WO2015068704A1 - 繊維補強炭酸化水硬性無機質成形板及びその製造方法 - Google Patents

繊維補強炭酸化水硬性無機質成形板及びその製造方法 Download PDF

Info

Publication number
WO2015068704A1
WO2015068704A1 PCT/JP2014/079278 JP2014079278W WO2015068704A1 WO 2015068704 A1 WO2015068704 A1 WO 2015068704A1 JP 2014079278 W JP2014079278 W JP 2014079278W WO 2015068704 A1 WO2015068704 A1 WO 2015068704A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
curing
molded plate
inorganic molded
hydraulic inorganic
Prior art date
Application number
PCT/JP2014/079278
Other languages
English (en)
French (fr)
Inventor
人見祥徳
稲田真也
岩崎嘉宏
乗竹宏明
羽田三郎
盛岡実
樋口隆行
庄司慎
入内島克明
Original Assignee
株式会社クラレ
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, 電気化学工業株式会社 filed Critical 株式会社クラレ
Priority to ES14859513T priority Critical patent/ES2857511T3/es
Priority to BR112016009971-0A priority patent/BR112016009971B1/pt
Priority to JP2015546650A priority patent/JP6609474B2/ja
Priority to EP14859513.5A priority patent/EP3067337B1/en
Priority to MX2016005719A priority patent/MX2016005719A/es
Publication of WO2015068704A1 publication Critical patent/WO2015068704A1/ja
Priority to US15/145,502 priority patent/US10093577B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0641Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/025Belite cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • C04B40/0236Carbon dioxide post-treatment of already hardened material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00586Roofing materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • C04B2111/0062Gypsum-paper board like materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention is a fiber-reinforced carbonated hydraulic inorganic molded board that is suitably used as a building material such as a roofing material and a wall material, has a high bulk specific gravity and excellent bending strength, and has a small dimensional change rate per specific gravity, and its production Regarding the method.
  • Patent Document 1 discloses that when a hardened cement body having a high belite content is placed in an atmosphere of high carbon dioxide gas concentration, a hardened body having excellent carbon dioxide gas permeability and high bending strength can be obtained by carbonation.
  • Patent Document 2 discloses a cement composition for a carbonized hardened body containing a binder containing a polymer admixture, ⁇ -belite ( ⁇ -2CaO ⁇ SiO 2 ), and cement.
  • Patent Document 2 discloses a cemented concrete composition for a carbonized cured body used for a large plate material used for a relatively large building, for example, a panel material such as curtain wall or ALC, and a method for producing the same. Yes.
  • Patent Document 3 primary curing is performed, demolding is performed after the formation of calcium hydroxide accompanying the hydration reaction, and after the acceleration period when the hydration reaction of cement alite (C 3 S) is activated. Curing is carried out in a carbon dioxide gas atmosphere for a period from a deceleration period in which a large amount of calcium hydroxide crystals are generated in the cured body to a steady period in which the cured body becomes dense.
  • Patent Document 4 pursues “sound absorption” and “heat insulation” by incorporating a parameter “permeability” into a porous structure in curing a hydraulic inorganic molding composition.
  • Patent Document 5 discloses an invention relating to a fiber suitable for improving the explosion resistance of an irregular refractory and an irregular refractory to which the fiber is added. It discloses that the air permeability is effective in improving the explosion resistance of the irregular refractory.
  • Patent Document 1 in manufacturing a concrete product, although the improvement of bending strength is recognized by carbonating a cement hardening body, the dimension stability formed by adding a pulp and a reinforcement fiber to cement is calculated
  • Patent Document 2 it is said that the polymer admixture is preferably used as an organic polymer carbonation accelerator, but is formed by adding pulp and reinforcing fibers to cement, and has hydraulic properties that require dimensional stability.
  • Patent Document 3 describes carbon dioxide diffusion in detail, but there is no suggestion regarding a fiber-reinforced carbonated inorganic molded plate that is formed by adding both pulp and reinforcing fibers to cement and that requires dimensional stability.
  • Patent Document 4 the relationship between the air permeability and the porosity in the inorganic porous material is studied, but there is no suggestion about the relationship between the air permeability and carbonation.
  • Patent Document 5 the air permeability is a problem in relation to the explosion suppression effect in the amorphous refractory, but there is no suggestion about the relation between the air permeability and carbonation.
  • the present inventors have a high bulk specific gravity and a dimensional change rate under high bending strength, unlike ordinary concrete products. Therefore, it is said that it is a problem to be solved to obtain a fiber-reinforced hydraulic inorganic molded plate having a high bulk specific gravity, a high bending strength, and a small dimensional change rate.
  • the first configuration of the present invention is a fiber-reinforced carbonated hydraulic inorganic molded plate containing at least a cement component, pulp and reinforcing fibers, The aspect ratio of the reinforcing fiber is in the range of 40 to 1000, and the molding plate is a carbon-cured and fiber-reinforced carbonated hydraulic inorganic molding plate.
  • the molded plate preferably has a dimensional change rate per specific gravity of 0.1% or less.
  • the dimensional change rate per specific gravity is a value obtained by dividing the dimensional change rate measured according to JIS A5430 by the bulk specific gravity.
  • the reinforcing fiber is preferably a polyvinyl alcohol fiber.
  • the present inventors have recognized that carbonation proceeds to the inner layer of the plate-shaped molded body by performing carbonation with the air permeability of the molded body after pre-curing being a certain value or more, and the second configuration of the present invention.
  • the invention according to the present invention has been reached.
  • the second configuration of the present invention (second product invention) is a molded plate obtained by curing a composition containing at least a cement component, pulp and reinforcing fibers, and the carbonation reaction rate of the molded plate is 30% or more.
  • a fiber-reinforced carbonated hydraulic inorganic molded board characterized by the following.
  • being carbonated means that a phenolphthalein aqueous solution was applied to a cross-section obtained by vertically splitting the molded plate and did not develop a red color. Since the molded plate cured by carbonation shifts from high alkalinity to neutral side, the uncarbonated part is colored bright red, but the carbonated part is not clearly colored and can be detected it can.
  • the carbonation reaction rate is preferably 50% or more.
  • the dimensional change rate per specific gravity is preferably 0.1% or less.
  • the cement component is preferably a cement containing 18% by mass or more of belite, and the reaction rate of belite is preferably 70% or more.
  • the reinforcing fiber is preferably a polyvinyl alcohol fiber.
  • the third configuration of the present invention (the first manufacturing method invention) relates to a manufacturing method for manufacturing the product according to the first configuration, and is at least in the range of cement component, pulp, and aspect ratio of 40 to 1000.
  • Production of a fiber-reinforced carbonated hydraulic inorganic molded board characterized by pre-curing a composition composed of reinforcing fibers and water, followed by carbonation curing to obtain a fiber-reinforced carbonated hydraulic inorganic molded board It is a method to do.
  • a composition containing cement containing 18% by mass or more of belite as the cement component is molded, and at least reaches a demoldable hardness, and then is carbonized. It is preferable to do.
  • the pre-curing is preferably performed in an atmosphere having a humidity of 60 to 100%.
  • the carbonation curing is preferably performed in an atmosphere containing 5 to 30% carbon dioxide gas.
  • a fourth configuration of the present invention is an invention relating to a manufacturing method for manufacturing a product according to the second configuration, and is a composition composed of at least a cement component, pulp, reinforcing fibers, and water.
  • the present invention is a fiber-reinforced carbonated hydraulic inorganic molded plate containing at least a cement component, pulp, and reinforcing fibers, and the aspect ratio of the reinforcing fibers is 40 to 1000 Within the range, the molded plate is carbonized and cured and has a densified structure. Therefore, the bulk density and water permeability resistance are high, and the paintability is excellent. In addition, since the bending strength is high due to carbonation and the dimensional change rate per specific gravity is small, the obtained fiber-reinforced carbonated hydraulic inorganic molded plate is suitably used as a building material such as a roofing material or a wall material.
  • the carbonation curing is performed, and the carbonation reaction rate is 30% or more, that is, the carbonization is performed up to the inside of the molded plate.
  • the carbonation reaction rate is 30% or more, that is, the carbonization is performed up to the inside of the molded plate.
  • first manufacturing method invention after pre-curing (primary curing) a composition composed of at least a cement component, pulp, reinforcing fibers, and water, carbonation curing (secondary curing) I do.
  • primary curing a composition composed of at least a cement component, pulp, reinforcing fibers, and water
  • carbonation curing secondary curing
  • the time is shortened to about 1 to 3 days, and a dense hardened body can be obtained in a short time.
  • the air permeability of a molded body obtained by pre-curing a composition comprising a cement component, pulp, reinforcing fiber, and water is 0.1 ⁇ 10 ⁇ 15.
  • the carbonation reaction rate of the molded body is 30% or more, the bulk specific gravity is high, the bending strength is high, and the specific gravity per specific gravity It becomes possible to produce a fiber-reinforced carbonated hydraulic inorganic molded plate having a small dimensional change rate and effective as a building material such as a roofing material and a wall material.
  • the fiber-reinforced carbonated hydraulic inorganic molded plate according to the present invention comprises the following two inventions: the invention according to the first configuration (first product invention) and the invention according to the second configuration (second product invention).
  • First product invention a fiber-reinforced carbonated hydraulic inorganic molded board containing at least a cement component, pulp and reinforcing fibers, wherein the aspect ratio of the reinforcing fibers is in the range of 40 to 1000, and the molded board is carbonated A cured fiber reinforced carbonated hydraulic inorganic molded board.
  • the dimensional change rate per specific gravity of the fiber reinforced carbonated hydraulic inorganic molded plate subjected to carbonation curing is 0.1% or less.
  • the molded plate for example, one having a bulk specific gravity of 1.6 or more and / or a bending strength of 20 N / mm 2 or more is obtained.
  • Second product invention A molded plate in which a composition containing at least a cement component, pulp and reinforcing fibers is cured, wherein the molded plate has a carbonation reaction rate of 30% or more, and is a fiber-reinforced carbonated hydraulic inorganic molded plate It is.
  • the manufacturing method of the fiber-reinforced carbonated hydraulic inorganic molded plate according to the present invention includes the following two inventions: an invention according to the third configuration (first manufacturing method invention) and an invention according to the fourth configuration (second manufacturing method invention) Consists of.
  • Invention of the first manufacturing method (corresponding to the invention of the first product): After pre-curing a composition composed of at least a cement component, pulp, reinforcing fibers having an aspect ratio in the range of 40 to 1000 and water, carbonation curing is performed.
  • molding board which obtains a fiber reinforced carbonated hydraulic inorganic shaping
  • the air permeability is 0.1 ⁇ 10 ⁇ 15 m 2 by pre-curing a composition comprising at least a cement component, pulp, reinforcing fiber and water. Obtaining the above molded body; A step of carbonating and curing the obtained molded body, and a carbonation reaction rate of 30% or more; It is a method for producing a fiber-reinforced carbonated hydraulic inorganic molded plate having In the following description, unless otherwise specified, the description is applicable to any product invention of the first product invention and the second product invention and / or any manufacturing invention of the first manufacturing method invention and the second manufacturing method invention. is there.
  • the fiber-reinforced carbonated hydraulic inorganic molded plate of the present invention is obtained by pre-curing and then carbonating-curing a composition comprising at least a cement component, pulp, reinforcing fibers, and water.
  • the hydraulic inorganic molded plate means a plate formed by mixing at least a cement component, pulp, and reinforcing fibers with water and then casting, dehydrating, or extruding from the obtained composition.
  • the thickness is about 2 to 100 mm, preferably about 3 to 90 mm.
  • the shape of the plate includes not only a flat shape but also a curved surface shape, and the plate may have a step, an unevenness, and a corrugation as long as it has the above thickness.
  • the molded board which concerns on 2nd product invention is a molded board which the said composition hardened
  • the carbonation reaction rate of the said molded board is 30% or more, It is characterized by the above-mentioned.
  • a molded body a molded body having an air permeability of 0.1 ⁇ 10 ⁇ 15 m 2 or more was obtained from the composition, and then the obtained molded body was carbonized and cured, so that the carbonation reaction rate was 30. % Or more (second manufacturing method invention).
  • cement component examples include various Portland cements such as ordinary cement, early-strength cement, and ultra-early-strength cement. Further, various mixed cements, medium-heated cements, alumina cements, etc., in which blast furnace slag, fly ash or silica is blended with these Portland cements.
  • a typical cement alite: 3CaO ⁇ SiO 2 (composition formula C 3 S), belite: 2CaO ⁇ SiO 2 (composition formula C 2 S), aluminate Al 2 O 3 (composition formula C 3 A), Ferrite: Cement minerals such as 4CaO.Al 2 O 3 .Fe 2 O 3 (composition formula C 4 AF) are included.
  • Belite is a kind of dicalcium silicate containing CaO and SiO 2 as main components, and there are ⁇ -type, ⁇ ′-type, ⁇ -type, and ⁇ -type, each having different crystal structure and density. Of these, ⁇ -type, ⁇ ′-type and ⁇ -type react with water and exhibit hydraulic properties. However, the ⁇ type does not exhibit hydraulic properties and has the property of reacting with carbon dioxide. Ordinary cements such as Portland cement basically contain almost no ⁇ type belite ( ⁇ belite). Since the cement component in the present invention is carbonized after pre-curing, a commercially available belite cement or a cement obtained by mixing belite cement with various cements may be used.
  • the cement component has a belite content of 18 to 60% by mass, preferably 20 to 58% by mass. If the content is too small, the amount of belite that can undergo a carbonation reaction is too small, so that the densification effect is insufficient, and dimensional stability and water resistance cannot be expected. On the other hand, if the content is too large, carbonation is possible, but there are cases where sufficient bending strength cannot be obtained because the hydraulic component serving as a binder decreases.
  • the reaction rate of belite is preferably 70% or more.
  • belite also undergoes a hydration reaction, it produces a C—S—H gel similar to alite and is effective as a binder.
  • belite has a slower hydration reaction than alite, At such timing, the reaction rate is still low and the binder effect is insufficient.
  • the reaction rate is preferably 75% or more, more preferably 80% or more.
  • the pulp added as a hydraulic inorganic molded plate to the composition in the present invention may be either natural or synthetic.
  • Natural pulp is mainly unbleached and bleached pulp from conifers and hardwoods, but pulps obtained from straw, bamboo, cotton, hemp, ramie, kozo, mitsu or eucalyptus can also be used.
  • recovered waste paper obtained from newspapers, paper bags, cardboard boxes and the like can also be used.
  • synthetic pulp polyolefin pulp, polyaramid pulp, or the like can be used, and any fibrillar substance having a similar shape to these may be used. Of these, bleached pulp from conifers and hardwoods is preferred.
  • the pulp may be beaten in advance with a beater such as a refiner or beater.
  • the freeness is preferably 30 to 750 ml, more preferably 50 to 300 ml as Canadian freeness.
  • the pulp content may be 1 to 10% by mass, preferably 2 to 6% by mass, based on the solids in the composition. If the content is too small, the trapping property of the particulate matter is lowered, and if the content is too large, not only the dispersion uniformity is insufficient, but also delamination is induced or the flame retardancy is impaired. Absent.
  • the reinforcing fibers added to give strength and toughness to the hydraulic inorganic molded plate include alkali-resistant glass fibers, carbon fibers, stainless fibers, ceramic fibers, asbestos fibers and other inorganic fibers, and cellulose-based fibers. Examples thereof include recycled fibers such as fibers, and organic fibers such as synthetic resin fibers. In these, an organic fiber, especially a synthetic resin fiber are preferable from a viewpoint of weight reduction.
  • synthetic resin fibers include polyolefin fibers, polyvinyl alcohol fibers, polyamide fibers, aramid fibers, polyester fibers, acrylonitrile fibers, and polyurethane fibers.
  • polyvinyl alcohol fibers are preferable from the viewpoint of alkali resistance, mechanical strength, and adhesiveness of cement.
  • the aspect ratio of the reinforcing fiber used in the first product invention of the present invention is required to be in the range of 40 to 1000, preferably 50 to 900.
  • the aspect ratio of the reinforcing fiber used in the second product invention of the present invention is preferably in the above range. If the aspect ratio is too small, the adhesive strength of the fibers to the cement becomes insufficient, and the toughness imparting effect may not be sufficient for the hydraulic inorganic molded plate after curing.
  • the reinforcing fibers preferably used in the first product invention and the second product invention of the present invention preferably have a fiber diameter of 1 to 200 ⁇ m and a fiber length of 3 to 20 mm. If the fiber diameter is less than 1 ⁇ m, uniform dispersion may be difficult. If the fiber diameter exceeds 200 ⁇ m, the number of fibers per unit volume in the cured hydraulic inorganic molded plate decreases, and the reinforcing effect tends to be difficult to be exhibited. .
  • the ratio of the reinforcing fiber to the solid content in the composition may be 0.1 to 5.0% by mass, preferably 0.3 to 4.5% by mass. If the proportion of the reinforcing fiber is less than 0.1% by mass, the fiber reinforcing effect is not sufficient in the cured hydraulic inorganic molded plate. If it exceeds 5.0% by mass, uniform dispersion tends to be difficult at the time of blending. .
  • Papermaking means that a slurry in which a cement component or the like is suspended in an aqueous medium is filtered and molded into a mesh.
  • a papermaking body means the molded object (molded board) shape
  • the composition containing the cement component in the present invention may contain various aggregates as necessary.
  • aggregates include fine aggregates, lightweight aggregates, and coarse aggregates. Can be mentioned. These aggregates may be used alone or in combination of two or more.
  • the fine aggregate include fine particles having a particle size of 5 mm or less. For example, river sand, mountain sand, sea sand, crushed sand, quartz sand, mineral sand, glass sand, iron sand, ash sand, silica fume, calcium carbonate, Examples include sands such as artificial sand.
  • Lightweight aggregates include natural lightweight aggregates such as volcanic gravel, expanded slag, charcoal pattern, artificial lightweight aggregates such as foamed pearlite, foamed perlite, foamed black stone, vermiculite, shirasu balloon, fly ash microballoon, etc. Is mentioned.
  • Coarse aggregates include those containing particles having a particle size of 5 mm or more in a mass of 85% or more. For example, various gravels, artificial aggregates, recycled aggregates, and the like can be used.
  • composition containing the cement component in the present invention various admixtures, for example, an AE agent, a fluidizing agent, a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance AE water reducing agent, as necessary.
  • Thickeners, water retention materials, water repellents, swelling agents, curing accelerators, setting retarders, and the like may be mixed therein.
  • These admixtures may be used alone or in combination of two or more.
  • a water-soluble polymer substance may be added to the composition of the present invention.
  • the water-soluble polymer include cellulose ethers such as methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose, polyvinyl alcohol, polyacrylic acid, and lignin sulfonate. These may be used alone or in combination of two or more.
  • the hardening accelerator of a hydraulic component may be added to the composition in this invention as needed.
  • the curing accelerator include calcium chloride, aluminum chloride, iron chloride, sodium chloride, magnesium chloride, alkali sulfate, alkali carbonate, and sodium silicate.
  • a carbonation accelerator may be added to the composition in the present invention as necessary.
  • the carbonation accelerator include water-based polymer dispersions, thermoplastic emulsions such as polyacrylic acid esters, polyvinyl acetate, and ethylene-vinyl acetate copolymers, and synthetic rubber latexes such as styrene-butadiene rubber.
  • the re-emulsifying powder resin include ethylene-vinyl acetate copolymer and vinyl acetate vinyl versatate (VAVeoVa).
  • cellulose derivatives such as methylcellulose, polyvinyl alcohol, etc. are mentioned, for example.
  • medical agent with high affinity with a carbon dioxide gas may be added.
  • the high affinity drug include amine drugs such as monoethanolamine, diethanolamine, and triethanolamine, and gels on which they are fixed, without particular limitation. In addition, you may use these individually or in combination of 2 or more types.
  • the water contained in the composition in the present invention may be, for example, about 20 to 80% by mass, preferably 25 to 70% by mass, and more preferably 30 to 60% by water cement ratio (W / C). % Mass may also be used.
  • the above cement component, pulp, reinforcing fiber and water are mixed by a mixing means such as a known or conventional mixer to form a composition.
  • a mixing means such as a known or conventional mixer to form a composition.
  • other cement components after mixing pulp and water and dispersing the pulp in water.
  • the mixing order is not particularly limited.
  • the pulp and water are mixed, and after the pulp is dispersed in water, the cement component and other additives are added and mixed, and finally the reinforcing fiber is added. It is preferable to add.
  • the slurry-like composition prepared as described above is fed into a plurality of pads of a wet papermaking machine, and is made into a cake on the cylinder surface by rotation of a mesh cylinder of internal negative pressure in the pad. Then, it is transported to the making roll, and is separated from the winding roll to a predetermined thickness by being single layered or laminated.
  • the separated plate-like molded product in a wet state is pressure-molded with a press if necessary, then cured (pre-curing and carbonation curing), and then dried as necessary to obtain a desired hydraulic inorganic molded plate. Is manufactured. As mentioned above, the case of using the Hatschek paper machine has been described.
  • the present invention is not limited to this, and a long web paper-making method such as further paper-making, or cast molding, press molding, extrusion molding or slurry is used.
  • the present invention can also be applied to a flow-on method for obtaining a desired thickness that is one or several times.
  • the pre-curing (primary curing) in the present invention is preferably performed to such an extent that the entire composition molded body molded into a predetermined shape is cured. If the whole is not cured, not only the molded body may be damaged at the time of handling to deplate and demold and move to the subsequent process, but also an increase in mass due to CaCO 3 generated by carbonation described later (that is, an increase in volume) ), The molded body is entangled and expands, so that the densification effect which is one of the most important points of the present invention does not appear, which is not preferable.
  • the pre-curing is preferably performed at least in a high-humidity atmosphere where water in the composition does not evaporate.
  • Hardening is due to the hydration reaction (condensation reaction) of the cement.
  • the moisture in the molded body evaporates, the hydration reaction of the cement is inhibited, and thereafter the hardening may not proceed until the molded body can be handled.
  • curing is performed in an atmosphere having a relative humidity of 65% or more, preferably 80% or more, more preferably 90% or more, and most preferably 100%.
  • moisture in the composition such as a method of putting the composition into a container or bag that does not allow moisture to pass, or sandwiching the composition between a plastic plate, a plastic film, or a metal plate, etc. Curing may be performed in such a way as to prevent evaporation.
  • the curing curing temperature is not particularly limited. What is necessary is just to perform an autoclave process in order to obtain 100 degreeC or more. In addition, when using a polyvinyl alcohol-type fiber as a reinforcing fiber, the process of 120 degreeC or more is not preferable from the viewpoint of the heat-and-moisture resistance of the fiber.
  • the maturity necessary for curing (curing temperature ° C x curing time hr) is preferably 300 to 2000.
  • the curing atmosphere gas is not particularly limited, and other than air, a gas such as carbon dioxide, nitrogen, oxygen, water vapor, helium, or argon having a concentration lower than that in the carbonation curing does not impair the object of the present invention. It can be used by mixing within the range.
  • the air permeability of the molded body after pre-curing is the above-mentioned value (0.1 by increasing the pulp content in the composition, partially using lightweight aggregate, adjusting the press pressure, etc., for example. ⁇ 10 ⁇ 15 m 2 or more), more preferably (0.2 ⁇ 10 ⁇ 15 m 2 or more), and more preferably (0.3 ⁇ 10 ⁇ 15 m 2 or more). It is preferred to carbonize the body.
  • carbonation curing (secondary curing) is performed on a composition in which the entire molded body has been cured to the extent that it can be removed from the mold by pre-curing (hereinafter sometimes referred to as a cured body).
  • the carbonation of the cement hardened body is a reaction between calcium hydroxide: Ca (OH) 2 generated by the hydration reaction of cement and [see the following formula (1)], and carbon dioxide gas that has permeated: CO 2.
  • the reaction becomes calcium carbonate: CaCO 3 and water.
  • carbonation is not promoted, which is not preferable.
  • a gas other than the carbon dioxide gas such as air, nitrogen, oxygen, water vapor, helium, or argon can be mixed and used within a range that does not impair the object of the present invention.
  • Carbonation in a carbon dioxide high-pressure vessel is also effective in terms of productivity.
  • the temperature of carbonation is not particularly limited, but the higher the temperature, the better the carbonation reaction.
  • the humidity is constant even during carbonation curing. If the humidity is too high, the surface of the molded body is covered with condensed water, and not only carbon dioxide does not enter the interior of the molded body, but also the surface of the molded body is eroded and the appearance of the product may be deteriorated. . On the other hand, if the humidity is too low, the carbonation reaction and cement hydration reaction are suppressed, which is not preferable. Therefore, the secondary curing is preferably performed in an atmosphere with a relative humidity of 30 to 95%, preferably 35 to 90%, more preferably 40 to 85%.
  • the cured product having the entire molded body cured by the pre-curing is formed by the carbonation curing so that the carbonization reaction proceeds not only to the surface of the cured body but also to the inside, so that the cured molded body does not expand. It becomes possible to densify the whole body uniformly.
  • the mechanism by which the hardened cement containing belite is densified with carbon dioxide it is considered as follows. That is, when a normal cement hardened body is carbonated (neutralized), Ca (OH) 2 generated by the cement hydration reaction reacts with carbon dioxide gas as shown in formulas (1) and (2).
  • the carbonized cured body has an increased specific gravity, a reduced water absorption, a reduced total pore volume, and a reduced dimensional change rate. It is understood that organization densification is occurring.
  • the total pore volume can be grasped from the pore distribution measurement by mercury porosimetry.
  • Vaterite has a lower specific gravity than calcite and aragonite.
  • the occupied volume is larger in the vaterite, which is effective and preferable for densification.
  • calcite is easily generated from Ca (OH) 2
  • aragonite and vaterite are easily generated from belite and C—S—H gel.
  • aragonite and vaterite effective for densification are generated at an early stage.
  • Such densification by carbonation is preferable in that densification can be performed more efficiently than a method of mechanically increasing specific gravity and reducing voids by applying a press or the like before curing.
  • the dimensional change rate is associated with expansion / contraction during water absorption / evaporation, and the rate of change can be suppressed by increasing the specific gravity.
  • the specific gravity is increased by pressing.
  • the one densified by carbonation gives a lower dimensional change rate per specific gravity.
  • the fiber-reinforced carbonated hydraulic inorganic molded plate having excellent dimensional stability such as a dimensional change rate of 0.1% or less per specific gravity, which is a preferred embodiment of the present invention, is thus carbonated and cured. You can get it.
  • Carbonation curing can be carried out without particular limitation, for example, after a pre-cured molded plate is placed in a rack or the like and introduced into a curing tank, and then cured under predetermined conditions.
  • a pre-cured molded plate is placed in a rack or the like and introduced into a curing tank, and then cured under predetermined conditions.
  • problems such as warping of the molded plate may occur. Therefore, in order to eliminate reaction spots, spacers are used to circulate the gas in the curing tank, spray carbon dioxide evenly from the top and bottom of the molding plate, and prevent the molding plates from overlapping each other when loading the molding plates on the rack. It is particularly preferable to devise so that the carbon dioxide gas can be brought into uniform contact with the molded plate, such as by providing a vertical plate or placing the molded plate vertically.
  • the air permeability is 0.1 ⁇ by pre-curing a composition composed of at least a cement component, pulp, reinforcing fiber, and water as described above.
  • the carbonation reaction rate is 30% or more, preferably 50% or more, more preferably 60% or more.
  • a molded plate can be obtained.
  • the surface of the cured body after carbonation curing may be painted as necessary.
  • the coating material is not particularly limited, such as phenol resin paint, synthetic resin blend paint, alkyd resin paint, phthalic acid resin paint, acrylic alkyd resin paint, amino alkyd resin paint, melamine baking resin paint, epoxy resin paint, Modified epoxy resin paint, tar epoxy resin paint, polyurethane resin paint, moisture curing polyurethane resin paint, acrylic urethane resin paint, polyester urethane resin paint, alkyd modified silicone resin paint, acrylic silicone resin paint, silicone resin paint, chlorinated rubber resin paint Any of vinyl acetate emulsion paint, acrylic resin paint, acrylic emulsion resin paint, NAD acrylic resin paint, vinyl chloride resin paint, fluororesin paint, lacquer paint and the like can be suitably used. Since the fiber-reinforced carbonated hydraulic inorganic molding plate according to the present invention is highly dense and neutralized, it is not necessary to select an alkali-resistant coating material that is essential for ordinary cement-based materials
  • the fiber-reinforced carbonated hydraulic inorganic molded plate according to the first product invention of the present invention obtained by the above method is carbonated after the entire cured body has been cured to the extent that it can be removed from the mold by pre-curing.
  • the densification proceeds ahead of carbonation with a fast reaction rate, so even if the hydration reaction of the hydraulic component, which has a slow reaction rate compared to carbonation, is incomplete, the bending strength can be reduced in a short period of time.
  • a fiber-reinforced carbonated hydraulic inorganic molded plate having a high dimensional change rate per specific gravity, excellent water permeability and good paintability is obtained.
  • a molded plate having a dimensional change rate per specific gravity of 0.10% or less (more preferably 0.09% or less) is obtained.
  • the fiber reinforced carbonated hydraulic inorganic molded plate according to the second product invention of the present invention obtained by the above method is obtained by pre-curing to obtain a molded article having a high air permeability, and this molded article is carbonated.
  • a fiber-reinforced carbonated hydraulic inorganic molded plate that is neutralized to the inside of the molded plate can be obtained.
  • Such a plate-like molded body has high bending strength and excellent dimensional stability due to the fact that carbonation proceeds to the inside.
  • a molded plate having a dimensional change rate per specific gravity of 0.10% or less can be obtained.
  • the fiber-reinforced carbonated hydraulic inorganic molded plate of the present invention is carbonized after pre-curing, cured to the inside of the composition of a predetermined shape by pre-curing, then densified by carbonation, and has bending strength.
  • Strong, small dimensional change rate fiber reinforced carbonated hydraulic inorganic molded plate can be obtained, such as moldings and secondary products such as slate plates, tiles, wall panels, ceiling materials, floor panels, roofing materials, partition walls, etc. It can be suitably used in the field of building materials.
  • test piece was placed in an air dryer equipped with a stirrer, and obtained from the mass and volume after drying for 24 hours at 105 ° C. ⁇ 5 ° C.
  • test piece is put in a dryer equipped with a stirrer, the temperature is kept at 60 ⁇ 3 ° C., taken out after 24 hours, put in a desiccator conditioned with silica gel, and room temperature (20 ⁇ 1. (5 ° C).
  • milky glass is attached to the test body, the marking is cut so that the distance between the markings is about 140 mm, and the length between the markings is measured with a comparator having an accuracy of 1/500 mm.
  • the base length was raised horizontally and immersed in water at 20 ° C. ⁇ 1.5 ° C. so as to be about 30 mm below the water surface.
  • the rate of change in length due to water absorption was determined by the formula: Length between marked lines when absorbing water-Length between marked lines when drying / Length between marked lines when drying x 100. Furthermore, the obtained dimensional change rate was divided by the bulk specific gravity to obtain the dimensional change rate per specific gravity.
  • the air permeability of a substance is a characteristic that allows a substance to exchange gas under a pressure difference, and the air permeability is obtained by calculating from the following formula given by the gas volume passing through the substance in a certain time.
  • V / t ⁇ * (1 / ⁇ ) * (A / ⁇ ) * (p1 ⁇ p2) * (p1 + p2) / 2P (1)
  • V amount of gas at pressure p1 that has passed through the substance (m 3 )
  • t Time required for gas amount (V) to pass through the substance (s)
  • Air permeability of material
  • m 2 Air permeability of material
  • Gas viscosity at the test temperature
  • A Cross-sectional area of the substance through which gas passes (m 2 )
  • thickness of material through which gas passes (m)
  • P Absolute gas pressure (Pa) when measuring gas volume
  • p1 Gas intrusion absolute pressure (Pa)
  • p2 Absolute pressure of gas detachment from the substance (Pa)
  • the test piece was a cylinder with a diameter of 50 mm ⁇ 2 mm ⁇ height of 6 mm to 7 mm.
  • PVA fiber PVA1: Completely saponified PVA having a polymerization degree of 1700 was dissolved in water at a concentration of 16.5%, and 1.6% boric acid was added to PVA to prepare a spinning dope.
  • the spinning dope is wet-spun into a 70 ° C. coagulation bath composed of sodium hydroxide 11 g / L and bow glass 350 g / L, and after the roller drawing, neutralization, wet heat drawing, water washing and drying, the same fiber production process In the inner heat treatment step, the film was wound by dry heat drawing at 235 ° C. so that the total draw ratio was 19 times.
  • the obtained fiber had a fiber diameter of 7 ⁇ m and a fiber strength of 14.3 cN / dtex. This was cut into a fiber length of 4 mm (aspect ratio: 571).
  • Molded product In a checked product, a molded product comprising 3 parts by mass of pulp (NUKP) having a freeness of 115 ml Canadian freeness and 95.5 parts by mass of ordinary Portland cement ( ⁇ belite content: 27% by mass) 1.5 parts by mass of the cut PVA fiber was added to form a laminated papermaking plate. Thereafter, pre-curing was performed at 80 ° C. for 8 hours in an atmosphere of RH 100% in a wet heat curing tank as a pre-curing.
  • NUKP 3 parts by mass of pulp
  • pre-curing was performed at 80 ° C. for 8 hours in an atmosphere of RH 100% in a wet heat curing tank as a pre-curing.
  • Example 2 A molded body was prepared in the same manner as in Example 1 except that low heat cement ( ⁇ belite content: 50 mass%) was used as the cement. Table 1 shows the performance of the obtained molded article. Although the secondary curing period is as short as 24 hours, the bulk specific gravity is greatly densified to 1.7, the bending strength is as high as 26 N / mm 2, and the dimensional change rate per specific gravity is as low as 0.053%. Furthermore, the water permeability and paintability were good.
  • Example 3 A molded body was prepared in the same manner as in Example 1 except that special cement ( ⁇ belite content: 50% by mass) was used as the cement. Table 1 shows the performance of the obtained molded article. Although the secondary curing period is as short as 24 hours, the bulk specific gravity is greatly densified to 1.7, the bending strength is as high as 24 N / mm 2, and the dimensional change rate per specific gravity is as low as 0.041%. Furthermore, the water permeability and paintability were good.
  • Example 4 After forming a molded body in the same manner as in Example 2, the mixture was further allowed to stand for 13 days at RH 100% and 20 ° C. to advance the hydration reaction of the cement. Table 1 shows the performance of the obtained molded article. The bulk specific gravity is as large as 1.7, the flexural strength is as high as 32 N / mm 2 , the dimensional change per specific gravity is as low as 0.053%, and the water permeability and paintability are also good. It was a thing.
  • Example 5 A molded body was prepared in the same manner as in Example 1 except that 2 parts by mass of PVA2 (fiber diameter 26 ⁇ m, fiber length 6 mm, fiber strength 12 cN / dtex, aspect ratio 231) was added as a PVA fiber. Table 1 shows the performance of the obtained molded article. Although the secondary curing period is as short as 24 hours, the bulk specific gravity is greatly densified to 1.7, the bending strength is as high as 24 N / mm 2, and the dimensional change rate per specific gravity is as low as 0.059%. Furthermore, the water permeability and paintability were good.
  • Example 6 A molded body was prepared in the same manner as in Example 1 except that 3 parts by mass of PVA3 (fiber diameter 40 ⁇ m, fiber length 8 mm, fiber strength 12 cN / dtex, aspect ratio 200) was added as a PVA fiber. Table 1 shows the performance of the obtained molded article. Although the secondary curing period is as short as 24 hours, the bulk specific gravity is greatly densified to 1.7, the bending strength is as high as 25 N / mm 2, and the dimensional change rate per specific gravity is 0.065%. Further, the water permeability and paintability were good.
  • PVA3 fiber diameter 40 ⁇ m, fiber length 8 mm, fiber strength 12 cN / dtex, aspect ratio 200
  • Example 7 A molded body was prepared in the same manner as in Example 1 except that 2 parts by mass of polypropylene fiber (manufactured by Daiwabo, fiber diameter 17 ⁇ m, fiber length 6 mm, fiber strength 5.3 cN / dtex, aspect ratio 353) was added as a reinforcing fiber. .
  • Table 1 shows the performance of the obtained molded article. Although the secondary curing period is as short as 24 hours, the bulk specific gravity is greatly densified to 1.7, the bending strength is as high as 20 N / mm 2, and the dimensional change rate per specific gravity is 0.059%. Further, the water permeability and paintability were good.
  • Example 8 A molded body was prepared in the same manner as in Example 1 except that 2 parts by mass of polyacrylonitrile fiber (Dolanit, fiber diameter 12 ⁇ m, fiber length 6 mm, fiber strength 12 cN / dtex, aspect ratio 500) was added as the reinforcing fiber. Table 1 shows the performance of the obtained molded article. Although the secondary curing period is as short as 24 hours, the bulk specific gravity is greatly densified to 1.7, the bending strength is as high as 24 N / mm 2, and the dimensional change rate per specific gravity is 0.065%. Further, the water permeability and paintability were good.
  • polyacrylonitrile fiber Dolanit, fiber diameter 12 ⁇ m, fiber length 6 mm, fiber strength 12 cN / dtex, aspect ratio 500
  • Example 1 A molded body was prepared in the same manner as in Example 1 except that no PVA fiber was added and curing was performed in the atmosphere of 90% RH and 40 ° C. for 24 hours as a secondary curing. Table 1 shows the performance of the obtained molded article. The bending strength was as low as 15 N / mm 2 . Moreover, the dimensional change rate per specific gravity was as high as 0.156%, and the water permeability and paintability were insufficient.
  • Comparative example 2 A molded body was prepared in the same manner as in Comparative Example 1 except that the atmosphere was changed from the atmosphere to carbon dioxide gas 20% as a secondary curing. Table 1 shows the performance of the obtained molded article. Although the dimensional change rate per specific gravity was as low as 0.059% and water permeability and paintability were good, the bending strength was as low as 17 N / mm 2 .
  • Example 3 A molded body was prepared in the same manner as in Example 1 except that curing was performed in the atmosphere of 90% RH and 40 ° C. for 24 hours as the secondary curing. Table 1 shows the performance of the obtained molded article.
  • the bulk specific gravity was as low as 1.5 compared with Example 1.
  • the bending strength was as low as 18 N / mm 2 .
  • the dimensional change rate per specific gravity was as high as 0.167%, and the water permeability and paintability were insufficient.
  • Example 4 A molded body was produced in the same manner as in Example 1 except that curing was performed in the atmosphere of 90% RH and 40 ° C. for 14 days as a secondary curing. Table 1 shows the performance of the obtained molded article.
  • the bulk specific gravity was as low as 1.5 compared with Example 1. Since the hydration reaction of cement has progressed, the bending strength was as high as 25 N / mm 2 , but the rate of dimensional change per specific gravity was as high as 0.167%, and the water permeability and paintability were not good. It was enough.
  • Example 6 A molded body was prepared in the same manner as in Example 1 except that the pre-curing was performed under the atmosphere, 20 ° C., and 50% RH for 3 hours. Table 1 shows the performance of the obtained molded article. The bulk specific gravity was as low as 1.4, and the bending strength was as low as 20 N / mm 2 . Further, the dimensional change rate per specific gravity was as high as 0.171%, and the paintability was good, but the water permeability was insufficient. This seems to be because the carbonization was performed in a state where the molded body was not sufficiently cured by pre-curing, and therefore the expansion preceded the densification.
  • Example 7 A molded body was prepared in the same manner as in Example 1 except that PVA4 (fiber diameter 100 ⁇ m, fiber length 2 mm, fiber strength 10 cN / dtex, aspect ratio 20) was used as the PVA fiber. Table 1 shows the performance of the obtained molded article. The bulk specific gravity was as high as 1.7, the dimensional change rate per specific gravity was as low as 0.071%, and the water permeability and paintability were good, but the bending strength was as low as 17 N / mm 2 .
  • PVA4 fiber diameter 100 ⁇ m, fiber length 2 mm, fiber strength 10 cN / dtex, aspect ratio 20
  • Example 9 Compositions shown in Table 2 were prepared using the following raw materials.
  • Polyvinyl alcohol (PVA) fiber Completely saponified PVA having a polymerization degree of 1700 was dissolved in water at a concentration of 16.5%, and 1.6% boric acid was added to PVA to prepare a spinning dope.
  • the spinning dope is wet-spun into a 70 ° C. coagulation bath composed of sodium hydroxide 11 g / L and bow glass 350 g / L, and after the roller drawing, neutralization, wet heat drawing, water washing and drying, the same fiber production process In the inner heat treatment step, the film was wound by dry heat drawing at 235 ° C. so that the total draw ratio was 19 times.
  • Pulp (NUKP): (Partex cello fiber [beating degree csf 115ml (Note 1)] Cement: Ordinary Portland cement ( ⁇ belite content: 20% by mass). (Note 1) [Freeness (CSF) ml] Pulp freeness test method (JIS P8121-1976) The average value corrected to a slurry concentration of 0.3% by mass and a temperature of 20 ° C. was performed according to a Canadian standard type. The standard freeness of Canada was expressed in units of ml with an accuracy of 1 ml.
  • Pre-curing After forming the molded body, the molded body was subjected to precuring (primary curing) for 8 hours under conditions of a temperature of 50 ° C. and a saturated humidity (RH 100%). The air permeability of the molded body after pre-curing was 4 ⁇ 10 ⁇ 15 m 2 .
  • Example 10 A molded body was produced in the same manner as in Example 9, except that the amount of pulp was changed from 3 parts by weight to 4 parts by weight and the amount of Portland cement was changed from 95.5 parts by weight to 94.5 parts by weight. did. Then, pre-curing was performed in the same manner as in Example 9 except that the temperature was changed from 50 ° C. to 80 ° C. The air permeability of the molded body after pre-curing was 6 ⁇ 10 ⁇ 15 m 2 . The obtained molded body after precuring was subjected to carbonation curing in the same manner as in Example 9. Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • Example 11 3 parts by mass of fly ash (FA) microballoon (lightweight aggregate) (Kinospheres manufactured by Kansai Matec Co., Ltd.) is added to the same amount of pulp as in Example 9, and the blending amount of Portland cement is increased from 95.5 parts by mass.
  • a molded body was produced in the same manner as in Example 9 except that the amount was changed to 92.5 parts by mass.
  • pre-curing was performed in the same manner as in Example 9 except that the temperature was changed from 50 ° C. to 80 ° C., and a molded body was produced.
  • the air permeability of the molded body after pre-curing was 7 ⁇ 10 ⁇ 15 m 2 .
  • the obtained molded body after precuring was subjected to carbonation curing in the same manner as in Example 9. Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • Example 12 Carbonation curing was performed in the same manner as in Example 9 except that the carbon dioxide gas concentration during carbonation curing was changed from 20% to 5%. Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • Example 13 Carbonation curing was performed in the same manner as in Example 9 except that the carbonation treatment time during the carbonation curing was changed from 12 hours to 6 hours. Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • Example 14 Normal Portland cement 50 parts by mass ( ⁇ belite content: 20%), No. 8 silica sand (fine aggregate) 7.5 parts by mass, silica fume (EFACO manufactured by Sakai Kogyo Co., Ltd.) (fine aggregate) 4.5 parts by mass Part, 33 parts by mass of calcium carbonate (Sankyo Flour Milling Co., Ltd.
  • This molded body was subjected to pre-curing (primary curing) for 8 hours under conditions of a temperature of 50 ° C. and a saturated humidity (RH 100%).
  • the air permeability of the molded body after pre-curing was 1 ⁇ 10 ⁇ 15 m 2 .
  • the molded body after pre-curing is placed in Asahi Scientific Co., Ltd. Asahi Neutralization Tester ACT-250, treated for 72 hours at 20% carbon dioxide concentration, 40 ° C temperature, 60% humidity, and both sides of the molded body. Each was subjected to carbonation curing. Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • normal Portland cement ⁇ belite content: 20%
  • sea sand fine aggregate
  • the obtained molded body was pre-cured under the same conditions as in Example 9 to obtain a molded body having an air permeability of 0 ⁇ 10 ⁇ 15 m 2 , and this was subjected to carbonation curing in the same manner as in Example 9.
  • Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • staining used for the measurement of the carbonation reaction rate was shown in FIG. The entire cross section was stained red by phenolphthalein staining.
  • Example 9 Using the same fibers as in Example 9, 1.5 parts by mass of PVA fibers cut to a fiber length of 4 mm were added to 97.5 parts by mass of cement and 1 part by mass of pulp. Similarly, a molded body was produced. The obtained molded body was precured under the same conditions as in Example 9 to obtain a molded body having an air permeability of 0.1 ⁇ 10 ⁇ 15 m 2 , and this was subjected to carbonation curing in the same manner as in Example 9. . Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • Example 10 Using the same fibers as in Example 9, 1.5 parts by mass of PVA fibers cut to a fiber length of 4 mm were added to a composition in which 3 parts by mass of pulp was blended with 95.5 parts by mass of cement. A molded body was produced in the same manner. The obtained molded body was pressed at a pressure of 8 N / mm 2 , then pre-cured by changing the pre-curing temperature 50 ° C. in Example 9 to 80 ° C., and molding with an air permeability of 0.2 ⁇ 10 ⁇ 15 m 2 . Got the body. Subsequently, the obtained molded body was carbonized under the same conditions as those in Example 9. Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • Example 11 Using the same fibers as in Example 9, 1.5 parts by mass of PVA fibers cut to a fiber length of 4 mm were added to a composition in which 3 parts by mass of pulp was blended with 95.5 parts by mass of cement. A molded body was produced in the same manner. The obtained molded body was pressed at a pressure of 2 N / mm 2 and then subjected to pre-curing in Example 9 to obtain a molded body having an air permeability of 4 ⁇ 10 ⁇ 15 m 2 . Subsequently, the obtained molded body was carbonized under the same conditions as those in Example 9. Table 2 shows the performance and carbonation reaction rate of the obtained molded body.
  • the air permeability of the molded body after pre-curing is above a certain value. It is clear that it is important. In particular, in Comparative Example 8 in which no pulp is used in combination, the carbonation reaction rate is extremely low, and the dyeing state of phenolphthalein cannot be said to be a homogeneous reaction on the upper and lower surfaces, and the obtained physical properties was also low. Therefore, when carbonation is performed in a state where the air permeability is high, the carbonation proceeds to the inside of the molded body, thereby improving the performance of the molded body after carbonation. In Example 14, the thickness was large and vacuum extrusion molding was performed.
  • the fiber-reinforced carbonated inorganic molded plate obtained by the present invention has the characteristics that, due to carbonation, the bulk specific gravity is large, the bending strength is high, and the dimensional change rate per specific gravity is small. Materials, wall materials, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

 嵩比重が高く、高曲げ強度を有し、かつ寸法変化率の小さい繊維補強水硬性無機質成形板の提供。 (1)少なくともセメント成分、パルプおよび補強繊維を含む繊維補強炭酸化水硬性無機質成形板であって、前記補強繊維のアスペクト比は40~1000の範囲内にあり、前記成形板は炭酸化養生された繊維補強炭酸化水硬性無機質成形板。 (2)少なくともセメント成分、パルプおよび補強繊維を含む組成物が硬化した成形板であって、前記成形板の炭酸化反応率が30%以上であることを特徴とする、繊維補強炭酸化水硬性無機質成形板。

Description

繊維補強炭酸化水硬性無機質成形板及びその製造方法 関連出願
 本出願は、2013年11月5日出願の特願2013-229661および2014年9月30日出願の特願2014-201206の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、屋根材、壁材などの建材として好適に使用される、高嵩比重で曲げ強度に優れ、かつ、比重あたりの寸法変化率の小さい繊維補強炭酸化水硬性無機質成形板およびその製造方法に関する。
 特許文献1には、ビーライト含有率の高いセメント硬化体を高炭酸ガス濃度の雰囲気下においた場合に炭酸ガスの浸透性に優れ、炭酸化により曲げ強度の高い硬化体が得られることが開示されている。
 特許文献2には、ポリマー混和剤、γ-ビーライト(γ―2CaO・SiO)およびセメントを含む結合剤を含有する炭酸化硬化体用セメント組成物が開示されている。特許文献2では、比較的大型の建築物に使用される大型の板材、例えば、カーテンウオール、ALC等のパネル材等に用いられる炭酸化硬化体用セメントコンクリート組成物およびその製造方法が開示されている。
 特許文献3では、一次養生を行い、水和反応に伴う水酸化カルシウムの生成が始まってから脱型を行い、セメントのエーライト(CS)の水和反応が活発化する加速時期以降で、硬化体中に水酸化カルシウムの結晶が多量に生成する減速期を経て、硬化体が緻密になる定常期に相当するまでの期間につき、炭酸ガス雰囲気中で養生を行っている。
 特許文献4では、水硬性無機質成型用組成物の硬化において、「通気率」なるパラメータを取り入れて多孔質にすることにより、“吸音性”“断熱性”を追求している。
 特許文献5には、不定形耐火物の耐爆裂性向上に適した繊維及びそれを添加した不定形耐火物に関する発明が開示されている。通気率が不定形耐火物の耐爆裂性向上の点で有効であることを開示している。
特開平10-194798号公報 特開2004-107129号公報 特開平6-263562号公報 特開平9-132481号公報 特開2012-91987号公報
 特許文献1では、コンクリート製品を製造するにあたり、セメント硬化体を炭酸化することにより曲げ強度の向上を認めているが、セメントにパルプと補強繊維を加えて成形された、寸法安定性が求められる水硬性無機質成形板への適用についての示唆はない。
 特許文献2では、ポリマー混和剤は有機高分子系炭酸化促進剤として用いられるものが好ましいとされているが、セメントにパルプと補強繊維を加えて成形された、寸法安定性が求められる水硬性無機質成形板への適用についての示唆はない。
 特許文献3では、炭酸ガス拡散について詳細に述べられているが、セメントにパルプと補強繊維の両者を加えて成形される、寸法安定性が求められる繊維補強炭酸化無機質成形板に関する示唆はない。
 特許文献4では、無機質多孔体において通気率と多孔性との関連性が検討されているが、通気率と炭酸化との関連性については示唆するところがない。
 特許文献5では、不定形耐火物におえる爆裂抑制効果との関連性で通気率が問題にされているが、通気率と炭酸化との関連性については示唆するところがない。
 本発明者らは、屋根材、壁材等の建材に用いられる繊維補強水硬性無機質成形板においては、通常のコンクリート製品とは異なり、嵩比重が高く、高曲げ強度のもとで寸法変化率が小さいことが求められることから、嵩比重が高く、高曲げ強度で、かつ、寸法変化率の小さい繊維補強水硬性無機質成形板を得ることを解決すべき課題であるとした。
 本発明者らは、上記課題を解決すべく、セメント組成物の硬化方法と硬化体との物性との関係に着目して鋭意検討の結果、本発明第1の構成に係る発明に到達した。
 本発明第1の構成(第1プロダクト発明)は、少なくともセメント成分、パルプおよび補強繊維を含む繊維補強炭酸化水硬性無機質成形板であって、
 前記補強繊維のアスペクト比は40~1000の範囲内にあり、前記成形板は炭酸化養生された繊維補強炭酸化水硬性無機質成形板である。
 上記成形板は、比重あたりの寸法変化率が0.1%以下であることが好ましい。   
 なお、比重あたりの寸法変化率は、JIS A5430に準じて測定した寸法変化率を上記の嵩比重で除して求めた値である。
 上記の水硬性無機質成形板において、前記補強繊維がポリビニルアルコール系繊維であることが好ましい。
 また、本発明者らは、前養生後の成形体の通気率を一定値以上として炭酸化を行うことにより、板状成形体の内層まで炭酸化が進むことを認め、本発明第2の構成に係る発明に到達した。
 本発明第2の構成(第2プロダクト発明)は、少なくともセメント成分、パルプおよび補強繊維を含む組成物が硬化した成形板であって、前記成形板の炭酸化反応率が30%以上であることを特徴とする、繊維補強炭酸化水硬性無機質成形板である。
 ここで、炭酸化(中性化)されているとは、成形板を垂直に割裂した断面に、フェノールフタレイン水溶液を塗布し、赤色に呈色しなかったことをいう。炭酸化により硬化した成形板が高アルカリ性から中性側に移行するので、未炭酸化部分は、鮮明な赤色に呈色するが、炭酸化した部分は鮮明に呈色しないことから検出することができる。
 上記の水硬性無機質成形板において、炭酸化反応率が50%以上であることが好ましい。
 上記の水硬性無機質成形板において、比重あたりの寸法変化率が0.1%以下であることが好ましい。
 上記の水硬性無機質成形板において、前記セメント成分がビーライトを18質量%以上含有しているセメントであることが好ましく、ビーライトの反応率は70%以上であることが好ましい。
 上記の水硬性無機質成形板において、前記補強繊維がポリビニルアルコール系繊維であることが好ましい。
 本発明第3の構成(第1製法発明)は、前記第1の構成に係るプロダクトを製造するための製法に関する発明であって、少なくともセメント成分、パルプ、アスペクト比40~1000の範囲内にある補強繊維および水から構成される組成物を前養生した後、炭酸化養生を行って、繊維補強炭酸化水硬性無機質成形板を得ることを特徴とする繊維補強炭酸化水硬性無機質成形板の製造をする方法である。
 上記の水硬性無機質成形板において、前記セメント成分として、ビーライトを18質量%以上含有してなるセメントを含有した組成物を成型し、少なくとも脱型可能な硬さに達した後、炭酸化養生することが好ましい。
 上記の水硬性無機質成形板の製造方法において、前記前養生は湿度60~100%の雰囲気で行うことが好ましい。
 上記の水硬性無機質成形板の製造方法において、前記炭酸化養生は炭酸ガス5~30%を含む雰囲気で行うことが好ましい。
 本発明第4の構成(第2製法発明)は、前記第2の構成に係るプロダクトを製造するための製法に関する発明であって、少なくともセメント成分、パルプ、補強繊維及び水から構成される組成物を、前養生を行うことにより、通気率が0.1×10-152以上の成形体を得る工程と、
 得られた成形体を炭酸化養生して、炭酸化反応率を30%以上とする工程と、を有する繊維補強炭酸化水硬性無機質成形板を製造する方法である。
 上記の水硬性無機質成形板の製造方法において、前記セメント成分として、ビーライトを18質量%以上含有するセメントを用いて、前記組成物を成型し、少なくとも脱型可能な硬さに達した後、炭酸化養生を行うことが好ましい。
 なお、請求の範囲および/または明細書の開示された少なくとも2つの構成要素のどのような組み合わせも本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明第1の構成(第1プロダクト発明)によれば、少なくともセメント成分、パルプおよび補強繊維を含む繊維補強炭酸化水硬性無機質成形板であって、前記補強繊維のアスペクト比は40~1000の範囲内にあり、前記成形板は炭酸化養生されて、緻密化された構造を有するので、嵩比重と耐透水性が高く、塗装性に優れている。しかも、炭酸化により曲げ強度が高く、比重あたりの寸法変化率が小さいため、得られた繊維補強炭酸化水硬性無機質成形板は、屋根材や壁材等の建材として好適に使用される。
 本発明第2の構成(第2プロダクト発明)によれば、炭酸化養生を行って、炭酸化反応率が30%以上であること、すなわち、成形板の内部まで炭酸化が行われていることにより、嵩比重が高く、高曲げ強度を有し、しかも比重あたりの寸法変化率が小さく、屋根材、壁材などの建材として有効な繊維補強炭酸化水硬性無機質成形板を得ることができる。
 本発明第3の構成(第1製法発明)によれば、少なくともセメント成分、パルプ、補強繊維および水から構成される組成物を前養生(一次養生)した後、炭酸化養生(二次養生)を行う。炭酸化を行わない通常の自然養生では、セメントの水和反応速度が遅く、2週間~1ヶ月程度、養生に時間を要していたが、炭酸化の反応速度はセメントの水和反応速度よりも速いため、前養生後、炭酸化を行うことにより、1~3日程度に時間短縮され、短時間で緻密な硬化体を得ることができる。
 本発明第4の構成(第2製法発明)によれば、セメント成分、パルプ、補強繊維および水からなる組成物を前養生して得られた成形体の通気率を0.1×10-152以上として、炭酸化を行うことにより、炭酸化が内部まで進行し、成形体の炭酸化反応率が30%以上であり、嵩比重が高く、高曲げ強度を有し、しかも比重あたりの寸法変化率が小さい、屋根材、壁材などの建材として有効な繊維補強炭酸化水硬性無機質成形板の製造が可能となる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は、添付の請求の範囲によって定まる。
本発明第2プロダクト発明に係る炭酸化水硬性無機質成形板の断面に、フェノールフタレイン水溶液を噴霧したときの着色状況を示す写真である。 比較対象の炭酸化水硬性無機質成形体の断面に、フェノールフタレイン水溶液を噴霧したときの着色状況を示す写真である。
 (繊維補強炭酸化水硬性無機質成形板およびその製造方法)
 本発明に係る繊維強化炭酸化水硬性無機質成形板は、下記2つの発明:第1の構成に係る発明(第1プロダクト発明)および第2の構成に係る発明(第2プロダクト発明)からなる。
 第1プロダクト発明:少なくともセメント成分、パルプおよび補強繊維を含む繊維補強炭酸化水硬性無機質成形板であって、前記補強繊維のアスペクト比は40~1000の範囲内にあり、前記成形板は炭酸化養生された繊維補強炭酸化水硬性無機質成形板である。上記炭酸化養生された繊維補強炭酸化水硬性無機質成形板は、比重あたりの寸法変化率が0.1%以下であることが好ましい。前記成形板において、例えば1.6以上の嵩比重で、及び/または20N/mm以上の曲げ強度のものが得られる。
 第2プロダクト発明:少なくともセメント成分、パルプおよび補強繊維を含む組成物が硬化した成形板であって、前記成形板の炭酸化反応率が30%以上である、繊維補強炭酸化水硬性無機質成形板である。
 本発明に係る繊維強化炭酸化水硬性無機質成形板の製造方法は、下記2つの発明:第3の構成に係る発明(第1製法発明)および第4の構成に係る発明(第2製法発明)からなる。
 第1製法発明(第1プロダクト発明に対応):少なくともセメント成分、パルプ、アスペクト比40~1000の範囲内にある補強繊維および水から構成される組成物を前養生した後、炭酸化養生をすることにより、繊維補強炭酸化水硬性無機質成形板を得る、繊維補強炭酸化水硬性無機質成形板の製造方法である。
 第2製法発明(第2プロダクト発明に対応):少なくともセメント成分、パルプ、補強繊維及び水から構成される組成物を、前養生を行うことにより、通気率が0.1×10-152以上の成形体を得る工程と、
 得られた成形体を炭酸化養生して、炭酸化反応率を30%以上とする工程と、
 を有する繊維補強炭酸化水硬性無機質成形板を製造する方法である。
 以下の説明において、特に断らない場合には、第1プロダクト発明と第2プロダクト発明のいずれのプロダクト発明および/または第1製法発明と第2製法発明のいずれの製法発明にも適用可能な記載である。
 (繊維補強炭酸化水硬性無機質成形体)
 本発明の繊維強化炭酸化水硬性無機質成形板は、少なくともセメント成分、パルプ、補強繊維および水から構成される組成物を前養生後、炭酸化養生して得られる。本発明において、水硬性無機質成形板とは、少なくともセメント成分、パルプ、補強繊維を水と混合し、得られた組成物から流し込みや脱水または押出などにより成形された板を意味している。厚みとしては、2~100mm程度、好ましくは、3~90mm程度である。板の形状としては、平面状だけでなく、曲面状が含まれ、板は、上記の厚みを有していれば、段差、凹凸、波型があってもよい。
 なお、第2プロダクト発明に係る成形板は、前記組成物が硬化した成形板であって、前記成形板の炭酸化反応率が30%以上であることを特徴としている。かかる成形体は、前記組成物から、通気率が0.1×10-152以上の成形体を得て、ついで、得られた成形体を炭酸化養生して、炭酸化反応率を30%以上とすることにより得られる(第2製法発明)。
 (セメント成分)
 本発明において用いられるセメント成分としては、普通セメント、早強セメント、超早強セメント等の各種ポルトランドセメントが挙げられる。またこれらポルトランドセメントに、高炉スラグ、フライアッシュ或いはシリカを配合した各種混合セメント、中庸熱セメント、アルミナセメント等が挙げられる。
 通常のセメントには、エーライト:3CaO・SiO2(組成式C3S)、ビーライト:2CaO・SiO2(組成式C2S)、アルミネートAl23(組成式C3A)、フェライト:4CaO・Al23・Fe23(組成式C4AF)等のセメント鉱物が含まれている。
 ビーライトはCaOとSiO2を主成分とするダイカルシウムシリケートの1種であり、α型、α'型、β型およびγ型が存在し、それぞれ結晶構造や密度が異なる。このうち、α型、α'型、β型は水と反応して水硬性を示す。ところがγ型は、水硬性を示さず、且つ二酸化炭素と反応するという特性を有する。ポルトランドセメントをはじめとする通常のセメントには、このγ型のビーライト(γビーライト)は基本的に殆ど含まれていない。
 本発明におけるセメント成分は、前養生後、炭酸化処理がなされるので、市販のビーライトセメントや各種セメントにビーライトセメントを混合したセメントを用いてもよい。本発明においては、上記のα型、α’型、β型、γ型の中でも、β型およびγ型が好ましい。
 本発明において、セメント成分はビーライト含有量が18~60質量%、好ましくは20~58質量%である。含有量が少なすぎると炭酸化反応し得るビーライト量が少なすぎるため緻密化効果が不十分で、寸法安定性や耐透水性が期待できない。一方で、含有量が多すぎると炭酸化は可能であるが、バインダーの役目を果たす水硬性成分が少なくなるため、十分な曲げ強度が得られない場合がある。
 また、ビーライトの反応率は70%以上であることが好ましい。ビーライトも水和反応が起こると、エーライトと同様にC-S-Hゲルを生成し、バインダーとして効果を発現するが、ビーライトはエーライトに比べ水和反応が遅いため、工場で製品化されるようなタイミングではその反応率はまだ低く、バインダー効果も不十分なものである。一方で本技術によれば、水和反応だけでなく炭酸化反応も同時に起こるため、ビーライトの反応率70%以上を早い段階で確保でき、曲げ強度が高くかつ寸法安定性に優れる製品を供給することが可能となるのである。好ましくは反応率が75%以上、更に好ましくは80%以上であることが好ましい。
 (パルプ)
 本発明における組成物に、水硬性無機質成形板として加えられるパルプとしては、天然、合成のいずれでもよい。天然パルプは、針葉樹、広葉樹からの未晒し、晒しパルプが主として用いられるが、ワラ、竹、木綿、麻、ラミー、こうぞ、みつまた、ユーカリ等から得られるパルプも使用できる。また、新聞紙や紙袋、段ボール箱等から得られる回収古紙も使用できる。一方合成パルプとしては、ポリオレフィン系パルプやポリアラミド系パルプ等が使用できるし、またこれらに形状が類似したフィブリル状の物質であれば何でもよい。これらのなかで、好ましくは針葉樹、広葉樹からの晒しパルプである。
 本発明における組成物を形成するにあたり、あらかじめパルプをリファイナーやビーターのような叩解機にて叩解すれば良い。濾水度としてはカナディアンフリーネスとして30~750mlが好ましく、より好ましくは50~300mlである。
 パルプの含有量は、組成物中の固形物に対して1~10質量%、好ましくは2~6質量%であってもよい。含有量が少なすぎると粒子状物質の捕捉性が低下し、含有量が多すぎると分散の均一性が不十分になるばかりか、層間剥離を誘発したり、難燃性を損なったりするため好ましくない。
 (補強繊維)
 本発明における組成物において、水硬性無機質成形板に強度及び靱性を与えるために加えられる補強繊維としては、耐アルカリガラス繊維、カーボン繊維、ステンレス繊維、セラミック繊維、アスベスト繊維等の無機繊維、セルロース系繊維等の再生繊維又は合成樹脂繊維等の有機繊維が挙げられる。これらの中では、軽量化の観点から、有機繊維、特に合成樹脂繊維が好ましい。合成樹脂繊維としては、ポリオレフィン繊維、ポリビニルアルコール系繊維、ポリアミド繊維、アラミド繊維、ポリエステル繊維、アクリロニトリル繊維、ポリウレタン繊維等が挙げられる。これらの中では、耐アルカリ性、機械的強度、セメントの接着性の観点から、ポリビニルアルコール系繊維が好ましい。
 本発明第1プロダクト発明において用いられる補強繊維は、アスペクト比が、40~1000の範囲内にあることが必要で、好ましくは、50~900である。また、本発明第2プロダクト発明において用いられる補強繊維は、アスペクト比が上記の範囲にあることが好ましい。アスペクト比が小さすぎると繊維のセメントへの付着力が不十分となり、硬化後において水硬性無機質成形板に靭性付与効果が充分でなくなるおそれがある。一方、アスペクト比が1000を超えると、繊維同士の絡まり生じやすくなることや付着力が強くなりすぎるために、水硬性無機質成形板の伸縮に対する繊維の追従が不足し、繊維の破断が生じやすくなるおそれがある。
 本発明第1プロダクト発明および第2プロダクト発明において好適に用いられる補強繊維は、繊維径が1~200μm、繊維長が3~20mmであることが好ましい。繊維径が1μm未満では均一な分散が困難となるおそれがあり、200μmを超えると硬化後の水硬性無機質成形板において単位体積当たりの繊維本数が少なくなり、補強効果が発揮されにくくなる傾向がある。
 組成物中の固形分に対する補強繊維の割合は、0.1~5.0質量%、好ましくは、0.3~4.5質量%であってもよい。補強繊維の割合が0.1質量%未満では、硬化後の水硬性無機質成形板において繊維補強効果が充分ではなく、5.0質量%を超えると配合時に均一な分散がしにくくなる傾向にある。
 (補強繊維とパルプの併用)
 本発明においては、セメント成分にパルプと補強繊維の両方が加えられることが必要である。補強繊維が加えられることにより、水硬性無機質成形板の強度や靭性の向上が図られるとともに、パルプが加えられることにより補強繊維の分散性が向上され、後述する通気率の制御も容易となり、かつ補強効果にも寄与する。パルプが加えられていない場合には、補強繊維の良好な分散が得られないばかりか、通気率の制御も困難となり、結果良好な物性が得られない。更には、パルプがない場合には組成物は抄造性が得られないので、抄造法による水硬性無機質成形板の製造が困難である。抄造とは、セメント成分などを水媒体に縣濁させたスラリー状のものをメッシュに濾し取り成型することをいう。抄造体とは、上記抄造により成型された成形体(成形板)をいう。
 (骨材)
 本発明におけるセメント成分を含む組成物には、必要に応じてさまざまな骨材が含まれていてもよく、例えば、そのような骨材として、細骨材、軽量骨材、粗骨材などが挙げられる。これらの骨材は単独でも二種以上組み合わせて使用してもよい。
 細骨材としては、例えば、粒径が5mm以下の細かい粒子が挙げられ、例えば、川砂、山砂、海砂、砕砂、珪砂、鉱滓、ガラス砂、鉄砂、灰砂、シリカフューム、炭酸カルシウム、人工砂などの砂類が挙げられる。
 軽量骨材としては、火山砂利、膨張スラグ、炭柄などの天然軽量骨材、発泡真珠岩、発泡パーライト、発泡黒よう石、バーミキューライト、シラスバルーン、フライアッシュマイクロバルーン等の人工軽量骨材が挙げられる。
 粗骨材としては、粒径5mm以上のものが質量で85%以上含まれているものが含まれ、例えば、各種砂利類、人工骨材、再生骨材などを用いることができる。
 (添加剤)
 本発明におけるセメント成分を含む組成物には、適宜、必要に応じて、各種混和剤、例えば、AE剤、流動化剤、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、増粘剤、保水材、撥水剤、膨張剤、硬化促進剤、凝結遅延剤等を混入していてもよい。これらの混和剤は、単独でまたは二種以上組み合わせても使用してもよい。 
 本発明における組成物には、適宜、必要に応じて水溶性高分子物質が添加されてもよい。水溶性高分子としては、例えばメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、などのセルロースエーテル、ポリビニルアルコール、ポリアクリル酸、リグニンスルホン酸塩などが挙げられる。これらは単独でまた二種以上組み合わせて使用してもよい。
 また本発明における組成物には、必要に応じて水硬成分の硬化促進剤が添加されていてもよい。硬化促進剤としては、例えば塩化カルシウム、塩化アルミニウム、塩化鉄、塩化ナトリウム、塩化マグネシウム、硫酸アルカリ、炭酸アルカリ、ケイ酸ソーダなどが挙げられる。
 更に本発明における組成物には、必要に応じて炭酸化促進剤が添加されていてもよい。炭酸化促進剤としては、例えば、水性ポリマーディスパージョンとして、ポリアクリル酸エステル、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体等の熱可塑性エマルジョンや、スチレンブタジエンゴム等の合成ゴムラテックスが挙げられる。また、再乳化形粉末樹脂(粉末エマルジョン)として、例えば、エチレン-酢酸ビニル共重合体、酢酸ビニルビニルバーサテート(VAVeoVa)等が挙げられる。また、水溶性ポリマーとして、例えばメチルセルロース等のセルロース誘導体、ポリビニルアルコール等が挙げられる。
 また、炭酸ガスと親和性の高い薬剤を添加されていてもよい。親和性の高い薬剤としては、例えばモノエタノールアミンやジエタノールアミン、トリエタノールアミンを初めとするアミン系薬剤、及びそれらが固定されたゲルなど、特に制限なく使用することができる。尚、これらは単独でまた二種以上組み合わせて使用してもよい。
 (水の配合量)
 本発明における組成物に含まれる水は、例えば、水セメント比(W/C)で20~80質量%程度であってもよく、好ましくは、25~70質量%、より好ましくは、30~60%質量であってもよい。
 (混合)
 上記のセメント成分、パルプ、補強繊維および水は、公知または慣用のミキサーなどの混合手段により混合されて組成物が形成される。なお、混合にあたりパルプと水とを混合し、パルプを水中に分散させた後、他のセメント成分を添加するのがよい。
 なお、混合にあたり、混合順序は特に制限ないが、好ましくは、パルプと水とを混合し、パルプを水中に分散させた後、セメント成分や他の添加材を投入混合し、最後に補強繊維を添加するのが好ましい。
 (成形)
 上記のようにして調合されたスラリー状の組成物は、湿式抄造機の複数のパッドに送り込まれ、パッド中の内部陰圧の網目シリンダーの回転によりシリンダー表面にケーキとなって抄き上げられて、メイキングロールまで運搬され、単層または積層されて所定の厚みにして巻取ロールから切り離される。切り離された湿潤状態の板状の成形物は必要に応じてプレス機で加圧成形され、ついで養生(前養生及び炭酸化養生)、その後必要に応じ乾燥されて、所望の水硬性無機質成形板が製造される。以上、ハチェック式抄造機による場合について述べたが、本発明はこれに何等限定されず、一層抄きのような長網抄造方式、または流し込み成形、プレス成形、押出成形やスラリーを用いて1回ないし数回である所望の厚みを得るフローオン方式にも適用できる。
 (前養生)
 本発明における前養生(一次養生)は、所定形状に成形された組成物成形体全体が硬化する程度に養生を行うのが好ましい。全体が硬化しないと、脱板や脱型をして以降の工程へ移行するハンドリング時に成形体が破損する恐れがあるだけでなく、後述する炭酸化で生成するCaCOによる質量増加(すなわち体積増加)により、成形体もつられて膨張することになるため、本発明の最も重要なポイントの一つである緻密化効果が発現せず、好ましくない。
 そのためには、前養生は少なくとも組成物中の水分が蒸発しない高湿度雰囲気下で行うことが好ましい。硬化は、セメントの水和反応(凝結反応)によるものであるが、成形体内の水分が蒸発するとセメントの水和反応が阻害され、以降成形体をハンドリングできるまで硬化が進行できなくなる場合がある。一般的には相対湿度65%以上、好ましくは80%以上、更に好ましくは90%以上、最も好ましくは100%の雰囲気下で養生硬化を行う。また、このような高湿度雰囲気下において更に、水分を通さない容器や袋等に組成物を入れたり、プラスチック板やプラスチックフィルム、金属板に組成物を挟んだりする方法等、組成物中の水分の蒸発が防止できる様な方法で養生を行ってもよい。養生硬化温度としては特に限定されない。100℃以上を得るには、オートクレーブ処理を行えばよい。尚、補強繊維としてポリビニルアルコール系繊維を用いる場合には、同繊維の耐湿熱性の観点から、120℃以上の処理は好ましくない。また、養生に必要なマチュリティー(養生温度℃×養生時間hr)は、300~2000が好ましい。尚、養生雰囲気ガスとしては特に限定されず、空気以外に、炭酸化養生における濃度よりも低い濃度の炭酸ガス、窒素、酸素、水蒸気、ヘリウム、又はアルゴン等のガスを本発明の目的を阻害しない範囲内で混合して使用することができる。
 (通気率)
 前養生後の成形体の通気率は、例えば、組成物中のパルプ含量を増やしたり、軽量骨材を一部使用したり、プレス圧を調整したりすることなどにより上述の値(0.1×10-152以上)、さらに好ましくは、(0.2×10-152以上)、さらに好ましくは(0.3×10-152以上)の値にして、得られた成形体を炭酸化養生するのが好ましい。
 (炭酸化養生)
 本発明において、前養生により型から取り出し可能程度に成形体全体が硬化された組成物(以下、硬化体と称することがある)に、炭酸化養生(二次養生)が行われる。ここで、セメント硬化体の炭酸化とは、セメントの水和反応により生成した水酸化カルシウム:Ca(OH)と[下記(1)式参照]、浸透してきた炭酸ガス:COとが反応して、下記(2)式に示すように、炭酸カルシウム:CaCOと水になる反応である。この時、セメント硬化体が高アルカリ性から中性側に移行するので、硬化体の切断面にフェノールフタレイン水溶液を塗布して呈色状況を観察することにより容易に炭酸化を確認することができる。
     CaO・SiO+HO→Ca(OH)+SiO……….(1)
    Ca(OH)+ CO→ CaCO+ HO ……………. (2)
 炭酸化条件は、空気中より炭酸ガス濃度が高い雰囲気中、例えば、炭酸ガス濃度5~30%、好ましくは8~20%の雰囲気中で養生する。炭酸ガス濃度が30%を越えると、危険であるだけでなく不経済であるため好ましくない。また5%未満では炭酸化が促進されず、好ましくない。尚、雰囲気ガスとしては炭酸ガス以外に、空気、窒素、酸素、水蒸気、ヘリウム、又はアルゴン等、炭酸ガス以外のガスを本発明の目的を阻害しない範囲内で混合して使用することができる。
 また、炭酸ガスの高圧容器中で炭酸化することも、生産性向上の面から有効である。一方で、炭酸化の温度としては特に限定されないが、高温であるほど炭酸化反応が早い点で好ましい。
 本発明においては、炭酸化反応には(1)式の通り水が必要であるため、炭酸化養生時にも一定の湿度下であるのが好ましい。湿度が高すぎると、成形体表面が結露水で覆われ、炭酸ガスが成形体内部まで侵入しなくなるだけでなく、成形体表面が浸食されるため製品の外観が悪くなることがあるので好ましくない。一方で湿度が低すぎると、炭酸化反応やセメントの水和反応が抑制されるため好ましくない。そのため、相対湿度は30~95%、好ましくは35~90%、更に好ましくは40~85%の雰囲気下で二次養生を行うのが好ましい。
 本発明においては、前養生によって成形体全体が硬化した硬化体が、炭酸化養生により硬化体表面だけでなく内部まで炭酸化反応が進行することで、硬化した成形体が膨張することなく、成形体全体を均一に緻密化することが可能となるのである。ビーライトを含有するセメント硬化体が炭酸ガスで緻密化するメカニズムについては未解明な部分も多いが、次のように考えられる。すなわち、通常のセメント硬化体が炭酸化(中性化)する場合には、(1)(2)式のように、セメントの水和反応によって生じたCa(OH)が炭酸ガスと反応してCaCOになるのであるが、セメント硬化体中にビーライトが多量に存在すると、ビーライトが水和反応せずに直接炭酸ガスと反応して多量のCaCOとSiOを生成する。同時に、水和反応で生成したC-S-Hゲルも、炭酸ガスと反応することで、同様にCaCOとSiOを生成する。更に、セメントの水和反応で生じたCa(OH)も炭酸ガスと反応してCaCOとなる。このため、通常のセメント硬化体に比べ早期に多量の反応生成物が生じ、これがセメント硬化体内の空隙を埋めて緻密化すると考えられる。実際、炭酸化された硬化体は、炭酸化される前に比べ、比重は増加し、吸水率は低減し、細孔総容積は減少し、更には寸法変化率も減少することからも、内部組織の緻密化が起こっていることが理解される。尚、細孔総容積は、水銀圧入法による細孔分布測定から把握することができる。
 尚、CaCOの結晶形態としては、カルサイト、アラゴナイト、バテライトと3種類が存在する。いずれの場合でも緻密化出来る点で好ましいが、特にアラゴナイトとバテライトが好ましい。アラゴナイトは針状結晶であるため、緻密化と同時に、成形体の曲げ補強効果も発現できる点で好ましい。またバテライトは、カルサイトやアラゴナイトに比べて比重が小さく、そのためセメント硬化体中に同一質量のCaCOが存在した場合、占有体積はバテライトの方が大きくなるため、より緻密化には有効で好ましい。尚、カルサイトはCa(OH)から生成されやすいのに対し、アラゴナイトやバテライトはビーライトやC-S-Hゲルから生成されやすい。そのことも、緻密化に有効なアラゴナイトやバテライトが早い段階で生成される点で、本発明の大きな特徴なのである。
 このような炭酸化による緻密化は、硬化前にプレス等を施すことで機械的に比重を増加させ空隙を少なくさせる方法に比べ、より効率的に緻密化することができる点で好ましい。例えば寸法変化率は、吸水/蒸発時の膨張/収縮に伴うものであり、比重を高くすることで変化率を抑制することができるが、同じ比重においては、プレスして比重を高めたものと比較し、炭酸化により緻密化したものの方が、比重当たりの寸法変化率は低いものが得られる。このように、本発明における好ましい態様である比重当たりの寸法変化率0.1%以下のような寸法安定性に優れる繊維補強炭酸化水硬性無機質成型板は、このように炭酸化養生をするからこそ得られるのである。
 炭酸化養生は、例えば前養生後の成形板をラック等に入れて養生槽に導入した後で、所定の条件下で養生するなど、特に制限なく実施することができる。一方で、炭酸ガスの成形板への接触が抑制され、板内で反応斑が発生すると、成形板が反る等の問題がおこることがある。そのため、反応斑を解消するために、養生槽内の気体を循環させたり、成形板の上下から炭酸ガスを均一に吹き付けたり、ラックに成形板を積載する際に成形板同士が重ならないようスペーサーを設けたり、成形板を縦置きにするなど、炭酸ガスが成形板に均一に接触できるように工夫することが特に好ましい。
 本発明第2プロダクト発明および第2製法発明においては、少なくともセメント成分、パルプ、補強繊維及び水から構成される組成物を、上記のように前養生を行うことにより、通気率が0.1×10-152以上の成形体を得て、得られた成形体を炭酸化養生することにより、炭酸化反応率が30%以上、好ましくは、50%以上、さらに好ましくは、60%以上の成形板を得ることができる。
 (塗膜形成)
 炭酸化養生後の硬化体表面は、必要に応じて塗装されていてもよい。塗装材としては、特に限定されるものではなく、フェノール樹脂塗料、合成樹脂調合ペイント、アルキド樹脂塗料、フタル酸樹脂塗料、アクリルアルキド樹脂塗料、アミノアルキド樹脂塗料、メラミン焼付樹脂塗料、エポキシ樹脂塗料、変性エポキシ樹脂塗料、タールエポキシ樹脂塗料、ポリウレタン樹脂塗料、湿気硬化ポリウレタン樹脂塗料、アクリルウレタン樹脂塗料、ポリエステルウレタン樹脂塗料、アルキド変性シリコン樹脂塗料、アクリルシリコン樹脂塗料、シリコン樹脂塗料、塩化ゴム系樹脂塗料、酢酸ビニルエマルション塗料、アクリル樹脂塗料、アクリルエマルション樹脂塗料、NADアクリル樹脂塗料、塩化ビニル樹脂塗料、フッ素樹脂塗料、ラッカー塗料等、いずれも好適に使用できる。
 本発明に係る繊維補強炭酸化水硬性無機質成形板は緻密性が高く、かつ中性化が進んでいるので、通常のセメント系材料に必須である耐アルカリ性の塗装材を選ぶ必要もなく、経済的に優れている。
 (繊維補強炭酸化水硬性無機質成形板)
 上記の方法(第1製法発明)により得られた本発明第1プロダクト発明に係る繊維補強炭酸化水硬性無機質成形板は、前養生により型から取り出し可能程度に硬化体全体が硬化されてから炭酸化養生を行うことにより、反応速度の速い炭酸化が先行して緻密化が進行するため、炭酸化に比べ反応速度の遅い水硬成分の水和反応が不完全でも、短期間に、曲げ強度が高く、かつ、比重あたりの寸法変化率の小さく、耐透水性に優れ、かつ、塗装性のよい繊維補強炭酸化水硬性無機質成形板を得ることができる。本発明における好ましい態様では、比重あたりの寸法変化率が0.10%以下(さらに好ましくは、0.09%以下)の成形板が得られる。
 上記の方法(第2製法発明)により得られた本発明第2プロダクト発明に係る繊維補強炭酸化水硬性無機質成形板は、前養生により通気率の高い成形体を得て、この成形体を炭酸化することにより、成形板の内部まで中性化されている繊維補強炭酸化水硬性無機質成形板を得ることができる。かかる板状成形体は、炭酸化が内部まで進行していることにより、曲げ強度が高く、かつ寸法安定性に優れている。好ましい態様では、比重あたりの寸法変化率が0.10%以下の成形板を得ることができる。
 (用途)
 本発明の繊維補強炭酸化水硬性無機質成形板は、前養生後炭酸化を行うことにより、前養生により所定形状の組成物内部まで硬化された後、炭酸化により緻密化されて、曲げ強度が強く、寸法変化率の小さい繊維補強炭酸化水硬性無機質成形板が得られるので、スレート板、瓦、壁パネル、天井材、床パネル、屋根材、間仕切り壁などの成形物や2次製品などの建材分野において好適に用いられることができる。
 以下、本発明を更に詳細に説明するために、実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。なお、実施例中、特に断りのない限り「%」および「部」は、質量基準である。
 (繊維強度の測定方法)
 JIS L‐1015に準拠し、予め温度20℃、相対湿度65%の雰囲気下で5日間繊維を放置して調湿したのち、短繊維を試長60mmとし、引張速度60mm/分としてFAFEGRAPH M〔Textechno製〕にて繊維強力を測定し、該強力を繊度で除して強度をn=10以上で測定し、平均値を求めた。
 (比重の測定方法)
 JIS A 5430に準拠し、試験片をかきまぜ機付空気乾燥器に入れ、105℃±5℃で24時間乾燥後の質量と体積から求めた。
 (曲げ強度の測定方法)
 試験体から、長さ約150mm、幅約50mmの短冊状の試験片を、試験体1枚あたり3個切り出した。その後、試験片の測定時の含水率を一定に調整するため、切り出した試験片を40℃に調整した乾燥機にて72時間乾燥処理した。曲げ強度は、JISA 1408に準じて測定した。曲げ強度の測定条件は、島津製作所製オートグラフAG500-Bにて、試験速度(載荷ヘッドスピード)2mm/分、中央載荷方式で曲げスパン100mmで測定した。
 (寸法変化率の測定方法)
 JIS A 5430に準じ、試験片を撹拌機付き乾燥機に入れ、その温度を60±3℃に保ち、24時間経過した後取り出して、シリカゲルで調湿したデシケータに入れ、室温(20±1.5℃)になるまで放置した。次に、試験体に入乳色ガラスを貼り標線間距離が約140mmになるように標線を刻み、1/500mmの精度をもつコンパレータで標線間の長さを測定して、それを基長とした。次に、試験体の長さ方向を水平にこば立てし、水面下約30mmとなるようにして、20℃±1.5℃の水中に浸漬した。24時間経過した後、水中から取り出して表面に付着した水を拭き取り、再び標線間の長さを測定した。吸水による長さ変化率は、吸水時の標線間の長さ-乾燥時の標線間の長さ/乾燥時の標線間の長さ×100にて求めた。さらに、得られた寸法変化率を嵩比重で除して、比重あたりの寸法変化率を求めた。
 (耐透水性の評価方法)
 JIS A 5430に順じ、試験片にアクリル樹脂製の管(内径35mm、高さ300mm)を立て、管と試験片の接触部分をシーリング材でシールした後、管の底から250mmの高さまで水を入れ、そのままの状態で24時間放置した後、裏面の水の滲みを確認した。耐透水性として、滲みの大きさが、直径35mmよりも小さい場合を○、35~60mmの場合を△、60mmを越える場合を×と判定した。
 (塗装性の評価方法)
 養生の完了した成形体表面に、フタル酸樹脂塗料(川上塗料製ネオキング)を塗布した。その後、JIS K5600‐7‐7(促進耐候性及び促進耐光性(キセノンランプ法))に準じて促進耐候性試験を行い、割れ・剥れ・膨れが明らかに見られる場合を×、兆候が見られる場合を△、全く異常が見られない場合を○と判定した。
 (通気率の測定方法)
 JIS R 2115に規定されている通気率の測定に準拠した。
 物質の通気率は、圧力差の下で物質がガスを通貨させる特性であり、通気率は一定時間中に物質を通過するガス容量によって与えられる下記式から計算することにより求められる。V/t=μ*(1/η)*(A/δ)*(p1-p2)*(p1+p2)/2P・・(1)
ここで、 V:物質を通過した圧力p1におけるガス量(m
     t:ガス量(V)が物質を通過するのに要した時間(s)
     μ:物質の通気率(m)                                    
     η:試験温度におけるガスの粘度(Pa・s)               
                 A:ガスが通過する物質の断面積(m
                 δ:ガスが通過する物質の厚み(m)
          P:ガス容量測定時のガスの絶対圧(Pa)
         p1:物質へのガス侵入絶対圧(Pa)
         p2:物質からのガス離脱絶対圧(Pa)            
 なお、試験片は、直径50mm±2mm×高さ6mm~7mmの円柱で行った。
 上記式(1)において、物質の通気率μが高い場合は、内部の気体透過の良好性を示す指標であると考えられる。
 (炭酸化反応率の測定)
 炭酸化養生前と炭酸化養生後の成形体の断面に和光純薬工業(株)製1.0w/v%フェノールフタレインエタノール(90)溶液を塗り、1分後に成形体の断面の写真を撮った。その後、炭酸化養生後の断面写真に対して、炭酸化養生前のフェノールフタレインで染色されたものと同等の色目を持つ部分の総面積を、画像解析ソフト(フリーソフトIMAGE-J)を用いて算出し、以下式により反応率を算出した。
 炭酸化反応率(%)=(断面積-染色面積)/(断面積)×100
 (ビーライトの反応率の測定)
 炭酸化反応の終了した試験体を乳鉢で粉砕後、水に加えた後、ガーゼにて繊維分を除去した。その濾液中のペーストを更に濾紙で濾過後、濾紙上に残ったサンプルをデシケータ中で20℃下3日間乾燥を実施し、分析サンプルを得た。このサンプルを、X線回折装置(リガク社製MultiFlex)にて定性分析後、リートベルト解析にて定量分析を行い、水和生成物と未水和セメント鉱物を算定した。この結果から、以下式にて、ビーライトの反応率を算出した。
ビーライト反応率(%)=[試験体中のビーライト成分(%)]/[原料中のビーライト成分(%)]×100
 以下、実施例1~8により本発明第1プロダクト発明に係る繊維補強炭酸化水硬性無機質成形板および本発明第1製法発明に係る繊維補強炭酸化水硬性無機質成形板の製造方法の具体例を示す。
 <実施例1>
 PVA系繊維:PVA1:重合度1700の完全ケン化PVAを16.5%の濃度で水に溶解し、PVAに対して、ホウ酸を1.6%添加して紡糸原液とした。該紡糸原液を水酸化ナトリウム11g/L、ボウ硝350g/Lからなる70℃の凝固浴中に湿式紡糸し、常法に従ってローラ延伸、中和、湿熱延伸、水洗、乾燥後、同じく繊維製造工程内の熱処理工程内で、235℃で総延伸倍率が19倍となるように乾熱延伸して巻き取った。得られた繊維は、繊維径7μm、繊維強度14.3cN/dtexであった。これを4mmの繊維長にカットした(アスペクト比:571)。
 成形体:ハチェック抄造法にて、カナディアンフリーネス濾水度115mlのパルプ(NUKP)3質量部、普通ポルトランドセメント(βビーライト含有率:27質量%)95.5質量部からなる成型物に、カットした該PVA系繊維を1.5質量部添加し、積層抄造板を成型した。その後、前養生として、湿熱養生槽にてRH100%の大気中で80℃×8hrの前養生を実施した。その後、炭酸化養生として、朝日科学株式会社製アサヒ中性化試験装置ACT-250に入れ、炭酸ガス濃度20%、湿度90%、温度40℃にて、24hr処理した。得られた成形体品の性能を表1に示す。二次養生(炭酸化養生)期間が24時間と短いにも関わらず、嵩比重が1.7と大きく緻密化され、曲げ強度は28N/mmと高いうえに、比重あたり寸法変化率は0.065%と低く、更には耐透水性も塗装性も良好なものであった。
 <実施例2>
 セメントとして低熱セメント(βビーライト含有率:50質量%)を用いる以外は実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。二次養生期間が24時間と短いにも関わらず、嵩比重が1.7と大きく緻密化され、曲げ強度は26N/mmと高いうえに、比重あたり寸法変化率は0.053%と低く、更には耐透水性も塗装性も良好なものであった。
 <実施例3>
 セメントとして特殊セメント(γビーライト含有率:50質量%)を用いる以外は実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。二次養生期間が24時間と短いにも関わらず、嵩比重が1.7と大きく緻密化され、曲げ強度は24N/mmと高いうえに、比重あたり寸法変化率は0.041%と低く、更には耐透水性も塗装性も良好なものであった。
 <実施例4>
 実施例2と同様にして成形体を作成した後、更にRH100%、20℃で13日放置し、セメントの水和反応を進行させた。得られた成形体品の性能を表1に示す。嵩比重が1.7と大きく緻密化され、曲げ強度は32N/mmと非常に高いうえに、比重あたり寸法変化率は0.053%と低く、更には耐透水性も塗装性も良好なものであった。
 <実施例5>
 PVA系繊維としてPVA2(繊維径26μm、繊維長6mm、繊維強度12cN/dtex、アスペクト比231)を2質量部添加する以外は実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。二次養生期間が24時間と短いにも関わらず、嵩比重が1.7と大きく緻密化され、曲げ強度は24N/mmと高いうえに、比重あたり寸法変化率は0.059%と低く、更には耐透水性も塗装性も良好なものであった。
 <実施例6>
 PVA系繊維としてPVA3(繊維径40μm、繊維長8mm、繊維強度12cN/dtex、アスペクト比200)を3質量部添加する以外は実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。二次養生期間が24時間と短いにも関わらず、嵩比重が1.7と大きく緻密化され、曲げ強度は25N/mmと高いうえに、比重あたりの寸法変化率は0.065%と低く、更には耐透水性も塗装性も良好なものであった。
 <実施例7>
 補強繊維としてポリプロピレン系繊維(ダイワボウ製、繊維径17μm、繊維長6mm、繊維強度5.3cN/dtex、アスペクト比353)を2質量部添加する以外は実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。二次養生期間が24時間と短いにも関わらず、嵩比重が1.7と大きく緻密化され、曲げ強度は20N/mmと高いうえに、比重あたりの寸法変化率は0.059%と低く、更には耐透水性も塗装性も良好なものであった。
 <実施例8>
 補強繊維としてポリアクリロニトリル系繊維(Dolanit、繊維径12μm、繊維長6mm、繊維強度12cN/dtex、アスペクト比500)を2質量部添加する以外は実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。二次養生期間が24時間と短いにも関わらず、嵩比重が1.7と大きく緻密化され、曲げ強度は24N/mmと高いうえに、比重あたりの寸法変化率は0.065%と低く、更には耐透水性も塗装性も良好なものであった。
 <比較例1>
 PVA系繊維を添加せず、また二次養生としてRH90%、40℃の大気中にて24時間養生させる以外は、実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。曲げ強度は15N/mmと低いものであった。また比重あたりの寸法変化率も0.156%と高く、更には耐透水性も塗装性も不十分なものであった。 
 <比較例2>
 二次養生として雰囲気を大気から炭酸ガス20%に変更する以外は、比較例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。比重あたりの寸法変化率は0.059%と低く、耐透水性も塗装性も良好なものであったが、曲げ強度は17N/mmと低いものであった。
 <比較例3>
 二次養生としてRH90%、40℃の大気中にて24時間養生させる以外は、実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。嵩比重は、実施例1に比べて1.5と低いものであった。また曲げ強度も18N/mmと低いものであった。比重あたりの寸法変化率も0.167%と高く、更には耐透水性も塗装性も不十分なものであった。
 <比較例4>
 二次養生としてRH90%、40℃の大気中にて14日間養生させる以外は、実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。嵩比重は、実施例1に比べて1.5と低いものであった。セメントの水和反応が進んでいるため、曲げ強度は25N/mmと高いものであったが、比重あたりの寸法変化率は0.167%と高く、更には耐透水性も塗装性も不十分なものであった。
 <比較例5>
 積層抄造板を成型後、8N/mmでプレスを5分間追加する以外は、比較例4と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。嵩比重は、比較例4に比べて1.7と高いものであった。そのため、曲げ強度も28N/mmと、比較例4と比べても高いものであった。一方で比重あたりの寸法変化率は0.118%と高く、耐透水性は若干改善したが、塗装性は不十分なものであった。このことから、プレスすることで嵩比重を増加させても、プレスだけでは緻密化効果が不十分であることがわかった。
 <比較例6>
 前養生として、大気、20℃、RH50%下において3時間養生する以外は、実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。嵩比重は、1.4と低いものであり、曲げ強度も20N/mmと低いものであった。また比重あたりの寸法変化率も0.171%と高く、塗装性は良好なるも耐透水性は不十分なものであった。これは、前養生で成形体の硬化が不十分な状態で炭酸化を施したため、緻密化よりも膨張が先行したためと思われる。
 <比較例7>
 PVA系繊維としてPVA4(繊維径100μm、繊維長2mm、繊維強度10cN/dtex、アスペクト比20)を用いる以外は実施例1と同様にして成形体を作成した。得られた成形体品の性能を表1に示す。嵩比重が1.7と高く、比重あたりの寸法変化率は0.071%と低く、耐透水性も塗装性も良好であったが、曲げ強度は17N/mmと低いものであった。
Figure JPOXMLDOC01-appb-T000001
 以下実施例9~13により、本発明第1および第2のプロダクト発明に係る繊維補強炭酸化水硬性無機質成形板および本発明第2製法発明に係る繊維補強炭酸化水硬性無機質成形板の製造方法の具体例を示す。
 <実施例9>
 下記の原材料を用いて、表2に示す組成物を作製した。
 ・ポリビニルアルコール(PVA)繊維:重合度1700の完全ケン化PVAを16.5%の濃度で水に溶解し、PVAに対して、ホウ酸を1.6%添加して紡糸原液とした。該紡糸原液を水酸化ナトリウム11g/L、ボウ硝350g/Lからなる70℃の凝固浴中に湿式紡糸し、常法に従ってローラ延伸、中和、湿熱延伸、水洗、乾燥後、同じく繊維製造工程内の熱処理工程内で、235℃で総延伸倍率が19倍となるように乾熱延伸して巻き取った。得られた繊維は、繊維径7μm、繊維強度14.3cN/dtexであった。これを4mmの繊維長にカットした(アスペクト比:571)。
 ・パルプ(NUKP):(パルテックス社製 セロファイバー [叩解度 csf=115ml (注1)]
 ・セメント:普通ポルトランドセメント(βビーライト含有率:20質量%)。
(注1)[濾水度(CSF) ml]パルプの濾水度試験方法(JIS P8121-1976)カナダ標準型によって実施し、スラリー濃度0.3質量%、温度20℃に補正した平均値を、カナダ標準濾水度として1mlの精度でmlの単位で表した。
 (成形体作製)
 パルプ(NUKP) (パルテックス社製:セロファイバー)3質量部、普通ポルトランドセメント95.5質量部、からなる組成物に、繊維長4mmにカットした該PVA繊維を1.5質量部添加し、固形分3.2質量%、水96.8質量%とからなるスラリーを、型底が金属メッシュで構成された型枠に流し込んで水を濾過することで厚さ0.4mm相当の固形分を抄き上げ、厚さが4mm±0.3mmになるようにその固形分を10枚積層し、次いで2N/mmの圧力で5分間のプレス搾液をすることにより成形体を作成した。この時の水分率は35%で、W/Cに換算すると56%であった。
 (前養生)
 前記成形体を作成後、この成形体を温度50℃、飽和湿度(RH100%)条件下で8時間、前養生(一次養生)を実施した。前養生後の成形体の通気度は、4×10-152であった。
 (炭酸化養生)
 前養生後の成形体を、朝日科学株式会社製アサヒ中性化試験装置ACT-250に入れ、炭酸ガス濃度20%、温度40℃、湿度60%、にて、12時間処理して、成形体両面を、それぞれ炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表21に示す。
 また、炭酸化反応率の測定に用いた、フェノールフタレイン染色を行って得られた成形体の断面写真を図1に示した。フェノールフタレイン染色に独特の赤色は僅か観察されるのみであった。
 <実施例10>
 パルプの配合量を3質量部から4質量部に変更し、ポルトランドセメントの配合量を95.5質量部から94.5質量部に変更した以外は、実施例9と同様にして成形体を作製した。ついで、温度50℃を80℃に変えた以外は、実施例9と同様にして前養生を行った。前養生後の成形体の通気度6×10-152であった。得られた前養生後の成形体を実施例9と同様にして炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
 <実施例11>
 実施例9と同様のパルプ配合量に、フライアッシュ(FA)マイクロバルーン(軽量骨材)(関西マテック株式会社製カイノスフィアーズ)を3質量部加え、ポルトランドセメントの配合量を95.5質量部から92.5質量部に変更した以外は、実施例9と同様にして成形体を作製した。ついで、温度50℃を80℃に変更した以外は実施例9と同様にして前養生を行い、成形体を作製した。前養生後の成形体の通気度7×10-152であった。得られた前養生後の成形体を実施例9と同様にして炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
<実施例12>
 炭酸化養生時の炭酸ガス濃度を20%から5%にした以外は、実施例9と同様にして炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
<実施例13>
 炭酸化養生時の炭酸化処理時間を12時間から6時間にした以外は、実施例9と同様にして炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
<実施例14>
 普通ポルトランドセメント50質量部(βビーライト含有量:20%)、8号珪砂(細骨材)7.5質量部、シリカフューム(巴工業(株)製EFACO)(細骨材)4.5質量部、炭酸カルシウム(三共製粉(株)製1級)(細骨材)33質量部、乾式粉砕パルプ3質量部、メチルセルロース(信越化学(株)製メトローズ)(水溶性高分子)1質量部からなる組成物をニーダーで混合後、水を混合配合全質量に対し23質量%添加し混練し、それにPVA繊維(PVA-1)を1.5質量部添加して混合した。混練された水硬性材料を、真空押出成形機に投入し、幅50mm、厚さ50mmの口金より押出成形を実施した。
 この成形体を温度50℃、飽和湿度(RH100%)条件下で8時間、前養生(一次養生)を実施した。前養生後の成形体の通気度は、1×10-152であった。
 前養生後の成形体を、朝日科学株式会社製アサヒ中性化試験装置ACT-250に入れ、炭酸ガス濃度20%、温度40℃、湿度60%、にて72時間処理して、成形体両面を、それぞれ炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
 <比較例8>
 実施例9と同じPVA繊維を用いた。モルタルミキサーに、普通ポルトランドセメント49.2質量部(βビーライト含有率:20%)、海砂(細骨材)49.3質量部添加後、W/C=56%となるように水を添加して混練し、その後繊維長4mmにカットしたPVA繊維1.5質量部を添加し、混練後、厚さが4mm±0.3mmになるように型枠に流し込み、成形体を作成した。得られた成形体を、実施例9と同じ条件で前養生を行い、通気度0×10-152の成形体を得て、これを実施例9と同様に炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
 また、炭酸化反応率の測定に用いた、フェノールフタレイン染色を行って得られた成形体の断面写真を図2に示した。フェノールフタレイン染色により断面全体が赤色に染まっていた。
 <比較例9>
 実施例9と同じ繊維を用いて、セメント97.5質量部に、パルプ1質量部を配合した組成物に、繊維長4mmにカットしたPVA繊維1.5質量部を添加し、実施例9と同様に成形体を作製した。得られた成形体を実施例9と同じ条件で前養生を行い、通気度0.1×10-152の成形体を得て、これを実施例9と同様に炭酸化養生を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
 <比較例10>
 実施例9と同じ繊維を用いて、セメント95.5質量部に、パルプ3質量部を配合した組成物に、繊維長4mmにカットしたPVA繊維1.5質量部を添加し、実施例9と同様にして成形体を作製した。得られた成形体を、圧力8N/mmでプレス後、実施例9における前養生温度50℃を80℃に変更して前養生を行い、通気度0.2×10-152の成形体を得た。ついで、得られた成形体を実施例9の炭酸化条件と同じ条件で炭酸化を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
 <比較例11>
 実施例9と同じ繊維を用いて、セメント95.5質量部に、パルプ3質量部を配合した組成物に、繊維長4mmにカットしたPVA繊維1.5質量部を添加し、実施例9と同様にして成形体を作製した。得られた成形体を、圧力2N/mmでプレス後、実施例9における前養生を行わず、通気度4×10-152の成形体を得た。ついで、得られた成形体を実施例9の炭酸化条件と同じ条件で炭酸化を行った。得られた成形体の性能および炭酸化反応率を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示された結果から、実施例9~13では、炭酸化養生後の成形体は、炭酸化反応率が60~100%と極めて高く、成形体内部までほぼ完全に炭酸化が進行していることにより、炭酸化後の成形体の嵩比重が高く、曲げ強度が高く、比重あたりの寸法変化率が少ない結果であった。
 また、実施例9~13では、前養生後の成形体の通気率が(4~7)×10-152であるのに対して、比較例8~10では、前養生後の成形体の通気率が、(0~0.2)×10-152と低く、このため炭酸化の進行が遅い結果であり、このことから、前養生後の成形体の通気率が一定値以上にすることが重要であることがわかる。特に、パルプを併用しない比較例8においては、炭酸化反応率は極めて低いもので、しかもフェノールフタレインの染色状態は上面と下面で均質に反応が進んでいるとは言えず、得られた物性も低いものであった。したがって、通気率の高い状態で炭酸化を行うと、炭酸化が成形体内部まで進行し、このことにより炭酸化後の成形体の性能の向上が図られている。
 実施例14は、厚みが大きく、かつ真空押出成形であるため、他の実施例と比べて通気率は1×10-152とやや低いものであったが、所望の通気率を確保しているため、このような厚い試験体においても炭酸化が進行することが確認された。
 尚、比較例11では、前養生を行わずに炭酸化養生を行ったが、得られた成形体の曲げ強度は低く、寸法変化率も大きいものであった。これは、前養生で硬化させずに炭酸化養生を行ったため、炭酸化反応に伴い生成される炭酸カルシウムにより膨張され、緻密化効果が得られなかったためと思われる。
 本発明により得られる繊維補強炭酸化無機質成形板は、炭酸化により、嵩比重が大きく、曲げ強強度が高く、比重あたりの寸法変化率が小さいという特性を有しており、とくに建材分野(屋根材、壁材等)において産業上の利用可能性がある。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明の範囲内で種々の変更おおび修正を容易に想定するであろう。
 したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。

Claims (15)

  1.  少なくともセメント成分、パルプおよび補強繊維を含む繊維補強炭酸化水硬性無機質成形板であって、
     前記補強繊維のアスペクト比は40~1000の範囲内にあり、前記成形板は炭酸化養生された繊維補強炭酸化水硬性無機質成形板。
  2.  請求項1に記載の水硬性無機質成形板において、比重あたりの寸法変化率が0.1%以下である繊維補強炭酸化無機質成形板。
  3.  請求項1または2に記載の水硬性無機質成形板において、前記補強繊維がポリビニルアルコール系繊維である繊維補強炭酸化水硬性無機質成形板。
  4.  少なくともセメント成分、パルプおよび補強繊維を含む組成物が硬化した成形板であって、前記成形板の炭酸化反応率が30%以上であることを特徴とする、繊維補強炭酸化水硬性無機質成形板。
  5.  請求項4の水硬性無機質成形板において、炭酸化反応率が50%以上である、繊維補強炭酸化無機質成形板。
  6.  請求項4または5に記載の水硬性無機質成形板において、比重あたりの寸法変化率が0.1%以下である繊維補強炭酸化無機質成形板。
  7.  請求項4~6のいずれか一項に記載の水硬性無機質成形板において、前記セメント成分がビーライトを18質量%以上含有しているセメントである繊維補強炭酸化無機質成形板。
  8.  請求項7に記載の水硬性無機質成形板において、ビーライトの反応率が70%以上である繊維補強炭酸化無機質成形板。
  9.  請求項4~8のいずれか一項に記載の水硬性無機質成形板において、前記補強繊維がポリビニルアルコール系繊維である繊維補強炭酸化水硬性無機質成形板。     
  10.  少なくともセメント成分、パルプ、アスペクト比40~1000の範囲内にある補強繊維および水から構成される組成物を前養生した後、炭酸化養生をすることにより、繊維補強水硬性無機質成形板を得ることを特徴とする繊維補強炭酸化水硬性無機質成形板の製造方法。
  11.  請求項10の水硬性無機質成形板の製造方法において、前記セメント成分として、ビーライトを18質量%以上含有してなるセメントを含有した組成物を成型し、少なくとも脱型可能な硬さに達した後、炭酸化養生する、繊維補強炭酸化水硬性無機質成形板の製造方法。 
  12.  請求項10または11の水硬性無機質成形板の製造方法において、前記前養生は湿度65~100%の雰囲気で行う、繊維補強炭酸化水硬性無機質成形板の製造方法。
  13.  請求項10~12のいずれか一項に記載の水硬性無機質成形板の製造方法において、前記炭酸化養生は炭酸ガス5~30%を含む雰囲気で行う、繊維補強炭酸化水硬性無機質成形板の製造方法。
  14.  少なくともセメント成分、パルプ、補強繊維及び水から構成される組成物を、前養生を行うことにより、通気率が0.1×10-152以上の成形体を得る工程と、
     得られた成形体を炭酸化養生して、炭酸化反応率を30%以上とする工程と、
     を有する繊維補強炭酸化水硬性無機質成形板を製造する方法。
  15.  請求項14に記載の水硬性無機質成形板の製造方法において、前記セメント成分として、ビーライトを18質量%以上含有するセメントを用いて、前記組成物を成型し、少なくとも脱型可能な硬さに達した後、炭酸化養生を行う繊維補強炭酸化水硬性無機質成形板の製造方法。
PCT/JP2014/079278 2013-11-05 2014-11-04 繊維補強炭酸化水硬性無機質成形板及びその製造方法 WO2015068704A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES14859513T ES2857511T3 (es) 2013-11-05 2014-11-04 Placa moldeada inorgánica hidráulica carbonatada reforzada con fibra y método para la producción de la misma
BR112016009971-0A BR112016009971B1 (pt) 2013-11-05 2014-11-04 Placa moldada inorgânica hidráulica carbonatada reforçada com fibras e método para produção da mesma
JP2015546650A JP6609474B2 (ja) 2013-11-05 2014-11-04 繊維補強炭酸化水硬性無機質成形板及びその製造方法
EP14859513.5A EP3067337B1 (en) 2013-11-05 2014-11-04 Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same
MX2016005719A MX2016005719A (es) 2013-11-05 2014-11-04 Placa moldeada inorganica hidraulica carbonatada reforzada con fibra y metodo para su produccion.
US15/145,502 US10093577B2 (en) 2013-11-05 2016-05-03 Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013229661 2013-11-05
JP2013-229661 2013-11-05
JP2014201206 2014-09-30
JP2014-201206 2014-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/145,502 Continuation US10093577B2 (en) 2013-11-05 2016-05-03 Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same

Publications (1)

Publication Number Publication Date
WO2015068704A1 true WO2015068704A1 (ja) 2015-05-14

Family

ID=53041481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079278 WO2015068704A1 (ja) 2013-11-05 2014-11-04 繊維補強炭酸化水硬性無機質成形板及びその製造方法

Country Status (7)

Country Link
US (1) US10093577B2 (ja)
EP (1) EP3067337B1 (ja)
JP (1) JP6609474B2 (ja)
BR (1) BR112016009971B1 (ja)
ES (1) ES2857511T3 (ja)
MX (1) MX2016005719A (ja)
WO (1) WO2015068704A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003612A1 (ja) * 2016-06-30 2018-01-04 株式会社クラレ 繊維補強炭酸化セメント成形物およびその製造方法
KR20180020949A (ko) * 2016-07-05 2018-02-28 썬전 이에스이오이 테크놀로지 컴퍼니 리미티드 친환경 흡수 판재, 상기 판재의 제조 방법 및 판재 제조용 설비 시스템
US20180072622A1 (en) * 2016-09-09 2018-03-15 Forta Corporation Enhancement of reinforcing fibers, their applications, and methods of making same
JP2019026539A (ja) * 2017-08-03 2019-02-21 鹿島建設株式会社 残存型枠用のプレキャストセメントパネル及びその製造方法
WO2019177192A1 (ko) * 2018-03-13 2019-09-19 김민구 바텀애쉬, 플라이애쉬 및 폴리머 개질제를 활용한 압출성형 패널 및 블록

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018202277A1 (en) * 2017-03-31 2018-10-18 James Hardie Technology Limited Fire resistant building panels
CN108178601B (zh) * 2018-01-10 2020-09-01 上海均博复合材料科技有限公司 用于陶瓷注浆成型的石膏模具及其制备方法
CN108997728B (zh) * 2018-08-16 2020-10-30 苏州诗睿笛新材料有限公司 一种具有较高拉伸强度的防水卷材用树脂胎基及其制备方法
SG11202103974VA (en) * 2018-11-14 2021-05-28 Etex Services Nv Carbonation of fiber cement products
US11254028B2 (en) 2019-05-20 2022-02-22 Saudi Arabian Oil Company Systems and processes for accelerated carbonation curing of pre-cast cementitious structures
BE1030874B1 (nl) * 2022-09-13 2024-04-09 Flooring Ind Ltd Sarl Methode voor het produceren van een paneel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263510A (ja) * 1993-03-11 1994-09-20 Onoda Autoclaved Light Weight Concrete Co Ltd 珪酸カルシウム炭酸化硬化体の製造方法
JPH06263562A (ja) 1993-03-15 1994-09-20 Sumitomo Cement Co Ltd 炭酸化反応を利用した高強度セメント硬化体の製造方法
JPH09132481A (ja) 1995-11-06 1997-05-20 Sekisui Chem Co Ltd 無機質積層体
JPH10194798A (ja) 1996-12-27 1998-07-28 Daiichi Cement Kk 炭酸化セメント、セメント硬化体及びその製法
JP2001261467A (ja) * 2000-03-14 2001-09-26 Taiheiyo Cement Corp セメント系硬化体の製造方法
JP2004107129A (ja) 2002-09-18 2004-04-08 Denki Kagaku Kogyo Kk 炭酸化硬化体用セメント組成物、炭酸化硬化体用セメントコンクリート組成物、及び炭酸化硬化体の製造方法
JP2012091987A (ja) 2010-10-29 2012-05-17 Kuraray Co Ltd 不定形耐火物の耐爆裂性向上に適した繊維およびそれを添加した不定形耐火物
WO2012155103A1 (en) * 2011-05-12 2012-11-15 James Hardie Technology Limited 3-mode blended fibers in an engineered cementitious composite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948884B2 (ja) 1990-08-24 1999-09-13 株式会社クラレ 繊維強化水硬性成形物
IT1255816B (it) 1992-08-10 1995-11-16 Italcementi Spa Materiale cementizio con migliorate proprieta' e processo per la sua preparazione
JP3386225B2 (ja) * 1993-03-04 2003-03-17 クリオン株式会社 炭酸硬化成形体及びその前駆体をそれぞれ製造する方法並びに前記成形体からなる吸放湿材
JPH10102686A (ja) 1996-09-27 1998-04-21 Alps:Kk 厚型スレート及びその製造方法
US6264736B1 (en) * 1997-10-15 2001-07-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Pressure-assisted molding and carbonation of cementitious materials
US8906156B2 (en) 2009-12-31 2014-12-09 Calera Corporation Cement and concrete with reinforced material
US20120245254A1 (en) * 2011-03-25 2012-09-27 Shimano Susumu Inorganic board and inorganic board production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263510A (ja) * 1993-03-11 1994-09-20 Onoda Autoclaved Light Weight Concrete Co Ltd 珪酸カルシウム炭酸化硬化体の製造方法
JPH06263562A (ja) 1993-03-15 1994-09-20 Sumitomo Cement Co Ltd 炭酸化反応を利用した高強度セメント硬化体の製造方法
JPH09132481A (ja) 1995-11-06 1997-05-20 Sekisui Chem Co Ltd 無機質積層体
JPH10194798A (ja) 1996-12-27 1998-07-28 Daiichi Cement Kk 炭酸化セメント、セメント硬化体及びその製法
JP2001261467A (ja) * 2000-03-14 2001-09-26 Taiheiyo Cement Corp セメント系硬化体の製造方法
JP2004107129A (ja) 2002-09-18 2004-04-08 Denki Kagaku Kogyo Kk 炭酸化硬化体用セメント組成物、炭酸化硬化体用セメントコンクリート組成物、及び炭酸化硬化体の製造方法
JP2012091987A (ja) 2010-10-29 2012-05-17 Kuraray Co Ltd 不定形耐火物の耐爆裂性向上に適した繊維およびそれを添加した不定形耐火物
WO2012155103A1 (en) * 2011-05-12 2012-11-15 James Hardie Technology Limited 3-mode blended fibers in an engineered cementitious composite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003612A1 (ja) * 2016-06-30 2018-01-04 株式会社クラレ 繊維補強炭酸化セメント成形物およびその製造方法
KR20180020949A (ko) * 2016-07-05 2018-02-28 썬전 이에스이오이 테크놀로지 컴퍼니 리미티드 친환경 흡수 판재, 상기 판재의 제조 방법 및 판재 제조용 설비 시스템
KR102022703B1 (ko) * 2016-07-05 2019-09-18 썬전 이에스이오이 테크놀로지 컴퍼니 리미티드 친환경 흡수 판재 제조용 설비 시스템
US20180072622A1 (en) * 2016-09-09 2018-03-15 Forta Corporation Enhancement of reinforcing fibers, their applications, and methods of making same
US11148974B2 (en) * 2016-09-09 2021-10-19 Forta, Llc Enhancement of reinforcing fibers, their applications, and methods of making same
JP2019026539A (ja) * 2017-08-03 2019-02-21 鹿島建設株式会社 残存型枠用のプレキャストセメントパネル及びその製造方法
WO2019177192A1 (ko) * 2018-03-13 2019-09-19 김민구 바텀애쉬, 플라이애쉬 및 폴리머 개질제를 활용한 압출성형 패널 및 블록

Also Published As

Publication number Publication date
BR112016009971A2 (ja) 2017-08-01
MX2016005719A (es) 2016-09-21
US10093577B2 (en) 2018-10-09
JP6609474B2 (ja) 2019-11-20
EP3067337A4 (en) 2017-06-28
US20160289119A1 (en) 2016-10-06
BR112016009971B1 (pt) 2022-06-07
EP3067337B1 (en) 2021-01-06
EP3067337A1 (en) 2016-09-14
JPWO2015068704A1 (ja) 2017-03-09
ES2857511T3 (es) 2021-09-29

Similar Documents

Publication Publication Date Title
JP6609474B2 (ja) 繊維補強炭酸化水硬性無機質成形板及びその製造方法
TWI408040B (zh) Inorganic plate and manufacturing method thereof
JP6898926B2 (ja) 繊維補強炭酸化セメント成形物およびその製造方法
JPH09227200A (ja) 無機質板の製造方法
US20220220035A1 (en) Autoclaved cement compositions
CA2083765A1 (en) Process for the production of calcium hydrosilicate bounded shaped articles
EP3523263B1 (en) Methods for producing air-cured fiber cement products
JP6887375B2 (ja) 繊維含有炭酸化瓦およびその製造方法
JP4532932B2 (ja) 建築用内装材料
JP2004292224A (ja) ケイ酸カルシウム材の製造方法
JP7133946B2 (ja) けい酸カルシウム板およびその製造方法
US11554987B2 (en) Methods for producing fiber cement products with fiber cement waste
JPH0976217A (ja) 脱水プレス成型体及びその製造方法
JP3763614B2 (ja) 無機硬化性組成物、無機質成形体およびその製造方法
EP3305741A1 (en) Methods for producing air-cured fiber cement sheets
JPH0569787B2 (ja)
JP2004115353A (ja) 無機質板及びその製造方法
Wu et al. Effect of internal moisture content (IMC) on the CO2 sequestration efficiency of hollow natural fiber (HNF)-reinforced reactive magnesia cement (RMC) composites
JPH03177349A (ja) 無機質成形体の製造方法
JPH05148979A (ja) 建築用化粧材及びその製造法
JPH0459235A (ja) 複合パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546650

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/005719

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014859513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 16146846

Country of ref document: CO

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016009971

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016009971

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160503