銀、ルテニウム、イリジウム、モリブデン、マンガン、これらの金属化合物、およびこれらの金属の2種以上を含む合金からなる微粒子が挙げられる。この合金は、白金、鉄、コバルト、ニッケルのうち少なくとも2種以上を含有する合金が好ましく、たとえば、白金-鉄合金、白金-コバルト合金、鉄-コバルト合金、コバルト-ニッケル合金、鉄-ニッケル合金等、鉄-コバルト-ニッケル合金が挙げられる。また、空気触媒には、鉄、マンガン又はコバルトの酸化物を用いてもよい。
 また、空気極触媒層に含まれる多孔性担体は、その表面に陽イオン基が固定イオンとして存在するように表面処理がなされていてもよい。このことにより、多孔性担体の表面を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
 また、空気極触媒層は、多孔性担体に担持されたアニオン交換樹脂を有してもよい。このことにより、アニオン交換樹脂を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
 空気極触媒層は、大気に直接接するように設けてもよく、空気流路12を流れる空気が空気極触媒層に供給されるように設けてもよい。このことにより、空気極9に酸素ガスを供給することができる。また、空気流路12を設ける場合、空気流路12に加湿された空気を流すことにより、空気極9に酸素ガスと共に水も供給できる。
 空気極触媒層は電解液槽2内の電解液3に接触するように設けてもよい。このことにより、空気極触媒層で生成した水酸化物イオンが容易に電解液3へ移動することができる。また、空気極触媒層における電極反応に必要な水が電解液3から空気極触媒層に供給されやすくなる。
 また、空気極触媒層は、電解液槽2に溜める電解液3と接触する多孔性樹脂またはイオン交換膜と接触するように設けてもよい。多孔性樹脂またはイオン交換膜は、電解液槽2内の電解液3と空気極触媒層とを仕切るように設けることができる。また、イオン交換膜は、アニオン交換膜であってもよい。このことにより、空気極触媒層で発生した水酸化物イオンがアニオン交換膜を伝導し、電解液へ移動することができる。
 また、多孔性樹脂を設けることにより、空気極触媒層と電解液3との間を移動する極微細な粒子が空気極9へ付着することを抑制できる。
 イオン交換膜を設けることにより、空気極触媒層と電解液3との間を移動するイオン種を限定することができる。イオン交換膜がアニオン交換膜である場合、アニオン交換膜は、固定イオンである陽イオン基を有するため、電解液中の陽イオンは空気極触媒層に伝導することはできない。これに対し、空気極触媒層で生成した水酸化物イオンは陰イオンであるため、電解液へと伝導することができる。このことにより、金属空気電池25の電池反応が進行させることができ、かつ、電解液3中の陽イオンが空気極触媒層に移動するのを防止することができる。このことにより、空気極触媒層における金属や炭酸化合物の析出を抑制することができる。
 また、多孔性樹脂またはイオン交換膜を設けることにより、電解液3に含まれる水が空気極触媒層に過剰に供給されることを抑制することができる。
 多孔性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、ナイロン6、ナイロン66、ポリオレフィン、ポリビニルアルコール系の多孔膜もしくは不織布が挙げられる。孔径は特に限定されないが、30μm以下であることが好ましい。電解液の流通が良くなるよう親水化処理されていることが好ましい。
 イオン交換膜としては、たとえば、パーフルオロスルホン酸系、パーフルオロカルボン酸系、スチレンビニルベンゼン系、第4級アンモニウム系の固体高分子電解質膜(アニオン交換膜)が挙げられる。
8. 金属電極カートリッジの充電方法
 本発明に係る金属空気電池25は、放電後、使用済みの金属電極カートリッジ23を新たな金属電極カートリッジ23と交換することで、再放電可能な状態になる。
 一方で、使用済みの金属電極カートリッジ23において、金属電極5は、アノード反応により、電極活物質が消費されており、金属電極5の表面には析出物17が析出し、容器15内部には析出物17が収容されている。
 本発明に係る金属電極カートリッジ23によれば、容器15内部に析出物17を収容したまま充電することができる。以下、本発明に係る金属電極カートリッジ23の充電方法について説明する。
 本発明に係る金属電極カートリッジの充電方法は、金属空気電池25における放電により、使用済みとなった金属電極カートリッジ23を電解液に浸漬させ、ろ過部27を介して容器15内部に浸透してきた電解液に析出物17を金属含有イオンとして溶解させる溶解工程と、溶解工程において、容器15内部に溶解させた金属含有イオンを金属電極5の表面に電析させる電析工程とを含む。
 溶解工程では、金属空気電池25の電解液槽2に収容する電解液3と同じ電解液を収容した電解液槽に、使用済み金属電極カートリッジ23の容器15を浸漬させる。容器15が電解液に浸漬されると、電解液がろ過部27を介して、容器15内部に浸透し、容器15内部を満たす。したがって、容器15が電解液に浸漬されたことで、金属電極5は、容器15内部で電解液と接触している状態にある。
 析出物17は容器15に浸透してきた電解液に溶解し、容器15に満たされた電解液の中で金属含有イオンとして存在する。
 溶解工程の後の電析工程では、属電極カートリッジ23の金属電極5を外部電源の陰極に接続し、別の電極を外部電極の陽極に接続し、電極を電解液の中に投入する。電極を電解液に投入し後、外部電源に金属電極5と電極に電圧を印加し、金属電極5と電極とを電解液を介して電気的に接続させた状態にする。ここで、電析工程に用いられる電極は、電気分解あるいは電析において用いられる電極であれば特に限定されず、ニッケル極や炭素極、ステンレス極などが挙げられる。
 金属電極5と電極の間に電圧が印加されたことによって、容器15内に溶解している金属含有イオンに含まれる電極活物質が金属電極5の表面に電析される。したがって、電析工程の後、電解液から取り出した金属電極カートリッジ23は、再び金属空気電池25の電解液槽2の電解液3に浸漬されることで、放電可能な状態に充電されている。また、溶解工程で溶解した金属含有イオンと、電析工程で電析された金属含有イオン量が一致していれば、前記電解液3中の金属含有イオン量は充電前と充電後で変化がないので、別の使用済みとなった金属電極カートリッジ23を電解液槽の電解液3に浸漬させ、繰り返し充電を行うことができる。
 ただし、電析の過電圧を低減するため、または前記溶解工程の時間を短縮させるため、あらかじめ電解液3に析出物17と同じ成分の金属酸化物または金属水酸化物を溶解させておいても良い。金属酸化物または金属水酸化物は、金属含有イオンとして溶解するが、飽和溶解量以下で溶解させておく分には、化学的に安定であるため、電解液中で析出することはない。上記と同様に金属電極5と電極の間に電圧が印加されると、前記の溶解している金属含有イオンに含まれる電極活物質が金属電極5の表面に電析される。電析が進むと、電解液3中の金属含有イオン濃度が低下するため、容器15内部に収容された析出物17が電解液に溶解する。このようにすることで、電解液3中の金属含有イオン濃度を高く維持することができるので電析の過電圧を小さくでき、また析出物17の溶解を待たずに電析を開始することができる。このような場合は、溶解工程と電析工程が逆になっても良い。
亜鉛空気電池放電実験1
 図1(a)に示したような亜鉛空気電池を作製し、放電実験を行った。
 金属電極5には10mmの厚さの亜鉛板を用いた。また、金属電極5の電解液に浸る部分の大きさは50mm×50mmとした。また、金属電極5には一辺の一部が延伸している形状のものを用い、この延伸している部分を金属電極支持体13に取り付けた。
 ろ過部27には、長さ方向の長さが70mm、幅方向の長さが60mmのチューブ形状のものを用いた。ろ過部27の長さ方向の一方の端部は閉口させ、他方の端部は開口させた。この開口させた端部から金属電極5をろ過部27の内部に挿入し開口した端部を図1(b)のように金属電極5の上部にクリップ20で取り付けた。ろ過部27には、株式会社クラレ製のPVA繊維のろ過膜を用いた。このろ過膜は、厚さ方向に連通した孔が形成されており、孔内の電解液中をOH-イオンが移動することができる。また、このろ過膜の平均細孔径は、8μmである。
 金属電極5の長さが50mmであるのに対しろ過部27の長さを70mmとしたため、ろ過部27の下部には約20mmの空間が設けられている。この空間には、アノード反応により金属電極5から生じる亜鉛酸化物が堆積する。堆積した亜鉛酸化物が金属電極5に接触すると亜鉛酸化物の不動態形成の核となり、金属電極5の不活性化が加速され、放電時間が短くなってしまうためである。
 空気極9には、空気極触媒層とガス拡散層が積層されたものを用いた。空気極9は、厚さ約300μm、大きさ50mm×50mmとした。
 ガス拡散層には、SGLカーボン製35BCを用いた。35BCはカーボン繊維とマイクロポーラスレイヤーからなっており、マイクロポーラスレイヤーはカーボンブラックと撥水樹脂(PTFE)からなる層である。撥水樹脂は電解液に濡れることがないため気液分離として機能する。すなわち、電解液が電解液槽2から漏れるのを防ぎ、かつ空気極触媒層への酸素の供給を妨げない。
 空気極触媒層には、Pt担持カーボン、撥水樹脂(PTFE)を含有するものを用いた。反応表面積をふやすため、Ptは表面積の大きいカーボン上に微粒子として担持されている。
 空気極集電体10には、複数の開口を有するNiめっきしたステンレス板を用いた。また、このステンレス板の厚さは1mmであり、開口率は60%である。
 空気極9および空気極集電体10は、電解液槽2を兼ねる筐体1に固定した。電解液槽2の深さは100mmとし、電解槽2の幅(対向する空気極9間の距離)は16mmとした。筐体1はポリプロピレン製とした。
 電解液には、7MのKOH水溶液を用いた。
 このような亜鉛空気電池を用いて放電実験を行った。電解液を電解液槽2に入れるとすぐに金属電極5と空気極9との間に起電力が発生した。このときの開回路電圧は1.6Vであった。上述のように金属電極5は50×50mmであるが、空気極9に両面対向しているので、反応に寄与する面積は25cm2×2で50cm2である。放電時の電流負荷は1.5A(金属電極5の単位面積あたりの電流は30mA/cm2に相当)とし、定電流負荷試験を行った。電圧は1.2V程度で安定し、放電時間は、3.5時間であった。放電時間が3.5時間を超えると電圧は低下していった。これは、不動態が形成されることによる電極活物質の不活性化が要因であると考えられる。
 放電後、金属電極5およびろ過部27を電解液中から引き上げると、ろ過部27の閉口した端部に亜鉛酸化物が堆積しているのが確認できた。また、ろ過部27を電解液中から引き上げると、ろ過部27中の電解液がろ過されろ液は電解液槽2中に戻り、亜鉛酸化物は、ろ過部27の底に残渣として回収された。回収された亜鉛酸化物の体積はおよそ10ccであった。
 亜鉛酸化物の回収における電解液の損失を最小限に抑えることができたため、次回の発電においても金属電極5挿入後、すぐに発電可能であった。
亜鉛空気電池放電実験2
 図2(a)に示したような亜鉛空気電池を作製し、放電実験を行った。
 金属電極5とろ過部27の間に、ろ過部27の上部から下部に伸びる細長い形状のスペーサ22を有しており、スペーサ22以外の構成、部材は亜鉛空気電池放電実験1に準じる。電解液も亜鉛空気電池放電実験1と同様である。スペーサ22には、ポリプロピレン製で厚さ3mmのものを用いた。
 このような亜鉛空気電池を用いて放電実験を行った。電解液を電解液槽2に入れるとすぐに金属電極5と空気極9との間に起電力が発生した。このときの開回路電圧は1.6Vであった。亜鉛空気電池放電実験1と同様、放電時の電流負荷は1.5A(金属電極5の単位面積あたりの電流は30mA/cm2に相当)とし、定電流負荷試験を行った。電圧は1.23V程度で安定し、放電時間は、4.0時間であった。放電時間が4.0時間を超えると電圧は低下していった。
 亜鉛空気電池放電実験1よりも電圧が高かったのは、スペーサ22が形成する金属電極5とろ過部27との間の間隔により、金属電極5の電極活物質の自己腐食のため生じる水素が滞留せず排出されたため、また熱対流により電解液がかき混ぜられ、亜鉛含有イオンの溶解が促進されたことによりアノード反応の特性が向上したことによると考えられる。水素ガスの排出は目視で確認することができた。
 さらに放電時間が伸びたのは、前述の間隔により、ろ過部27の内部の電解液3中で析出した析出物17をろ過部27の底に沈降させることができたため、金属電極5への亜鉛酸化物付着が軽減されることにより、不動態の形成が緩和されたためと考えられる。このように放電時間が伸びることにより、電極活物質の利用効率を向上させることができた。
 放電後、金属電極5およびろ過部27を電解液中から引き上げると、ろ過部27の閉口した端部に亜鉛酸化物が堆積しているのが確認できた。また、ろ過部27を電解液中から引き上げると、ろ過部27中の電解液がろ過されろ液は電解液槽2中に戻り、亜鉛酸化物は、ろ過部27の底に残渣として回収された。回収された亜鉛酸化物の体積はおよそ11.5ccであった。放電時間が亜鉛空気電池放電実験1よりも長く、電極活物質の利用効率が向上したため析出した亜鉛酸化物の量も多かった。
 亜鉛酸化物の回収における電解液の損失を最小限に抑えることができたため、次回の発電においても金属電極5挿入後、すぐに発電可能であった。
 1:筐体  2:電解液槽  3:電解液  4、4a、4b、4c:セル  5、5a、5b、5c:金属電極  9、9a、9b、9c:空気極  10、10a、10b、10c:空気極集電体  12:空気流路  13:支持体  15:ろ過部  16、16a、16b、16c、16d:電解液室  17:析出物(使用済み活物質)  20:クリップ  22:スペーサ  23:金属電極カートリッジ  24:金属空気電池本体  25:金属空気電池  27:ろ過部(フィルター、第1フィルター)  28:第2フィルター  30:多孔質フィルター  31:アニオン交換膜  33:循環流路  34:ポンプ  36:供給口  37:排出口  40:第2電解液槽  42:絞り部

Claims (18)

  1. 支持体と、
    前記支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、
    前記金属電極を収容する1以上の容器と、を備えた金属電極カートリッジであって、
    前記容器は、前記電極活物質および前記電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有することを特徴とする金属電極カートリッジ。
  2. 前記電極活物質は、少なくともZn、Mg、FeおよびAlから選択される金属種、それらの合金または化合物を含む請求項1に記載の金属電極カートリッジ。
  3. 前記析出物は、前記金属種の酸化物または水酸化物であることを特徴とする請求項1または請求項2に記載の金属電極カートリッジ。
  4. 前記電解液がアルカリ性水溶液であることを特徴とする請求項1から3のいずれかに記載の金属電極カートリッジ。
  5. 前記ろ過部の少なくとも一部が多孔質フィルターを備えていることを特徴とする請求項1から請求項4のいずれかに記載の金属電極カートリッジ。
  6. 前記多孔質フィルターは、
    前記容器の底面部に設けられた第1の多孔質フィルターと、
    前記容器の側面部に設けられた第2の多孔質フィルターと、を含み、
    前記第1の多孔質フィルターは前記第2の多孔質フィルターに比べ孔径が大きいことを特徴とする請求項5に記載の金属電極カートリッジ。
  7. 前記多孔質フィルターの孔径が0.001μm以上20μm以下であることを特徴とする請求項5に記載の金属電極カートリッジ。
  8. 前記ろ過部の少なくとも一部は、アニオン交換膜を備え、
    前記金属電極と接触していることを特徴とする請求項1から請求項7のいずれかに記載の金属電極カートリッジ。
  9. 前記支持体と、前記容器が一体となった筺体を形成することを特徴とする請求項1から請求項8のいずれかに記載の金属電極カートリッジ。
  10. 前記容器は袋状であって、
    前記容器と前記金属電極との間にスペーサが設けられていることを請求項1から請求項9のいずれかに記載の金属電極カートリッジ。
  11. 前記容器は袋状であって、
    前記容器を前記電解液槽中から取り出す際に前記容器を絞るように設けられた絞り部をさらに備える請求項1から請求項9のいずれかに記載の金属電極カートリッジ。
  12. 前記電解液を収容する電解液槽と、
    前記電解液槽の壁部の一部を形成する空気極と、
    前記電解液槽に挿入される金属電極カートリッジと、を備えた金属空気電池であって、
    前記金属電極カートリッジは、
    支持体と、
    前記支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、
    前記支持体に接続された容器と、を備え、
    前記容器は、前記電極活物質および前記電極活物質から生成する析出物を透過させず、電解液が浸透するろ過部を有することを特徴とする金属空気電池。
  13. 前記容器は、前記金属電極を収容していることを特徴とする請求項12に記載の金属空気電池。
  14. 前記電解液槽と循環流路により接続された第2の電解液槽とを備えた請求項13に記載の金属空気電池。
  15. 前記電解液槽と接続された循環流路とをさらに備え、
    前記循環流路が前記容器に接続されていることを特徴とする請求項12に記載の金属空気電池。
  16. 前記請求項11に記載の金属空気電池の単位セルが複数連なった金属空気電池スタック。
  17. 前記電解液槽は、前記電解液を排出する排出口を備える請求項12に記載の金属空気電池。
  18. 支持体と、
    前記支持体に接続され、少なくとも電極活物質を含む1以上の金属電極と、
    前記金属電極および前記電極活物質の酸化物または水酸化物を収容する1以上の容器と、を備え、
    前記容器は、前記電極活物質および前記析出物を透過させず、電解液が浸透するろ過部を有する金属電極カートリッジの充電方法であって、
    前記金属電極カートリッジの放電後、
    前記容器を前記電解液に浸漬させ、
    前記容器が収容する前記析出物を前記電解液に溶かす溶解工程と、
    前記金属電極と電極とを前記電解液とを介して電気的に接続させ、前記電極活物質を前記金属電極に電析させる電析工程とを含むことを特徴とする金属電極カートリッジの充電方法。
PCT/JP2014/080637 2013-11-20 2014-11-19 金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法 WO2015076299A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013239928 2013-11-20
JP2013-239928 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076299A1 true WO2015076299A1 (ja) 2015-05-28

Family

ID=53179559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080637 WO2015076299A1 (ja) 2013-11-20 2014-11-19 金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法

Country Status (1)

Country Link
WO (1) WO2015076299A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002821B1 (ja) * 2015-08-31 2016-10-05 日本協能電子株式会社 空気マグネシウム電池
JP2017010619A (ja) * 2015-06-16 2017-01-12 古河電池株式会社 金属空気電池
JP2019505979A (ja) * 2016-02-23 2019-02-28 オープン ウォーター パワー, インコーポレイテッド 電気化学システムにおける廃棄物管理
CN112534629A (zh) * 2018-08-06 2021-03-19 藤仓复合材料科技株式会社 金属空气电池及其使用方法
CN112751059A (zh) * 2021-01-06 2021-05-04 清华大学 用于金属空气电池单体的单体主体和金属空气电池单体
US20210320369A1 (en) * 2018-08-24 2021-10-14 Fujikura Composites Inc. Metal-air battery and method of using the same
JP7082657B2 (ja) 2019-01-15 2022-06-08 一般社団法人Yamatoda 発電器
WO2023068317A1 (ja) * 2021-10-22 2023-04-27 日本協能電子株式会社 金属空気発電機及びそのユニット
US11973240B2 (en) * 2018-08-24 2024-04-30 Fujikura Composites Inc. Metal-air battery and method of using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482107Y1 (ja) * 1969-01-14 1973-01-19
JPS48102519U (ja) * 1972-03-06 1973-12-01
JPS5317735B1 (ja) * 1967-03-16 1978-06-10 Nat Res Dev
JPS56175969U (ja) * 1980-05-29 1981-12-25
JPS62108475A (ja) * 1985-11-07 1987-05-19 Matsushita Electric Ind Co Ltd 空気電池
JP2004523076A (ja) * 2001-03-09 2004-07-29 デ チエン ヤン ソフトポケットを有する金属−気体セル電池及び金属−気体セル電池用のソフトポケット材料
JP2013211261A (ja) * 2012-02-29 2013-10-10 Mitsubishi Heavy Ind Ltd 電池用負極ユニット及び金属空気電池
JP2013225444A (ja) * 2012-04-23 2013-10-31 Sharp Corp 金属空気電池およびエネルギーシステム
JP2013225443A (ja) * 2012-04-23 2013-10-31 Sharp Corp 金属空気電池およびエネルギーシステム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317735B1 (ja) * 1967-03-16 1978-06-10 Nat Res Dev
JPS482107Y1 (ja) * 1969-01-14 1973-01-19
JPS48102519U (ja) * 1972-03-06 1973-12-01
JPS56175969U (ja) * 1980-05-29 1981-12-25
JPS62108475A (ja) * 1985-11-07 1987-05-19 Matsushita Electric Ind Co Ltd 空気電池
JP2004523076A (ja) * 2001-03-09 2004-07-29 デ チエン ヤン ソフトポケットを有する金属−気体セル電池及び金属−気体セル電池用のソフトポケット材料
JP2013211261A (ja) * 2012-02-29 2013-10-10 Mitsubishi Heavy Ind Ltd 電池用負極ユニット及び金属空気電池
JP2013225444A (ja) * 2012-04-23 2013-10-31 Sharp Corp 金属空気電池およびエネルギーシステム
JP2013225443A (ja) * 2012-04-23 2013-10-31 Sharp Corp 金属空気電池およびエネルギーシステム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010619A (ja) * 2015-06-16 2017-01-12 古河電池株式会社 金属空気電池
JP6002821B1 (ja) * 2015-08-31 2016-10-05 日本協能電子株式会社 空気マグネシウム電池
JP2019505979A (ja) * 2016-02-23 2019-02-28 オープン ウォーター パワー, インコーポレイテッド 電気化学システムにおける廃棄物管理
EP3419935A4 (en) * 2016-02-23 2019-11-20 Open Water Power, Inc. WASTE MANAGEMENT IN ELECTROCHEMICAL SYSTEMS
AU2017223492B2 (en) * 2016-02-23 2021-12-09 L3Harris Open Water Power, Inc. Waste management in electrochemical systems
CN112534629A (zh) * 2018-08-06 2021-03-19 藤仓复合材料科技株式会社 金属空气电池及其使用方法
US20210320369A1 (en) * 2018-08-24 2021-10-14 Fujikura Composites Inc. Metal-air battery and method of using the same
US11973240B2 (en) * 2018-08-24 2024-04-30 Fujikura Composites Inc. Metal-air battery and method of using the same
JP7082657B2 (ja) 2019-01-15 2022-06-08 一般社団法人Yamatoda 発電器
CN112751059A (zh) * 2021-01-06 2021-05-04 清华大学 用于金属空气电池单体的单体主体和金属空气电池单体
WO2023068317A1 (ja) * 2021-10-22 2023-04-27 日本協能電子株式会社 金属空気発電機及びそのユニット

Similar Documents

Publication Publication Date Title
WO2015076299A1 (ja) 金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法
JP5396506B2 (ja) 金属空気電池およびエネルギーシステム
JP6326272B2 (ja) 電槽及び金属空気電池
RU2236067C2 (ru) Каталитический воздушный катод для металловоздушных аккумуляторов
KR101792841B1 (ko) 아연-공기 배터리
US20040053132A1 (en) Improved fuel for a zinc-based fuel cell and regeneration thereof
JP6271515B2 (ja) 金属空気電池
US20100196768A1 (en) Electrolyte management in zinc/air systems
KR100905939B1 (ko) 금속연료전지시스템
US20170294661A1 (en) Electrolyte regeneration
JP2005509262A (ja) 再充電及び燃料補給可能な金属空気型の電気化学セル
WO2015119041A1 (ja) 空気極及び金属空気電池
EP2824745A1 (en) Rechargeable zinc-air flow battery
JP2013225443A (ja) 金属空気電池およびエネルギーシステム
JP6267942B2 (ja) 金属空気電池
JP2013243108A (ja) 金属空気電池およびエネルギーシステム
JP6255423B2 (ja) 金属空気電池
WO2015016101A1 (ja) 金属空気電池、金属電極リサイクル方法及び電極製造方法
JP6263371B2 (ja) 金属空気電池
WO2015019845A1 (ja) 金属電極および金属空気電池
WO2014175117A1 (ja) 金属空気電池
JP2015207492A (ja) 金属空気電池筐体、及び、金属空気電池
JP2015220024A (ja) 金属空気電池本体及び金属空気電池
JP2016024944A (ja) 化学電池
JP6474725B2 (ja) 金属電極カートリッジおよび金属空気電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14863890

Country of ref document: EP

Kind code of ref document: A1