WO2015076288A1 - ポリフェニレンエーテルを含む樹脂組成物の硬化物 - Google Patents

ポリフェニレンエーテルを含む樹脂組成物の硬化物 Download PDF

Info

Publication number
WO2015076288A1
WO2015076288A1 PCT/JP2014/080614 JP2014080614W WO2015076288A1 WO 2015076288 A1 WO2015076288 A1 WO 2015076288A1 JP 2014080614 W JP2014080614 W JP 2014080614W WO 2015076288 A1 WO2015076288 A1 WO 2015076288A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
phase
cured product
area
less
Prior art date
Application number
PCT/JP2014/080614
Other languages
English (en)
French (fr)
Inventor
遠藤 正朗
尚史 大谷
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to KR1020167012913A priority Critical patent/KR101751659B1/ko
Priority to US15/037,936 priority patent/US10047224B2/en
Priority to JP2015549168A priority patent/JP6093033B2/ja
Publication of WO2015076288A1 publication Critical patent/WO2015076288A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Definitions

  • the present invention is a cured product of a resin composition containing polyphenylene ether (hereinafter also referred to as PPE), which can be suitably used as a material for an electronic circuit substrate, and an electronic circuit substrate comprising the cured product as a constituent component.
  • PPE polyphenylene ether
  • PPE has excellent high-frequency characteristics (ie, dielectric characteristics) such as dielectric constant and dielectric loss tangent, and has high heat resistance. Therefore, PPE is suitable as an insulating material for electronic circuit boards of electronic devices using a high frequency band. is there.
  • PPE is inherently a thermoplastic resin
  • a crosslinkable curable compound when used as an insulating material for an electronic circuit board.
  • a cured product of a resin composition containing PPE and a cross-linkable curable compound can have both dielectric properties and heat resistance necessary for process adaptation such as lead-free solder mounting as an insulating material for electronic circuit boards. It becomes.
  • the resin composition containing PPE and the crosslinkable curable compound reported in Non-Patent Document 1, Patent Document 1 and 2, etc. has a uniform structure without phase separation of PPE and the crosslinkable curable compound. It is a feature.
  • Non-Patent Document 1 a cured product having good compatibility between PPE and a crosslinkable curable compound and having a homogeneous phase structure is excellent in heat resistance and suitable as a low dielectric and high heat resistant multilayer printed wiring board material. It is described that there is. Conversely, Non-Patent Document 1 shows that when a phase separation structure is observed between PPE and a crosslinkable curable compound, the adhesion at the interface is lowered and the heat resistance is lowered. Based on FIG. 2 of Non-Patent Document 1, the size of the dispersed phase where the heat resistance is reduced is about 1.0 ⁇ m to about 17 ⁇ m.
  • Patent Document 1 describes a resin composition for a printed wiring board containing PPE, an epoxy resin (crosslinkable curable compound), and a curing agent for an epoxy resin, so as not to cause phase separation during the curing process. It is described that it has high adhesiveness or heat resistance and has excellent electrical characteristics.
  • Patent Document 2 describes that PPE and a thermosetting resin (crosslinkable curable compound) exhibit a uniform morphology, whereby a printed wiring board having excellent heat resistance and electrical characteristics can be obtained.
  • Patent Document 2 describes that when an epoxy resin phase having a particle diameter of 1 ⁇ m or more is observed, there is a problem in that the interfacial adhesion between both phases is weak and the heat resistance is lowered.
  • Non-Patent Document 2 describes a structure in which PPE and a crosslinkable curable compound are phase separated.
  • Non-Patent Document 2 discloses an extrusion of a resin composition containing PPE, TAIC (crosslinking curable compound) and an initiator ( ⁇ , ⁇ ′-bis (t-butylperoxy-m-isopropyl) benzene)). It is described that the thermoset of the molded product has a periodic structure.
  • Non-Patent Document 2 does not describe application of a thermoset to a printed wiring board, but Patent Documents 3 and 4 disclose a cured product of a resin composition equivalent to the resin composition described in Non-Patent Document 2. Is suitable for printed wiring boards.
  • the resin composition described in Patent Document 3 includes PPE, TAIC, and an initiator (perbutyl P ⁇ , ⁇ ′-bis (t-butylperoxy-m-isopropyl) benzene.
  • Resin composition described in Patent Document 4 The product contains a styrene-butadiene copolymer in addition to PPE, TAIC and an initiator ( ⁇ , ⁇ ′bis (t-butylperoxy-m-isopropyl) benzene).
  • Patent Document 5 also includes PPE, an epoxy resin (bisphenol A type epoxy resin and cresol novolac type epoxy resin as a crosslinkable curable compound), and an epoxy group-containing [styrene-butadiene-styrene] block copolymer. It is described that the resin composition takes a phase separation structure.
  • the cured product of the PPE-containing resin composition described in Non-Patent Document 1 and Patent Documents 1 and 2 has a uniform morphology without a phase separation structure, and the heat resistance is improved by taking the morphology.
  • the cured product of the PPE-containing resin composition described in Non-Patent Document 1 and Patent Documents 1 and 2 has a high dielectric loss tangent (for example, Non-Patent Document 1 at 0.005 at 1 GHz, Examples of Patent Document 1). 1 to 4 was 0.006 to 0.009 at 1 MHz), and the dielectric properties required for high-frequency substrates in recent years were greatly inferior.
  • Non-Patent Document 2 describes that a cured product of a PPE-containing resin composition causes phase separation, but there is no description of using the cured product as a material for printed wiring boards, and particularly a description regarding dielectric properties. Absent.
  • the dielectric loss tangent of the cured product of the PPE-containing resin composition of Patent Document 3 was as high as 0.0025 to 0.0032 at 1 MHz (Example of Patent Document 3), and was not compatible with the GHz band.
  • Patent Document 4 does not specifically describe the dielectric properties of the cured product of the PPE-containing resin composition.
  • Patent Document 4 describes that the cured resin is excellent in heat resistance. However, in the solder heat resistance test at 260 ° C., it cannot be said that the cured resin is applicable to lead flow soldering.
  • the cured product of the resin composition containing PPE described in Non-Patent Document 2 and Patent Documents 3 and 4 is also an insulating material for an electronic circuit board of an electronic device using a high frequency band (GHz band). As a result, further improvement was required.
  • a high frequency band GHz band
  • Patent Document 5 The cured product of the PPE-containing resin composition described in Patent Document 5 is intended to improve heat resistance and crack resistance, and Patent Document 5 does not describe the dielectric properties of the cured product.
  • the problem to be solved by the present invention is excellent in electrical characteristics in a high frequency band (GHz band) and heat resistance necessary for process adaptation (especially good in solder heat resistance test, T288 test, and T300 test). It is to provide a cured product of a resin composition containing PPE as a main component and having a good heat resistance.
  • the present inventors have found that the cured product of the resin composition containing PPE and the crosslinkable curable compound has a specific morphology.
  • the present invention has been completed by finding that a cured product can be formed on a substrate or the like without impairing the dielectric properties and heat resistance. That is, the present invention is as follows.
  • a phase separation structure consisting of a dispersed phase and a continuous phase is observed, and
  • the continuous phase is composed of the A phase mainly composed of the polyphenylene ether (A) and the crosslinkable curable compound.
  • the area ratio of the A phase occupying the continuous phase is 50 area% or more and 80 area% or less.
  • the area ratio of the A phase occupying the continuous phase is 55 area% or more and 70 area% or less.
  • the area ratio occupied by the spherical dispersed phase is 10 area% or more and 80 area% or less in a morphological image with a magnification of 10,000 times observed from a direction perpendicular to the compression surface using a transmission electron microscope. Hardened
  • the major axis is 1.0 ⁇ m or more and 18 ⁇ m or less, and the minor axis is 0.001 ⁇ m.
  • the area ratio occupied by the string-like dispersed phase is the sum of the areas of the spherical dispersed phase and the string-like dispersed phase.
  • cured material as described in [8] or [9] which is 50 area% or more and 90 area% or less with respect to.
  • the area ratio occupied by the string-like dispersed phase is the sum of the areas of the spherical dispersed phase and the string-like dispersed phase.
  • a hydrogenated block copolymer (C) obtained by hydrogenating a vinyl aromatic compound-conjugated diene compound block copolymer, and A cured product obtained by compression molding a resin composition further containing an organic peroxide (D)
  • the content of the vinyl aromatic compound unit in the hydrogenated block copolymer (C) is 5% by mass or more and 50% by mass or less
  • the content of the hydrogenated block copolymer (C) is 3 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the total mass of the polyphenylene ether (A) and the crosslinkable curable compound (B).
  • the one minute half-life temperature of the organic peroxide (D) is 150 ° C. or higher and 190 ° C. or lower, and the content of the organic peroxide (D) is the polyphenylene ether (A) and the cross-linked curing 1 part by mass or more and 5 parts by mass or less based on 100 parts by mass of the total mass of the functional compound (B).
  • the cured product according to any one of [1] to [12]. [14] It further comprises an organic peroxide (F) having a half-life temperature of more than 190 ° C. and not more than 250 ° C.
  • the content of the organic peroxide (F) is such that the polyphenylene ether (A) and the crosslinked type Hardened
  • a P atom-containing compound (E) that is compatible with both the polyphenylene ether (A) and the crosslinkable curable compound (B).
  • Content of the said P atom containing compound (E) is 0.5 mass part or more and 15 mass parts or less on the basis of 100 mass parts of total mass of the said polyphenylene ether (A) and the said P atom containing compound (E).
  • the total content of the crosslinkable curable compound (B) and the P atom-containing compound (E) is such that the polyphenylene ether (A), the crosslinkable curable compound (B), and the P atom-containing compound (E).
  • the total mass of 100% by mass is the standard, it is 30% by mass or more and 45% by mass or less.
  • the cured product according to any one of [1] to [14].
  • An electronic circuit board comprising the cured product according to any one of [1] to [15], which is obtained by curing the resin of a prepreg that is an impregnated composite of a resin film and a base material and a resin.
  • An electronic circuit board selected from a composite, a resin-coated metal foil, or a laminate composed of two or more of these.
  • a cured product of a PPE-containing resin composition having both good dielectric properties in a high frequency band (GHz band) and heat resistance necessary for process adaptation, and an electronic circuit board including the cured product Can be provided.
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 10,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 10,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 10,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 10,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 10,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 10,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 200,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 200,000 times) of the hardened
  • FIG. 1 It is a figure which shows the morphology image by the transmission electron microscope (magnification 200,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 200,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 200,000 times) of the hardened
  • FIG. It is a figure which shows the morphology image by the transmission electron microscope (magnification 200,000 times) of the hardened
  • the cured product is obtained by compression molding a resin composition containing polyphenylene ether (A) (hereinafter also referred to as PPE (A)) and a crosslinkable curable compound (B). .
  • PPE polyphenylene ether
  • B crosslinkable curable compound
  • a phase separation structure composed of a dispersed phase and a continuous phase is observed in a morphological image at a magnification of 10,000 times observed from a direction perpendicular to the compression surface of the cured product using a transmission electron microscope.
  • the continuous phase is composed of A phase mainly composed of polyphenylene ether (A) and cross-linked curing.
  • the area ratio which occupies the continuous phase of the A phase is 40 area% or more and 90 area% or less.
  • a morphology image observed with a transmission microscope is obtained by subjecting an ultrathin section processed with an ultramicrotome to an ultrathin section having a thickness of 30 nm to 50 nm to be stained with ruthenium tetroxide. Is an image taken under the condition of an acceleration voltage of 30 kV using a transmission microscope. As a specific photographing method, a method used for morphological observation in the examples is shown below. A cured product of the PPE-containing resin composition is embedded in an epoxy resin, and then cut into a compressed surface with an ultramicrotome to produce an ultrathin section having a thickness of 30 nm to 50 nm.
  • the ultrathin section is placed on an optometric grit and stained with ruthenium tetroxide to obtain a microscopic sample.
  • the microscopic sample is observed under a condition of an acceleration voltage of 30 kV using a transmission electron microscope (LEICA ULTRA CUTUCT, S-5500, manufactured by Hitachi).
  • morphological observation with a transmission electron microscope (magnification 10,000 times) in the present disclosure refers to observation with a transmission electron microscope (magnification 10,000 times) so that the observation image has a field of view of 105.9 ⁇ m 2 .
  • FIGS. 1 to 7 to be described later show images observed with a transmission electron microscope (10,000 magnifications) having a visual field of 105.9 ⁇ m 2 (11.9 ⁇ m ⁇ 8.9 ⁇ m).
  • FIGS. 1 and 3 show a cured product of a PPE-containing resin composition in which a spherical dispersed phase and a string-like dispersed phase are mixed in a morphological observation at a magnification of 10,000 times with a transmission electron microscope (FIG. 1: Examples) 2 shows a transmission electron microscope image of the cured resin 2 and FIG. 3: the cured resin of Example 8.
  • FIG. 2 (cured resin product of Example 5) shows a transmission electron microscope image of the cured product of the PPE-containing resin composition in which a spherical dispersed phase is present.
  • FIG. 4 and 5 show a cured product of a PPE-containing resin composition in which a coarse dispersed phase different from a spherical dispersed phase or a string-like dispersed phase occupies a large amount
  • FIG. 4 cured resin of Example 9, FIG. 5: comparison
  • the transmission electron microscope image of the resin cured material of Example 1 is shown.
  • 6 and 7 show the permeation of a cured product of a PPE-containing resin composition having no uniform phase separation (FIG. 6: cured resin of Comparative Example 4, FIG. 7: cured resin of Comparative Example 5).
  • a scanning electron microscope image is shown.
  • a phase separation structure composed of a dispersed phase and a continuous phase is observed in a morphological image observed from a direction perpendicular to the compression surface of the cured product with a transmission electron microscope (10,000 magnifications).
  • a transmission electron microscope 10,000 magnifications.
  • the area ratio occupied by the dispersed phase is 10 area% or more and 80 area% or less. preferable.
  • the area ratio of the dispersed phase is 10 area% or more, high heat resistance is obtained, which is preferable.
  • the area ratio of the dispersed phase is 80 area% or less, it is preferable because high heat resistance can be obtained better.
  • the morphological observation with the transmission electron microscope (magnification 200,000 times) in the present disclosure means that the continuous phase portion observed in the morphological image with the transmission electron microscope (magnification 10,000 times) is further enlarged.
  • FIGS. 8 to 14 described later show observation images of a transmission electron microscope (magnification 200,000 times) having a visual field of 0.26 ⁇ m 2 (0.63 ⁇ m ⁇ 0.41 ⁇ m).
  • the continuous phase observed with a transmission electron microscope is obtained by observing the morphology of the continuous phase with a transmission electron microscope (magnification 200,000 times) with PPE (A). It has a co-continuous structure including an A phase containing the main component and a B phase containing the crosslinkable curable compound (B) as the main component.
  • the A phase mainly composed of PPE (A) is intended to mean a phase containing more PPE (A) than the crosslinkable curable compound (B), and the crosslinkable curable compound (B) is mainly used.
  • the B phase as a component intends a phase containing more of the crosslinkable curable compound (B) than PPE (A).
  • the dispersed phase has a co-continuous structure including the A phase and the B phase
  • the A phase and the B phase each have a continuous structure.
  • the co-continuous structure in the present disclosure may be a substantially co-continuous structure, and there is a portion where either the A phase or the B phase is dispersed as in the sea-island structure. Also good. In this case, the area of the dispersed portion may be less than 50% of the entire area of the transmission electron microscope image.
  • the continuous phase has a co-continuous structure, characteristics excellent in dielectric characteristics are exhibited.
  • FIGS. 8 to 14 show transmission electron microscope images of the cured resin having a co-continuous structure (FIG. 8: Example 2; transmission at a magnification of 200,000 times in a portion that is a continuous phase when observed at a magnification of 10,000 times) Electron Microscope Image
  • FIG. 9 Example 5
  • Transmission Electron Microscope Image Observed at 200,000 Magnification at a Site that Contained a Dispersed Phase and a Continuous Phase upon Observation at 10,000 Magnification
  • FIG. 10 Example 8 , Transmission electron microscopic image of a portion that is a continuous phase when observed at a magnification of 10,000
  • FIG. 11 Example 9, Example 200, magnification of a portion that is a continuous phase when observed at a magnification of 10,000 Fig.
  • FIG. 12 Transmission electron microscope image of Fig. 12: Comparative Example 1, transmission electron microscope image at 200,000 times magnification of a portion that is a continuous phase in observation at 10,000 times magnification
  • Fig. 13 Comparative Example 4, magnification of 10,000 times Transmission electron microscopic image at 200,000 times magnification of a portion that is a continuous phase in double observation
  • FIG. 14 Comparative Example 5, double Transmission electron microscopy images at a magnification of 200,000 times the site is the continuous phase in 10,000 times of observation).
  • the phase (phase A) containing PPE (A) as a main component is dyed with ruthenium tetroxide, and therefore exists as a dark part.
  • the phase (B phase) containing the crosslinkable curable compound (B) as a main component exists as a bright site.
  • 8 to 14 have a co-continuous structure in which the phase (phase A) mainly composed of PPE (A) and the crosslinkable curable compound (B) are continuous.
  • the A phase mainly composed of PPE (A) and the B phase mainly composed of the crosslinkable curable compound (B) form a co-continuous structure.
  • Good heat resistance can be imparted to the cured product by the cross-linkable curable compound without impairing the dielectric properties of the cured product.
  • the crosslinkable curable compound (B) can be compatible with PPE (A) in the curing reaction process, but cannot be completely compatible after curing.
  • a method of adjusting the crosslinking rate of the crosslinkable curable compound (B) to a fast range using the compound can be exemplified.
  • the cross-linking reaction of the cross-linkable curable compound (B) proceeds from the compatible state of the PPE (A) and the cross-linkable curable compound (B)
  • the cross-linkage occurs before the dispersed phase grows greatly. It is preferable to sufficiently advance the crosslinking reaction of the mold curable compound (B).
  • the structural period of the above-mentioned co-continuous structure is preferably 0.5 nm or more and 50 nm or less.
  • a more preferable range of the structural period is 1 nm to 30 nm, a further preferable range is 2 nm to 20 nm, and a most preferable range is 2 nm to 10 nm.
  • the structural period of the co-continuous structure is a value obtained by the following method.
  • a line segment corresponding to 200 nm is drawn on the co-continuous structure observed with a transmission electron microscope (200,000 times) (line segment (1)), and the line segment is in contact with the A phase and the B phase. Measure all distances and find the average value.
  • a line segment corresponding to 200 nm is drawn (line segment (2)). And all the distances between the points in contact with the B phase are measured, and the average value is obtained.
  • a line segment corresponding to 200 nm perpendicular to the line segment (1) is drawn (line segment (3)), and the distance between the points where the line segment contacts the A phase and the B phase in the same manner as described above. Measure all and find the average value.
  • a line segment corresponding to 200 nm is drawn (line segment (4)). All the distances between the points where the line segments contact the A phase and the B phase are measured, and the average value is obtained. The average values of the distances between the points where the line segments (1) to (4) are in contact with the A phase and the B phase are obtained, and the average value of the line segments (1) to (4) is obtained.
  • the structure period is drawn parallel to the line segment (3), but separated by 100 nm or more at a distance orthogonal to the line segment (3). All the distances between the points where the line segments contact the A phase and the B phase are measured, and the average value is obtained. The average values of the distances between the points where the line segments (1) to (4) are in contact with the A phase and the B phase are obtained
  • the structure period of the co-continuous structure is 50 nm or less because the dielectric characteristics become better. This is presumed to be because the phase structure approaches more uniformly.
  • the structural period of the co-continuous structure is 0.5 nm or more, it is preferable because good heat resistance can be imparted to the cured product by the cross-linking curable compound without impairing the inherent dielectric properties of the PPE.
  • Examples of means for realizing the structural period include a method of adjusting the crosslinking rate of the crosslinkable curable compound (B). Specifically, a method of adjusting the blending amount of the reaction initiator of the crosslinkable curable compound (B) using a monomer having two or more unsaturated groups in the molecule as the crosslinkable curable compound (B). Can be illustrated.
  • the A phase in the co-continuous structure, is preferably present in a range of 40 area% to 90 area%.
  • a more preferable range of the proportion of the A phase in the co-continuous structure is 50% to 80% by area, and a more preferable range is 55% to 70% by area.
  • the phase in the co-continuous structure is the A phase mainly composed of PPE (A) or the B phase mainly composed of the crosslinkable curable compound (B) Can be judged from the hue of the phase by performing the sample with a sample dyed with ruthenium tetroxide.
  • the A phase containing PPE (A) as a main component can be identified as a darkened phase when observed with a transmission electron microscope.
  • the transmission electron microscope image magnification 200,000 times
  • imageJ is binarized by image editing software “imageJ”.
  • the gradation that is the peak top is set as the threshold value for the binarization process.
  • the area darker than the threshold is determined as A phase and the area brighter than the threshold is determined as B phase, and the respective areas are measured.
  • a method including the following steps (i) to (iv) (hereinafter referred to as “area integration method”) using an image with a magnification of 10,000 times (for example, FIG.
  • phase A and phase B May calculate the area of phase A and phase B: (I) a step of extracting a plurality of portions at a magnification of 200,000 times from an original image (a magnification of 10,000 times) that was a basis for obtaining an image in which a dispersed phase and a continuous phase are mixed (magnification of 200,000 times); (Ii) A step of cutting out a visual field (magnification of 200,000 times) in which only the continuous phase exists from each of the plurality of extracted parts (magnification of 200,000 times) and binarization processing; (Iii) repeating the above step (ii) until the total area of a plurality of fields of view (magnification 200,000 times) where only the cut out continuous phase exists is 0.26 ⁇ m 2 ; and (iv) 0.26 ⁇ m Calculating the area of the A phase and the area of the B phase in the total area of 2 ;
  • the area ratio of the A phase mainly composed of PPE (A) is 40 area% or more.
  • the area ratio of the A phase mainly composed of PPE (A) is smaller than 40 area%.
  • the area ratio of the A phase in the co-continuous structure is 40% by area or more because the dielectric properties of the cured product are lowered. This is presumed to be due to the fact that PPE has superior dielectric properties. On the other hand, when the proportion of the A phase in the co-continuous structure is 90 area% or less, it is preferable because heat resistance necessary for process adaptation can be secured.
  • a method of adjusting the crosslinking rate of the crosslinkable curable compound (B) can be exemplified. Specifically, a monomer having two or more unsaturated groups in the molecule is used for the crosslinkable curable compound (B), the type and amount of the crosslinking initiator of the crosslinkable curable compound (B), and A method for adjusting the temperature raising condition in the heat and pressure molding can be exemplified.
  • the major axis is 0.001 ⁇ m or more and less than 1.0 ⁇ m.
  • a spherical dispersed phase having a major axis / minor axis ratio of 1.0 to 3.0 is present.
  • the major axis, minor axis, and major axis / minor axis ratio of the dispersed phase observed with a transmission electron microscope (magnification 10,000 times) in the present invention are values obtained by the following method.
  • the length of the longest line segment when the line segment is drawn so as to pass through the inside of the dispersed phase observed with a transmission electron microscope (magnification 10,000 times) is defined as the major axis of the dispersed phase.
  • the minor axis of the disperse phase observed with a transmission electron microscope (magnification 10,000 times) is perpendicular to the line passing through the inside of the disperse phase where the length drawn when obtaining the major axis is the longest.
  • the length of the longest diameter when the straight line is drawn inside the particle, and the major axis / minor axis ratio is a value obtained by dividing the major axis by the minor axis for each dispersed phase.
  • the above-mentioned major axis is 0.001 ⁇ m or more and less than 1.0 ⁇ m, and the aforementioned major axis / short
  • a spherical dispersed phase having a diameter ratio of 1.0 or more and 3.0 or less is preferable because good dielectric properties and high heat resistance can be obtained. This is presumably because the adhesion at the boundary between the dispersed phase and the continuous phase becomes stronger.
  • a more preferable range of the size of the spherical dispersed phase is a major axis of 0.1 ⁇ m or more and 0.9 ⁇ m or less, and a major axis / minor axis ratio of 1.0 or more and 2.5 or less, and a more preferable range is a major axis of 0.2 ⁇ m or more.
  • the major axis / minor axis ratio is 1.0 or more and 2.0 or less.
  • the PPE When the major axis of the spherical dispersed phase is 0.001 ⁇ m or more, the PPE has excellent heat resistance, which is advantageous because the heat resistance becomes good. On the other hand, if the major axis of the spherical dispersed phase is less than 1.0 ⁇ m, it is considered that the adhesion at the boundary between the dispersed phase and the continuous phase is strengthened, which is advantageous because the dielectric properties and heat resistance become stable and good. .
  • the major axis / minor axis ratio of the spherical dispersed phase is 3.0 or less, it is considered that the adhesion at the boundary between the dispersed phase and the continuous phase is enhanced, and the dielectric properties and heat resistance are considered to be improved. It is advantageous.
  • the major axis / minor axis ratio of the spherical dispersed phase is preferably closer to 1, since the dielectric properties and the heat resistance become better.
  • the area ratio occupied by the spherical dispersed phase may be 10 area% or more and 80 area% or less. preferable.
  • the area ratio occupied by the spherical dispersed phase is 10 area% or more, the effect of improving the heat resistance by the spherical dispersed phase is increased, which is preferable.
  • the presence of the continuous phase so that the area ratio occupied by the spherical dispersed phase is 80 area% or less is preferable because good dielectric properties can be obtained.
  • String-like dispersed phase in the first embodiment, in a morphological image at a magnification of 10,000 times observed from the direction perpendicular to the compression surface of the cured product using a transmission electron microscope, in addition to the spherical dispersed phase, the major axis is 1. It is preferable that there is a string-like dispersed phase that is 0 ⁇ m or more and 18 ⁇ m or less, a short diameter is 0.001 ⁇ m or more and 2.0 ⁇ m or less, and a long diameter / short diameter ratio is 2.0 or more and 30 or less.
  • the presence of the string-like dispersed phase is preferable because the high heat resistance inherent in the PPE is largely maintained even in the composite with the crosslinkable curable compound (B). By mixing the spherical dispersed phase and the string-like dispersed phase, high heat resistance and good dielectric properties can be satisfied at the same time, which is preferable.
  • the preferred size of the string-like dispersed phase is that the major axis is 1.0 ⁇ m or more and 18 ⁇ m or less, the minor axis is 0.001 ⁇ m or more and 2.0 ⁇ m or less, and the major axis / minor axis ratio is 2.0 or more and 30 or less. 2.0 ⁇ m or more and 15 ⁇ m or less, minor axis is 0.001 ⁇ m or more and 1.8 ⁇ m or less, major axis / minor axis ratio is 8.0 or more and 25 or less, more preferably major axis is 3.0 ⁇ m or more and 13 ⁇ m or less, and minor axis is 0.8.
  • the major axis / minor axis ratio is 10 or more and 20 or less.
  • the long diameter of the string-like dispersed phase is 1.0 ⁇ m or more, it is considered that the heat-resistant property of PPE is dominant, and the heat resistance becomes good, which is advantageous.
  • the long diameter of the string-like dispersed phase is 18 ⁇ m or less, cracks and the like are not generated between the dispersed phase and the continuous phase, which is advantageous because good dielectric properties can be obtained stably.
  • the minor axis is 0.001 ⁇ m or more, it is considered that the property of PPE excellent in heat resistance is dominant, and the heat resistance becomes favorable, which is advantageous.
  • the minor axis is 2.0 ⁇ m or less, cracks or the like do not occur between the dispersed phase and the continuous phase, which is advantageous because good dielectric properties can be stably obtained.
  • the long diameter / short diameter ratio of the string-like dispersed phase is 2.0 or more, it is considered that the property of the PPE having excellent heat resistance can be dominant, and the heat resistance becomes good, which is advantageous.
  • the long diameter / short diameter ratio of the string-like dispersed phase is 30 or less, cracks and the like do not occur between the dispersed phase and the continuous phase, and favorable dielectric properties can be obtained stably, which is advantageous.
  • PPA (A) and the crosslinkable It is effective to simultaneously control the melt viscosity at the time of pressure heating molding of the resin composition containing the curable compound (B).
  • the resin composition containing PPE (A) and the crosslinkable curable compound (B) is cured through a molten state in a pressure heating molding process, and a phase separation structure is formed in this process. Since stress due to pressurization acts on the molten state of the resin composition, the components of the resin composition are oriented in the direction perpendicular to the pressurization direction and phase separation occurs at the same timing, It is presumed that the above spherical dispersed phase and string-like dispersed phase are formed.
  • the compatibility between PPE (A) and the crosslinkable curable compound (B) includes the molecular weight of PPE (A), the type of the crosslinkable curable compound (B), and the PPE (A) and the crosslinkable curable compound (B). It can control by adjusting the mixture ratio etc. of this as appropriate. It is also possible to control using a compatibilizer described later.
  • the melt viscosity at the time of pressure and thermoforming of the resin composition is controlled by appropriately adjusting the molecular weight of PPE (A), the blending ratio of PPE (A) and the crosslinkable curable compound (B), the temperature rising rate, and the like. be able to. It is also possible to control using a compatibilizer described later. Furthermore, it is also possible to appropriately control the solvent content of the resin composition before curing.
  • the area ratio of the spherical dispersed phase and the string-like dispersed phase is preferably 10 area% or more and 80 area% or less.
  • a more preferable range of the ratio of the total area of the spherical dispersed phase and the area of the string-like dispersed phase is 12 to 60 area%, and a more preferable range is 15 to 50 area%.
  • the area ratio (X) occupied by the spherical dispersed phase and the string-like dispersed phase is the following value.
  • the total area (a) of all spherical dispersed phases present in the observation image, and The total area (b) of all string-like dispersed phases is obtained. It is the value which calculated
  • Ratio (X) ((a) + (b)) / (c) ⁇ 100 of the total area of the spherical dispersed phase and the area of the string-like dispersed phase in the total area of the dispersed phase and the continuous phase
  • ratio (X) is 10 area% or more, it is preferable because the effect of simultaneously satisfying high heat resistance and good dielectric properties appears well.
  • ratio (X) is 80 area% or less, since high heat resistance is obtained more favorably, it is preferable.
  • a method for controlling the compatibility between the PPE (A) and the crosslinkable curable compound (B) can be exemplified.
  • PPE (A) PPE having a number average molecular weight of 4,000 or more can be used, and as a crosslinkable curable compound (B), it can be compatible with PPE (A) in the course of curing reaction.
  • the area ratio occupied by the string-like dispersed phase is 50 area% with respect to the total area of the spherical dispersed phase and the string-like dispersed phase. It is preferably 90 area% or less.
  • a more preferable range of the area of the string-like dispersed phase is 63 area% or more and 90 area% or less, and a more preferable range is 70 area% or more and 90 area% or less.
  • the area ratio occupied by the string-like dispersed phase is the total area (a) of all the spherical dispersed phases present in the observation image in the visual field of 105.9 ⁇ m 2 obtained as described above, and all the string-like dispersed phases.
  • the area ratio of the string-like dispersed phase is 90% or less because good dielectric properties and high heat resistance can be obtained. This is presumably because the adhesion at the boundary between the dispersed phase and the continuous phase becomes stronger.
  • the area ratio of the string-like dispersed phase is 50% or more, it is preferable because the high heat resistance inherent in PPE can be maintained even in the composite with the cross-linkable curable compound. This is presumed to be due to the dominant nature of heat resistance of PPE.
  • a compatible combination in which the PPE (A) and the crosslinkable curable compound (B) have a phase separation structure for example, the crosslinkable curable compound (B)
  • a compatible combination in which the PPE (A) and the crosslinkable curable compound (B) have a phase separation structure for example, the crosslinkable curable compound (B)
  • the crosslinkable curable compound (B) At the time of pressure and heat molding of a resin composition containing PPA (A) and a cross-linkable curable compound (B), by using a monomer having two or more unsaturated groups in the molecule as The method of adjusting the melt viscosity of the can be illustrated.
  • the resin composition that is compression-molded to form a cured product includes PPE (A) and a crosslinkable curable compound (B), and optionally PPE (A) and a crosslinkable type.
  • PPE PPE
  • A crosslinkable curable compound
  • B crosslinkable type
  • other components such as an initiator, a compatibilizer, PPE (A) and a resin other than the crosslinkable curable compound (B) and additives may be included.
  • the components contained in the resin composition will be described.
  • PPE (A) which is a structural component of the hardened
  • PPE (A) may contain copolymer component units other than the phenylene ether unit structure as long as the effects of the present invention are not impaired. The amount of such copolymer component units is based on the total number of unit structures. Typically, it is 30% or less, or 5% or less.
  • PPE (A) is preferably the following general formula (1): ⁇ Wherein R1, R2, R3 and R4 each independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent. An aryl group that may be substituted, an amino group that may have a substituent, a nitro group, or a carboxyl group. ⁇ Is included.
  • the repeating structural unit represented by the general formula (1) is advantageous from the viewpoint of excellent dielectric properties and heat resistance.
  • PPE examples include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2-methyl-6).
  • -Phenyl-1,4-phenylene ether poly (2,6-dichloro-1,4-phenylene ether) and the like, and 2,6-dimethylphenol and other phenols (for example, 2,3,6- And a PPE copolymer obtained by coupling 2,6-dimethylphenol and biphenols or bisphenols, and the like.
  • Poly (2,6-dimethyl-1,4-phenylene ether) is a particularly preferable example from the viewpoint of excellent dielectric properties and heat resistance, and a commercial production technique that has been established and can be stably used. It is.
  • PPE (A) may be a modified PPE in which the phenolic hydroxyl group at the molecular end is modified with another functional group.
  • the functional group is not particularly limited, and may be a benzyl group, an allyl group, a propargyl group, a glycidyl group, a vinylbenzyl group, a methacryl group or the like. Further, it may be a reaction product with an unsaturated carboxylic acid or an acid anhydride.
  • PPE (A preferred from the viewpoint that the production method is simple and is easily available industrially, and that the adhesiveness to the base material of the cured product of the PPE-containing resin composition and the metal foil such as copper foil is good.
  • PPE (A) preferably has a number average molecular weight of 4,000 to 40,000.
  • a more preferable range of the number average molecular weight is from 6,000 to 30,000, and a more preferable range is from 7,000 to 25,000.
  • the molecular weight is a value measured in terms of standard polystyrene using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Shodex LF-804 ⁇ 2 manufactured by Showa Denko KK
  • chloroform at 50 ° C. as the eluent
  • RI refractometer
  • the number average molecular weight of PPE (A) is 4,000 or more, the glass transition temperature and solder heat resistance of the cured product of the resin composition containing PEE (A), which is desired in an electronic circuit board and the like, are favorably given. This is preferable.
  • the number average molecular weight of PPE (A) is 40,000 or less, the melt viscosity at the time of heat-pressure molding for obtaining a cured product is small, and this is preferable in that good moldability is obtained.
  • preferable content of PPE (A) is 20 to 60 mass% on the basis of 100 mass% of the hardened
  • the content of PPE (A) in the cured product is 20% by mass or more, the electrical properties of the cured product of the PPE-containing resin composition are excellent due to the contribution of good electrical properties inherent to PPE (A). Since it becomes a thing, it is preferable.
  • the content of PPE (A) is 60% by mass or less, it is preferable in that the melt viscosity at the time of heat-press molding for obtaining a cured product is prevented from becoming too high, and a uniform and excellent cured product is obtained. .
  • cured material of a PPE containing resin composition is a resin composition containing PPE (A) and a crosslinkable curable compound (B). If hardened
  • a monomer having two or more unsaturated groups in the molecule is preferable. More preferably, in the course of the curing reaction of the resin composition containing PPE (A) and the crosslinkable curable compound (B), two or more unsaturated groups in the molecule that are compatible with PPE (A). Monomers having groups are preferred.
  • the temperature at which PPE (A) and the crosslinkable curable compound (B) are compatible is preferably 50 ° C. or higher and 180 ° C. or lower, more preferably 70 ° C. or higher and 170 ° C. or lower, and still more preferably 90 ° C. or higher and 160 ° C. or lower. It is below °C.
  • the temperature at which the PPE (A) and the crosslinkable curable compound (B) are compatible is 50 ° C. or higher, the PPE-containing resin composition can be stably handled without being compatible in normal handling.
  • the melt viscosity in the press molding process can be maintained moderately, which is preferable in terms of excellent moldability.
  • the temperature at which the PPE (A) and the crosslinkable curable compound (B) are compatible is 180 ° C. or lower, before the crosslinking reaction of the crosslinkable curable compound (B) proceeds, the PPE (A) and the crosslinkable curable compound (B) are crosslinked.
  • the mold curable compound (B) is compatible with each other, and the components in the PPE-containing resin composition are preferably mixed uniformly.
  • the temperature at which PPE (A) and the crosslinkable curable compound (B) are compatible is that a cast film made of PPE (A) and the crosslinkable curable compound (B) is produced, Can be obtained by observation with an optical microscope.
  • PPE (A) and a crosslinkable curable compound (B) are dissolved in trichlorethylene so that the total of PPE (A) and the crosslinkable curable compound (B) is 10% by mass.
  • trichlorethylene is removed by drying to produce a cast film on the cover glass.
  • observation with an optical microscope is performed while heating the cast film on the heating stage to observe whether or not PPE (A) and the crosslinkable curable compound (B) are compatible.
  • the temperature is raised in units of 1 ° C. near the temperature at which the compatibilization starts, and is maintained for 10 minutes or more after reaching each temperature to confirm the presence or absence of the compatibilization.
  • the temperature at which it has been confirmed that they are uniformly compatible can be determined as the compatible temperature. This is because once PPE (A) and the crosslinkable curable compound (B) are dissolved in the course of the curing reaction, phase separation can be caused as the curing reaction proceeds. This is because the morphology is easy to control.
  • Examples of monomers having two or more unsaturated groups in the molecule include triallyl isocyanurate (TAIC), triallyl cyanurate (TAC), trimethallyl cyanurate, trimethylolpropane trimethacrylate, divinylbenzene, divinylnaphthalene. , Diallyl phthalate, diallyl cyanurate and the like.
  • TAIC, TAC, trimethallyl cyanurate, divinylbenzene, and the like are preferable from the viewpoint that the compatibility with PPE (A) is good but phase separation can be caused as the curing reaction proceeds.
  • the content of the crosslinkable curable compound (B) in the cured product is preferably 5% by mass or more and 40% by mass or less based on 100% by mass of PPE (A).
  • a more preferable range of the content of the crosslinkable curable compound (B) is 10% by mass or more and 30% by mass or less, and a further preferable range of the content is 14% by mass or more and 24% by mass or less. If the content of the crosslinkable curable compound (B) is 5% by mass or more, it is easy to control the morphology of the cured product of the resin composition containing PPE (A) to the structure shown in the present invention.
  • the melt viscosity of the resin composition can be favorably reduced, which is preferable in terms of improving the moldability and improving the heat resistance of the resin composition.
  • the content of the crosslinkable curable compound (B) is 40% by mass or less, the morphology of the cured product of the resin composition containing PPE (A) can be easily controlled to the structure shown in the present invention, which is a preferable point.
  • the resin composition for forming the cured product according to the first embodiment can optionally contain, for example, one or more of the following components in addition to PPE (A) and the crosslinkable curable compound (B). .
  • the resin composition for forming the cured product according to the first embodiment preferably further includes a compound that functions as an initiator for the crosslinking reaction of the crosslinking curable compound (B).
  • a compound that functions as an initiator for the crosslinking reaction of the crosslinking curable compound (B) for example, any initiator having the ability to promote the polymerization reaction of a crosslinkable curable compound such as a vinyl monomer can be used, and an organic peroxide can be preferably used.
  • a resin composition contains the organic peroxide (D) whose half-life temperature for 1 minute is 150 degreeC or more and 190 degrees C or less.
  • the organic peroxide (D) has a 1 minute half-life temperature of 150 ° C. or higher and 190 ° C. or lower.
  • a more preferable range of the 1 minute half-life temperature of the organic peroxide (D) is 160 ° C. to 190 ° C., a more preferable range is 165 ° C. to 190 ° C., and a most preferable range is 170 ° C. to 190 ° C.
  • the 1-minute half-life temperature is a temperature at which the time during which the amount of active oxygen is reduced by decomposition of the organic peroxide is 1 minute.
  • the half-life temperature for 1 minute is obtained by dissolving an organic peroxide in a solvent inert to radicals such as benzene to a concentration of 0.05 mol / L to 0.1 mol / L. It is a value confirmed by a method of thermal decomposition under nitrogen atmosphere.
  • the half-life temperature of the organic peroxide (D) is 150 ° C. or higher, when the PPE-containing resin composition is subjected to heat and pressure molding, the PPE is sufficiently melted before the crosslinkable curable compound. Crosslinking will be initiated. Therefore, the PPE-containing resin composition containing the organic peroxide (D) is preferable because it is easy to control the morphology of the present invention and is excellent in moldability.
  • the one-minute half-life temperature of the organic peroxide (D) is 190 ° C. or less, the decomposition rate of the organic peroxide is sufficient under normal heating and pressing molding conditions (for example, a maximum temperature of 200 ° C.).
  • the crosslinking reaction of the crosslinkable curable compound can be efficiently and gently advanced using a relatively small amount (for example, the following range) of the organic peroxide. Thereby, it is easy to control to the morphology of the present invention, and furthermore, a cured product having good electrical characteristics (particularly dielectric loss tangent) can be formed.
  • Examples of the organic peroxide (D) include 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylperoxyacetate, di-t-butylperoxide, t- Butylcumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, dicumyl peroxide, t -Butylperoxybenzoate, 2,2-bis (t-butylperoxy) butane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, and the like may be used.
  • ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, and 2,5 from the viewpoint of providing a cured product having excellent heat resistance and a lower dielectric constant and dielectric loss tangent.
  • -Dimethyl-2,5-di (t-butylperoxy) hexane is preferred.
  • a particularly preferred combination of the crosslinking curable compound and the organic peroxide (D) is triallyl isocyanurate and ⁇ , ⁇ '-bis (t- Butylperoxy-m-isopropyl) benzene or triallyl isocyanurate and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane.
  • the organic peroxide (D) contained in the PPE-containing resin composition is based on a total mass of 100 parts by mass of the PPE (A) and the crosslinkable curable compound (D). It is preferably 1 part by mass or more and 5 parts by mass or less. A more preferable range of the content of the organic peroxide (D) is 1.4 to 4 parts by mass, and a more preferable range is 1.8 to 3.8 parts by mass.
  • the content of the organic peroxide (D) is 1 part by mass or more, the PPE-containing resin composition can be sufficiently cured in a normal heating and pressing molding process.
  • the content of the organic peroxide (D) is 5 parts by mass or less, the cured product has excellent electrical characteristics. The reason why excellent electrical characteristics can be obtained is not clear, but it is presumed that a cured product with less distortion is formed by allowing the crosslinking reaction of the crosslinking curable compound to proceed slowly.
  • Organic peroxide (F) The resin composition for forming the cured product according to the first embodiment has a 1-minute half-life temperature in addition to the organic peroxide (D) having a 1-minute half-life temperature of 150 ° C. or more and 190 ° C. or less. It is also preferable to further include an organic peroxide (F) that is higher than 190 ° C. and not higher than 250 ° C. Examples of the organic peroxide (F) include 2,5-dimethyl-2,5-di (t-butylperoxy) hexene-3, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1 3,3-tetramethylbutyl hydroperoxide and the like.
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexene-3 is preferable from the viewpoint of excellent heat resistance and a cured product having a lower dielectric constant and dielectric loss tangent. .
  • the content of the organic peroxide (F) in the PPE-containing resin composition is preferably 1 part by mass or more and 3 parts by mass or less based on 100 parts by mass of the total mass of PPE and the crosslinkable curable compound. More preferably, it is 1.5 mass% or more and 2.5 mass% or less.
  • the electrical characteristics of the resin composition or the cured product can be improved. Without sacrificing, the glass transition temperature (Tg) of the cured product can be increased and the heat resistance of the cured product can be improved.
  • the resin composition may further contain a compatibilizer in addition to PPE (A) and the crosslinkable curable compound (B). It is preferable for the resin composition to contain a compatibilizer because the morphology of the cured product can be easily controlled to the structure of the present disclosure.
  • compatibilizer at least one selected from natural rubber, diene rubber, non-diene rubber, thermoplastic elastomer, phosphorus (P) atom-containing compound and the like can be used. Of these, thermoplastic elastomers and / or P atom-containing compounds are preferred.
  • thermoplastic elastomers styrene elastomers having a styrene skeleton in the hard segment (styrene / butadiene / styrene block copolymer, styrene / ethylene / butylene / styrene block copolymer, styrene / butadiene / butylene / styrene block copolymer)
  • PPE A
  • a crosslinkable curable compound (B) This is preferable because the morphology of the cured product can be controlled within the scope of the present invention without
  • Hydrogenated block copolymer (C) A styrene elastomer is obtained by hydrogenating a block copolymer consisting of at least one polymer block mainly composed of a vinyl aromatic compound and at least one polymer block mainly composed of a conjugated diene compound.
  • the hydrogenated block copolymer (C) to be used can be preferably used.
  • the hydrogenated block copolymer refers to the hydrogenated number of double bonds based on the conjugated diene that the block copolymer (that is, the non-hydrogenated block copolymer) has.
  • the double bond residual rate is a value confirmed using a nuclear magnetic resonance apparatus (NMR) or the like.
  • the residual rate of double bonds is preferably 25% or less, more preferably 10% or less, and even more preferably 5% or less. From the viewpoint of ease of production, it may be preferably 0.5% or more, more preferably 1% or more.
  • the block structure of the hydrogenated block copolymer (C) includes the following polymer block a mainly composed of a vinyl aromatic compound, and polymer block b mainly composed of a conjugated diene compound.
  • the polymer block a mainly composed of a vinyl aromatic compound was hydrogenated with a vinyl aromatic compound polymer block or a vinyl aromatic compound containing more than 50% by mass, preferably 70% by mass or more of a vinyl aromatic compound. It is a copolymer block with a conjugated diene compound.
  • the polymer block b mainly composed of a conjugated diene compound is a hydrogenated conjugated diene compound polymer block or a hydrogenated conjugated diene compound containing more than 50% by mass, preferably 70% by mass or more. It is a copolymer block of a conjugated diene compound and a vinyl aromatic compound.
  • the distribution of hydrogenated conjugated diene compound or vinyl aromatic compound in the molecular chain in each of polymer block a and polymer block b is random, tapered (ie, the monomer component increases or decreases along the molecular chain) ), Partially blocky, or any combination thereof.
  • the polymer blocks may have the same structure or different structures.
  • the hydrogenated block copolymer (C) may have any molecular structure of linear, branched (including radial), or any combination thereof.
  • Examples of the vinyl aromatic compound constituting the hydrogenated block copolymer (C) include one or two of styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, p-tert-butylstyrene, and the like. From the viewpoint that styrene is excellent in compatibility between the vinyl aromatic compound site in the hydrogenated block copolymer and PPE, and the compatibility between the hydrogenated block copolymer (C) and PPE is easy to control. preferable.
  • Examples of the conjugated diene compound before hydrogenation for obtaining a hydrogenated conjugated diene compound include butadiene, isoprene, 1,3-pentadiene, 1,3-dimethyl-1,3-butadiene, and the like. One type or two or more types are selected. Among them, since the conjugated diene compound site in the hydrogenated block copolymer and PPE are incompatible with each other, butadiene, isoprene, and these can be used from the viewpoint of easily controlling the compatibility between the hydrogenated block copolymer and PPE. A combination is preferred. A particularly preferred example is a hydrogenated styrene / butadiene copolymer.
  • the content of the vinyl aromatic compound unit in the hydrogenated block copolymer is preferably 5% by mass or more and 50% by mass or less.
  • the content of the vinyl aromatic compound unit is 8% by mass or more and 40% by mass or less, and a more preferable range is 10% by mass or more and 35% by mass or less.
  • the content of the vinyl aromatic compound unit is 5% by mass or more, the compatibility between the PPE and the hydrogenated block copolymer (C) is sufficient, and the PPE and the hydrogenated block copolymer are uniformly distributed. Therefore, the adhesiveness between the cured product of the PPE-containing resin composition and the metal foil can be improved.
  • the content of the vinyl aromatic compound unit is 50% by mass or less, the electrical properties and heat resistance improving effect that are manifested by including the hydrogenated block copolymer (C) in the PPE-containing resin composition. Is remarkably obtained.
  • the weight average molecular weight of the hydrogenated block copolymer (C) is preferably 30,000 or more and 300,0000 or less.
  • a more preferable range of the weight average molecular weight of the hydrogenated block copolymer is from 55,000 to 270,000, and a further preferable range is from 80,000 to 220,000.
  • a weight average molecular weight of 30,000 or more is preferable because the PPE-containing resin composition is excellent in heat expansion.
  • a weight average molecular weight of 300,000 or less is preferable because the heat resistance of the cured product of the PPE-containing resin composition can be kept good.
  • the content of the hydrogenated block copolymer (C) in the PPE-containing resin composition is 3 parts by mass or more and 20 parts by mass based on the total mass of 100 parts by mass of the PPE (A) and the crosslinkable curable compound (C). Or less, preferably 4 to 18 parts by mass, more preferably 5 to 16 parts by mass.
  • cured material of a PPE containing resin composition become favorable because content of a hydrogenated block copolymer (C) is 3 mass parts or more.
  • the content of the hydrogenated block copolymer (C) is 20 parts by mass or less, the heat-expandable property of the cured product and the adhesion of the cured product to the metal foil are improved.
  • the resin composition is compatible with both PPE (A) and the crosslinkable curable compound (B) in addition to PPE (A) and the crosslinkable curable compound (B). It is preferable that a phosphorus (P) atom containing compound (E) is included.
  • the resin composition containing the P atom-containing compound (E) can appropriately reduce the melt viscosity in the compression molding process of the resin composition, and can control the morphology of the cured product within the scope of the present invention. There exists a tendency which can obtain the hardened
  • the P atom-containing compound (E) is not limited as long as it contains P atoms and is compatible with both PPE (A) and the crosslinkable curable compound (B). It may be a phenanthrene derivative, phosphazene, an aromatic condensed phosphate, or the like.
  • the phosphaphenanthrene derivative (C) has the following formula (2): ⁇ Wherein R11, R12 and R13 each independently represents a hydrogen atom or an organic group. ⁇ It is a compound represented.
  • the phosphaphenanthrene derivative represented by the formula (2) is represented by the following formula (3) from the viewpoint that a resin composition excellent in dielectric properties and heat resistance can be obtained.
  • R12 and R13 are each independently a hydrogen atom or an organic group
  • n is an integer of 1 or more
  • R14 is a phenyl group, a linear or branched alkyl group, or an alkenyl group.
  • Phosphazene has the following formula (4) ⁇ In the formula, n is an integer of 3 to 25, and R 5 to R 14 are each independently a hydrogen atom or an organic group. ⁇ It is a compound represented by these.
  • the organic group in the above formula (4) is a C 1 to C 16 hydrocarbon group having an unsaturated double bond such as a vinyl group, an allyl group, a propargyl group, a methallyl group, a (meth) acryl group, or a styryl group, or And a hydroxyl group, a cyano group, a cyanate group, or a C 1 -C 16 hydrocarbon group having these functional groups. It is also preferred that the phosphazene is a cyclic phosphazene.
  • cyclic phosphazene phenoxyphosphazene, xylenoxyphosphazene, or cyanophenoxyphosphazene is preferable from the viewpoint that a resin composition excellent in dielectric properties and heat resistance can be obtained.
  • aromatic condensed phosphate ester for example, 1,3 phenylene bis (diphenyl phosphate), bisphenol A bis (diphenyl phosphate), 1,3 phenylene bis (di 2,6 xylenyl phosphate) and the like can be used. . From the viewpoint of obtaining a resin composition having excellent dielectric properties and heat resistance, 1,3-phenylenebis (di-2,6xylenyl phosphate) is preferred.
  • the content of the P atom-containing compound (E) in the PPE-containing resin composition is 0.5 parts by mass or more and 15 parts by mass based on 100 parts by mass of the total mass of the PPE (A) and the crosslinkable curable compound (B). It is below mass parts.
  • the content of the P atom-containing compound (E) is preferably 1 part by mass or more and 13 parts by mass or less, more preferably 2 parts by mass or more and 11 parts by mass or less, and further preferably 3 parts by mass or more and 10 parts by mass or less.
  • the total content of the crosslinkable curable compound (B) and the P atom-containing compound (E) in the PPE-containing resin composition is PPE (A), the crosslinkable curable compound (B), and the P atom-containing compound (E ) Is preferably 30% by mass or more and 45% by mass or less, and more preferably 32% by mass or more and 43% by mass or less.
  • the resin composition can contain other resin (for example, a thermoplastic resin, curable resin, etc.) different from PPE (A) and a crosslinkable curable compound (B).
  • other resin for example, a thermoplastic resin, curable resin, etc.
  • thermoplastic resin examples include ethylene, propylene, butadiene, isoprene, styrene, divinylbenzene, methacrylic acid, acrylic acid, methacrylic ester, acrylic ester, vinyl chloride, acrylonitrile, maleic anhydride, vinyl acetate, tetrafluoride.
  • styrene homopolymers styrene-butadiene copolymers, and styrene-ethylene-butadiene copolymers can be preferably used from the viewpoints of solubility of the resin composition in a solvent and moldability.
  • curable resin examples include phenol resins, epoxy resins, and cyanate esters.
  • the thermoplastic resin and curable resin may be modified with a functional compound such as an acid anhydride, an epoxy compound, or an amine.
  • the amount of such other resin used is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and still more preferably 20 parts by mass or more with respect to 100 parts by mass of PPE (A). From the point of exhibiting the dielectric properties and heat resistance, it is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, and still more preferably 50 parts by mass or less.
  • the range of the amount of the epoxy resin in the resin composition is 10% by mass or more and 10% from the viewpoint of obtaining a resin composition that gives the cured product the excellent dielectric properties of PPE. It is preferable to adjust to mass% or less, and it is more preferable to adjust to 0.1 mass% or more and 10 mass% or less especially from a viewpoint of improving adhesiveness.
  • the resin composition may further contain an appropriate additive depending on the purpose.
  • the additive include a flame retardant, a heat stabilizer, an antioxidant, a UV absorber, a surfactant, a lubricant, a filler, and a polymer additive.
  • the resin composition further contains a flame retardant, good moldability, water absorption resistance, solder heat resistance, and adhesion (for example, peel strength between layers in a multilayer board, or between cured product and copper foil, etc.)
  • a flame retardant for example, good moldability, water absorption resistance, solder heat resistance, and adhesion (for example, peel strength between layers in a multilayer board, or between cured product and copper foil, etc.)
  • the flame retardant is not particularly limited as long as it has a function of inhibiting the combustion mechanism.
  • Inorganic flame retardants such as antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, hexabromobenzene, decabromodiphenyl
  • aromatic bromine compounds such as ethane, 4,4-dibromobiphenyl, and ethylene bistetrabromophthalimide
  • phosphorus-based flame retardants such as resorcinol bis-diphenyl phosphate and resorcinol bis-dixylenyl phosphate.
  • decabromodiphenylethane and the like are preferable from the viewpoint of keeping the dielectric constant and dielectric loss tangent of the obtained cured product low.
  • the amount of flame retardant used varies depending on the flame retardant used and is not particularly limited. From the viewpoint of maintaining flame retardancy at the UL standard 94V-0 level, PPE (A) and the crosslinkable curable compound (B) Is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and still more preferably 15 parts by mass or more. Moreover, from the viewpoint that the dielectric constant and dielectric loss tangent of the obtained cured product can be kept small, the amount used is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, and still more preferably 40 parts by mass or less.
  • cured material which concerns on 1st embodiment mentioned above is provided.
  • the electronic circuit board material may be a film or plate in which the cured product is present alone, or may be a film or plate that is a composite with a substrate or the like.
  • the electronic circuit board material may be a film or plate in which a film or plate and a metal foil are integrated.
  • the electronic circuit board material may be a laminate obtained by laminating a film or plate.
  • the electronic circuit board formed using the electronic circuit board material according to the second embodiment is a resin film, a composite obtained by curing the resin of the prepreg that is an impregnated composite of a base material and a resin, It may be a metal foil with resin, or a laminate composed of two or more of these.
  • the electronic circuit board formed using the electronic circuit board material can be a copper clad laminate, a multilayer copper clad laminate, a printed wiring board, a multilayer printed wiring board, etc.
  • the cured product according to the form is suitable as these constituent materials.
  • each physical property was measured by the following method. That is, dielectric constant and dielectric loss tangent were evaluated as indicators of electrical characteristics, and glass transition temperature, solder heat resistance, T288 test and T300 test were evaluated as indicators of heat resistance.
  • cured material with a transmission electron microscope followed the means mentioned above in the form for inventing.
  • cured material The dielectric constant and dielectric loss tangent at 10 GHz of the hardened
  • a network analyzer N5230A, manufactured by Agilent Technologies
  • a cavity resonator Cavity Resonator S series manufactured by Kanto Electronics Application Development Co., Ltd. were used.
  • a cured product test piece was cut into a size of about 2 mm in width and 50 mm in length, placed in an oven at 105 ° C. ⁇ 2 ° C. and dried for 2 hours, and then 96 ⁇ 96 in an environment of 23 ° C. and relative humidity 65 ⁇ 5%.
  • the dielectric constant and dielectric loss tangent were measured using the above measuring apparatus in an environment of 23 ° C. and a relative humidity of 65 ⁇ 5%.
  • solder heat resistance after water absorption acceleration test of cured product A water absorption acceleration test was performed as a pretreatment, and a solder heat test of the cured product specimen after the water absorption acceleration test was performed at 288 ° C.
  • Water absorption acceleration test A cured product test piece was cut into a 50 mm square and subjected to a water absorption acceleration test. After the test piece was dried at 130 ° C. for 30 minutes, an acceleration test by a pressure cooker test was then performed under the conditions of temperature: 121 ° C., pressure: 2 atm, and time: 4 hours.
  • solder heat resistance test A solder heat resistance test at 288 ° C. was performed using the test piece after the water absorption acceleration test.
  • the laminated plate test piece after the water absorption acceleration test was immersed in a solder bath at 288 ° C. for 20 seconds, and visually observed.
  • a laminate test piece for which no swelling, peeling or whitening was confirmed even when immersed in a solder bath at 288 ° C. was evaluated as “pass”.
  • a laminate test piece in which any one of swelling, peeling and whitening occurred by immersion in a solder bath at 288 ° C. was evaluated as “failed”.
  • thermomechanical analyzer thermomechanical analyzer
  • the test piece was cut into a 6.35 mm square, dried in an oven at 105 ° C. for 2 hours, and then cooled to a room temperature of 23 ° C. in a desiccator. A weight of 0.005N is applied to the test piece, and the sample is heated from room temperature to 288 ° C. at a heating rate of 10 ° C./min. After reaching 288 ° C., 288 ° C. until delamination occurs. Maintained. The time until delamination occurred after reaching 288 ° C. was expressed as the result of the T288 test. Moreover, the test piece in which delamination did not occur for 60 minutes or more after reaching 288 ° C. was stopped in 60 minutes and expressed as 60 minutes or more.
  • cured material The time until this test piece raise
  • TMA thermomechanical analyzer
  • the test piece was cut into a 6.35 mm square, dried in an oven at 105 ° C. for 2 hours, and then cooled to a room temperature of 23 ° C. in a desiccator. A weight of 0.005 N is applied to the test piece, and the sample is heated from room temperature to 300 ° C. at a heating rate of 10 ° C./min at 300 ° C. until reaching 300 ° C. until delamination occurs. Maintained.
  • the time until delamination occurred after reaching 300 ° C. was expressed as the result of the T300 test.
  • attaining 300 degreeC stopped the test in 60 minutes, and described it as 60 minutes or more.
  • the temperature of the reaction solution containing the low molecular weight PE was lowered to 50 ° C., an aqueous solution in which 340 g of sodium hydroxide was dissolved in 3050 g of ion-exchanged water and 31 g of tetrabutylammonium iodide were added and stirred for 5 minutes. Subsequently, 1070 g of benzyl chloride was added and stirring was continued at a temperature of 50 ° C. for 4 hours to obtain a reaction solution containing low molecular weight / benzylated PPE. The reaction solution was allowed to stand and the two layers were separated, and then the lower tank was removed.
  • PPE (A) PPE S202A: Asahi Kasei Chemicals, number average molecular weight 18,000 PPE S203A: Asahi Kasei Chemicals, number average molecular weight 10,000 Low molecular weight / terminal benzylated PPE: PPE produced by Production Example 1, number average molecular weight 3,000 (Crosslinkable curable compound (B)) Triallyl isocyanurate: TAIC, manufactured by Nippon Kasei Chemical (additive 1) SEBS Tuftec H1041: Asahi Kasei Chemicals, hydrogenated styrene / butadiene copolymer having a styrene unit / ethylene / butylene unit mass ratio of 30/70, SEBS Tuftec H1043: Asahi Kasei Chemicals, hydrogenated styrene / butadiene copolymer having a styrene unit
  • Examples 1 to 7 Comparative Examples 1 to 6> A resin composition having the composition shown in Table 1 or 2 was mixed using a toluene solvent to prepare a resin varnish.
  • the resin varnish was impregnated into a glass cloth (trade name “2116”, manufactured by Asahi Schavel Co., Ltd.) and dried at 120 ° C. for 2 minutes to obtain a prepreg having a resin composition solid content of 54 mass%.
  • the prepregs were stacked in the number of sheets described later, and were subjected to vacuum press (heat and pressure molding) to obtain a cured product.
  • cured material was performed on condition of the following in order to obtain the test piece suitable for every measurement.
  • Example 8> The resin composition shown in Table 1 was mixed using a mixed solvent of toluene and cyclohexanone to prepare a resin varnish.
  • the resin varnish was impregnated into a glass cloth (trade name “2116”, manufactured by Asahi Schavel Co., Ltd.) and dried at 150 ° C. for 4 minutes to obtain a prepreg having a resin composition solid content of 54 mass%.
  • a test piece for evaluation was prepared in the same manner as in Example 1 using the prepreg.
  • Example 9 A prepreg was produced and a test piece for evaluation was produced in the same manner as in Example 8 except that the drying condition was 150 ° C. for 2 minutes.
  • the copper foil was removed by etching from a portion of the cured product test piece for T288 measurement to obtain a cured product test piece for measuring the dielectric constant and dielectric loss tangent.
  • the spherical dispersed phase was present in the transmission electron microscope observation of the cured product test piece of Example 5 at a magnification of 10,000 times.
  • a spherical dispersed phase and a string-like dispersed phase were mixed in observation with a transmission electron microscope at a magnification of 10,000.
  • the above-described continuous phase site in the transmission electron microscope observation at a magnification of 10,000 was observed with a transmission electron microscope observation at a magnification of 200,000 times.
  • the phase mainly composed of PPE was 40% by area or more with respect to the whole.
  • the area% of the phase (A phase) which has PPE in a co-continuous structure as a main component was computed by the area integration method demonstrated above, the area% of A phase is It was 54%.
  • Example 5 The cured product specimens of Example 5 were all excellent in dielectric constant, dielectric loss tangent, glass transition temperature, solder heat resistance test, and T288 test. Further, in Examples 1 to 4 and 6 to 8, all passed the T300 test in addition to the dielectric constant, dielectric loss tangent, glass transition temperature, solder heat resistance test and T288 test.
  • Example 9 had the same resin composition as Example 8, but had less drying conditions and more residual solvent than Example 8 (the weight loss on drying when heated at 100 ° C. for 15 minutes was reduced). In Example 8, it was 1.2%, whereas in Example 9, it was 2.6%, which was higher than Example 8.)
  • the cured product specimen of Example 9 had a spherical dispersed phase and a string-like dispersed phase in a transmission electron microscope observation at a magnification of 10,000, and a coarse dispersed phase larger than these dispersed phases was present. Since the residual solvent is large and the melt viscosity is lowered from the relatively low temperature region (130 ° C. to 160 ° C.) and the resin orientation occurs during pressing, further orientation of the resin occurs in the high temperature region (160 ° C.
  • Example 9 The cured product test piece of Example 9 was excellent in dielectric constant, dielectric loss tangent, glass transition temperature, solder heat resistance test and T288 test, but failed in the T300 test.
  • the cured product test piece of Comparative Example 1 had a relatively large number of spherical dispersed phases in a transmission electron microscope observation at a magnification of 10,000 times, but there were few string-like dispersed phases, and there were coarse dispersed phases larger than these dispersed phases. There were many. Since the organic peroxide used in Comparative Example 1 has a high half-life temperature of 1 minute, it is considered that a curing reaction and accompanying phase separation occurred on the relatively high temperature side (185 ° C. or higher). Before the phase separation starts ( ⁇ 185 ° C.), the melt viscosity of the uncured resin composition is sufficiently lowered, and the orientation of the resin composition on the compression surface has advanced, so that a curing reaction occurs.
  • the cured product specimen of Comparative Example 1 was obtained by observing a continuous phase portion in a transmission electron microscope observation at a magnification of 10,000 times with a transmission electron microscope observation at a magnification of 200,000 times. Was less than 40% by area relative to the whole.
  • the cured product specimen of Comparative Example 1 failed the T300 test and had a high dielectric loss tangent.
  • the resin composition of Comparative Example 2 contained more organic peroxide than Examples 1 and 2.
  • the cured product test piece of Comparative Example 2 had less than 40 area% of the phase mainly composed of PPE in the morphological image at a magnification of 200,000 by observation with a transmission electron microscope.
  • the cured product test piece of Comparative Example 2 was excellent in the glass transition temperature, solder heat resistance test, and T288 test, but had a significantly high dielectric loss tangent.
  • the resin composition of Comparative Example 3 had a lower SEBS content than Examples 1 and 2.
  • a morphological image at a magnification of 10,000 times observed with a transmission electron microscope a small amount of spherical dispersed phase was present, but no string-like dispersed phase was present (there was no larger coarse dispersed phase). It is presumed that the large phase separation observed at a magnification of 10,000 did not occur due to the low SEBS content. Further, even in the morphology image at a magnification of 20 times, the phase mainly composed of PPE was less than 40 area% with respect to the whole.
  • the cured product test piece of Comparative Example 3 was inferior in both heat resistance and dielectric loss tangent.
  • Comparative Example 4 corresponds to Example 3 described in International Publication No. 2014/141255 pamphlet. In Comparative Example 4, no phase separation structure was observed in the transmission electron microscope observation at a magnification of 10,000. The cured product test piece had a low Tg and poor heat resistance.
  • Comparative Example 5 corresponds to Example 1 of International Publication No. 2014/141255 pamphlet. In Comparative Example 5, no phase separation structure was observed in the transmission electron microscope observation at a magnification of 10,000 times. The cured product test piece had a low Tg and poor heat resistance.
  • Comparative Example 6 contains SBS used in Patent Document 4. In Comparative Example 6, no phase separation structure was observed in the transmission electron microscope observation at a magnification of 10,000. The cured product test piece had a low Tg and poor heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本願明細書では、ポリフェニレンエーテル(A)と架橋型硬化性化合物(B)とを含む樹脂組成物を圧縮成型して得られる硬化物が記載される。透過型電子顕微鏡を用いて前記硬化物の圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、分散相と連続相とから成る相分離構造が観察される。透過型電子顕微鏡を用いて前記硬化物の圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記連続相は、前記ポリフェニレンエーテル(A)を主成分とするA相と前記架橋型硬化性化合物(B)を主成分とするB相を含む共連続構造を有しており、且つ、前記共連続構造において前記A相の占める面積割合が、40面積%以上90面積%以下である。

Description

ポリフェニレンエーテルを含む樹脂組成物の硬化物
 本発明は、電子回路基板用材料等に好適に用いることが可能な、ポリフェニレンエーテル(以下、PPEともいう。)を含む樹脂組成物の硬化物、及び該硬化物を構成成分とする電子回路基板に関する。
 近年、情報ネットワーク技術の著しい進歩、及び情報ネットワークを活用したサービスの拡大により、電子機器には情報量の大容量化又は処理速度の高速化が求められていた。デジタル信号を大容量かつ高速に伝達するためには、信号の波長を短くすることが有効であり、信号の高周波化が進んでいる。PPEは、誘電率、誘電正接等の高周波特性(すなわち誘電特性)が優れており、且つ、高い耐熱性を有するため、高周波数帯を利用する電子機器の電子回路基板用の絶縁材料として好適である。
 一般に、PPEは、本来熱可塑性樹脂であるため、電子回路基板用の絶縁材料として用いられる際に架橋型硬化性化合物とともに用いられる。PPEと架橋型硬化性化合物を含む樹脂組成物の硬化物は、電子回路基板用の絶縁材料として、誘電特性と、鉛フリーのはんだ実装等のプロセス適合に必要な耐熱性とを併せ持つことが可能となる。
 PPEと架橋型硬化性化合物とを含む樹脂組成物の硬化物について多くの試みが為されており、例えば、特許文献1~5及び非特許文献1~2に記載されている。
 非特許文献1、特許文献1及び2等に報告されているPPEと架橋型硬化性化合物とを含む樹脂組成物は、PPEと架橋型硬化性化合物とが相分離することなく均一な構造物であることが特徴である。
 非特許文献1には、PPEと架橋型硬化性化合物の相溶性が良く、かつ相構造が均一相である硬化物が、耐熱性に優れ、低誘電・高耐熱多層プリント配線基板材料として好適であることが記載されている。逆に、非特許文献1には、PPEと架橋型硬化性化合物とに相分離構造が観察されると、界面の密着性が低下し、耐熱性が低下することが示されている。耐熱性の低下が発生する分散相の大きさは、非特許文献1の図2に基づくと、約1.0μm~約17μmである。
 特許文献1には、PPEとエポキシ樹脂(架橋型硬化性化合物)とエポキシ樹脂の硬化剤とを含むプリント配線板用の樹脂組成物が記載されており、硬化過程で相分離を起こさないために、接着性又は耐熱性が高く、優れた電気特性を有することが記載されている。
 特許文献2には、PPEと熱硬化性樹脂(架橋型硬化性化合物)が均一なモルフォロジーを示すことで、耐熱性と電気特性に優れたプリント配線版が得られることが記載されている。なお、特許文献2には、粒径1μm以上のエポキシ樹脂相が観察されると、両相の界面密着性が弱く、耐熱性が低下する問題があることが記載されている。
 一方、非特許文献2には、PPEと架橋型硬化性化合物とが相分離している構造物が記載されている。非特許文献2には、PPEとTAIC(架橋型硬化性化合物)と開始剤(α,α’-ビス(t-ブチルパーオキシ-m-イソプロビル)ベンゼン))とを含む樹脂組成物の押出し成型品の熱硬化物が周期構造を有することが記載されている。
 非特許文献2には熱硬化物のプリント配線板への適用について記載されていないが、特許文献3及び4には、非特許文献2に記載の樹脂組成物と同等の樹脂組成物の硬化物がプリント配線板に適することが記載されている。特許文献3に記載の樹脂組成物は、PPEとTAICと開始剤(パーブチルP α,α’-ビス(t-ブチルパーオキシ-m-イソプロビル)ベンゼンを含む。特許文献4に記載の樹脂組成物は、PPEとTAICと開始剤(α,α‘ビス(t-ブチルパーオキシ-m-イソプロビル)ベンゼン)とに加えて、スチレン-ブタジエン共重合体を含む。特許文献3及び4には、硬化物のモルフォロジーに関する記載はないが、非特許文献2と同等の樹脂構成を有するので、モルフォロジーも非特許文献2と同等であることが予想される。
 特許文献5にも、PPEと、エポキシ樹脂(架橋型硬化性化合物として、ビスフェノールA型エポキシ樹脂とクレゾールノボラック型エポキシ樹脂)と、エポキシ基含有[スチレン-ブタジエン-スチレン]ブロック共重合体とを含む樹脂組成物が、相分離構造を取ることが記載されている。
国際公開第2004/104097号パンフレット 特開2004-168902号公報 特開2004-259899号公報 特開2002-265777号公報 特開2003-238925号公報
パナソニック電工技報、Vol.56,No.4 T.Inoue,Poly.Eng.Sci.36,11,p1541(1996)
 非特許文献1、並びに特許文献1及び2に記載のPPE含有樹脂組成物の硬化物は、相分離構造が無く均一なモルフォロジーを有し、かつ該モルフォロジーを取ることで耐熱性が向上する。しかしながら、非特許文献1、並びに特許文献1及び2に記載のPPE含有樹脂組成物の硬化物は、誘電正接が高く(例えば、非特許文献1では1GHzで0.005、特許文献1の実施例1~4では1MHzで0.006~0.009)、近年の高周波基板に要求される誘電特性としては大きく劣るものであった。
 非特許文献2には、PPE含有樹脂組成物の硬化物が相分離を起こすことについては記載されているが、硬化物をプリント配線板用材料として使用する記載はなく、特に誘電特性に関する記載はない。
 特許文献3のPPE含有樹脂組成物の硬化物の誘電正接は、1MHzで0.0025~0.0032と高く(特許文献3の実施例)、GHz帯に対応できるものではなかった。特許文献4には、PPE含有樹脂組成物の硬化物の誘電特性に関して具体的な記載がない。特許文献4には、樹脂硬化物が耐熱性に優れることが記載されているが、260℃でのはんだ耐熱試験では、樹脂硬化物は、鉛フローはんだに適用できると言えるものではなかった。
 上述の通り、非特許文献2、並びに特許文献3及び4に記載されているPPEを含む樹脂組成物の硬化物も、高周波数帯(GHz帯)を利用する電子機器の電子回路基板用絶縁材料としては、なお一層の改善を必要とするものであった。
 特許文献5に記載のPPE含有樹脂組成物の硬化物は、耐熱性と耐クラック性の改善を目的としたものであり、特許文献5には硬化物の誘電特性が記載されていない。
 したがって、本発明が解決しようとする課題は、高周波数帯(GHz帯)での電気特性に優れ、かつプロセス適合に必要な耐熱性(特に、はんだ耐熱性試験、T288試験、及びT300試験における良好な耐熱性)を有する、PPEを主成分とする樹脂組成物の硬化物を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討し、実験を重ねた結果、PPEと架橋型硬化性化合物とを含む樹脂組成物の硬化物が特定のモルフォロジーを有することにより、PPEが本来有する誘電特性と耐熱性とを損なうことなく、硬化物を基板等に成型できることを見出して、本発明を完成した。
 すなわち、本発明は以下の通りのものである。
[1]
 ポリフェニレンエーテル(A)と架橋型硬化性化合物(B)とを含む樹脂組成物を圧縮成型して得られる硬化物であって、
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、分散相と連続相とから成る相分離構造が観察され、そして、
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記連続相が、前記ポリフェニレンエーテル(A)を主成分とするA相と前記架橋型硬化性化合物(B)を主成分とするB相を含む共連続構造を有しており、且つ、前記A相が前記連続相を占める面積割合が、40面積%以上90面積%以下である、硬化物。
[2]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記共連続構造の構造周期が、0.5nm~50nmである、[1]に記載の硬化物。
[3]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記A相が前記連続相を占める面積割合が、50面積%以上80面積%以下である、[1]または[2]に記載の硬化物。
[4]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記A相が前記連続相を占める面積割合が、55面積%以上70面積%以下である、[1]または[2]に記載の硬化物。
[5]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記分散相の占める面積割合が、10面積%以上80面積%以下である、[1]~[4]の何れか1項に記載の硬化物。
[6]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、長径が0.001μm以上1.0μm未満であり、かつ長径/短径比が1.0以上3.0以下である球状分散相が存在する、[1]~[5]の何れか1項に記載の硬化物。
[7]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相の占める面積割合が、10面積%以上80面積%以下である、[6]に記載の硬化物。
[8]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相に加えて、長径が1.0μm以上18μm以下であり、短径が0.001μm以上2.0μm以下であり、かつ長径/短径比が2.0以上30以下である紐状分散相が存在する、[6]または[7]に記載の硬化物。
[9]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相及び前記紐状分散相の占める面積割合が、10面積%以上80面積%以下である、[8]に記載の硬化物。
[10]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記紐状分散相の占める面積割合が、前記球状分散相と前記紐状分散相の面積の合計に対して50面積%以上90面積%以下である、[8]または[9]に記載の硬化物。
[11]
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記紐状分散相の占める面積割合が、前記球状分散相と前記紐状分散相の面積の合計に対して70面積%以上90面積%以下である、[8]または[9]に記載の硬化物。
[12]
 前記ポリフェニレンエーテル(A)の含有量が、前記硬化物の質量100質量%を基準として、20質量%以上60質量%以下である、[1]~[11]の何れか1項に記載の硬化物。
[13]
 前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)に加えて、ビニル芳香族化合物-共役ジエン化合物ブロック共重合体を水素添加して得られる水添ブロック共重合体(C)、及び有機過酸化物(D)をさらに含む樹脂組成物を圧縮成型して得られる硬化物であって、
 前記水添ブロック共重合体(C)におけるビニル芳香族化合物単位の含有量が、5質量%以上50質量%以下であり、
 前記水添ブロック共重合体(C)の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の合計質量100質量部を基準として、3質量部以上20質量部以下であり、
 前記有機過酸化物(D)の1分間半減期温度が、150℃以上190℃以下であり、そして
 前記有機過酸化物(D)の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の合計質量100質量部を基準として、1質量部以上5質量部以下である、
[1]~[12]の何れか1項に記載の硬化物。
[14]
 1分間半減期温度が190℃を超え250℃以下である有機過酸化物(F)をさらに含み、かつ前記有機過酸化物(F)の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の合計質量100質量部を基準として、1質量部以上3質量部以下である、[13]に記載の硬化物。
[15]
 前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)に加えて、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の両方に相溶性であるP原子含有化合物(E)をさらに含み、
 前記P原子含有化合物(E)の含有量が、前記ポリフェニレンエーテル(A)と前記P原子含有化合物(E)の合計質量100質量部を基準として、0.5質量部以上15質量部以下であり、且つ、
 前記架橋型硬化性化合物(B)と前記P原子含有化合物(E)の合計の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)と前記P原子含有化合物(E)の合計質量100質量%を基準としたとき、30質量%以上45質量%以下である、
[1]~[14]の何れか1項に記載の硬化物。
[16]
 [1]~[15]の何れか1項に記載の硬化物を含む電子回路基板であって、樹脂フィルム、基材と樹脂との含浸複合体であるプリプレグの前記樹脂を硬化させることにより得られる複合体、樹脂付金属箔、又はこれらの2つ以上から成る積層体から選択される、電子回路基板。
 本発明によれば、高周波数帯(GHz帯)での良好な誘電特性とプロセス適合に必要な耐熱性とを兼ね備えた、PPE含有樹脂組成物の硬化物、及び該硬化物を含む電子回路基板を提供することができる。
実施例2で作製した硬化物の透過型電子顕微鏡(倍率1万倍)によるモルフォロジー画像を示す図である。 実施例5で作製した硬化物の透過型電子顕微鏡(倍率1万倍)によるモルフォロジー画像を示す図である。 実施例8で作製した硬化物の透過型電子顕微鏡(倍率1万倍)によるモルフォロジー画像を示す図である。 実施例9で作製した硬化物の透過型電子顕微鏡(倍率1万倍)によるモルフォロジー画像を示す図である。 比較例1で作製した硬化物の透過型電子顕微鏡(倍率1万倍)によるモルフォロジー画像を示す図である。 比較例4で作製した硬化物の透過型電子顕微鏡(倍率1万倍)によるモルフォロジー画像を示す図である。 比較例5で作製した硬化物の透過型電子顕微鏡(倍率1万倍)によるモルフォロジー画像を示す図である。 実施例2で作製した硬化物の透過型電子顕微鏡(倍率20万倍)によるモルフォロジー画像を示す図である。 実施例5で作製した硬化物の透過型電子顕微鏡(倍率20万倍)によるモルフォロジー画像を示す図である。 実施例8で作製した硬化物の透過型電子顕微鏡(倍率20万倍)によるモルフォロジー画像を示す図である。 実施例9で作製した硬化物の透過型電子顕微鏡(倍率20万倍)によるモルフォロジー画像を示す図である。 比較例1で作製した硬化物の透過型電子顕微鏡(倍率20万倍)によるモルフォロジー画像を示す図である。 比較例4で作製した硬化物の透過型電子顕微鏡(倍率20万倍)によるモルフォロジー画像を示す図である。 比較例5で作製した硬化物の透過型電子顕微鏡(倍率20万倍)によるモルフォロジー画像を示す図である。
 以下、本発明を実施するための形態(以下、単に「実施形態」という。)について、詳細に説明する。なお、本発明は以下の説明に限定されるものではなく、その要旨の範囲内で適宜に変形して実施することができる。
<硬化物>
 第一の実施形態では、硬化物が、ポリフェニレンエーテル(A)(以下、PPE(A)ともいう。)と架橋型硬化性化合物(B)とを含む樹脂組成物を圧縮成型することにより得られる。
<モルフォロジー>
 第一の実施形態では、透過型電子顕微鏡を用いて硬化物の圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、分散相と連続相とから成る相分離構造が観察される。また、透過型電子顕微鏡を用いて硬化物の圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、連続相は、ポリフェニレンエーテル(A)を主成分とするA相と架橋型硬化性化合物(B)を主成分とするB相を含む共連続構造を有しており、且つ、A相の連続相を占める面積割合は、40面積%以上90面積%以下である。
 なお、本開示を通じ、透過型顕微鏡で観察されるモルフォロジー画像は、ウルトラミクロトームで加工した厚さ30nm~50nmの超薄切片に四酸化ルテニウムで染色処理を施して検鏡試料とし、該検鏡試料を透過型顕微鏡を用いて加速電圧30kVの条件で撮影された画像である。具体的な撮影方法として、実施例でのモルフォロジー観察に用いた方法を次に示す。PPE含有樹脂組成物の硬化物をエポキシ系樹脂に包埋した後、ウルトラミクロトームにて圧縮面に切り出し厚さ30nm~50nmの超薄切片を作製する。該超薄切片を検眼用グリットに載せ、四酸化ルテニウムで染色処理を施し、検鏡試料とする。該検鏡試料を、透過型電子顕微鏡(LEICA ULTRA CUTUCT、S-5500、日立製)を用い、加速電圧30kVの条件で観察する。
 なお、本開示における透過型電子顕微鏡(倍率1万倍)でのモルフォロジー観察とは、観察画像が105.9μmの視野を有するように、透過型電子顕微鏡(倍率1万倍)観察を行い、該観察画像に存在する全ての対象分散相について観察を行うことをいう。後述の図1~7には視野105.9μm(11.9μm×8.9μm)の透過型電子顕微鏡(倍率1万倍)の観察画像が示されている。
 図1及び図3は、透過型電子顕微鏡の倍率1万倍でのモルフォロジー観察において、球状分散相と紐状分散相とが混在しているPPE含有樹脂組成物の硬化物(図1:実施例2の樹脂硬化物、図3:実施例8の樹脂硬化物)の透過型電子顕微鏡画像を示す。また、図2(実施例5の樹脂硬化物)は、球状分散相が存在するPPE含有樹脂組成物の硬化物の透過型電子顕微鏡画像を示す。図4及び図5は、球状分散相又は紐状分散相と異なる粗大分散相が多くを占めているPPE含有樹脂組成物の硬化物(図4:実施例9の樹脂硬化物、図5:比較例1の樹脂硬化物)の透過型電子顕微鏡画像を示す。図6及び7は、相分離が存在せず均一なモルフォロジーを有するPPE含有樹脂組成物の硬化物(図6:比較例4の樹脂硬化物、図7:比較例5の樹脂硬化物)の透過型電子顕微鏡画像を示す。
 第一の実施形態では、透過型電子顕微鏡(倍率1万倍)による硬化物の圧縮面の垂直方向から観察されるモルフォロジー画像において、分散相と連続相とから成る相分離構造が観察されることによって、架橋型硬化性化合物との複合体においてPPEが本来有する高い耐熱性を維持することができる。これは、PPEは架橋型硬化性化合物と複合体を形成する際、PPEと架橋型硬化性化合物とが相溶し、PPEが本来有する耐熱性が低下してしまう現象が起こるが、相分離構造を存在させることによって、PPEの耐熱性に優れる性質が支配的になるためと推測される。
 また、透過型電子顕微鏡(倍率1万倍)による硬化物の圧縮面の垂直方向から観察されるモルフォロジー画像において、前記分散相の占める面積割合は、10面積%以上80面積%以下であることが好ましい。前記分散相の面積割合が10面積%以上である場合、高い耐熱性が得られるので好ましい。前記分散相の面積割合が80面積%以下である場合、高い耐熱性がより良好に得られるので好ましい。
 また、本開示における透過型電子顕微鏡(倍率20万倍)でのモルフォロジー観察とは、透過型電子顕微鏡(倍率1万倍)でのモルフォロジー画像において観察された連続相部位をさらに拡大して観察を行うことをいう。後述の図8~14には視野0.26μm(0.63μm×0.41μm)の透過型電子顕微鏡(倍率20万倍)の観察画像が示されている。
 第一の実施形態では、透過型電子顕微鏡(倍率1万倍)で観察される連続相は、該連続相の透過型電子顕微鏡(倍率20万倍)でのモルフォロジー観察において、PPE(A)を主成分とするA相と架橋型硬化性化合物(B)を主成分とするB相とを含む共連続構造を有している。本開示で、PPE(A)を主成分とするA相とは、PPE(A)を架橋型硬化性化合物(B)よりも多く含む相を意図し、架橋型硬化性化合物(B)を主成分とするB相とは、架橋型硬化性化合物(B)をPPE(A)よりも多く含む相を意図する。本開示で、「分散相がA相とB相とを含む共連続構造を有している」とは、A相及びB相がそれぞれ連続した構造を持っている状態であることを意味する。なお、本開示における共連続構造とは、実質的に共連続構造であればよく、海島構造のように、A相とB相のどちらかが分散している部分が、部分的に存在してもよい。この場合、この分散している部分の面積は、透過型電子顕微鏡画像の全体面積の50%未満であればよい。連続相が共連続構造を取ることによって、誘電特性に優れる特性が発現される。
 図8~14は、共連続構造を有する樹脂硬化物の透過型電子顕微鏡画像を示す(図8:実施例2、倍率1万倍の観察で連続相である部位の倍率20万倍での透過型電子顕微鏡画像、図9:実施例5、倍率1万倍の観察で分散相及び連続相を含んでいた部位を、倍率20万倍で観察した透過型電子顕微鏡画像、図10:実施例8、倍率1万倍の観察で連続相である部位の倍率20万倍での透過型電子顕微鏡画像、図11:実施例9、倍率1万倍の観察で連続相である部位の倍率20万倍での透過型電子顕微鏡画像、図12:比較例1、倍率1万倍の観察で連続相である部位の倍率20万倍での透過型電子顕微鏡画像、図13:比較例4、倍率1万倍の観察で連続相である部位の倍率20万倍での透過型電子顕微鏡画像、図14:比較例5、倍率1万倍の観察で連続相である部位の倍率20万倍での透過型電子顕微鏡画像)。
 図8~14において、PPE(A)を主成分とする相(A相)は、四酸化ルテニウムで染色されているので、暗い部位として存在している。一方、架橋型硬化性化合物(B)を主成分とする相(B相)は、明るい部位として存在する。図8~14の樹脂硬化物は、PPE(A)を主成分とする相(A相)と架橋型硬化性化合物(B)とがそれぞれ連続しており、共連続構造を有している。
 第一の実施形態では、PPE(A)を主成分とするA相と架橋型硬化性化合物(B)を主成分とするB相とが共連続構造を形成していることによって、PPEが本来有する誘電特性を損なうことなく、架橋型硬化性化合物によって硬化物に良好な耐熱性を付与することができる。
 共連続構造を形成するための具体的な手段としては、架橋型硬化性化合物(B)として、硬化反応過程でPPE(A)と相溶できるが硬化後には完全には相溶することができない化合物を用い、架橋型硬化性化合物(B)の架橋速度を速い範囲に調整する方法を例示できる。PPE(A)と架橋型硬化性化合物(B)の相溶状態から、架橋型硬化性化合物(B)の架橋反応が進行し相溶状態が崩れる過程で、分散相が大きく成長する前に架橋型硬化性化合物(B)の架橋反応を十分に進行させることが好ましい。具体的には、架橋型硬化性化合物(B)として、分子内に2個以上の不飽和基を持つモノマーを用いる方法、架橋型硬化性化合物(B)の反応開始剤の配合量を多くする方法等を例示できる。
 第一の実施形態では、前述の共連続構造の構造周期は、0.5nm以上50nm以下であることが好ましい。構造周期の、より好ましい範囲は1nm以上30nm以下、さらに好ましい範囲は2nm以上20nm以下、最も好ましい範囲は2nm以上10nm以下である。
 ここで、共連続構造の構造周期とは、以下の方法で求めた値である。透過型電子顕微鏡(20万倍)で観察される共連続構造に、200nmに相当する線分を引き(線分(1))、該線分が上記A相および上記B相と接する点間の距離を全て計測し、その平均値を求める。次いで、上記線分と並行するが、上記線分と直交する距離で100nm以上離して、200nmに相当する線分を引き(線分(2))、上記と同様に該線分が上記A相および上記B相と接する点間の距離を全て計測し、その平均値を求める。更に、上述の線分(1)と直交する200nmに相当する線分を引き(線分(3))、上記と同様に該線分が上記A相および上記B相と接する点間の距離を全て計測し、その平均値を求める。更に、上記線分(3)と並行するが、上記線分(3)と直交する距離で100nm以上離して、200nmに相当する線分を引き(線分(4))、上記と同様に該線分が上記A相および上記B相と接する点間の距離を全て計測し、その平均値を求める。線分(1)~(4)で求めた各線分がA相およびB相と接する点間の距離の平均値の、線分(1)~(4)の平均値を求め、共連続構造の構造周期とする。
 共連続構造の構造周期が50nm以下である場合、誘電特性がより良好となるので好ましい。これは相構造がより均一に近づくためと推測される。一方、共連続構造の構造周期が0.5nm以上である場合、PPEが本来有する誘電特性を損なうことなく、架橋型硬化性化合物によって硬化物に良好な耐熱性を付与することができるため好ましい。
 上記構造周期を実現するための手段としては、架橋型硬化性化合物(B)の架橋速度を調整する方法を例示できる。具体的には、架橋型硬化性化合物(B)として、分子内に2個以上の不飽和基をもつモノマーを用い、架橋型硬化性化合物(B)の反応開始剤の配合量を調整する方法を例示できる。
 第一の実施形態では、上記共連続構造において、A相が40面積%以上90面積%以下の範囲で存在することが好ましい。上記共連続構造におけるA相の占める割合のより好ましい範囲は50面積%以上80面積%以下、さらに好ましい範囲は55面積%以上70面積%以下である。
 上記共連続構造における相が、PPE(A)を主成分とするA相であるか、又は架橋型硬化性化合物(B)を主成分とするB相であるかは、透過型電子顕微鏡による観察を、四酸化ルテニウムで染色された試料で行うことで、相の色調から判断することができる。この方法では、PPE(A)を主成分とするA相は、透過型電子顕微鏡の観察の際、暗くなっている相として識別することができる。具体的には、透過型電子顕微鏡画像(倍率20万倍)を画像編集ソフト「imageJ」で2値化処理する。横軸が0~255の諧調であり、かつ縦軸が頻度度数であるグラフにおいて、ピークトップとなる諧調を2値化処理の閾値とする。閾値より暗い部分をA相、閾値より明るい部分をB相と判定し、それぞれの面積を測定する。ただし、例えば図9のように、一画像(倍率20万倍)としては、分散相及び連続相の混在する画像(倍率20万倍)が得られる場合には、その画像(倍率20万倍)を得る根拠であった倍率1万倍の画像(例えば、図9と対応する図2)を用いて、以下の工程(i)~(iv)を含む方法(以下、「面積統合法」という)により、A相及びB相の面積を算出してよい:
  (i)分散相及び連続相の混在する画像(倍率20万倍)を得る根拠であった元の画像(倍率1万倍)から、複数の部分を倍率20万倍で取り出す工程;
  (ii)取り出された複数の部分(倍率20万倍)から、連続相のみが存在する視野(倍率20万倍)をそれぞれ切り出して、2値化処理する工程;
  (iii)上記(ii)の工程を、切り出された連続相のみが存在する複数の視野(倍率20万倍)の合計面積が0.26μmになるまで繰り返す工程;及び
  (iv)0.26μmの合計面積において、A相の面積及びB相の面積を算出する工程。
 前述の図8~11及び14に示す樹脂硬化物では、PPE(A)を主成分とするA相の面積割合が、40面積%以上である。一方、前述の図12、13に示す樹脂硬化物では、PPE(A)を主成分とするA相の面積割合が、40面積%より小さい。
 上記共連続構造に占めるA相の面積割合が40面積%以上である場合、硬化物の誘電特性が低くなるので好ましい。これは、PPEの誘電特性に優れる特性が支配的になるためと推測される。一方、上記共連続構造に占めるA相の割合が90面積%以下である場合、プロセス適合に必要な耐熱性が確保できるため好ましい。
 上記共連続構造に占めるA相の面積割合を実現するための具体的な手段としては、架橋型硬化性化合物(B)の架橋速度を調整する方法を例示できる。具体的には、架橋型硬化性化合物(B)に分子内に2個以上の不飽和基をもつモノマーを用い、該架橋型硬化性化合物(B)の架橋開始剤の種類及び配合量、並びに加熱加圧成形における昇温条件を調整する方法を例示できる。
球状分散相
 第一の実施形態では、透過型電子顕微鏡を用いて硬化物の圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、長径が0.001μm以上1.0μm未満であり、かつ長径/短径比が1.0以上3.0以下である球状分散相が、存在することが好ましい。
 ここで、本発明でいう透過型電子顕微鏡(倍率1万倍)で観察される分散相の長径、短径、長径/短径比とは、以下の方法で求めた値である。透過型電子顕微鏡(倍率1万倍)で観察される分散相の内部を通るように線分を引いたときの該線分のうち最長のものの長さをその分散相の長径とする。また、透過型電子顕微鏡(倍率1万倍)で観察される分散相の短径とは、長径を求める際に引いた長さが一番長くなる分散相の内部を通る線分と直交するように粒子内部に直線を引いた時に一番長くなる時の長さであり、長径/短径比とは、個々の分散相について長径を短径で除して得られる値である。
 透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像における相分離構造において、前述の長径が0.001μm以上1.0μm未満であり、かつ前述の長径/短径比が1.0以上3.0以下である球状分散相を存在させることにより、良好な誘電特性、および高い耐熱性が得られるため好ましい。これは、分散相と連続相との境界での密着性が強くなるためと推測される。
 前記球状分散相の大きさのより好ましい範囲は、長径0.1μm以上0.9μm以下、かつ長径/短径比が1.0以上2.5以下であり、さらに好ましい範囲は長径0.2μm以上0.8μm以下、かつ長径/短径比が1.0以上2.0以下である。
 球状分散相の長径が0.001μm以上である場合、PPEの耐熱性に優れる性質が現れ、耐熱性が良好となるため有利である。一方、球状分散相の長径が1.0μm未満である場合、分散相と連続相との境界での密着性が強くなると考えられ、誘電特性及び耐熱性が安定して良好になるため有利である。
 また、球状分散相の長径/短径比が3.0以下である場合、分散相と連続相との境界での密着性が強くなると考えられ、誘電特性及び耐熱性が良好になると考えられるため有利である。球状分散相の長径/短径比は、1に近いほど、誘電特性及び耐熱性がより良好となるため好ましい。
 透過型電子顕微鏡を用いて硬化物の圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相の占める面積割合は、10面積%以上80面積%以下であることが好ましい。球状分散相の占める面積割合が10面積%以上であるとき、球状分散相による耐熱性向上の効果が大きくなるため好ましい。球状分散相の占める面積割合が80面積%以下となるよう連続相を存在させることにより、良好な誘電特性が得られるため好ましい。
紐状分散相
 第一の実施形態では、透過型電子顕微鏡を用いて硬化物の圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相に加え、長径が1.0μm以上18μm以下であり、かつ短径が0.001μm以上2.0μm以下であり、かつ長径/短径比が2.0以上30以下である紐状分散相が、存在することが好ましい。紐状分散相を存在させることによって、架橋型硬化性化合物(B)との複合体においてもPPEが本来有する高い耐熱性が大きく保たれるため好ましい。球状分散相と紐状分散相とを混在させることによって、高い耐熱性及び良好な誘電特性を同時に満たすことができるため好ましい。
 紐状分散相の好ましい大きさは、長径1.0μm以上18μm以下、短径が0.001μm以上2.0μm以下、長径/短径比が2.0以上30以下であるが、より好ましくは長径2.0μm以上15μm以下、短径が0.001μm以上1.8μm以下、長径/短径比が8.0以上25以下であり、さらに好ましくは長径3.0μm以上13μm以下、短径が0.001μm以上1.6μm以下、長径/短径比が10以上20以下である。
 紐状分散相の長径が1.0μm以上であれば、PPEの耐熱性に優れる性質が支配的になると考えられ、耐熱性が良好となるため有利である。一方、紐状分散相の長径が18μm以下であれば、分散相と連続相との間でクラック等が生じず、良好な誘電特性が安定して得られるため有利である。
 また、短径が0.001μm以上であれば、PPEの耐熱性に優れる性質が支配的になると考えられ、耐熱性が良好となるため有利である。一方、短径が2.0μm以下であれば分散相と連続相との間でクラック等が生じず、良好な誘電特性が安定して得られるため有利である。
 また、紐状分散相の長径/短径比が2.0以上であれば、PPEの耐熱性に優れる性質を支配的にできると考えられ、耐熱性が良好となるため有利である。一方、紐状分散相の長径/短径比が30以下であれば、分散相と連続相との間でクラック等が生じず、良好な誘電特性が安定して得られるため有利である。
 上述の通りに球状分散相及び紐状分散相を存在させるためには、PPE(A)と架橋型硬化性化合物(B)との相溶性を制御することに加え、PPA(A)と架橋型硬化性化合物(B)とを含む樹脂組成物の加圧加熱成形時の溶融粘度も同時に制御することが有効である。
 PPE(A)と架橋型硬化性化合物(B)とを含む樹脂組成物は、加圧加熱成形工程で溶融状態を経て硬化が進行し、この過程で相分離構造が形成される。該樹脂組成物の溶融状態に加圧による応力が作用し、樹脂組成物の成分が加圧方向と垂直方向に配向するのと、相分離が形成されるのとが、同じタイミングで起こるため、上記した球状分散相及び紐状分散相が形成されると推測される。PPE(A)と架橋型硬化性化合物(B)との相溶性は、PPE(A)の分子量、架橋型硬化性化合物(B)の種類、PPE(A)と架橋型硬化性化合物(B)の配合割合等を適宜調整することで制御できる。また、後述の相溶剤を使用して制御することも可能である。
 樹脂組成物の加圧加熱成形時の溶融粘度は、PPE(A)の分子量、PPE(A)と架橋型硬化性化合物(B)の配合割合、昇温速度等を適宜調整することで制御することができる。また、後述の相溶剤を使用して制御することも可能である。更には、硬化前の樹脂組成物の溶剤含有量などを適切に制御することでも可能である。
 前述の透過型電子顕微鏡(倍率1万倍)でのモルフォロジー観察において、球形分散相と紐状分散相との占める面積割合は、10面積%以上80面積%以下であることが好ましい。球形分散相の面積と紐状分散相の面積との合計の占める割合のより好ましい範囲は12面積%以上60面積%以下、さらに好ましい範囲は15面積%以上50面積%以下である。
 ここで、球形分散相と紐状分散相の占める面積割合(X)とは以下の値である。透過型電子顕微鏡(倍率1万倍)の観察画像(前述した方法で、105.9μmの視野を得る)において、該観察画像内に存在する全ての球状分散相の合計面積(a)、及び、全ての紐状分散相の合計面積(b)を求める。該合計面積(a)と該合計面積(b)との合計の、観察画像全面積(c)に対する割合を、下式を用いて求めた値である。
 球状分散相の面積と紐状分散相の面積との合計が、分散相と連続相との合計面積に占める割合(X)=((a)+(b))/(c)×100
 上記割合(X)が10面積%以上である場合、高い耐熱性及び良好な誘電特性を同時に満たす効果が良好に表れるので好ましい。上記割合(X)が80面積%以下である場合、高い耐熱性がより良好に得られるので好ましい。
 上記割合(X)を実現する手段としては、PPE(A)と架橋型硬化性化合物(B)との相溶性を制御する方法を例示できる。具体的には、PPE(A)として、数平均分子量4,000以上のPPEを用い、架橋型硬化性化合物(B)として、硬化反応過程でPPE(A)と相溶できるが硬化後には完全には相溶することができない化合物(例えば分子内に2個以上の不飽和基を持つモノマー)を用い、かつPPE(A)と架橋型硬化性化合物(B)の配合割合を調整する方法を例示できる。
 また、前述の透過型電子顕微鏡(倍率1万倍)で観察されるモルフォロジーにおいて、紐状分散相の占める面積割合は、前記球状分散相と前記紐状分散相の合計面積に対して50面積%以上90面積%以下であることが好ましい。紐状分散相の面積のより好ましい範囲は63面積%以上90面積%以下であり、更に好ましい範囲は70面積%以上90面積%以下である。
 前記紐状分散相の占める面積割合は、上述で求めた105.9μmの視野での観察画像内に存在する全ての球状分散相の合計面積(a)、及び、全ての紐状分散相の合計面積(b)を用い、下式を用いて求めた値である。
 紐状分散相との面積割合=(b)/((a)+(b))×100
 紐状分散相の面積割合が90%以下である場合、良好な誘電特性、及び高い耐熱性が得られるため好ましい。これは分散相と連続相との境界での密着性が強くなるためと推測される。紐状分散相の面積割合が50%以上である場合、架橋型硬化性化合物との複合体においてもPPEが本来有する高い耐熱性を維持することができるため好ましい。これはPPEの耐熱性に優れる性質が支配的になるためと推測される。
 上記面積比を実現する具体的な手段としては、PPE(A)と架橋型硬化性化合物(B)とが相分離構造を取るような相溶性の組合せ(例えば、架橋型硬化性化合物(B)として分子内に2個以上の不飽和基をもつモノマーを用いることにより)を採用し、さらに、PPA(A)と架橋型硬化性化合物(B)とを含む樹脂組成物の加圧加熱成形時の溶融粘度を調節する方法を例示することができる。
<樹脂組成物>
 第一の実施形態では、硬化物を形成するために圧縮成型される樹脂組成物は、PPE(A)及び架橋型硬化性化合物(B)を含み、随意には、PPE(A)及び架橋型硬化性化合物(B)に加えて、開始剤、相溶剤、PPE(A)及び架橋型硬化性化合物(B)以外の樹脂、添加剤等の他の成分を含んでよい。
 以下、樹脂組成物に含まれる成分について説明する。
<PPE(A)>
 第一の実施形態では、PPE含有樹脂組成物の硬化物の構成成分であるPPE(A)は、置換又は非置換のフェニレンエーテル単位構造から構成されるポリマーを意味する。PPE(A)は、本発明の作用効果を損なわない範囲でフェニレンエーテル単位構造以外の共重合成分単位を含んでもよいが、このような共重合成分単位の量は、全単位構造の数に対して、典型的には30%以下、又は5%以下である。
 PPE(A)は、好ましくは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
{式中、R1、R2、R3及びR4は、各々独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリール基、置換基を有してもよいアミノ基、ニトロ基又はカルボキシル基を表す。}で表される繰返し構造単位を含む。上記一般式(1)で表される繰返し構造単位は、誘電特性及び耐熱性に優れている観点で有利である。
 PPEの具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等、更に、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)との共重合体、及び、2,6-ジメチルフェノールとビフェノール類又はビスフェノール類とをカップリングさせて得られるPPE共重合体、等が挙げられる。誘電特性及び耐熱性に優れており、且つ、商業的な生産技術が確立されており安定して利用できる観点で、特に好ましい例は、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)である。
 PPE(A)は分子末端のフェノール性水酸基が他の官能基で変性されている変性PPEであってもよい。上記の官能基は特に限定されるものではなく、ベンジル基、アリル基、プロパギル基、グリシジル基、ビニルベンジル基、メタクリル基等であることができる。また、不飽和カルボン酸や酸無水物との反応生成物であってもよい。その中でも、製造方法が簡易であるため産業的に入手しやすいこと、PPE含有樹脂組成物の硬化物の基材や銅箔等の金属箔との接着性が良好となる観点から好ましいPPE(A)の例は、部分マレイン化PPEである。
 PPE(A)は、好ましくは、数平均分子量が4,000以上40,000以下である。数平均分子量のより好ましい範囲は6,000以上30,000以下であり、更に好ましい範囲は7,000以上25,000以下である。
 なお、本開示を通じ、分子量(数平均分子量及び重量平均分子量)は、ゲルパーミエーションクロマトグラフィ(GPC)を用い、標準ポリスチレン換算で測定される値である。典型的には、カラムにShodex LF-804×2(昭和電工株式会社製)、溶離液に50℃のクロロホルム、検出器にRI(屈折率計)を用いてGPC測定を行い、同条件で測定した標準ポリスチレン試料の分子量と溶出時間との関係式から、数平均分子量を算出する。
 PPE(A)の数平均分子量が4,000以上である場合、電子回路基板等において所望される、PEE(A)を含む樹脂組成物の硬化物のガラス転移温度、はんだ耐熱性を良好に与える点で好ましい。PPE(A)の数平均分子量が40,000以下である場合、硬化物を得るための加熱加圧成形時等の溶融粘度が小さく、良好な成形性が得られる点で好ましい。
 また、第一の実施形態では、PPE(A)の好ましい含有量は、PPE(A)を含む樹脂組成物の硬化物の質量100質量%を基準として、20質量%以上60質量%以下であることが好ましい。PPE(A)の硬化物に占める割合のより好ましい範囲は、25質量%以上55質量%以下、更に好ましい範囲は28質量%以上50質量%以下である。硬化物中のPPE(A)の含有量が、20質量%以上の場合、PPE(A)が本来有する良好な電気特性の寄与により、該PPE含有樹脂組成物の硬化物の電気特性が優れたものとなるため好ましい。PPE(A)の含有量が60質量%以下の場合、硬化物を得るための加熱加圧成形時等の溶融粘度が高くなりすぎることを防ぎ、均一で良好な硬化物が得られる点で好ましい。
<架橋型硬化性化合物(B)>
 第一の実施形態では、PPE含有樹脂組成物の硬化物の構成成分である架橋型硬化性化合物(B)は、PPE(A)と架橋型硬化性化合物(B)とを含む樹脂組成物の硬化物が、本発明のモルフォロジーを示す構造物となれば、特に限定されるものではない。架橋型硬化性化合物(B)の典型的な例としては、分子内に2個以上の不飽和基を持つモノマーが好ましい。更に好ましくは、PPE(A)と架橋型硬化性化合物(B)とを含む樹脂組成物の硬化反応過程で、PPE(A)と相溶することができる、分子内に2個以上の不飽和基を持つモノマーが好ましい。
 PPE(A)と架橋型硬化性化合物(B)とが相溶する温度は、50℃以上180℃以下であることが好ましく、より好ましくは70℃以上170℃以下、さらに好ましくは90℃以上160℃以下である。PPE(A)と架橋型硬化性化合物(B)とが相溶する温度が50℃以上である場合、通常の取扱いでは相溶することなく安定して取扱いができる点、PPE含有樹脂組成物のプレス成型過程での溶融粘度を適度に保つことができ成型性に優れる点で好ましい。PPE(A)と架橋型硬化性化合物(B)とが相溶する温度が180℃以下である場合、架橋型硬化性化合物(B)の架橋反応が進行する前に、PPE(A)と架橋型硬化性化合物(B)とが相溶し、PPE含有樹脂組成物中の成分が均一に混合される点で好ましい。
 PPE(A)と架橋型硬化性化合物(B)とが相溶する温度は、PPE(A)と架橋型硬化性化合物(B)とから成るキャストフィルムを作製し、該キャストフィルムの加熱条件での光学顕微鏡観察で求めることができる。具体的な例として、先ず、PPE(A)と架橋型硬化性化合物(B)とを、PPE(A)と架橋型硬化性化合物(B)の合計が10質量%となるようにトリクロロエチレンに溶解し、カバーガラス上にキャストした後にトリクロロエチレンを乾燥除去して、カバーガラス上にキャストフィルムを作製する。次に、加熱ステージでキャストフィルムを加熱しながら光学顕微鏡観察を行い、PPE(A)と架橋型硬化性化合物(B)とが相溶しているか否かを観察する。加熱時には、相溶が開始する温度付近では1℃単位で昇温し、各温度到達後に10分以上保持させて、相溶の有無を確認する。均一に相溶していることが確認できた温度を、相溶する温度として求めることができる。これは、硬化反応の過程で一旦PPE(A)と架橋型硬化性化合物(B)とを相溶させることにより、硬化反応の進行に伴い相分離を起こさせることが可能であり、硬化物のモルフォロジーを制御し易いためである。
 分子内に2個以上の不飽和基をもつモノマーとしては、例えば、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート(TAC)、トリメタリルシアヌレート、トリメチロールプロパントリメタクリレート、ジビニルベンゼン、ジビニルナフタレン、ジアリルフタレート、ジアリルシアヌレート等が挙げられる。中でも、PPE(A)との相溶性が良好であるが硬化反応の進行に従い相分離を起こさせることが可能であるという観点から、TAIC、TAC、トリメタリルシアヌレート、ジビニルベンゼン等が好ましい。
 硬化物中の架橋型硬化性化合物(B)の含有量は、PPE(A)100質量%を基準として、好ましくは5質量%以上40質量%以下である。架橋型硬化性化合物(B)のより好ましい含有量の範囲は10質量%以上30質量%以下であり、更に好ましい含有量の範囲は14質量%以上24質量%以下である。架橋型硬化性化合物(B)の含有量が、5質量%以上である場合、PPE(A)を含む樹脂組成物の硬化物のモルフォロジーを本発明が示す構造に制御し易いため好ましい点に加え、樹脂組成物の溶融粘度を良好に低減させることができるので成型性が良好となる点、及び樹脂組成物の耐熱性が向上する点で好ましい。
 一方、架橋型硬化性化合物(B)の含有量が40質量%以下である場合、PPE(A)を含む樹脂組成物の硬化物のモルフォロジーを本発明が示す構造に制御し易いため好ましい点に加え、PPE(A)の有する優れた誘電特性を発現することができる点で好ましい。
<その他の成分>
 第一の実施形態に係る硬化物を形成するための樹脂組成物は、PPE(A)及び架橋型硬化性化合物(B)に加えて、例えば以下の成分のうち1つ以上を任意に含有できる。
[開始剤]
 第一の実施形態に係る硬化物を形成するための樹脂組成物は、架橋型硬化性化合物(B)の架橋反応の開始剤として機能する化合物をさらに含むことが好ましい。開始剤としては、例えば、ビニルモノマー等の架橋型硬化性化合物の重合反応を促進する能力を有する任意の開始剤を使用でき、好適には有機過酸化物を用いることができる。このとき、樹脂組成物は、1分間半減期温度が150℃以上190℃以下である有機過酸化物(D)を含むことが好ましい。
有機過酸化物(D)
 有機過酸化物(D)は、1分間半減期温度が150℃以上190℃以下である。有機過酸化物(D)の1分間半減期温度のより好ましい範囲は160℃以上190℃以下、さらに好ましい範囲は165℃以上190℃以下、最も好ましい範囲は170℃以上190℃以下である。本開示で、1分間半減期温度は、有機過酸化物が分解してその活性酸素量が半分になる時間が1分間となる温度である。1分間半減期温度は、ラジカルに対して不活性な溶剤、例えばベンゼン等に有機過酸化物を0.05mol/L~0.1mol/Lの濃度となるよう溶解させ、有機過酸化物溶液を窒素雰囲気化で熱分解させる方法で確認される値である。
 有機過酸化物(D)の1分間半減期温度が150℃以上であることにより、PPE含有樹脂組成物を加熱加圧成型に供す際、PPEを十分に溶融させてから架橋型硬化性化合物の架橋が開始されることになる。したがって、有機過酸化物(D)を含むPPE含有樹脂組成物は、本発明のモルフォロジーに制御し易く、更には成型性に優れるため好ましい。一方、有機過酸化物(D)の1分間半減期温度が190℃以下であることにより、通常の加熱加圧成型条件(例えば最高到達温度200℃)での有機過酸化物の分解速度が十分であるので、比較的少量(例えば下記範囲)の有機過酸化物を用いて架橋型硬化性化合物の架橋反応を効率的に緩やかに進めることができる。これにより、本発明のモルフォロジーに制御し易く、更には良好な電気特性(特に誘電正接)を有する硬化物を形成できる。
 有機過酸化物(D)としては、例えば、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキサシアセテート、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、等を使用してよい。中でも、耐熱性に優れ、更に低い誘電率及び誘電正接を有する硬化物を与えることができるという観点から、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンが好ましい。
 架橋型硬化性化合物の架橋反応を緩やかに進行させる観点で、特に好ましい架橋型硬化性化合物と有機過酸化物(D)との組合せは、トリアリルイソシアヌレートとα,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、又はトリアリルイソシアヌレートと2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンである。
 第一の実施形態では、PPE含有樹脂組成物中に含有される有機過酸化物(D)は、PPE(A)と架橋型硬化性化合物(D)との合計質量100質量部を基準として、1質量部以上5質量部以下であることが好ましい。有機過酸化物(D)の含有量のより好ましい範囲は、1.4質量部以上4質量部以下、さらに好ましい範囲は1.8質量部以上3.8質量部以下である。有機過酸化物(D)の含有量が1質量部以上であることで、通常の加熱加圧成型工程にてPPE含有樹脂組成物を十分に硬化させることができる。一方、有機過酸化物(D)の含有量が5質量部以下であることで、硬化物が優れた電気特性を有する。優れた電気特性が得られる理由は定かではないが、架橋型硬化性化合物の架橋反応を緩やかに進行させることができることによって、歪の少ない硬化物が形成されるためと推定される。
有機過酸化物(F)
 第一の実施形態に係る硬化物を形成するための樹脂組成物は、1分間半減期温度が150℃以上190℃以下である有機過酸化物(D)に加えて、1分間半減期温度が190℃を超え、かつ250℃以下である有機過酸化物(F)をさらに含むことも好ましい。有機過酸化物(F)としては、例えば、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキセン-3、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド等が挙げられる。中でも、耐熱性に優れ、更に低い誘電率及び誘電正接を有する硬化物を与えることができるという観点から、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキセン-3が好ましい。
 PPE含有樹脂組成物中の有機過酸化物(F)の含有量は、PPEと架橋型硬化性化合物との合計質量100質量部を基準として、1質量部以上3質量部以下であることが好ましく、1.5質量%以上2.5質量%以下であることがより好ましい。有機過酸化物(D)に加えて、1質量部以上3質量部以下の範囲内で有機過酸化物(F)を樹脂組成物に含有させることにより、樹脂組成物又は硬化物の電気特性を犠牲にすることなく、硬化物のガラス転移温度(Tg)を増加させて、硬化物の耐熱性を向上させることができる。
[相溶剤]
 第一の実施形態では、樹脂組成物は、PPE(A)と架橋型硬化性化合物(B)に加えて、相溶剤を更に含有してもよい。樹脂組成物が相溶剤を含有することで、硬化物のモルフォロジーを本開示の構造に制御し易いため好ましい。
 相溶剤としては、天然ゴム、ジエン系ゴム、非ジエン系ゴム、熱可塑性エラストマー、リン(P)原子含有化合物等から選ばれた少なくとも1種を用いることができる。なかでも、熱可塑性エラストマー及び/又はP原子含有化合物が好ましい。
 熱可塑性エラストマーのなかでも、ハードセグメントにスチレン骨格を有するスチレン系エラストマー(スチレン/ブタジエン/スチレンブロック共重合体、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/ブタジエン/ブチレン/スチレンブロック共重合体、スチレン/イソプレン/スチレンブロック共重合体、スチレン/エチレンプロピレン/スチレンブロック共重合体、スチレン/イソブチレン/スチレンブロック共重合体等)が、PPE(A)と架橋型硬化性化合物(B)とを用いて形成される硬化物の物理的特性に大きな変化を及ぼすことなく、硬化物のモルフォロジーを本発明の範囲に制御できるため好ましい。
水添ブロック共重合体(C)
 スチレン系エラストマーにおいては、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックとから成るブロック共重合体を水素添加して得られる水添ブロック共重合体(C)が好ましく用いることができる。本開示で、水添ブロック共重合体とは、上記ブロック共重合体(すなわち水素添加されていない状態のブロック共重合体)が有していた共役ジエンに基づく二重結合数に対し、水添ブロック共重合体が有する共役ジエンに基づく二重結合数(すなわち二重結合残存率)が90%以下である共重合体を意味する。上記二重結合残存率は、核磁気共鳴装置(NMR)等を用いて確認される値である。上記二重結合残存率は、好ましくは25%以下、より好ましくは10%以下、さらに好ましくは5%以下であることができる。また製造容易性の観点から、好ましくは0.5%以上、より好ましくは1%以上であってもよい。
 より具体的には、水添ブロック共重合体(C)のブロック構造は、以下に示す、ビニル芳香族化合物を主体とする重合体ブロックaと、共役ジエン化合物を主体とする重合体ブロックbとを有する構造を意図する。ビニル芳香族化合物を主体とする重合体ブロックaは、ビニル芳香族化合物重合体ブロック、又はビニル芳香族化合物を50質量%超、好ましくは70質量%以上含有するビニル芳香族化合物と水素添加された共役ジエン化合物との共重合体ブロックである。また、共役ジエン化合物を主体とする重合体ブロックbは、水素添加された共役ジエン化合物重合体ブロック、又は水素添加された共役ジエン化合物を50質量%超、好ましくは70質量%以上含有する水素添加された共役ジエン化合物とビニル芳香族化合物との共重合体ブロックである。重合体ブロックa及び重合体ブロックbの各々における分子鎖中の水素添加された共役ジエン化合物又はビニル芳香族化合物の分布は、ランダム、テーパード(すなわち分子鎖に沿ってモノマー成分が増加又は減少するもの)、一部ブロック状、又はこれらの任意の組み合わせで成っていてもよい。また、重合体ブロックa及び重合体ブロックbがそれぞれ2個以上ある場合は、各重合体ブロックはそれぞれが同一構造であってもよく、異なる構造であってもよい。
 水添ブロック共重合体(C)は、直鎖状、分岐状(放射状も包含する)あるいはこれらの任意の組み合わせのいずれの分子構造であってもよい。
 水添ブロック共重合体(C)を構成するビニル芳香族化合物としては、例えばスチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、p-第3ブチルスチレン等のうちから1種又は2種以上が選択でき、中でも水添ブロック共重合体中のビニル芳香族化合物部位とPPEとの相溶性に優れ、水添ブロック共重合体(C)とPPEの相溶性を制御しやすい観点からスチレンが好ましい。また、水素添加された共役ジエン化合物を得るための水添前の共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、1,3-ジメチル-1,3-ブタジエン等のうちから1種又は2種以上が選ばれる。中でも、水添ブロック共重合体中の共役ジエン化合物部位とPPEとが非相溶性であるため、水添ブロック共重合体とPPEの相溶性を制御し易いという観点から、ブタジエン、イソプレン及びこれらの組み合わせが好ましい。特に好ましい例は、水添スチレン/ブタジエン共重合体である。
 水添ブロック共重合体におけるビニル芳香族化合物単位の含有量は、好ましくは5質量%以上50質量%以下である。ビニル芳香族化合物単位のより含有量は8質量%以上40質量%以下であり、さらに好ましい範囲は10質量%以上35質量%以下である。
 ビニル芳香族化合物単位の含有量が5質量%以上であれば、PPEと水添ブロック共重合体(C)との相溶性が十分であり、PPEと水添ブロック共重合体とが均質に分布するため、PPE含有樹脂組成物の硬化物と金属箔との接着性を良好にできる。一方、ビニル芳香族化合物単位の含有量が50質量%以下であれば、PPE含有樹脂組成物中に水添ブロック共重合体(C)を含有させることによって発現する電気特性、耐熱性の改善効果が顕著に得られる。
 水添ブロック共重合体(C)の重量平均分子量は、30,000以上300,0000以下であることが好ましい。水添ブロック共重合体の重量平均分子量のより好ましい範囲は55,000以上270,000以下であり、さらに好ましい範囲は80,000以上220,000以下である。重量平均分子量が30,000以上である場合、PPE含有樹脂組成物の耐熱膨張性に優れるので好ましい。重量平均分子量が300,000以下である場合、PPE含有樹脂組成物の硬化物の耐熱性を良好に保つことができるため好ましい。
 PPE含有樹脂組成物中の水添ブロック共重合体(C)の含有量は、PPE(A)と架橋型硬化性化合物(C)との合計質量100質量部を基準として、3質量部以上20質量部以下であり、好ましくは4質量部以上18質量部以下、さらに好ましくは5質量部以上16質量部以下である。水添ブロック共重合体(C)の含有量が3質量部以上であることで、PPE含有樹脂組成物の硬化物の電気特性及び耐熱性が良好になる。また、水添ブロック共重合体(C)の含有量が20質量部以下であることで、硬化物の耐熱膨張性、及び硬化物の金属箔との接着性が良好になる。
P原子含有化合物(E)
 第一の実施形態では、樹脂組成物は、PPE(A)と架橋型硬化性化合物(B)に加えて、PPE(A)と架橋型硬化性化合物(B)との両方に相溶性であるリン(P)原子含有化合物(E)を含むことが好ましい。P原子含有化合物(E)を含む樹脂組成物は、該樹脂組成物の圧縮成型過程における溶融粘度を適度に小さくすることが可能であり、硬化物のモルフォロジーを本発明の範囲に制御でき、誘電特性及び耐熱性において優れる硬化物を得られる傾向にある。P原子含有化合物(E)は、P原子を含み、かつPPE(A)と架橋型硬化性化合物(B)との両方に相溶性であれば、限定されるものではないが、例えば、ホスファフェナントレン誘導体、ホスファゼン、芳香族縮合リン酸エステル等でよい。
 ホスファフェナントレン誘導体(C)は、下記式(2):
Figure JPOXMLDOC01-appb-C000002
{式中、R11、R12及びR13は、それぞれ独立に、水素原子又は有機基である。}で表される化合物である。
 式(2)で表されるホスファフェナントレン誘導体は、誘電特性及び耐熱性に優れた樹脂組成物が得られるという観点から、下記式(3):
Figure JPOXMLDOC01-appb-C000003
{式中、R12及びR13は、それぞれ独立に、水素原子又は有機基であり、nは、1以上の整数であり、かつR14は、フェニル基、直鎖若しくは分枝鎖のアルキル基、アルケニル基、アルキニル基又は水素原子である。}
で表される化合物であることが好ましい。
 ホスファゼンは、下記式(4)
Figure JPOXMLDOC01-appb-C000004
{式中、nは、3~25の整数であり、そしてR~R14は、それぞれ独立に水素原子又は有機基である。}
で表される化合物である。
 上記式(4)における有機基は、ビニル基、アリル基、プロパルギル基、メタリル基、(メタ)アクリル基、スチリル基等の不飽和二重結合を有するC~C16の炭化水素基、又は、水酸基、シアノ基、シアネート基、若しくはこれらの官能基を有するC~C16の炭化水素基等であることが好ましい。ホスファゼンは、環状ホスファゼンであることも好ましい。
 環状ホスファゼンとしては、誘電特性及び耐熱性に優れた樹脂組成物が得られるという観点から、フェノキシホスファゼン、キシレノキシホスファゼン、又はシアノフェノキシホスファゼンが好ましい。
 芳香族縮合リン酸エステルとしては、例えば、1,3フェニレンビス(ジフェニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)、1,3フェニレンビス(ジ2,6キシレニルホスフェート)等を用いることができる。誘電特性及び耐熱性に優れた樹脂組成物が得られるという観点から、1,3フェニレンビス(ジ2,6キシレニルホスフェート)が好ましい。
 PPE含有樹脂組成物中のP原子含有化合物(E)の含有量は、PPE(A)と架橋型硬化性化合物(B)との合計質量100質量部を基準として、0.5質量部以上15質量部以下である。P原子含有化合物(E)の好ましい含有量は、1質量部以上13質量部以下、より好ましくは2質量部以上11質量部以下、さらに好ましくは3質量部以上10質量部以下である。この含有量が、0.5質量部以上である場合、プレス成型過程でのPPE含有樹脂組成物の溶融粘度を低くでき、そして15質量部以下である場合、PPEが本来有する誘電特性に優れる特性、及び耐熱性に優れる特性が損なわれない。
 PPE含有樹脂組成物中の架橋型硬化性化合物(B)とP原子含有化合物(E)の合計の含有量は、PPE(A)と架橋型硬化性化合物(B)とP原子含有化合物(E)の合計質量100質量%を基準としたとき、30質量%以上45質量%以下であることが好ましく、32質量%以上43質量%以下であることがより好ましい。
[他の樹脂]
 第一の実施形態では、樹脂組成物は、PPE(A)及び架橋型硬化性化合物(B)とは異なる他の樹脂(例えば、熱可塑性樹脂、硬化性樹脂等)を含有することができる。
 熱可塑性樹脂としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン、スチレン、ジビニルベンゼン、メタクリル酸、アクリル酸、メタクリル酸エステル、アクリル酸エステル、塩化ビニル、アクリロニトリル、無水マレイン酸、酢酸ビニル、四フッ化エチレン等のビニル化合物の単独重合体及び2種以上のビニル化合物の共重合体、並びに、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリアセタール、ポリフェニレンスルフィド、ポリエチレングリコール等を例として挙げることができる。これらの中でもスチレンの単独重合体、スチレン-ブタジエン共重合体、及びスチレン-エチレン-ブタジエン共重合体が、樹脂組成物の溶剤への溶解性及び成形性の観点から好ましく用いることができる。
 硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、及びシアネートエステル類を例として挙げることができる。上記熱可塑性樹脂及び硬化性樹脂は、酸無水物、エポキシ化合物、アミン等の官能化化合物で変成されたものでもよい。
 このような他の樹脂の使用量は、PPE(A)100質量部に対して、好ましくは10質量部以上、より好ましくは15質量部以上、更に好ましくは20質量部以上であり、PPEの優れた誘電特性及び耐熱性を発現させる点から、好ましくは90質量部以下、より好ましくは70質量部以下、更に好ましくは50質量部以下である。
 ここで、他の樹脂としてエポキシ樹脂を用いる場合は、PPEの優れた誘電特性を硬化物に与える樹脂組成物を得る観点から、樹脂組成物に占めるエポキシ樹脂の量の範囲を0質量%以上10質量%以下に調整することが好ましく、中でも接着性を向上させる観点から0.1質量%以上10質量%以下に調整することがより好ましい。
[他の添加剤]
 第一の実施形態では、樹脂組成物は、目的に応じ、適当な添加剤を更に含有してもよい。添加剤としては、難燃剤、熱安定剤、酸化防止剤、UV吸収剤、界面活性剤、滑剤、充填剤、ポリマー添加剤等が挙げられる。
 特に、樹脂組成物が更に難燃剤を含むことは、良好な成形性、耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化物と銅箔等との剥離強度)に優れるプリント配線板等が得られる利点に加え、難燃性を付与できる点で好適である。
 難燃剤としては、燃焼のメカニズムを阻害する機能を有するものであれば特に制限されず、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛等の無機難燃剤、ヘキサブロモベンゼン、デカブロモジフェニルエタン、4,4-ジブロモビフェニル、エチレンビステトラブロモフタルイミド等の芳香族臭素化合物、レゾルシノールビス-ジフェニルホスフェート、レゾルシノールビス-ジキシレニルホスフェート等のリン系難燃剤等が挙げられる。中でも、得られる硬化物の誘電率及び誘電正接を低く抑えられる観点からデカブロモジフェニルエタン等が好ましい。
 難燃剤の使用量は、使用する難燃剤によって異なり、特に限定するものでないが、UL規格94V-0レベルの難燃性を維持する観点から、PPE(A)と架橋型硬化性化合物(B)との合計100質量部に対して好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上である。また、得られる硬化物の誘電率及び誘電正接を小さく維持できる観点から、上記使用量は、好ましくは50質量部以下、より好ましくは45質量部以下、更に好ましくは40質量部以下である。
<電子回路基板材料>
 本発明の第二の実施形態では、前述した第一の実施形態に係る硬化物を含む電子回路基板材料が提供される。電子回路基板材料は、該硬化物が単独で存在するフィルム状物又は板状物であってよく、基材等との複合体であるフィルム又は板状物であってもよい。電子回路基板材料は、フィルム又は板状物と金属箔とが一体化したフィルム又は板状物であってもよい。電子回路基板材料は、フィルム状物又は板状物を積層することにより得られる積層体であってもよい。
 第二の実施形態に係る電子回路基板材料を用いて形成される電子回路基板は、樹脂フィルム、基材と樹脂との含浸複合体であるプリプレグの前記樹脂を硬化させることにより得られる複合体、樹脂付金属箔、又はこれらの2つ以上から成る積層体でよい。
 具体的には、電子回路基板材料を用いて形成された電子回路基板は、銅張積層板、多層銅張積層板、プリント配線板、多層プリント配線板等であることができ、第一の実施形態に係る硬化物はこれらの構成材料として好適である。
 以下、実施例により、本発明の実施形態をより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。
 実施例及び比較例において、各物性は、以下の方法によって測定した。すなわち、電気特性の指標として誘電率及び誘電正接、並びに耐熱性の指標としてガラス転移温度、はんだ耐熱性、T288試験及びT300試験をそれぞれ評価した。なお、透過型電子顕微鏡による硬化物のモルフォロジー観察は[発明を実施するための形態]で前述した手段に従った。
(1)硬化物の誘電率及び誘電正接
 硬化物試験片の10GHzでの誘電率及び誘電正接を、空洞共振法にて測定した。
 測定装置は、ネットワークアナライザー(N5230A、AgilentTechnologies社製)、及び関東電子応用開発社製の空洞共振器(Cavity Resornator Sシリーズ)を用いた。
 硬化物試験片を、幅約2mm、長さ50mmの大きさに切り出し、105℃±2℃のオーブンに入れ2時間乾燥させた後、23℃及び相対湿度65±5%の環境下に96±5時間置いて調整した該硬化物試験片を用い、23℃及び相対湿度65±5%の環境下で上記測定装置を用いて誘電率及び誘電正接の測定を行った。
(2)硬化物のガラス転移温度
 硬化物試験片の動的粘弾性を測定し、tanδが最大となる温度をガラス転移温度(Tg)として求めた。
 測定装置に動的粘弾性装置(RHEOVIBRON モデルDDV-01FP、ORIENTEC社製)を用いた。長さ約35mm、幅約12.5mmm及び厚さ約0.3mmに切り出した硬化物試験片を用い、引張モード、周波数:10rad/sの条件で測定を行った。
(3)硬化物の吸水加速試験後のはんだ耐熱性
 前処理として吸水加速試験を行い、吸水加速試験後の硬化物試験片のはんだ耐熱試験を288℃の条件で行った。
(吸水加速試験)
 硬化物試験片を50mm角に切り出し、吸水加速試験を行った。
 試験片を130℃で30分乾燥した後、次いで、温度:121℃、圧力:2atm、時間:4時間、の条件でプレッシャークッカーテストによる加速試験を行った。
(はんだ耐熱試験)
 吸水加速試験後の試験片を用い、288℃でのはんだ耐熱試験を行った。
 吸水加速試験後の積層板試験片を、288℃のはんだ浴に20秒間浸漬し、目視による観察を行った。288℃のはんだ浴へ浸漬しても、膨れ、剥離及び白化の何れも確認されなかった積層板試験片については「合格」と評価した。一方、288℃のはんだ浴への浸漬により、膨れ、剥離及び白化のいずれか1つ以上が発生した積層板試験片は「不合格」と評価した。
(4)硬化物のT288耐熱性試験
 該試験片が288℃の条件下でデラミネーションを起こすまでの時間を、熱機械分析装置(TMA:thermomechanical analyzer)を用いて測定した。
 試験片を6.35mm角に切り出し、105℃のオーブンで2時間乾燥させた後、デシケーター内で23℃の室温まで冷却した。該試験片に0.005Nの加重を掛け、加重を掛けた状態で室温から288℃まで10℃/分の昇温速度で加熱を行い、288℃に到達後はデラミネーションが発生するまで288℃に維持した。288℃に到達後、デラミネーションが発生するまでの時間をT288試験の結果として表記した。また、288℃到達後に60分以上デラミネーションが発生しなかった試験片は、60分で試験を中止し、60分以上と表記した。
(5)硬化物のT300耐熱性試験
 該試験片が300℃条件でデラミネーションを起こすまでの時間を、熱機械分析装置(TMA)を用いて測定した。
 試験片を6.35mm角に切り出し、105℃のオーブンで2時間乾燥させた後、デシケーター内で23℃の室温まで冷却した。該試験片に0.005Nの加重を掛け、加重を掛けた状態で室温から300℃まで10℃/分の昇温速度で加熱を行い、300℃到達後はデラミネーションが発生するまで300℃に維持した。300℃に到達後、デラミネーションが発生するまでの時間をT300試験の結果として表記した。また、300℃到達後に60分以上デラミネーションが発生しなかった試験片は、60分で試験を中止し、60分以上と表記した。
<製造例1:低分子量・末端ベンジル化ポリフェニレンエーテル>
 90℃に加温されたオイルバスに10Lのフラスコを設置し、フラスコ内部に毎分30mlで窒素ガスを導入した。以降、操作は常に窒素ガス気流下で行った。ここに、PPE1000g、及びトルエン3000gを入れ、攪拌溶解させた。更に80gのビスフェノールAをメタノール350gに溶かした溶液を上記フラスコに攪拌しながら加えた。5分間攪拌を続けた後、6質量%ナフテン酸コバルトミネラルスピリット溶液3mlを注射器で加え、5分間攪拌を続けた。続いてベンゾイルパーオキサイド溶液375gにトルエン1125gを加えて、ベンゾイルパーオキサイド濃度が10質量%になるように希釈した溶液を滴下ロートに入れ、上記フラスコに2時間かけて滴下していった。滴下終了後、更に2時間加熱及び攪拌を続け、低分子量PPEを含む反応液を得た。得られた低分子量PPEの数平均分子量は2,800であり、1分子当たりの平均フェノール性水酸基数は1.96個であった。
 次いで、該低分子量PEを含む反応液の温度を50℃に下げ、水酸化ナトリウム340gをイオン交換水3050gに溶解させた水溶液とテトラブチルアンモニウムヨード31gとを加えて、5分間撹拌した。続いて、塩化ベンジル1070gを加えてから温度50℃で4時間撹拌を続け、低分子量・ベンジル化PPEを含む反応液を得た。該反応液を静置し、2層分離させた後、下槽を除去した。更に水1000gを加え、撹拌した後静置し、再び2槽に分離させた後、下槽を除去した。次いで、メタノール200gを加え、同様に撹拌、静置し、2層に分離させた後、上層を除去した。更にメタノール100gを加え、同様に撹拌、静置し、2層に分離させた後、下層を回収して低分子量・ベンジル化PPEを含む反応液を得た。これに多量のメタノールを加え、低分子量・ベンジル化PPEを沈殿させ、ろ別後、乾燥させて低分子量・ベンジル化PPEを得た。得られた低分子量・ベンジル化PPEの数平均分子量は3,000、1分子当たりの平均フェノール性水酸基数は0.01個であった。
[原材料]
 実施例及び比較例において使用した原材料を以下に示す。
(PPE(A))
PPE S202A: 旭化成ケミカルズ製、数平均分子量18,000
PPE S203A: 旭化成ケミカルズ製、数平均分子量10,000
低分子量・末端ベンジル化PPE:製造例1によって製造されたPPE、数平均分子量3,000
(架橋型硬化性化合物(B))
トリアリルイソシアヌレート:TAIC、日本化成製
(添加剤1)
SEBS タフテックH1041: 旭化成ケミカルズ製、スチレン単位/エチレン・ブチレン単位質量比30/70の水添スチレン/ブタジエン共重合体、
SEBS タフテックH1043: 旭化成ケミカルズ製、スチレン単位/エチレン・ブチレン単位質量比67/33の水添スチレン/ブタジエン共重合体、
SEBS タフテックN504: 旭化成ケミカルズ製、スチレン単位/エチレン・ブチレン単位質量比30/70の水添スチレン/ブタジエン共重合体、
SOE L606(スチレン系エラストマー): 旭化成ケミカルズ製
PS PSJ-ポリスチレン685: PSジャパン製
SBS タフプレンA: 旭化成ケミカルズ製 スチレン単位/ブタジエン単位質量比40/60の非水添スチレン/ブタジエン共重合体、
(開始剤)
パーブチルP: α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、日油製、1分間半減期温度175.4℃
パーヘキシン25B: 2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキセン-3、日油製、1分間半減期温度194.3℃
(難燃剤)
デカブロモジフェニルエタン SAYTEX8010: アルベマールジャパン製
(フィラー)
シリカ: 球状シリカ 龍森製
<実施例1~7、比較例1~6>
 表1又は2に示す組成の樹脂組成物をトルエン溶剤を用いて混合し、樹脂ワニスを調製した。上記樹脂ワニスをガラスクロス(旭シュエーベル株式会社製、商品名「2116」)に含浸させ、120℃で2分間乾燥することにより、樹脂組成物固形分含有量54質量%のプリプレグを得た。該プリプレグを後述の枚数で重ね、真空プレス(加熱加圧成型)を行い、硬化物を得た。なお、硬化物の作製は、測定毎に適した試験片を得るため、以下の条件で行った。
<実施例8>
 表1に示す樹脂組成物をトルエンとシクロヘキサノンの混合溶剤を用いて混合し、樹脂ワニスを調製した。上記樹脂ワニスをガラスクロス(旭シュエーベル株式会社製、商品名「2116」)に含浸させ、150℃で4分間乾燥することにより、樹脂組成物固形分含有量54質量%のプリプレグを得た。該プリプレグを用い実施例1と同様に評価用の試験片を作成した。
<実施例9>
 乾燥条件が150℃で2分間であること以外は実施例8と同様の方法でプリプレグの製造、および評価用の試験片の作製を行った。
(ガラス転移温度、及び吸水後のはんだ耐熱試験用の硬化物試験片)
 プリプレグを2枚重ね、その上下に銅箔(厚み12μm、GTS-MP箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度3℃/分で加熱しながら圧力5kg/cmの条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cmの条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm及び時間60分間の条件で真空プレスを行うことによって、両面銅張積層板を得た。
 次いで、銅箔をエッチングにて除去し、ガラス転移温度、及び吸水後のはんだ耐熱試験用の硬化物試験片を得た。
(T288およびT300測定用の硬化物試験片)
 プリプレグを8枚重ね、その上下に銅箔(厚み35μm、GTS-MP箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度3℃/分で加熱しながら圧力5kg/cmの条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cmの条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm及び時間60分間の条件で真空プレスを行うことによって積層板を作製し、T288測定用の硬化物試験片を得た。
(誘電率、誘電正接測定用の硬化物試験片)
 上記のT288測定用の硬化物試験片の一部から銅箔をエッチングにより除去し、誘電率及び誘電正接測定用の硬化物試験片を得た。
[性能試験]
 実施例1~9、及び比較例1~6で得られた硬化物試験片を用い、前述の方法にて、誘電率、誘電正接、ガラス転移温度、はんだ耐熱試験、T288試験及びT300試験を実施した。
 表1及び図2に示されるように、実施例5の硬化物試験片の倍率1万倍の透過型電子顕微鏡観察において球状分散相が存在した。実施例1~4及び6~8においては、何れも倍率1万倍の透過型電子顕微鏡観察において、球状分散相と紐状分散相とが混在していた。また、実施例1~4及び6~8の硬化物試験片は、前述の倍率1万倍の透過型電子顕微鏡観察における連続相部位を、更に倍率20万倍の透過型電子顕微鏡観察で観察した際、何れも共連続構造が観察され、PPEを主成分とする相が全体に対して40面積%以上であった。実施例5の硬化物試験片については、上記で説明した面積統合法により、共連続構造におけるPPEを主成分とする相(A相)の面積%を算出したところ、A相の面積%は、54%であった。
 実施例5の硬化物試験片は、いずれも誘電率、誘電正接、ガラス転移温度、はんだ耐熱性試験及びT288試験が優れていた。さらに、実施例1~4及び6~8においては、何れも誘電率、誘電正接、ガラス転移温度、はんだ耐熱性試験及びT288試験に加え、T300試験に合格した。
 実施例9は、実施例8と樹脂組成は同じであるが、実施例8に比べ乾燥条件が弱く、残存溶剤が多いものであった(100℃で15分加熱した際の乾燥減量が、実施例8では1.2%であるのに対し、実施例9では2.6%であり、実施例8よりも多かった)。実施例9の硬化物試験片は、倍率1万倍の透過型電子顕微鏡観察において、球状分散相と紐状分散相が少なく、これら分散相より大きな粗大分散相が存在した。残存溶剤が多く、プレス時に比較的低温領域(130℃~160℃)から溶融粘度が低くなり樹脂の配向が起こったため、硬化反応が生じる高温領域(160℃以上)では樹脂の更なる配向が起こらず、硬化反応に伴い生成する分散相は圧縮面への配向が起こることなく大きく成長したためと推測される。実施例9の硬化物試験片は、誘電率、誘電正接、ガラス転移温度、はんだ耐熱性試験及びT288試験に優れるものであったが、T300試験では不合格であった。
 比較例1の硬化物試験片は、倍率1万倍の透過型電子顕微鏡観察において、球状分散相は比較的多く存在したが、紐状分散相が少なく、これらの分散相より大きな粗大分散相が多く存在した。比較例1に用いた有機過酸化物は1分間半減期温度が高いため、比較的高温側(185℃以上)で硬化反応とそれに伴う相分離が起こったと考えられる。相分離が開始する前の段階(~185℃)で、未硬化の樹脂組成物の溶融粘度が十分に低下し、樹脂組成物の圧縮面への配向が進んだため、硬化反応が生じる185℃以上では樹脂の更なる配向が起こらず、硬化反応に伴い生成した分散相が圧縮面へ大きく配向することがなかったと推測される。また、比較例1の硬化物試験片は、倍率1万倍の透過型電子顕微鏡観察における連続相部位を更に倍率20万倍の透過型電子顕微鏡観察で観察した結果、PPEを主成分とする相が全体に対して40面積%より少なかった。比較例1の硬化物試験片は、T300試験で不合格であり、また、誘電正接も高いものであった。
 比較例2の樹脂組成物は、実施例1及び2に比べ、有機過酸化物を多く含有していた。比較例2の硬化物試験片は、透過型電子顕微鏡観察による倍率20万倍でのモルフォロジー画像において、PPEを主成分とする相が全体に対して40面積%より少ないものであった。比較例2の硬化物試験片は、ガラス転移温度、はんだ耐熱性試験及びT288試験に優れるものの、誘電正接が有意に高いものであった。
 比較例3の樹脂組成物は、実施例1及び2に比べ、SEBS含有量が少ないものであった。透過型電子顕微鏡観察による倍率1万倍でのモルフォロジー画像において、球状分散相は少し存在したが、紐状分散相は存在しなかった(それより大きな粗大分散相も存在しなかった)。SEBS含有量が少ないために、倍率1万倍で観察される大きな相分離は起こらなかったと推測される。また、倍率20倍でのモルフォロジー画像においても、PPEを主成分とする相が全体に対して40面積%より少ないものであった。比較例3の硬化物試験片は、耐熱性及び誘電正接ともに劣るものであった。
 比較例4は、国際公開第2014/141255号パンフレットに記載の実施例3に相当する。比較例4は倍率1万倍の透過型電子顕微鏡観察において、相分離構造が観察されなかった。硬化物試験片はTgが低く、耐熱性にも劣るものであった。
 比較例5は、国際公開第2014/141255号パンフレットの実施例1に相当する。比較例5は倍率1万倍の透過型電子顕微鏡観察において、相分離構造が観察されなかった。硬化物試験片はTgが低く、耐熱性にも劣るものであった。
 比較例6は、特許文献4に用いられているSBSを配合している。比較例6は倍率1万倍の透過型電子顕微鏡観察において、相分離構造が観察されなかった。硬化物試験片はTgが低く、耐熱性にも劣るものであった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (16)

  1.  ポリフェニレンエーテル(A)と架橋型硬化性化合物(B)とを含む樹脂組成物を圧縮成型して得られる硬化物であって、
     透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、分散相と連続相とから成る相分離構造が観察され、そして、
     透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記連続相が、前記ポリフェニレンエーテル(A)を主成分とするA相と前記架橋型硬化性化合物(B)を主成分とするB相を含む共連続構造を有しており、且つ、前記A相が前記連続相を占める面積割合が、40面積%以上90面積%以下である、硬化物。
  2.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記共連続構造の構造周期が、0.5nm~50nmである、請求項1に記載の硬化物。
  3.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記A相が前記連続相を占める面積割合が、50面積%以上80面積%以下である、請求項1または2に記載の硬化物。
  4.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率20万倍のモルフォロジー画像において、前記A相が前記連続相を占める面積割合が、55面積%以上70面積%以下である、請求項1または2に記載の硬化物。
  5.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記分散相の占める面積割合が、10面積%以上80面積%以下である、請求項1~4の何れか1項に記載の硬化物。
  6.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、長径が0.001μm以上1.0μm未満であり、かつ長径/短径比が1.0以上3.0以下である球状分散相が存在する、請求項1~5の何れか1項に記載の硬化物。
  7.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相の占める面積割合が、10面積%以上80面積%以下である、請求項6に記載の硬化物。
  8.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相に加えて、長径が1.0μm以上18μm以下であり、短径が0.001μm以上2.0μm以下であり、かつ長径/短径比が2.0以上30以下である紐状分散相が存在する、請求項6または7に記載の硬化物。
  9.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記球状分散相及び前記紐状分散相の占める面積割合が、10面積%以上80面積%以下である、請求項8に記載の硬化物。
  10.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記紐状分散相の占める面積割合が、前記球状分散相と前記紐状分散相の面積の合計に対して50面積%以上90面積%以下である、請求項8または9に記載の硬化物。
  11.  透過型電子顕微鏡を用いて圧縮面の垂直方向から観察される倍率1万倍のモルフォロジー画像において、前記紐状分散相の占める面積割合が、前記球状分散相と前記紐状分散相の面積の合計に対して70面積%以上90面積%以下である、請求項8または9に記載の硬化物。
  12.  前記ポリフェニレンエーテル(A)の含有量が、前記硬化物の質量100質量%を基準として、20質量%以上60質量%以下である、請求項1~11の何れか1項に記載の硬化物。
  13.  前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)に加えて、ビニル芳香族化合物-共役ジエン化合物ブロック共重合体を水素添加して得られる水添ブロック共重合体(C)、及び有機過酸化物(D)をさらに含む樹脂組成物を圧縮成型して得られる硬化物であって、
     前記水添ブロック共重合体(C)におけるビニル芳香族化合物単位の含有量が、5質量%以上50質量%以下であり、
     前記水添ブロック共重合体(C)の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の合計質量100質量部を基準として、3質量部以上20質量部以下であり、
     前記有機過酸化物(D)の1分間半減期温度が、150℃以上190℃以下であり、そして
     前記有機過酸化物(D)の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の合計質量100質量部を基準として、1質量部以上5質量部以下である、
    請求項1~12の何れか1項に記載の硬化物。
  14.  1分間半減期温度が190℃を超え250℃以下である有機過酸化物(F)をさらに含み、かつ前記有機過酸化物(F)の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の合計質量100質量部を基準として、1質量部以上3質量部以下である、請求項13に記載の硬化物。
  15.  前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)に加えて、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)の両方に相溶性であるP原子含有化合物(E)をさらに含み、
     前記P原子含有化合物(E)の含有量が、前記ポリフェニレンエーテル(A)と前記P原子含有化合物(E)の合計質量100質量部を基準として、0.5質量部以上15質量部以下であり、且つ、
     前記架橋型硬化性化合物(B)と前記P原子含有化合物(E)の合計の含有量が、前記ポリフェニレンエーテル(A)と前記架橋型硬化性化合物(B)と前記P原子含有化合物(E)の合計質量100質量%を基準としたとき、30質量%以上45質量%以下である、
    請求項1~14の何れか1項に記載の硬化物。
  16.  請求項1~15の何れか1項に記載の硬化物を含む電子回路基板であって、樹脂フィルム、基材と樹脂との含浸複合体であるプリプレグの前記樹脂を硬化させることにより得られる複合体、樹脂付金属箔、又はこれらの2つ以上から成る積層体から選択される、電子回路基板。
PCT/JP2014/080614 2013-11-20 2014-11-19 ポリフェニレンエーテルを含む樹脂組成物の硬化物 WO2015076288A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167012913A KR101751659B1 (ko) 2013-11-20 2014-11-19 폴리페닐렌에테르를 포함하는 수지 조성물의 경화물
US15/037,936 US10047224B2 (en) 2013-11-20 2014-11-19 Cured product of polyphenylene ether-containing resin composition
JP2015549168A JP6093033B2 (ja) 2013-11-20 2014-11-19 ポリフェニレンエーテルを含む樹脂組成物の硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013240057 2013-11-20
JP2013-240057 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076288A1 true WO2015076288A1 (ja) 2015-05-28

Family

ID=53179548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080614 WO2015076288A1 (ja) 2013-11-20 2014-11-19 ポリフェニレンエーテルを含む樹脂組成物の硬化物

Country Status (5)

Country Link
US (1) US10047224B2 (ja)
JP (1) JP6093033B2 (ja)
KR (1) KR101751659B1 (ja)
TW (1) TWI557155B (ja)
WO (1) WO2015076288A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180179424A1 (en) * 2016-12-23 2018-06-28 Industrial Technology Research Institute Adhesive composition and composite substrate employing the same
WO2018159080A1 (ja) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2019208826A1 (ja) * 2018-04-27 2019-10-31 株式会社ブリヂストン 強化繊維複合樹脂、コンポジットプリプレグおよび積層体
JP2021077786A (ja) * 2019-11-11 2021-05-20 旭化成株式会社 ポリフェニレンエーテル含有プリント配線板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012953A1 (ja) * 2017-07-12 2019-01-17 パナソニックIpマネジメント株式会社 金属張積層板、樹脂付き金属箔、及び配線板
TWI794445B (zh) * 2019-03-12 2023-03-01 台燿科技股份有限公司 樹脂組合物及其應用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018493A1 (fr) * 2000-08-30 2002-03-07 Asahi Kasei Kabushiki Kaisha Composition de resine durcissable
JP2003138127A (ja) * 2001-10-30 2003-05-14 Asahi Kasei Corp 熱硬化性ポリフェニレンエーテル系樹脂用充填剤およびそれを用いた樹脂組成物
JP2006516297A (ja) * 2003-01-28 2006-06-29 松下電工株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、積層板
JP2009078209A (ja) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 樹脂付き金属箔とその製造方法、並びに金属張りフレキシブル積層板
WO2013141255A1 (ja) * 2012-03-19 2013-09-26 旭化成イーマテリアルズ株式会社 ポリフェニレンエーテル粒子を含むプリプレグ
JP2014001274A (ja) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp 硬化性樹脂組成物
JP2014198773A (ja) * 2013-03-29 2014-10-23 旭化成イーマテリアルズ株式会社 Ppe粒子分散液

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265777A (ja) 2001-03-12 2002-09-18 Matsushita Electric Works Ltd ポリフェニレンオキサイド樹脂組成物、プリプレグ、積層板、プリント配線板、多層プリント配線板
JP2003238925A (ja) 2002-02-19 2003-08-27 Hitachi Chem Co Ltd 接着剤組成物、接着フィルム
JP2004168902A (ja) 2002-11-20 2004-06-17 Asahi Kasei Chemicals Corp 樹脂組成物とその硬化物
JP2004259899A (ja) 2003-02-25 2004-09-16 Matsushita Electric Works Ltd プリント配線板用樹脂組成物、プリント配線板及び多層プリント配線板
SG157958A1 (en) 2003-05-22 2010-01-29 Asahi Kasei Chemicals Corp Epoxy resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018493A1 (fr) * 2000-08-30 2002-03-07 Asahi Kasei Kabushiki Kaisha Composition de resine durcissable
JP2003138127A (ja) * 2001-10-30 2003-05-14 Asahi Kasei Corp 熱硬化性ポリフェニレンエーテル系樹脂用充填剤およびそれを用いた樹脂組成物
JP2006516297A (ja) * 2003-01-28 2006-06-29 松下電工株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、積層板
JP2009078209A (ja) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 樹脂付き金属箔とその製造方法、並びに金属張りフレキシブル積層板
WO2013141255A1 (ja) * 2012-03-19 2013-09-26 旭化成イーマテリアルズ株式会社 ポリフェニレンエーテル粒子を含むプリプレグ
JP2014001274A (ja) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp 硬化性樹脂組成物
JP2014198773A (ja) * 2013-03-29 2014-10-23 旭化成イーマテリアルズ株式会社 Ppe粒子分散液

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180179424A1 (en) * 2016-12-23 2018-06-28 Industrial Technology Research Institute Adhesive composition and composite substrate employing the same
WO2018159080A1 (ja) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2019208826A1 (ja) * 2018-04-27 2019-10-31 株式会社ブリヂストン 強化繊維複合樹脂、コンポジットプリプレグおよび積層体
JPWO2019208826A1 (ja) * 2018-04-27 2021-05-20 株式会社ブリヂストン 強化繊維複合樹脂、コンポジットプリプレグおよび積層体
JP2021077786A (ja) * 2019-11-11 2021-05-20 旭化成株式会社 ポリフェニレンエーテル含有プリント配線板
JP7462399B2 (ja) 2019-11-11 2024-04-05 旭化成株式会社 ポリフェニレンエーテル含有プリント配線板

Also Published As

Publication number Publication date
US10047224B2 (en) 2018-08-14
JPWO2015076288A1 (ja) 2017-03-16
KR101751659B1 (ko) 2017-06-27
KR20160073396A (ko) 2016-06-24
TWI557155B (zh) 2016-11-11
JP6093033B2 (ja) 2017-03-15
US20160289446A1 (en) 2016-10-06
TW201525019A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6093033B2 (ja) ポリフェニレンエーテルを含む樹脂組成物の硬化物
KR101710854B1 (ko) N-치환 말레이미드기를 갖는 폴리페닐렌에테르 유도체, 및 그것을 사용한 열경화성 수지 조성물, 수지 바니시, 프리프레그, 금속 피복 적층판 및 다층 프린트 배선판
TWI418594B (zh) Hardened resin composition
JP4900315B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、積層板
JP5948552B2 (ja) ポリフェニレンエーテル粒子を含むプリプレグ
JP6092520B2 (ja) ポリフェニレンエーテル粒子を含むプリプレグ
JP2014001277A (ja) 硬化性樹脂組成物
JP2013194138A (ja) ポリフェニレンエーテル粒子を含む分散液
JP2017057352A (ja) プリプレグ
JP2017141314A (ja) プリプレグ
JP6148118B2 (ja) Ppe含有樹脂組成物
JP2014070087A (ja) 樹脂分散液、樹脂組成物、樹脂組成物複合体及び積層板
JP6219112B2 (ja) Ppe含有樹脂組成物
JP6478507B2 (ja) ポリフェニレンエーテル含有液状物
JP2004269785A (ja) 硬化性ポリフェニレンエーテル系複合材料
JP6204815B2 (ja) ポリフェニレンエーテルを含む混合液
JP2015174996A (ja) ポリフェニレンエーテル粉体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549168

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167012913

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863912

Country of ref document: EP

Kind code of ref document: A1