WO2019085080A1 - 双面oled显示面板及其制造方法 - Google Patents

双面oled显示面板及其制造方法 Download PDF

Info

Publication number
WO2019085080A1
WO2019085080A1 PCT/CN2017/112619 CN2017112619W WO2019085080A1 WO 2019085080 A1 WO2019085080 A1 WO 2019085080A1 CN 2017112619 W CN2017112619 W CN 2017112619W WO 2019085080 A1 WO2019085080 A1 WO 2019085080A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
conductive
forming
oled device
Prior art date
Application number
PCT/CN2017/112619
Other languages
English (en)
French (fr)
Inventor
魏锋
李金川
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2019085080A1 publication Critical patent/WO2019085080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a double-sided OLED (Organic Light-Emitting Diode) display panel and a method of fabricating the same.
  • OLED Organic Light-Emitting Diode
  • the double-sided display panel has become the mainstream display panel for trading places such as banks and supermarkets.
  • OLED is different from the traditional liquid crystal display in that it does not need to use a backlight.
  • the organic light-emitting layer is wrapped between the cathode and the anode to give two electrodes.
  • the organic light-emitting layer emits light, which is light and thin. Therefore, the double-sided OLED display panel obtained by applying the OLED to the double-sided display panel has become the mainstream in the industry.
  • the present invention provides a double-sided OLED display panel and a method of fabricating the same, which can facilitate the slim and light design of the double-sided OLED display panel.
  • the passivation layer is provided with a contact hole exposing an upper surface of the fifth conductive pattern
  • a second OLED device is formed on the other side of the substrate substrate, the anode pattern of the second OLED device being coupled to the other end of the conductive element.
  • a thin film transistor a thin film transistor, a first OLED device and a conductive element on a side of the substrate substrate, a drain pattern of the thin film transistor being connected to an anode pattern of the first OLED device, one end of the conductive element and the An anode pattern of the first OLED device is connected, and the other end of the conductive element is exposed by the other side of the substrate substrate;
  • a drain pattern of the thin film transistor being connected to an anode pattern of the first OLED device, one end of the conductive element and the first An anode pattern of an OLED device is connected, the other end of the conductive element being exposed by the other side of the substrate substrate;
  • a second OLED device is formed on the other side of the substrate substrate, the anode pattern of the second OLED device being coupled to the other end of the conductive element.
  • the present invention designs a conductive element between two OLED devices of a double-sided OLED display panel, the two ends of which are respectively connected to the anode patterns of two OLED devices, and only one thin film transistor is required and the thin film transistor is provided
  • the drain pattern is connected to the anode pattern of one of the OLED devices, that is, the display signal can be transmitted to the anode pattern of the other OLED device through the conductive element, and the present invention can facilitate the double-sided OLED compared to the design of the two thin film transistors.
  • FIG. 1 is a cross-sectional structural view of a double-sided OLED display panel according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for manufacturing a double-sided OLED display panel according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for manufacturing a double-sided OLED display panel according to another embodiment of the present invention.
  • FIG. 4 is a schematic view of manufacturing a double-sided OLED display panel based on the method shown in FIG.
  • the main object of the present invention is to design a conductive element between two OLED devices of a double-sided OLED display panel, the two ends of which are respectively connected to the anode patterns of two OLED devices, and only one thin film transistor is required and
  • the drain pattern of the thin film transistor is connected to the anode pattern of one of the OLED devices, that is, the display signal can be transmitted to the anode pattern of the other OLED device through the conductive element, and the present invention can facilitate the double compared to the design of the two thin film transistors.
  • the thin and light design of the OLED display panel is to design a conductive element between two OLED devices of a double-sided OLED display panel, the two ends of which are respectively connected to the anode patterns of two OLED devices, and only one thin film transistor is required and
  • the drain pattern of the thin film transistor is connected to the anode pattern of one of the OLED devices, that is, the display signal can be transmitted to the anode pattern of the other OLED device through the conductive element, and
  • the double-sided OLED display panel 10 includes a substrate substrate 11 , and a thin film transistor, a first OLED device 13 , a conductive element, and a second OLED device 15 formed on the substrate substrate 11 .
  • the substrate substrate 11 can be a flexible substrate substrate, for example, PI (Polyimide, polyimide).
  • the double-sided OLED display panel 10 can be regarded as a flexible display panel.
  • the thin film transistor, the first OLED device 13 and the conductive element are located on one side of the substrate substrate 11, and the second OLED device 15 is located on the other side of the substrate substrate 11.
  • the thin film transistor includes a gate pattern 121, a gate insulating layer 122, a semiconductor pattern 123, a source pattern 124, a drain pattern 125, a flat layer 126, and a passivation layer 127 on the substrate substrate 11.
  • the conductive element includes a first conductive pattern 141 located in the substrate substrate 11, and second conductive patterns 142, third conductive patterns 143, fourth conductive patterns 144, and fifth conductive patterns 145 sequentially located on the first conductive patterns 141.
  • the conductive materials for preparing the five conductive patterns may be the same or different. among them:
  • the first conductive pattern 141 and the substrate substrate 11 are located in the same layer, and the thickness of the two layers may be equal. It may be considered that the first conductive pattern 141 is embedded in the substrate substrate 11, and the substrate substrate 11 exposes the first conductive layer. The upper surface of the pattern 141.
  • the second conductive pattern 142 and the gate pattern 121 are located on the same layer, and are disposed at intervals, and may be formed of the same material and formed in the same process.
  • the second conductive pattern 142 is directly formed on the first conductive pattern 141.
  • the gate insulating layer 122 is on the substrate substrate 11 and covers the gate pattern 121, but exposes the upper surface of the second conductive pattern 142.
  • the semiconductor pattern 123 is formed on the gate insulating layer 122 and above the gate pattern 121.
  • the third conductive pattern 143 and the source pattern 124 and the drain pattern 125 are located in the same layer, and two of the three are spaced apart from each other. Specifically, the source pattern 124 and the drain pattern 125 are respectively disposed on the two of the semiconductor patterns 123.
  • the third conductive pattern 143 is directly formed on the second conductive pattern 142.
  • the flat layer 126 covers the semiconductor pattern 123, the source pattern 124, and the drain pattern 125, but exposes the upper surfaces of the drain pattern 125 and the third conductive pattern 143.
  • the fourth conductive pattern 144 includes two portions, one portion is on the drain pattern 125 and the other portion is on the third conductive pattern 143.
  • the fourth conductive pattern 144 is simultaneously on the upper surface of the drain pattern 125 and the third conductive pattern 143. Face contact.
  • the fifth conductive pattern 145 covers the two portions of the fourth conductive patterns 144 and is in surface contact with the fourth conductive patterns 144 of the two portions.
  • the passivation layer 127 covers the fifth conductive pattern 145 and is provided with a contact hole exposing the upper surface of the fifth conductive pattern 145.
  • the structures of the first OLED device 13 and the second OLED device 15 may be the same.
  • both may adopt a top emission type design.
  • the first OLED device 13 includes a layer 127 disposed on the passivation layer 127 in sequence.
  • the second OLED device 15 includes an anode pattern 151, a light emitting pattern 152, and a cathode pattern 153 which are sequentially disposed on the other side of the substrate substrate 11.
  • the anode pattern 131 of the first OLED device 13 covers the contact hole of the passivation layer 127 and is connected to the fifth conductive pattern 145, and the anode pattern 151 of the second OLED device 15 is connected to the first conductive pattern 141.
  • the drain pattern 125 of the thin film transistor is connected to the anode pattern 131 of the first OLED device 13, and one end (the fifth conductive pattern 145) of the conductive element is connected to the anode pattern 131 of the first OLED device 13, the conductive element The other end (first conductive pattern 141) is exposed by the other side of the substrate substrate 11, and the anode pattern 151 of the second OLED device 15 is connected to the other end of the conductive member.
  • the thin film transistor When a gate signal is applied to the gate pattern 121, the thin film transistor is turned on, and a display signal (electrical signal) is transmitted to the anode pattern of the first OLED device 13 through the drain pattern 125, the fourth conductive pattern 144, and the fifth conductive pattern 145. 131, thereby causing the first OLED device 13 to emit light that is directed toward the substrate substrate 11.
  • the anode pattern 151 of the second OLED device 15 also receives a display signal through the conductive element, and also emits light that is directed toward the substrate substrate 11.
  • the double-sided OLED display panel 10 realizes double-sided display. In view of the fact that the first OLED device 13 and the second OLED device 15 receive the same display signal, the double-sided OLED display panel 10 displays the same image on both sides at the same time.
  • the double-sided display panel includes the design of two thin film transistors, and the double-sided OLED display panel 10 of the present embodiment has the advantage of being thin and light.
  • FIG. 2 illustrates a method of fabricating a double-sided OLED display panel according to an embodiment of the present invention.
  • the manufacturing method can be used to form a double-sided OLED display panel 10 having the structure shown in FIG. 1.
  • the present invention is hereinafter used to form the double-sided OLED display panel 10 having the one shown in FIG. The example is explained.
  • the manufacturing method includes the following steps S21 and S22.
  • S21 forming a thin film transistor, a first OLED device and a conductive element on one side of the substrate substrate, the drain pattern of the thin film transistor being connected to the anode pattern of the first OLED device, one end of the conductive element and the anode pattern of the first OLED device The other end of the conductive element is exposed by the other side of the substrate substrate.
  • S22 Forming a second OLED device on the other side of the substrate substrate, the anode pattern of the second OLED device being connected to the other end of the conductive element.
  • the substrate substrate 11 can be formed on a substrate having a good flatness (for example, a glass substrate). Based on this, the manufacturing method of the present embodiment may include steps S30 to S47 shown in FIG.
  • the lower substrate 40 may be a substrate having a good flatness such as a glass substrate, a transparent plastic substrate, or a flexible substrate.
  • the lower substrate 40 of the embodiment may also be provided with a passivation protective layer.
  • the lower substrate 40 may include a substrate and a passivation protective layer formed on the substrate.
  • the substrate may be a glass substrate or a transparent plastic substrate.
  • a substrate such as a flexible substrate, and a material for the passivation protective layer includes, but not limited to, a silicon nitride compound such as Si 3 N 4 (tetrazinc silicon nitride, referred to as silicon nitride) to protect the surface of the lower substrate 40. Sex.
  • the first conductive pattern 141 having a predetermined pattern may be formed on the lower substrate 40 by a mask process. Specifically, a full surface metal layer is formed on the lower substrate 40 by a PVD (Physical Vapor Deposition) method, and then a full surface photoresist layer is coated on the metal layer, and then a mask is used for the whole.
  • PVD Physical Vapor Deposition
  • the surface photoresist layer is sequentially exposed and developed, the photoresist of the fully exposed portion can be removed by the developer, the photoresist of the unexposed portion is not removed by the developer, and then the metal layer not covered by the photoresist layer is removed by etching, and Remove the photoresist layer and finally retain the metal layer It can be formed as the first conductive pattern 141.
  • a PI layer may be coated on the upper surface of the lower substrate 40 by a coating method, the PI layer exposing the upper surface of the first conductive pattern 141, and the PI layer is cured to form the substrate substrate 11.
  • the substrate substrate 11 can be a flexible substrate substrate made of other flexible materials, and the double-sided OLED display panel 10 can be regarded as a flexible display panel.
  • S33 forming a gate pattern and a second conductive pattern which are spaced apart on the substrate substrate, and the second conductive pattern is formed on the first conductive pattern.
  • the gate pattern 121 and the second conductive pattern 142 are formed on the substrate substrate 11 at intervals, and the conductive pattern 142 is formed on the first conductive pattern 141 and both are in surface contact.
  • the material of the gate pattern 121 and the second conductive pattern 142 may be the same. Therefore, in this embodiment, the gate pattern 121 and the second conductive pattern 142 can be simultaneously formed on the substrate substrate 11 by the same mask process.
  • the principle of the mask process refer to the manufacturing process of the foregoing first conductive pattern 141, which will not be further described in this embodiment.
  • a gate insulating layer 122 may be formed on the gate pattern 121 by a CVD (Chemical Vapor Deposition) method.
  • the gate insulating layer 122 covers a whole surface structure of the gate pattern 121, but is exposed.
  • the material of the gate insulating layer 122 includes, but is not limited to, silicon oxide (SiO x ).
  • the gate insulating layer 122 may also include a silicon oxide compound layer and a silicon nitride compound, such as SiO 2 (silicon dioxide) and Si 3 N 4 (trisilicon nitride), which are sequentially formed on the gate pattern 121, thereby being able to The wear resistance and insulation properties of the gate insulating layer 122 are further improved.
  • a full-face semiconductor layer can be formed by a PVD method, and then a mask-based patterning process is performed on a full-surface semiconductor layer, so that only the semiconductor layer above the gate pattern 121 is left, thereby forming the semiconductor pattern 123.
  • S36 forming two spaced-apart source patterns, a drain pattern, and a third conductive pattern on the gate insulating layer, the source pattern and the drain pattern are respectively disposed at two ends of the semiconductor pattern, and the third conductive pattern is formed in the second On the conductive pattern.
  • the source pattern 124 and the drain pattern 125 may be formed by a patterning process similar to the principle of forming the gate pattern 121.
  • the material of the third conductive pattern 143 and the source pattern 124 and the drain pattern 125 may be the same, so that the third conductive pattern 143 can be synchronously formed on the gate insulating layer 123 by the patterning process.
  • the three conductive patterns 143 are in surface contact with the second conductive patterns 142.
  • a planarization layer 126 may be formed on the gate insulating layer 122 by a method such as coating.
  • the planarization layer 126 is a full-surface structure covering the semiconductor pattern 123, the source pattern 124, and the drain pattern 125, but the planarization layer 126 Two openings are opened, which expose the upper surface of the drain pattern 125 and the upper surface of the third conductive pattern 143, respectively.
  • the fourth conductive pattern 144 may be deposited in the two openings opened by the flat layer 126 by the PVD method such that the fourth conductive pattern 144 is in direct contact with the upper surface of the drain pattern 125 and the upper surface of the third conductive pattern 143.
  • the material of the fourth conductive pattern 144 includes, but is not limited to, at least one of Mo (molybdenum) and Al (aluminum).
  • the fifth conductive pattern 145 may be formed on the fourth conductive pattern 144 by using a PVD method in combination with a masking process based on a mask process.
  • the fifth conductive pattern 145 is in direct surface contact with the fourth conductive pattern 144.
  • the method of forming the passivation layer 127 and the planarization layer 126 may be the same.
  • the passivation layer 127 is a full-surface structure covering the fifth conductive pattern 145, but a contact hole on the upper surface of the fifth conductive pattern 145 is opened.
  • the contact hole is located directly above the third conductive pattern 143.
  • the embodiment may form the contact hole in the entire passivation layer 127 by etching.
  • the first OLED device 13 may employ a top emission type design, specifically, an anode pattern 131, a light emitting pattern 132, and a cathode pattern 133 which are sequentially disposed on the passivation layer 127.
  • the material of the anode pattern 131 may be at least one of Al (aluminum), Ag (silver), and ITO (indium tin oxide), and the manufacturing method of the first OLED device 13 can be referred to the prior art. This will not be repeated here.
  • the encapsulation layer 41 includes two portions. The first portion is disposed above the cathode pattern 133, and the second portion is disposed between the first portion and the substrate substrate 11, where the encapsulation layer 41 and the substrate substrate are disposed. 11 encloses an accommodating space to enclose the thin film transistor, the first OLED device 13 and the conductive element in a water-proof and oxygen-proof environment.
  • the encapsulation layer 41 can be formed by a thin film encapsulation method, and the material thereof includes, but not limited to, an inorganic material that is separated from water and oxygen.
  • S43 An upper substrate is disposed on the encapsulation layer.
  • the upper substrate 42 includes, but is not limited to, a glass substrate, a transparent plastic substrate, and a flexible substrate, which may be directly disposed on the encapsulation layer 41 or may be disposed above the encapsulation layer 41 at intervals.
  • the protective layer 43 may be formed by curing a UV adhesive, which together with the upper substrate 42 and the substrate substrate 11 form a sealed space for protecting all components inside thereof, such as the first OLED device 13, from damage. .
  • the lower substrate 40 and the substrate substrate 11 can be separated by a laser method.
  • S46 Forming a second OLED device on the other side of the substrate substrate, the anode pattern of the second OLED device being connected to the other end of the conductive member.
  • the second OLED device 15 may adopt a top emission type design, specifically, an anode pattern 151, a light emitting pattern 152, and a cathode pattern 153 which are sequentially disposed on the other side of the substrate substrate 11, and the anode pattern 151 and the first conductive pattern The lower surface of 141 is in contact.
  • the embodiment is also provided with an encapsulation layer 41, the package
  • the layer 41 and the substrate substrate 11 enclose an accommodating space to enclose the second OLED device 15 in a water-proof and oxygen-proof environment.
  • the boundary line outside the encapsulation layer 41 can be used as the dividing line 411, and the substrate substrate 11 can be laser-cut along the dividing line 411. After the cutting, the protective layer 43 and the upper substrate 42 are automatically detached, thereby obtaining a map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种双面OLED显示面板(10)及其制造方法,双面OLED显示面板包括:衬底基材(11);位于衬底基材一侧的薄膜晶体管、第一OLED器件(13)和导电元件,薄膜晶体管的漏极图案(125)与第一OLED器件的阳极图案(131)连接,导电元件的一端与第一OLED器件的阳极图案连接,导电元件的另一端被衬底基材的另一侧暴露;位于衬底基材另一侧的第二OLED器件(15),第二OLED器件的阳极图案(151)与导电元件的另一端连接。

Description

双面OLED显示面板及其制造方法 【技术领域】
本发明涉及显示技术领域,具体涉及一种双面OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板及其制造方法。
【背景技术】
当前为了满足双方面对面确认屏幕显示的需求,双面显示面板已成为银行、超市等交易场所的主流显示面板。而OLED作为新一代的显示器,与传统的液晶显示器的不同之处在于其无需采用背光源,通过在衬底基板上制作有机发光层,有机发光层被包裹在阴极和阳极之间,给两电极施加电压,则有机发光层就会发光,具有轻薄化特点。由此,将OLED应用于双面显示面板而得到的双面OLED显示面板已成为业界主流。在现有双面OLED显示面板的结构设计中,两个背对设置的OLED器件分别由两个完全独立的薄膜晶体管(Thin Film Transistor,TFT)驱动,这两个薄膜晶体管所占厚度较大,显然不利于轻薄化设计。
【发明内容】
鉴于此,本发明提供一种双面OLED显示面板及其制造方法,能够有利于双面OLED显示面板的轻薄化设计。
本发明一实施例的双面OLED显示面板的制造方法,包括:
由柔性材料形成衬底基材;
提供一下基板;
在所述下基板上形成第一导电图案;
形成覆盖所述下基板的衬底基材,所述衬底基材暴露所述第一导电图案的上表面;
在所述衬底基材上形成间隔设置的栅极图案和第二导电图案,所述第二导电图案形成于所述第一导电图案上;
在所述衬底基材上形成覆盖所述栅极图案的栅极绝缘层,所述栅极绝缘层暴露所述第二导电图案的上表面;
在所述栅极绝缘层上形成位于所述栅极图案上方的半导体图案;
在所述栅极绝缘层上形成两两间隔设置的源极图案、漏极图案和第三导电图案,所述源极图案和漏极图案分设于所述半导体图案的两端,所述第三导电图案形成于所述第二导电图案上;
在所述栅极绝缘层上形成覆盖所述半导体图案、源极图案和漏极图案的平坦层,所述平坦层暴露所述漏极图案和第三导电图案的上表面;
在所述漏极图案和第三导电图案的上表面形成第四导电图案;
在第四导电图案上形成与所述第四导电图案连接的第五导电图案;
形成覆盖所述第五导电图案的钝化层,所述钝化层开设有暴露所述第五导电图案上表面的接触孔;
在所述钝化层上形成第一OLED器件,所述第一OLED器件的阳极图案覆盖所述接触孔并与所述第五导电图案连接;
形成一封装层,所述封装层和所述衬底基材围成一容置空间,其中,所述栅极图案、栅极绝缘层、半导体图案、源极图案、漏极图案、平坦层和钝化层形成薄膜晶体管,所述第一导电图案、第二导电图案、第三导电图案、第四导电图案和第五导电图案形成导电元件,所述薄膜晶体管、第一OLED器件和导电元件位于所述容置空间内,所述薄膜晶体管的漏极图案与所述第一OLED器件的阳极图案连接,所述导电元件的一端与所述第一OLED器件的阳极图案连接,所述导电元件的另一端被所述衬底基材的另一侧所暴露;
在所述衬底基材的另一侧形成第二OLED器件,所述第二OLED器件的阳极图案与所述导电元件的另一端连接。
本发明一实施例的双面OLED显示面板,包括:
衬底基材;
位于所述衬底基材一侧的薄膜晶体管、第一OLED器件和导电元件,所述薄膜晶体管的漏极图案与所述第一OLED器件的阳极图案连接,所述导电元件的一端与所述第一OLED器件的阳极图案连接,所述导电元件的另一端被所述衬底基材的另一侧所暴露;
位于所述衬底基材另一侧的第二OLED器件,所述第二OLED器件的阳极图案与所述导电元件的另一端连接。
本发明一实施例的双面OLED显示面板的制造方法,包括:
在衬底基材的一侧形成薄膜晶体管、第一OLED器件和导电元件,所述薄膜晶体管的漏极图案与所述第一OLED器件的阳极图案连接,所述导电元件的一端与所述第一OLED器件的阳极图案连接,所述导电元件的另一端被所述衬底基材的另一侧所暴露;
在所述衬底基材的另一侧形成第二OLED器件,所述第二OLED器件的阳极图案与所述导电元件的另一端连接。
有益效果:本发明在双面OLED显示面板的两个OLED器件之间设计导电元件,该导电元件的两端分别与两个OLED器件的阳极图案连接,只需设置一个薄膜晶体管并使得该薄膜晶体管的漏极图案与其中一个OLED器件的阳极图案连接,即可通过导电元件将显示信号传递给另一个OLED器件的阳极图案,相比较于两个薄膜晶体管的设计,本发明能够有利于双面OLED显示面板的轻薄化设计。
【附图说明】
图1是本发明一实施例的双面OLED显示面板的剖面结构示意图;
图2是本发明一实施例的双面OLED显示面板的制造方法的流程示意图;
图3是本发明另一实施例的双面OLED显示面板的制造方法的流程示意图;
图4是基于图3所示方法制造双面OLED显示面板的示意图。
【具体实施方式】
本发明的主要目的是:在双面OLED显示面板的两个OLED器件之间设计导电元件,该导电元件的两端分别与两个OLED器件的阳极图案连接,只需设置一个薄膜晶体管并使得该薄膜晶体管的漏极图案与其中一个OLED器件的阳极图案连接,即可通过导电元件将显示信号传递给另一个OLED器件的阳极图案,相比较于两个薄膜晶体管的设计,本发明能够有利于双面OLED显示面板的轻薄化设计。
下面将结合本发明实施例中的附图,对本发明所提供的各个示例性的 实施例的技术方案进行清楚、完整地描述。在不冲突的情况下,下述各个实施例及其技术特征可以相互组合。并且,本发明下文各个实施例所采用的方向性术语,例如“上”、“下”等,均是为了更好的描述各个实施例,并非用于限制本发明的保护范围。
图1是本发明一实施例的双面OLED显示面板的剖面结构示意图。请参阅图1,双面OLED显示面板10包括衬底基材11,以及形成于衬底基材11上的薄膜晶体管、第一OLED器件13、导电元件、第二OLED器件15。衬底基材11可以为柔性衬底基材,例如其材质为PI(Polyimide,聚酰亚胺),于此,双面OLED显示面板10可视为一柔性显示面板。薄膜晶体管、第一OLED器件13和导电元件位于衬底基材11的一侧,第二OLED器件15位于衬底基材11的另一侧。
如图1嗾使,薄膜晶体管包括位于衬底基材11上的栅极图案121、栅极绝缘层122、半导体图案123、源极图案124、漏极图案125、平坦层126和钝化层127。导电元件包括位于衬底基材11中的第一导电图案141,以及依次位于第一导电图案141上的第二导电图案142、第三导电图案143、第四导电图案144和第五导电图案145,制备这五个导电图案的导电材料可以相同也可以不相同。其中:
第一导电图案141和衬底基材11位于同一层,两者的厚度可以相等,可视为第一导电图案141内嵌于衬底基材11中,且衬底基材11暴露第一导电图案141的上表面。
第二导电图案142和栅极图案121位于同一层,两者间隔设置,且可以采用相同材质并在同一道制程中形成,第二导电图案142直接形成于第一导电图案141上。栅极绝缘层122位于衬底基材11上且覆盖栅极图案121,但暴露第二导电图案142的上表面。半导体图案123形成于栅极绝缘层122上,且位于栅极图案121的上方。
第三导电图案143和源极图案124及漏极图案125位于同一层,且三者中两两之间相互间隔设置,具体地,源极图案124和漏极图案125分设于半导体图案123的两端,第三导电图案143直接形成于第二导电图案142上。平坦层126覆盖半导体图案123、源极图案124和漏极图案125,但暴露漏极图案125和第三导电图案143的上表面。
第四导电图案144包括两部分,一部分位于漏极图案125上,另一部分位于第三导电图案143上,于此,第四导电图案144同时与漏极图案125和第三导电图案143的上表面面接触。
第五导电图案145覆盖上述两部分的第四导电图案144,并直接与这两部分的第四导电图案144面接触。钝化层127覆盖第五导电图案145,且开设有暴露第五导电图案145上表面的接触孔。
继续参阅图1,第一OLED器件13和第二OLED器件15的结构可以相同,例如两者可以均采用顶发光型设计,具体地,第一OLED器件13包括依次设置于钝化层127上的阳极图案131、发光图案132和阴极图案133,第二OLED器件15包括依次设置于衬底基材11另一侧的阳极图案151、发光图案152和阴极图案153。第一OLED器件13的阳极图案131覆盖钝化层127的接触孔并与第五导电图案145连接,第二OLED器件15的阳极图案151与第一导电图案141连接。
在本实施例中,薄膜晶体管的漏极图案125与第一OLED器件13的阳极图案131连接,导电元件的一端(第五导电图案145)与第一OLED器件13的阳极图案131连接,导电元件的另一端(第一导电图案141)被衬底基材11的另一侧所暴露,第二OLED器件15的阳极图案151与导电元件的另一端连接。
在对栅极图案121施加栅极信号时,薄膜晶体管导通,显示信号(电信号)通过漏极图案125、第四导电图案144及第五导电图案145传输给第一OLED器件13的阳极图案131,从而使得第一OLED器件13发出背向衬底基材11照射的光。第二OLED器件15的阳极图案151通过导电元件也接收到显示信号,也发出背向衬底基材11照射的光。由此,双面OLED显示面板10实现双面显示。鉴于第一OLED器件13和第二OLED器件15接收到的是同一个显示信号,因此在同一时刻,双面OLED显示面板10双面显示的为同一个图像。
由此可知,本实施例只需设置一个薄膜晶体管并使得该薄膜晶体管的漏极图案125与其中一个OLED器件的阳极图案(第一OLED器件13的阳极图案131)连接,即可通过导电元件将显示信号传递给另一个OLED器件的阳极图案(第二OLED器件15的阳极图案151),相比较于现有技术 中双面显示面板包含两个薄膜晶体管的设计,本实施例的双面OLED显示面板10具有轻薄化设计的优点。
请参阅图2,为本发明一实施例的双面OLED显示面板的制造方法。所述制造方法可以用于形成具有图1所示结构的双面OLED显示面板10,为便于描述,本发明下文以所述制造方法用于形成具有图1所示的双面OLED显示面板10为例进行说明。
如图2所示,所述制造方法包括如下步骤S21和S22。
S21:在衬底基材的一侧形成薄膜晶体管、第一OLED器件和导电元件,薄膜晶体管的漏极图案与第一OLED器件的阳极图案连接,导电元件的一端与第一OLED器件的阳极图案连接,导电元件的另一端被衬底基材的另一侧所暴露。
S22:在衬底基材的另一侧形成第二OLED器件,第二OLED器件的阳极图案与导电元件的另一端连接。
为了保证衬底基材11的平整度,本实施例可以将衬底基材11形成于一平整度较好的基板(例如玻璃基板)上。基于此,本实施例的制造方法可以包括图3所示的步骤S30~S47。
S30:提供一下基板。
结合图4所示,该下基板40可以为玻璃基材、透明塑料基材、可挠式基材等平整度良好的基材。当然,本实施例的下基板40也可以设置有钝化保护层,例如下基板40可以包括基板和形成于基板上的钝化保护层,此时基板可以为玻璃基材、透明塑料基材、可挠式基材等基材,钝化保护层的材料包括但不限于硅氮化合物,例如Si3N4(四氮化三硅,简称氮化硅),以保护下基板40表面的结构稳定性。
S31:在下基板上形成第一导电图案。
本实施例可以通过光罩制程在下基板40上形成具有预定图案的第一导电图案141。具体而言,采用PVD(Physical Vapor Deposition,物理气相沉积)方法在下基板40上形成一整面金属层,然后在该金属层上涂布一整面光阻层,再采用光罩对该一整面光阻层依次进行曝光及显影处理,完全曝光部分的光阻可以被显影液去除,未曝光部分的光阻未被显影液去除,接着刻蚀去除未被光阻层遮盖的金属层,并去除光阻层,最终保留的金属层 即可形成为第一导电图案141。
S32:形成覆盖下基板的衬底基材,衬底基材暴露第一导电图案的上表面。
本实施例可以采用涂布方式在下基板40的上表面涂覆一PI层,该PI层暴露第一导电图案141的上表面,PI层经过固化后形成衬底基材11。当然,衬底基材11可以为采用其他柔性材料制成的柔性衬底基材,于此双面OLED显示面板10可视为一柔性显示面板。
S33:在衬底基材上形成间隔设置的栅极图案和第二导电图案,第二导电图案形成于第一导电图案上。
请继续参阅图4,栅极图案121和第二导电图案142间隔形成于衬底基材11上,导电图案142形成于第一导电图案141上且两者面接触。其中,栅极图案121和第二导电图案142的材质可以相同,由此本实施例可以通过同一道光罩制程在衬底基材11上同时形成栅极图案121和第二导电图案142,该光罩制程的原理可参阅前述第一导电图案141的制造过程,本实施例此处不再予以赘述。
S34:在衬底基材上形成覆盖栅极图案的栅极绝缘层,栅极绝缘层暴露第二导电图案的上表面。
本实施例可以采用CVD(Chemical Vapor Deposition,化学气相沉积)方法在栅极图案121上形成栅极绝缘层122,该栅极绝缘层122为覆盖栅极图案121的一整面结构,但暴露第二导电图案142的上表面。具体地,第二导电图案142的厚度大于栅极图案121的厚度,栅极绝缘层122的上表面与第二导电图案142的上表面平齐。
其中,栅极绝缘层122的材质包括但不限于硅氧化物(SiOx)。当然,栅极绝缘层122也可以包括依次形成于栅极图案121上的硅氧化合物层和硅氮化合物,例如SiO2(二氧化硅)和Si3N4(三氮化硅),从而能够进一步提高栅极绝缘层122的耐磨损能力和绝缘性能。
S35:在栅极绝缘层上形成位于栅极图案上方的半导体图案。
本实施例可采用PVD方法形成一整面半导体层,而后对一整面半导体层进行基于光罩的图案化制程,从而仅保留位于栅极图案121上方的半导体层,由此形成半导体图案123。
S36:在栅极绝缘层上形成两两间隔设置的源极图案、漏极图案和第三导电图案,源极图案和漏极图案分设于半导体图案的两端,第三导电图案形成于第二导电图案上。
本实施例可以采用与形成栅极图案121相同原理的图案化制程形成源极图案124和漏极图案125。并且,第三导电图案143与源极图案124和漏极图案125的材质可以相同,由此本实施例可以通过该图案化制程在栅极绝缘层123上同步形成第三导电图案143,该第三导电图案143与第二导电图案142面接触。
S37:在栅极绝缘层上形成覆盖半导体图案、源极图案和漏极图案的平坦层,平坦层暴露漏极图案和第三导电图案的上表面。
本实施例可以采用涂布等方法在栅极绝缘层122上形成平坦层126,该平坦层126为覆盖半导体图案123、源极图案124和漏极图案125的一整面结构,但平坦层126开设有两个开口,这两个开口分别暴露漏极图案125的上表面和第三导电图案143的上表面。
S38:在漏极图案和第三导电图案的上表面形成第四导电图案。
本实施例可以采用PVD方法在平坦层126开设的两个开口中沉积第四导电图案144,使得第四导电图案144与漏极图案125的上表面和第三导电图案143的上表面直接接触。该第四导电图案144的材料包括但不限于Mo(钼)及Al(铝)中的至少一种。
S39:在第四导电图案上形成与第四导电图案连接的第五导电图案。
本实施例可以采用PVD方法,并结合基于光罩制程的图案化工艺在第四导电图案144上形成第五导电图案145。该第五导电图案145与第四导电图案144直接面接触。
S40:形成覆盖第五导电图案的钝化层,钝化层开设有暴露第五导电图案上表面的接触孔。
钝化层127与平坦层126的形成方法可以相同。该钝化层127为覆盖第五导电图案145的一整面结构,但开设有第五导电图案145上表面的接触孔。该接触孔位于第三导电图案143的正上方。当然,对于采用其他方式形成钝化层127的情况,本实施例可采用刻蚀方式在一整面钝化层127中形成所述接触孔。
S41:在钝化层上形成第一OLED器件,第一OLED器件的阳极图案覆盖接触孔并与第五导电图案连接。
第一OLED器件13可以采用顶发光型设计,具体地,其包括依次位于钝化层127上的阳极图案131、发光图案132和阴极图案133。该阳极图案131的材料可选用Al(铝)、Ag(银)及ITO(Indium tin oxide,氧化铟锡)中的至少一种,并且,该第一OLED器件13的制造方法可参阅现有技术,此处不予以赘述。
S42:形成一封装层,封装层和衬底基材围成一容置空间,薄膜晶体管、第一OLED器件和导电元件位于容置空间内。
如图4所示,该封装层41包括两部分,第一部分设置于阴极图案133上方,第二部分设置于第一部分和衬底基材11之间,于此,封装层41和衬底基材11围成一容置空间,从而将薄膜晶体管、第一OLED器件13和导电元件封闭在隔水隔氧环境中。本实施例可以采用薄膜封装方式形成该封装层41,其材料包括但不限于隔水隔氧的无机物。
S43:在封装层上设置一上基板。
该上基板42包括但不限于玻璃基材、透明塑料基材及可挠式基材,其可以直接设置于封装层41上,也可以间隔设置于封装层41上方。
S44:在上基板和衬底基材之间且位于封装层的外围形成一保护层,保护层、上基板和衬底基材围成一密闭空间。
保护层43可以为UV胶经过固化形成,其与上基板42、衬底基材11共同构成一密闭空间,该密闭空间用于保护其内部的所有组件,例如第一OLED器件13,不受损伤。
S45:将下基板和衬底基材分离。
本实施例可以采用激光方式将下基板40和衬底基材11分离。
S46:在衬底基材的另一侧形成第二OLED器件,第二OLED器件的阳极图案与导电元件的另一端连接。
第二OLED器件15可以采用顶发光型设计,具体地,其包括依次设置于衬底基材11另一侧的阳极图案151、发光图案152和阴极图案153,该阳极图案151与第一导电图案141的下表面接触。
在该第二OLED器件15之外,本实施例也设置有封装层41,该封装 层41和衬底基材11围成一容置空间,从而将第二OLED器件15封闭在隔水隔氧环境中。
S47:沿保护层和封装层之间的分割线对衬底基材进行切割,以去除保护层和上基板。
本实施例可以将封装层41外侧的边界线作为分割线411,并沿着分割线411对衬底基材11进行激光切割,切割后保护层43和上基板42自动脱离,由此可以得到图1所示的双面OLED显示面板10。
再次说明,以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种双面OLED显示面板的制造方法,其中,包括:
    由柔性材料形成衬底基材;
    提供一下基板;
    在所述下基板上形成第一导电图案;
    形成覆盖所述下基板的衬底基材,所述衬底基材暴露所述第一导电图案的上表面;
    在所述衬底基材上形成间隔设置的栅极图案和第二导电图案,所述第二导电图案形成于所述第一导电图案上;
    在所述衬底基材上形成覆盖所述栅极图案的栅极绝缘层,所述栅极绝缘层暴露所述第二导电图案的上表面;
    在所述栅极绝缘层上形成位于所述栅极图案上方的半导体图案;
    在所述栅极绝缘层上形成两两间隔设置的源极图案、漏极图案和第三导电图案,所述源极图案和漏极图案分设于所述半导体图案的两端,所述第三导电图案形成于所述第二导电图案上;
    在所述栅极绝缘层上形成覆盖所述半导体图案、源极图案和漏极图案的平坦层,所述平坦层暴露所述漏极图案和第三导电图案的上表面;
    在所述漏极图案和第三导电图案的上表面形成第四导电图案;
    在第四导电图案上形成与所述第四导电图案连接的第五导电图案;
    形成覆盖所述第五导电图案的钝化层,所述钝化层开设有暴露所述第五导电图案上表面的接触孔;
    在所述钝化层上形成第一OLED器件,所述第一OLED器件的阳极图案覆盖所述接触孔并与所述第五导电图案连接;
    形成一封装层,所述封装层和所述衬底基材围成一容置空间,其中,所述栅极图案、栅极绝缘层、半导体图案、源极图案、漏极图案、平坦层和钝化层形成薄膜晶体管,所述第一导电图案、第二导电图案、第三导电图案、第四导电图案和第五导电图案形成导电元件,所述薄膜晶体管、第一OLED器件和导电元件位于所述容置空间内,所述薄膜晶体管的漏极图案与所述第一OLED器件的阳极图案连接,所述导电元件的一端与所述第 一OLED器件的阳极图案连接,所述导电元件的另一端被所述衬底基材的另一侧所暴露;
    在所述衬底基材的另一侧形成第二OLED器件,所述第二OLED器件的阳极图案与所述导电元件的另一端连接。
  2. 根据权利要求1所述的制造方法,其中,所述下基板包括玻璃基板。
  3. 根据权利要求1所述的制造方法,其中,在形成所述封装层之后,所述制造方法还包括:
    在所述封装层上设置一上基板;
    在所述上基板和所述衬底基材之间且位于所述封装层的外围形成保护层,所述保护层、所述上基板和所述衬底基材围成一密闭空间。
  4. 根据权利要求3所述的制造方法,其中,在所述衬底基材的另一侧形成第二OLED器件之前,所述制造方法还包括:
    将所述下基板和所述衬底基材分离。
  5. 根据权利要求4所述的制造方法,其中,在所述衬底基材的另一侧形成第二OLED器件之后,所述制造方法还包括:
    沿所述保护层和所述封装层之间的分割线对所述衬底基材进行切割,以去除所述保护层和所述上基板。
  6. 一种双面OLED显示面板,其中,包括:
    衬底基材;
    位于所述衬底基材一侧的薄膜晶体管、第一OLED器件和导电元件,所述薄膜晶体管的漏极图案与所述第一OLED器件的阳极图案连接,所述导电元件的一端与所述第一OLED器件的阳极图案连接,所述导电元件的另一端被所述衬底基材的另一侧所暴露;
    位于所述衬底基材另一侧的第二OLED器件,所述第二OLED器件的阳极图案与所述导电元件的另一端连接。
  7. 根据权利要求6所述的双面OLED显示面板,其中,所述衬底基材包括柔性衬底基材。
  8. 根据权利要求6所述的双面OLED显示面板,其中,所述薄膜晶体管包括位于所述衬底基材上的栅极图案、栅极绝缘层、半导体图案、源极图案、漏极图案、平坦层和钝化层,所述导电元件包括位于所述衬底基材 中的第一导电图案,以及依次位于所述第一导电图案上的第二导电图案、第三导电图案、第四导电图案和第五导电图案,所述第一导电图案和所述衬底基材位于同一层,所述第二导电图案和所述栅极图案位于同一层,所述第三导电图案和所述源极图案及所述漏极图案位于同一层,所述平坦层覆盖所述半导体图案、源极图案和漏极图案且暴露所述漏极图案和第三导电图案的上表面,所述第四导电图案位于所述漏极图案和第三导电图案的上表面,所述第五导电图案位于所述第四导电图案上且与所述第四导电图案连接,所述钝化层覆盖所述第五导电图案且开设有暴露所述第五导电图案上表面的接触孔,所述第一OLED器件的阳极图案覆盖所述接触孔并与所述第五导电图案连接,所述第二OLED器件的阳极图案与所述第一导电图案连接。
  9. 一种双面OLED显示面板的制造方法,其中,包括:
    在衬底基材的一侧形成薄膜晶体管、第一OLED器件和导电元件,所述薄膜晶体管的漏极图案与所述第一OLED器件的阳极图案连接,所述导电元件的一端与所述第一OLED器件的阳极图案连接,所述导电元件的另一端被所述衬底基材的另一侧所暴露;
    在所述衬底基材的另一侧形成第二OLED器件,所述第二OLED器件的阳极图案与所述导电元件的另一端连接。
  10. 根据权利要求9所述的制造方法,其中,由柔性材料形成所述衬底基材。
  11. 根据权利要求9所述的制造方法,其中,在衬底基材的一侧形成薄膜晶体管、第一OLED器件和导电元件,包括:
    提供一下基板;
    在所述下基板上形成第一导电图案;
    形成覆盖所述下基板的衬底基材,所述衬底基材暴露所述第一导电图案的上表面;
    在所述衬底基材上形成间隔设置的栅极图案和第二导电图案,所述第二导电图案形成于所述第一导电图案上;
    在所述衬底基材上形成覆盖所述栅极图案的栅极绝缘层,所述栅极绝缘层暴露所述第二导电图案的上表面;
    在所述栅极绝缘层上形成位于所述栅极图案上方的半导体图案;
    在所述栅极绝缘层上形成两两间隔设置的源极图案、漏极图案和第三导电图案,所述源极图案和漏极图案分设于所述半导体图案的两端,所述第三导电图案形成于所述第二导电图案上;
    在所述栅极绝缘层上形成覆盖所述半导体图案、源极图案和漏极图案的平坦层,所述平坦层暴露所述漏极图案和第三导电图案的上表面;
    在所述漏极图案和第三导电图案的上表面形成第四导电图案;
    在第四导电图案上形成与所述第四导电图案连接的第五导电图案;
    形成覆盖所述第五导电图案的钝化层,所述钝化层开设有暴露所述第五导电图案上表面的接触孔;
    在所述钝化层上形成第一OLED器件,所述第一OLED器件的阳极图案覆盖所述接触孔并与所述第五导电图案连接;
    形成一封装层,所述封装层和所述衬底基材围成一容置空间,所述薄膜晶体管、第一OLED器件和导电元件位于所述容置空间内。
  12. 根据权利要求11所述的制造方法,其中,所述下基板包括玻璃基板。
  13. 根据权利要求11所述的制造方法,其中,在形成所述封装层之后,所述制造方法还包括:
    在所述封装层上设置一上基板;
    在所述上基板和所述衬底基材之间且位于所述封装层的外围形成保护层,所述保护层、所述上基板和所述衬底基材围成一密闭空间。
  14. 根据权利要求13所述的制造方法,其中,在所述衬底基材的另一侧形成第二OLED器件之前,所述制造方法还包括:
    将所述下基板和所述衬底基材分离。
  15. 根据权利要求14所述的制造方法,其中,在所述衬底基材的另一侧形成第二OLED器件之后,所述制造方法还包括:
    沿所述保护层和所述封装层之间的分割线对所述衬底基材进行切割,以去除所述保护层和所述上基板。
PCT/CN2017/112619 2017-10-30 2017-11-23 双面oled显示面板及其制造方法 WO2019085080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711038812.5A CN107833904B (zh) 2017-10-30 2017-10-30 双面oled显示面板及其制造方法
CN201711038812.5 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019085080A1 true WO2019085080A1 (zh) 2019-05-09

Family

ID=61650073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112619 WO2019085080A1 (zh) 2017-10-30 2017-11-23 双面oled显示面板及其制造方法

Country Status (2)

Country Link
CN (1) CN107833904B (zh)
WO (1) WO2019085080A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860247A (zh) * 2019-01-18 2019-06-07 深圳市华星光电半导体显示技术有限公司 一种双面显示面板及其显示装置
CN109920928A (zh) * 2019-02-26 2019-06-21 武汉华星光电半导体显示技术有限公司 显示面板以及显示装置
KR102420936B1 (ko) * 2019-12-19 2022-07-13 충칭 콘카 포토일렉트릭 테크놀로지 리서치 인스티튜트 컴퍼니 리미티드 양면 tft 패널 및 그 제조 방법, 디스플레이 기기
CN112542097A (zh) * 2020-12-04 2021-03-23 Tcl华星光电技术有限公司 一种双面显示面板及制备方法
CN115117135A (zh) * 2022-06-28 2022-09-27 武汉华星光电半导体显示技术有限公司 显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247656A (zh) * 2012-02-07 2013-08-14 瀚宇彩晶股份有限公司 有机电致发光显示装置
CN105140260A (zh) * 2015-07-23 2015-12-09 京东方科技集团股份有限公司 有机发光二极管阵列基板及其制作方法、显示装置
CN106601777A (zh) * 2016-12-28 2017-04-26 武汉华星光电技术有限公司 双面显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247656A (zh) * 2012-02-07 2013-08-14 瀚宇彩晶股份有限公司 有机电致发光显示装置
CN105140260A (zh) * 2015-07-23 2015-12-09 京东方科技集团股份有限公司 有机发光二极管阵列基板及其制作方法、显示装置
CN106601777A (zh) * 2016-12-28 2017-04-26 武汉华星光电技术有限公司 双面显示装置

Also Published As

Publication number Publication date
CN107833904A (zh) 2018-03-23
CN107833904B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2019085080A1 (zh) 双面oled显示面板及其制造方法
KR102400022B1 (ko) 측부 구부림 구조를 갖는 플렉서블 유기발광 다이오드 표시장치
US11056548B1 (en) Display panel
US9312504B2 (en) Flexible organic light emitting diode display device and manufacturing method thereof
JP6733203B2 (ja) 電気光学装置、電子機器
WO2015186619A1 (ja) 半導体装置、表示装置及び半導体装置の製造方法
CN110071225A (zh) 显示面板及制作方法
CN103681740B (zh) 有机发光二极管装置以及制造该装置的方法
KR102178471B1 (ko) 대면적 투명 유기발광 다이오드 표시장치
US9343519B2 (en) Method of manufacturing organic light emitting display device
US9012271B2 (en) Thin film transistor array substrate and method of manufacturing the same
JP2009164107A (ja) 有機el表示装置
KR20120039947A (ko) 표시 장치 및 그 제조 방법
WO2019205264A1 (zh) Oled器件及其制造方法、oled显示器
WO2019127203A1 (zh) 显示屏及其制作方法,以及显示设备
US10784287B2 (en) TFT substrate and manufacturing method thereof
JP2009205941A (ja) 表示装置の製造方法、表示装置、照明装置の製造方法および照明装置
US20230102637A1 (en) Thin film transistor array substrate and display panel thereof
US20190157355A1 (en) Touch screen panel and manufacturing method thereof
WO2020220476A1 (zh) 阵列基板及其制造方法、及显示面板
KR102033615B1 (ko) 유기전계발광표시장치 및 그 제조방법
TW202043867A (zh) 顯示面板及顯示面板製作方法
WO2017166330A1 (zh) 石墨烯液晶显示装置、石墨烯发光元件及其制作方法
KR102224457B1 (ko) 표시장치와 그 제조 방법
KR102609229B1 (ko) 유기발광 표시장치 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931010

Country of ref document: EP

Kind code of ref document: A1