WO2015019845A1 - 金属電極および金属空気電池 - Google Patents

金属電極および金属空気電池 Download PDF

Info

Publication number
WO2015019845A1
WO2015019845A1 PCT/JP2014/069349 JP2014069349W WO2015019845A1 WO 2015019845 A1 WO2015019845 A1 WO 2015019845A1 JP 2014069349 W JP2014069349 W JP 2014069349W WO 2015019845 A1 WO2015019845 A1 WO 2015019845A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
material layer
current collector
metal
Prior art date
Application number
PCT/JP2014/069349
Other languages
English (en)
French (fr)
Inventor
吉田 章人
宏隆 水畑
忍 竹中
将史 村岡
俊輔 佐多
正樹 加賀
友春 新井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015019845A1 publication Critical patent/WO2015019845A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form

Definitions

  • the present invention relates to a metal electrode and a metal-air battery.
  • a metal-air battery generates power by using a metal electrode containing an electrode active material as an anode and an air electrode as a cathode.
  • a zinc-air battery using metal zinc as an electrode active material can be mentioned.
  • an electrode reaction of the following chemical formula 1 proceeds at the cathode. (Chemical formula 1): O 2 + 2H 2 O + 4e ⁇ ⁇ 4OH ⁇
  • an electrode reaction as represented by the following chemical formula 2 proceeds in the anode
  • a reaction as represented by the following chemical formula 3 proceeds in the electrolytic solution.
  • a structure in which an electrode active material layer is provided on a support is known as a structure of a metal electrode of a metal-air battery (for example, Patent Document 1).
  • a hole is formed in the support, and an electrode active material layer is provided on the main surface of the support and in the hole, thereby improving the bondability between the support and the electrode active material layer.
  • the electrode active material that has not been used for power generation remains on the used metal electrode removed from the metal-air battery whose output has been reduced, thereby reducing the utilization efficiency of the electrode active material.
  • This invention is made
  • the present invention is a metal electrode comprising a current collector and an electrode active material layer covering a part of the current collector, wherein the current collector has a first hole penetrating the current collector, A first concave portion formed on the current collector surface, or a first convex portion formed on the current collector surface, wherein the electrode active material layer comprises the electrode active material layer or the electrode active material layer; A second hole penetrating the current collector, a second recess formed on the surface of the electrode active material layer, or a second protrusion formed on the surface of the electrode active material layer, the second hole or the first
  • the two concave portions are arranged to overlap the first hole or the first concave portion, and the second convex portion is arranged to overlap the first convex.
  • an electrode reaction can be advanced by attaching the metal electrode of this invention to a metal air battery main body, and it can generate electric power with a metal air battery.
  • a plate-like current collector is provided and the electrode active material layer is provided on the current collector, so that part of the electrode active material layer is a metal electrode due to consumption of the electrode active material accompanying the progress of the electrode reaction. It can suppress that it separates from and falls. Thereby, the utilization efficiency of the electrode active material can be increased.
  • the current collector since the current collector has conductivity, charges generated by the electrode reaction on the surface of the electrode active material layer can be collected by the current collector.
  • the current collector has a hole penetrating the current collector, a concave portion formed on the surface or a convex portion formed on the surface, and the electrode active material layer is provided on the current collector.
  • the bondability between the current collector and the electrode active material layer can be improved, and the consumption of the electrode active material accompanying the progress of the electrode reaction prevents a part of the electrode active material layer from separating and dropping from the metal electrode. be able to. Thereby, the utilization efficiency of the electrode active material can be increased.
  • the electrode active material layer has a hole penetrating the electrode active material layer, a concave portion formed on the surface, or a convex portion formed on the surface, the surface of the electrode active material layer in contact with the electrolytic solution is provided.
  • the output of the metal-air battery depends on the area of the surface of the electrode active material layer that contacts the electrolyte and causes an electrode reaction. Therefore, the output of the metal air battery to which the metal electrode of the present invention is attached can be increased. Note that when the electrode active material is consumed and the surface area of the electrode active material layer in contact with the electrolytic solution is greatly reduced, the output of the metal-air battery is lowered, so that the metal electrode is used.
  • the electrode active material layer is formed such that the hole or recess of the electrode active material layer overlaps the hole or recess of the current collector, or the protrusion of the electrode active material layer and the protrusion of the current collector Of the electrode active material provided in the current collector holes or between the concave portions or the plurality of convex portions of the current collector, and the electrode active material layer.
  • the shortest distance between the surface in contact with the electrolytic solution can be shortened. For this reason, before the electrode active material is consumed and the surface area of the electrode active material layer in contact with the electrolytic solution is greatly reduced, the electrode active material provided in the holes of the current collector or the recesses or the plurality of current collectors are provided.
  • the electrode active material filling the gaps between the protrusions. Therefore, when the metal electrode is used, the amount of the electrode active material remaining on the current collector can be reduced, and the utilization efficiency of the electrode active material can be increased. In addition, since it is possible to suppress the formation of a region having a long distance from the current collector in the electrode active material layer, it is possible to suppress a part of the electrode active material layer from being peeled off. Reliability can be improved.
  • (A) is a schematic plan view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line AA of (a).
  • It is an enlarged view of the range B enclosed with the dotted line of FIG. 2 and is explanatory drawing of the change of the electrode active material layer accompanying an anode reaction.
  • (A) is a schematic top view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line CC of (a).
  • (A) is a schematic top view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line DD of (a).
  • (A) is a schematic plan view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line EE of (a).
  • (A) is a schematic plan view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line FF of (a).
  • (A) is a schematic plan view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line GG of (a).
  • (A) is a schematic top view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line HH of (a).
  • (A) is a schematic top view of the metal electrode of one Embodiment of this invention, (b) or (c) is a schematic sectional drawing of the metal electrode in the broken line JJ of (a).
  • (A) is a schematic plan view of the metal electrode of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the metal electrode in the broken line KK of (a).
  • FIG. 4 is a schematic cross-sectional view of the metal electrode taken along a broken line MM
  • FIG. (A) is a schematic plan view of the current collector used in the discharge experiment
  • (b) is a schematic cross-sectional view of the metal electrode of Example 1 or Example 2 prepared in the discharge experiment
  • (c) is a discharge It is a schematic sectional drawing of the metal electrode of the comparative example produced by experiment.
  • the metal electrode for a metal-air battery of the present invention is a metal electrode comprising a current collector and an electrode active material layer that covers a part of the current collector, and the current collector comprises the current collector.
  • the electrode active material layer preferably has a surface shape that reflects the surface shape of the current collector. According to such a configuration, the electrode active material or current collector in all the holes of the current collector is reduced before the area of the surface of the electrode active material layer in contact with the electrolytic solution is consumed greatly. A large amount of the electrode active material that fills all the concave portions of the body or between all the convex portions can be consumed. Therefore, when the metal electrode is used, the amount of the electrode active material remaining on the current collector can be reduced, and the utilization efficiency of the electrode active material can be increased.
  • the electrode active material layer has a recess or a protrusion formed on the surface so that the shortest distance between the surface of the current collector and the surface of the electrode active material layer is a substantially constant distance. It is preferable to have a part. According to such a configuration, before the area of the surface of the electrode active material layer in contact with the electrolytic solution is consumed and the electrode active material is greatly reduced, a large amount of the electrode active material is filled between the concave portions or the convex portions of the current collector. Can be consumed.
  • the current collector has a plate shape, and the first recess or the first recess has a shape that is long in the surface direction of the electrode active material layer. According to such a configuration, the first concave portion, the second concave portion or the first convex portion, and the second convex portion having a longer shape in one direction can suppress peeling of the electrode active material layer from the current collector. The physical strength of the metal electrode can be improved.
  • the current collector has a support portion at one end, and the support portion has an extended shape along an end portion of the current collector, and the first concave portion or the first convex portion.
  • the current collector has a support portion at one end, the support portion has an elongated shape along an end portion of the current collector, and the first recess or the first protrusion It is preferable that the part has a shape that is long in a direction parallel to the longitudinal direction of the support part of the current collector. According to such a configuration, peeling of the electrode active material from the current collector can be suppressed with respect to the insertion / removal direction of the metal electrode.
  • the metal electrode of this invention WHEREIN: It is preferable that the said electrical power collector has an edge part in which the said electrode active material layer is not provided on the said electrical power collector. According to such a configuration, the consumption speed of the electrode active material layer can be made uniform, and the output of the metal-air battery can be stabilized.
  • the current collector has an elongated recess on the surface and a water-repellent portion on the bottom of the recess. According to such a configuration, it is possible to suppress bubbles from remaining on the surface of the electrode active material layer, and it is possible to suppress the bubbles from inhibiting the anode reaction.
  • the hole of the electrode active material layer, the concave portion of the electrode active material layer, or the convex portion of the electrode active material layer has an elongated shape in the in-plane direction of the surface of the electrode active material layer.
  • the metal electrode when it is inserted into the electrolytic solution to form a metal-air battery, it is preferably provided so as to be substantially perpendicular to the liquid surface of the electrolytic solution. According to such a configuration, when hydrogen gas bubbles are generated due to self-corrosion of the electrode active material, the bubbles can be easily raised and removed from the surface of the electrode active material layer.
  • the present invention includes the metal electrode of the present invention, an electrolytic solution tank, and an air electrode serving as a cathode, and the electrode active material layer includes a metal air battery provided in the electrolytic solution tank and serving as an anode. it can. According to this metal-air battery, power can be generated by efficiently using the electrode active material contained in the metal electrode.
  • Metal-air battery metal electrode and the metal air battery configuration diagram 1 (a) is a schematic plan view of the metal electrode of the present embodiment, the metal electrodes in a broken line A-A of FIG. 1 (b) FIGS. 1 (a) FIG. FIG. 2 is a schematic cross-sectional view of a metal air battery having the metal electrode shown in FIG. FIG. 3 is a schematic plan view of a current collector included in the metal electrode shown in FIG.
  • a metal electrode 20 for a metal-air battery includes a plate-shaped current collector 7 having conductivity, and an electrode active material layer 5 provided on the current collector 7 and containing a metal.
  • 7 has a hole 21 penetrating the current collector 7, a concave portion 22 formed on the surface or a convex portion 23 formed on the surface, and the electrode active material layer 5 is a hole 18 penetrating the electrode active material layer 5.
  • the electrode active material layer 5 has a hole 18 or a recess 17 in the electrode active material layer 5 and a hole 21 or a recess 22 in the current collector 7. Is provided on the current collector 7 such that the projections 19 of the electrode active material layer 5 and the projections 23 of the current collector 7 overlap each other.
  • the metal-air battery 25 of the present embodiment includes the metal electrode 20 of the present embodiment, the electrolytic solution tank 2, and the air electrode 9 serving as a cathode, and the electrode active material layer 5 is disposed in the electrolytic solution tank 2. It is provided and becomes an anode. Moreover, the electrolytic solution tank 2, the electrode active material layer 5, and the air electrode 9 may constitute the cell 4. Further, the metal-air battery 25 of the present embodiment may have a cell assembly in which a plurality of cells 4 are stacked.
  • the metal-air battery 25 of the present embodiment can include the air electrode current collector 10 and an ion exchange membrane.
  • the metal electrode 20 for metal air batteries and the metal air battery 25 of this embodiment are demonstrated.
  • the metal-air battery 25 is a battery in which the electrode active material at the anode is metal and the electrode active material at the cathode is oxygen gas.
  • the electrode active material at the anode is metal
  • the electrode active material at the cathode is oxygen gas.
  • the cell 4 is a structural unit of the metal-air battery 25 and has an electrode pair that is provided in the electrolytic solution tank 2 and includes an electrode active material layer 5 serving as an anode and an air electrode 9 serving as a cathode.
  • the cell 4 may have, for example, an electrode pair in which one air electrode 9 and one electrode active material layer 5 are provided so as to sandwich the electrolytic solution 3.
  • the two air electrodes 9 may have an electrode pair provided so as to sandwich the electrode active material layer 5.
  • the metal-air battery 25 may have a single cell structure including one cell 4 or may have a cell assembly (stack structure) in which a plurality of cells 4 are stacked.
  • Electrolytic Solution 3 is a liquid having ionic conductivity by dissolving an electrolyte in a solvent.
  • the electrolytic solution 3 is stored in the electrolytic solution tank 2 or circulates in the electrolytic solution tank 2.
  • the type of the electrolytic solution 3 varies depending on the type of the electrode active material included in the electrode active material layer 5 of the metal electrode 20, but may be an electrolytic solution (aqueous electrolyte solution) using a water solvent.
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used as the electrolytic solution.
  • An aqueous sodium chloride solution can be used.
  • Electrolytic solution tank 2 is an electrolytic cell in which the electrolytic solution 3 is stored or circulated, and has corrosion resistance to the electrolytic solution. Moreover, the electrolytic solution tank 2 has a structure in which the electrode active material layer 5 can be installed. Further, when the metal-air battery 25 has a cell assembly composed of a plurality of cells 4, each cell 4 may have a separate electrolyte tank 2, and the electrolyte tank 2 of each cell 4 is a flow path. The plurality of cells 4 may share one electrolytic solution tank 2. In the metal-air battery 25 shown in FIG. 2, a part of the bottom and side wall of the electrolytic solution tank 2 is the casing 1, and a part of the side wall of the electrolytic solution tank 2 is the air electrode 9.
  • the metal-air battery 25 may have a mechanism for causing the electrolyte 3 in the electrolyte bath 2 to flow. As a result, the anode reaction in the electrode active material layer 5 can be promoted, and the performance of the metal-air battery 25 can be improved.
  • the electrolytic solution 3 may be circulated using a pump to cause the electrolytic solution 3 in the electrolytic solution tank 2 to flow.
  • the metal-air battery 25 may include a movable part that can physically move the electrolyte 3 in the electrolyte bath 2 such as a stirrer and a vibrator.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • polyvinyl chloride (PVC) polyvinyl alcohol (PVA), polyvinyl acetate, ABS, vinylidene chloride, polyacetal, polyethylene, polypropylene, polyisobutylene, fluororesin, epoxy resin, etc.
  • the metal electrode 20 is an electrode provided with an electrode active material layer 5 containing a metal to be an electrode active material in the anode.
  • the metal electrode 20 is provided so that the electrode active material layer 5 can be inserted into the electrolytic solution tank 2.
  • the electrode active material can be brought into contact with the electrolytic solution 3 in the electrolytic solution tank 2, and the anodic reaction can proceed at the interface between the electrode active material and the electrolytic solution 3. Since charges are generated in the electrode active material layer 5 by this anode reaction, the larger the area of the interface between the electrode active material and the electrolytic solution 3, the more charges can be generated and the output of the metal-air battery 25 is increased. be able to.
  • FIG. 4 and 5 are enlarged views of a range B surrounded by a dotted line in FIG. 2 and are explanatory diagrams of the anode reaction.
  • the electrode active material (M) reacts with hydroxide ions (OH ⁇ ) in the electrolytic solution 3 at the interface between the electrode active material layer 5 and the electrolytic solution 3. It becomes hydroxide (MOH) and dissolves in the electrolyte 3.
  • electric charge (e ⁇ ) is generated in the electrode active material layer 5, and the electric power of the metal-air battery 25 is output by this electric charge flowing through an external circuit through the current collector 7.
  • the electrode active material layer 5 gradually decreases as the anode reaction proceeds. For example, as indicated by a dotted line and an arrow in FIG. 5, the electrode active material layer 5 gradually decreases from the surface in contact with the electrolytic solution 3. And if it becomes small until the area of the interface of the electrode active material layer 5 and the electrolyte solution 3 becomes narrow, the output of the metal air battery 25 will fall and the metal electrode 20 will be used.
  • the electrode active material contained in the electrode active material layer 5 dissolves into the non-aqueous electrolyte as metal ions, and these ions conduct through the solid electrolyte and react with hydroxide ions and the like.
  • the metal electrode 20 is provided so that the electrode active material layer 5 can be extracted from the electrolytic solution tank 2.
  • the metal electrode 20 that has been consumed after the electrode active material is consumed can be extracted from the electrolytic solution tank 2 and the metal electrode 20 having the new electrode active material layer 5 can be inserted into the electrolytic solution tank 2.
  • a new electrode active material can be supplied to the metal-air battery 25.
  • the anode reaction can proceed at the interface between the new electrode active material and the electrolytic solution 3, and the power generation by the metal-air battery 25 can be continued.
  • the electrode active material contained in the electrode active material layer 5 is a metal that dissolves in the electrolyte as metal-containing ions or the like by the anode reaction.
  • the electrode active material in the case of a zinc-air battery, the electrode active material is metallic zinc, and zinc oxide is deposited in the electrolytic solution 3.
  • the electrode active material in the case of an aluminum-air battery, the electrode active material is metallic aluminum, and aluminum hydroxide is deposited in the electrolytic solution 3.
  • the electrode active material is metallic iron, and iron oxide hydroxide or iron oxide is deposited in the electrolytic solution 3.
  • the electrode active material is metallic magnesium, and magnesium hydroxide is precipitated in the electrolytic solution 3.
  • the electrode active materials are metallic lithium, metallic sodium, and metallic calcium, respectively, and oxides, hydroxides, and the like of these metals are contained in the electrolytic solution 3.
  • the electrode active materials are metallic lithium, metallic sodium, and metallic calcium, respectively, and oxides, hydroxides, and the like of these metals are contained in the electrolytic solution 3.
  • a solid electrolyte membrane may be provided between the electrode active material layer 5 and the electrolytic solution 3. This can prevent the electrode active material from being corroded by the electrolytic solution 3.
  • the electrode active material is dissolved in the electrolytic solution 3 after ion conduction through the solid electrolyte membrane.
  • an electrode active material is not limited to these examples, What is necessary is just a metal air battery.
  • the electrode active material contained in the electrode active material layer 5 mentioned the metal which consists of a kind of metal element in said example may consist of alloys. Further, a part of the active material may be elementally substituted by subjecting the active material surface to a substitution reaction treatment. For example, the method of adding the metal containing Pb, Hg, Ga, In, Tl, Bi, V, Al, Ca etc. is mentioned. By using the active material obtained by this method for the discharge reaction, it becomes possible to suppress the self-corrosion of the negative electrode active material and the formation of a passive film of the negative electrode active material.
  • the electrode active material layer 5 may include a conductive material such as carbon and a binder such as resin.
  • the electrode active material layer 5 may be porous or may have a structure with a low porosity.
  • the electrode active material layer 5 may be formed, for example, by depositing a metal on the current collector 7 by an electrochemical method such as a plating method.
  • the electrode active material layer 5 may be formed, for example, by pressing metal particles or lumps that are electrode active materials against the main surface of the current collector 7. It may be formed by heating or laser irradiation and fusing on the main surface of the current collector 7, or by sintering fine particles of metal as an electrode active material on the main surface of the current collector 7. May be.
  • the electrode active material layer 5 may be formed by, for example, applying (including printing, spraying, etc.) a slurry containing an electrode active material on the current collector 7.
  • the electrode active material layer 5 may be formed by pressure bonding or thermocompression bonding of a slurry containing the electrode active material on the current collector 7.
  • the slurry containing the electrode active material can be prepared by mixing metal particles that are the electrode active material, a conductive material such as carbon, and a binder such as resin.
  • the content ratio of the electrode active material, the conductive material, and the binder can be changed so that the energy density (capacity) and the output density (output) of the metal-air battery have desired values.
  • the content ratio of the electrode active material in the slurry is increased and the active material filling density of the electrode active material layer 5 is increased, the energy density of the metal-air battery is improved. Further, when the content ratio of the binder in the slurry is increased and the porosity of the electrode active material layer 5 is increased, the reaction surface area of the electrode active material can be increased and the output density of the metal-air battery can be increased.
  • the electrode active material layer 5 has a hole 18 penetrating the electrode active material layer 5, a concave portion 17 formed on the surface, or a convex portion 19 formed on the surface. Thereby, the area of the interface between the electrode active material layer 5 and the electrolytic solution 3 can be increased, and the output of the metal-air battery 25 can be increased.
  • the hole 18, the concave portion 17, and the convex portion 19 of the electrode active material layer 5 may be formed by pressing the electrode active material layer 5 or the like with a mold, and the electrode active material layer 5 may be formed on the current collector 7.
  • the surface shape of the current collector 7 may be reflected on the surface shape of the electrode active material layer 5 by electrodeposition. Moreover, you may form the hole 18 of the electrode active material layer 5 with a punch.
  • the electrodeposition can be performed under conditions where no dendrite is generated.
  • the electrode active material layer 5 having a surface reflecting the surface shape of the current collector 7 and suppressing self-corrosion can be formed.
  • Electrodeposition can be performed at a current density (projected area) of 5 to 120 mA / cm 2 .
  • the electrode active material layer 5 is provided on a conductive plate-like current collector 7.
  • the current collector 7 can be formed of, for example, a metal plate having corrosion resistance against the electrolytic solution.
  • the material of the current collector 7 is, for example, nickel, gold, silver, copper, stainless steel or the like.
  • the current collector 7 may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate.
  • the thickness of the current collector 7 can be, for example, 100 ⁇ m or more and 5 mm or less. Moreover, the thickness of the electrode active material layer 5 can be 100 micrometers or more and 5 mm or less.
  • the current collector 7 has a hole 21 penetrating the current collector 7, a concave portion 22 formed on the surface, or a convex portion 23 formed on the surface.
  • the bonding between the current collector 7 and the electrode active material layer 5 can be improved, and a part of the electrode active material layer 5 is removed from the metal electrode 20 due to consumption of the electrode active material accompanying the progress of the anode reaction. Separation and falling can be suppressed. Thereby, the utilization efficiency of the electrode active material can be increased. Further, the reliability of the metal electrode 20 can be improved.
  • the concave portion 22 or the convex portion 23 of the current collector 7 may be hemispherical, columnar, or pyramidal.
  • the recess 22 of the current collector 7 may have a slit shape.
  • the hole 21 of the current collector 7 only needs to penetrate the current collector 7 and may be circular or angular.
  • the hole 21, the concave portion 22, and the convex portion 23 of the current collector 7 may be formed by pressing a metal plate with a mold.
  • the current collector 7 of the present embodiment is usually a plate having a substantially square plane, but the shape is not particularly limited.
  • the shape of the current collector 7 may be a cylindrical or rectangular current collector as long as the surface has a hole 21, a concave portion 22, and a convex portion.
  • the electrode active material layer 5 is formed so that the holes 18 or the recesses 17 of the electrode active material layer 5 overlap the holes 21 or the recesses 22 of the current collector 7, or the protrusions 19 of the electrode active material layer 5 and the current collector 7. Is provided on the current collector 7 so as to overlap the convex portion 23 of the current collector.
  • the electrode active material layer 5 may have a surface shape that reflects the surface shape of the current collector 7.
  • the electrode active material or current collector 7 provided in the holes of the current collector 7 is used. A large amount of the electrode active material filling between the concave portions 22 or the convex portions 19 can be consumed. This will be described with reference to the drawings.
  • the slit 29 is formed in the electrode active material layer 5, the slit 29 is included in the hole 18 or the recess 17.
  • the concave portion 17 or the convex portion 19 of the electrode active material layer 5 can be provided so that the shortest distance from the surface of the electrode active material layer 5 to the current collector 7 is uniform.
  • the metal electrode 20 shown in FIGS. 1A and 1B is provided with the electrode active material layer 5 on the main surface of the current collector 7 having a plurality of holes 21 shown in FIG. Further, the concave portion 17 is formed on the surface of the electrode active material layer 5 so as to overlap the hole 21 of the current collector 7. Further, a recess 17 is provided in the electrode active material layer 5 so as to reflect the shape of the hole 21 of the current collector 7.
  • the electrode active material (M) is consumed on the surface of the electrode active material layer 5 as shown in FIG. Is done.
  • the concave portion 17 is provided on the surface of the electrode active material layer 5 so as to overlap the hole 21 of the current collector 7, the anode reaction proceeds with the electrode active material layer 5 inside the hole 21 of the current collector 7.
  • the shortest distance from the surface of the electrode active material layer 5 is shortened. For this reason, when the electrode active material layer 5 provided on the main surface of the current collector 7 is consumed as the anode reaction proceeds, the electrode active material layer 5 in the holes 21 of the current collector 7 is also consumed. .
  • the electrode active material layer 5 is considered to be consumed as indicated by the dotted line and the arrow in FIG.
  • the electrode active material layer 5 in the hole 21 of the current collector 7 is also consumed before the electrode active material layer 5 is consumed and the area of the interface between the electrode active material layer 5 and the electrolytic solution 3 is greatly reduced. be able to. As a result, the utilization efficiency of the electrode active material can be increased.
  • FIGS. 17 and 18 are explanatory diagrams of the anode reaction in the conventional metal electrode.
  • the electrode active material layer 5 is provided on the main surface of the current collector 7 having the holes 21 and in the holes 21. Moreover, the surface which contacts the electrolyte solution 3 of the electrode active material layer 5 is flat. Since the electrode active material is consumed on the surface where the electrode active material layer 5 and the electrolytic solution 3 are in contact as shown in FIG. 17, the surface of the electrode active material layer 5 in contact with the electrolytic solution 3 is as shown in FIG. It is considered that the current collector 7 is gradually approached while the flat shape is substantially maintained.
  • FIG. 6A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 6B is a schematic cross-sectional view of the metal electrode taken along a broken line CC in FIG. 6A.
  • the electrode active material layer 5 is provided on the main surface of the current collector 7 having a plurality of holes 21 and in the holes 21.
  • the concave portion 17 is formed on the surface of the electrode active material layer 5 so as to overlap the hole 21 of the current collector 7.
  • a recess 17 is provided in the electrode active material layer 5 so as to reflect the shape of the hole 21 of the current collector 7.
  • a hole 18 is provided so as to penetrate the electrode active material layer 5 in the hole 21 of the current collector 7.
  • the electrode active material is consumed on the surface of the electrode active material layer 5 in contact with the electrolytic solution 3. . Therefore, when the electrode active material layer 5 on the main surface of the current collector 7 is consumed, the electrode active material can also be consumed on the surface of the electrode active material layer 5 in the hole 18. As a result, it is possible to suppress the electrode active material from remaining in the holes 21 of the current collector 7 and to increase the utilization efficiency of the electrode active material.
  • FIG. 7A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 7B is a schematic cross-sectional view of the metal electrode taken along a broken line DD in FIG. 7A
  • FIG. 8A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 8B is a schematic cross-sectional view of the metal electrode taken along a broken line EE in FIG. 8A.
  • the electrode active material layer 5 is provided on the current collector 7 having a plurality of hemispherical projections 23.
  • a hemispherical convex portion 19 is formed on the surface of the electrode active material layer 5 so as to overlap the convex portion 23 of the current collector 7.
  • the electrode active material layer 5 is provided with a protrusion 19 so as to reflect the shape of the protrusion 23 of the current collector 7.
  • the electrode active material layer 5 is provided on the current collector 7 having a plurality of quadrangular columnar projections 23. Further, a square-shaped convex portion 19 is formed on the surface of the electrode active material layer 5 so as to overlap the convex portion 23 of the current collector 7. Further, the electrode active material layer 5 is provided with a protrusion 19 so as to reflect the shape of the protrusion 23 of the current collector 7. Furthermore, in the metal electrode 20 shown in FIG. 7 or FIG. 8, the electrode active material layer 5 is provided so that the shortest distance between the surface of the current collector 7 and the surface of the electrode active material layer is substantially constant. Yes. When the metal electrode 20 shown in FIGS.
  • the electrode active material is consumed on the surface of the electrode active material layer 5 in contact with the electrolytic solution 3.
  • the time during which the electrode active material layer 5) is consumed can be substantially the same. This can suppress the electrode active material layer 5 from remaining on the current collector 7 of the used metal electrode 20. Thereby, the utilization efficiency of an electrode active material can be improved. Further, it is possible to suppress a large change in the area of the interface between the electrode active material layer 5 and the electrolytic solution 3 when generating power with the metal-air battery 25, and to stabilize the output of the metal-air battery 25. .
  • the electrode active material layer 5 on the convex portion 23 of the current collector 7 is consumed. And the time during which the electrode active material layer 5 on the surface other than the convex portion 23 of the current collector 7 is consumed are considered to be large, and the electrode active material layer 5 on the convex portion 23 is consumed first. It is thought. For this reason, it is considered that when the electrode active material layer 5 on the convex portion 23 is completely consumed, the area of the interface between the electrode active material layer 5 and the electrolytic solution 3 decreases and the output of the metal-air battery 25 decreases. For this reason, it is considered necessary to operate the metal-air battery 25 in a state where the output is reduced or to change the metal electrode 20 to a new one.
  • FIG. 9A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 9B or FIG. 9C is a schematic cross-sectional view of the metal electrode taken along a broken line FF in FIG. 9A.
  • FIG. 10A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 10B is a schematic cross-sectional view of the metal electrode taken along a broken line GG in FIG.
  • the metal electrode 20 shown in FIGS. 9A, 9B, or 10A, 10B has a plate-like current collector 7 and a support portion 13 at one end of the plate-like current collector 7.
  • FIG. 9A, 9B, or 10A, 10B has a plate-like current collector 7 and a support portion 13 at one end of the plate-like current collector 7.
  • the support portion 13 has an elongated shape along the end of the plate-like current collector 7, and further includes a plurality of elongated recesses 22 in the surface direction of the plate-like current collector 7.
  • An electrode active material layer 5 is provided.
  • an elongated recess 17 is formed on the surface of the electrode active material layer 5 with respect to the support 13 so as to overlap the recess 22 of the current collector 7.
  • the electrode active material layer 5 is provided with a recess 17 so as to reflect the shape of the recess 22 of the current collector 7.
  • the electrode active material layer 5 is provided so that the shortest distance between the surface of the current collector 7 and the surface of the electrode active material layer 5 is substantially constant. Yes.
  • the concave portion 22 and the concave portion 17 are elongated in the vertical direction with respect to the longitudinal direction of the support portion 13. This is provided such that the elongated recess 22 of the current collector 7 is substantially perpendicular to the liquid surface of the electrolyte 3. Accordingly, when hydrogen gas bubbles are generated by self-corrosion of the electrode active material, the bubbles can be easily raised and removed from the surface of the electrode active material layer 5. As a result, hydrogen gas bubbles can be prevented from staying on the surface of the electrode active material layer 5 and inhibiting the anode reaction. Further, in the metal electrode 20 shown in FIGS.
  • the concave portion 22 and the concave portion 17 have a shape elongated in a parallel direction to the longitudinal direction of the support portion 13. That is, the elongated concave portion 22 of the current collector 7 is provided in a direction substantially parallel to the liquid surface of the electrolytic solution 3. Accordingly, it is possible to suppress peeling of the electrode active material 5 from the current collector 7 with respect to the insertion / removal direction of the metal electrode 20.
  • the hole may be provided in the bottom of the recessed part 22 like FIG.9 (c). By providing the hole at the bottom of the recess, the surface area of the current collector 7 can be increased, and the current collection efficiency is improved.
  • the electrode active material is consumed on the surface of the electrode active material layer 5 in contact with the electrolytic solution 3.
  • the time during which the electrode active material layer 5 on the recess 22 of the current collector 7 is consumed and the time during which the electrode active material layer 5 on the surface other than the recess 22 of the current collector 7 is consumed Can be substantially the same. This can suppress the electrode active material layer 5 from remaining on the current collector 7 of the used metal electrode 20. Thereby, the utilization efficiency of an electrode active material can be improved. Further, it is possible to suppress a large change in the area of the interface between the electrode active material layer 5 and the electrolytic solution 3 when generating power with the metal-air battery 25, and to stabilize the output of the metal-air battery 25. .
  • the time during which the electrode active material layer 5 on the recess 22 of the current collector 7 is consumed is consumed.
  • the time when the electrode active material layer 5 on the surface other than the recess 22 of the current collector 7 is consumed is considered to be large, and the electrode active material layer 5 on the surface other than the recess 22 is consumed first. it is conceivable that.
  • the electrode active material layer 23 on the surface other than the recess 22 is completely consumed and the electrode active material layer 5 remains on the recess 22 of the current collector 7, the electrode active material layer 5, the electrolyte solution 3, It is considered that the output of the metal-air battery 25 decreases as the area of the interface decreases. For this reason, it is considered necessary to operate the metal-air battery 25 in a state where the output is reduced or to change the metal electrode 20 to a new one.
  • FIG. 11A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 11B is a schematic cross-sectional view of the metal electrode taken along the broken line HH in FIG.
  • the electrode active material layer 5 is provided on the current collector 7 having a plurality of elongated recesses 22 and a plurality of holes 21.
  • a recess 17 is formed on the surface of the electrode active material layer 5 so as to overlap the recess 22 and the hole 21 of the current collector 7.
  • the electrode active material layer 5 is provided with a recess 17 so as to reflect the shape of the recess 22 and the hole 21 of the current collector 7.
  • the utilization efficiency of an electrode active material can be improved similarly to the metal electrode 20 shown in FIGS.
  • FIG. 12A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 12B or 12C is a schematic cross-sectional view of the metal electrode taken along a broken line JJ in FIG. .
  • the electrode active material layer 5 is provided on the main surface of the current collector 7 having a plurality of holes 21 and in the holes 21.
  • the concave portion 17 is formed on the surface of the electrode active material layer 5 so as to overlap the hole 21 of the current collector 7.
  • a recess 17 is provided in the electrode active material layer 5 so as to reflect the shape of the hole 21 of the current collector 7.
  • the electrode active material layer 5 is not provided on the edge 24 of the current collector 7. Also in the metal electrode 20 shown in FIG.
  • the utilization efficiency of an electrode active material can be improved similarly to the metal electrode 20 shown in FIG. Moreover, by not providing the electrode active material layer 5 on the edge 24 of the current collector 7, the consumption speed of the electrode active material layer 5 can be made uniform, and the output of the metal-air battery 25 can be stabilized. Can do.
  • the metal electrode 20 When the metal electrode 20 is incorporated in the metal-air battery body and the anode reaction proceeds, current concentration tends to occur around the edge 24 of the current collector 7. For this reason, in the electrode active material layer 5 on the edge 24 of the current collector 7, the consumption speed of the electrode active material layer 5 may be faster than other portions. If the electrode active material layer 5 on the edge 24 of the current collector 7 is consumed earlier than the other portions, the area of the interface between the electrode active material layer 5 and the electrolytic solution 3 decreases, and the metal-air battery 25 Output decreases. As a result, the output of the metal-air battery 25 may become unstable. In the metal electrode 20 shown in FIG.
  • the electrode active material layer 5 is not provided on the edge 24 of the current collector 7, the area of the interface between the electrode active material layer 5 and the electrolytic solution 3 is greatly reduced. And the output of the metal-air battery 25 can be stabilized.
  • the edge 24 can be fixed along the guide. By moving the metal electrode 20 along the guide, the edge portion 24 can be fixed to the metal-air battery main body in order to prevent the electrode active material 5 from physically colliding with the metal-air battery 25.
  • the metal electrode 20 can be fixed at a predetermined position in the electrolytic solution tank 2.
  • the edge part 24 of the metal electrode 20 can have a convex-shaped lower surface like FIG.12 (c). Accordingly, when the metal electrode 20 is fixed at a predetermined position in the electrolytic solution tank 2, the position of the metal electrode 20 can be adjusted by the convex shape.
  • FIG. 13A is a schematic plan view of the metal electrode of this embodiment
  • FIG. 13B is a schematic cross-sectional view of the metal electrode taken along the broken line KK in FIG. 13A.
  • the electrode active material layer 5 is provided on the main surface of the current collector 7 having a plurality of holes 21 and in the holes 21.
  • the concave portion 17 is formed on the surface of the electrode active material layer 5 so as to overlap the hole 21 of the current collector 7.
  • a recess 17 is provided in the electrode active material layer 5 so as to reflect the shape of the hole 21 of the current collector 7.
  • An insulator 27 is provided on the edge 24 of the current collector 7. Also in the metal electrode 20 shown in FIG.
  • the utilization efficiency of an electrode active material can be improved similarly to the metal electrode 20 shown in FIG. Further, by providing the insulator portion 27 on the edge portion 24 of the current collector 7, it is possible to suppress the occurrence of current concentration in a part of the electrode active material layer 5, and the consumption speed of the electrode active material layer 5. Can be made uniform. As a result, the output of the metal-air battery 25 can be stabilized.
  • FIG. 14A is a schematic plan view of the metal electrode of the present embodiment
  • FIG. 14B is a schematic cross-sectional view of the metal electrode taken along the broken line LL in FIG. 14A
  • FIG. FIG. 14A is a schematic cross-sectional view of the metal electrode taken along a broken line MM in FIG. 14A
  • FIG. 14D is a schematic cross-sectional view of the metal electrode taken along one-dot chain line NN in FIG.
  • the electrode active material layer 5 is provided on the current collector 7 having a plurality of elongated water repellent portions 28 and the recesses 22 having the water repellent portions 28 at the bottom.
  • the current collector 7 having the water repellent portion 28 may be formed by incorporating a water repellent member into the metal plate, or may be formed by subjecting the metal plate to a surface treatment.
  • a slit 29 is formed in the electrode active material layer 5 so as to overlap the recess 22 of the current collector 7.
  • a slit 29 is provided in the electrode active material layer 5 so as to reflect the shape of the concave portion 22 of the current collector 7.
  • the elongated slit 29 is provided so as to be substantially perpendicular to the liquid surface of the electrolytic solution 3.
  • the electrode active material is consumed on the surface of the electrode active material layer 5 in contact with the electrolytic solution 3. Since the metal electrode 20 is provided with the slits 29, the electrode active material layer 5 on the side walls of the slits 29 is consumed simultaneously with the consumption of the electrode active material layer 5 on the main surface of the electrode active material layer 5. For this reason, it is possible to suppress the electrode active material layer 5 from remaining on the current collector 7 included in the used metal electrode 20. Thereby, the utilization efficiency of an electrode active material can be improved.
  • the slit 29 is provided so as to be substantially perpendicular to the liquid surface of the electrolytic solution 3, and the bottom is the water repellent portion 28.
  • the current collector 7 may be connected to the support portion 13. If it has such a structure, the metal electrode 20 can be easily operated by the support part 13, and the used metal electrode 20 in which the electrode active material is consumed is removed from the electrolyte bath 2, and a new metal electrode is obtained. 20 can be inserted into the electrolyte bath 2. As a result, the electrode active material can be supplied to the metal-air battery 25. Moreover, the support part 13 can be provided so that the electrode insertion port which inserts the metal electrode 20 into the electrolyte solution tank 2 may be plugged up. As a result, the metal electrode 20 can be inserted into the electrolytic solution tank 2 and the electrode insertion port can be blocked, and the reaction between components in the atmosphere and the electrolytic solution 3 can be suppressed. For example, when an alkaline electrolyte is used as the electrolyte 3, it can be suppressed that carbon dioxide gas in the atmosphere dissolves in the electrolyte 3 and neutralizes the alkaline electrolyte.
  • the metal electrode 20 may have a separator 31 provided so as to cover the electrode active material layer 5.
  • the separator 31 can be provided, for example, like the metal-air battery 25 shown in FIG.
  • the separator 31 it is possible to prevent the fine particles of the negative electrode active material and the negative electrode reaction product from adhering to the air electrode 9.
  • the separator 31 is a solid electrolyte, it can have the same function as the electrolytic solution.
  • the separator 31 may be provided so as to be in contact with the electrode active material layer 5, or may be provided so that the electrolytic solution 3 is interposed between the separator 31 and the electrode active material layer 5. Further, when the separator 31 functions as the electrolytic solution 3, the separator 31 is provided in contact with the electrode active material layer 5.
  • the separator 31 provided in contact with the electrode active material layer 5 preferably has a surface shape reflecting the surface shape of the electrode active material layer 5. That is, the surface of the separator 31 may also have a concave or convex portion, and the electrode active material layer 5 may be covered with the separator 31 along the surface shape of the electrode active material layer 5. As a result, the in-plane current distribution can be made uniform, and the utilization efficiency of the electrode active material layer 5 is improved.
  • the separator 31 can be made into a bag shape.
  • the separator 31 can be used as an electrolytic solution tank in which the electrolytic solution 3 is accommodated, and the metal oxide deposited after the discharge can be removed and recovered together with the metal electrode.
  • the shape of the bag-like separator 31 can be freely changed without repelling the pressure received from the side wall of the electrolytic solution tank 2 by shortening the interval between the opposing side walls of the electrolytic solution tank 2 by a deformation mechanism. it can. Therefore, by making the separator 31 into a bag shape, the separator 31 and the air electrode 9 can be brought into close contact with each other, and the ionic conductivity can be improved.
  • the metal electrode cartridge can be fixed by pressing from the side wall of the electrolytic solution tank 2.
  • both the electrode active material layer 5 and the electrolytic solution 3 can be exchanged by exchanging the metal electrode 20.
  • the electrolytic solution 3 whose metal-containing ion concentration is increased by the anodic reaction can be taken out from the electrolytic solution tank 2 and a new electrolytic solution 3 can be supplied into the electrolytic solution tank 2. it can.
  • the separator 31 is not particularly limited as long as it has ion permeability and can suppress permeation of the fine particles of the negative electrode active material and the negative electrode reaction product.
  • the separator 31 can be a porous resin film or a nonwoven fabric of resin fibers, or a molecular sieve.
  • the separator 31 may have a stacked structure in which a plurality of separators 31 are stacked.
  • the separator 31 may be an ion exchange membrane.
  • the material of the separator 31 can be an ion exchange membrane such as an anion exchange membrane or a solid or gel impregnated with an electrolyte.
  • the material of the separator 31 can be an insulating material.
  • the material of the separator 31 may be a porous flexible material.
  • the material of the porous resin film or the non-woven fabric of resin fibers used for the separator 31 can be an alkali-resistant resin, for example, polyethylene, polypropylene, nylon 6, nylon 66, polyolefin, polyvinyl acetate, polyvinyl alcohol-based material. And polytetrafluoroethylene (PTFE).
  • the pore diameter of the separator is not particularly limited, but is preferably 30 ⁇ m or less.
  • the separator is preferably hydrophilized so that the flow of the electrolytic solution 3 is improved.
  • a gelled electrolytic solution may be introduced into the pores of the separator 31.
  • the separator 31 when used as an electrolytic solution tank, leakage of the electrolytic solution 3 can be suppressed.
  • the ion exchange membrane used as the separator 31 include solid polymer electrolyte membranes (anion exchange membranes) such as perfluorosulfonic acid, perfluorocarboxylic acid, styrene vinylbenzene, and quaternary ammonium.
  • a molecular sieve can be used for the separator 31.
  • the molecular sieve regardless of an organic material or an inorganic material, a substance having a property of separating substances according to the size of each substance such as a target molecule or ion can be used.
  • the molecular sieve is not particularly limited as long as it is a general molecular sieve.
  • organic materials such as agar, agarose, polyacrylamide, polyacrylic acid, carboxymethylcellulose, natural zeolite containing oxides of sodium, silicon, and aluminum
  • An inorganic material such as a synthetic zeolite material, or an organic material, a material based on an inorganic material and cross-linked or element-substituted with various materials can be used.
  • the molecular sieve preferably has pores that do not allow the metal oxide deposited during discharge to permeate, and particularly preferably has pores having a pore diameter of 1 ⁇ m or less.
  • the air electrode 9 is an electrode serving as a cathode.
  • hydroxide ions (OH ⁇ ) are generated from oxygen gas, water, and electrons in the atmosphere.
  • the air electrode 9 includes, for example, a conductive porous carrier and an air electrode catalyst supported on the porous carrier.
  • oxygen gas, water, and electrons can coexist on the air electrode catalyst, and the electrode reaction can proceed.
  • the water used for the electrode reaction may be supplied from the atmosphere or supplied from the electrolytic solution 3.
  • the air electrode 9 may be produced by applying a porous carrier carrying an air electrode catalyst to the conductive porous substrate (gas diffusion layer 8).
  • the air electrode 9 can be produced by applying carbon carrying an air electrode catalyst to carbon paper or carbon felt.
  • the gas diffusion layer 8 may function as the air electrode current collector 10.
  • the metal-air battery 25 may include an air electrode current collector 10 that collects charges of the air electrode 9. As a result, the charge generated at the air electrode 9 can be efficiently extracted to the external circuit.
  • the air electrode current collector 10 may be the same member as the member that forms the air flow path 12.
  • the material of the air electrode current collector 10 is not particularly limited as long as it is corrosion resistant to the electrolytic solution, and examples thereof include nickel, gold, silver, copper, and stainless steel.
  • the air electrode current collector 10 may be a conductive base material subjected to nickel plating, gold plating, silver plating, or copper plating.
  • the shape of the air electrode current collector 10 can be, for example, a plate shape, a mesh shape, a punching metal, or the like.
  • a method of joining the air electrode current collector 10 to the porous carrier or the conductive porous substrate (gas diffusion layer 8) a method of pressure bonding by screwing through a frame, or a conductive adhesive And the like.
  • the air electrode 9 included in one cell 4 may be provided only on one side of the electrode active material layer 5, or may be provided on both sides of the electrode active material layer 5 as shown in FIG.
  • Examples of the porous carrier contained in the air electrode 9 include carbon black such as acetylene black, furnace black, channel black and ketjen black, and conductive carbon particles such as graphite and activated carbon.
  • carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
  • the air electrode catalyst include fine particles made of platinum, iron, cobalt, nickel, palladium, silver, ruthenium, iridium, molybdenum, manganese, a metal compound thereof, and an alloy containing two or more of these metals.
  • This alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel.
  • the porous carrier contained in the air electrode 9 may be subjected to a surface treatment so that a cationic group exists as a fixed ion on the surface thereof.
  • hydroxide ions can be conducted on the surface of the porous carrier, so that the hydroxide ions generated on the air electrode catalyst can easily move.
  • the air electrode 9 may have an anion exchange resin supported on a porous carrier. Thereby, since hydroxide ions can be conducted through the anion exchange resin, the hydroxide ions generated on the air electrode catalyst are easily moved.
  • the air electrode 9 may be provided so as to be in direct contact with the atmosphere, or may be provided so that air flowing through the air flow path 12 is supplied to the air electrode 9. As a result, oxygen gas can be supplied to the air electrode 9. In addition, when the air flow path 12 is provided, water can be supplied to the air electrode 9 together with oxygen gas by flowing humidified air through the air flow path 12.
  • the air flow path 12 can be provided in the housing
  • the air electrode 9 may be provided so as to contact the electrolytic solution 3 in the electrolytic solution tank 2.
  • hydroxide ions generated at the air electrode 9 can easily move to the electrolytic solution 3.
  • water necessary for the electrode reaction at the air electrode 9 is easily supplied from the electrolyte 3 to the air electrode 9.
  • the air electrode 9 may be covered with the separator which contacts the electrolyte solution 3 collected in the electrolyte solution tank 2 similarly to the metal electrode.
  • the separator can be provided so as to partition the electrolytic solution 3 and the air electrode 9 in the electrolytic solution tank 2.
  • the separator may be an ion exchange membrane, and the ion exchange membrane may be an anion exchange membrane.
  • hydroxide ions generated at the air electrode 9 can be transferred to the electrolytic solution 3 through the anion exchange membrane.
  • an ion exchange membrane as a separator, it is possible to limit the ion species that move between the air electrode 9 and the electrolytic solution 3.
  • the ion exchange membrane is an anion exchange membrane, since the anion exchange membrane has a cation group that is a fixed ion, the cation in the electrolytic solution 3 cannot conduct to the air electrode 9.
  • the hydroxide ion generated at the air electrode 9 is an anion, it can be conducted to the electrolytic solution 3.
  • the battery reaction of the metal-air battery 25 can proceed, and the cations in the electrolyte 3 can be prevented from moving to the air electrode 9. Thereby, precipitation of the metal and carbonate compound in the air electrode 9 can be suppressed.
  • porous resin or an ion exchange membrane
  • the porous resin include polyethylene, polypropylene, polyvinyl alcohol-based porous films, and non-woven fabrics.
  • the pore diameter is not particularly limited, but is preferably 5 ⁇ m or less. It is preferable that a hydrophilic treatment is performed so as to improve the flow of the electrolytic solution.
  • the ion exchange membrane include perfluorosulfonic acid, perfluorocarboxylic acid, styrene vinylbenzene, and quaternary ammonium solid polymer electrolyte membranes (anion exchange membranes).
  • FIG. 15A is a schematic plan view of a current collector included in the metal electrode of Example 1, Example 2, or Comparative Example
  • FIG. 15B is a diagram of the metal electrode of Example 1 or Example 2.
  • FIG.15 (c) is a schematic sectional drawing of the metal electrode of a comparative example. Note that the cross-sectional view of FIG. 15B or FIG. 15C corresponds to the cross-sectional view taken along the broken line PP in FIG.
  • a current collector 7 in which five holes 21 having a diameter of 1 cm were formed on a 5 cm square stainless steel plate (SUS316L) having a thickness of 1 mm was used.
  • the electrode active material layer 5 made of metal zinc was provided on the two main surfaces of the current collector 7 and in the holes 21. Further, as shown in FIG. 15B, a concave portion 17 was provided on the surface of the electrode active material layer 5 so as to overlap the hole 21 of the current collector 7. Further, the concave portion 17 was provided so as to reflect the shape of the hole 21.
  • the electrode active material layer 5 was provided so that the thickness of the electrode active material layer 5 on the main surface of the current collector 7 was 1 mm. Further, in the metal electrode of Example 2, the electrode active material layer 5 on the main surface of the current collector 7 has a thickness of 1.08 mm and the electrode active material layer 5 has a weight of 38.5 g.
  • a material layer 5 was provided.
  • the electrode active material layer 5 made of metal zinc was provided on the two main surfaces of the current collector 7 and in the hole 21. Further, the surface of the electrode active material layer 5 was flattened as shown in FIG. The electrode active material layer 5 was provided so that the thickness of the electrode active material layer 5 on the main surface of the current collector 7 was 1 mm and the weight of the electrode active material layer 5 was 38.5 g.
  • the metal electrode of Example 1 and the metal electrode of the comparative example have the same thickness of the electrode active material layer 5 on the main surface of the current collector 7, and the metal electrode of Example 2 and the metal of the comparative example are the same.
  • the weight of the electrode active material layer 5 is the same as the electrode.
  • the metal electrode of Example 1, Example 2 or Comparative Example was incorporated into a zinc-air battery body to produce a metal-air battery (zinc-air battery) as shown in FIG. 2, and a discharge experiment was performed.
  • the capacity of the electrolytic solution tank 2 was 50 ml, and the metal electrode of Example 1, Example 2 or Comparative Example was disposed in the center of the electrolytic solution tank 2.
  • two air electrodes 9 each having a side of 5 cm square were arranged on both inner side surfaces of the electrolytic solution tank 2 so as to sandwich the metal electrode.
  • a 7M potassium hydroxide aqueous solution was used as the electrolytic solution 3 stored in the electrolytic solution tank 2.
  • the zinc-air battery was discharged at a constant current density (50 mA / cm 2 ) until the output of the zinc-air battery decreased. Then, the used metal electrode was collect
  • Electrode active material layer 7 Current collector 8: Gas diffusion layer 9: Air electrode 10: Air electrode current collector 12: Air flow channel 13: Support part 15: Injection channel 16: Discharge channel 17: Recess of electrode active material layer 18: Hole of electrode active material layer 19: Convex part of electrode active material layer 20: Metal electrode 21: Hole of current collector 22: Current collector concave part 23: Current collector convex part 24: Current collector edge part 25: Metal air battery 27: Insulator part 28: Water repellent part 29: Slit of electrode active material layer 31: Separator 33: Hole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 本発明は、電極活物質の利用効率の高い金属空気電池用金属電極を提供する。 本発明の金属電極は、集電体と、前記集電体の一部を覆う電極活物質層とを備えた金属電極であって、前記集電体は、前記集電体を貫通する第1孔、前記集電体表面に形成された第1凹部、または前記集電体表面に形成された第1凸部を有し、前記電極活物質層は、前記電極活物質層または前記電極活物質層及び前記集電体を貫通する第2孔、前記電極活物質層表面に形成された第2凹部、または前記電極活物質層表面に形成された第2凸部を有し、前記第2孔または前記第2凹部は、前記第1孔または前記第1凹部と重なるように配され、前記第2凸部は、前記第1凸部と重なるように配されることを特徴とする。

Description

金属電極および金属空気電池
 本発明は、金属電極および金属空気電池に関する。
 金属空気電池は高いエネルギー密度を有するため、次世代の電池として注目されている。金属空気電池は、電極活物質を含む金属極をアノードとし、空気極をカソードとすることにより発電する。
 代表的な金属空気電池として、金属亜鉛を電極活物質とする亜鉛空気電池が挙げられる。亜鉛空気電池では、カソードにおいて以下の化学式1のような電極反応が進行すると考えられる。
(化学式1):O2+2H2O+4e-→4OH-
 また、アノードにおいて以下の化学式2のような電極反応が進行し、電解液中において以下の化学式3のような反応が進行すると考えられる。
(化学式2):Zn+4OH-→Zn(OH)4 2-+2e-
(化学式3):Zn(OH)4 2-→ZnO+2OH-+H2O
 このような化学反応が進行すると金属極の電極活物質は消費され徐々に減少していく。金属極の電極活物質が消費され電極反応の進行する金属極の表面が少なくなると金属空気電池の出力が低下するため、電極活物質が消費された金属極を金属空気電池本体から取り外し、新たな電極活物質を有する金属極を金属空気電池本体に取り付ける必要がある。
 また、金属空気電池の金属極の構造として、支持体上に電極活物質層を設けた構造が知られている(例えば、特許文献1)。このような構造の金属極では、支持体に孔を形成し、支持体の主要面上および孔内に電極活物質層を設けることにより、支持体と電極活物質層の結合性を向上させている。
特開平7-45270号公報
 従来の金属空気電池では、出力が低下した金属空気電池から取り外した使用済みの金属電極に発電に利用されなかった電極活物質が残り電極活物質の利用効率を低下させている。
 本発明は、このような事情に鑑みてなされたものであり、電極活物質の利用効率の高い金属空気電池用金属電極を提供する。
 本発明は、集電体と、前記集電体の一部を覆う電極活物質層とを備えた金属電極であって、前記集電体は、前記集電体を貫通する第1孔、前記集電体表面に形成された第1凹部、または前記集電体表面に形成された第1凸部を有し、前記電極活物質層は、前記電極活物質層または前記電極活物質層及び前記集電体を貫通する第2孔、前記電極活物質層表面に形成された第2凹部、または前記電極活物質層表面に形成された第2凸部を有し、前記第2孔または前記第2凹部は、前記第1孔または前記第1凹部と重なるように配され、前記第2凸部は、前記第1凸と重なるように配されることを特徴とする金属電極を提供する。
 本発明によれば、金属を含む電極活物質層を備えるため、本発明の金属電極を金属空気電池本体に取り付けることにより電極反応を進行させることができ、金属空気電池により発電することができる。
 本発明によれば、板状の集電体を備え電極活物質層は集電体上に設けられるため、電極反応の進行に伴う電極活物質の消費により電極活物質層の一部が金属電極から分離し落下することを抑制することができる。このことにより、電極活物質の利用効率を高くすることができる。また、集電体は導電性を有するため、電極活物質層の表面における電極反応により生じた電荷を集電体により集電することができる。
 なお、電極反応は、電極活物質層の電解液に接触する表面において進行するため、電極活物質層の電極活物質は、電解液に接触する表面から消費される。
 本発明によれば、集電体は集電体を貫通する孔、表面に形成された凹部又は表面に形成された凸部を有し、電極活物質層は集電体上に設けられるため、集電体と電極活物質層との結合性を向上させることができ、電極反応の進行に伴う電極活物質の消費により電極活物質層の一部が金属電極から分離し落下することを抑制することができる。このことにより、電極活物質の利用効率を高くすることができる。
 本発明によれば、電極活物質層は電極活物質層を貫通する孔、表面に形成された凹部又は表面に形成された凸部を有するため、電極活物質層の電解液と接触する表面を広くすることができる。金属空気電池の出力は電解液と接触し電極反応が生じる電極活物質層の表面の面積に依存する。従って、本発明の金属電極を取り付けた金属空気電池の出力を大きくすることができる。
 なお、電極活物質が消費され、電解液と接触する電極活物質層の表面の面積が大きく減少すると、金属空気電池の出力が低下するため、金属電極は使用済みとなる。
 本発明によれば、電極活物質層は、電極活物質層の孔または凹部と集電体の孔または凹部とが重なるように、又は電極活物質層の凸部と集電体の凸部とが重なるように集電体上に設けられるため、集電体の孔内に設けられた電極活物質または集電体の凹部または複数の凸部間を埋める電極活物質と、電極活物質層の電解液に接触する表面との間の最短距離を短くすることができる。このため、電極活物質が消費され電解液と接触する電極活物質層の表面の面積が大きく減少する前に、集電体の孔内に設けられた電極活物質または集電体の凹部または複数の凸部間を埋める電極活物質を多く消費することができる。従って、金属電極が使用済みとなった際に、集電体上に残る電極活物質の量を減らすことができ、電極活物質の利用効率を高くすることができる。また、電極活物質層に集電体からの距離が長い領域が形成されることを抑制することができるため、電極活物質層の一部が剥落することを抑制することができ、金属電極の信頼性を向上させることができる。
(a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線A-Aにおける金属電極の概略断面図である。 本発明の一実施形態の金属電極を有する金属空気電池の概略断面図である。 本発明の一実施形態の金属電極に含まれる集電体の概略平面図である。 図2の点線で囲んだ範囲Bの拡大図であり、アノード反応の説明図である。 図2の点線で囲んだ範囲Bの拡大図であり、アノード反応に伴う電極活物質層の変化の説明図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線C-Cにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線D-Dにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線E-Eにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線F-Fにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線G-Gにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線H-Hにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)又は(c)は(a)の破線J-Jにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線K-Kにおける金属電極の概略断面図である。 (a)は本発明の一実施形態の金属電極の概略平面図であり、(b)は(a)の破線L-Lにおける金属電極の概略断面図であり、(c)は(a)の破線M-Mにおける金属電極の概略断面図であり、(d)は(a)の一点鎖線N-Nにおける金属電極の概略断面図である。 (a)は放電実験で用いた集電体の概略平面図であり、(b)は放電実験で作製した実施例1または実施例2の金属電極の概略断面図であり、(c)は放電実験で作製した比較例の金属電極の概略断面図である。 本発明の一実施形態の金属電極を有する金属空気電池の概略断面図である。 従来の金属電極におけるアノード反応の説明図である。 従来の金属電極におけるアノード反応に伴う電極活物質層の変化の説明図である。
 本発明の金属空気電池用金属電極は、集電体と、前記集電体の一部を覆う電極活物質層とを備えた金属電極であって、前記集電体は、前記集電体を貫通する第1孔、前記集電体表面に形成された第1凹部、または集電体表面に形成された前記第1凸部を有し、前記電極活物質層は前記第1孔または前記第1凹部に重なるように、第2孔または第2凹部を有し、または前記第1凸部に重なるように、第2凸部を有することを特徴とする。
 本発明の金属電極において、前記電極活物質層は、前記集電体の表面形状を反映する表面形状を有することが好ましい。
 このような構成によれば、電極活物質が消費され電解液と接触する電極活物質層の表面の面積が大きく減少する前に、集電体が有するすべての孔内の電極活物質または集電体が有するすべての凹部を埋める電極活物質またはすべての凸部間を埋める電極活物質を多く消費することができる。従って、金属電極が使用済みとなった際に、集電体上に残る電極活物質の量を減らすことができ、電極活物質の利用効率を高くすることができる。
 本発明の金属電極において、前記電極活物質層は、前記集電体の表面と前記電極活物質層の表面との最短距離が実質的に一定距離になるように表面に形成された凹部または凸部を有することが好ましい。
 このような構成によれば、電極活物質が消費され電解液と接触する電極活物質層の表面の面積が大きく減少する前に、集電体の凹部又は凸部間を埋める電極活物質を多く消費することができる。
 本発明の金属電極において、前記集電体は板状であり、前記第1凹部または第1凹部は前記電極活物質層の面方向に長い形状であることが好ましい。
 このような構成によれば、第1凹部、第2凹部または第1凸部、第2凸部が一方向に形状が長い方が、集電体から電極活物質層の剥離を抑制することができ、金属電極の物理的強度が向上させることができる。
 本発明の金属電極において、前記集電体の一端に支持部を有し、前記支持部は、前記集電体の端部に沿って延伸形状を有し、前記第1凹部または第1凸部は、前記集電体の支持部の長手方向に対して鉛直方向に長い形状であることが好ましい。
 このような構成によれば、電極活物質層表面で生じた水素などの気泡を電解液表面に導きやすいよう、パスを設けることができる。
 本発明の金属電極において、前記集電体の一端に支持部を有し、前記支持部は、前記集電体の端部に沿って延伸形状を有し、前記第1凹部又は前記第1凸部は、前記集電体の支持部の長手方向に対して平行方向に長い形状であることが好ましい。
 このような構成によれば、金属電極の抜き差し方向に対し、集電体から電極活物質の剥離を抑制することができる。
 本発明の金属電極において、前記集電体は、前記集電体上に前記電極活物質層が設けられていない縁部を有することが好ましい。
 このような構成によれば、電極活物質層の消費スピードを均一化することができ、金属空気電池の出力を安定化することができる。
 本発明の金属電極において、前記集電体は、表面に細長い凹部を有し、かつ、前記凹部の底に撥水部を有することが好ましい。
 このような構成によれば、電極活物質層の表面に気泡が滞留することを抑制することができ、気泡がアノード反応を阻害することを抑制することができる。
 本発明の金属電極において、前記電極活物質層の孔、前記電極活物質層の凹部または前記電極活物質層の凸部は、前記電極活物質層の表面の面内方向に細長い形状を有し、かつ、前記金属電極を電解液中に挿入し金属空気電池を形成した際前記電解液の液面に実質的に垂直となるように設けられたことが好ましい。
 このような構成によれば、電極活物質の自己腐食により水素ガスの気泡が生成した場合、この気泡を容易に上昇させることができ電極活物質層の表面から除去することができる。
 また、本発明は、本発明の金属電極と、電解液槽と、カソードとなる空気極とを備え、電極活物質層は電解液槽内に設けられかつアノードとなる金属空気電池を含むことができる。
 この金属空気電池によれば、金属電極に含まれる電極活物質を効率よく利用して発電することができる。
 以下、本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
金属空気電池用金属電極および金属空気電池の構成
 図1(a)は本実施形態の金属電極の概略平面図であり、図1(b)は図1(a)の破線A-Aにおける金属電極の概略断面図である。図2は、図1に示した金属電極を有する金属空気電池の概略断面図である。図3は、図1に示した金属電極に含まれる集電体の概略平面図である。
 本実施形態の金属空気電池用金属電極20は、導電性を有する板状の集電体7と、集電体7上に設けられかつ金属を含む電極活物質層5とを備え、集電体7は、集電体7を貫通する孔21、表面に形成された凹部22または表面に形成された凸部23を有し、電極活物質層5は、電極活物質層5を貫通する孔18、表面に形成された凹部17または表面に形成された凸部19を有し、電極活物質層5は、電極活物質層5の孔18または凹部17と集電体7の孔21または凹部22とが重なるように、又は電極活物質層5の凸部19と集電体7の凸部23とが重なるように集電体7上に設けられたことを特徴とする。
 また、本実施形態の金属空気電池25は、本実施形態の金属電極20と、電解液槽2と、カソードとなる空気極9とを備え、電極活物質層5は、電解液槽2内に設けられかつアノードとなる。
 また、電解液槽2、電極活物質層5および空気極9は、セル4を構成してもよい。また、本実施形態の金属空気電池25は、複数のセル4を重ねたセル集合体を有してもよい。
 また、本実施形態の金属空気電池25は、空気極集電体10、イオン交換膜を備えることができる。
 以下、本実施形態の金属空気電池用金属電極20および金属空気電池25について説明する。
1.金属空気電池、セル
 金属空気電池25は、アノードにおける電極活物質が金属であり、カソードにおける電極活物質が酸素ガスである電池である。例えば、亜鉛空気電池、アルミニウム空気電池、鉄空気電池、マグネシウム空気電池、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池などである。
 セル4は、金属空気電池25の構成単位であり、電解液槽2中に設けられかつアノードとなる電極活物質層5と、カソードとなる空気極9とからなる電極対を有する。セル4は、例えば、1つの空気極9と1つの電極活物質層5とが電解液3を挟むように設けられた電極対を有してもよく、図2に示した金属空気電池25のように2つの空気極9が電極活物質層5を挟むように設けられた電極対を有してもよい。
 また、金属空気電池25は、1つのセル4を含む単セル構造を有してもよく、複数のセル4が重ねられたセル集合体(スタック構造)を有してもよい。
2.電解液
 電解液3は、溶媒に電解質が溶解しイオン導電性を有する液体である。電解液3は、電解液槽2内に溜められる、または電解液槽2内を流通する。電解液3の種類は、金属電極20の電極活物質層5に含まれる電極活物質の種類によって異なるが、水溶媒を用いた電解液(電解質水溶液)であってもよい。
 例えば、亜鉛空気電池、アルミニウム空気電池、鉄空気電池の場合、電解液には、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ性水溶液を用いることができ、マグネシウム空気電池の場合、電解液には塩化ナトリウム水溶液を用いることができる。
3.電解液槽
 電解液槽2は、電解液3を溜める又は流通させる電解槽であり、 電解液に対して耐食性を有する。また、電解液槽2は、その中に電極活物質層5を設置することができる構造を有する。また、金属空気電池25が複数のセル4からなるセル集合体を有する場合、それぞれのセル4が別々の電解液槽2を有してもよく、それぞれのセル4の電解液槽2が流路により連通していてもよく、複数のセル4が1つの電解液槽2を共有してもよい。なお、図2に示した金属空気電池25では、電解液槽2の底部および側壁の一部が筐体1であり、電解液槽2の側壁の一部が空気極9である。
 また、金属空気電池25が電解液槽2内の電解液3を流動させる機構を有してもよい。このことにより電極活物質層5でのアノード反応を促進することができ、金属空気電池25の性能を向上させることができる。電解液を流動させる機構としては、ポンプを用いて電解液3を循環させ、電解液槽2内の電解液3を流動させてもよい。また、金属空気電池25が攪拌機、バイブレーターなどの電解液槽2内の電解液3を物理的に動かすことのできる可動部を備えてもよい。
 電解液槽2を構成する筐体1の材料は、電解液に対して耐食性を有する材料であれば特に限定されず、例えば、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ABS、塩化ビニリデン、ポリアセタール、ポリエチレン、ポリプロピレン、ポリイソブチレン、フッ素樹脂、エポキシ樹脂などである。
4.金属電極、電極活物質層、集電体
 金属電極20は、アノードにおける電極活物質となる金属を含む電極活物質層5を備える電極である。また、金属電極20は、電極活物質層5を電解液槽2内に挿入できるように設けられる。このことにより、電極活物質を電解液槽2内の電解液3に接触させることができ、電極活物質と電解液3との界面においてアノード反応を進行させることができる。このアノード反応により電極活物質層5に電荷が発生するため、電極活物質と電解液3との界面の面積が広いほど多くの電荷を発生させることができ、金属空気電池25の出力を大きくすることができる。
 図4、5は、図2の点線で囲んだ範囲Bの拡大図であり、アノード反応の説明図である。アノード反応では、例えば、図4に示すように、電極活物質層5と電解液3との界面において、電極活物質(M)が電解液3中の水酸化物イオン(OH-)と反応して水酸化物(MOH)となり電解液3中に溶け出す。このアノード反応により、電極活物質層5内に電荷(e-)が発生し、この電荷が集電体7を介して外部回路を流れることにより金属空気電池25の電力が出力される。
 また、アノード反応により電極活物質は水酸化物イオンなどと反応するため、アノード反応が進行すると、電極活物質層5は徐々に小さくなっていく。例えば、図5の点線および矢印で示したように電極活物質層5は電解液3と接触する表面から徐々に減少していく。そして、電極活物質層5と電解液3との界面の面積が狭くなるまで小さくなると、金属空気電池25の出力が低下し金属電極20は使用済みとなる。
 なお、リチウム空気電池などでは、電極活物質層5に含まれる電極活物質が金属イオンとして非水電解液中に溶け出し、このイオンが固体電解質などを伝導し水酸化物イオンなどと反応する。
 金属電極20は、電極活物質層5を電解液槽2内から抜き出すことができるように設けられる。このことにより、電極活物質が消費され使用済みとなった金属電極20を電解液槽2内から抜き出し、新たな電極活物質層5を有する金属電極20を電解液槽2内に挿入することができ、金属空気電池25に新たな電極活物質を供給することができる。この結果、新たな電極活物質と電解液3との界面においてアノード反応を進行させることができ、金属空気電池25による発電を続けることができる。
 電極活物質層5に含まれる電極活物質は、アノード反応により金属含有イオンなどとして電解液に溶解する金属である。
 例えば、亜鉛空気電池の場合、電極活物質は金属亜鉛であり、電解液3中に酸化亜鉛が析出する。アルミニウム空気電池の場合、電極活物質は金属アルミニウムであり、電解液3中に水酸化アルミニウムが析出する。鉄空気電池の場合、電極活物質は金属鉄であり、電解液3中に酸化水酸化鉄または酸化鉄が析出する。マグネシウム空気電池の場合、電極活物質は金属マグネシウムであり、電解液3中に水酸化マグネシウムが析出する。
 また、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、電極活物質はそれぞれ、金属リチウム、金属ナトリウム、金属カルシウムであり、電解液3中にこれらの金属の酸化物、水酸化物などが析出する。なお、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、電極活物質層5と電解液3との間に固体電解質膜を有してもよい。このことにより、電極活物質が電解液3により腐食されることを抑制することができる。また、この場合、電極活物質は固体電解質膜をイオン伝導した後電解液3に溶解する。
 なお、電極活物質は、これらの例には限定されず、金属空気電池となるものであればよい。また、電極活物質層5に含まれる電極活物質は、上記の例では一種の金属元素からなる金属を挙げたが、電極活物質層5は合金からなってもよい。また、活物質表面を置換反応処理することにより活物質の一部を元素置換してもよい。例えば、Pb、Hg、Ga、In、Tl、Bi、V、Al、Caを含む金属を添加する方法などが挙げられる。この方法により得られる活物質を放電反応に用いることにより、負極活物質の自己腐食および負極活物質の不動態膜化を抑制することが可能となる。
 また、電極活物質層5は、電極活物質の他にカーボンなどの導電材、樹脂などのバインダを含んでもよい。
 また、電極活物質層5は、多孔質であってもよく、空孔率の低い構造を有してもよい。
 電極活物質層5は、例えば、集電体7上にめっき法など電気化学的手法により金属を析出させることにより形成してもよい。
 また、電極活物質層5は、例えば、電極活物質である金属の粒子や塊を集電体7の主要面に押し付けることにより形成してもよく、電極活物質である金属の粒子や塊を加熱し又はレーザー照射し集電体7の主要面上に融着させることにより形成してもよく、集電体7の主要面上で電極活物質である金属の微粒子を焼結することにより形成してもよい。
 また、電極活物質層5は、例えば、電極活物質を含むスラリーを集電体7上に塗布(印刷、スプレーなどを含む)することにより形成してもよい。また、電極活物質層5は、電極活物質を含むスラリーを集電体7上に圧着または熱圧着することにより形成してもよい。
 なお、電極活物質を含むスラリーは、電極活物質である金属の粒子と、カーボンなどの導電材と、樹脂などのバインダとを混合することにより作製することができる。なお、電極活物質と導電材とバインダの含有比率は、金属空気電池のエネルギー密度(容量)と出力密度(出力)が所望の値になるように変更することができる。また、スラリーの電極活物質の含有比率を高くし電極活物質層5の活物質充填密度を上げると金属空気電池のエネルギー密度は向上する。また、スラリーのバインダの含有比率を高くし電極活物質層5の空孔率を上げると、電極活物質の反応表面積を広くすることができ金属空気電池の出力密度を高くすることができる。
 電極活物質層5は、電極活物質層5を貫通する孔18、表面に形成された凹部17または表面に形成された凸部19を有する。このことにより、電極活物質層5と電解液3との界面の面積を広くすることができ、金属空気電池25の出力を大きくすることができる。
 電極活物質層5の孔18、凹部17、凸部19は、電極活物質層5などを金型でプレスすることにより形成してもよく、また、電極活物質層5を集電体7上に電析させ集電体7の表面形状を電極活物質層5の表面形状に反映させることにより形成してもよい。また、電極活物質層5の孔18は、穴あけ器により形成してもよい。
 電極活物質層5を集電体7上に電析させる場合、電析はデンドライトの生成が起こらない条件で行うことができる。このことにより、集電体7の表面形状を反映した表面を有し、かつ、自己腐食が抑制された電極活物質層5を形成することができる。なお、電析は、5~120mA/cm2の電流密度(投影面積)で行うことができる。
 電極活物質層5は、導電性を有する板状の集電体7上に設けられる。このことにより、集電体7を介して電極活物質層5から集電することができ、金属空気電池25の起電力を外部回路に出力することができる。また、電極活物質層5の一部がアノード反応の進行に伴い金属電極20から分離することを抑制することができる。
 集電体7は、例えば、電解液に対して耐食性を有する金属板により形成することができる。集電体7の材料は、例えば、ニッケル、金、銀、銅、ステンレスなどである。また、集電体7は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 電極活物質層5を集電体7上に設ける場合、集電体7の厚さは、例えば、100μm以上5mm以下とすることができる。また、電極活物質層5の厚さは、100μm以上5mm以下とすることができる。
 集電体7は、集電体7を貫通する孔21、表面に形成された凹部22または表面に形成された凸部23を有する。このことにより、集電体7と電極活物質層5との結合性を向上させることができ、アノード反応の進行に伴う電極活物質の消費により電極活物質層5の一部が金属電極20から分離し落下することを抑制することができる。このことにより、電極活物質の利用効率を高くすることができる。また、金属電極20の信頼性を向上させることができる。
 集電体7の凹部22または凸部23は、半球状であってもよく、柱状であってもよく、錘状であってもよい。また、集電体7の凹部22は、スリット状であってもよい。また集電体7の孔21は、集電体7を貫通していればよく、円状であっても角状であってもよい。
 集電体7の孔21、凹部22、凸部23は、金属板を金型でプレスすることにより形成してもよい。また、集電体7の孔21は、穴あけ器により形成してもよい。さらに、集電体7の凹部22、凸部23は、エンボス加工により形成してもよい。
 また、本実施形態の集電体7は、通常、概略正方形の平面を有する板状であるが、その形状は特に限定されるものでない。集電体7の形状は、その表面に、孔21、凹部22、凸部が形成されていれば、円筒状または方体状の集電体であってもよい。
 電極活物質層5は、電極活物質層5の孔18または凹部17と集電体7の孔21または凹部22とが重なるように、又は電極活物質層5の凸部19と集電体7の凸部23とが重なるように集電体7上に設けられる。また、電極活物質層5は、集電体7の表面形状を反映する表面形状を有してもよい。このことにより、集電体7の孔21内に設けられた電極活物質または集電体7の凹部22または凸部19間を埋める電極活物質と、電極活物質層5の電解液3に接触する表面との間の最短距離を短くすることができる。このため、電極活物質が消費され電解液3と接触する電極活物質層5の表面の面積が大きく減少する前に、集電体7の孔内に設けられた電極活物質または集電体7の凹部22または凸部19間を埋める電極活物質を多く消費することができる。
 このことを図面を用いて説明する。なお、電極活物質層5にスリット29が形成されている場合、スリット29は、孔18または凹部17に含まれる。
 なお、電極活物質層5の凹部17または凸部19は、電極活物質層5の表面から集電体7までの最短距離が均一になるように設けることができる。
 図1(a)(b)に示した金属電極20は、図3に示した孔21を複数有する集電体7の主要面上および孔21内に電極活物質層5が設けられている。また、電極活物質層5の表面には、凹部17が集電体7の孔21と重なるように形成されている。また、集電体7の孔21の形状を反映するように電極活物質層5に凹部17が設けられている。
 図1(a)(b)に示した金属電極20を金属空気電池本体に組み込み、アノード反応を進行させると、図4のように電極活物質層5の表面において電極活物質(M)が消費される。電極活物質層5の表面には、集電体7の孔21と重なるように凹部17を設けているため、集電体7の孔21の内部の電極活物質層5と、アノード反応が進行する電極活物質層5の表面との最短距離が短くなっている。このため、集電体7の主要面上に設けられた電極活物質層5がアノード反応の進行により消費される際に、集電体7の孔21内の電極活物質層5も消費される。例えば、電極活物質層5は、図5において点線と矢印で示したように消費されると考えられる。
 このことにより、電極活物質層5が消費され電極活物質層5と電解液3との界面の面積が大きく減少する前に、集電体7の孔21内の電極活物質層5も消費することができる。この結果、電極活物質の利用効率を高くすることができる。
 従来の金属電極では電極活物質の利用効率が低くなっている。このことを説明する。図17、図18は、従来の金属電極におけるアノード反応の説明図である。図17、図18に示した金属電極は、孔21を有する集電体7の主要面上および孔21内に電極活物質層5が設けられている。また、電極活物質層5の電解液3と接触する表面は、平らである。電極活物質は、図17のように電極活物質層5と電解液3とが接触する表面において消費されるため、図18のように電極活物質層5の電解液3と接触する表面は、平らな形状を実質的に保ったまま徐々に集電体7に近づいていくと考えられる。そして、集電体7の主要面上の電極活物質層5がすべて消費されると、電極活物質層5と電解液3とが接触する界面の面積が大きく減少し金属電極は使用済みになると考えられる。しかし、図17、18に示した金属電極では、集電体7の主要面上の電極活物質層5がすべて消費された際、集電体7の孔21内には発電に活用されなかった電極活物質層5が多く残っていると考えられる。このため、従来の金属電極では電極活物質の利用効率が低くなっている。
 本実施形態の金属電極20では、このような問題を解消することができる。
 図6(a)は本実施形態の金属電極の概略平面図であり、図6(b)は図6(a)の破線C-Cにおける金属電極の概略断面図である。
 図6(a)(b)に示した金属電極20は、孔21を複数有する集電体7の主要面上および孔21内に電極活物質層5が設けられている。また、電極活物質層5の表面には、凹部17が集電体7の孔21と重なるように形成されている。また、集電体7の孔21の形状を反映するように電極活物質層5に凹部17が設けられている。さらに、集電体7の孔21内の電極活物質層5を貫通するように孔18が設けられている。
 図6(a)(b)に示した金属電極20を金属空気電池本体に組み込み、アノード反応を進行させると、電極活物質層5の電解液3と接触する表面において電極活物質が消費される。従って、集電体7の主要面上の電極活物質層5が消費される際に、孔18内の電極活物質層5の表面においても電極活物質を消費することができる。このことにより、集電体7の孔21内に電極活物質が残ることを抑制することができ、電極活物質の利用効率を高くすることができる。
 図7(a)は本実施形態の金属電極の概略平面図であり、図7(b)は図7(a)の破線D-Dにおける金属電極の概略断面図である。また、図8(a)は本実施形態の金属電極の概略平面図であり、図8(b)は図8(a)の破線E-Eにおける金属電極の概略断面図である。
 図7(a)(b)に示した金属電極20は、半球状の凸部23を複数有する集電体7上に電極活物質層5が設けられている。また、電極活物質層5の表面には、半球状の凸部19が集電体7の凸部23と重なるように形成されている。また、集電体7の凸部23の形状を反映するように電極活物質層5に凸部19が設けられている。
 また、図8(a)(b)に示した金属電極20は、四角柱状の凸部23を複数有する集電体7上に電極活物質層5が設けられている。また、電極活物質層5の表面には、四角状の凸部19が集電体7の凸部23と重なるように形成されている。また、集電体7の凸部23の形状を反映するように電極活物質層5に凸部19が設けられている。
 さらに、図7又は図8に示した金属電極20では、集電体7の表面と電極活物質層の表面との最短距離が実質的に一定になるように電極活物質層5が設けられている。
 図7、8に示した金属電極20を金属空気電池本体に組み込み、アノード反応を進行させると、電極活物質層5の電解液3と接触する表面において電極活物質が消費される。この金属電極20では、集電体7の凸部23上の電極活物質層5が消費される時間と、集電体7の凸部23以外の表面上の電極活物質層5(凸部23間の電極活物質層5)が消費される時間とを実質的に同じにすることができる。このことにより、使用済みの金属電極20における集電体7上に電極活物質層5が残留することを抑制することができる。このことにより、電極活物質の利用効率を向上させることができる。また、金属空気電池25により発電する際に電極活物質層5と電解液3との界面の面積が大きく変化することを抑制することができ、金属空気電池25の出力を安定化することができる。
 なお、集電体7に凸部23を設け、電極活物質層5の電解液3と接触する表面を平らにした場合、集電体7の凸部23上の電極活物質層5が消費される時間と、集電体7の凸部23以外の表面上の電極活物質層5が消費される時間と差は大きくなると考えられ、凸部23上の電極活物質層5が先に消費されると考えられる。このため、凸部23上の電極活物質層5がすべて消費されると電極活物質層5と電解液3との界面の面積が減少し金属空気電池25の出力は低下すると考えられる。このため、金属空気電池25を出力を低下した状態で作動させるか又は金属電極20を新しいものに変更する必要があると考えられる。
 図9(a)は本実施形態の金属電極の概略平面図であり、図9(b)又は図9(c)は図9(a)の破線F-Fにおける金属電極の概略断面図である。図10(a)は本実施形態の金属電極の概略平面図であり、図10(b)は図10(a)の破線G-Gにおける金属電極の概略断面図である。
 図9(a)(b)または図10(a)(b)に示した金属電極20は、板状の集電体7と板状の集電体7の一端に支持部13を有する。支持部13は、板状の集電体7の端部に沿って延伸形状を有し、さらに板状の集電体7の面方向に細長い凹部22を複数有し、集電体7上に電極活物質層5が設けられている。また、電極活物質層5の表面にも、支持部13に対し、細長い凹部17が集電体7の凹部22と重なるように形成されている。また、集電体7の凹部22の形状を反映するように電極活物質層5に凹部17が設けられている。さらに、図9、10に示した金属電極20では、集電体7の表面と電極活物質層5の表面との最短距離が実質的に一定になるように電極活物質層5が設けられている。
 なお、図9(a)(b)に示した金属電極20では、凹部22と凹部17は、支持部13の長手方向に対し、鉛直方向に細長い形状である。これは集電体7の細長い凹部22が電解液3の液面と実質的に垂直になる方向に設けられている。このことにより、電極活物質の自己腐食により水素ガスの気泡が生成した場合、この気泡を容易に上昇させることができ電極活物質層5の表面から除去することができる。この結果、水素ガスの気泡が電極活物質層5の表面に滞留し、アノード反応を阻害することを抑制することができる。
 また、図10(a)(b)に示した金属電極20では、凹部22と凹部17は、支持部13の長手方向に対し、平行方向に細長い形状である。つまり、集電体7の細長い凹部22が電解液3の液面と実質的に平行になる方向に設けられている。このことより、金属電極20の抜き差し方向に対し、集電体7から電極活物質5の剥離を抑制することができる。
 また、図9(a)に示した金属電極20では、図9(c)のように凹部22の底に孔が設けられていてもよい。凹部の底に孔が設けられることで、集電体7の表面積をより大きくすることができ、集電効率が向上する。さらに、電解液3の液面の垂直方向に細長い凹部17または凹部22と、凹部17と凹部22の底に設けた孔を組み合わせることで、電極活物質の自己腐食により水素ガスの気泡が生成した場合、この気泡を容易に上昇させることができ電極活物質層5の表面から除去することができる。
 図9、10に示した金属電極20を金属空気電池本体に組み込み、アノード反応を進行させると、電極活物質層5の電解液3と接触する表面において電極活物質が消費される。この金属電極20では、集電体7の凹部22上の電極活物質層5が消費される時間と、集電体7の凹部22以外の表面上の電極活物質層5が消費される時間とを実質的に同じにすることができる。このことにより、使用済みの金属電極20における集電体7上に電極活物質層5が残留することを抑制することができる。このことにより、電極活物質の利用効率を向上させることができる。また、金属空気電池25により発電する際に電極活物質層5と電解液3との界面の面積が大きく変化することを抑制することができ、金属空気電池25の出力を安定化することができる。
 なお、集電体7に凹部22を設け、電極活物質層5の電解液3と接触する表面を平らにした場合、集電体7の凹部22上の電極活物質層5が消費される時間と、集電体7の凹部22以外の表面上の電極活物質層5が消費される時間と差は大きくなると考えられ、凹部22以外の表面上の電極活物質層5が先に消費されると考えられる。このため、凹部22以外の表面上の電極活物質層23がすべて消費され集電体7の凹部22上に電極活物質層5が残っている状態では、電極活物質層5と電解液3との界面の面積が減少し金属空気電池25の出力は低下すると考えられる。このため、金属空気電池25を出力を低下した状態で作動させるか又は金属電極20を新しいものに変更する必要があると考えられる。
 図11(a)は本実施形態の金属電極の概略平面図であり、図11(b)は図11(a)の破線H-Hにおける金属電極の概略断面図である。
 図11(a)(b)に示した金属電極20は、複数の細長い凹部22および複数の孔21を有する集電体7上に電極活物質層5が設けられている。また、電極活物質層5の表面には、集電体7の凹部22および孔21と重なるように凹部17が形成されている。また、集電体7の凹部22および孔21の形状を反映するように電極活物質層5に凹部17が設けられている。
 図11に示した金属電極20でも、図1、9、10に示した金属電極20と同様に電極活物質の利用効率を向上させることができる。
 図12(a)は本実施形態の金属電極の概略平面図であり、図12(b)または図12(c)は図12(a)の破線J-Jにおける金属電極の概略断面図である。
 図12に示した金属電極20は、孔21を複数有する集電体7の主要面上および孔21内に電極活物質層5が設けられている。また、電極活物質層5の表面には、凹部17が集電体7の孔21と重なるように形成されている。また、集電体7の孔21の形状を反映するように電極活物質層5に凹部17が設けられている。また、集電体7の縁部24上には電極活物質層5は設けられていない。
 図12に示した金属電極20でも、図1に示した金属電極20と同様に電極活物質の利用効率を向上させることができる。また、集電体7の縁部24上に電極活物質層5を設けないことにより、電極活物質層5の消費スピードを均一化することができ、金属空気電池25の出力を安定化することができる。
 金属電極20を金属空気電池本体に組み込みアノード反応を進行させると、集電体7の縁部24周辺では電流集中が生じやすい。このため、集電体7の縁部24上の電極活物質層5では、電極活物質層5の消費スピードが他の部分よりも速くなる場合がある。集電体7の縁部24上の電極活物質層5が他の部分よりも早く消費されてしまうと、電極活物質層5と電解液3との界面の面積が減少し金属空気電池25の出力が低下する。この結果、金属空気電池25の出力が不安定化する場合がある。
 図12に示した金属電極20では、集電体7の縁部24上に電極活物質層5を設けていないため、電極活物質層5と電解液3との界面の面積が大きく減少することを抑制することができ、金属空気電池25の出力を安定化することができる。
 また、図12に示した金属電極20では、集電体7の縁部24に電極活物質層5を設けていないため、金属電極20を金属空気電池本体に組み込んだ際、金属空気電池25の電解液槽27にガイドを設けておくことで、縁部24をガイドに沿って固定させることができる。ガイドに沿って金属電極20を移動させることで、電極活物質5が金属空気電池25と物理的に衝突することを避けるため、縁部24を金属空気電池本体に固定することができる。このため、電解液槽2内の所定の位置に金属電極20を固定することができる。また、金属電極20の縁部24は、図12(c)のように凸部形状の下面を有することができる。このことにより、金属電極20を電解液槽2内の所定の位置に固定する際、凸部形状により金属電極20を位置調整することができる。
 図13(a)は本実施形態の金属電極の概略平面図であり、図13(b)は図13(a)の破線K-Kにおける金属電極の概略断面図である。
 図13(a)(b)に示した金属電極20は、孔21を複数有する集電体7の主要面上および孔21内に電極活物質層5が設けられている。また、電極活物質層5の表面には、凹部17が集電体7の孔21と重なるように形成されている。また、集電体7の孔21の形状を反映するように電極活物質層5に凹部17が設けられている。また、集電体7の縁部24上には絶縁体部27が設けられている。
 図13に示した金属電極20でも、図1に示した金属電極20と同様に電極活物質の利用効率を向上させることができる。また、集電体7の縁部24上に絶縁体部27を設けることにより、電極活物質層5の一部に電流集中が生じることを抑制することができ、電極活物質層5の消費スピードを均一化することができる。このことにより、金属空気電池25の出力を安定化することができる。
 図14(a)は本実施形態の金属電極の概略平面図であり、図14(b)は図14(a)の破線L-Lにおける金属電極の概略断面図であり、図14(c)は、図14(a)の破線M-Mにおける金属電極の概略断面図であり、図14(d)は、図14(a)の一点鎖線N-Nにおける金属電極の概略断面図である。
 図14に示した金属電極20は、複数の細長い撥水部28を有しかつ撥水部28が底である凹部22を有する集電体7上に電極活物質層5が設けられている。撥水部28を有する集電体7は、金属板に撥水性部材を組み込むことにより形成してもよく、金属板を表面処理することにより形成してもよい。
 また、電極活物質層5には、スリット29が集電体7の凹部22と重なるように形成されている。また、集電体7の凹部22の形状を反映するように電極活物質層5にスリット29が設けられている。また、細長いスリット29は、電解液3の液面と実質的に垂直になるように設けられている。
 図14に示した金属電極20を金属空気電池本体に組み込み、アノード反応を進行させると、電極活物質層5の電解液3と接触する表面において電極活物質が消費される。この金属電極20では、スリット29が設けられているため、電極活物質層5の主要面における電極活物質層5の消費と同時にスリット29の側壁の電極活物質層5も消費される。このため、使用済みの金属電極20に含まれる集電体7上に電極活物質層5が残留することを抑制することができる。このことにより、電極活物質の利用効率を向上させることができる。
 また、スリット29は、電解液3の液面と実質的に垂直になるように設けられ、かつ、底が撥水部28である。このため、電極活物質の自己腐食により水素ガスの気泡が生成した場合、この気泡を撥水部28の表面上を上昇させることができ、電極活物質層5の表面から水素ガスを除去することができる。このことにより、電極活物質層5の表面に気泡が滞留することを抑制することができ、気泡がアノード反応を阻害することを抑制することができる。
 集電体7は、支持部13と連結されてもよい。このような構造を有すると、支持部13により金属電極20を容易に操作することができ、電極活物質が消費された使用済みの金属電極20を電解液槽2内から取り除き、新たな金属電極20を電解液槽2内に挿入することができる。このことにより、金属空気電池25に電極活物質を供給することができる。
 また、支持部13は、電解液槽2に金属電極20を挿入する電極挿入口を塞ぐように設けることができる。このことにより、電解液槽2に金属電極20を挿入すると共に電極挿入口を塞ぐことができ、大気中の成分と電解液3とが反応することを抑制することができる。例えば、電解液3にアルカリ性電解液を用いた場合、大気中の二酸化炭素ガスが電解液3に溶け込み、アルカリ性電解液を中和することを抑制することができる。
 また、金属電極20は、電極活物質層5を覆うように設けられたセパレータ31を有してもよい。セパレータ31は、例えば、図16に示した金属空気電池25のように設けることができる。電極活物質層5をセパレータ31で覆うことにより、電極活物質層5と空気極9との間にリーク電流が流れることを抑制することができる。また、電極活物質層5をセパレータ31で覆うことにより、電解液槽2内に電極活物質層5を挿入する際や電解液槽2内から電極活物質層5を取り出す際に電極活物質層5や空気極9が損傷することを抑制することができる。また、セパレータ31を設けることにより、負極活物質の微粒子及び負極反応生成物が空気極9に付着することを抑制することができる。セパレータ31が固体電解質であれば、電解液と同じ機能を有することもできる。
 セパレータ31は、電極活物質層5と接触するように設けてもよく、セパレータ31と電極活物質層5との間に電解液3が介在するように設けてもよい。また、セパレータ31を電解液3として機能させる場合、セパレータ31は、電極活物質層5と接触するように設けられる。
 この場合、電極活物質層5と接触するように設けられたセパレータ31は、電極活物質層5の表面形状を反映する表面形状を有することがこのましい。つまり、セパレータ31の表面にも凹部または凸部を有し、電極活物質層5の表面形状に沿って、電極活物質層5をセパレータ31で覆ってもよい。このことにより、面内の電流分布を均一にすることが可能となり、電極活物質層5の利用効率が向上する。
 また、セパレータ31は、袋状とすることができる。このことにより、セパレータ31を電解液3が収容される電解液槽とすることができ放電後析出した金属酸化物を金属電極とともに取り除き回収することができる。さらに、袋状のセパレータ31は、変形機構によって電解液槽2の対向する側壁の間隔を短くすることで、電解液槽2の側壁から受ける押圧に反発することなく、自在に形状を変えることができる。そのため、セパレータ31を袋状にすることで、セパレータ31と空気極9の密着させることができ、イオン伝導率を向上させることができる。さらに、セパレータ31が袋状にすることで、電解液槽2の側壁から押圧で金属極カートリッジを固定することもできる。
 また、セパレータ31を電解液槽とすると、金属電極20を交換することにより、電極活物質層5と電解液3の両方を交換することができる。このことにより、金属電極20の交換により、アノード反応により金属含有イオン濃度が高くなった電解液3を電解液槽2内から取り出し、新たな電解液3を電解液槽2内に供給することができる。また、電極活物質層5の交換時に電解液3が漏洩することを抑制することができる。
 セパレータ31は、イオン透過性を有し、負極活物質の微粒子および負極反応生成物の透過を抑制できれば特に限定されないが、例えば、多孔性樹脂膜又は樹脂繊維の不織布、分子篩とすることができる。また、セパレータ31は、複数枚のセパレータ31が積層された積層構造を有してもよい。また、セパレータ31はイオン交換膜であってもよい。
 また、セパレータ31を電解液3として機能させる場合、セパレータ31の材料は、アニオン交換膜などのイオン交換膜もしくは電解質を含浸した固体、ゲルとすることができる。
 セパレータ31の材料は、絶縁性材料とすることができる。また、セパレータ31の材料は、多孔性の柔軟性材料であってもよい。セパレータ31に用いられる多孔性樹脂膜または樹脂繊維の不織布の材料としては、耐アルカリ性樹脂とすることができ、例えば、ポリエチレン、ポリプロピレン、ナイロン6、ナイロン66、ポリオレフィン、ポリ酢酸ビニル、ポリビニルアルコール系材料、ポリテトラフルオロエチレン(PTFE)が挙げられる。また、セパレータの細孔の孔径は特に限定されないが、30μm以下であることが好ましい。電解液3の流通が良くなるようにセパレータは親水化処理されていることが好ましい。
 また、セパレータ31の細孔内にゲル化電解液を導入してもよい。このことにより、セパレータ31を電解液槽とした際に、電解液3の漏洩を抑制することができる。
 セパレータ31として用いられるイオン交換膜としては、例えば、パーフルオロスルホン酸系、パーフルオロカルボン酸系、スチレンビニルベンゼン系、第4級アンモニウム系などの固体高分子電解質膜(アニオン交換膜)が挙げられる。
 また、セパレータ31には、分子篩を利用することもできる。分子篩は、有機材料、無機材料を問わず、対象とする分子やイオンなど各物質の大きさに応じて物質を分離する性質を持つ物質を用いることが可能である。分子篩は、一般的な分子篩であれば特に限定されないが、例えば、寒天、アガロース、ポリアクリルアミド、ポリアクリル酸、カルボキシメチルセルロース等などの有機材料や、ナトリウム、ケイ素、アルミニウムの酸化物を含む天然沸石、合成沸石材料など無機材料、あるいは有機材料、無機材料を基材とし各種材料により架橋もしくは元素置換した材料等を用いることができる。また、分子篩は、放電中に析出される金属酸化物を透過させない細孔を有するものであることが好ましく、孔径が1μm以下の細孔を有することが特に好ましい。
5.空気極、空気極集電体、イオン交換膜
 空気極9は、カソードとなる電極である。空気極9では、大気中の酸素ガスと水と電子から水酸化物イオン(OH-)を生成する。空気極9は、例えば、導電性の多孔性担体と多孔性担体に担持された空気極触媒からなる。このことにより、空気極触媒上において、酸素ガスと水と電子を共存させることが可能になり、電極反応を進行させることが可能になる。電極反応に使われる水は、大気中から供給されてもよく、電解液3から供給されてもよい。
 また、空気極9は、空気極触媒を担持した多孔性担体を導電性多孔性基材(ガス拡散層8)に塗布することにより作製されてもよい。例えば、空気極9は、空気極触媒を担持したカーボンをカーボンペーパーやカーボンフェルトに塗布することにより作製することができる。このガス拡散層8は、空気極集電体10として機能してもよい。
 金属空気電池25は、空気極9の電荷を集電する空気極集電体10を備えてもよい。このことにより、空気極9で生じた電荷を効率よく外部回路へと取り出すことができる。また、空気極集電体10は、空気流路12を形成する部材と同じ部材であってもよい。
 空気極集電体10の材料としては、電解液に対して耐食性すれば特に限定されないが、例えば、ニッケル、金、銀、銅、ステンレスなどである。また、空気極集電体10は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 また、空気極集電体10の形状は、例えば、板状、メッシュ状、パンチングメタルなどとすることができる。
 また、空気極集電体10と、多孔性担体又は導電性多孔性基材(ガス拡散層8)とを接合する方法としては、フレームを介してネジ止めにより圧着する方法や、導電性接着剤を用いて結合させる方法などが挙げられる。
 1つのセル4に含まれる空気極9は、電極活物質層5の一方側にのみ設けられてもよく、図2のように電極活物質層5の両側にそれぞれ設けられてもよい。
 空気極9に含まれる多孔性担体には、例えば、アセチレンブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等のカーボンブラック、黒鉛、活性炭等の導電性カーボン粒子が挙げられる。また、気相法炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノワイヤー等の炭素繊維を用いることもできる。
 空気極触媒には、たとえば、白金、鉄、コバルト、ニッケル、パラジウム、銀、ルテニウム、イリジウム、モリブデン、マンガン、これらの金属化合物、およびこれらの金属の2種以上を含む合金からなる微粒子が挙げられる。この合金は、白金、鉄、コバルト、ニッケルのうち少なくとも2種以上を含有する合金が好ましく、たとえば、白金-鉄合金、白金-コバルト合金、鉄-コバルト合金、コバルト-ニッケル合金、鉄-ニッケル合金等、鉄-コバルト-ニッケル合金が挙げられる。
 また、空気極9に含まれる多孔性担体は、その表面に陽イオン基が固定イオンとして存在するように表面処理がなされていてもよい。このことにより、多孔性担体の表面を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
 また、空気極9は、多孔性担体に担持されたアニオン交換樹脂を有してもよい。このことにより、アニオン交換樹脂を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
 空気極9は、大気に直接接するように設けてもよく、空気流路12を流れる空気が空気極9に供給されるように設けてもよい。このことにより、空気極9に酸素ガスを供給することができる。また、空気流路12を設ける場合、空気流路12に加湿された空気を流すことにより、空気極9に酸素ガスと共に水も供給できる。
 空気流路12は、例えば、図2に示した金属空気電池25に含まれる筐体1に設けることができる。
 空気極9は電解液槽2内の電解液3に接触するように設けてもよい。このことにより、空気極9で生成した水酸化物イオンが容易に電解液3へ移動することができる。また、空気極9における電極反応に必要な水が電解液3から空気極9に供給されやすくなる。
 また、空気極9は、金属電極と同じく、電解液槽2に溜める電解液3と接触するセパレータで覆われていてもよい。セパレータは、電解液槽2内の電解液3と空気極9とを仕切るように設けることができる。セパレータで空気極9を覆うことで、空気極9と電解液3との間を移動する極微細な粒子が空気極9へ付着することを抑制できる。
 セパレータは、イオン交換膜を用いてもよく、イオン交換膜は、アニオン交換膜であってもよい。このことにより、空気極9で発生した水酸化物イオンがアニオン交換膜を伝導し、電解液3へ移動することができる。
 さらにセパレータとして、イオン交換膜を設けることにより、空気極9と電解液3との間を移動するイオン種を限定することができる。イオン交換膜がアニオン交換膜である場合、アニオン交換膜は、固定イオンである陽イオン基を有するため、電解液3中の陽イオンは空気極9に伝導することはできない。これに対し、空気極9で生成した水酸化物イオンは陰イオンであるため、電解液3へと伝導することができる。このことにより、金属空気電池25の電池反応が進行させることができ、かつ、電解液3中の陽イオンが空気極9に移動するのを防止することができる。このことにより、空気極9における金属や炭酸化合物の析出を抑制することができる。
 また、多孔性樹脂またはイオン交換膜を設けることにより、電解液3に含まれる水が空気極9に過剰に供給されることを抑制することができる。
 多孔性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、ポリビニルアルコール系の多孔膜もしくは不織布が挙げられる。孔径は特に限定されないが、5μm以下であることが好ましい。電解液の流通が良くなるよう親水化処理されていることが好ましい。
 イオン交換膜としては、たとえば、パーフルオロスルホン酸系、パーフルオロカルボン酸系、スチレンビニルベンゼン系、第4級アンモニウム系の固体高分子電解質膜(アニオン交換膜)が挙げられる。
放電実験
 実施例1、実施例2、および比較例の3つの金属電極を作製し、これらの金属電極をそれぞれ亜鉛空気電池本体に組み込み放電実験を行った。
 図15(a)は、実施例1、実施例2または比較例の金属電極に含まれる集電体の概略平面図であり、図15(b)は実施例1または実施例2の金属電極の概略断面図であり、図15(c)は比較例の金属電極の概略断面図である。なお、図15(b)または図15(c)の断面図は、図15(a)の破線P-Pにおける断面図に対応する。
 放電実験では、厚さ1mmの5cm角のステンレス板(SUS316L)に直径1cmの孔21を5つ形成した集電体7を用いた。
 実施例1、2の金属電極は、集電体7の2つの主要面上および孔21内に金属亜鉛からなる電極活物質層5を設けた。また、図15(b)のように電極活物質層5の表面には、集電体7の孔21と重なるように凹部17を設けた。また、凹部17は、孔21の形状を反映するように設けた。
 実施例1の金属電極は、集電体7の主要面上の電極活物質層5の厚さが1mmとなるように電極活物質層5を設けた。また、実施例2の金属電極は、集電体7の主要面上の電極活物質層5の厚さが1.08mmとなり、電極活物質層5の重量が38.5gとなるように電極活物質層5を設けた。
 比較例の金属電極は、集電体7の2つの主要面上および孔21内に金属亜鉛からなる電極活物質層5を設けた。また、図15(c)のように電極活物質層5の表面は、平らにした。また、集電体7の主要面上の電極活物質層5の厚さが1mmとなり、電極活物質層5の重量が38.5gとなるように電極活物質層5を設けた。
 なお、実施例1の金属電極と比較例の金属電極とは、集電体7の主要面上の電極活物質層5の厚さが同じであり、実施例2の金属電極と比較例の金属電極とは、電極活物質層5の重量が同じである。
 実施例1、実施例2または比較例の金属電極を亜鉛空気電池本体に組み込み、図2に示したような金属空気電池(亜鉛空気電池)を作製し、放電実験を行った。
 作製した亜鉛空気電池では、電解液槽2の容量は50mlとし、電解液槽2の中央部に実施例1、実施例2または比較例の金属電極を配置した。また、電解液槽2の両内側面に金属電極を挟むように一辺5cm角の空気極9を2つ配置した。
 電解液槽2に溜める電解液3には、7Mの水酸化カリウム水溶液を用いた。
 放電実験では、亜鉛空気電池を定電流密度(50mA/cm2)で、亜鉛空気電池の出力が低下するまで放電させた。その後、電解液槽2内から使用済みの金属電極を回収し、金属電極に残った電極活物質層5の量を測定し、電極活物質の利用効率を計算した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1、実施例2の金属電極を用いた放電実験では、電極活物質層5に含まれる電極活物質がほとんどすべてアノード反応に利用可能であることがわかった。これに対し、比較例の金属電極を用いた放電実験では、電極活物質層5に含まれる電極活物質の約7%がアノード反応に利用できないことがわかった。電解液槽2内から回収した比較例の金属電極を観察すると、集電体7の孔21内に電極活物質層5が残存していた。
 1:筐体  2:電解液槽  3:電解液  4:セル  5:電極活物質層  7:集電体  8:ガス拡散層  9:空気極  10:空気極集電体  12:空気流路  13:支持部  15:注入流路  16:排出流路  17:電極活物質層の凹部  18:電極活物質層の孔  19:電極活物質層の凸部  20:金属電極  21:集電体の孔  22:集電体の凹部  23:集電体の凸部  24:集電体の縁部  25:金属空気電池  27:絶縁体部  28:撥水部  29:電極活物質層のスリット  31:セパレータ  33:孔

Claims (14)

  1.  集電体と、前記集電体の一部を覆う電極活物質層とを備えた金属電極であって、
    前記集電体は、前記集電体を貫通する第1孔、前記集電体表面に形成された第1凹部、または前記集電体表面に形成された第1凸部を有し、
    前記電極活物質層は、前記電極活物質層または前記電極活物質層及び前記集電体を貫通する第2孔、前記電極活物質層表面に形成された第2凹部、または前記電極活物質層表面に形成された第2凸部を有し、
    前記第2孔または前記第2凹部は、前記第1孔または前記第1凹部と重なるように配され、
    前記第2凸部は、前記第1凸部と重なるように配されることを特徴とする金属電極。
  2.  前記第1凹部の底に前記第1孔が備えられていることを特徴とする請求項1に記載の金属電極。
  3.  前記第1孔が前記電極活物質層に塞がれていることを特徴とする請求項1または請求項2に記載の金属電極。
  4.  前記集電体の表面と、前記電極活物質層の表面の最短距離が一定距離であることを特徴とする請求項1~3のいずれか一項に記載の金属電極。
  5.  前記集電体は板状であり、
    前記第1凹部または第1凸部は前記電極活物質層の面方向に長い形状であることを特徴とする請求項1~4のいずれか一項に記載の金属電極。
  6.  前記集電体の一端に支持部を有し、
    前記支持部は、前記集電体の端部に沿って延伸形状を有し、
    前記第1凹部または第1凸部は、前記集電体の支持部の長手方向に対して鉛直方向に長い形状であることを特徴とする請求項1~5のいずれか一項に記載の金属電極。
  7.  前記集電体の一端に支持部を有し、
    前記支持部は、前記集電体の端部に沿って延伸形状を有し、
    前記第1凹部又は前記第1凸部は、前記集電体の支持部の長手方向に対して平行方向に長い形状であることを特徴とする請求項1~5のいずれか一項に記載の金属電極。
  8.  空気極と電解液を収容する電解液槽と、金属電極とを備え、
    前記金属電極は、集電体と、前記集電体の一部を覆う電極活物質層とを備え、
    前記集電体は、前記集電体を貫通する第1孔、前記集電体表面に形成された第1凹部、または前記集電体表面に形成された第1凸部を有し、
    前記電極活物質層は、前記電極活物質層または前記電極活物質層及び前記集電体を貫通する第2孔、前記電極活物質層表面に形成された第2凹部、または前記電極活物質層表面に形成された第2凸部を有し、
    前記第2孔または前記第2凹部は、前記第1孔または前記第1凹部と重なるように配され、
    前記第2凸部は、前記第1凸部と重なるように配されることを特徴とする金属空気電池。
  9.  前記第1凹部の底に前記第1孔が備えられていることを特徴とする請求項8に記載の金属空気電池。
  10.  前記第1孔が前記電極活物質層に塞がれていることを特徴とする請求項8または請求項9に記載の金属空気電池。
  11.  前記集電体の表面と、前記電極活物質層の表面の最短距離が一定距離であることを特徴とする請求項8~10のいずれか一項に記載の金属空気電池。
  12.  前記集電体は板状であり、
    前記第1凹部または前記第1凸部は前記電極活物質層の面方向に長い形状であることを特徴とする請求項8~11のいずれか一項に記載の金属空気電池。
  13.  前記集電体の一端に支持部を有し、
    前記支持部は、前記集電体の端部に沿って延伸形状を有し、
    前記第1凹部または第1凸部は、前記集電体の支持部の長手方向に対して鉛直方向に長い形状であることを特徴とする請求項8~12のいずれか一項に記載の金属空気電池。
  14.  前記集電体の一端に支持部を有し、
    前記支持部は、前記集電体の端部に沿って延伸形状を有し、
    前記第1凹部又は前記第1凸部は、前記集電体の支持部の長手方向に対して平行方向に長い形状であることを特徴とする請求項8~12のいずれか一項に記載の金属空気電池。
PCT/JP2014/069349 2013-08-09 2014-07-22 金属電極および金属空気電池 WO2015019845A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013166316 2013-08-09
JP2013-166316 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015019845A1 true WO2015019845A1 (ja) 2015-02-12

Family

ID=52461184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069349 WO2015019845A1 (ja) 2013-08-09 2014-07-22 金属電極および金属空気電池

Country Status (1)

Country Link
WO (1) WO2015019845A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151063A1 (ja) * 2018-01-30 2019-08-08 シャープ株式会社 金属空気電池用負極
EP3547407A3 (en) * 2018-03-30 2019-11-13 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
EP3547406A3 (en) * 2018-03-30 2019-11-13 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645571A (en) * 1979-09-21 1981-04-25 Toshiba Battery Co Ltd Battery
JPH0364857A (ja) * 1989-07-31 1991-03-20 Agency Of Ind Science & Technol 多孔質電極構造
JP2008518408A (ja) * 2004-11-01 2008-05-29 テクコミンコ・メタルズ・リミテッド 多孔性固体亜鉛電極およびその作製方法
JP2012018785A (ja) * 2010-07-07 2012-01-26 Dainippon Screen Mfg Co Ltd 電池用電極の製造方法、電池の製造方法、電池、車両および電子機器
JP2014044908A (ja) * 2012-08-28 2014-03-13 Sharp Corp 金属空気電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645571A (en) * 1979-09-21 1981-04-25 Toshiba Battery Co Ltd Battery
JPH0364857A (ja) * 1989-07-31 1991-03-20 Agency Of Ind Science & Technol 多孔質電極構造
JP2008518408A (ja) * 2004-11-01 2008-05-29 テクコミンコ・メタルズ・リミテッド 多孔性固体亜鉛電極およびその作製方法
JP2012018785A (ja) * 2010-07-07 2012-01-26 Dainippon Screen Mfg Co Ltd 電池用電極の製造方法、電池の製造方法、電池、車両および電子機器
JP2014044908A (ja) * 2012-08-28 2014-03-13 Sharp Corp 金属空気電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151063A1 (ja) * 2018-01-30 2019-08-08 シャープ株式会社 金属空気電池用負極
EP3547407A3 (en) * 2018-03-30 2019-11-13 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
EP3547406A3 (en) * 2018-03-30 2019-11-13 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
US10944112B2 (en) 2018-03-30 2021-03-09 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device
US10985377B2 (en) 2018-03-30 2021-04-20 Contemporary Amperex Technology Co., Limited Current collector, electrode plate including the same and electrochemical device

Similar Documents

Publication Publication Date Title
JP6326272B2 (ja) 電槽及び金属空気電池
JP6271515B2 (ja) 金属空気電池
TW503598B (en) Catalytic air cathode for air-metal batteries
TWI223903B (en) Layered electrochemical cell and manufacturing method therefor
US10115975B2 (en) Water-activated permanganate electrochemical cell
US20150162571A1 (en) Concave cell design for an alkaline battery with a comb spacer
EP2824745A1 (en) Rechargeable zinc-air flow battery
WO2015076299A1 (ja) 金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法
WO2015119041A1 (ja) 空気極及び金属空気電池
JP6267942B2 (ja) 金属空気電池
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
JP6836603B2 (ja) 金属空気電池
JP2012003940A (ja) 金属空気電池
WO2015019845A1 (ja) 金属電極および金属空気電池
WO2015115480A1 (ja) 金属空気電池
JPWO2014061491A1 (ja) 電池用電極体、アノードおよび金属空気電池
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
WO2014175117A1 (ja) 金属空気電池
JP6353695B2 (ja) 金属空気電池本体及び金属空気電池
JP6474725B2 (ja) 金属電極カートリッジおよび金属空気電池
JP2018032557A (ja) 金属空気電池
US20150162570A1 (en) Beveled cell design for an alkaline battery to remove gas
JP2017224500A (ja) フロー電池
US20150162572A1 (en) Cell design for an alkaline battery to remove gas
KR20240054962A (ko) 알루미늄 애노드, 알루미늄 전기화학 셀, 및 알루미늄 애노드를 포함하는 배터리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14833909

Country of ref document: EP

Kind code of ref document: A1