WO2015072262A1 - 金属張積層板、回路基板、および電子装置 - Google Patents

金属張積層板、回路基板、および電子装置 Download PDF

Info

Publication number
WO2015072262A1
WO2015072262A1 PCT/JP2014/077294 JP2014077294W WO2015072262A1 WO 2015072262 A1 WO2015072262 A1 WO 2015072262A1 JP 2014077294 W JP2014077294 W JP 2014077294W WO 2015072262 A1 WO2015072262 A1 WO 2015072262A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
mass
circuit board
clad laminate
epoxy resin
Prior art date
Application number
PCT/JP2014/077294
Other languages
English (en)
French (fr)
Inventor
和太 伊藤
大輔 北原
敏寛 佐藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2015547696A priority Critical patent/JP6428638B2/ja
Publication of WO2015072262A1 publication Critical patent/WO2015072262A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a metal-clad laminate, a circuit board, and an electronic device.
  • Patent Document 1 discloses a semiconductor device that includes a circuit board and a semiconductor element and connects the semiconductor element and the circuit board with a wire.
  • Such an electronic device is required to have high connection reliability that can withstand various environmental temperature changes between the electronic component and the circuit board.
  • the present invention has been invented based on such knowledge.
  • thermomechanical analyzer First thermomechanical analysis measurement (1stRun) comprising a temperature rising process from 30 ° C. to 230 ° C. and a temperature lowering process from 230 ° C. to 30 ° C .;
  • thermomechanical analysis measurement (2ndRun) comprising a temperature increasing process from 30 ° C. to 230 ° C. and a temperature decreasing process from 230 ° C.
  • Average linear expansion coefficient ⁇ 1 calculated in the range of 50 ° C. to 100 ° C. in the second temperature raising process is 10 ppm / ° C. or more and 100 ppm / ° C. or less
  • Average coefficient of linear expansion alpha 2 calculated in a range of 230 ° C. from 210 ° C. at the second time of the heating process is not more than 100 ppm / ° C. or higher 220 ppm / ° C., the metal-clad laminate is provided.
  • the difference between the average linear expansion coefficient ⁇ 1 calculated in the range of 50 ° C. to 100 ° C. and the average linear expansion coefficient ⁇ 2 calculated in the range of 210 ° C. to 230 ° C. is smaller than the conventional standard. .
  • the stress between the circuit board and the electronic component caused by a rapid temperature change can be reduced.
  • a circuit board obtained by processing a circuit on the metal-clad laminate.
  • the circuit board Furthermore, according to the present invention, the circuit board, an electronic component provided on the circuit board, An electronic device is provided.
  • a metal-clad laminate capable of improving the connection reliability between an electronic component and a circuit board, and a circuit board and an electronic device using the same.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the metal-clad laminate 100 in the present embodiment.
  • the metal-clad laminate 100 includes an insulating layer 101 including an epoxy resin composition and a fiber base material, and includes metal foils 103 on both surfaces of the insulating layer 101.
  • the said epoxy resin composition contains an epoxy resin (A), a hardening
  • thermomechanical analysis measurement (1stRun) consisting of a process
  • second thermomechanical analysis measurement consisting of a temperature rising process from 30 ° C to 230 ° C and a temperature falling process from 230 ° C to 30 ° C ( 2NdRun) and when so now the thermomechanical analysis measurements, including, average linear expansion coefficient alpha 1 in the thickness direction of the insulating layer 101 is at 10 ppm / ° C. or higher 100 ppm / ° C. or less, an average linear expansion coefficient alpha 2 is 100 ppm / It is not lower than 220 ° C. and not higher than 220 ppm / ° C.
  • ⁇ 1 is an average linear expansion coefficient calculated in the range of 50 ° C. to 100 ° C. in the second temperature increase process
  • ⁇ 2 is an average linear expansion calculated in the range of 210 ° C. to 230 ° C. in the second temperature increase process. It is a coefficient.
  • the average linear expansion coefficient alpha 1 is preferably not more than 20 ppm / ° C. or higher 80 ppm / ° C., more preferably 25 ppm / ° C. or higher 50 ppm / ° C. or less.
  • the average linear expansion coefficient alpha 2 is preferably not more than 120 ppm / ° C. or higher 210 ppm / ° C., more preferably not more than 120 ppm / ° C.
  • ⁇ 1 represents an index of the linear expansion coefficient of the insulating layer 101 in a temperature region lower than the glass transition temperature of the insulating layer 101.
  • ⁇ 2 indicates an index of the linear expansion coefficient of the insulating layer 101 in a temperature region higher than the glass transition temperature of the insulating layer 101.
  • Metal-clad laminate 100, the difference in average coefficient of linear expansion alpha 1 and the average linear thermal expansion coefficient alpha 2 is smaller than the conventional reference.
  • the type and amount of epoxy resin (A) described later, the type and amount of inorganic filler (D) described later, the type of fiber substrate, and the like May be adjusted as appropriate.
  • (L 0 -L 2 ) / L 0 ⁇ 100 (%) is 0.005% or more and 0.70% or less, preferably 0.05% or more and 0.60% or less. More preferably, it is 0.10% or more and 0.55% or less.
  • (L 0 -L 2 ) / L 0 ⁇ 100 (%) is an index indicating the degree of dimensional change of the metal-clad laminate 100 after undergoing a thermal history in the range of 30 ° C.
  • a smaller value of (L 0 ⁇ L 2 ) / L 0 ⁇ 100 (%) means that the degree of dimensional change of the metal-clad laminate 100 in the range of 30 ° C. to 230 ° C. is smaller.
  • (L 0 ⁇ L 2 ) / L 0 ⁇ 100 (%) within the above range, it is possible to suppress a change with time in the dimension of the insulating layer 101 due to repeated temperature changes. As a result, the stress generated between the circuit board and the electronic component can be further reduced even if the apparatus is placed in a situation where the temperature change is severe, such as in the engine room of an automobile, for a long period of time.
  • the glass transition temperature of the insulating layer 101 by the second thermomechanical analysis measurement is preferably 155 ° C. or higher, more preferably 160 ° C. or higher, further preferably It is 170 ° C or higher. About an upper limit, 230 degrees C or less is preferable, for example.
  • the glass transition temperature of the insulating layer 101 satisfies the above range, the rigidity of the insulating layer 101 increases and the warpage of the insulating layer 101 can be further reduced. As a result, the positional deviation of the electronic component relative to the circuit board can be further suppressed, and the connection reliability between the electronic component and the circuit board can be further enhanced.
  • the type and amount of the epoxy resin (A) described later, the type and amount of the inorganic filler (D) described later, the type of the fiber substrate, and the like may be appropriately adjusted. .
  • the metal-clad laminate 100 of the present embodiment has a flexural modulus of preferably 15 GPa or more, more preferably 18 GPa or more when the insulating layer 101 is bent at 25 ° C. in the transport direction (so-called MD).
  • the upper limit value of the flexural modulus when the insulating layer 101 is bent in the transport direction at 25 ° C. is not particularly limited, but can usually be in a range of about 25 GPa or less.
  • the metal-clad laminate 100 increases the rigidity of the insulating layer 101 and can further reduce the warpage of the insulating layer 101.
  • the positional deviation of the electronic component relative to the circuit board can be further suppressed, and the connection reliability between the electronic component and the circuit board can be further enhanced.
  • the type and amount of the epoxy resin (A) described later, the type and amount of the inorganic filler (D) described later, the type of the fiber base, and the like may be appropriately adjusted. .
  • the thickness of the insulating layer 101 in this embodiment is, for example, 0.05 mm or more and 0.40 mm or less.
  • the balance between mechanical strength and productivity is particularly excellent, and the metal-clad laminate 100 suitable for a thin circuit board can be obtained.
  • the metal-clad laminate 100 is obtained, for example, by heat curing a prepreg that includes an epoxy resin composition and a fiber base material.
  • the prepreg used here is a sheet-like material, which has excellent dielectric properties, various properties such as mechanical and electrical connection reliability under high temperature and high humidity, and is suitable for the production of the metal-clad laminate 100 for circuit boards. .
  • the prepreg can be obtained, for example, by impregnating a fiber base material with one or two or more epoxy resin compositions, and then heating and semi-curing the epoxy resin composition.
  • the method for impregnating the fiber base material with one or more epoxy resin compositions is not particularly limited.
  • a resin varnish is prepared by dissolving the epoxy resin composition in a solvent, and then the fiber base material is prepared.
  • a method of dipping in a resin varnish, a method of applying a resin varnish to a fiber substrate with various coaters, a method of spraying a resin varnish on a fiber substrate by spraying, a method of laminating an epoxy resin composition with a supporting substrate on a fiber substrate, etc. Is mentioned.
  • the manufacturing method of the metal-clad laminated board 100 using a prepreg is not specifically limited, For example, it is as follows.
  • the metal foil 103 is laminated on the upper and lower surfaces or one side of the outer side of the obtained prepreg, and these are joined under a high vacuum condition using a laminator device or a becquerel device, or the metal foil 103 is placed on the upper and lower surfaces or one side of the outer side of the prepreg as it is.
  • the metal-clad laminate 100 can be obtained by heating and pressurizing the prepreg with the metal foil 103 by using a vacuum press or by using a dryer.
  • metal foil examples of the metal constituting the metal foil 103 include copper and copper alloys, aluminum and aluminum alloys, silver and silver alloys, gold and gold alloys, zinc and zinc alloys, nickel and nickel alloys, tin and Examples thereof include tin-based alloys, iron and iron-based alloys, Kovar (trade name), 42 alloys, Fe-Ni based alloys such as Invar or Super Invar, W or Mo, and the like.
  • the metal constituting the metal foil 103 is preferably copper or a copper alloy because of its excellent conductivity, easy circuit formation by etching, and low cost.
  • the metal foil 103 is preferably a copper foil. Further, as the metal foil 103, a metal foil with a carrier or the like can also be used. The thickness of the metal foil 103 is, for example, 10 ⁇ m or more and 150 ⁇ m or less.
  • the epoxy resin composition includes an epoxy resin (A), a curing agent (B), and an inorganic filler (D).
  • the epoxy resin (A) preferably contains an epoxy resin (A1) having at least one of an aromatic ring structure and an alicyclic structure (alicyclic carbocyclic structure).
  • Examples of the epoxy resin (A1) having an aromatic ring or alicyclic structure include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, Bisphenol P type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, novolak type epoxy resin such as tetraphenol ethane novolak type epoxy resin, biphenyl type epoxy resin, Examples include arylalkylene type epoxy resins such as phenol aralkyl type epoxy resins having a biphenylene skeleton, and epoxy resins such as naphthalene type epoxy resins. . One of these can be used alone, or two or more can be used in combination.
  • a cresol novolac type epoxy resin is preferable from the viewpoint of being relatively inexpensive and capable of improving the adhesion to the metal foil.
  • the content of the cresol novolac type epoxy resin is preferably 5% by mass or more and 95% by mass or less, and more preferably 20% by mass or more and 85% by mass or less, with respect to 100% by mass of the epoxy resin (A). .
  • a naphthalene type epoxy resin is used as the epoxy resin (A1) having an aromatic ring or alicyclic structure.
  • the naphthalene type epoxy resin refers to one having a naphthalene ring skeleton and having two or more glycidyl groups.
  • the content of the naphthalene type epoxy resin is preferably 0.1% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 30% by mass or less with respect to 100% by mass of the epoxy resin (A).
  • naphthalene type epoxy resin for example, any one of the following formulas (5) to (8) can be used.
  • m and n represent the number of substituents on the naphthalene ring, and each independently represents an integer of 1 to 7.
  • Me represents a methyl group
  • l, m, and n are integers of 1 or more.
  • l, m, and n are preferably 10 or less.
  • naphthalene type epoxy resin a naphthylene ether type epoxy resin represented by the following formula (8) can also be used.
  • n is an integer of 1 or more and 20 or less
  • l is an integer of 1 or more and 2 or less
  • R 1 is independently a hydrogen atom, a benzyl group, an alkyl group, or the following formula (9)
  • each R 2 is independently a hydrogen atom or a methyl group.
  • Ar is each independently a phenylene group or a naphthylene group
  • R 2 is each independently a hydrogen atom or a methyl group
  • m is an integer of 1 or 2.
  • Examples of the naphthylene ether type epoxy resin represented by the above formula (8) include those represented by the following formula (10).
  • n is an integer of 1 or more and 20 or less, preferably an integer of 1 or more and 10 or less, more preferably an integer of 1 or more and 3 or less.
  • R is independently a hydrogen atom or (It is a structure represented by the following formula (11), preferably a hydrogen atom.)
  • n is an integer of 1 or 2.
  • Examples of the naphthylene ether type epoxy resin represented by the above formula (10) include those represented by the following formulas (12) to (16).
  • a brominated bisphenol A type epoxy resin as the epoxy resin (A1) from the viewpoint of improving flame retardancy without lowering the glass transition temperature.
  • the brominated bisphenol A type epoxy resins tetra
  • a highly brominated bisphenol A type epoxy resin such as an epoxy resin based on bromobisphenol A.
  • the high brominated bisphenol A type epoxy resin preferably has a bromine content of 30% by mass or more and 60% by mass or less, more preferably 40% by mass or more and 50% by mass or less.
  • the highly brominated bisphenol A type epoxy resin include EPICLON 152, 153, 153-60T, and 153-60M manufactured by DIC.
  • the content of the brominated bisphenol A type epoxy resin is preferably 0.1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 30% by mass with respect to 100% by mass of the epoxy resin (A). It is below mass%.
  • content of the epoxy resin (A) contained in an epoxy resin composition should just be suitably adjusted according to the objective, it is not specifically limited, 20 mass with respect to 100 mass% of total solids of an epoxy resin composition % To 80% by mass, more preferably 35% to 50% by mass.
  • content of the epoxy resin (A) is not less than the above lower limit value, the handling property is improved and the insulating layer 101 can be easily formed.
  • content of the epoxy resin (A) is not more than the above upper limit, the strength and flame retardancy of the insulating layer 101 are improved, the linear expansion coefficient of the insulating layer 101 is reduced, and the warp of the metal-clad laminate 100 is reduced. The effect may be improved.
  • the epoxy resin composition does not actively contain a cyanate resin (including a prepolymer of cyanate resin), a bismaleimide resin, and a benzoxazine-based resin.
  • the content of one or more selected from cyanate resin fat, bismaleimide resin and benzoxazine-based resin is preferably 1% by mass or less with respect to 100% by mass of the total solid content of the epoxy resin composition. More preferably, it is 0.1% by mass or less.
  • curing agent (B) a phenol type hardening
  • the phenolic curing agent include novolak type phenol resins such as phenol novolak resin, cresol novolak resin, naphthol novolak resin, and aminotriazine novolak resin; polyfunctional phenol resin such as triphenolmethane type phenol resin; terpene modified phenol resin Modified phenolic resins such as dicyclopentadiene modified phenolic resins; aralkyl type resins such as phenol aralkyl resins having a phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resins having a phenylene skeleton and / or biphenylene skeleton; bisphenol A, bisphenol F, etc.
  • the curing agent (B) is preferably a novolak type phenol resin or a resol type phenol resin, and more preferably a novolak type phenol resin derived from salicylaldehyde.
  • the blending amount of the curing agent (B) is preferably such that the equivalent ratio (phenolic hydroxyl group equivalent / epoxy group equivalent) to the epoxy resin (A) is 0.1 to 1.0. As a result, there remains no unreacted curing agent (B) and the moisture absorption heat resistance is improved.
  • curing agent (B) is not specifically limited, 5 mass% or more and 69 mass% or less are preferable with respect to 100 mass% of total solids of an epoxy resin composition, and 10 mass% or more and 30 mass% or less are more. preferable.
  • the epoxy resin composition preferably further contains a curing catalyst (C).
  • the curing catalyst (C) include organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonatocobalt (II), trisacetylacetonatocobalt (III); triethylamine, Tertiary amines such as tributylamine and 1,4-diazabicyclo [2.2.2] octane; 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2,4-diethylimidazole, 2- Imidazoles such as phenyl-4-methyl-5-hydroxyimidazole and 2-phenyl-4,5-dihydroxyimidazole; triphenylphosphine, tri-p-tolylphosphine, tetraphenylphosphonium / tetra
  • the curing catalyst (C) one kind including these derivatives can be used alone, or two or more kinds including these derivatives can be used in combination.
  • content of a curing catalyst (C) is not specifically limited, 0.001 mass% or more and 1 mass% or less are preferable with respect to 100 mass% of total solid content of an epoxy resin composition.
  • Examples of the inorganic filler (D) include silicates such as talc, fired clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, silica and fused silica; calcium carbonate, magnesium carbonate and hydrotal Carbonates such as sites; hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide; sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite; zinc borate, barium metaborate, aluminum borate And borate salts such as calcium borate and sodium borate; nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride; titanates such as strontium titanate and barium titanate; One of these can be used alone, or two or more can be used in combination. Among these, it is preferable to use aluminum hydroxide from the viewpoint of improving flame retardancy.
  • the average particle diameter d 50 of aluminum hydroxide is preferably 1 ⁇ m or more and 10 ⁇ m or less, particularly 2 ⁇ m or more. 8 ⁇ m or less is preferable.
  • This average particle diameter is d 50 in the weight-based particle size distribution measured by the laser diffraction / scattering particle size distribution measuring method, and is measured by, for example, a particle size distribution meter (manufactured by Shimadzu Corporation, product name: laser diffraction particle size distribution measuring device SALD series). can do.
  • the epoxy resin composition may include a coupling agent (E).
  • the coupling agent (E) improves the wettability of the interface between the epoxy resin (A) and the inorganic filler (D).
  • the coupling agent (E) any of those usually used can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and a silicone oil type. It is preferable to use one or more coupling agents selected from coupling agents.
  • the addition amount of the coupling agent (E) depends on the specific surface area of the inorganic filler (D) and is not particularly limited, but is 0.05 parts by mass or more and 3 parts by mass with respect to 100 parts by mass of the inorganic filler (D). The following is preferable, and 0.1 to 2 parts by mass is particularly preferable.
  • Fiber base Although it does not specifically limit as a fiber base material, Glass fiber base materials, such as a glass woven fabric and a glass nonwoven fabric, Polyamide-type resin fibers, such as a polyamide resin fiber, an aromatic polyamide resin fiber, and a wholly aromatic polyamide resin fiber, A polyester resin fiber Synthetic fiber base material made of woven or non-woven fabric mainly composed of polyester resin fiber such as aromatic polyester resin fiber, wholly aromatic polyester resin fiber, polyimide resin fiber or fluororesin fiber, kraft paper Organic fiber base materials such as paper base materials mainly composed of cotton linter paper or mixed paper of linter and kraft pulp. Any of these can be used. Among these, a glass fiber substrate is preferable, and a glass woven fabric is particularly preferable. Thereby, the insulating layer 101 having low water absorption, high strength, and low thermal expansion can be obtained.
  • the thickness of the fiber substrate is, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • glass fiber substrate for example, a glass fiber substrate made of E glass, S glass, D glass, T glass, NE glass, UT glass, L glass, quartz glass, or the like is preferably used.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the circuit board 2 in the present embodiment.
  • a hole penetrating the metal foil 103 and the insulating layer 101 is formed by a laser or the like.
  • the metal foil 103 is removed from the insulating layer 101, and a circuit layer 212 is formed on the exposed surface of the insulating layer 101.
  • the metal foil 103 may be processed into a circuit layer 212. Thereby, the inner layer circuit board used as the core layer 21 is obtained.
  • the core layer 21 includes an insulating layer 101, a circuit layer 212 formed on the front and back surfaces of the insulating layer 101, and a via 213 that connects the circuit layers 212.
  • a B-stage prepreg (insulating layer 22) is laminated on one surface of the core layer 21.
  • the prepreg includes a fiber base material and a thermosetting resin layer impregnated in the fiber base material. However, it is good also as what consists only of a resin layer without including a fiber base material.
  • the same prepreg as that used for the insulating layer 101 is preferable.
  • a prepreg (insulating layer 22) is similarly laminated on the other surface of the core layer 21. Thereafter, the laminate is heated, for example, at 190 ° C. for 2 hours while being pressed in the stacking direction. Thereby, the laminated body in which the insulating layer 22 becomes the C stage is obtained.
  • the metal layer 13 is formed on the surface of the insulating layer 22, and a hole penetrating the metal layer 13 and the insulating layer 22 is formed by a laser or the like. A portion that penetrates the insulating layer 22 becomes a via hole. Further, when a metal foil is provided on the surface of the insulating layer 22, the metal foil may be used as the metal layer 13 as it is.
  • the metal layer 13 is made of, for example, Cu.
  • the thickness of the metal layer 13 is, for example, 10 to 50 ⁇ m.
  • a seed layer (not shown) is formed on the surface of the hole and the metal layer 13, and a mask is formed on the seed layer.
  • a part of the opening of the mask communicates with the hole, and the surface of the seed layer is exposed from the other part of the opening.
  • a conductive film is formed in the hole through a part of the opening of the mask, and a conductive film (for example, a Cu film) is formed in the other part of the opening of the mask.
  • the conductive film in the via hole becomes the via 23 in FIG.
  • the circuit layer 24 shown in FIG. 2 is formed by removing the mask and removing the portion of the metal layer 13 and the seed layer covered with the mask by etching.
  • the circuit layer 24 includes an etched metal layer 13 and a conductive film (for example, Cu film) 241 provided on the metal layer 13.
  • the conductive film 241 is connected to the via 23 and connected to the circuit layer 212 of the core layer 21.
  • a cured body of the prepreg (insulating layer 22) is a build-up layer. Thereafter, as shown in FIG. 2, a solder resist SR is provided on the circuit layer 24.
  • the circuit board 2 including the solder resist SR, the circuit layer obtained by selectively removing the metal layer 13, the insulating layer 22, and the core layer 21 is obtained.
  • the circuit layer 24 disposed between at least one outermost layer of the circuit board 2 and the insulating layer 22 It is preferable to provide the stress relaxation layer 11 containing a thermosetting resin.
  • the stress relaxation layer 11 has a storage elastic modulus E ′ LT at ⁇ 40 ° C. of 0.1 GPa to 3.5 GPa.
  • this stress relaxation layer 11 when this stress relaxation layer 11 is used for the circuit board 2 and the electronic component 31 is mounted, the positional displacement of the electronic component 31 with respect to the circuit board 2 in various temperature environments can be further prevented (see FIG. 4). . From the above, by setting the storage elastic modulus E ′ LT of the stress relaxation layer 11 at ⁇ 40 ° C. within the above range, the connection reliability between the electronic component and the circuit board can be improved.
  • the stress relaxation layer 11 is in a C stage state.
  • the thickness of the stress relaxation layer 11 is 5 micrometers or more and 50 micrometers or less, for example, Preferably they are 10 micrometers or more and 40 micrometers or less.
  • the thickness of the circuit board 2 can be suppressed by setting the thickness of the stress relaxation layer 11 to the upper limit value or less.
  • the stress relaxation layer 11 is obtained by curing a composition containing a resin component (A ′) containing a thermosetting resin (excluding a curing agent).
  • the resin component (A ′) may include a thermosetting resin (A′2) having at least one of an aromatic ring structure and an alicyclic structure (alicyclic carbocyclic structure) as a thermosetting resin. preferable.
  • a thermosetting resin (A′2) By using such a thermosetting resin (A′2), the glass transition temperature can be increased.
  • the thermosetting resin (A′2) having an aromatic ring or alicyclic structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, and bisphenol M.
  • Type epoxy resin bisphenol P type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, novolak type epoxy resin such as tetraphenol group ethane novolak type epoxy resin, biphenyl Type epoxy resins, arylalkylene type epoxy resins such as phenol aralkyl type epoxy resins having a biphenylene skeleton, and epoxy resins such as naphthalene type epoxy resins.
  • the One of these can be used alone, or two or more can be used in combination.
  • naphthalene type epoxy resins are preferred from the viewpoints of further increasing the glass transition temperature and reducing the storage elastic modulus E ′ LT at ⁇ 40 ° C.
  • the naphthalene type epoxy resin refers to one having a naphthalene ring skeleton and having two or more glycidyl groups.
  • naphthalene type epoxy resin for example, any one of the above formulas (5) to (8) can be used.
  • the resin component (A ′) may contain a reactive group (for example, glycidyl group) contained in the thermosetting resin (A′2) and a compound (A′1) having a reactive group that reacts. preferable.
  • a compound (A′1) include an aliphatic epoxy resin having no aromatic ring structure and an alicyclic structure (alicyclic carbocyclic structure), a copolymer of acrylonitrile and butadiene containing a carboxyl group at the terminal.
  • CTBN1300X trade name
  • a phenolic hydroxyl group-containing aromatic polyamide-poly (butadiene-acrylonitrile) block copolymer for example, any one or more selected from the group consisting of trade name KAYAFLEX BPAM-155, manufactured by Nippon
  • the aliphatic epoxy resin has a cyclic structure in addition to the glycidyl group. It is preferable that it is an aliphatic epoxy resin which does not have, and the bifunctional or more aliphatic epoxy resin which has 2 or more glycidyl groups is more preferable.
  • the aliphatic epoxy resins as described above are preferably those represented by chemical formulas (18) to (27), preferably include at least one of them, and particularly include those represented by chemical formula (18). preferable.
  • Such an aliphatic epoxy resin is excellent because an epoxy group is not easily oxidized and an elastic modulus is hardly increased due to thermal history.
  • n is an integer of 1 or more, and preferably 2 to 15 in particular.
  • the content of the compound (A′1) is 100 mass% of the total solid content of the resin composition constituting the stress relaxation layer 11.
  • the content is preferably 40% by mass or more and 80% by mass or less, more preferably 50% by mass or more and 70% by mass or less
  • the content of the thermosetting resin (A′2) is the entire resin composition constituting the stress relaxation layer 11. 5 mass% or more and 30 mass% or less are preferable with respect to 100 mass% of solid content, and 10 mass% or more and 20 mass% or less are more preferable.
  • the content of the compound (A′1) is the stress 10 mass% or more and 30 mass% or less are preferable with respect to 100 mass% of total solid content of the resin composition which comprises the relaxation layer 11, 15 mass% or more and 25 mass% or less are more preferable, and thermosetting resin (A'2 ) Is preferably 30% by mass to 60% by mass and more preferably 35% by mass to 55% by mass with respect to 100% by mass of the total solid content of the resin composition constituting the stress relaxation layer 11.
  • thermosetting resin (A'2) the mass ratio represented by the sum of compounds (A′1) / thermosetting resin (A′2) is preferably 0.1 or more and 1.5 or less, and 0.4 or more and 1.2 or less. The following is more preferable.
  • the resin component (A ′) containing the thermosetting resin (A′2) and the compound (A′1) is 50% based on 100% by mass of the total solid content of the resin composition constituting the stress relaxation layer 11.
  • the mass is preferably from 90% by mass to 90% by mass, more preferably from 55% by mass to 85% by mass, and particularly preferably from 60% by mass to 80% by mass.
  • the stress relaxation layer 11 may further contain a curing catalyst.
  • the curing catalyst include organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III); triethylamine, tributylamine, Tertiary amines such as diazabicyclo [2,2,2] octane; 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methyl Imidazoles such as imidazole, 2-phenyl-4-methyl-5-hydroxyimidazole, 2-phenyl-4,5-dihydroxyimidazole; triphenylphosphine, tri-p-tolylphosphine, tetraphenylphosphonium
  • the content of the curing catalyst is not particularly limited, but is preferably 0.05% by mass or more and 5% by mass or less, particularly 0.2% by mass with respect to 100% by mass of the total solid content of the resin composition constituting the stress relaxation layer 11. % To 2% by mass is preferable.
  • the stress relaxation layer 11 may further contain a curing agent.
  • a phenolic curing agent may be used as the curing agent.
  • phenolic curing agents include phenol novolak resins, cresol novolak resins, naphthol novolak resins, aminotriazine novolak resins, and other novolak phenol resins; triphenol methane type phenol resins and other polyfunctional phenol resins; Modified phenolic resins such as cyclopentadiene-modified phenolic resins; Aralkyl-type resins such as phenol aralkyl resins having a phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resins having phenylene and / or biphenylene skeletons; Bisphenol compounds such as bisphenol A and bisphenol F These may be used, and these may be used alone or in combination of two or more.
  • the content of the curing agent is preferably such that the equivalent ratio (phenolic hydroxyl group equivalent / epoxy group equivalent) to the epoxy resin is 0.1 to 1.0 when the resin component (A ′) contains an epoxy resin. As a result, there remains no unreacted curing agent, and the moisture absorption heat resistance is improved.
  • curing agent is not specifically limited, 5 mass% or more and 45 mass% or less are preferable with respect to 100 mass% of total solid content of the resin composition which comprises the stress relaxation layer 11, 10 mass% or more and 40 mass%. The following is preferable, and 15 mass% or more and 35 mass% or less are more preferable.
  • the stress relaxation layer 11 may further contain an inorganic filler.
  • the inorganic filler include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, silica and fused silica; calcium carbonate, magnesium carbonate, hydrotalcite and the like.
  • Carbonates such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide; sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite; zinc borate, barium metaborate, aluminum borate, boric acid
  • borates such as calcium and sodium borate
  • nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride
  • titanates such as strontium titanate and barium titanate.
  • aluminum hydroxide is preferable in that the effect of imparting flame retardancy is excellent.
  • the average particle diameter of the inorganic filler is not particularly limited, but is preferably 0.01 ⁇ m or more and 5 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the varnish can have a low viscosity and handleability can be improved.
  • sedimentation of an inorganic filler etc. can be suppressed in varnish by setting it as 5 micrometers or less.
  • This average particle diameter can be measured by, for example, a particle size distribution meter (manufactured by Shimadzu Corporation, product name: laser diffraction particle size distribution measuring device SALD series).
  • the inorganic filler is not particularly limited, but an inorganic filler having a monodispersed average particle diameter can be used, and an inorganic filler having a polydispersed average particle diameter can be used. Furthermore, one type or two or more types of inorganic fillers having an average particle size of monodisperse and / or polydisperse can be used in combination.
  • aluminum hydroxide having an average particle diameter of 5 ⁇ m or less is preferable, and aluminum hydroxide having an average particle diameter of 0.5 ⁇ m or more and 2 ⁇ m or less is particularly preferable. Thereby, the resin film thickness uniformity can be improved.
  • the content of the inorganic filler contained in the stress relaxation layer 11 is preferably 60% by mass or less, more preferably 30% by mass or less, when the entire stress relaxation layer 11 is 100% by mass, 20 It is particularly preferable that the content is not more than mass%. Thereby, circuit workability can be improved.
  • composition that becomes the stress relaxation layer 11 may contain a coupling agent.
  • the coupling agent improves the wettability of the interface between the resin component (A ′) and the inorganic filler.
  • any coupling agent can be used as long as it is usually used.
  • an epoxy silane coupling agent, a cationic silane coupling agent, an amino silane coupling agent, a titanate coupling agent, and a silicone oil type coupling agent It is preferable to use one or more coupling agents selected from among the above.
  • the amount of coupling agent added depends on the specific surface area of the inorganic filler and is not particularly limited, but is preferably 0.05 parts by mass or more and 3 parts by mass or less, particularly 0.1 mass with respect to 100 parts by mass of the inorganic filler. The amount is preferably 2 parts by mass or more and 2 parts by mass or less.
  • the storage elastic modulus E ′ LT at ⁇ 40 ° C. of the stress relaxation layer 11 is preferably 0.1 GPa or more, more preferably 0.2 GPa or more, particularly preferably 1.0 GPa or more, and preferably 3.5 GPa or less. Preferably it is 3.4 GPa or less.
  • the storage elastic modulus of the stress relaxation layer 11 is preferably 0.1 GPa or more, more preferably 0.2 GPa or more, particularly preferably 1.0 GPa or more, and preferably 3.5 GPa or less. Preferably it is 3.4 GPa or less.
  • the stress generated due to the stress can be stably relaxed by the stress relaxation layer 11. From the above, by setting the storage elastic modulus of the stress relaxation layer 11 at ⁇ 40 ° C. within the above range, the connection reliability between the electronic component 31 and the circuit board 2 can be improved even if the environmental temperature changes suddenly. It can be further increased.
  • the storage elastic modulus E ′ LT is a storage elasticity of ⁇ 40 ° C. when a tensile load is applied to the stress relaxation layer 11 and measured from ⁇ 50 ° C. to 300 ° C. at a frequency of 1 Hz and a heating rate of 5 to 10 ° C./min. Rate value.
  • the glass transition temperature of the stress relaxation layer 11 is preferably 190 ° C. or higher and 250 ° C. or lower, more preferably 200 ° C. or higher and 250 ° C. or lower.
  • the glass transition temperature is a value measured by dynamic viscoelasticity measurement under conditions of a heating rate of 5 ° C./min and a frequency of 1 Hz.
  • Tg is 190 ° C. or higher and 250 ° C. or lower
  • the stress relaxation layer 11 has a glass transition temperature higher than that of the other insulating layer 22 (see FIG. 3) constituting the general-purpose circuit board. Therefore, when a heat cycle test or the like is performed on the circuit board, the stress relaxation layer 11 becomes rubber before the other insulating layer 22 (see FIG.
  • the stress relaxation layer 11 can further relax the stress generated between the circuit board and the electronic component. Further, by setting the glass transition temperature within the above range, it is possible to further prevent the electronic component 31 from sinking to the circuit board 2 side when the electronic component 31 is mounted on the circuit board 2.
  • the average linear expansion coefficient in the in-plane direction of the stress relaxation layer 11 at a glass transition temperature from 25 ° C. of the stress relaxation layer 11 is 400 ppm / ° C. or less.
  • FIG. 5 shows an electronic device 3 using the stress relaxation layer 11.
  • the electronic device 3 includes a circuit board 2 and an electronic component 31.
  • the electronic component 31 is fixed on the solder resist SR of the circuit board 2 via an adhesive 32.
  • the electronic component 31 is connected to the circuit board 2 by bonding wires W.
  • the bonding wire W is connected to the electronic component 31 and is soldered to a part (pad) of the circuit layer 24 of the circuit board 2.
  • Examples of the electronic component 31 include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, a solid-state imaging device, a ceramic capacitor, a chip resistor, a microcomputer, and an angle sensor.
  • the electronic device 3 includes, for example, an electronic control unit, a power conversion inverter unit mounted on a vehicle such as a hybrid vehicle, a fuel cell vehicle, and an electric vehicle, a vehicle such as an airplane, a rocket, a processor unit mounted on a portable terminal such as a smartphone, Mobile and outdoor electronic devices that can make use of the drop impact. Since the electronic device 3 can stably reduce the stress generated due to the difference in linear expansion coefficient generated between the circuit board and the electronic component even if the electronic device 3 is left in an environment where the temperature change is severe for a long time, This is particularly effective when used for an electronic device such as an electronic control unit used in an engine room of a vehicle such as a rocket.
  • the electronic device 3 has high connection reliability between the electronic component 31 and the circuit board 2. This is because the insulating layer 101 is provided on the circuit board 2. As described above, the insulating layer 101 is the difference in average coefficient of linear expansion alpha 1 and the average linear thermal expansion coefficient alpha 2 is smaller than the conventional reference. Therefore, even if a sudden temperature change that exceeds the glass transition temperature of the insulating layer 101 occurs, the change in the linear expansion coefficient of the insulating layer 101 is small, so the bonding wire W or the pad portion of the bonding wire W and the circuit layer 24 It is possible to reduce the load applied to the connecting portion. Thereby, even if a sudden change arises in environmental temperature, the connection reliability between the electronic component 31 and the circuit board 2 can be improved.
  • the electronic device 3 shown in FIG. 5 is further excellent in connection reliability between the electronic component 31 and the circuit board 2. This is because the circuit board 2 is provided with the insulating layer 101 and the stress relaxation layer 11. The reason why the connection reliability between the electronic component 31 and the circuit board 2 is improved by providing the insulating layer 101 is as described above. Further, as described above, the stress relaxation layer 11 has a storage elastic modulus E ′ LT at ⁇ 40 ° C. of 0.1 GPa or more and 3.5 GPa or less. Thereby, the position shift of the electronic component 31 with respect to the circuit board 2 in various temperature environments can be prevented. Therefore, the electronic device 3 has excellent connection reliability between the electronic component and the circuit board.
  • the circuit board 2 has an average linear expansion coefficient larger than that of the electronic component 31, and is greatly expanded and contracted by a temperature change.
  • the amount of expansion and contraction of the electronic component 31 is small, a load is applied to the bonding wire W and the connection portion between the bonding wire W and the pad portion of the circuit layer 24.
  • the stress relaxation layer 11 has a low storage elastic modulus, the stress applied to the bonding wire W or the connection portion between the bonding wire W and the circuit layer 24 can be absorbed by the deformation of the stress relaxation layer 11. . Therefore, for example, the insulating layer 22 constituting the circuit board 2 has a relatively high linear expansion coefficient, for example, the insulating layer 22 whose average linear expansion coefficient from 25 ° C. to the glass transition temperature is 25 ppm / ° C. or more. Even if it uses, the connection reliability of the circuit board 2 and the electronic component 31 can be improved.
  • the stress relaxation layer 11 is disposed immediately below the outermost circuit layer 24 to which the bonding wires W are connected in the circuit board 2, the stress relaxation effect of the stress relaxation layer 11 is effective. Can be demonstrated.
  • connection reliability between the electronic component 31 and the circuit board 2 In order to improve the connection reliability between the electronic component 31 and the circuit board 2, a method of applying a large amount of solder used for bonding the bonding wire and the circuit board, or a resin at the bonding portion between the bonding wire and the circuit board It is conceivable to apply and harden. However, when applying a large amount of solder or applying a resin, it is necessary to enlarge the pad portion of the circuit board. This makes it difficult to reduce the size of the circuit board. On the other hand, in the present embodiment, by providing the stress relaxation layer 11, the connection reliability between the electronic component 31 and the circuit board 2 can be increased, and therefore, downsizing of the circuit board is not hindered.
  • Example 1 The metal-clad laminate in this embodiment was produced using the following procedure. 1.
  • varnish 1 of epoxy resin composition Naphthalene type epoxy resin (trade name EPICLON HP-6000, manufactured by DIC, epoxy equivalent 250 g / eq:
  • EPICLON HP-6000 manufactured by DIC, epoxy equivalent 250 g / eq:
  • 2-phenyl-4-methylimidazole manufactured by Shikoku Kasei Kogyo Co., Ltd., 2P4MZ
  • cresol novolac type epoxy resin manufactured by DIC, N-690-70M, epoxy equivalent 220 g / eq, 2-butanone dilution, solid content 70% by mass
  • a silane coupling agent manufactured by Shin-Etsu Silicone Co., Ltd., (3-glycidyloxypropyl) trimethoxysilane
  • aluminum hydroxide China Aluminum
  • H-WF-1 average particle size 5 ⁇ m
  • prepreg A 560 mm wide glass woven fabric (Chongqing Tianjin Materials Co., Ltd., # 7628, thickness: 165-180 ⁇ m, E glass) is rolled using a coating machine with a roll interval of 400-535 ⁇ m and a speed of 0.95-1
  • the resin varnish 1 was impregnated at 35 m / min.
  • the prepreg A containing 47% by mass of the epoxy resin composition and the prepreg B containing 54% by mass of the epoxy resin composition are obtained by drying with a 10 m drying cylinder temperature-controlled at 170 to 180 ° C. It was.
  • Circuit Board Circuit patterns were formed on both surfaces of the copper-clad laminate obtained above by an additive method to produce an inner layer circuit board.
  • the physical properties of the obtained inner layer circuit board are as follows.
  • heat press molding was performed using a vacuum press at a press pressure of 2.9 MPa at 125 ° C. for 30 minutes and 195 ° C. for 70 minutes. Thereafter, copper was plated by a general additive method to form a via 23 and a circuit layer 24.
  • a solder resist SR manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 / AUS308, was formed on the surface of the circuit layer 24 to obtain a circuit board 2.
  • An electronic component 31 (component size 2 mm ⁇ 1.2 mm) is mounted on the surface of the obtained circuit board 2, and the circuit layer 24 and the electronic component 31 are reflowed at 250 ° C. via a lead-free solder paste. To obtain an electronic device.
  • Example 2 A metal-clad laminate, a circuit board, and an electronic device were produced in the same manner as in Example 1 except that the resin varnish was changed to the following resin varnish 2.
  • 11.6 parts by mass of naphthalene type epoxy resin manufactured by DIC, EPICLON HP-5000, epoxy equivalent 250 g / eq: epoxy resin represented by chemical formula (7)
  • 2-phenyl-4-methylimidazole manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • 2P4MZ 2-phenyl-4-methylimidazole
  • cresol novolac type epoxy resin manufactured by DIC, N-690-70M, epoxy equivalent 220 g / eq, 2-butanone diluted, solid content 70% by mass
  • a silane coupling agent manufactured by Shin-Etsu Silicone Co., Ltd., (3-glycidyloxypropyl) trimethoxysilane
  • aluminum hydroxide China Aluminum
  • H-WF-1 average particle size 5 ⁇ m
  • Example 3 The resin varnish was changed to the following resin varnish 3, and the same as in Example 1 except that a prepreg containing 49% by mass and 55% by mass of an epoxy resin composition was used for the production of a metal-clad laminate and a circuit board, respectively. A metal-clad laminate, a circuit board and an electronic device were manufactured.
  • Tetraphenol group ethane novolac type epoxy resin (Nanka Science and Technology Co., Ltd., NPPN431, epoxy equivalent 194 g / eq) 0.35 parts by mass, brominated bisphenol A type epoxy resin (DIC, EPICLON 153, epoxy Equivalent 400 g / eq) 7.6 parts by mass and 2-phenyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2P4MZ) 0.05 parts by mass were dissolved in 4.8 parts by mass of 2-butanone.
  • cresol novolac type epoxy resin manufactured by DIC, N-690-70M, epoxy equivalent 220 g / eq, 2-butanone diluted, solid content 70% by mass) 30.1 parts by mass (21.1 mass in terms of solid content) Part
  • bisphenol A type epoxy resin Mitsubishi Chemical Co., Ltd., jER Epicoat 828, epoxy equivalent 190 g / eq) 15.0 parts by mass
  • silane coupling agent Shin-Etsu Silicone Co., Ltd., (3-glycidyloxypropyl) trimethoxysilane
  • Example 4 Manufacture of prepreg A glass cloth having a width of 560 mm (# 7628, manufactured by Chongqing Tianjin Materials Co., Ltd., thickness: 165-180 ⁇ m, E glass) is applied using a coating machine and a roll interval of 400-535 ⁇ m and a speed of 0.95-1. The resin varnish 3 was impregnated at 35 m / min. Next, the prepreg C containing 49% by mass of the epoxy resin composition and the prepreg D containing 54% by mass of the epoxy resin composition are obtained by drying with a 10 m drying cylinder temperature-controlled at 170 to 180 ° C. It was.
  • Circuit board Circuit patterns were formed on both surfaces of the copper-clad laminate obtained above by an additive method to produce an inner layer circuit board.
  • the physical properties of the obtained inner layer circuit board are as follows.
  • the prepreg D was superimposed on the front and back surfaces of the inner layer circuit board and the copper foil with the stress relaxation layer was further superimposed on the surface, 125 ° C. for 30 minutes and 195 ° C. at a pressing pressure of 2.9 MPa using a vacuum press. Heat pressing was performed under the condition of 70 minutes.
  • a solder resist SR manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 / AUS308 was formed on the surface of the circuit layer 24 to obtain a circuit board 2.
  • the copper foil with a stress relaxation layer was produced by the following procedure.
  • liquid epoxidized polybutadiene manufactured by Daicel Corporation, trade name EPL-PB3600: compound represented by chemical formula (18)
  • naphthalene type epoxy resin manufactured by DIC trade name EPICLON HP-4710: chemical formula (6 -3)
  • bisphenol A type epoxy resin trade name Epicoat 828EL, manufactured by Mitsubishi Chemical Corporation
  • phenol novolac resin trade name PR-51470, manufactured by Sumitomo Bakelite 27 .9 parts by mass and 0.5 part by mass of 2-phenyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2P4MZ) were dissolved in methyl ethyl ketone to prepare a resin varnish having a solid content concentration of 60% by mass.
  • the obtained resin varnish was applied to a copper foil (manufactured by Nippon Electrolytic Co., Ltd., trade name YGP-18, thickness 18 ⁇ m) and then dried at 100 ° C. for 2 minutes and at 180 ° C. for 4 minutes to give a resin having a thickness of 30 ⁇ m. A layer was obtained. The resin layer was in a semi-cured state.
  • Example 1 The resin varnish was changed to the following resin varnish 4, and the same as Example 1 except that a prepreg containing 46% by mass and 49% by mass of an epoxy resin composition was used for the production of a metal-clad laminate and a circuit board, respectively. A metal-clad laminate, a circuit board and an electronic device were manufactured.
  • thermomechanical analysis measurement (1stRun) consisting of a process
  • second thermomechanical analysis measurement consisting of a temperature rising process from 30 ° C to 230 ° C and a temperature falling process from 230 ° C to 30 ° C ( 2ndRun)
  • ⁇ 2 were calculated, respectively.
  • the thickness of the insulating layer was measured, and (L 0 -L 2 ) / L 0 ⁇ 100 (%) was calculated.
  • L 0 is the thickness of the insulating layer at 30 ° C. before the first thermomechanical analysis measurement.
  • L 2 is the thickness of the insulating layer at 30 ° C. in the second temperature raising process.
  • the temperature at which the elongation rate suddenly changed was determined as the glass transition temperature of the insulating layer by the second thermomechanical analysis measurement (2ndRun).
  • the stress relaxation layer of the copper foil with a stress relaxation layer obtained in Example 4 was peeled off from the copper foil, and the stress relaxation layer was cured by heating at 190 ° C. for 2 hours. Then, hardened
  • the stress relaxation layer of the copper foil with a stress relaxation layer obtained in Example 4 was peeled off from the copper foil, and the stress relaxation layer was cured by heating at 190 ° C. for 2 hours. Thereafter, the cured product was cut to obtain a 5 ⁇ 20 mm test piece.
  • TMA / 2940 manufactured by TA Instruments Inc. dynamic viscoelasticity measurement was performed under the conditions of a load of 3 g, a temperature range of ⁇ 50 ° C. to 300 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz.
  • the glass transition temperature Tg was obtained.
  • Heat cycle test For each example and each comparative example, 10 electronic devices were prepared and a heat cycle test was performed. The heat cycle test was performed 30000 times with one cycle of ⁇ 40 ° C. 7 minutes to + 125 ° C. 7 minutes. The solder joints of the circuit board after the heat cycle test were observed with a microscope, and the number of cracks generated was counted. ⁇ : 0 to 1 cracks occurred in 10 electronic devices ⁇ : 2 to 5 cracks occurred in 10 electronic devices ⁇ : 6 to 10 cracks occurred in 10 electronic devices The
  • the amount of warpage of the electronic device was measured by placing the electronic component mounting surface on a chamber capable of heating and cooling and measuring the change in the amount of warpage on the substrate from the surface opposite to the electronic component mounting surface in an atmosphere of 125 ° C.
  • the electronic device produced by the Example and the comparative example was used for the sample.
  • Each code is as follows. ⁇ : Change in warping amount was less than 1500 ⁇ m ⁇ : Change in warping amount was 1500 ⁇ m or more

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 金属張積層板(100)は、エポキシ樹脂組成物と繊維基材とを含む絶縁層(101)を有し、絶縁層(101)の両面に金属箔(103)を備える。そして、金属張積層板(100)は、エッチングにより両面の金属箔(103)を除去後、熱機械分析装置を用いて、(1)30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる一回目の熱機械分析測定(1stRun)と、(2)30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる二回目の熱機械分析測定(2ndRun)とを含む熱機械分析測定を続けて行ったとき、絶縁層(101)の厚み方向における平均線膨張係数αが10ppm/℃以上100ppm/℃以下であり、平均線膨張係数αが100ppm/℃以上220ppm/℃以下である。αは二回目の昇温過程における50℃から100℃の範囲において算出した平均線膨張係数であり、αは二回目の昇温過程における210℃から230℃の範囲において算出した平均線膨張係数である。

Description

金属張積層板、回路基板、および電子装置
 本発明は、金属張積層板、回路基板、および電子装置に関する。
 従来、回路基板上に電子部品を積層した電子装置が使用されている。例えば、特許文献1には、回路基板と半導体素子とを備え、半導体素子と回路基板とをワイヤにて接続した半導体装置が開示されている。
特開平8―55867号公報
 このような電子装置においては、電子部品と回路基板との間において、様々な環境温度の変化にも耐えうる高い接続信頼性が求められる。
 本発明者らが、鋭意検討を行った結果、特定の温度範囲における平均線膨張係数が特定の範囲にある絶縁層を回路基板に設けることで、電子部品の平均線膨張係数と回路基板の平均線膨張係数との差により生じる応力を低減できることがわかった。これにより、電子部品と回路基板との間の接続信頼性を高めることができる。
 本発明はこのような知見に基づいて発案されたものである。
 すなわち、本発明によれば、
 エポキシ樹脂組成物と繊維基材とを含む絶縁層の両面に金属箔を有する金属張積層板であって、
 上記エポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填材とを含み、
 エッチングにより当該金属張積層板両面の上記金属箔を除去後、
 熱機械分析装置を用いて、
 30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる一回目の熱機械分析測定(1stRun)と、
 30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる二回目の熱機械分析測定(2ndRun)と、
を続けて行ったとき、
 上記絶縁層の厚み方向における、
  二回目の上記昇温過程における50℃から100℃の範囲において算出した平均線膨張係数αが10ppm/℃以上100ppm/℃以下であり、
  二回目の上記昇温過程における210℃から230℃の範囲において算出した平均線膨張係数αが100ppm/℃以上220ppm/℃以下である、金属張積層板が提供される。
 この金属張積層板は、50℃から100℃の範囲において算出した平均線膨張係数αと210℃から230℃の範囲において算出した平均線膨張係数αとの差が従来の基準よりも小さい。これにより、急激な温度変化により生じる回路基板と電子部品間の応力を低減することができる。その結果、環境温度に急激な変化が生じても電子部品と回路基板との間の接続信頼性を高めることができる。
 さらに、本発明によれば、上記金属張積層板を回路加工してなる、回路基板が提供される。
 さらに、本発明によれば、上記回路基板と、上記回路基板上に設けられた電子部品と、
を備える電子装置が提供される。
 本発明によれば、電子部品と回路基板との接続信頼性を向上させることができる金属張積層板、これを用いた回路基板および電子装置が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態における金属張積層板の構成の一例を示す断面図である。 本実施形態における回路基板の構成の一例を示す断面図である。 本実施形態における回路基板の構成の一例を示す断面図である。 本実施形態における電子装置の構成の一例を示す断面図である。 本実施形態における電子装置の構成の一例を示す断面図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは必ずしも一致していない。
(金属張積層板)
 はじめに、本実施形態における金属張積層板の構成について説明する。図1は、本実施形態における金属張積層板100の構成の一例を示す断面図である。
 金属張積層板100は、エポキシ樹脂組成物と繊維基材とを含む絶縁層101を有し、絶縁層101の両面に金属箔103を備えている。上記エポキシ樹脂組成物は、エポキシ樹脂(A)と、硬化剤(B)と、無機充填材(D)とを含む。
 そして、金属張積層板100は、エッチングにより両面の金属箔103を除去後、熱機械分析装置を用いて、(1)30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる一回目の熱機械分析測定(1stRun)と、(2)30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる二回目の熱機械分析測定(2ndRun)とを含む熱機械分析測定を続けて行ったとき、絶縁層101の厚み方向における平均線膨張係数αが10ppm/℃以上100ppm/℃以下であり、平均線膨張係数αが100ppm/℃以上220ppm/℃以下である。
 αは二回目の昇温過程における50℃から100℃の範囲において算出した平均線膨張係数であり、αは二回目の昇温過程における210℃から230℃の範囲において算出した平均線膨張係数である。
 平均線膨張係数αは、好ましくは20ppm/℃以上80ppm/℃以下であり、より好ましくは25ppm/℃以上50ppm/℃以下である。平均線膨張係数αは、好ましくは120ppm/℃以上210ppm/℃以下であり、より好ましくは120ppm/℃以上200ppm/℃以下であり、さらに好ましくは140ppm/℃以上180ppm/℃以下である。
 ここで、αは絶縁層101のガラス転移温度よりも低い温度領域における絶縁層101の線膨張係数の指標を示す。
 また、αは絶縁層101のガラス転移温度よりも高い温度領域における絶縁層101の線膨張係数の指標を示す。
 金属張積層板100は、平均線膨張係数αと平均線膨張係数αの差が従来の基準よりも小さい。そのため、絶縁層101のガラス転移温度を超えるような急激な温度変化が生じても、絶縁層101の線膨張係数の変化は小さいため、回路基板と電子部品間に生じる応力を低減することができる。これにより、環境温度に急激な変化が生じても電子部品と回路基板との間の接続信頼性を高めることができる。
 このような平均線膨張係数αおよびαを達成するためには、後述するエポキシ樹脂(A)の種類や量、後述する無機充填材(D)の種類や量、繊維基材の種類等を適宜調整すればよい。
 また、一回目の熱機械分析測定前の30℃での絶縁層101の厚みをLとし、二回目の昇温過程における30℃での絶縁層101の厚みをLとした場合、本実施形態の金属張積層板100は(L-L)/L×100(%)が、0.005%以上0.70%以下であり、好ましくは0.05%以上0.60%以下であり、より好ましくは0.10%以上0.55%以下である。ここで、(L-L)/L×100(%)は、30℃から230℃の範囲で熱履歴を経たのちにおける金属張積層板100の寸法変化の度合いを示す指標である。(L-L)/L×100(%)の値が小さいほど、30℃から230℃の範囲における金属張積層板100の寸法変化の度合いが小さいことを意味する。
 (L-L)/L×100(%)を上記範囲内とすることで、温度変化の繰り返しによる絶縁層101の寸法の経時的変化を抑制することができる。これにより、自動車のエンジンルーム内など温度変化が激しい状況に長期間置かれても、回路基板と電子部品間で発生する応力をより一層低減することができる。その結果、電子部品の回路基板に対する位置ずれを抑制でき、電子部品と回路基板との間の接続信頼性をより一層高めることができる。
 このような(L-L)/L×100(%)を達成するためには、後述するエポキシ樹脂(A)の種類や量、後述する無機充填材(D)の種類や量、繊維基材の種類等を適宜調整すればよい。
 また、本実施形態の金属張積層板100は、二回目の熱機械分析測定による絶縁層101のガラス転移温度が、好ましくは155℃以上であり、より好ましくは160℃以上であり、さらに好ましくは170℃以上である。上限については、例えば、230℃以下が好ましい。
 金属張積層板100は、絶縁層101のガラス転移温度が上記範囲を満たすと、絶縁層101の剛性が高まり、絶縁層101の反りをより一層低減できる。その結果、電子部品の回路基板に対する位置ずれをより一層抑制でき、電子部品と回路基板との間の接続信頼性をより一層高めることができる。
 このようなガラス転移温度を達成するためには、後述するエポキシ樹脂(A)の種類や量、後述する無機充填材(D)の種類や量、繊維基材の種類等を適宜調整すればよい。
 また、本実施形態の金属張積層板100は、絶縁層101を25℃で搬送方向(いわゆるMD)に曲げた際の曲げ弾性率が好ましくは15GPa以上であり、さらに好ましくは18GPa以上である。また、絶縁層101を25℃で搬送方向に曲げた際の曲げ弾性率の上限値は特に限定されるものではないが、通常は、25GPa以下程度の範囲とすることができる。
 金属張積層板100は、絶縁層101の25℃での曲げ弾性率が上記範囲を満たすと、絶縁層101の剛性が高まり、絶縁層101の反りをより一層低減できる。その結果、電子部品の回路基板に対する位置ずれをより一層抑制でき、電子部品と回路基板との間の接続信頼性をより一層高めることができる。
 このような曲げ弾性率を達成するためには、後述するエポキシ樹脂(A)の種類や量、後述する無機充填材(D)の種類や量、繊維基材の種類等を適宜調整すればよい。
 本実施形態における絶縁層101の厚さは、例えば、0.05mm以上0.40mm以下である。絶縁層101の厚さが上記範囲内であると、機械的強度および生産性のバランスが特に優れ、薄型回路基板に適した金属張積層板100を得ることができる。
(金属張積層板100の製造方法)
 つづいて、本実施形態における金属張積層板100の製造方法について説明する。金属張積層板100は、例えば、エポキシ樹脂組成物と繊維基材とを含むプリプレグを加熱硬化することによって得られる。ここで用いるプリプレグはシート状材料であり、誘電特性、高温多湿下での機械的、電気的接続信頼性などの各種特性に優れ、回路基板用の金属張積層板100の製造に適しており好ましい。
 プリプレグは、例えば、繊維基材に一または二以上のエポキシ樹脂組成物を含浸させ、その後、加熱してエポキシ樹脂組成物を半硬化させることにより得ることができる。
 また、繊維基材に一または二以上のエポキシ樹脂組成物を含浸させる方法としては、特に限定されないが、例えば、エポキシ樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、次いで、繊維基材を樹脂ワニスに浸漬する方法、各種コーターにより繊維基材に樹脂ワニスを塗布する方法、スプレーにより繊維基材に樹脂ワニスを吹き付ける方法、支持基材付きエポキシ樹脂組成物を繊維基材にラミネートする方法などが挙げられる。
 つづいて、上記で得られたプリプレグを用いた金属張積層板100の製造方法について説明する。プリプレグを用いた金属張積層板100の製造方法は、特に限定されないが、例えば以下の通りである。
 得られたプリプレグの外側の上下両面または片面に金属箔103を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する、あるいはそのままプリプレグの外側の上下両面または片面に金属箔103を重ねる。
 つぎに、プリプレグに金属箔103を重ねたものを真空プレス機で加熱、加圧するかあるいは乾燥機で加熱し、金属張積層板100を得ることができる。
(金属張積層板の構成材料)
 以下、金属張積層板100を製造する際に使用する各材料について詳細に説明する。
(金属箔)
 金属箔103を構成する金属としては、例えば、銅および銅系合金、アルミおよびアルミ系合金、銀および銀系合金、金および金系合金、亜鉛および亜鉛系合金、ニッケルおよびニッケル系合金、錫および錫系合金、鉄および鉄系合金、コバール(商標名)、42アロイ、インバーまたはスーパーインバーなどのFe-Ni系の合金、WまたはMoなどが挙げられる。これらの中でも、金属箔103を構成する金属としては、導電性に優れ、エッチングによる回路形成が容易であり、また安価であることから銅または銅合金が好ましい。すなわち、金属箔103としては、銅箔が好ましい。
 また、金属箔103としては、キャリア付金属箔なども使用することができる。
 金属箔103の厚みは、例えば10μm以上150μm以下である。
(エポキシ樹脂組成物)
 エポキシ樹脂組成物は、エポキシ樹脂(A)と、硬化剤(B)と、無機充填材(D)とを含む。
 エポキシ樹脂(A)は、芳香環構造および脂環構造(脂環式の炭素環構造)の少なくともいずれか一方を有するエポキシ樹脂(A1)を含むことが好ましい。
 このようなエポキシ樹脂(A1)を使用することで、ガラス転移温度および曲げ弾性率を高くするとともに、αおよびαを低減することができる。
 そして、芳香環あるいは脂環構造を有するエポキシ樹脂(A1)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタンノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂などのエポキシ樹脂などが挙げられる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 これらの中でも、比較的安価であり、かつ、上記金属箔との密着性を向上させることができる観点から、クレゾールノボラック型エポキシ樹脂が好ましい。ここで、クレゾールノボラック型エポキシ樹脂の含有量は、エポキシ樹脂(A)100質量%に対し、好ましくは5質量%以上95質量%以下であり、より好ましくは20質量%以上85質量%以下である。
 また、ガラス転移温度および曲げ弾性率をより一層高くでき、かつ、線膨張係数αおよびαを低減できる観点から、芳香環あるいは脂環構造を有するエポキシ樹脂(A1)として、ナフタレン型エポキシ樹脂が好ましい。ここで、ナフタレン型エポキシ樹脂とは、ナフタレン環骨格を有し、かつ、グリシジル基を2つ以上有するものを呼ぶ。ナフタレン型エポキシ樹脂の含有量は、エポキシ樹脂(A)100質量%に対し、好ましくは0.1質量%以上50質量%以下であり、より好ましくは、5質量%以上30質量%以下である。
 ナフタレン型エポキシ樹脂としては、例えば、以下の式(5)~(8)のいずれかを使用できる。なお、式(6)において、m、nはナフタレン環上の置換基の個数を示し、それぞれ独立して1~7の整数を示している。また、式(7)においては、Meはメチル基を示し、l、m、nは1以上の整数である。ただし、l、m、nは10以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 なお、式(6)の化合物としては、以下のいずれか1種以上を使用することが好ましい。
Figure JPOXMLDOC01-appb-C000004
 また、ナフタレン型エポキシ樹脂としては、以下の式(8)で表されるナフチレンエーテル型エポキシ樹脂も使用できる。
Figure JPOXMLDOC01-appb-C000005
(上記式(8)において、nは1以上20以下の整数であり、lは1以上2以下の整数であり、Rはそれぞれ独立に水素原子、ベンジル基、アルキル基または下記式(9)で表される構造であり、Rはそれぞれ独立に水素原子またはメチル基である。)
Figure JPOXMLDOC01-appb-C000006
(上記式(9)において、Arはそれぞれ独立にフェニレン基またはナフチレン基であり、Rはそれぞれ独立に水素原子またはメチル基であり、mは1又は2の整数である。)
 上記式(8)で表されるナフチレンエーテル型エポキシ樹脂は、下記式(10)で表されるものが例として挙げられる。
Figure JPOXMLDOC01-appb-C000007
(上記式(10)において、nは1以上20以下の整数であり、好ましくは1以上10以下の整数であり、より好ましくは1以上3以下の整数である。Rはそれぞれ独立に水素原子または下記式(11)で表される構造であり、好ましくは水素原子である。)
Figure JPOXMLDOC01-appb-C000008
(上記式(11)において、mは1又は2の整数である。)
 上記式(10)で表されるナフチレンエーテル型エポキシ樹脂は、例えば、下記式(12)~(16)で表されるものが例として挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 また、エポキシ樹脂(A1)として、ガラス転移温度を低下させずに、難燃性を向上させる観点から、臭素化ビスフェノールA型エポキシ樹脂を用いることが好ましく、臭素化ビスフェノールA型エポキシ樹脂のうちテトラブロモビスフェノールAをベースとするエポキシ樹脂等の高臭素化ビスフェノールA型エポキシ樹脂を用いることがより好ましい。
 高臭素化ビスフェノールA型エポキシ樹脂は臭素含有量が好ましくは30質量%以上60質量%以下であり、より好ましくは40質量%以上50質量%以下である。高臭素化ビスフェノールA型エポキシ樹脂としては、例えば、DIC社製のEPICLON 152、153、153-60T、および153-60M等が挙げられる。ここで、臭素化ビスフェノールA型エポキシ樹脂の含有量は、エポキシ樹脂(A)100質量%に対し、好ましくは0.1質量%以上50質量%以下であり、より好ましくは、5質量%以上30質量%以下である。
 エポキシ樹脂組成物中に含まれるエポキシ樹脂(A)の含有量は、その目的に応じて適宜調整されれば良く特に限定されないが、エポキシ樹脂組成物の全固形分100質量%に対し、20質量%以上80質量%以下が好ましく、さらに35質量%以上50質量%以下が好ましい。エポキシ樹脂(A)の含有量が上記下限値以上であると、ハンドリング性が向上し、絶縁層101を形成するのが容易となる。エポキシ樹脂(A)の含有量が上記上限値以下であると、絶縁層101の強度や難燃性が向上したり、絶縁層101の線膨張係数が低下し金属張積層板100の反りの低減効果が向上したりする場合がある。
 また、エポキシ樹脂組成物は、シアネート樹脂(シアネート樹脂のプレポリマーを含む)、ビスマレイミド樹脂およびベンゾオキサジン系樹脂を積極的に含まないことが好ましい。具体的には、シアネート樹脂脂、ビスマレイミド樹脂およびベンゾオキサジン系樹脂から選択される一種または二種以上の含有量はエポキシ樹脂組成物の全固形分100質量%に対し、好ましくは1質量%以下、より好ましくは0.1質量%以下である。シアネート樹脂、ビスマレイミド樹脂およびベンゾオキサジン系樹脂を積極的に含まないことにより、絶縁層101の難燃性を向上させることができる。また、得られる積層板のコストを低減することができる。
 また、硬化剤(B)としては、例えば、フェノール系硬化剤等が挙げられる。フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂等のノボラック型フェノール樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;レゾール型フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 これらの中でも、ガラス転移温度の向上及び線膨張係数の低減の観点から、硬化剤(B)がノボラック型フェノール樹脂またはレゾール型フェノール樹脂が好ましく、サリチルアルデヒド由来のノボラック型フェノール樹脂がより好ましい。
 硬化剤(B)の配合量は、エポキシ樹脂(A)との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1~1.0であると好ましい。これにより、未反応の硬化剤(B)の残留がなくなり、吸湿耐熱性が向上する。
 硬化剤(B)の含有量は、特に限定されないが、エポキシ樹脂組成物の全固形分100質量%に対し、5質量%以上69質量%以下が好ましく、10質量%以上30質量%以下がより好ましい。
 エポキシ樹脂組成物は、硬化触媒(C)をさらに含むのが好ましい。
 硬化触媒(C)としては、例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩;トリエチルアミン、トリブチルアミン、1,4-ジアザビシクロ[2.2.2]オクタンなどの3級アミン類;2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2,4-ジエチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類;トリフェニルホスフィン、トリ-p-トリルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン・トリフェニルボラン、1,2-ビス-(ジフェニルホスフィノ)エタンなどの有機リン化合物;フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物;酢酸、安息香酸、サリチル酸、p-トルエンスルホン酸などの有機酸;など、またはこの混合物が挙げられる。硬化触媒(C)として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。
 硬化触媒(C)の含有量は、特に限定されないが、エポキシ樹脂組成物の全固形分100質量%に対し、0.001質量%以上1質量%以下が好ましい。
 無機充填材(D)としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカなどの酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物;チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩;などを挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 これらの中でも、難燃性向上の観点から、水酸化アルミニウムを用いることが好ましい。
 ガラス転移温度および曲げ弾性率をより一層高くでき、かつ、線膨張係数αおよびαを低減できる観点から、水酸化アルミニウムの平均粒子径d50は、1μm以上10μm以下が好ましく、特に2μm以上8μm以下が好ましい。
 この平均粒子径は、レーザー回折散乱式粒度分布測定法による重量基準粒度分布におけるd50であり、例えば粒度分布計(島津製作所社製、製品名:レーザー回折式粒度分布測定装置SALDシリーズ)により測定することができる。
 また、水酸化アルミニウムの含有量は、エポキシ樹脂組成物の全固形分100質量%に対し、10質量%以上60質量%以下が好ましく、25質量%以上45質量%以下がより好ましい。水酸化アルミニウムの含有量が上記上限値以下であると、樹脂ワニスを塗布した際の外観の向上の点で好ましい。また、水酸化アルミニウムの含有量が上記下限値以上であると、難燃性向上の点で好ましい。
 さらに、エポキシ樹脂組成物は、カップリング剤(E)を含んでもよい。カップリング剤(E)は、エポキシ樹脂(A)と無機充填材(D)との界面の濡れ性を向上させる。
 カップリング剤(E)としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。
 カップリング剤(E)の添加量は無機充填材(D)の比表面積に依存するので、特に限定されないが、無機充填材(D)100質量部に対して0.05質量部以上3質量部以下が好ましく、特に0.1質量部以上2質量部以下が好ましい。
(繊維基材)
 繊維基材としては、特に限定されないが、ガラス織布、ガラス不織布などのガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維などのポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維などのポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維のいずれかを主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、あるいはリンターとクラフトパルプの混抄紙などを主成分とする紙基材などの有機繊維基材などが挙げられる。これらのうち、いずれかを使用することができる。これらの中でもガラス繊維基材が好ましく、ガラス織布が特に好ましい。これにより、低吸水性で、高強度、低熱膨張性の絶縁層101を得ることができる。
 繊維基材の厚みは、例えば、5μm以上200μm以下である。
 ガラス繊維基材として、例えば、Eガラス、Sガラス、Dガラス、Tガラス、NEガラス、UTガラス、Lガラスおよび石英ガラスなどからなるガラス繊維基材が好適に用いられる。
(回路基板)
 次に、回路基板の製造方法について説明する。図2は、本実施形態における回路基板2の構成の一例を示す断面図である。
 はじめに、レーザー等で、金属箔103および絶縁層101を貫通するホールを形成する。次いで、絶縁層101から金属箔103を除去し、露わになった絶縁層101の表面に回路層212を形成する。また、金属箔103を回路加工し、回路層212としてもよい。これにより、コア層21となる内層回路基板が得られる。このコア層21は、絶縁層101と、絶縁層101の表裏面に形成された回路層212と、回路層212間を接続するビア213とを備える。
 次に、図2に示すように、このようなコア層21の一方の面にBステージのプリプレグ(絶縁層22)を積層する。
 このプリプレグは、繊維基材と、この繊維基材に含浸した熱硬化性の樹脂層とを含む。ただし、繊維基材を含まず、樹脂層のみからなるものとしてもよい。プリプレグとしては、電子部品と回路基板との接続信頼性をより一層向上させる観点から、前述した絶縁層101に用いたものと同じものが好ましい。
 次に、コア層21の他方の面にも、同様にプリプレグ(絶縁層22)を積層する。
 その後、この積層体を積層方向に加圧しながら、例えば、190℃、2時間加熱する。これにより、絶縁層22がCステージとなった積層体が得られる。
 次いで、絶縁層22の表面に金属層13を形成し、レーザー等で、金属層13、絶縁層22を貫通するホールを形成する。絶縁層22を貫通する部分がビアホールとなる。また、絶縁層22の表面に金属箔を設けた場合は、金属箔をそのまま金属層13としてもよい。
 金属層13は、例えばCu等で構成される。金属層13の厚みは、例えば、10~50μmである。
 その後、上記ホールおよび金属層13表面に図示しないシード層を形成し、このシード層上にマスクを形成する。マスクの一部の開口部は、上記ホールに連通するとともに、他の一部の開口部からは、シード層表面が露出する。
 次に、めっきにより、マスクの一部の開口部を通じて、上記ホール内に導電膜を形成するとともに、マスクの他の一部の開口部内に導電膜(例えば、Cu膜)を形成する。
 ビアホール内の導電膜は図2のビア23となる。その後、マスクを除去し、マスクにより被覆されていた部分の金属層13およびシード層をエッチングで除去することで、図2に示す回路層24が形成される。回路層24はエッチングされた金属層13と、この金属層13上に設けられた導電膜(例えば、Cu膜)241とで構成される。導電膜241は、ビア23に接続され、コア層21の回路層212に接続されている。
 なお、この回路基板2においては、プリプレグ(絶縁層22)の硬化体がビルドアップ層となる。
 その後、図2に示すように、回路層24上にソルダーレジストSRを設ける。
 以上のようにして、ソルダーレジストSRと、金属層13を選択的に除去して得られた回路層と、絶縁層22と、コア層21とを備える回路基板2が得られる。
 また、図3に示すように、電子部品と回路基板との接続信頼性をより一層向上させる観点から、回路基板2の少なくとも一方の最外層に配置された回路層24と絶縁層22との間には、熱硬化性樹脂を含む応力緩和層11を設けるのが好ましい。
 この応力緩和層11は、-40℃における貯蔵弾性率E'LTは、0.1GPa以上3.5GPa以下である。
 このように-40℃での応力緩和層11の貯蔵弾性率E'LTを上記範囲内にすることで、環境温度に急激な変化が生じても、回路基板2と電子部品31間で生じる線膨張係数差に起因して発生する応力を応力緩和層11で安定的に緩和することができる。これにより、この応力緩和層11を回路基板2に使用し、電子部品31を搭載した場合に、さまざまな温度環境における回路基板2に対する電子部品31の位置ずれをより一層防止できる(図4参照)。
 以上から、-40℃での応力緩和層11の貯蔵弾性率E'LTを上記範囲内にすることで、電子部品と回路基板との間の接続信頼性を高めることができる。
 以下、応力緩和層11について説明する。
 応力緩和層11は、Cステージ状態である。そして、応力緩和層11の厚みは、例えば、5μm以上50μm以下であり、好ましくは10μm以上40μm以下である。応力緩和層11の厚みを上記下限値以上とすることで、応力緩和効果を確実に発揮させることができる。一方で、応力緩和層11の厚みを上記上限値以下とすることで、回路基板2の厚みを抑制することができる。
 応力緩和層11は、熱硬化性樹脂を含む樹脂成分(A')(硬化剤を除く)を含む組成物を硬化させたものである。
 樹脂成分(A')は、熱硬化性樹脂として、芳香環構造および脂環構造(脂環式の炭素環構造)の少なくともいずれか一方を有する熱硬化性樹脂(A'2)を含むことが好ましい。
 このような熱硬化性樹脂(A'2)を使用することで、ガラス転移温度を高くすることができる。
 そして、芳香環あるいは脂環構造を有する熱硬化性樹脂(A'2)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタンノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂などのエポキシ樹脂などが挙げられる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 これらの中でもガラス転移温度をより一層高くできるとともに、-40℃における貯蔵弾性率E'LTを低下できる観点から、ナフタレン型エポキシ樹脂が好ましい。ここで、ナフタレン型エポキシ樹脂とは、ナフタレン環骨格を有し、かつ、グリシジル基を2つ以上有するものを呼ぶ。
 ナフタレン型のエポキシ樹脂としては、例えば、前述した式(5)~(8)のいずれかを使用できる。
 また、樹脂成分(A')は、熱硬化性樹脂(A'2)に含まれる反応性基(例えば、グリシジル基)と、反応する反応性基を有する化合物(A'1)を含むことが好ましい。
 このような化合物(A'1)としては、芳香環構造および脂環構造(脂環式の炭素環構造)を有しない脂肪族エポキシ樹脂、末端にカルボキシル基を含有する、アクリロニトリルとブタジエンとの共重合体(CTBN、例えば、下記の式(17)で示され、xが0.05以上、0.2以下、yが0.8以上0.95以下(xとyはモル比を示し、x+y=1である)、zが50以上70以下である化合物。例えば、商品名CTBN1300X(宇部興産社製))、フェノール性水酸基含有芳香族ポリアミド-ポリ(ブタジエン-アクリロニトリル)ブロック共重合体(例えば、商品名KAYAFLEX BPAM-155、日本化薬社製、末端はアミド基)からなる群から選択されるいずれか1種以上を使用することができる。このような化合物(A'1)を適宜選択して使用することで、応力緩和層11のガラス転移温度の値を維持しつつ、-40℃における貯蔵弾性率E'LTを低下させることができる。
Figure JPOXMLDOC01-appb-C000014
 応力緩和層11のガラス転移温度の値を維持しつつ、-40℃における貯蔵弾性率E'LTを低下させて所定の範囲とする観点から、上記脂肪族エポキシ樹脂は、グリシジル基以外に環状構造を有しない脂肪族エポキシ樹脂であることが好ましく、グリシジル基を2以上有する2官能以上の脂肪族エポキシ樹脂がより好ましい。
 以上のような脂肪族エポキシ樹脂としては、化学式(18)~(27)で示されるものが好ましく、少なくともいずれか1以上を含むことが好ましく、特に化学式(18)で示されるものを含むことが好ましい。このような脂肪族エポキシ樹脂は、エポキシ基が酸化されにくいため、熱履歴による弾性率の上昇が起こりにくいため優れている。
Figure JPOXMLDOC01-appb-C000015
(式(18)において、l,m,n,p,q,rは0以上の整数、ただし、l、m、nがすべて0の場合を除く。また、p、q、rがすべて0の場合も除く。なかでも、l=1~5、m=5~20、n=0~8、p=0~8、q=3~12、r=0~4が好ましい。)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 (式(26)において、l、m、nは0以上の整数、ただし、l、m、nがすべて0の場合を除く。なかでも、l=1~12、m=8~30、n=0~10が好ましい。)
Figure JPOXMLDOC01-appb-C000024
(式(27)において、nは1以上の整数であり、なかでも、2~15であることが好ましい。)
 -40℃における貯蔵弾性率E'LTを低下させて所定の範囲とする観点から、化合物(A'1)の含有量は、応力緩和層11を構成する樹脂組成物の全固形分100質量%に対し、40質量%以上80質量%以下が好ましく、50質量%以上70質量%以下が好ましく、熱硬化性樹脂(A'2)の含有量は応力緩和層11を構成する樹脂組成物の全固形分100質量%に対し、5質量%以上30質量%以下が好ましく、10質量%以上20質量%以下がより好ましい。
 また、応力緩和層11の高いガラス転移温度を達成するとともに、-40℃における貯蔵弾性率E'LTを低下させて所定の範囲とする観点からは、化合物(A'1)の含有量は応力緩和層11を構成する樹脂組成物の全固形分100質量%に対し、10質量%以上30質量%以下が好ましく、15質量%以上25質量%以下がより好ましく、熱硬化性樹脂(A'2)の含有量は応力緩和層11を構成する樹脂組成物の全固形分100質量%に対し、30質量%以上60質量%以下が好ましく、35質量%以上55質量%以下がより好ましい。このとき、熱硬化性樹脂(A'2)として前述したナフタレン型エポキシ樹脂を含むのが好ましい。この場合、化合物(A'1)の合計/熱硬化性樹脂(A'2)の合計で示される質量比を0.1以上1.5以下とすることが好ましく、0.4以上1.2以下とするのがより好ましい。
 また、熱硬化性樹脂(A'2)と化合物(A'1)とを含む樹脂成分(A')は、応力緩和層11を構成する樹脂組成物の全固形分100質量%に対し、50質量%以上90質量%以下であることが好ましく、55質量%以上85質量%以下であることがより好ましく、なかでも、60質量%以上80質量%以下であることが好ましい。
 応力緩和層11は硬化触媒をさらに含んでもよい。硬化触媒としては、例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩;トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類;2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類;トリフェニルホスフィン、トリ-p-トリルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン・トリフェニルボラン、1,2-ビス-(ジフェニルホスフィノ)エタンなどの有機リン化合物;フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物;酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸;など、またはこの混合物が挙げられる。硬化触媒として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。
 硬化触媒の含有量は、とくに限定されないが、応力緩和層11を構成する樹脂組成物の全固形分100質量%に対し、0.05質量%以上5質量%以下が好ましく、とくに0.2質量%以上2質量%以下が好ましい。
 また、応力緩和層11は硬化剤をさらに含んでもよい。硬化剤として、フェノール系硬化剤を使用してもよい。フェノール系硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂等のノボラック型フェノール樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 硬化剤の含有量は、樹脂成分(A')にエポキシ樹脂が含まれる場合、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1~1.0であると好ましい。これにより、未反応の硬化剤の残留がなくなり、吸湿耐熱性が向上する。
 硬化剤の含有量は、とくに限定されないが、応力緩和層11を構成する樹脂組成物の全固形分100質量%に対し、5質量%以上45質量%以下が好ましく、10質量%以上40質量%以下が好ましく、15質量%以上35質量%以下がより好ましい。
 また、応力緩和層11は無機充填材をさらに含んでもよい。無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカなどの酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物;チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩;などを挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 これらの中でも、水酸化アルミニウムが難燃性を付与する効果が優れる点で好ましい。
 無機充填材の平均粒子径は、とくに限定されないが、0.01μm以上5μm以下が好ましく、とくに0.5μm以上2μm以下が好ましい。無機充填材の粒径を0.01μm以上とすることで、ワニスを低粘度にし取り扱い性を向上させることができる。また、5μm以下とすることで、ワニス中で無機充填材の沈降などを抑制することができる。この平均粒子径は、例えば粒度分布計(島津製作所社製、製品名:レーザー回折式粒度分布測定装置SALDシリーズ)により測定することができる。
 また、無機充填材は、とくに限定されないが、平均粒子径が単分散の無機充填材を用いることもできるし、平均粒子径が多分散の無機充填材を用いることができる。さらに平均粒子径が単分散および/または多分散の無機充填材を1種類または2種類以上併用したりすることもできる。
 さらに、平均粒子径5μm以下の水酸化アルミニウムが好ましく、とくに平均粒子径0.5μm以上2μm以下の水酸化アルミニウムが好ましい。これにより、樹脂膜厚均一性を向上させることができる。
 応力緩和層11に含まれる無機充填材の含有量は、応力緩和層11全体を100質量%としたとき、60質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。これにより、回路加工性を向上させることができる。
 さらに、応力緩和層11となる組成物は、カップリング剤を含んでもよい。カップリング剤は、樹脂成分(A')と無機充填材との界面の濡れ性を向上させる。
 カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。
 カップリング剤の添加量は無機充填材の比表面積に依存するので、とくに限定されないが、無機充填材100質量部に対して0.05質量部以上3質量部以下が好ましく、とくに0.1質量部以上2質量部以下が好ましい。
 応力緩和層11の-40℃における貯蔵弾性率E'LTは、好ましくは0.1GPa以上、より好ましくは0.2GPa以上、特に好ましくは1.0GPa以上、そして、好ましくは3.5GPa以下、より好ましくは3.4GPa以下である。
 このように-40℃での応力緩和層11の貯蔵弾性率を上記範囲内にすることで、環境温度に急激な変化が生じても、回路基板2と電子部品31間で生じる線膨張係数差に起因して発生する応力を応力緩和層11で安定的に緩和することができる。
 以上から、-40℃での応力緩和層11の貯蔵弾性率を上記範囲内にすることで、環境温度に急激な変化が生じても電子部品31と回路基板2との間の接続信頼性をより一層高めることができる。
 このような貯蔵弾性率を達成するためには、無機充填材の量や、前述した化合物(A'1)および熱硬化性樹脂(A'2)の量を適宜調整すればよい。
 なお、上記貯蔵弾性率は、動的粘弾性測定装置で測定したものである。
 貯蔵弾性率E'LTは、応力緩和層11に引張り荷重をかけて、周波数1Hz、昇温速度5~10℃/分で-50℃から300℃で測定した際の、-40℃の貯蔵弾性率の値である。
 さらに、応力緩和層11のガラス転移温度は、好ましくは190℃以上250℃以下であり、より好ましく200℃以上250℃以下である。また、上記ガラス転移温度は、昇温速度5℃/min、周波数1Hzの条件で動的粘弾性測定により測定した値である。
 応力緩和層11は、ガラス転移温度Tgが190℃以上250℃以下であると、汎用的な回路基板を構成する他の絶縁層22(図3参照)よりも、ガラス転移温度が高くなる。
 そのため、回路基板に対してヒートサイクル試験等を行なった際に、昇温過程において、応力緩和層11が回路基板を構成する他の絶縁層22(図3参照)よりも先にゴム状となることはなく、応力緩和層11の物性が保持される。そのため、応力緩和層11により回路基板と電子部品との間で発生する応力をより一層緩和することが可能となる。また、ガラス転移温度を上記範囲内とすることで、電子部品31を回路基板2に実装する際に、電子部品31が回路基板2側に沈み込んでしまうこともより一層防止できる。
 また、応力緩和層11の25℃からガラス転移温度における応力緩和層11の面内方向の平均線膨張係数が400ppm/℃以下であることが好ましい。
 次に、図4および図5を参照して、このような回路基板2を用いた電子装置3について説明する。図5は応力緩和層11を用いた電子装置3である。
 図4および図5に示すように、電子装置3は、回路基板2と、電子部品31とを備える。
 電子部品31は、回路基板2のソルダーレジストSR上に接着剤32を介して固定されている。そして、電子部品31は、回路基板2に対してボンディングワイヤWにより接続されている。
 ボンディングワイヤWは、電子部品31に接続されるとともに、回路基板2の回路層24の一部(パッド)に半田接合されている。
 電子部品31は、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子、セラミックコンデンサ、チップ抵抗、マイクロコンピュータ、角度センサーなどが挙げられる。
 電子装置3は、例えば、ハイブリッド車、燃料電池車および電気自動車などの自動車や飛行機、ロケット等の乗り物に搭載するエレクトロニックコントロールユニット、電力変換インバータユニット;スマートフォンなどの携帯端末に搭載するプロセッサユニット、耐落下衝撃性が活かせるモバイルやアウトドア用電子機器等である。
 電子装置3は、温度変化が激しい環境下に長時間置かれても、回路基板と電子部品間で生じる線膨張係数差に起因して発生する応力を安定的に低減できるため、自動車や飛行機、ロケット等の乗り物のエンジンルーム内に使用されるエレクトロニックコントロールユニット等の電子装置に対して用いたとき特に効果的である。
 電子装置3は、電子部品31と回路基板2との接続信頼性が高い。
 これは、回路基板2に絶縁層101が設けられていることによるものである。
 前述したように、絶縁層101は平均線膨張係数αと平均線膨張係数αの差が従来の基準よりも小さい。
 そのため、絶縁層101のガラス転移温度を超えるような急激な温度変化が生じても、絶縁層101の線膨張係数の変化は小さいため、ボンディングワイヤWや、ボンディングワイヤWと回路層24のパッド部分との接続部分にかかる負荷を低減することができる。これにより、環境温度に急激な変化が生じても電子部品31と回路基板2との間の接続信頼性を高めることができる。
 また、図5に示す電子装置3は、電子部品31と回路基板2との接続信頼性がより一層優れている。
 これは、回路基板2に絶縁層101および応力緩和層11が設けられていることによるものである。絶縁層101を設けることにより電子部品31と回路基板2との接続信頼性が向上する理由は前述した通りである。
 また、応力緩和層11は、前述したように、-40℃の貯蔵弾性率E'LTが0.1GPa以上、3.5GPa以下となっている。
 これにより、さまざまな温度環境における回路基板2に対する電子部品31の位置ずれを防止できる。よって、電子装置3は、電子部品と回路基板との接続信頼性に優れている。
 回路基板2は、電子部品31よりも平均線膨張係数が大きく、温度変化により大きく膨張収縮することとなる。一方で、電子部品31の膨張収縮量は少ないため、ボンディングワイヤWや、ボンディングワイヤWと回路層24のパッド部分との接続部分に負荷がかかる。しかしながら、応力緩和層11は貯蔵弾性率が低いため、応力緩和層11が変形することで、ボンディングワイヤWや、ボンディングワイヤWと回路層24との接続部分にかかった負荷を吸収することができる。
 そのため、例えば、回路基板2を構成する絶縁層22として、線膨張係数が比較的高いもの、例えば、25℃~ガラス転移温度までの平均線膨張係数が25ppm/℃以上となるような絶縁層22を使用しても、回路基板2と電子部品31との接続信頼性を高めることができる。
 さらに、本実施形態では、回路基板2において、ボンディングワイヤWが接続される最外層の回路層24の直下に応力緩和層11が配置されているので、応力緩和層11の応力緩和効果を効果的に発揮させることができる。
 電子部品31と、回路基板2との間の接続信頼性を高めるため、ボンディングワイヤと回路基板との接合に使用する半田を多量に塗布する方法や、ボンディングワイヤと回路基板との接合部分に樹脂を塗布して固めてしまう方法が考えられる。
 しかしながら、半田を多量に塗布する場合や、樹脂を塗布する場合には、回路基板のパッド部分を大きくする必要がある。そのため、回路基板の小型化が難しくなる。
 これに対し、本実施形態では、応力緩和層11を設けることで、電子部品31と回路基板2との接続信頼性を高めることができるので、回路基板の小型化を妨げることがない。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば、本実施形態では、プリプレグが一層の場合を示したが、プリプレグを2層以上積層したものを用いて金属張積層板100を作製してもよい。
 また、上記実施形態では、電子部品と、回路基板とをボンディングワイヤで接続したが、これに限られるものではない。例えば、電子部品と回路基板とを半田バンプで接続してもよい。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、部は特に特定しない限り質量部を表す。また、それぞれの厚みは平均膜厚で表わされている。
(実施例1)
 以下の手順を用いて、本実施形態における金属張積層板を作製した。
1.エポキシ樹脂組成物のワニス1の調製
 ナフタレン型エポキシ樹脂(DIC社製 商品名EPICLON HP-6000、エポキシ当量250g/eq:化学式(10)において、Rがいずれも水素原子で、n=1である成分とn=2である成分との混合物)6.1質量部および2―フェニル―4-メチルイミダゾール(四国化成工業社製、2P4MZ)0.05質量部を、2-ブタノン4.1質量部に溶解させた。
 さらに、ノボラック型フェノール樹脂(住友ベークライト社製、PR-51470、ヒドロキシ基当量105g/eq)19.7質量部、臭素化ビスフェノールA型エポキシ樹脂(DIC社製、EPICLON 153、エポキシ当量400g/eq)6.2質量部およびブチルセロソルブ29.2質量部を加えて溶解させた。
 つづいて、クレゾールノボラック型エポキシ樹脂(DIC社製、N-690-70M、エポキシ当量220g/eq、2-ブタノン希釈、固形分70質量%)45.6質量部(固形分換算で31.9質量部)およびシランカップリング剤(信越シリコーン社製、(3-グリシジルオキシプロピル)トリメトキシシラン)0.68質量部を加えて溶解させたのち、水酸化アルミニウム(中国▲アルミ▼業山東公司社製、H-WF-1、平均粒径5μm)35.3質量部を混合し、高速撹拌装置を用い撹拌して、固形分68質量%のエポキシ樹脂組成物の樹脂ワニス1を得た。
2.プリプレグの製造
 560mm幅のガラス織布(重慶天勤材料有限公司社製、#7628、厚み:165-180μm、Eガラス)を、塗布機を用いてロール間隔400~535μm、速度0.95~1.35m/分で樹脂ワニス1に含浸させた。次いで、170~180℃に温調した10mの乾燥胴で乾燥させることで、47質量%のエポキシ樹脂組成物を含有するプリプレグAならびに、54質量%のエポキシ樹脂組成物を含有するプリプレグBを得た。
3.金属張積層板の製造
 得られたプリプレグAと35μm厚の銅箔とを貼り合わせ、真空プレスを用いて、プレス圧3.9MPaで、173℃23分、200℃70分の条件下で加熱加圧成形することにより、銅張積層板を得た。
 得られた銅張積層板の絶縁層(銅箔を除いた部分)の厚みは、0.22mmであった。
4.回路基板の製造
 上記で得られた銅張積層板の両面にアディティブ法で回路パターン形成し、内層回路基板を作製した。得られた内層回路基板の物性は以下の通りである。
・回路層212:銅箔厚み35μm、L/S=120/180μm、クリアランスホール1mmφ、3mmφ、スリット2mm
 この内層回路基板の表裏面にプリプレグBを重ねあわせた後、真空プレスを用いて、プレス圧力2.9MPaで、125℃30分、195℃70分の条件下で加熱加圧成形を行った。その後、一般的なアディティブ法で銅メッキし、ビア23および回路層24を形成した。回路層24表面にソルダーレジストSR(太陽インキ製造社製、PSR4000/AUS308)を形成し、回路基板2を得た。
5.電子装置の製造
 得られた回路基板2の表面に、電子部品31(部品サイズ2mm×1.2mm)を搭載し、鉛フリーソルダーペーストを介して回路層24と、電子部品31とを250℃リフローにより接続し、電子装置を得た。
(実施例2)
 樹脂ワニスを下記の樹脂ワニス2に変えた以外は実施例1と同様に金属張積層板、回路基板および電子装置を製造した。
 ナフタレン型エポキシ樹脂(DIC社製、EPICLON HP-5000、エポキシ当量250g/eq:化学式(7)で示されるエポキシ樹脂)11.6質量部および2―フェニル―4-メチルイミダゾール(四国化成工業社製、2P4MZ)0.05質量部を、シクロヘキサノン4.4質量部に溶解させた。さらに、サリチルアルデヒド由来のノボラック型フェノール樹脂(明和化成社製、MEH 7500、ヒドロキシ基当量98g/eq)18.7質量部、臭素化ビスフェノールA型エポキシ樹脂(DIC社製、EPICLON 153、エポキシ当量400g/eq)6.2質量部およびシクロヘキサノン30.8質量部を加えて溶解させた。
 つづいて、クレゾールノボラック型エポキシ樹脂(DIC社製、N-690-70M、エポキシ当量220g/eq、2-ブタノン希釈、固形分70質量%)39.7質量部(固形分換算で27.8質量部)およびシランカップリング剤(信越シリコーン社製、(3-グリシジルオキシプロピル)トリメトキシシラン)0.68質量部を加えて溶解させたのち、水酸化アルミニウム(中国▲アルミ▼業山東公司社製、H-WF-1、平均粒径5μm)35.0質量部を混合し、高速撹拌装置を用い撹拌して、固形分68質量%のエポキシ樹脂組成物の樹脂ワニス2を得た。
(実施例3)
 樹脂ワニスを下記の樹脂ワニス3に変え、また金属張積層板および回路基板の製造にそれぞれ49質量%、55質量%のエポキシ樹脂組成物を含有するプリプレグを用いた以外は、実施例1と同様に金属張積層板、回路基板および電子装置を製造した。
 テトラフェノール基エタンノボラック型エポキシ樹脂(南亞科技股▲ふん▼有限公司社製、NPPN431、エポキシ当量194g/eq)0.35質量部、臭素化ビスフェノールA型エポキシ樹脂(DIC社製、EPICLON 153、エポキシ当量400g/eq)7.6質量部および2―フェニル―4-メチルイミダゾール(四国化成工業社製、2P4MZ)0.05質量部を、2-ブタノン4.8質量部に溶解させた。
 さらに、ノボラック型フェノール樹脂(住友ベークライト社製、PR-51470、ヒドロキシ基当量105g/eq)20.2質量部およびプロピレングリコールモノメチルエーテル35.0質量部を加えて溶解させた。
 つづいて、クレゾールノボラック型エポキシ樹脂(DIC社製、N-690-70M、エポキシ当量220g/eq、2-ブタノン希釈、固形分70質量%)30.1質量部(固形分換算で21.1質量部)、ビスフェノールA型エポキシ樹脂(三菱化学社製、jERエピコート828、エポキシ当量190g/eq)15.0質量部およびシランカップリング剤(信越シリコーン社製、(3-グリシジルオキシプロピル)トリメトキシシラン)0.65質量部を加えて溶解させたのち、水酸化アルミニウム(中国▲アルミ▼業山東公司社製、H-WF-1、平均粒径5μm)35.0質量部を混合し、高速撹拌装置を用い撹拌して、固形分67質量%のエポキシ樹脂組成物の樹脂ワニス3を得た。
(実施例4)
1.プリプレグの製造
 560mm幅のガラス布(重慶天勤材料有限公司社製、#7628、厚み:165-180μm、Eガラス)を、塗布機を用いてロール間隔400~535μm、速度0.95~1.35m/分で樹脂ワニス3に含浸させた。次いで、170~180℃に温調した10mの乾燥胴で乾燥させることで、49質量%のエポキシ樹脂組成物を含有するプリプレグCならびに、54質量%のエポキシ樹脂組成物を含有するプリプレグDを得た。
2.金属張積層板の製造
 得られたプリプレグCと35μm厚の銅箔とを貼り合わせ、真空プレスを用いて、プレス圧3.9MPaで、173℃23分、200℃70分の条件下で加熱加圧成形することにより、銅張積層板を得た。
 得られた銅張積層板の絶縁層(銅箔を除いた部分)の厚みは、0.22mmであった。
3.回路基板の製造
 上記で得られた銅張積層板の両面にアディティブ法で回路パターン形成し、内層回路基板を作製した。得られた内層回路基板の物性は以下の通りである。
・回路層212:銅箔厚み35μm、L/S=120/180μm、クリアランスホール1mmφ、3mmφ、スリット2mm
 この内層回路基板の表裏面にプリプレグDを重ねあわせ、さらにその表面に応力緩和層付き銅箔を重ねあわせた後、真空プレスを用いて、プレス圧力2.9MPaで、125℃30分、195℃70分の条件下で加熱加圧成形を行った。その後、一般的なアディティブ法で銅メッキし、ビア23および回路層24を形成した。回路層24表面にソルダーレジストSR(太陽インキ製造社製、PSR4000/AUS308)を形成し、回路基板2を得た。
 ここで、応力緩和層付き銅箔は以下の手順で作製した。
 はじめに、液状エポキシ化ポリブタジエン(ダイセル社製、商品名EPL-PB3600:化学式(18)で示した化合物)23.2質量部、ナフタレン型エポキシ樹脂(DIC社製 商品名EPICLON HP-4710:化学式(6-3)で示した化合物)24.1質量部、ビスフェノールA型エポキシ樹脂(三菱化学社製 商品名エピコート828EL)24.3質量部、フェノールノボラック樹脂(住友ベークライト社製 商品名PR-51470)27.9質量部、2-フェニル-4-メチルイミダゾール(四国化成工業社製、2P4MZ)0.5質量部をメチルエチルケトンに溶解し、固形分濃度60質量%の樹脂ワニスを調製した。得られた樹脂ワニスを、銅箔(日本電解社製、商品名YGP-18、厚さ18μm)に塗布した後、100℃で2分間、180℃で4分間乾燥して、厚さ30μmの樹脂層を得た。樹脂層は、半硬化の状態であった。
4.電子装置の製造
 得られた回路基板2の表面に、電子部品31(部品サイズ2mm×1.2mm)を搭載し、鉛フリーソルダーペーストを介して回路層24と、電子部品31とを250℃リフローにより接続し、電子装置を得た。
(比較例1)
 樹脂ワニスを下記の樹脂ワニス4に変え、また金属張積層板および回路基板の製造にそれぞれ46質量%、49質量%のエポキシ樹脂組成物を含有するプリプレグを用いた以外は、実施例1と同様に金属張積層板、回路基板および電子装置を製造した。
 ノボラック型フェノール樹脂(住友ベークライト社製、A-1082G、ヒドロキシ基当量105g/eq)16.6質量部、2―フェニル―4-メチルイミダゾール(四国化成工業社製、2P4MZ)0.03質量部およびテトラフェノール基エタンノボラック型エポキシ樹脂(南亞科技股▲ふん▼有限公司社製、NPPN431、エポキシ当量194g/eq)0.24質量部を、トルエン13.6質量部およびメチルセロソルブ20.5質量部に溶解させた。
 つづいて、ビスフェノールA型エポキシ樹脂(三菱化学社製、jERエピコート828、エポキシ当量190g/eq)16.8質量部、臭素化ビスフェノールA型エポキシ樹脂(ダウケミカル社製、D.E.R.530-A80、エポキシ当量430g/eq、アセトン希釈、固形分80質量%)36.3質量部およびシランカップリング剤(信越シリコーン社製、(3-グリシジルオキシプロピル)トリメトキシシラン)0.78質量部を加えて溶解させたのち、水酸化アルミニウム(中国▲アルミ▼業山東公司社製、H-WF-8、平均粒径11μm)33.5質量部およびナノシリカ(DSL.ジャパン社製、カープレックス#67)3.0質量部を混合し、高速撹拌装置を用い撹拌して、固形分71質量%のエポキシ樹脂組成物の樹脂ワニス4を得た。
(評価)
(平均線膨張係数、ガラス転移温度)
 実施例・比較例で作製した金属張積層板5mm×5mmのテストピースを切り出し、エッチング液(塩化銅(II)溶液、35℃)で銅箔を除去した。次いで、熱機械分析装置TMA(TAインスツルメント社製、Q400)を用いて10℃/分の押しモードで(1)30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる一回目の熱機械分析測定(1stRun)と、(2)30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる二回目の熱機械分析測定(2ndRun)とを続けておこない、二回目の昇温過程における50℃から100℃の範囲の平均線膨張係数αと、二回目の昇温過程における210℃から230℃の範囲の平均線膨張係数αをそれぞれ算出した。
 また、線膨張係数の測定と同時に、絶縁層の厚みをそれぞれ測定し、(L-L)/L×100(%)を算出した。
 Lは一回目の熱機械分析測定前の30℃での絶縁層の厚みである。Lは二回目の昇温過程における30℃での絶縁層の厚みである。
 また、二回目の熱機械分析測定(2ndRun)により、伸び率が急激に変化する温度を絶縁層のガラス転移温度として求めた。
(曲げ弾性率)
 JIS K 6911に準拠し、測定した。サンプル形状は、幅25mm、厚み1.0mm、長さ50mmのものを用いた。なお、サンプルは、実施例・比較例で作製した金属張積層板を全面エッチングし、絶縁層101を露わにしたものを用いた。なお、表1のXが絶縁層101の搬送方向に曲げた際の曲げ弾性率であり、Yがそれに直交する方向に曲げた際の曲げ弾性率である。
(難燃性評価)
 UL規格UL94に準じて評価した。なお、サンプルは、実施例・比較例で作製した金属張積層板を全面エッチングしたものを用いた。
 また、UL94V-0の基準は以下の通りである。
(1)炎を取り去った後のフレーミング時間10秒以内、(2)5個一組の試料に計10回接炎後のフレーミング時間の合計50秒以内、(3)第2回目の炎を取り去った後のグローイング時間30秒以内、(4)試料から305mm下の脱脂綿を発火させる滴下物がないこと、(5)つかみ具までのフレーミングまたはグローイングがないこと。
(応力緩和層の貯蔵弾性率)
 実施例4で得られた応力緩和層付き銅箔の応力緩和層を銅箔から剥離して、応力緩和層を190℃2時間加熱して硬化させた。その後、硬化物を切削して、8mm×20mmの試験片を得た。この試験片を用い、動的粘弾性測定装置により、引っ張りモード、周波数1Hz、昇温速度5℃/分として、-50℃~300℃の温度範囲で測定を行った。そして、-40℃の貯蔵弾性率E'LTを得た。
(応力緩和層のガラス転移温度)
 実施例4で得られた応力緩和層付き銅箔の応力緩和層を銅箔から剥離して、応力緩和層を190℃2時間加熱して硬化させた。その後、硬化物を切削して、5×20mmの試験片を得た。この試験片をティー・エイ・インスツルメント社製TMA/2940を用いて荷重3g、-50℃から300℃の温度範囲を昇温速度5℃/分、周波数1Hzの条件で動的粘弾性測定により測定し、ガラス転移温度Tgを得た。
(導通試験)
 実施例および比較例で作製した電子装置3個をフライングチェッカー(1116X-YC ハイテスタ:日置電機社製)を用い、鉛フリーソルダーペーストを介して電子部品と回路基板の導通の測定をおこない、初期値とした。つぎに、60℃、60%の吸湿条件下で40時間処理後、IRリフロー炉(ピーク温度:260℃)で3回処理し、同様に導通を測定して初期値より抵抗値が5%以上上昇したものを実装時の断線と判定した。ここで、初期値で断線が生じていた場合は、回路作製上の不具合と判断しカウントしていない。なお、電子装置1個につき測定箇所は61箇所、計183箇所を測定した。
 各符号は、以下の通りである。
 ○:断線箇所が0%以上2%未満であった
 ×:断線箇所が2%以上であった
(ヒートサイクル試験)
 各実施例、各比較例につき、電子装置10個を用意して、ヒートサイクル試験を実施した。ヒートサイクル試験は、-40℃7分~+125℃7分を1サイクルとして30000回行なった。ヒートサイクル試験後の回路基板の半田接合部を顕微鏡で観察し、クラックが発生していたものをカウントした。
 ◎:電子装置10個中0~1個クラックが発生していた
 ○:電子装置10個中2~5個クラックが発生していた
 ×:電子装置10個中6~10個クラックが発生していた
(電子装置の反り量)
 電子装置の反り量は、電子部品搭載面を加熱冷却可能なチャンバー上に置いて、125℃の雰囲気下で、電子部品搭載面とは反対の面から基板上の反り量の変化を測定した。なお、サンプルは実施例および比較例で作製した電子装置を用いた。各符号は、以下の通りである。
 ○:反り量の変化が、1500μm未満であった
 ×:反り量の変化が、1500μm以上であった
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000025
 この出願は、2013年11月12日に出願された日本出願特願2013-234280号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1.  エポキシ樹脂組成物と繊維基材とを含む絶縁層の両面に金属箔を有する金属張積層板であって、
     前記エポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填材とを含み、
     エッチングにより当該金属張積層板両面の前記金属箔を除去後、
     熱機械分析装置を用いて、
     30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる一回目の熱機械分析測定(1stRun)と、
     30℃から230℃までの昇温過程と230℃から30℃までの降温過程とからなる二回目の熱機械分析測定(2ndRun)と、
    を続けて行ったとき、
     前記絶縁層の厚み方向における、
      二回目の前記昇温過程における50℃から100℃の範囲において算出した平均線膨張係数αが10ppm/℃以上100ppm/℃以下であり、
      二回目の前記昇温過程における210℃から230℃の範囲において算出した平均線膨張係数αが100ppm/℃以上220ppm/℃以下である、金属張積層板。
  2.  請求項1に記載の金属張積層板において、
     一回目の前記熱機械分析測定前の30℃での絶縁層の厚みをLとし、
     二回目の前記昇温過程における30℃での絶縁層の厚みをLとした場合、
     (L-L)/L×100(%)が0.005%以上0.70%以下である、金属張積層板。
  3.  請求項1または2に記載の金属張積層板において、
     二回目の前記熱機械分析測定による前記絶縁層のガラス転移温度が155℃以上である、金属張積層板。
  4.  請求項1乃至3いずれか一項に記載の金属張積層板において、
     前記絶縁層を25℃で搬送方向に曲げた際の曲げ弾性率が15GPa以上である、金属張積層板。
  5.  請求項1乃至4いずれか一項に記載の金属張積層板において、
     前記硬化剤がノボラック型フェノール樹脂またはレゾール型フェノール樹脂である、金属張積層板。
  6.  請求項1乃至5いずれか一項に記載の金属張積層板において、
     前記無機充填材が水酸化アルミニウムであり、
     レーザー回折散乱式粒度分布測定法による重量基準粒度分布における、前記水酸化アルミニウムの平均粒子径d50が1μm以上10μm以下である、金属張積層板。
  7.  請求項6に記載の金属張積層板において、
     前記水酸化アルミニウムの含有量が、前記エポキシ樹脂組成物の全固形分100質量%に対し、10質量%以上60質量%以下である、金属張積層板。
  8.  請求項1乃至7いずれか一項に記載の金属張積層板において、
     前記繊維基材が、Eガラス、Sガラス、Dガラス、Tガラス、NEガラス、UTガラス、Lガラスおよび石英ガラスからなる群から選ばれる少なくとも一種からなるガラス繊維基材である、金属張積層板。
  9.  請求項1乃至8いずれか一項に記載の金属張積層板において、
     前記エポキシ樹脂組成物に含まれるシアネート樹脂、ビスマレイミド樹脂およびベンゾオキサジン系樹脂から選択される一種または二種以上の含有量が、前記エポキシ樹脂組成物の全固形分100質量%に対し、1質量%以下である、金属張積層板。
  10.  請求項1乃至9いずれか一項に記載の金属張積層板を回路加工してなる、回路基板。
  11.  請求項10に記載の回路基板において、
     前記回路基板の少なくとも一方の最外層に配置された回路層と絶縁層との間には、熱硬化性樹脂を含むCステージ状態の応力緩和層が設けられており、
     前記応力緩和層の-40℃の貯蔵弾性率E'LTが0.1GPa以上、3.5GPa以下である、回路基板。
  12.  請求項11に記載の回路基板において、
     前記応力緩和層に含まれる無機充填材の含有量が、前記応力緩和層を100質量%としたとき、60質量%以下である、回路基板。
  13.  請求項11または12に記載の回路基板において、
     Cステージ状態の前記応力緩和層の厚みが50μm以下である、回路基板。
  14.  請求項10乃至13いずれか一項に記載の回路基板と、
     前記回路基板上に設けられた電子部品と、
    を備える電子装置。
PCT/JP2014/077294 2013-11-12 2014-10-14 金属張積層板、回路基板、および電子装置 WO2015072262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015547696A JP6428638B2 (ja) 2013-11-12 2014-10-14 金属張積層板、回路基板、および電子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-234280 2013-11-12
JP2013234280 2013-11-12

Publications (1)

Publication Number Publication Date
WO2015072262A1 true WO2015072262A1 (ja) 2015-05-21

Family

ID=53057204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077294 WO2015072262A1 (ja) 2013-11-12 2014-10-14 金属張積層板、回路基板、および電子装置

Country Status (3)

Country Link
JP (1) JP6428638B2 (ja)
TW (1) TW201533458A (ja)
WO (1) WO2015072262A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024773A (ja) * 2016-08-10 2018-02-15 住友ベークライト株式会社 車載モジュール基板用樹脂組成物、車載モジュール基板および車載用プリント基板の製造方法
WO2018030216A1 (ja) * 2016-08-10 2018-02-15 住友ベークライト株式会社 車載モジュール基板用樹脂組成物および車載モジュール基板
JP2019151785A (ja) * 2018-03-06 2019-09-12 三菱電機株式会社 耐汚損劣化性樹脂絶縁物
WO2020162278A1 (ja) * 2019-02-06 2020-08-13 三菱瓦斯化学株式会社 組成物、プリプレグ、樹脂シート、積層板、及びプリント配線板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292484A (ja) * 2003-03-25 2004-10-21 Sumitomo Bakelite Co Ltd 樹脂組成物、プリプレグおよび積層板
JP2007305963A (ja) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd 応力緩和層付半導体素子搭載用基板並びにその製造方法
JP2012049423A (ja) * 2010-08-30 2012-03-08 Sumitomo Bakelite Co Ltd 回路基板、半導体装置、回路基板の製造方法および半導体装置の製造方法
JP2013216086A (ja) * 2012-03-14 2013-10-24 Sumitomo Bakelite Co Ltd 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置
JP2014084441A (ja) * 2012-10-26 2014-05-12 Sumitomo Bakelite Co Ltd 樹脂基板、金属張積層板、プリント配線基板、および半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292484A (ja) * 2003-03-25 2004-10-21 Sumitomo Bakelite Co Ltd 樹脂組成物、プリプレグおよび積層板
JP2007305963A (ja) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd 応力緩和層付半導体素子搭載用基板並びにその製造方法
JP2012049423A (ja) * 2010-08-30 2012-03-08 Sumitomo Bakelite Co Ltd 回路基板、半導体装置、回路基板の製造方法および半導体装置の製造方法
JP2013216086A (ja) * 2012-03-14 2013-10-24 Sumitomo Bakelite Co Ltd 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置
JP2014084441A (ja) * 2012-10-26 2014-05-12 Sumitomo Bakelite Co Ltd 樹脂基板、金属張積層板、プリント配線基板、および半導体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024773A (ja) * 2016-08-10 2018-02-15 住友ベークライト株式会社 車載モジュール基板用樹脂組成物、車載モジュール基板および車載用プリント基板の製造方法
WO2018030216A1 (ja) * 2016-08-10 2018-02-15 住友ベークライト株式会社 車載モジュール基板用樹脂組成物および車載モジュール基板
JPWO2018030216A1 (ja) * 2016-08-10 2018-08-09 住友ベークライト株式会社 車載モジュール基板用樹脂組成物および車載モジュール基板
JP2019151785A (ja) * 2018-03-06 2019-09-12 三菱電機株式会社 耐汚損劣化性樹脂絶縁物
WO2020162278A1 (ja) * 2019-02-06 2020-08-13 三菱瓦斯化学株式会社 組成物、プリプレグ、樹脂シート、積層板、及びプリント配線板
CN113166553A (zh) * 2019-02-06 2021-07-23 三菱瓦斯化学株式会社 组合物、预浸料、树脂片、层叠板以及印刷电路板
JPWO2020162278A1 (ja) * 2019-02-06 2021-12-16 三菱瓦斯化学株式会社 組成物、プリプレグ、樹脂シート、積層板、及びプリント配線板
JP7432160B2 (ja) 2019-02-06 2024-02-16 三菱瓦斯化学株式会社 組成物、プリプレグ、樹脂シート、積層板、及びプリント配線板

Also Published As

Publication number Publication date
TW201533458A (zh) 2015-09-01
JPWO2015072262A1 (ja) 2017-03-16
JP6428638B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
US9206308B2 (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP5505486B2 (ja) 樹脂組成物、プリプレグ、積層板及び配線板
KR101502653B1 (ko) 적층판, 회로판 및 반도체 장치
JP4926811B2 (ja) 樹脂組成物、プリプレグ、積層板及び配線板
KR20110084882A (ko) 수지 조성물, 수지 시트, 프리프레그, 적층판, 다층 프린트 배선판 및 반도체 장치
JP6186977B2 (ja) 樹脂組成物、樹脂シート、プリプレグ、積層板、プリント配線板、及び半導体装置
TWI666248B (zh) 馬來醯亞胺樹脂組合物、預浸料、層壓板和印刷電路板
JP6428638B2 (ja) 金属張積層板、回路基板、および電子装置
JP3821728B2 (ja) プリプレグ
WO2014087882A1 (ja) 樹脂層付き金属層、積層体、回路基板および半導体装置
WO2015072261A1 (ja) 樹脂層付きキャリア材料、積層体、回路基板および電子装置
JP2010238907A (ja) 積層板、多層プリント配線板および半導体装置
JP6778889B2 (ja) プリプレグ、金属張積層板及びプリント配線板
JP2004277671A (ja) プリプレグおよびそれを用いたプリント配線板
JP5428212B2 (ja) 樹脂組成物、プリプレグおよびそれを用いたプリント配線板
JP5835401B2 (ja) プリプレグ、回路基板および半導体装置
KR101513350B1 (ko) 인쇄회로기판용 절연필름 및 이를 이용한 제품
JP6111518B2 (ja) 低熱膨張性樹脂組成物、プリプレグ、積層板及び配線板
JP2011179001A (ja) プリプレグ、回路基板および半導体装置
JP5788297B2 (ja) プリプレグ、回路基板および半導体装置
WO2013099771A1 (ja) プリプレグ、回路基板および半導体装置
JP2018024773A (ja) 車載モジュール基板用樹脂組成物、車載モジュール基板および車載用プリント基板の製造方法
JP2013151680A (ja) プリプレグ、回路基板および半導体装置
JP2013058576A (ja) 半導体パッケージ用配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862512

Country of ref document: EP

Kind code of ref document: A1