WO2015070484A1 - 有机电致发光器件的制作方法及制作的有机电致发光器件 - Google Patents

有机电致发光器件的制作方法及制作的有机电致发光器件 Download PDF

Info

Publication number
WO2015070484A1
WO2015070484A1 PCT/CN2013/087881 CN2013087881W WO2015070484A1 WO 2015070484 A1 WO2015070484 A1 WO 2015070484A1 CN 2013087881 W CN2013087881 W CN 2013087881W WO 2015070484 A1 WO2015070484 A1 WO 2015070484A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
organic
substrate
metal layer
Prior art date
Application number
PCT/CN2013/087881
Other languages
English (en)
French (fr)
Inventor
韩佰祥
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to KR1020167008560A priority Critical patent/KR20160052625A/ko
Priority to US14/235,727 priority patent/US20150129842A1/en
Priority to GB1600110.9A priority patent/GB2534691B/en
Priority to JP2016528816A priority patent/JP6208868B2/ja
Publication of WO2015070484A1 publication Critical patent/WO2015070484A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • the flat display device has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • the existing flat display devices mainly include a liquid crystal display (liquid crystal Disp), and an organic electroluminescence device (OELD), which is also called an organic light emitting diode (OLED).
  • OELD organic electroluminescence device
  • the conventional liquid crystal display is generally a backlight type liquid crystal display, and includes: a casing, a liquid crystal display panel disposed in the casing, and a backlight module (Backlight Module) disposed in the casing.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates, and apply driving voltage on the two glass substrates to control the rotation of the liquid crystal molecules, and the light of the backlight module is changed from 3 ⁇ 4.
  • the existing LCD panel generally includes: Thin film transistor (Thin Film
  • TFT Transistor
  • CF color filter
  • liquid crystal layer 306 disposed between the thin film transistor substrate 302 and the color filter substrate 304.
  • the thin film transistor substrate 302 drives the liquid crystal layer
  • the night crystal molecules rotate to display the corresponding picture.
  • the organic electroluminescent device has the characteristics of self-luminous, high brightness, wide viewing angle, high contrast, flexibility, low energy consumption, etc., and thus has received extensive attention, and has gradually replaced the conventional liquid crystal display device as a new generation display mode. It is widely used in mobile phone screens, computer monitors, full color TV sets and other fields. Unlike conventional liquid crystal displays, organic electroluminescent devices do not require a material coating when current is passed.
  • the method includes: a passive-matrix organic light emitting diode (PMOLED) and an 'active-matrix organic light emitting diode (AMOLED), wherein, see FIG.
  • PMOLED passive-matrix organic light emitting diode
  • AMOLED 'active-matrix organic light emitting diode
  • a schematic cross-sectional view of an active matrix organic light emitting diode comprising: a substrate 100, a gate formed on the substrate 100 101.
  • the transparent electrode 106 is electrically connected to the source/drain 103 through a channel, and an organic light-emitting layer (not shown) and a cathode are vapor-deposited on the transparent electrode 106 (not shown).
  • the active matrix type organic light emitting diode is packaged by a package cover (not shown), and the production process generally requires 8 to 9 masks, and the process is relatively complicated and the cost is relatively high. Summary of the invention
  • An object of the present invention is to provide a method for fabricating an organic electroluminescent device which is simple in process and can effectively reduce the production cost.
  • Another object of the present invention is to provide an organic electroluminescent device which is simple in process, thin in thickness, and low in production cost.
  • the present invention provides a method for fabricating an organic electroluminescent device, which comprises the steps of providing a substrate;
  • Step 2 forming a first metal layer on the substrate, and patterning the first metal layer to form a first electrode;
  • Step 3 forming a gate insulating layer on the first electrode and the substrate;
  • Step 4 sequentially forming a transparent conductive layer and a second metal layer on the gate insulating layer, and patterning the second metal layer and the transparent conductive layer to form a second electrode, the second electrode comprising a second metal layer and a transparent conductive layer under the second metal layer;
  • Step 5 forming an oxide semiconductor layer on the second electrode and the gate insulating layer, and patterning the oxide semiconductor layer;
  • Step 6 forming an organic planarization layer on the oxide semiconductor layer and the second electrode, and patterning the organic planarization layer;
  • Step 7 Using the organic planarization layer as a mask, etching the second metal layer of the second electrode to expose the transparent conductive layer to form a transparent electrode.
  • Step 8 forming a spacer layer on the organic planarization layer
  • Step 9 evaporating the organic functional layer and the cathode on the transparent electrode
  • Step 10 Provide a package cover and package.
  • the step i includes: providing a substrate, and after performing cleaning, forming a buffer layer on the substrate.
  • the first metal layer is formed on the buffer layer.
  • the first metal layer and the second metal layer comprise at least one of aluminum or molybdenum; the transparent conductive layer comprises at least one of indium tin oxide or silver; and the substrate and the package cover are both glass substrates.
  • the organic functional layer includes a hole transport layer formed on the transparent electrode, an organic light-emitting layer formed on the hole transport layer, and an electron transport layer formed on the organic light-emitting layer.
  • the invention also provides a method for fabricating an organic electroluminescent device, comprising the following steps: Step 1: providing a substrate;
  • Step 2 forming a first metal layer on the substrate, and patterning the first metal layer to form a first electrode;
  • Step 3 forming a gate insulating layer on the first electrode and the substrate;
  • Step 4 sequentially forming a transparent conductive layer and a second metal layer on the gate insulating layer, and patterning the second metal layer and the transparent conductive layer to form a second electrode, the second electrode comprising a second metal layer and a transparent conductive layer under the second metal layer;
  • Step 5 forming an oxide semiconductor layer on the second electrode and the gate insulating layer, and patterning the oxide semiconductor layer;
  • Step 6 forming an organic planarization layer on the oxide semiconductor layer and the second electrode, and patterning the organic planarization layer;
  • Step 7 Etching the second metal layer of the second electrode with the organic planarization layer as a mask, and exposing the transparent conductive layer to form a transparent electrode;
  • Step 8 forming a spacer layer on the organic planarization layer
  • Step 9 evaporating the organic functional layer and the cathode on the transparent electrode
  • Step 10 Provide a package cover and package.
  • the step 1 includes: providing a substrate, and after performing cleaning, forming a buffer layer on the substrate.
  • the first metal layer is formed on the buffer layer.
  • the first metal layer and the second metal layer comprise at least one of aluminum or molybdenum; the transparent conductive layer comprises at least one of indium tin oxide or silver; and the substrate and the package cover are both glass substrates.
  • the organic functional layer includes a hole transport layer formed on the transparent electrode, an organic light-emitting layer formed on the hole transport layer, and an electron transport layer formed on the organic light-emitting layer.
  • the present invention also provides an organic electroluminescent device comprising: a substrate, a first electrode formed on the substrate, and a gate insulating layer formed on the first electrode and the substrate. a second electrode formed on the gate insulating layer, an oxide semiconductor layer formed on the second electrode and the gate insulating layer, an organic planarization layer formed on the oxide semiconductor layer and the second electrode, and a gate insulating layer Transparent on the layer
  • the second electrode includes a second metal layer and a transparent conductive layer under the second metal layer, and the transparent electrode is formed of a transparent conductive layer.
  • the invention further includes a buffer layer formed between the substrate and the first electrode, a spacer layer formed on the organic planarization layer, an organic functional layer formed on the transparent electrode, a cathode formed on the organic functional layer, and a substrate bonded thereto Set the package cover.
  • the organic functional layer includes a hole transport layer formed on a transparent electrode, an organic light-emitting layer formed on the hole transport layer, and an electron transport layer formed on the organic light-emitting layer.
  • the first electrode and the second metal layer comprise at least one of aluminum or molybdenum; the transparent electrode comprises at least one of indium tin oxide or silver; and the substrate and the package cover are both glass substrates.
  • the production method effectively simplifies the production process, reduces the production cost, and does not need to form the second planarization layer, effectively reduces the thickness of the organic electroluminescence device, and is advantageous for achieving thinning.
  • FIG. 1 is a schematic structural view of a conventional liquid crystal display panel
  • FIG. 2 is a schematic cross-sectional view of a conventional active matrix organic light emitting diode
  • FIG. 3 is a flow chart of a method for fabricating an organic electroluminescent device according to the present invention
  • FIG. 4 to FIG. 9 are process diagrams of a method of fabricating an organic electroluminescent device of the present invention.
  • FIG. 10 is a diagram showing a pixel layout of an organic electroluminescent device of the present invention. Concrete real way
  • the present invention provides a method for fabricating an organic electroluminescent device. Includes the following steps:
  • Step 1 Provide a substrate 20.
  • the substrate 20 is a transparent substrate, which may be a glass substrate, a plastic substrate or the like. In the present embodiment, the substrate 20 is a glass substrate.
  • Step 2 Form a first metal layer on the substrate 20 and pattern the first metal layer to form the first electrode 21.
  • the first metal layer includes at least one of aluminum or molybdenum; the first electrode 21 is a gate mandate, and the specific forming process may be: forming a first on the substrate 20 by sputtering.
  • the metal layer forms a photo-sensitive material on the first metal layer, and the layer of the photosensitive material is a so-called photoresist, and then the light is irradiated onto the photoresist through the photomask to expose the photoresist.
  • the pattern of the first electrode 21 on the reticle will allow light to pass through the reticle and illuminate the photoresist, so that the exposure of the photoresist is selective, and at the same time, the pattern on the reticle is completely copied to the photoresist. Then, a part of the photoresist is removed by a suitable developer (deveioper) so that the photoresist exhibits the desired pattern.
  • Step 3 A gate insulating layer 22 is formed on the first electrode 21 and the substrate 20.
  • the gate insulating layer 22 may be a single layer or a multilayer structure including one of a silicon oxide layer, a silicon nitride layer, or a combination thereof.
  • Step 4 sequentially forming a transparent conductive layer 222 and a second metal layer 224 on the gate insulating layer 22, and patterning the second metal layer 224 and the transparent conductive layer 222 to form a second electrode 23, the second electrode 23 A second metal layer 224 and a transparent conductive layer 222 under the second metal layer 224 are included.
  • the transparent conductive layer 222 includes at least one of indium tin oxide or silver or a combination thereof; and the second metal layer 224 includes at least one of aluminum or molybdenum.
  • the second electrode 23 is a source/drain. Since the second electrode 23 is formed by the second metal layer 224 and the transparent conductive layer 222, compared with the existing source Z drain formed entirely by the second metal layer. The impedance of the trace is patterned with respect to step 5, 'the oxide semiconductor layer 24 is formed on the second electrode 23 and the gate insulating layer 22, and the oxide semiconductor layer 24 is patterned.
  • the oxide semiconductor layer 24 is formed in a manner similar to that of the first electrode 21 described above, and will not be described herein.
  • Step 6 An organic planarization layer 25 is formed on the oxide semiconductor layer 24 and the second electrode 23, and the organic planarization layer 25 is patterned.
  • the organic planarization layer 25 is used to planarize the structure of the entire active thin film transistor pixel array to facilitate subsequent processes.
  • Step ⁇ using the organic planarization layer 25 as a mask, the second metal layer 224 of the second electrode 23 is etched to expose the transparent conductive layer 222 to form the transparent electrode 26.
  • the transparent electrode 26 serves as an anode of the organic electroluminescent device of the present invention for exciting the organic functional layer to emit light required to realize screen display.
  • the invention does not need to separately manufacture the transparent electrode 26, saves at least one mask process, and does not need to form a second organic planarization layer, which further simplifies the production process and effectively reduces the production cost.
  • the method for fabricating the organic electroluminescent device of the present invention further includes:
  • Step 8 A spacer (PS) layer (not shown) is formed on the organic planarization layer 25.
  • Step 9 An organic functional layer (not shown) and a cathode (not shown) are deposited on the transparent electrode 26.
  • the organic functional layer includes a hole transport layer (HTL) formed on the transparent electrode 26, an organic light-emitting layer (EML) formed on the hole transport layer, and formed on the organic light-emitting layer. Electron Transport Layer (ETL).
  • HTL hole transport layer
  • EML organic light-emitting layer
  • Step 10 Provide a package cover (not shown) and package it.
  • the package cover is a glass substrate, which is bonded to the substrate 20 by UV glue or glass glue, and is cured by UV curing to realize the sealing of the organic electroluminescence device.
  • the step 1 may further include: providing the substrate 20, and after performing cleaning, forming a buffer layer (not shown) on the substrate 20.
  • the first metal layer is formed on the buffer layer.
  • a protective layer (not shown) may be formed on the oxide semiconductor layer 24, and the protective layer may be one of a silicon oxide layer, a silicon nitride layer, or a combination thereof.
  • the present invention further provides an organic electroluminescent device, comprising: a substrate 20, a first electrode 21 formed on the substrate 20, and a ⁇ -pole formed on the first electrode 21 and the substrate 20.
  • the insulating layer 22, the second electrode 23 formed on the gate insulating layer 22, the oxide semiconductor layer 24 formed on the second electrode 23 and the gate insulating layer 22, and the oxide semiconductor layer 24 and the second electrode 23 are formed.
  • the organic planarization layer 25 and the transparent electrode 26 on the gate insulating layer 22, the second electrode 23 includes a second metal layer 224 and a transparent conductive layer 222 under the second metal layer 224, the transparent electrode 26 is formed of a transparent conductive layer 222.
  • the first electrode 21 is a gate
  • the second electrode 23 is a source/drain
  • the gate, the gate insulating layer 22, the source/drain and the oxide semiconductor layer 24 form a thin film transistor for driving Organic electroluminescent device.
  • the organic electroluminescent device of the present invention further includes: a buffer layer formed between the substrate 20 and the first electrode 21, a spacer layer formed on the organic planarization layer 25, and an organic function formed on the transparent electrode 26.
  • the organic functional layer includes a hole transport layer formed on the transparent electrode, an organic light-emitting layer formed on the hole transport layer, and an electron transport layer formed on the organic light-emitting layer.
  • the first electrode 21 and the second metal layer 224 include at least one of aluminum or molybdenum; the transparent electrode 26 includes at least one of indium tin oxide or silver; the substrate 20 and the package cover The plates are all glass substrates.
  • the method for fabricating the organic electroluminescent device of the present invention and the fabricated organic electroluminescent device form a second electrode through the second metal layer and the transparent conductive layer, thereby effectively reducing the impedance of the second electrode trace.
  • the quality of the organic electroluminescent device is improved; and the second metal layer of the second electrode is etched by using the organic planarization layer as a mask to expose the transparent conductive layer to form a transparent electrode, which is produced according to the existing process.
  • the method effectively simplifies the production process, reduces the production cost, and does not need to form a second planarization layer, thereby effectively reducing the thickness of the organic electroluminescence device and facilitating thinning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件的制作方法及制作的有机电致发光器件,该方法包括:步骤1、提供基板(20);步骤2、在基板(20)上形成第一电极(21);步骤3、在第一电极(21)与基板(20)上形成栅极绝缘层(22);步骤4、在栅极绝缘层(22)上形成第二电极(23),该第二电极(23)包括第二金属层(224)及透明导电层(222);步骤5、在第二电极(23)与栅极绝缘层(22)上形成氧化物半导体层(24);步骤6、在氧化物半导体层(24)与第二电极(23)上形成有机平坦化层(25);步骤7、以有机平坦化层(25)作为掩膜,蚀刻第二电极(23)的第二金属层(224),露出透明导电层(222),以形成透明电极(26)。

Description

平面显示装置具有机身薄、 省电、 无辐射等众多优点, 得到了广泛的 应用。 现有的平面显示装置主要包括液晶显示器 ( Liquid Crystal Disp】ay, LCD ) 及有机电致.发光-器件 ( Organic Electroluminescence Device , OELD ) , 也称为有机发光二极管 ( Organic Light Emitting Diode, OLED ) 。
现有的液晶显示器一般为背光型液晶显示器, 其包括: 壳体、 设于壳 体内的液晶显示面板及设于壳体内的背光模组 ( Backlight Module ) 。 液晶 显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子, 并在两 玻璃基板上施加驱动电压来控制液晶分子的旋转, 从,¾将背光模组的光线
-忻射出来产生画面。
请参阔图 1, 现有的液晶显示面板一般包括: 薄膜晶体管 (Thin Film
Transistor, TFT )基板 302, 与薄膜晶体管基板 302相对贴合设置的彩色 滤光片 (Color Fiker, CF )基板 304, 以及设于薄膜晶体管基板 302与彩 色滤光片基板 304之间的液晶层 306, 薄膜晶体管基板 302 驱动液晶层
306内的:夜晶分子转动, 以显示相应的画面。
有机电致发光器件具备自发光, 高亮度、 宽视角、 高对比度、 可挠 曲、 低能耗等特性, 因此受到广泛的关注, 并作为新一代的显示方式, 已 开始逐渐取代传统液晶显示装置, 被广泛应用在手机屏幕、 电脑显示器、 全彩电视机等领域。 有机电致发光器件与传统的液晶显示器不同, 其无需 材料涂层, 当有电流通过
Figure imgf000003_0001
, 包括: 无源矩阵式有机发 光二极管 ( Passive-matrix organic light emitting diode , PMOLED ) 与有'源 矩阵式有机发光二极管 ( Active-matrix organic light emitting diode, AMOLED ) , 其中, 请参阅图 2, 为现有的一种有源矩阵式有机发光二极 管的剖面结构示意图, 其包括: 基板 100、 形成于基板 100 上的柵极 101、 形成于栅极 101上的柵极绝缘层 102、 形成于櫪极绝缘层 102上的源 /漏极 103 , 形成于源 Z漏极 103上的氧化物半导体层 104、 形成于氧化物半 导体层 104上的第一有机平坦化层 105、 形成于第一有机平坦化层 105上 的透明电极 106及形成于第一有机平坦化层 105与透明电极 106上的第二 有机平坦化层 107 , 其中, 所述透明电极 106 作为有机发光二极管的阳 极, 通过通道电性连接于所述源 /漏极 103上, 在该透明电极 106上蒸镀有 机发光层 (未图示)及阴极(未图示) , 并通过封装盖板(未图示)封装 制得有源矩阵式有机发光二极管, 其生产制程一般需要 8~9道光罩, 制程 较为复杂, 成本相对较高。 发明内容
本发明的目的在于提供一种有机电致发光器件的制作方法, 其制程简 单, 能有效降^^生产成本。
本发明的另一目的在于提供一种有机电致发光器件, 其制程简单, 厚 度薄, 生产成本较低。
为实现上述目的, 本发明提供一种有机电致发光器件的制作方法, 包 步骤 1、 提供基板;
步骤 2、 在基板上形成第一金属层, 并图案化该第一金属层, 以形成 第 -电极;
步骤 3、 在第一电极与基板上形成柵极绝缘层;
步骤 4、 在柵极绝缘层上依次形成透明导电层与第二金属层, 并图案 化该第二金属层与透明导电层, 以形成第二电极, 该第二电极包括第二金 属层及.位于第二金属层下方的透明导电层;
步骤 5、 在第二电极与柵极绝缘层上形成氧化物半导体层, 图案化该 氧化物半导体层;
步骤 6、 在氧化物半导体层与第二电极上形成有机平坦化层, 并图案 化该有机平坦化层;
步骤 7、 以有机平坦化层作为掩膜, 蚀刻第二电极的第二金属层, 露 出透明导电层, 以形成透明电极。
还包括:
步骤 8、 在有机平坦化层上形成间隔层;
步骤 9、 在透明电极上蒸镀有机功能层与阴极;
步骤 10、 提供封装盖板, 并进行封装。 所述步骤 i包括: 提供基板, 进行清洗后, 在基板上形成缓冲层。 所述步骤 2中, 所述第一金属层形成于所述缓沖层上。
所述第一金属层与第二金属层包含铝或钼中至少一种; 所述透明导电 层包含氧化铟锡或银中至少一种; 所述基板与封装盖板均为玻璃基板。
所述有机功能层包括形成于透明电极上的空穴传输层、 形成于空穴传 输层上的有机发光层、 及形成于有机发光层上的电子传输层。
本发明还提供一种有机电致发光器件的制作方法, 包括以下步骤: 步骤 1、 提供基板;
步骤 2、 在基板上形成第一金属层, 并图案化该第一金属层, 以形成 第一电极;
步骤 3、 在第一电极与基板上形成柵极绝缘层;
步骤 4、 在柵极绝缘层上依次形成透明导电层与第二金属层, 并图案 化该第二金属层与透明导电层, 以形成第二电极, 该第二电极包括第二金 属层及.位于第二金属层下方的透明导电层;
步骤 5、 在第二电极与柵极绝缘层上形成氧化物半导体层, 图案化该 氧化物半导体层;
步骤 6、 在氧化物半导体层与第二电极上形成有机平坦化层, 并图案 化该有机平坦化层;
步骤 7。 以有机平坦化层作为掩膜, 蚀刻第二电极的第二金属层, 露 出透明导电层, 以形成透明电极;
还包括:
步骤 8、 在有机平坦化层上形成间隔层;
步骤 9、 在透明电极上蒸镀有机功能层与阴极;
步骤 10、 提供封装盖板, 并进行封装。
所述步骤 1包括: 提供基板, 进行清洗后, 在基板上形成緩冲层。 所述步骤 2中, 所述第一金属层形成于所述緩沖层上。
所述第一金属层与第二金属层包含铝或钼中至少一种; 所述透明导电 层包含氧化铟锡或银中至少一种; 所述基板与封装盖板均为玻璃基板。
所述有机功能层包括形成于透明电极上的空穴传输层、 形成于空穴传 输层上的有机发光层、 及形成于有机发光层上的电子传输层。
本发明还提供一种有机电致发光器件, 包括': 基板、 形成于基板上的 第一电极、 形成于第一电极与基板上的栅极绝缘层。 形成于栅极绝缘层上 的第二电极、 形成于第二电极与柵极绝缘层上的氧化物半导体层、 形成于 氧化物半导体层与第二电极上的有机平坦化层及位于柵极绝缘层上的透明 电极, 所述第二电极包括第二金属层及位于第二金属层下方的透明导电 层, 所述透明电极由透明导电层形成。
还包括形成于基板与第一电极之间的緩冲层、 形成于有机平坦化层上 的间隔层、 形成于透明电极上的有机功能层、 形成于有机功能层上的阴极 及与基板贴合设置的封装盖板。
所述有机功能层包括形成于透明电极上的空穴传输层 形成于空穴传 输层上的有机发光层、 及形成于有机发光层上的电子传输层。
所述第一电极与第二金属层包含铝或钼中至少一种; 所述透明电极包 含氧化铟锡或银中至少一种; 所述基板与封装盖板均为玻璃基板。
本发明的有益效果: 本发明的有机电致发光器件的制作方法及制作的 有机电致发光器件, 通过第二金属层与透明导电层形成第二电极, 有效降 低了第二电极走线的阻抗, 提升了有机电致发光器件的品质; 并以有机平 坦化层作为掩膜蚀刻第二电极的第二金属层, 露出透明导电层, 以形成透 明电极, 相比现有的制程, 本发明的生产方法有效地简化了生产制程, 降 低了生产成本, 且不需要形成第二平坦化层, 有效降低了有机电致发光器 件的厚度, 利于实现薄型化。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与酎图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显 易见。
附图中,
图 1为现有的液晶显示面板的结构示意图;
图 2为现有的有源矩阵式有机发光二极管的剖面结构示意图; 图 3为本发明有机电致发光器件的制作方法的流程图;
图 4至图 9为本发明有机电致发光器件的制作方法的制程图; 图 10为本发明有机电致发光器件的像素布局图。 具体实族方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 3 至图 9, 本发明提供一种有机电致发光器件的制作方法, 包括以下步骤:
步骤 1、 提供基板 20。
所述基板 20 为透明基板, 其可为玻璃基板、 塑料基板等, 在本实施 例中, 所述基板 20为玻璃基板。
步骤 2、 在基板 20上形成第一金属层, 并图案化该第一金属层, 以形 成第一电极 21。
在本实施例中, 所述第一金属层包含铝或钼中至少一种; 所述第一电 极 21为栅极„ 其具体形成工艺可为: 在基板 20上以溅镀的方式形成第一 金属层, 在第一金属层上形成—层感光 ( photo-sensitive )材料, 该层感光 材料即为所谓的光阻, 然后使得光线通过光罩照射于光阻上以将该光阻曝 光。 由于光罩上具有第一电极 21 的图案, 将使光线得以穿过光罩而照射 于光阻上, 使得光阻的曝光具有选择性, 同时借此将光罩上的图案完整的 复印至光阻上。 然后, 利用合适的显影液剂 (deveioper ) 除去部分光阻, 使得光阻显现所需要的图案。
步骤 3、 在第一电极 21与基板 20上形成栅极绝缘层 22。
所述栅极绝缘层 22 可为单层或多层结构, 其包括氧化硅层、 氮化硅 层之一或其组合。
步骤 4、 在栅极绝缘层 22 上依次形成透明导电层 222 与第二金属层 224, 并图案化该第二金属层 224 与透明导电层 222 , 以形成第二电极 23 , 该第二电极 23 包括第二金属层 224及位于第二金属层 224下方的透 明导电层 222。
在本实施例中, 所述透明导电层 222 包含有氧化铟锡或银中至少一种 或其组合; 所述第二金属层 224包含铝或钼中至少一种。 所述第二电极 23 为源 /漏极, 由于该第二电极 23 由第二金属层 224与透明导电层 222共同 形成, 与现有的完全由第二金属层形成的源 Z漏极相比, 其走线的阻抗相对 步骤 5、'在第^ 极 23与栅极绝缘层 22上形成氧化物半导体层 24, 图案化该氧化物半导体层 24。
所述氧化物半导体层 24的形成方式与上述第一电极 21 的形成方式相 似, 在此不作赘述。
步骤 6。 在氧化物半导体层 24 与第二电极 23 上形成有机平坦化层 25 , 并图案化该有机平坦化层 25。
所述有机平坦化层 25 用于平坦化整个有源薄膜晶体管像素阵列的结 构, 以便于实现后续制程。 步骤 Ί、 以有机平坦化层 25作为掩膜, 蚀刻第二电极 23的第二金属 层 224, 露出透明导电层 222, 以形成透明电极 26。
在本实施例中, 所述透明电极 26 作为本发明有机电致发光器件的阳 极, 用于激发有机功能层发出所需要的光线, 进而实现画面显示。
与现有技术相比, 本发明不需要单独制作透明电极 26, 节省至少一道 光罩制程, 且不需要形成第二有机平坦化层, 进一步简化了生产制程, 有 效降低了生产成本。
进一步地, 本发明的有机电致发光器件的制作方法还包括:
步骤 8、 在有机平坦化层 25上形成间隔 ( PS )层(未图示) 。
步骤 9、 在透明电极 26 上蒸镀有机功能层 (未图示) 与阴极(未图 示) 。
所述有机功能层包括形成于透明电极 26 上的空穴传输层 (Hole Transport Layer, HTL ) 、 形成于空穴传输层上的有机发光层 (Emissive Layer, EML ) 、 及形成于有机发光层上的电子传输层 ( Electron Transport Layer, ETL ) 。
步骤 10、 提供封装盖板(未图示) , 并进行封装。
在本实施例中, 所述封装盖板为玻璃基板, 其通过 UV胶、 或玻璃胶 与基板 20 贴合在一起, 并通过 UV 固化以实现有机电致发光器件的封 值得一提的是, 在所述步骤 1 中还可以包括: 提供基板 20, 进行清洗 后, 在基板 20 上形成缓冲层(未图示) 。 所述步骤 2 中, 所述第一金属 层形成于所述緩沖层上。
进一步地, 还可以在氧化物半导体层 24 上形成保护层 (未图示) , 该保护层可为氧化硅层, 氮化硅层之一或其组合层。
请参阅图 9及图 10, 本发明还提供一种有机电致发光器件, 包括: 基 板 20、 形成于基板 20上的第一电极 21、 形成于第一电极 21与基板 20上 的楣 -极绝缘层 22、 形成于柵极绝缘层 22上的第二电极 23、 形成于第二电 极 23 与柵极绝缘层 22 上的氧化物半导体层 24、 形成于氧化物半导体层 24与第二电极 23上的有机平坦化层 25及位于柵极绝缘层 22上的透明电 极 26, 所述第二电极 23 包括第二金属层 224及位于第二金属层 224下方 的透明导电层 222, 所述透明电极 26由透明导电层 222形成。 其中, 所述 第一电极 21 为栅极、 第二电极 23 为源 /漏极, 所述栅极、 栅极绝缘层 22、 源 /漏极及氧化物半导体层 24 形成薄膜晶体管, 用于驱动有机电致发 光器件。 进一步地, 本发明的有机电致发光器件还包括: 形成于基板 20 与第 一电极 21之间的缓冲层, 形成于有机平坦化层 25上的间隔层、 形成于透 明电极 26上的有机功能层、 形成于有机功能层上的阴极及与基板 20贴合 设置的封装盖板。
具体地, 所述有机功能层包括形成于透明电极上的空穴传输层、 形成 于空穴传输层上的有机发光层、 及形成于有机发光层上的电子传输层。
在本实施例中, 所述第一电极 21 与第二金属层 224 包含铝或钼中至 少一种; 所述透明电极 26包含氧化铟锡或银中至少一种; 所述基板 20与 封装盖板均为玻璃基板。
综上所述, 本发明的有机电致发光器件的制作方法及制作的有机电致 发光器件, 通过第二金属层与透明导电层形成第二电极, 有效降低了第二 电极走线的阻抗, 提升了有机电致发光器件的品质; 并以有机平坦化层作 为掩膜蚀刻第二电极的第二金属层, 露出透明导电层, 以形成透明电极, 相比现有的制程, 本发明的生产方法有效地简化了生产制程, 降低了生产 成本, 且不需要形成第二平坦化层, 有效降低了有机电致发光器件的厚 度, 利于实现薄型化。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
】、 一种有机电致发光器件的制作方法, 包括以下步骤:
步骤 1、 提供基板;
步骤 2、 在基板上形成第一金属层, 并图案化该第一金属层, 以形成 第一电极;
步骤 3、 在第一电极与基板上形成栅极绝缘层;
步骤 4、 在柵极绝缘层上依次形成透明导电层与第二金属层, 并图案 化该第二金属层与透明导电层, 以形成第二电极, 该第二电极包括第二金 属层及位于第二金属层下方的透明导电层;
步骤 5、 在第二电极与柵极绝缘层上形成氧化物半导体层, 图案化该 氧化物半导体层;
步骤 6、 在氧化物半导体层与第二电极上形成有机平坦化层, 并图案 化该有机平坦化层;
步骤 7、 以有机平坦化层作为掩膜, 蚀刻第二电极的第二金属层, 露 出透明导电层, 以形成透明电极。
2、 如权利要求 1所述的有机电致发光器件的制作方法, 还包括: 步骤 8、 在有机平坦化层上形成间隔层;
步骤 9、 在透明电极上蒸镀有机功能层与阴极;
步骤 10、 提供封装盖板, 并进行封装。
3、 如权利要求 1 所述的有机电致发光器件的制作方法, 其中, 所述 步骤 1包括: 提供基板, 进行清洗后, 在基板上形成緩冲层。
4、 如权利要求 3 所述的有机电致发光器件的制作方法, 其中, 所述 步骤 2中, 所述第一金属层形成于所述缓冲层上。
5、 如权利要求 2 所述的有机电致发光器件的制作方法, 其中, 所述 第一金属层与第二金属层包含铝或钼中至少一种; 所述透明导电层包含氧 化铟锡或银中至少一种; 所述基板与封装盖板均为玻璃基板。
6、 如权利要求 2 所述的有机电致发光器件的制作方法, 其中, 所述 有机功能层包括形成于透明电极上的空穴传输层、 形成于空穴传输层上的 有机发光层、 及形成于有机发光层上的电子传输层。
7 . 一种有机电致发光器件的制作方法, 包括以下步骤:
步骤 1、 提供基板;
步骤 2、 在基板上形成第一金属层, 并图案化该第一金属层, 以形成 第一电极;
步骤 3、 在第一电极与基板上形成树极绝缘层;
步骤 4、 在 *极绝缘层上依次形成透明导电层与第二金属层, 并图案 化该第二金属层与透明导电层, 以形成第二电极, 该第二电极包括第二金 属层及位于第二金属层下方的透明导电层;
步骤 5、 在第二电极与柵极绝缘层上形成氧化物半导体层, 图案化该 氧化物半导体层;
步骤 6、 在氧化物半导体层与第二电极上形成有机平坦化层, 并图案 化该有机平坦化层;
步骤 7、 以有机平坦化层作为掩膜, 蚀刻第二电极的第二金属层, 露 出透明导电层, 以形成透明电极;
还包括:
步骤 8、 在有机平坦化层上形成间隔层;
步骤 9、 在透明电极上蒸 44有机功能层与阴极;
步骤 10。 提供封装盖板, 并进行封装。
8、 如权利要求 7 所述的有机电致发光器件的制作方法, 其中, 所述 步骤 1包括: 提供基板, 进行清洗后, 在基板上形成緩冲层。
9 , 如权利要求 8 所述的有机电致发光器件的制作方法, 其中, 所述 步驟 2中, 所述第一金属层形成于所述缓冲层上。
10、 如权利要求 7所述的有机电致发光器件的制作方法, 其中, 所述 第一金属层与第二金属层包含铝或钼中至少一种; 所述透明导电层包含氧 化铟锡或银中至少一种; 所述基板与封装盖板均为玻璃基板。
I I、 如权利要求 7 所述的有机电致发光器件的制作方法, 其中, 所述 有机功能层包括形成于透明电极上的空穴传输层 > 形成于空穴传输层上的 有机发光层、 及形成于有机发光层上的电子传输层。
12 一种有机电致发光器件, 包括: 基板、 形成于基板上的第一电 极、 形成于第一电极与基板上的棚'极绝缘层、 形成于柵极绝缘层上的第二 电极、 形成于第二电极与柵极绝缘层上的氧化物半导体层, 形成于氧化物 半导体层与第二电极上的有机平坦化层及位于柵极绝缘层上的透明电极, 所述第二电极包括第二金属层及位于第二金属层下方的透明导电层, 所述 透明电极由透明导电层形成。
13、 如权利要求 12 所述的有机电致发光器件, 还包括形成于基板与 第一电极之间的緩冲层、 形成于有机平坦化层上的间隔层、 形成于透明电 极上的有机功能层、 形成于有机功能层上的阴极及与基板贴合设置的封装 盖板 0
14 , 如权利要求 13 所述的有机电致发光器件, 其中, 所述有机功能 层包括形成于透明电极上的空穴传输层、 形成于空穴传输层上的有机发光 层、 及形成于有机发光层上的电子传输层。
15、 如权利要求 13 所述的有机电致发光器件, 其中, 所述第一电极 与第二金属层包含铝或钼中至少一种; 所述透明电极包含氧化铟锡或银中 至少一种; 所述.基板与封装盖板均为玻璃基板。
PCT/CN2013/087881 2013-11-13 2013-11-26 有机电致发光器件的制作方法及制作的有机电致发光器件 WO2015070484A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167008560A KR20160052625A (ko) 2013-11-13 2013-11-26 유기 전계 발광 소자의 제작 방법 및 제작된 유기 전계 발광 소자
US14/235,727 US20150129842A1 (en) 2013-11-13 2013-11-26 Method For Manufacturing Organic Electroluminescence Device And Organic Electroluminescence Device Manufactured With Same
GB1600110.9A GB2534691B (en) 2013-11-13 2013-11-26 Method for manufacturing organic electroluminescence device and organic electroluminescence device manufactured with same
JP2016528816A JP6208868B2 (ja) 2013-11-13 2013-11-26 有機el部品の製造方法及び製造された有機el部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310566264.9 2013-11-13
CN201310566264.9A CN103560211B (zh) 2013-11-13 2013-11-13 有机电致发光器件的制作方法及制作的有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2015070484A1 true WO2015070484A1 (zh) 2015-05-21

Family

ID=50014416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087881 WO2015070484A1 (zh) 2013-11-13 2013-11-26 有机电致发光器件的制作方法及制作的有机电致发光器件

Country Status (5)

Country Link
JP (1) JP6208868B2 (zh)
KR (1) KR20160052625A (zh)
CN (1) CN103560211B (zh)
GB (2) GB2570056A (zh)
WO (1) WO2015070484A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102605887B1 (ko) * 2018-05-08 2023-11-23 엘지디스플레이 주식회사 발광 표시 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666580A (zh) * 2002-09-12 2005-09-07 先锋株式会社 有机电致发光显示器件及其制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153184B2 (en) * 2001-11-26 2012-04-10 Samsung Mobile Display Co., Ltd. Organic EL display device and method of manufacturing the same
KR100656490B1 (ko) * 2001-11-26 2006-12-12 삼성에스디아이 주식회사 풀칼라 유기전계 발광표시소자 및 그의 제조방법
JP2004071558A (ja) * 2002-07-25 2004-03-04 Semiconductor Energy Lab Co Ltd 発光装置の作製方法
SG130013A1 (en) * 2002-07-25 2007-03-20 Semiconductor Energy Lab Method of fabricating light emitting device
TWI228782B (en) * 2004-01-19 2005-03-01 Toppoly Optoelectronics Corp Method of fabricating display panel
KR100669733B1 (ko) * 2004-10-14 2007-01-16 삼성에스디아이 주식회사 유기박막 트랜지스터 및 이를 이용한 유기전계 발광표시장치
JP5210594B2 (ja) * 2006-10-31 2013-06-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5372337B2 (ja) * 2007-03-27 2013-12-18 住友化学株式会社 有機薄膜トランジスタ基板及びその製造方法、並びに、画像表示パネル及びその製造方法
US8441007B2 (en) * 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
JP5499529B2 (ja) * 2009-06-25 2014-05-21 大日本印刷株式会社 薄膜トランジスタ搭載基板、その製造方法及び画像表示装置
KR20110015240A (ko) * 2009-08-07 2011-02-15 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그의 제조방법
JP5825812B2 (ja) * 2011-03-24 2015-12-02 株式会社Joled 表示装置の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666580A (zh) * 2002-09-12 2005-09-07 先锋株式会社 有机电致发光显示器件及其制造方法

Also Published As

Publication number Publication date
KR20160052625A (ko) 2016-05-12
GB2534691B (en) 2019-04-03
GB201600110D0 (en) 2016-02-17
JP6208868B2 (ja) 2017-10-04
GB2570056A (en) 2019-07-10
JP2016537772A (ja) 2016-12-01
GB201902542D0 (en) 2019-04-10
CN103560211A (zh) 2014-02-05
CN103560211B (zh) 2017-04-05
GB2534691A (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2018227750A1 (zh) 柔性tft基板的制作方法
US10002847B2 (en) OLED pixel unit, transparent display device, method for fabricating the same, display apparatus
US10790458B2 (en) Flexible AMOLED substrate and manufacturing method thereof
WO2018107524A1 (zh) Tft背板及其制作方法
WO2020047978A1 (zh) 显示面板及其制作方法
WO2016176886A1 (zh) 柔性oled及其制作方法
CN103681740B (zh) 有机发光二极管装置以及制造该装置的方法
US20160370621A1 (en) Array substrate, manufacturing method thereof and liquid crystal display
WO2015035661A1 (zh) 有源式有机电致发光器件背板及其制作方法
WO2015051646A1 (zh) 有源矩阵有机电致发光显示器件、显示装置及其制作方法
JP5725337B2 (ja) 表示装置、表示装置の製造方法および電子機器
JP2007173200A (ja) 有機電界発光表示装置及びその製造方法
WO2015085703A1 (zh) Oled阵列基板及其制备方法、显示面板及显示装置
WO2015100898A1 (zh) 薄膜晶体管、tft阵列基板及其制造方法和显示装置
WO2015096308A1 (zh) Oled显示面板及其制作方法
WO2015043269A1 (zh) Oled像素结构和oled显示装置
WO2018119879A1 (zh) 薄膜晶体管及其制作方法
WO2015096292A1 (zh) 阵列基板及其制造方法、显示装置
US10784287B2 (en) TFT substrate and manufacturing method thereof
WO2019090837A1 (zh) 双面显示器及其制作方法
WO2015149465A1 (zh) 一种woled背板及其制作方法
WO2019085080A1 (zh) 双面oled显示面板及其制造方法
CN107732029B (zh) 一种oled显示面板及其制作方法
WO2015192397A1 (zh) 薄膜晶体管基板的制造方法
KR101119046B1 (ko) 유기전계발광표시장치 및 그의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235727

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201600110

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131126

ENP Entry into the national phase

Ref document number: 20167008560

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016528816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897470

Country of ref document: EP

Kind code of ref document: A1