WO2015065045A1 - 페이로드 시퀀스 전송 방법 및 장치 - Google Patents

페이로드 시퀀스 전송 방법 및 장치 Download PDF

Info

Publication number
WO2015065045A1
WO2015065045A1 PCT/KR2014/010256 KR2014010256W WO2015065045A1 WO 2015065045 A1 WO2015065045 A1 WO 2015065045A1 KR 2014010256 W KR2014010256 W KR 2014010256W WO 2015065045 A1 WO2015065045 A1 WO 2015065045A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
ternary
signal
frequency
binary data
Prior art date
Application number
PCT/KR2014/010256
Other languages
English (en)
French (fr)
Inventor
박창순
홍영준
조스수짓
김영수
데자스위 프스산드라세카르
바이남키란
초우드하리마노즈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN201480071636.3A priority Critical patent/CN105874760B/zh
Priority to JP2016527351A priority patent/JP6609249B2/ja
Priority to CN201910859388.3A priority patent/CN110572339B/zh
Priority to EP14856834.8A priority patent/EP3065363B1/en
Priority to US15/033,352 priority patent/US9967114B2/en
Publication of WO2015065045A1 publication Critical patent/WO2015065045A1/ko
Priority to US15/971,825 priority patent/US10348533B2/en
Priority to US16/504,633 priority patent/US10735226B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • H04L25/4923Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes using ternary codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/04Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
    • H04L27/2278Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals using correlation techniques, e.g. for spread spectrum signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/71637Receiver aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following embodiments are related to a method and apparatus for transmitting a payload sequence.
  • the modulation scheme of the digital wireless communication system can be largely divided into noncoherent modulation and coherent modulation.
  • the noncoherent modulation scheme is suitable for noncoherent receivers having low power and low complexity
  • the coherent modulation scheme is not limited to power and complexity, and may be suitable for coherent receivers having excellent performance.
  • the transmitter includes a first signal converter for converting a ternary payload sequence composed of -1, 0, or 1 elements into a first signal, wherein the first signal converter is configured to perform a binary data sequence.
  • a ternary sequence mapper that maps a predesigned sequence to generate the ternary payload sequence; And a converter for converting the ternary payload sequence into the first signal.
  • the ternary sequence mapper may divide a binary data sequence consisting of elements of 0 or 1 into a predetermined length and map the predesigned ternary sequence to the divided binary data sequence. .
  • the first signal converter may include a pulse shaping filter that adjusts a transmission power spectrum of the first signal.
  • the transmitter according to an embodiment may further include a second signal converter that converts each section of the first signal based on the element, and converts the first signal into the second signal.
  • the second signal converter may include: a zero value converter for converting a section corresponding to the element of 0 of the first signal; And an absolute one value converter for converting a section corresponding to the element of 1 and a section corresponding to the element of ⁇ 1 of the first signal.
  • the zero value converter may include a zero value detector for detecting a section corresponding to the element of zero of the first signal.
  • the zero value converter may include an on / off controller for turning off an output of a section corresponding to the element of zero.
  • the absolute value 1 converter may include an absolute value detector configured to detect a section corresponding to an element of absolute value 1 of the first signal; And a sign detector that detects a sign of an element of absolute value 1 and classifies a section corresponding to the element of absolute value 1 into a section corresponding to the element of 1 and a section corresponding to the element of ⁇ 1. Can be.
  • the absolute value 1 converter shifts the frequency of the section corresponding to the element of 1 to the first frequency among the first signals, and shifts the frequency of the section corresponding to the element of -1 to the second frequency. It may include a frequency shifter.
  • the absolute value 1 converter shifts the phase of the section corresponding to the element of 1 to the first phase among the first signals, and shifts the phase of the section corresponding to the element of -1 to the second phase. (phase shifter) may be included.
  • the absolute value 1 converter shifts the frequency of the section corresponding to the element of 1 to the first frequency among the first signals, and shifts the frequency of the section corresponding to the element of -1 to the second frequency.
  • frequency shifter And a phase shifter shifting the phase of the section corresponding to the element of 1 to the first phase among the first signals, and shifting the phase of the section corresponding to the element of -1 to the second phase. can do.
  • the second signal converter may include an amplifier for amplifying the magnitude of the second signal.
  • the ternary sequence mapper extracts a ternary sequence corresponding to the binary data sequence into the predesigned ternary sequence from Table 1 below, and C 0 is [0 0 0 1 -1 0 1 1] C m represents a sequence in which C 0 is cyclic shifted to the right by m, and m may represent an integer of 1 to 7.
  • the ternary sequence mapper extracts a ternary sequence corresponding to the binary data sequence into the predesigned ternary sequence from Table 2 below, and C 0 is [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1] indicate the sequence of, C m is the cyclic right by the C 0 yi m shift (cyclic shift), m may represent an integer of 1 to 31.
  • the transmitter comprises: a ternary sequence mapper for mapping a predesigned ternary sequence to a binary data sequence to generate a ternary payload sequence composed of -1, 0 or 1 elements; And a converter for converting the ternary payload sequence into a signal, wherein the ternary sequence mapper extracts a ternary sequence corresponding to the binary data sequence into the predesigned ternary sequence from Table 3 below.
  • C 0 represents a sequence of [0 0 0 1 -1 0 1 1]
  • C m represents a sequence in which C 0 is cyclic shifted to the right by m, and m is 1 to It can represent the integer of 7.
  • the transmitter comprises: a ternary sequence mapper for mapping a predesigned ternary sequence to a binary data sequence to generate a ternary payload sequence composed of -1, 0 or 1 elements; And a converter for converting the ternary payload sequence into a signal, wherein the ternary sequence mapper extracts a ternary sequence corresponding to the binary data sequence into the predesigned ternary sequence from Table 4 below.
  • C 0 represents a sequence of [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1-1 0 0 0 0 0 1 1]
  • C m represents a sequence in which C 0 is cyclic shifted to the right by m
  • m may represent an integer of 1 to 31.
  • a receiver includes: an envelope detector configured to detect a magnitude value of an envelope of a received signal to which a ternary payload sequence composed of -1, 0, or 1 elements is converted; And a binary data sequence detector that detects a binary data sequence corresponding to the ternary payload sequence based on a correlation between the detected envelope size value and predetermined binary sequences.
  • the receiver may further include a filter for filtering the received signal to a first frequency, and the envelope detector may detect an envelope of the filtered received signal.
  • the first frequency is a second frequency indicating the frequency of the interval of the received signal in which one element of the ternary payload sequence is converted and the received signal in which the element of -1 of the ternary payload sequence is converted. It may be a frequency between the third frequency representing the frequency of the interval.
  • the binary data sequence detector may detect, as the binary data sequence, a bit sequence corresponding to a binary sequence having the highest correlation with the size value of the detected envelope among the predetermined binary sequences.
  • a receiver includes: an entire envelope detector for detecting a magnitude value of an envelope of a received signal in which a ternary payload sequence composed of -1, 0, or 1 elements is converted; And a binary data sequence detector for detecting a binary data sequence corresponding to the ternary payload sequence based on a correlation between the detected envelope size value and predetermined ternary sequences.
  • the full envelope detector comprises: a first filter for filtering the received signal to a first frequency; A second filter for filtering the received signal to a second frequency; A first envelope detector for detecting a first envelope representing an envelope of the received signal filtered at the first frequency; A second envelope detector for detecting a second envelope representing an envelope of the received signal filtered at the second frequency; And an operator for extracting a third envelope using a difference between the first envelope and the second envelope.
  • the binary data sequence detector may detect, as the binary data sequence, a bit sequence corresponding to the ternary sequence having the highest correlation with the third envelope among the predetermined ternary sequences.
  • a receiver includes a correlation detector for detecting a correlation between a received signal converted from a ternary payload sequence composed of -1, 0, or 1 elements and a predetermined reference signal; And a binary data sequence detector that detects a binary data sequence corresponding to the ternary payload sequence based on a correlation between the result of the correlation and predetermined ternary sequences.
  • the binary data sequence detector may detect, as the binary data sequence, a bit sequence corresponding to the ternary sequence having the highest correlation with the result of the correlation among the predetermined ternary sequences.
  • a receiver includes a signal receiver configured to receive a signal in which a predetermined ternary sequence is mapped to a binary data sequence and a ternary payload sequence composed of -1, 0 or 1 elements is modulated; And a detector for detecting the predetermined ternary sequence and the binary data sequence using Table 5 below, wherein C 0 represents a sequence of [0 0 0 1 -1 0 1 1] and C m Represents a sequence in which C 0 is cyclic shifted to the right by m, and m may represent an integer of 1 to 7.
  • a receiver includes a signal receiver configured to receive a signal in which a predetermined ternary sequence is mapped to a binary data sequence and a ternary payload sequence composed of -1, 0 or 1 elements is modulated; And a detector for detecting the predetermined ternary sequence and the binary data sequence using Table 6 below, wherein C 0 is [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1 1-1 0 0 0 0 0 1 1], C m represents a sequence in which C 0 is cyclic shifted to the right by m, M may represent an integer of 1 to 31.
  • FIG. 1 is a diagram illustrating a wireless communication system according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating a transmission frame according to an embodiment.
  • FIG. 3 is a block diagram illustrating a transmitter according to an embodiment.
  • 4 to 6 are block diagrams illustrating a transmitter according to another embodiment.
  • FIGS. 7 to 9 are diagrams for describing a transmission signal according to an embodiment.
  • 10 and 12 are block diagrams illustrating a receiver according to an embodiment.
  • 13 through 15 are diagrams for describing detection of a binary data sequence, according to an exemplary embodiment.
  • 16 is a block diagram illustrating a transmitter according to another embodiment.
  • 17 is a block diagram illustrating a receiver according to another embodiment.
  • FIG. 18 is a flowchart illustrating a transmission method according to an exemplary embodiment.
  • 19 is a flowchart illustrating a transmission method according to another exemplary embodiment.
  • 20 to 23 are flowcharts illustrating a receiving method according to an exemplary embodiment.
  • FIG. 1 is a diagram illustrating a wireless communication system according to an exemplary embodiment.
  • a wireless communication system may include a coherent transmitter 110, noncoherent receivers 120 and 130, and a coherent receiver 140.
  • the noncoherent receiver may be classified into a low selectivity noncoherent receiver 120 and a high selectivity noncoherent receiver 130.
  • the coherent transmitter 110 may transmit data in packet units.
  • the packet may include the payload (or PSDU) of the coherent transmitter 110 and the receivers 120, 130, 140.
  • the payload may include data to be transmitted by the coherent transmitter 110 and a Cyclic Redundancy Check (CRC).
  • CRC Cyclic Redundancy Check
  • the coherent transmitter 110 may modulate the payload using a coherent modulation technique.
  • the coherent transmitter 110 may transmit different code sequences of a constant length and different codes of a constant length. After mapping to the sequence, the mapped code sequences can be transmitted. At this time, the length of the code sequence (or the number of elements (element, alphabet) of the code sequence) may be larger than the length of the bit sequence.
  • the code sequence may be composed of elements of ⁇ -1, 0, +1 ⁇ .
  • a sequence consisting of elements of ⁇ -1, 0, +1 ⁇ is represented by a ternary sequence, and a sequence consisting of elements of ⁇ 0, +1 ⁇ is a unipolar sequence.
  • the sequence consisting of elements of ⁇ -1, 1 ⁇ may be represented by a bipolar sequence.
  • the +1 element may represent a phase of a carrier signal (hereinafter, the phase may correspond to each other).
  • the frequency value (which can be expressed as an angular frequency) is set to 0, an element of 0 means to turn off a carrier signal, and an element of -1 means to set the phase value of the carrier signal to 180 degrees. Can be.
  • the low selectivity noncoherent receiver 120 uses a noncoherent demodulation technique to generate the payload. Because of the demodulation, the low selectivity noncoherent receiver 120 cannot distinguish between different phases of the carrier signal. Accordingly, since the low selectivity noncoherent receiver 120 cannot distinguish between the +1 element and the -1 element, the low selectivity noncoherent receiver 120 may recognize the ternary sequence as a unipolar sequence.
  • the high selectivity noncoherent receiver 130 can distinguish between different frequencies of the carrier signal using a filter having a high frequency selectivity (or a high Q-factor filter), and thus high selectivity noncoherent.
  • the runt receiver 130 distinguishes between +1 and -1 elements of the ternary sequence and recognizes the ternary sequence.
  • the coherent receiver 140 When the coherent receiver 140 receives a packet from the coherent transmitter 110, the coherent receiver 140 demodulates the payload using a coherent demodulation technique to perform different phases of the received signal. Because of the distinction, unlike the low selectivity noncoherent receiver 120, the ternary sequence can be recognized.
  • the system may include a coherent transmitter, a coherent receiver, and a noncoherent receiver.
  • the following elements may be used in the system.
  • a sequence / codeword composed of ternary elements may be represented by a ternary sequence / codeword, and a sequence / codeword composed of unipolar binary elements may be represented by a unipolar binary sequence / codeword.
  • the transmitter may extract the symbols from the M-ary element S.
  • S is Can be represented.
  • the information rate may be k-bits / symbols.
  • each symbol from S may be mapped to one of the M possible waveforms (or codewords) from a predetermined spreading code C.
  • the mapping of symbols It can be represented as.
  • N represents the length of a codeword
  • the effective rate (or spreading factor) of the code is It can be represented as.
  • the symbol (Equivalently, The transmitted waveform corresponding to) may be represented by Equation 1 below.
  • T c denotes a chip
  • T denotes a symbol period
  • Equation 2 a symbol detected at a receiver by matched filtering (or correlation) may be represented by Equation 2 below.
  • y (t) represents the received waveform
  • y (t) may be modified by Additive White Gaussian Noise (AWGN). May be defined as an estimated symbol at the receiver.
  • AWGN Additive White Gaussian Noise
  • Symbol detection at the receiver may be obtained by performing a correlation using a bank of M correlators that match each of the M waveforms.
  • the coherent receiver may recognize the polarities of the chips and thus may recognize the ternary sequence / codeword.
  • noncoherent receivers may recognize ternary sequences / codewords as unipolar binary sequences / codewords due to the lack of phase information.
  • the spreading code may need to satisfy the following.
  • the design of the spreading code for the ULP may exhibit an aspect different from the above. This may be due to the different designs of the coherent spreading code and the noncoherent spreading code.
  • the design of an efficient spreading code will be described.
  • Spreading codes for the ULP may be obtained using two-level autocorrelation sequences. Two steps of auto correlation sequences may be used as a basis for obtaining coherent ternary code and noncoherent binary code or optical orthogonal code (OOC).
  • OOC optical orthogonal code
  • a ternary sequence of length N having a full period auto correlation may have an auto correlation shown in Equation 3 below.
  • Binary sequence It can be represented as.
  • the binary sequence may have two levels of auto correlation if the condition of Equation 4 below is satisfied.
  • auto correlation function silver It can be defined as. If A is -1, the binary sequence can be an ideal two-step autocorrelation sequence. Such sequences may serve as a bridge between coherent ternary sequences and noncoherent binary sequences. Most of these sequences are long m may be an m-sequence having an integer.
  • k may represent an integer.
  • Solution pairs of elements of set D silver And the relationship between d i and d j is It can be represented as.
  • t is Can be expressed as:
  • the cyclic difference set may correspond one-to-one with two steps of auto correlation sequences. Accordingly, the cyclic difference set can be used in the design of ternary sequences with full autocollation.
  • the best way to fully synchronize the system may be to select sequences with good auto correlation properties and assign different cyclic shifts to different symbols.
  • N may represent a target spreading factor of the ternary code.
  • the obtained ternary sequences can be characterized by good correlation attributes.
  • a set of spreading sequences assigned different symbols may be obtained with cyclic shifts of the obtained ternary sequences.
  • the above-mentioned spreading factors of 8, 16, and 32 may correspond to symbol sizes 3, 4, and 5, respectively.
  • An m-sequence of weight N / 2 can be selected.
  • procedure A can be used to obtain the ternary sequence of period N-1 from the m-sequence of period N-1.
  • the auto correlation normalized to the period of the sequence may be defined as in Equation 6 below.
  • w may represent a hamming weight of the sequence.
  • Balanced sequences obtained from representative m-sequences having a weight of N / 2 may be represented as shown in Table 1 below.
  • other m-sequences may be replaced with a base sequence.
  • the ternary sequence of period N-1 can be obtained from the m-sequence. There is no complete ternary sequence with weight (N-2) / 2. Accordingly, procedure B can be used to derive a ternary sequence with good correlation attributes in the ternary element.
  • An element of 1 may be added to the obtained ternary sequence so that Mean Squared AutoCorrelation (MSAC) is minimized.
  • MSAC Mean Squared AutoCorrelation
  • the resulting sequences can be characterized by weight N / 2.
  • Balanced sequences obtained from representative m-sequences having a weight of (N-2) / 2 can be represented as shown in Table 2 below.
  • other m-sequences may be replaced with a base sequence.
  • the basic ternary spreading sequences of Table 3 may be used to encode data symbols for transmission over a wireless channel.
  • the spreading sequences for encoding data symbols are obtained through the cyclic shift of one basic ternary spreading sequence of Table 3, the number of distinct spreading sequences can be equal to the spreading factor.
  • the spreading sequences of spreading factor M are Can be used to encode data symbols.
  • spreading sequences of spreading factors 16 and 32 can be used to encode data symbols of size 4 and 5, respectively.
  • the basic ternary spreading sequences in Table 3 may be represented as 3 / 8-OOK, 4 / 16-OOK, and 5 / 32-OOK, respectively.
  • Table 4 to be described below shows the basic ternary sequences of Table 3 classified into 3 / 8-OOK, 4 / 16-OOK, and 5 / 32-OOK.
  • spreading codes may be assigned data symbols based on some customization logic (eg, gray coding).
  • the cyclic shift to the original sequence may be a decimal equivalent of the binary data symbol.
  • m-sequences or maximum length sequences belong to the general class of two-step ideal autocorrelation sequences, all of which (m is an integer).
  • the m-sequence may be generated using Linear Feedback Shift Registers (LFSR) with feedback of the raw polynomial. This sequence may correspond to the maximum period obtained from a LFSR of a given length.
  • LFSR Linear Feedback Shift Registers
  • m-sequences in the design of spreading sequences can be advantageous for both coherent and noncoherent.
  • This sequence may be extended by zero padding, so that the correlation property may not be compromised. This result can be seen as a sequence of periods 8 and 32. A near perfect ternary sequence can be obtained for spreading factor 15 by the method described in Procedure B.
  • Procedure A Acquire a complete ternary sequence from m-sequence
  • x and y are two ideal two-step autocorrelation sequences
  • these sequences May be a complete sequence with elements of zero in phase auto correlation.
  • the result is May be a ternary. For example, if the preferred pair When is May appear. To Divided by the element It can be represented by a sequence having
  • Procedure B Obtain near-complete ternary sequence from m-sequence
  • a full ternary sequence may exist when the weight of the sequence is perfect square. Accordingly, a full ternary sequence with a period of 15 may not exist. In this case, the ratio of the elements of -1 to the elements of +1 in the complete ternary sequence may appear between 1/3 and 2/3. Thus, a near perfect ternary sequence can be obtained based on this ratio.
  • a sequence having the smallest mean squared auto correlation (MSAC) may be selected. The mean squared auto correlation may be defined as in Equation 7 below.
  • Has a delay It may be a periodic auto correlation of a sequence in.
  • FIG. 2 is a diagram illustrating a transmission frame according to an embodiment.
  • the transmission frame 200 includes a preamble 210, a start frame delimiter (SFD) 220, a physical layer header (PHR) 230, and a physical service data unit (PSU) 240. It may include. In one embodiment, the packet may be used in the same sense as the transmission frame 200.
  • SFD start frame delimiter
  • PHR physical layer header
  • PSU physical service data unit
  • the preamble 210 may be a bit string recorded at the head of the transmission frame 200.
  • the preamble 210 can include specific bit-patterns for time synchronization.
  • the SFD 220 may identify the beginning of the frame and identify reconfirmation of synchronization.
  • the SFD 220 may mean a field for obtaining frame synchronization.
  • the PHR 230 may be a field indicating useful information related to the physical layer.
  • the information may be information about the length indicator, the modulation scheme used and the coding scheme used.
  • the PHR 230 may include a field related to the format of the PSDU 240 and a header check sequence (HCS).
  • HCS header check sequence
  • the HCS may be used to determine whether an error has occurred in the PHR 230.
  • PSDU 240 may be a unit of uncoded data in the form of bits, delivered from an upper layer of the physical layer.
  • the PSDU 240 may include data actually transmitted and received at a higher layer than the physical layer.
  • PSDU 240 may be represented as a payload.
  • FIG. 3 is a block diagram illustrating a transmitter according to an embodiment.
  • the transmitter 300 may include a first signal converter 310 and a second signal converter 320.
  • the transmitter 300 may refer to the coherent transmitter 110 described in FIG. 1.
  • a technique in which a transmitter converts a binary data sequence into a first signal and a second signal may be represented by a terminal amplitude shift keying (TASK), a terminal frequency shift keying (TFSK), or an on-off FSK.
  • TASK terminal amplitude shift keying
  • TFSK terminal frequency shift keying
  • FSK on-off FSK
  • the first signal converter 310 may convert a ternary payload sequence composed of -1, 0, or 1 elements into a first signal.
  • the elements may also be represented by alphabetes or chips.
  • the first signal converter 310 may include a ternary sequence mapper and a converter.
  • the ternary sequence mapper can generate a ternary payload sequence by mapping a predesigned ternary sequence to a binary data sequence.
  • the ternary sequence mapper splits a binary data sequence consisting of zero or one elements into a predetermined length and generates a ternary payload sequence by mapping a predesigned ternary sequence to the divided binary data sequence. can do.
  • the predesigned ternary sequence may mean a ternary sequence extracted from the design of the ternary sequence described above.
  • the predesigned ternary sequence may be stored in advance in the transmitter 300. For example, the predesigned ternary sequence may be stored as a lookup table.
  • the ternary sequence mapped to the binary data sequence may be shown in Table 6.
  • C 0 may mean a sequence of [0 0 0 1 -1 0 1 1]
  • C m represents a sequence in which C 0 is shifted to the right by m, and m represents an integer of 1 to 7 Can be.
  • C 1 may represent a sequence of [1 0 0 0 1 -1 0 1]
  • C 2 may represent a sequence of [1 1 0 0 0 1 -1 0].
  • the ternary sequence mapped to the binary data sequence may be shown in Table 7.
  • C 0 may mean a sequence of [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1-1 0 0 0 0 0 1 1]
  • C m may represent a sequence in which C 0 is shifted to the right by m, and m may represent an integer of 1 to 31.
  • the ternary sequence mapper retrieves the ternary sequence corresponding to the binary data sequence in Table 6 or Table 7 above, extracts the retrieved ternary sequence into a predesigned ternary sequence, and applies it to the binary data sequence. Can be mapped.
  • the converter may modulate the ternary payload sequence according to a TASK modulation technique to convert the ternary payload sequence (or the chip sequence of the payload and the chip sequence of the PPDU) into a first signal.
  • the converter may modulate the ternary payload sequence using an amplitude shift keying (ASK) modulation technique.
  • ASK amplitude shift keying
  • the converter may map the ternary payload sequence as shown in Equation 8 below.
  • Each element of the ternary payload sequence includes 1 Mchip / s for 2.4 GHz band; 600 Kchips / s for 780 MHz, 863 MHz, 900 MHz and 950 MHz bands; and 250 Kchips / s for 433 MHz and 470 MHz bands.
  • the first signal converter 310 may include a pulse shaping filter.
  • the pulse shaping filter receives each element of the ternary payload sequence in order and adjusts the frequency of the first signal so that the shape of the baseband first signal does not change rapidly in the time axis but changes smoothly. have.
  • the pulse shaping filter may adjust the transmit power spectrum.
  • the pulse shaping filter can approximate an ideal Gaussian pulse with a section T and a BT of 0.3 to 0.5.
  • the impulse response of the pulse shaping filter may be expressed by Equation 9 below.
  • the first signal in which the ternary payload sequence is modulated may be represented by Equation 10 below.
  • Equation 11 Represents an element of the ternary payload sequence, Represents a section of the first signal corresponding to the element, May represent the number of elements of the ternary payload sequence.
  • Elements of the ternary payload sequence may be represented by Equation 11 below.
  • the passband of the first signal in which the ternary payload sequence is modulated may be represented by Equation 12 below.
  • the second signal converter 320 may convert each section of the first signal based on the elements of the ternary payload sequence to convert the first signal into a second signal.
  • the second signal converter 320 converts a zero value converter for converting a section corresponding to an element of 0 of the first signal and an absolute part for converting a section corresponding to an element of 1 of the first signal and a section corresponding to an element of ⁇ 1. May include a value 1 converter.
  • the zero value converter may convert a section corresponding to an element of zero of the first signal by using a zero value detector and an on / off controller.
  • the zero value detector may detect a section corresponding to an element of zero of the first signal.
  • the zero value detector may detect a section in which the magnitude of the first signal is close to zero as a section corresponding to an element of zero.
  • the on-off controller may turn off the output of the section corresponding to the element of zero detected by the zero value detector. Accordingly, the size of the section corresponding to the element of 0 of the second signal may be zero.
  • the absolute value 1 converter detects a section corresponding to an element of 1 and a section corresponding to an element of -1 of the first signal, and differs between a section corresponding to an element of 1 and a section corresponding to an element of -1. You can convert with the conversion technique.
  • the absolute value 1 converter may detect an interval corresponding to an element of 1 and an interval corresponding to an element of ⁇ 1 using an absolute value detector and a sign detector.
  • the absolute value detector may detect a section corresponding to an element of absolute value 1 (eg, a section in which the magnitude of the first signal is greater than or equal to a predetermined size) of the first signal as a section corresponding to an element of absolute value 1.
  • the sign detector detects a sign of an element of absolute value 1 and classifies a section corresponding to an element of absolute value 1 into a section corresponding to an element of 1 and a section corresponding to an element of -1. For example, the sign detector detects an interval corresponding to an element of 1 as an interval corresponding to an element of 1, and an interval corresponding to an element of ⁇ 1 as an interval corresponding to an element of -1. can do.
  • the absolute value 1 converter may convert a section corresponding to an element of 1 and a section corresponding to an element of ⁇ 1 using a frequency shifter and / or a phase shifter.
  • the frequency shifter may convert a section corresponding to an element of 1 and a section corresponding to an element of ⁇ 1 using a frequency shifter.
  • the absolute value 1 converter may convert the section corresponding to the element of 1 and the section corresponding to the element of ⁇ 1 by using the frequency shifter and the phase shifter together.
  • the frequency shifter may shift the frequency of the section corresponding to the element 1 of the first signal to the frequency f 1 and the frequency of the section corresponding to the element of ⁇ 1 to the frequency f 2 .
  • the frequency shifter when converting a section corresponding to an element of 1 of the first signal, shifts the frequency of the carrier signal whose frequency is adjusted by the VCO to frequency f 1 , and the absolute value 1 converter converts the frequency f 1.
  • the shifted carrier signal may be multiplied by an absolute value of the magnitude of the section corresponding to the element of 1.
  • the frequency shifter may shift the frequency of the carrier signal having a value proportional to the absolute value of the magnitude of the section corresponding to the element of 1 to the frequency f 1 .
  • the frequency shifter when converting a section corresponding to an element of -1 of the first signal, shifts the frequency of the carrier signal whose frequency is adjusted by the VCO to frequency f 2 , and the absolute value 1 converter converts the frequency f.
  • the carrier signal shifted by 2 may be multiplied by the absolute value of the magnitude of the interval corresponding to the element of -1.
  • the frequency shifter may shift the frequency of the carrier signal having a value proportional to the absolute value of the magnitude of the section corresponding to the element of ⁇ 1 to the frequency f 2 .
  • the frequency f 1 and the frequency f 2 may have different frequency bands.
  • the size of the frequency f 2 may be greater than the frequency f 1.
  • the phase shifter may shift the phase of the section corresponding to the element 1 of the first signal to the phase ⁇ 1, and shift the phase of the section corresponding to the element of ⁇ 1 to the phase ⁇ 2 .
  • the phase shifter shifts the phase of the carrier signal to 0 degrees
  • the absolute value 1 converter may multiply the carrier signal shifted to 0 degrees with the absolute value of the magnitude of the interval corresponding to the element of 1.
  • the phase shifter may shift the phase of the carrier signal having a value proportional to the absolute value of the magnitude of the section corresponding to the element of 1 as an envelope to 0 degrees.
  • the phase shifter shifts the phase of the carrier signal by 180 degrees
  • the absolute value 1 converter may multiply the carrier signal shifted by 180 degrees and the absolute value of the magnitude of the interval corresponding to the element of -1.
  • the phase shifter may shift the phase of the carrier signal having a value proportional to the absolute value of the magnitude of the section corresponding to the element of ⁇ 1 as an envelope by 180 degrees.
  • the phase shifter shifts the phase of the section corresponding to the element of 1 shifted to the frequency f 1 by the frequency shifter to phase ⁇ 1 , and of the section corresponding to the element of ⁇ 1 shifted to the frequency f 2 .
  • the phase can be shifted to phase ⁇ 2 .
  • the second signal converter 320 may include an amplifier.
  • the amplifier may amplify the magnitude of the converted second signal.
  • the transmitter 300 may transmit the amplified second signal to the noncoherent receiver or the coherent receiver through the antenna.
  • 4 to 6 are block diagrams illustrating a transmitter according to another embodiment.
  • the transmitter 400 may transmit data to a low selectivity noncoherent receiver, a high selectivity noncoherent receiver, or a coherent receiver.
  • the transmitter 400 may include a first signal converter 410 and a second signal converter 420.
  • the first signal converter 410 may include a ternary sequence mapper 411 and a pulse shaping filter 412.
  • the ternary sequence mapper 411 may generate a ternary payload sequence by dividing a binary data sequence consisting of 0 or 1 elements into a predetermined length and mapping a predesigned ternary sequence to the divided binary data sequence. have. For example, when a binary data sequence of [1 0 1 0 0 1 1 1 0] is input to the ternary sequence mapper 411, the ternary sequence mapper 411 converts the binary data sequence [1 0 1], It can be divided into [0 0 1] and [1 1 0]. The ternary sequence mapper 411 may map a predesigned ternary sequence to the divided binary data sequence.
  • the ternary sequence mapper 411 may divide the partitioned binary sequence [ The ternary payload sequence [0 1 -1 0 1 1 0 0] can be generated by mapping the ternary sequence [0 1 -1 0 1 1 0 0] to 1 0 1]. In addition, the ternary sequence mapper 411 may modulate the ternary payload sequence into a first signal.
  • the ternary sequence mapper 411 may modulate the ternary payload sequence using an ASK modulation technique.
  • the ternary sequence mapper 411 may include the converter described with reference to FIG. 3. For example, when the ternary payload sequence [0 1 -1 0 1 1 0 0] is modulated with the first signal, the magnitude of the interval of the first signal corresponding to 0 of the ternary payload sequence may be 0. The size of the interval of the first signal corresponding to 1 may have a positive value, and the magnitude of the interval of the first signal corresponding to ⁇ 1 may have a negative value.
  • the pulse shaping filter 412 may receive each element of the ternary payload sequence in order so that the frequency band of the first signal may not be widely distributed.
  • the second signal converter 420 may include a zero value converter 430, an absolute value 1 converter 440, and an amplifier 450.
  • the zero value converter 430 may include a zero value detector 431 and an on off controller 432.
  • the zero value detector 431 may detect a section in which the magnitude of the first signal is smaller than a predetermined threshold value as a section corresponding to an element of zero.
  • the predetermined threshold may represent the magnitude of noise of the first signal.
  • the on-off controller 432 may turn off the output of the section corresponding to the element of zero detected by the zero value detector.
  • the absolute value 1 converter 440 may include an absolute value detector 441, a sign detector 442, a VCO 443, a frequency shifter 444, and an operator 445.
  • the absolute value detector 441 may detect a section in which the magnitude of the first signal is greater than or equal to a predetermined threshold value as a section corresponding to the element having the absolute value 1.
  • the sign detector 442 may detect a sign of an element having an absolute value 1 and classify a section corresponding to an element having an absolute value 1 into a section corresponding to an element of 1 and a section corresponding to an element of ⁇ 1. For example, the sign detector 442 detects a section having a phase of 0 degrees among sections corresponding to an element having an absolute value of 1 as a section corresponding to an element of 1, and a section having a phase of 180 degrees corresponding to an element of -1. It can be detected as a section.
  • the VCO 443 may adjust the frequency of the carrier signal.
  • the frequency shifter 444 may shift the carrier signal in the section corresponding to the element 1 to the frequency f 1 , and the carrier signal in the section corresponding to the element ⁇ 1 to the frequency f 2 .
  • the operator 445 multiplies the absolute value of the magnitude of the interval corresponding to the element of 1 with the carrier signal shifted to frequency f 1 , and the absolute value of the magnitude of the interval corresponding to the element of -1 and the carrier signal shifted to frequency f 2 .
  • the second signal may be generated by multiplying the values.
  • the amplifier 450 may amplify the magnitude of the second signal.
  • the transmitter 400 may transmit the amplified second signal to the noncoherent receiver or the coherent receiver through the antenna.
  • the transmitter 500 may transmit data to a low selectivity noncoherent receiver, a high selectivity noncoherent receiver, or a coherent receiver.
  • the transmitter 500 may include a first signal converter 510 and a second signal converter 520.
  • the first signal converter 510 may include a ternary sequence mapper 511 and a pulse shaping filter 512.
  • the ternary sequence mapper 511 receives a binary data sequence composed of 0 or 1 elements, divides the binary data sequence into a predetermined length, and generates a ternary payload sequence by mapping a predesigned ternary sequence to the divided binary data sequence. can do.
  • the first signal converter 510 may generate a first signal by modulating the ternary payload sequence.
  • the ternary sequence mapper 511 may include the converter described with reference to FIG. 3.
  • the pulse shaping filter 512 may receive each element of the ternary payload sequence in order so that the frequency band of the first signal may not be widely distributed.
  • the second signal converter 520 may include a zero value converter 530, an absolute value 1 converter 540, and an amplifier 550.
  • the zero value converter 530 may include a zero value detector 531 and an on off controller 532.
  • the zero value detector 531 may detect a section in which the magnitude of the first signal is smaller than a predetermined threshold value as a section corresponding to an element of zero.
  • the predetermined threshold may represent the magnitude of noise of the first signal.
  • the on off controller 532 may turn off the output of the section corresponding to the element of zero detected by the zero value detector.
  • the absolute value 1 converter 540 may include an absolute value detector 541, a sign detector 542, a phase shifter 543, and an operator 544.
  • the absolute value detector 541 may detect a section in which the magnitude of the first signal is greater than or equal to a predetermined threshold value as a section corresponding to the element having the absolute value 1.
  • the sign detector 542 may detect a sign of an element having an absolute value 1 and classify a section corresponding to an element having an absolute value 1 into a section corresponding to an element of 1 and a section corresponding to an element of ⁇ 1.
  • the phase shifter 543 shifts the phase of the carrier signal in the section corresponding to one element of the first signal to the first phase, and shifts the phase of the carrier signal in the section corresponding to the element -1 to the second phase. Can be.
  • the operator 544 multiplies the absolute value of the magnitude of the interval corresponding to the element of 1 with the carrier signal shifted in the first phase and the absolute value of the magnitude of the interval corresponding to the element of -1 with the carrier signal shifted in the second phase.
  • the second signal may be generated by multiplying the values.
  • the amplifier 550 may amplify the magnitude of the second signal.
  • the transmitter 500 may transmit the amplified second signal to the noncoherent receiver or the coherent receiver through the antenna.
  • the transmitter 600 may transmit data to a low selectivity noncoherent receiver, a high selectivity noncoherent receiver, or a coherent receiver.
  • the transmitter 600 may include a first signal converter 610 and a second signal converter 620.
  • the first signal converter 610 may include a ternary sequence mapper 611 and a pulse shaping filter 612.
  • the ternary sequence mapper 611 receives a binary data sequence composed of 0 or 1 elements, divides the binary data sequence into a predetermined length, and generates a ternary payload sequence by mapping a predesigned ternary sequence to the divided binary data sequence. can do.
  • the first signal converter 610 may generate a first signal by modulating the ternary payload sequence.
  • the ternary sequence mapper 611 may include the converter described with reference to FIG. 3.
  • the pulse shaping filter 612 may receive each element of the ternary payload sequence in order so that the frequency band of the first signal may not be widely distributed.
  • the second signal converter 620 may include a zero value converter 630, an absolute value 1 converter 640, and an amplifier 650.
  • the zero value converter 630 may include a zero value detector 631 and an on-off controller 632.
  • the zero value detector 631 may detect a section in which the magnitude of the first signal is smaller than a predetermined threshold value as a section corresponding to an element of zero.
  • the predetermined threshold may represent the magnitude of noise of the first signal.
  • the on-off controller 632 may turn off the output of the section corresponding to the element of zero detected by the zero value detector.
  • the absolute value 1 converter 640 may include an absolute value detector 641, a sign detector 642, a VCO 643, a frequency shifter 644, a phase shifter 645, and an operator 646.
  • the absolute value detector 641 may detect a section in which the magnitude of the first signal is greater than or equal to a predetermined threshold value as a section corresponding to the element having the absolute value 1.
  • the sign detector 642 may detect a sign of an element having an absolute value 1 and classify a section corresponding to an element having an absolute value 1 into a section corresponding to an element of 1 and a section corresponding to an element of ⁇ 1.
  • the VCO 643 may adjust the frequency of the carrier signal.
  • the frequency shifter 644 may shift the carrier signal in the section corresponding to the element of 1 to the frequency f 1 , and the carrier signal in the section corresponding to the element of ⁇ 1 to the frequency f 2 .
  • the phase shifter 645 may shift the phase of the carrier signal shifted to the frequency f 1 in the frequency shifter 644 to phase ⁇ 1, and shift the phase of the carrier signal shifted to the frequency f 2 to the phase ⁇ 2 .
  • the operator 646 multiplies the carrier signal shifted at the frequency f 1 and the phase ⁇ 1 by the absolute value of the magnitude of the section corresponding to the element of 1, and the carrier signal shifted at the frequency f 2 and the phase ⁇ 2 and the element at ⁇ 1.
  • the second signal may be generated by multiplying an absolute value of the magnitude of the section corresponding to.
  • the amplifier 650 may amplify the magnitude of the second signal.
  • the transmitter 600 may transmit the amplified second signal to the low selectivity noncoherent receiver, the high selectivity noncoherent receiver, or the coherent receiver through the antenna.
  • FIGS. 7 to 9 are diagrams for describing a transmission signal according to an embodiment.
  • the transmitter may modulate a binary data sequence and transmit the modulated binary data sequence to a low selectivity noncoherent receiver, a high selectivity noncoherent receiver, or a coherent receiver.
  • the transmitter maps the ternary sequence 720 that is preset to correspond to the binary data sequence 710 to the binary data sequence 710, and the ternary sequence 720. May be modulated to generate a first signal.
  • the transmitter may input the first signal to the pulse shaping filter so that the frequency band of the first signal is not widely distributed.
  • the size of the interval corresponding to the element of 1 may have a positive value, and the size of the interval corresponding to the element of ⁇ 1 may have a negative value and an element of 0
  • the size of the section corresponding to may be 0.
  • the transmitter may shift the carrier signal in the section corresponding to the element of 1 to the frequency f 1 and the carrier signal in the section corresponding to the element of ⁇ 1 to the frequency f 2 in the pulse shaping filter output signal 730.
  • the magnitude of the second frequency may be greater than the magnitude of the frequency of the first frequency.
  • the transmitter multiplies the absolute value of the magnitude of the interval corresponding to the element of 1 with the carrier signal shifted by the frequency f 1 , and the absolute value of the magnitude of the interval corresponding to the element of -1 and the carrier signal shifted to the frequency f 2 . Multiply by to generate a second signal.
  • the transmitter may amplify the second signal by inputting the second signal to the amplifier.
  • the frequency of the section corresponding to the element of 1 may be distinguished from the frequency of the section corresponding to the element of -1, and the output of the section corresponding to the element of 0 may be 0. .
  • the transmitter may send the amplified second signal 740 to a low selectivity noncoherent receiver and a high selectivity noncoherent receiver.
  • the transmitter may modulate a binary data sequence and transmit it to a low selectivity noncoherent receiver, a high selectivity noncoherent receiver, or a coherent receiver.
  • the transmitter maps the ternary sequence 820 which is preset to correspond to the binary data sequence 810 to the binary data sequence 810, and the ternary sequence 820. May be modulated to generate a first signal.
  • the transmitter may input the first signal to the pulse shaping filter so that the frequency band of the first signal is not widely distributed.
  • the size of the interval corresponding to the element of 1 may have a positive value, and the size of the interval corresponding to the element of ⁇ 1 may have a negative value and an element of 0
  • the size of the section corresponding to may be 0.
  • the transmitter shifts the phase of the carrier signal in the section corresponding to the element of 1 to the phase ⁇ 1 and the phase of the carrier signal in the section corresponding to the element of -1 to the phase ⁇ 2 in the pulse shaping filter output signal 830. can do.
  • the difference between the phase ⁇ 1 and the phase ⁇ 2 may be 180 degrees.
  • the transmitter multiplies the absolute value of the magnitude of the interval corresponding to the element of 1 with the carrier signal shifted in phase ⁇ 1 , and the absolute value of the magnitude of the interval corresponding to the element of -1 with the carrier signal shifted in phase ⁇ 2 . Multiply by to generate a second signal.
  • the transmitter may amplify the second signal by inputting the second signal to the amplifier.
  • the phase of the section corresponding to the element of 1 may have a 180 degree difference from the phase of the section corresponding to the element of ⁇ 1.
  • the output of the section corresponding to the element of zero may be zero.
  • the transmitter may transmit the amplified second signal 840 to a noncoherent receiver and a coherent receiver.
  • the transmitter may modulate a binary data sequence and transmit it to a low selectivity noncoherent receiver, a high selectivity noncoherent receiver, or a coherent receiver.
  • the transmitter maps the ternary sequence 920 preset to correspond to the binary data sequence 910 to the binary data sequence 910, and the ternary sequence 920. May be modulated to generate a first signal.
  • the transmitter may input the first signal to the pulse shaping filter so that the frequency band of the first signal is not widely distributed.
  • the size of the section corresponding to the element of 1 may have a positive value, and the size of the section corresponding to the element of ⁇ 1 may have a negative value and the element of 0
  • the size of the section corresponding to may be 0.
  • the transmitter may shift the carrier signal in the section corresponding to the element of 1 to the frequency f 1 in the pulse shaping filter output signal 930 and the carrier signal in the section corresponding to the element of ⁇ 1 to the frequency f 2 .
  • the transmitter may shift the phase of the carrier signal shifted to the frequency f 1 to the phase ⁇ 1, and shift the phase of the carrier signal shifted to the frequency f 2 to the phase ⁇ 2 .
  • the magnitude of the frequency f 2 is greater than the magnitude of the frequency f 1 , and the difference between the phase ⁇ 1 and the phase ⁇ 2 may be 180 degrees.
  • the transmitter multiplies the carrier signal shifted at the frequency f 1 and the phase ⁇ 1 by the absolute value of the magnitude of the interval corresponding to the element of 1, and the carrier signal shifted at the frequency f 2 and the phase ⁇ 2 and the element at -1.
  • the second signal may be generated by multiplying an absolute value of the magnitude of the corresponding section.
  • the transmitter may amplify the second signal by inputting the second signal to the amplifier.
  • the phase of the section corresponding to the element of 1 may have a 180 degree difference from the phase of the section corresponding to the element of ⁇ 1.
  • the output of the section corresponding to the element of zero may be zero.
  • the transmitter may transmit the amplified second signal 940 to a low selectivity noncoherent receiver, a high selectivity noncoherent receiver, or a coherent receiver.
  • 10 and 12 are block diagrams illustrating a receiver according to an embodiment.
  • the receiver 1000 may include a filter 1010, an envelope detector 1020, and a binary data sequence detector 1030.
  • the receiver 1000 may represent a low selectivity noncoherent receiver.
  • Receiver 1000 may receive a signal from the transmitter described in FIG. Accordingly, the received signal may be a signal obtained by converting a ternary payload sequence composed of -1, 0, or 1 elements.
  • the filter 1010 may filter the received signal by the frequency f 0 .
  • the frequency f 0 represents the frequency f 1 representing the frequency of the interval of the received signal in which the element of the ternary payload sequence is converted and the frequency of the interval of the received signal in which the element of -1 of the ternary payload sequence is converted. It may represent a frequency between the frequencies f 2 represented.
  • frequency f 0 may be an arithmetic mean of frequencies f 1 and f 2 .
  • the frequency content of f 2 may be greater than the frequency f 1.
  • the filter is between the frequency f 1 and frequency f 2
  • the received signal can be received with a wide bandwidth.
  • the envelope detector 1020 may detect a magnitude value of the envelope of the filtered received signal. In the case where the magnitude of the interval is not 0 at the frequency f 1 to the frequency f 2 of the received signal, the envelope detector 1020 detects an envelope in which the magnitude of the corresponding interval is not 0, and at the frequency f 1 to the frequency f 2 of the received signal. In a case where the magnitude is 0, the envelope detector 1020 may detect a signal having a magnitude of 0 and including only noise. Accordingly, when the signal to noise ratio (SNR) value is greater than or equal to a predetermined value, the frequency f 1 and the frequency f 2 cannot be distinguished on the envelope. As a result, the receiver 1000 may not distinguish between elements of 1 and -1 of the ternary payload sequence.
  • SNR signal to noise ratio
  • the binary data sequence detector 1030 may detect a binary data sequence corresponding to the ternary payload sequence based on a correlation between the magnitude value of the envelope detected by the envelope detector 1020 and a predetermined binary sequence.
  • the binary data sequence detector 1030 may include a correlator 1031 and a data decoder 1032.
  • the correlator 1031 may calculate a correlation between the magnitude value of the detected envelope and predetermined binary sequences. For example, the correlator 1031 may calculate a correlation between the magnitude value of each section of the envelope detected by the envelope detector 1020 and predetermined binary sequences.
  • the binary data sequence detector 1030 may detect, as a binary data sequence, a bit sequence corresponding to a binary sequence having the highest correlation with the detected magnitude value among predetermined binary sequences.
  • the binary data sequence detector 1030 may include information regarding Table 6 or Table 7, described above.
  • the binary data sequence detector 1030 may extract predetermined binary sequences by converting an element of ⁇ 1 to an absolute value in the ternary sequences described in Table 6 or Table 7.
  • the binary data sequence detector 1030 calculates a correlation between predetermined binary sequences and the magnitude value of the detected envelope, retrieves the bit sequence corresponding to the binary sequence having the highest correlation from Table 6 or Table 7, and retrieves the result.
  • the bit sequence can be detected as a binary data sequence.
  • the correlator 1031 may store certain binary sequences [0 0 0 1 1 0 1 1], [1 0 0 0 1 1 0 1], [1 1 0 0 0 1 1 0], [ 0 0 1 1 0 1 1 0] and the correlation between the magnitude value of each section of the detected envelope can be calculated.
  • the binary data sequence detector 1030 may determine the bit sequence corresponding to the binary sequence [1 0 0 0 1 1 0 1]. For example, [1 0 0]) can be extracted as a binary data sequence.
  • the data decoder 1032 may decode the binary data sequence.
  • the receiver 1100 may include an entire envelope detector 1110 and a binary data sequence detector 1120.
  • the receiver 1100 may represent a high selectivity noncoherent receiver.
  • the receiver 1100 may receive a signal from the transmitter described in FIGS. 3 and 5. Accordingly, the received signal may be a signal obtained by converting a ternary payload sequence composed of -1, 0, or 1 elements.
  • the entire envelope detector 1110 may detect the magnitude value of the envelope of the received signal.
  • the entire envelope detector 1110 may include a first filter 1111, a first envelope detector 1112, a second filter 1113, a second envelope detector 1114, and an operator 1115.
  • the first filter 1111 may filter the received signal by the frequency f 1
  • the second filter 1112 may filter the received signal by the frequency f 2
  • the frequency f 1 may represent the frequency of the interval of the received signal in which the element of 1 in the ternary payload sequence is converted
  • the frequency f 2 is the interval of the received signal in which the element of -1 is converted in the ternary payload sequence. It can represent the frequency of. In one example, the frequency content of f 2 may be greater than the frequency f 1.
  • the first envelope detector 1112 may detect a first envelope indicating an envelope of the received signal filtered based on the frequency f 1 . In the case where the magnitude of the received signal is not 0 at the frequency f 1 , the first envelope detector 1112 detects an envelope in which the magnitude of the interval is not 0, and in the interval where the magnitude of the received signal is 0 at the frequency f 1 . In this case, the first envelope detector 1112 may detect a signal having a size of 0 and including only noise. In addition, in the case where the magnitude of the received signal is not 0 at the frequency f 2 , the first envelope detector 1112 may detect a signal having the magnitude of the corresponding section and including only noise.
  • the second envelope detector 1114 may detect a second envelope indicating an envelope of the received signal filtered based on the frequency f 2 .
  • the second envelope detector 1114 detects an envelope in which the magnitude of the interval is not 0, and in the interval where the magnitude of the received signal is 0 at the frequency f 2 .
  • the second envelope detector 1114 may detect a signal having a size of a corresponding section of 0 and including only noise.
  • the second envelope detector 1114 may detect a signal having the magnitude of the corresponding section and including only noise.
  • the calculator 1115 may subtract the envelope output from the second envelope detector 1114 from the envelope output from the first envelope detector 1112. Accordingly, in the case where the magnitude of the received signal is not 0 at the frequency f 1 , the calculator 1115 outputs an envelope in which the magnitude of the corresponding interval is a positive value, and the magnitude of the received signal is not 0 at the frequency f 2 . In this case, the calculator 1115 may output an envelope in which the size value of the corresponding section is negative. In addition, when the magnitude of the received signal is 0 at the frequency f 1 and the frequency f 2 , the calculator 1115 may output an envelope having the magnitude value of the corresponding section at 0.
  • the binary data sequence detector 1120 may detect a binary data sequence corresponding to the ternary payload sequence based on a correlation between the magnitude value of the envelope detected by the entire envelope detector 1110 and predetermined ternary sequences. have.
  • the binary data sequence detector 1120 may include a correlator 1121 and a data decoder 1122.
  • the correlator 1121 may calculate a correlation between the magnitude value of the detected envelope and predetermined ternary sequences. For example, the correlator 1121 may calculate a correlation between the magnitude value of each section of the third envelope output from the calculator and predetermined ternary sequences.
  • the binary data sequence detector 1120 may detect, as a binary data sequence, a bit sequence corresponding to the ternary sequence having the highest correlation with the detected magnitude value among the predetermined ternary sequences.
  • the binary data sequence detector 1120 may include information regarding Table 6 or Table 7 described above.
  • the binary data sequence detector 1120 calculates a correlation between the ternary sequences described in Table 6 or Table 7 and the magnitude value of the detected envelope, and corresponds to the ternary sequence having the highest correlation from Table 6 or Table 7.
  • the bit sequence may be searched to detect the found bit sequence as a binary data sequence.
  • the correlator 1121 may store certain binary sequences [0 0 0 1 -1 0 1 1], [1 0 0 0 1 -1 0 1], [1 1 0 0 0 1 -1 0 ], A correlation between [0 0 1 -1 0 1 1 0] and the magnitude value of each section of the detected envelope can be calculated. If the correlation of [1 0 0 0 1 -1 0 1] among the predetermined binary sequences is the highest, the binary data sequence detector 1120 is a bit corresponding to the binary sequence [1 0 0 0 1 -1 0 1]. A sequence (eg, [1 0 0]) can be extracted as a binary data sequence.
  • the data decoder 1122 may decode the binary data sequence.
  • the receiver 1200 may include a correlation detector 1210 and a binary data sequence detector 1220.
  • receiver 1200 may represent a coherent receiver.
  • Receiver 1200 may receive signals from the transmitters described in FIGS. 3 and 6. Accordingly, the received signal may be a signal obtained by converting a ternary payload sequence composed of -1, 0, or 1 elements.
  • the correlation detector 1210 may detect a correlation between the received signal and the carrier signal.
  • the correlation detector 1210 may include an RF / analog processor 1211 and a first correlator 1212.
  • the RF / analog processor 1211 may convert the received signal received through the antenna to be processed by the first correlator 1212.
  • the first correlator 1212 may detect a correlation between a predetermined reference signal and a received signal.
  • the phase detector may calculate a correlation between a sinusoidal carrier signal and a received signal.
  • the binary data sequence detector 1220 may detect a binary data sequence of the received signal based on a correlation between the result of the correlation and predetermined ternary sequences.
  • the binary data sequence detector 1220 may include a second correlator 1221 and a data decoder 1222.
  • the second correlator 1221 may calculate a correlation between a result value of the correlation calculated by the first correlator 1212 and predetermined ternary sequences.
  • the binary data sequence detector 1220 stores a bit sequence corresponding to the ternary sequence having the highest correlation with the result of the correlation calculated by the first correlator 1212 among the predetermined ternary sequences. Can be detected.
  • the binary data sequence detector 1220 may include information regarding Table 6 or Table 7, described above.
  • the binary data sequence detector 1220 calculates a correlation between the ternary sequences described in Table 6 or Table 7 and the magnitude value of the detected envelope, and corresponds to the ternary sequence having the highest correlation from Table 6 or Table 7.
  • the bit sequence may be searched to detect the found bit sequence as a binary data sequence.
  • the data decoder 1222 may decode the binary data sequence.
  • 13 through 15 are diagrams for describing detection of a binary data sequence, according to an exemplary embodiment.
  • the graph may represent the spectrum 1311 of the transmission signal transmitted by the transmitter and the filter frequency response 1312 at the low selectivity noncoherent receiver.
  • the horizontal axis of the graph may represent a frequency, and the vertical axis may represent the magnitude of a spectrum.
  • the transmitter may transmit a transmit signal having spectrum 1311 to a low selectivity noncoherent receiver.
  • the frequency f 1 of the spectrum 1311 indicates the frequency of the interval of the transmission signal in which the element 1 of the ternary payload sequence is converted
  • the frequency f 2 indicates the transmission signal in which the element of ⁇ 1 of the ternary payload sequence is converted. It can represent the frequency of the interval.
  • the frequency f 0 may be an arithmetic mean of frequencies f 1 and f 2 .
  • the low selectivity of I-coherent receiver is received on the basis of the frequency f 1 and frequency f 2 between the frequency f 0 by using a filter frequency response (1312) to cover the frequency f 1 and frequency f 2 You can filter the signal.
  • the low selectivity noncoherent receiver can detect the envelope of the filtered received signal.
  • the low selectivity noncoherent receiver may detect a binary data sequence corresponding to the ternary payload sequence based on a correlation between the detected envelope magnitude value and predetermined binary sequences.
  • the graph may represent the spectrum 1411 of the transmission signal transmitted by the transmitter and the filter frequency responses 1412, 1413 at the high selectivity noncoherent receiver.
  • the horizontal axis of the graph may represent a frequency, and the vertical axis may represent the magnitude of a spectrum.
  • the transmitter may transmit a transmission signal having spectrum 1411 to a high selectivity noncoherent receiver.
  • the frequency f 1 of the spectrum 1411 represents the frequency of the interval of the transmission signal in which the element 1 of the ternary payload sequence is converted, and the frequency f 2 represents the transmission signal of the -1 element of the ternary payload sequence. It can represent the frequency of the interval.
  • the frequency f 0 may be an arithmetic mean of frequencies f 1 and f 2 .
  • High selectivity I can for coherent receivers, using a second filter frequency f 1, the first filter and the frequency f 2 is set to the center frequency is set to the center frequency to filter the received signal.
  • the first filter may filter the received signal based on the frequency f 1 using the filter frequency response 1412
  • the second filter may filter the received signal based on the frequency f 2 using the filter frequency response 1413. can do.
  • High selectivity I coherent receiver in the envelope of the received detecting the envelope of the received signal filtered by the envelope and the frequency f 2 of the received signal filtered by the frequency f 1, and filtered by a frequency f 1 signal
  • the envelope of the filtered received signal can be subtracted based on the frequency f 2 . Accordingly, a section in which the magnitude of the received signal is not zero at frequency f 1 may appear as an envelope with a positive magnitude value, and a section in which the magnitude of the received signal is not zero at frequency f 2 may appear as a negative envelope in magnitude. In addition, a section where the magnitude of the received signal is 0 at the frequency f 1 and the frequency f 2 may be represented by an envelope having a magnitude value of zero.
  • the high selectivity noncoherent receiver may detect a binary data sequence corresponding to the ternary payload sequence based on a correlation between the detected envelope magnitude value and predetermined ternary sequences.
  • phase ⁇ 1 (1511) of a section corresponding to an element of 1 of a ternary payload sequence among received signals received by a coherent receiver
  • phase ⁇ 2 of a section corresponding to an element of ⁇ 1.
  • phase ⁇ 1 1511 may represent 0 degrees
  • phase ⁇ 2 1512 may represent 180 degrees.
  • the coherent receiver may detect a correlation between a sinusoidal carrier signal and a received signal.
  • the coherent receiver may detect a binary data sequence corresponding to the ternary payload sequence based on a correlation between the correlation result and the predetermined ternary sequence.
  • 16 is a block diagram illustrating a transmitter according to another embodiment.
  • the transmitter 1600 may include a ternary sequence mapper 1610 and a converter 1620.
  • the transmitter 1600 may represent the first signal converter 310 described with reference to FIG. 3.
  • the ternary sequence mapper 1610 may generate a ternary payload sequence composed of -1, 0, or 1 elements by mapping a predesigned ternary sequence to a binary data sequence.
  • the ternary sequence mapper 1610 may extract, from Table 8, the ternary sequence corresponding to the binary data sequence as a predesigned ternary sequence.
  • C 0 represents a sequence of [0 0 0 1 -1 0 1 1]
  • C m represents a sequence in which C 0 is cyclically shifted right by m, and m represents an integer from 1 to 7 Can be.
  • the ternary sequence mapper 1610 may extract, from Table 9, the ternary sequence corresponding to the binary data sequence as a predesigned ternary sequence.
  • C 0 represents the sequence of [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1-1 0 0 0 0 0 1 1]
  • C m represents a sequence in which C 0 is cyclic shifted to the right by m, and m may represent an integer of 1 to 31.
  • the converter 1620 may convert the ternary payload sequence into a signal.
  • 17 is a block diagram illustrating a receiver according to another embodiment.
  • the receiver 1700 may include a signal receiver 1710 and a detector 1720.
  • the receiver 1700 may represent the receivers 1200, 1300, 1400 described with reference to FIGS. 10 through 12.
  • the signal receiver 1710 may receive a signal in which a predetermined ternary sequence is mapped to a binary data sequence and a ternary payload sequence composed of -1, 0 or 1 elements is modulated.
  • the detector 1720 may detect a predetermined ternary sequence and a binary data sequence.
  • the detector 1720 may use Table 10 to detect a predetermined ternary sequence and binary data sequence.
  • C 0 represents a sequence of [0 0 0 1 -1 0 1 1]
  • C m represents a sequence in which C 0 is cyclically shifted right by m, and m represents an integer from 1 to 7 Can be.
  • the detector 1720 may use Table 11 to detect a predetermined ternary sequence and binary data sequence.
  • C 0 represents the sequence of [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1-1 0 0 0 0 0 1 1]
  • C m represents a sequence in which C 0 is cyclic shifted to the right by m, and m may represent an integer of 1 to 31.
  • FIG. 18 is a flowchart illustrating a transmission method according to an exemplary embodiment.
  • the transmitter may generate a ternary payload sequence by mapping a predesigned sequence to a binary data sequence (1810).
  • the transmitter may convert the ternary payload sequence into a first signal (1820).
  • 19 is a flowchart illustrating a transmission method according to another exemplary embodiment.
  • a transmitter may convert a ternary payload sequence consisting of elements of -1, 0, or 1 into a first signal (1910).
  • the transmitter may convert the first signal into the second signal by applying different conversion schemes to the respective sections of the first signal.
  • 20 to 23 are flowcharts illustrating a receiving method according to an exemplary embodiment.
  • a receiver may detect a magnitude value of an envelope of a received signal in which a ternary payload sequence composed of elements of -1, 0, or 1 is converted (2010).
  • the receiver may detect a binary data sequence corresponding to the ternary payload sequence based on a correlation between the detected envelope size value and predetermined binary sequences (2020).
  • a receiver may detect a magnitude value of an envelope of a received signal obtained by converting a ternary payload sequence composed of -1, 0, or 1 elements (2110).
  • the receiver may detect a binary data sequence corresponding to the ternary payload sequence based on a correlation between the detected envelope size value and predetermined ternary sequences.
  • the receiver may detect a correlation between a received signal converted from a ternary payload sequence consisting of elements of -1, 0, or 1 and a predetermined reference signal (2210).
  • the receiver detects a binary data sequence corresponding to the ternary payload sequence based on a correlation between the result of the correlation and predetermined ternary sequences.
  • a receiver may receive a signal in which a predetermined ternary sequence is mapped to a binary data sequence and a ternary payload sequence composed of elements of -1, 0, or 1 is modulated (2310).
  • the receiver may detect a predetermined ternary sequence and a binary data sequence.
  • the receiver may detect a predetermined ternary sequence and a binary data sequence using the above-described Tables 10 and 11 (2320).
  • the apparatus described above may be implemented as a hardware component, a software component, and / or a combination of hardware components and software components.
  • the devices and components described in the embodiments may be, for example, processors, controllers, arithmetic logic units (ALUs), digital signal processors, microcomputers, field programmable arrays (FPAs), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system.
  • the processing device may also access, store, manipulate, process, and generate data in response to the execution of the software.
  • OS operating system
  • the processing device may also access, store, manipulate, process, and generate data in response to the execution of the software.
  • processing device includes a plurality of processing elements and / or a plurality of types of processing elements. It can be seen that it may include.
  • the processing device may include a plurality of processors or one processor and one controller.
  • other processing configurations are possible, such as parallel processors.
  • the software may include a computer program, code, instructions, or a combination of one or more of the above, and configure the processing device to operate as desired, or process it independently or collectively. You can command the device.
  • Software and / or data may be any type of machine, component, physical device, virtual equipment, computer storage medium or device in order to be interpreted by or to provide instructions or data to the processing device. Or may be permanently or temporarily embodied in a signal wave to be transmitted.
  • the software may be distributed over networked computer systems so that they may be stored or executed in a distributed manner.
  • Software and data may be stored on one or more computer readable recording media.
  • the method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Abstract

본 발명은 페이로드 시퀀스 저송 방법 및 장치에 관한 것으로, 일 실시예에서, -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 제 1 신호로 변환하는 제 1 신호 변환기를 포함하 고, 상기 제 1 신호 변환기는, 바이너리 데이터 시퀀스에 미리 설계된 시퀀스를 매핑하여 상기 터너리 페이로드 시퀀스를 생성하는 터너리 시퀀스 매퍼; 및 상기 터너리 페이로드 시퀀스를 상기 제 1 신호로 변환하는 변환기를포함하는 전송기를 제공한다.

Description

페이로드 시퀀스 전송 방법 및 장치
아래의 실시 예들은 페이로드 시퀀스 전송 방법 및 장치에 관한 것이다.
디지털 무선 통신 시스템의 변조 방식은 크게 난코히런트 변조 방식(noncoherent modulation)과 코히런트 변조 방식(coherent modulation)으로 나뉠 수 있다. 난코히런트 변조 방식은 저전력 및 저복잡도를 갖는 난코히런트 수신기에 적합하고, 코히런트 변조 방식은 전력 및 복잡도에 대한 제한이 크지 않고, 우수한 성능을 갖는 코히런트 수신기에 적합할 수 있다.
일 실시예에 따른 전송기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 제1 신호로 변환하는 제1 신호 변환기를 포함하고, 상기 제1 신호 변환기는, 바이너리 데이터 시퀀스에 미리 설계된 시퀀스를 매핑하여 상기 터너리 페이로드 시퀀스를 생성하는 터너리 시퀀스 매퍼; 및 상기 터너리 페이로드 시퀀스를 상기 제1 신호로 변환하는 변환기를 포함할 수 있다.
상기 터너리 시퀀스 매퍼는, 0 또는 1의 원소들로 구성되는 바이너리 데이터 시퀀스(binary data sequence)를 소정의 길이로 분할하고, 상기 분할된 바이너리 데이터 시퀀스에 상기 미리 설계된 터너리 시퀀스를 매핑할 수 있다.
상기 제1 신호 변환기는, 상기 제1 신호의 전송 전력 스펙트럼을 조절하는 펄스 쉐이핑 필터(pulse shaping filter)를 포함할 수 있다.
일 실시예에 따른 전송기는 상기 원소를 기초로 상기 제1 신호의 각 구간을 변환하여, 상기 제1 신호를 상기 제2 신호로 변환하는 제2 신호 변환기를 더 포함할 수 있다.
상기 제2 신호 변환기는, 상기 제1 신호 중 상기 0의 원소에 대응하는 구간을 변환하는 0값(zero value) 변환기; 및 상기 제1 신호 중 상기 1의 원소에 대응하는 구간 및 상기 -1의 원소에 대응하는 구간을 변환하는 절대값 1(absolute one value) 변환기를 포함할 수 있다.
상기 0값 변환기는, 상기 제1 신호 중 상기 0의 원소에 대응하는 구간을 검출하는 0값 검출기를 포함할 수 있다.
상기 0값 변환기는, 상기 0의 원소에 대응하는 구간의 출력을 오프(off)하는 온 오프 컨트롤러를 포함할 수 있다.
상기 절대값 1 변환기는, 상기 제1 신호 중 절대값 1의 원소와 대응하는 구간을 검출하는 절대값 검출기; 및 상기 절대값 1의 원소의 부호를 검출하여, 상기 절대값 1의 원소와 대응하는 구간을 상기 1의 원소와 대응하는 구간 및 상기 -1의 원소와 대응하는 구간으로 분류하는 부호 검출기를 포함할 수 있다.
상기 절대값 1 변환기는, 상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 주파수를 제1 주파수로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 주파수를 제2 주파수로 쉬프트하는 주파수 쉬프터(frequency shifter)를 포함할 수 있다.
상기 절대값 1 변환기는, 상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 위상을 제1 위상으로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 위상을 제2 위상으로 쉬프트하는 위상 쉬프터(phase shifter)를 포함할 수 있다.
상기 절대값 1 변환기는, 상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 주파수를 제1 주파수로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 주파수를 제2 주파수로 쉬프트하는 주파수 쉬프터(frequency shifter); 및 상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 위상을 제1 위상으로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 위상을 제2 위상으로 쉬프트하는 위상 쉬프터(phase shifter)를 포함할 수 있다.
상기 제2 신호 변환기는, 상기 제2 신호의 크기를 증폭하는 증폭기를 포함할 수 있다.
상기 터너리 시퀀스 매퍼는, 하기 [표 1]로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고, 하기 C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 7의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000001
상기 터너리 시퀀스 매퍼는, 하기 [표 2]로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고, 하기 C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 31의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000002
일 실시예에 따른 전송기는 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 생성하는 터너리 시퀀스 매퍼; 및 상기 터너리 페이로드 시퀀스를 신호로 변환하는 변환기를 포함하고, 상기 터너리 시퀀스 매퍼는, 하기 [표 3]으로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고, 하기 C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 7의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000003
일 실시예에 따른 전송기는 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 생성하는 터너리 시퀀스 매퍼; 및 상기 터너리 페이로드 시퀀스를 신호로 변환하는 변환기를 포함하고, 상기 터너리 시퀀스 매퍼는, 하기 [표 4]로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고, 하기 C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 31의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000004
일 실시예에 따른 수신기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호의 포락선의 크기값을 검출하는 포락선 검출기; 및 상기 검출된 포락선의 크기값과 소정의 바이너리 시퀀스들과의 코릴레이션을 기초로 상기 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출하는 바이너리 데이터 시퀀스 검출기를 포함할 수 있다.
일 실시예에 따른 수신기는 상기 수신 신호를 제1 주파수로 필터링하는 필터를 더 포함하고, 상기 포락선 검출기는, 상기 필터링된 수신 신호의 포락선을 검출할 수 있다.
상기 제1 주파수는, 상기 터너리 페이로드 시퀀스 중 1의 원소가 변환된 상기 수신 신호의 구간의 주파수를 나타내는 제2 주파수 및 상기 터너리 페이로드 시퀀스 중 -1의 원소가 변환된 상기 수신 신호의 구간의 주파수를 나타내는 제3 주파수 사이의 주파수일 수 있다.
상기 바이너리 데이터 시퀀스 검출기는, 상기 소정의 바이너리 시퀀스들 중 상기 검출된 포락선의 크기값과의 코릴레이션이 가장 높은 바이너리 시퀀스와 대응하는 비트 시퀀스를 상기 바이너리 데이터 시퀀스로 검출할 수 있다.
일 실시예에 따른 수신기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호의 포락선의 크기값을 검출하는 전체 포락선 검출기; 및 상기 검출된 포락선의 크기값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 상기 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출하는 바이너리 데이터 시퀀스 검출기를 포함할 수 있다.
상기 전체 포락선 검출기는, 상기 수신 신호를 제1 주파수로 필터링하는 제1 필터; 상기 수신 신호를 제2 주파수로 필터링하는 제2 필터; 상기 제1 주파수로 필터링된 수신 신호의 포락선을 나타내는 제1 포락선을 검출하는 제1 포락선 검출기; 상기 제2 주파수로 필터링된 수신 신호의 포락선을 나타내는 제2 포락선을 검출하는 제2 포락선 검출기; 및 상기 제1 포락선과 상기 제2 포락선의 차이를 이용하여 제3 포락선을 추출하는 연산기를 포함할 수 있다.
상기 바이너리 데이터 시퀀스 검출기는, 상기 소정의 터너리 시퀀스들 중 상기 제3 포락선과의 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 상기 바이너리 데이터 시퀀스로 검출할 수 있다.
일 실시예에 따른 수신기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호와 소정의 기준 신호와의 코릴레이션을 검출하는 코릴레이션 검출기; 및 상기 코릴레이션의 결과값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 상기 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출하는 바이너리 데이터 시퀀스 검출기를 포함할 수 있다.
상기 바이너리 데이터 시퀀스 검출기는, 상기 소정의 터너리 시퀀스들 중 상기 코릴레이션의 결과값과의 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 상기 바이너리 데이터 시퀀스로 검출할 수 있다.
일 실시예에 따른 수신기는 바이너리 데이터 시퀀스에 미리 정해진 터너리 시퀀스가 매핑되어 -1, 0 또는 1의 원소들로 구성된 터너리 페이로드 시퀀스가 변조된 신호를 수신하는 신호 수신기; 및 하기 [표 5]를 이용하여 상기 미리 정해진 터너리 시퀀스 및 상기 바이너리 데이터 시퀀스를 검출하는 검출기를 포함하고, 하기 C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 7의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000005
일 실시예에 따른 수신기는 바이너리 데이터 시퀀스에 미리 정해진 터너리 시퀀스가 매핑되어 -1, 0 또는 1의 원소들로 구성된 터너리 페이로드 시퀀스가 변조된 신호를 수신하는 신호 수신기; 및 하기 [표 6]을 이용하여 상기 미리 정해진 터너리 시퀀스 및 상기 바이너리 데이터 시퀀스를 검출하는 검출기를 포함하고, 하기 C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 31의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000006
도 1은 일 실시예에 따른 무선 통신 시스템을 나타낸 도면이다.
도 2는 일 실시예에 따른 전송 프레임을 나타낸 도면이다.
도 3은 일 실시예에 따른 전송기를 나타낸 블록도이다.
도 4 내지 도 6은 다른 일 실시예에 따른 전송기를 나타낸 블록도이다.
도 7 내지 도 9는 일 실시예에 따른 전송 신호를 설명하기 위한 도면이다.
도 10 내지 도 12는 일 실시예에 따른 수신기를 나타낸 블록도이다.
도 13 내지 도 15는 일 실시예에 따른 바이너리 데이터 시퀀스의 검출을 설명하기 위한 도면이다.
도 16을 다른 일 실시예에 따른 전송기를 나타낸 블록도이다.
도 17은 다른 일 실시예에 따른 수신기를 나타낸 블록도이다.
도 18은 일 실시예에 따른 전송 방법을 나타낸 동작 흐름도이다.
도 19는 다른 일 실시예에 따른 전송 방법을 나타낸 동작 흐름도이다.
도 20 내지 도 23은 일 실시예에 따른 수신 방법을 나타낸 동작 흐름도이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1은 일 실시예에 따른 무선 통신 시스템을 나타낸 도면이다.
도 1을 참조하면, 무선 통신 시스템은 코히런트 전송기(coherent transmitter)(110), 난코히런트 수신기(noncoherent receiver)(120, 130) 및 코히런트 수신기(coherent receiver)(140)를 포함할 수 있다. 난코히런트 수신기는 저 선택도(low selectivity) 난코히런트 수신기(120) 및 고 선택도(high selectivity) 난코히런트 수신기(130)으로 분류될 수 있다.
코히런트 전송기(110)는 데이터를 패킷 단위로 전송할 수 있다. 패킷은 코히런트 전송기(110)와 수신기들(120, 130, 140)의 페이로드(또는, PSDU)를 포함할 수 있다. 페이로드는 코히런트 전송기(110)가 전송하고자 하는 데이터 및 CRC(Cyclical Redundancy Check)를 포함할 수 있다.
코히런트 전송기(110)는 코히런트 변조(coherent modulation) 기법을 이용하여 페이로드를 변조할 수 있다. 코히런트 변조 기법에 의하여 바이너리 비트 시퀀스(binary bit sequence)를 수신기들(120, 130, 140)에 전송하는 경우, 코히런트 전송기(110)는 일정한 길이의 서로 다른 비트 시퀀스를 일정한 길이의 서로 다른 코드 시퀀스로 매핑한 후, 매핑된 코드 시퀀스들을 전송할 수 있다. 이 때, 코드 시퀀스의 길이(또는, 코드 시퀀스의 원소(element, alphabet)의 수)는 비트 시퀀스의 길이보다 클 수 있다. 또한, 코드 시퀀스는 {-1, 0, +1}의 원소들로 구성될 수 있다. 일 실시예에서, {-1, 0, +1}의 원소로 구성된 시퀀스는 터너리 시퀀스(ternary sequence)로 표현되고, {0, +1}의 원소로 구성된 시퀀스는 유니폴라 시퀀스(unipolar sequence)로 표현되고, {-1, 1}의 원소로 구성된 시퀀스는 바이폴라 시퀀스(bipolar sequence)로 표현될 수 있다. 여기서, +1 원소에 해당하는 캐리어 신호의 주파수와 -1 원소에 해당하는 캐리어 신호의 주파수가 서로 다를 경우, +1 원소는 캐리어 신호(carrier signal)의 위상(phase)(이하에서, 위상은 각 주파수(angular frequency)로 표현될 수 있음)값을 0으로 설정하는 것을 의미하고, 0 원소는 캐리어 신호를 오프시키는 것을 의미하고, -1 원소는 캐리어 신호의 위상값을 180도로 설정하는 것을 의미할 수 있다. 저 선택도 난코히런트 수신기(120)가 코히런트 전송기(110)로부터 패킷을 수신하는 경우, 저 선택도 난코히런트 수신기(120)는 난코히런트 복조(noncoherent demodulation) 기법을 이용하여 페이로드를 복조하기 때문에, 저 선택도 난코히런트 수신기(120)는 캐리어 신호의 서로 다른 위상을 구별할 수 없다. 이에 따라, 저 선택도 난코히런트 수신기(120)는 +1 원소와 -1 원소를 구별할 수 없으므로, 터너리 시퀀스를 유니폴라 시퀀스로 인지할 수 있다. 고 선택도 난코히런트 수신기(130)는 높은 주파수 선택도를 갖는 필터(또는, 높은 Q-팩터 필터)를 이용하여 캐리어 신호의 서로 다른 주파수를 구별할 수 있고, 이에 따라, 고 선택도 난코히런트 수신기(130)는 터너리 시퀀스의 +1 원소와 -1 원소를 구별하게 되어, 터너리 시퀀스를 인식할 수 있다.
코히런트 수신기(140)가 코히런트 전송기(110)로부터 패킷을 수신하는 경우, 코히런트 수신기(140)는 코히런트 복조(coherent demodulation) 기법을 이용하여 페이로드를 복조하여 수신 신호의 서로 다른 위상을 구별할 수 있기 때문에, 저 선택도 난코히런트 수신기(120)와 달리, 터너리 시퀀스를 인식할 수 있다.
이하에서는 난코히런트 수신기(120, 130) 및 코히런트 수신기(140)에 적용될 수 있는 터너리 시퀀스를 설계하는 방법에 대해 설명한다.
또한, 설계된 터너리 시퀀스를 이용하여 페이로드를 송수신하는 방법에 대해, 하기에서 도 2 내지 도 15를 참조하여 상세하게 설명된다.
<터너리 시퀀스의 설계>
* 시스템
터너리 시퀀스의 설계 과정에서, 시스템은 코히런트 전송기, 코히런트 수신기 및 난코히런트 수신기를 포함할 수 있다. 시스템에서는 아래의 원소들이 이용될 수 있다.
a) 유니폴라 바이너리 원소(alphabet) {0, 1}
b) 터너리 원소
Figure PCTKR2014010256-appb-I000007
터너리 원소로 구성된 시퀀스/코드워드는 터너리 시퀀스/코드워드로 나타낼 수 있고, 유니폴라 바이너리 원소로 구성된 시퀀스/코드워드는 유니폴라 바이너리 시퀀스/코드워드로 나타낼 수 있다.
일 실시예에서, 전송기는 M-ary 원소 S로부터 심볼을 추출할 수 있다. 여기서, S는
Figure PCTKR2014010256-appb-I000008
를 나타낼 수 있다. 이에 따라, 정보 레이트(information rate)는 k-비트/심볼(k-bits/symbol)일 수 있다. 전송기가 전송을 하기 전에, S로부터의 각 심볼은 소정의 확산 인자(spreading code) C로부터 M개의 가능한 파형들(또는, 코드워드들) 중 하나와 매핑될 수 있다. 다시 말해, 심볼의 매핑은
Figure PCTKR2014010256-appb-I000009
로 나타낼 수 있다. 또한, N이 코드워드의 길이를 나타내는 경우, 코드의 효율(effective rate)(또는, 확산 인자)은
Figure PCTKR2014010256-appb-I000010
로 나타낼 수 있다.
일 실시예에서, 심볼
Figure PCTKR2014010256-appb-I000011
(등가적으로,
Figure PCTKR2014010256-appb-I000012
)에 대응하는 전송된 파형은 아래 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000013
Figure PCTKR2014010256-appb-I000014
여기서,
Figure PCTKR2014010256-appb-I000015
는 칩 파형(chip waveform)을 나타내고, Tc는 칩을 나타내고, T는 심볼 구간을 나타낼 수 있다.
콘스탄트 웨이트 코드(constant weight code)(또는, 등 에너지 파형(equal energy waveforms)의 전제하에, 정합된 필터링(또는, 코릴레이션)에 의해 수신기에서 검출되는 심볼은 아래의 수학식 2와 같이 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000016
여기서, y(t)는 수신된 파형을 나타내고, y(t)는 AWGN(Additive White Gaussian Noise)에 의해 변형될 수 있다.
Figure PCTKR2014010256-appb-I000017
은 수신기에서 추정된 심볼로 정의될 수 있다.
수신기에서의 심볼 검출은 M개의 파형들 각각과 정합되는 M개의 코릴레이터들의 뱅크(bank)를 이용한 코릴레이션을 수행함으로써 획득될 수 있다.
* 코드 설계 요건
터너리 시퀀스/코드워드가 전송되는 경우, 코히런트 수신기는 칩들의 극성(polarity)을 인식하고, 이에 따라, 터너리 시퀀스/코드워드를 인식할 수 있다. 반면, 난코히런트 수신기(에너지 검출에 기초하는 수신기)는 위상 정보의 결여로 인하여, 터너리 시퀀스/코드워드를 유니폴라 바이너리 시퀀스/코드워드로 인식할 수 있다.
일 실시예에서, 확산 코드는 아래의 사항들을 만족해야 할 수 있다.
1) 터너리 코드 셋
Figure PCTKR2014010256-appb-I000018
에서의 시퀀스들은 최대한 분리될 수 있다.
2) 바이너리 셋
Figure PCTKR2014010256-appb-I000019
과 대응하는 시퀀스들은 최대한 분리될 수 있다.
* ULP(Ultra Low Power)를 위한 확산 코드 설계
ULP를 위한 확산 코드의 설계는 상술한 사항들과는 다른 양상을 나타낼 수 있다. 이는 코히런트 확산 코드 및 난코히런트 확산 코드의 설계가 서로 다른 것에 기인할 수 있다. 이하에서는 효율적인 확산 코드의 설계에 대해 설명한다.
* 기본 정의 및 컨셉
ULP를 위한 확산 코드들은 두 단계의 오토 코릴레이션 시퀀스들(two-level autocorrelation sequences)을 이용하여 획득될 수 있다. 두 단계의 오토 코릴레이션 시퀀스들은 코히런트 터너리 코드 및 난코히런트 바이너리 코드 또는 옵티컬 오소고날 코드(Optical Orthogonal Code: OOC)를 획득하기 위한 기초로 이용될 수 있다.
* 완전 주기 오토 코릴레이션(perfect periodic autocorrelation)을 갖는 터너리 시퀀스
완전 주기 오토 코릴레이션을 갖고 길이가 N인 터너리 시퀀스는 아래의 수학식 3과 같은 오토 코릴레이션을 가질 수 있다.
Figure PCTKR2014010256-appb-I000020
* 두 단계의 오토 코릴레이션 시퀀스
바이너리 시퀀스는
Figure PCTKR2014010256-appb-I000021
로 나타낼 수 있다. 바이너리 시퀀스는 아래 수학식 4의 조건을 만족한다면 두 단계의 오토 코릴레이션을 가질 수 있다.
Figure PCTKR2014010256-appb-I000022
여기서, 오토 코릴레이션 펑션
Figure PCTKR2014010256-appb-I000023
Figure PCTKR2014010256-appb-I000024
로 정의될 수 있다. A가 -1일 경우, 바이너리 시퀀스는 이상적인 두 단계의 오토 코릴레이션 시퀀스가 될 수 있다. 이러한 시퀀스들은 코히런트 터너리 시퀀스 및 난코히런트 바이너리 시퀀스들 사이의 가교 역할을 수행할 수 있다. 이러한 시퀀스들의 대부분은 길이
Figure PCTKR2014010256-appb-I000025
(m은 정수)를 갖는 m-시퀀스일 수 있다.
* 사이클릭 디퍼런스 셋(cyclic difference set)
Figure PCTKR2014010256-appb-I000026
의 디퍼런스 셋은
Figure PCTKR2014010256-appb-I000027
로 나타낼 수 있다. 여기서, k는 정수를 나타낼 수 있다. 셋 D의 요소들의 솔루션 페어들
Figure PCTKR2014010256-appb-I000028
Figure PCTKR2014010256-appb-I000029
개일 수 있고, di와 dj 간의 관계는
Figure PCTKR2014010256-appb-I000030
로 나타낼 수 있다. 여기서, t는
Figure PCTKR2014010256-appb-I000031
와 같이 나타낼 수 있다.
사이클릭 디퍼런스 셋은 두 단계의 오토 코릴레이션 시퀀스들과 일대일로 대응될 수 있다. 이에 따라, 사이클릭 디퍼런스 셋은 완전 오토콜리레이션을 갖는 터너리 시퀀스들의 설계에 이용될 수 있다.
* ULP를 위한 확산 코드
시스템을 완전히 동기화 하기 위한 가장 좋은 방법은 좋은 오토 코릴레이션 속성을 갖는 시퀀스들을 선택하고, 서로 다른 심볼들에 서로 다른 사이클릭 쉬프트를 할당하는 것일 수 있다.
아래에서는, 확산 인자 8, 16 및 32의 쉬프트 등가 코드들(shift equivalent codes)의 설계 방안에 대해 설명한다.
1. 주기가 N-1인 m-시퀀스를 선택할 수 있다. 여기서, N은 터너리 코드의 목표 확산 인자를 나타낼 수 있다.
2. 특정 1의 원소들을 변환하고, 0의 원소들은 유지함으로써, m-시퀀스로부터 동일 주기의 터너리 시퀀스를 획득할 수 있다. 이는 프로시저 A로 나타낼 수 있다.
3. 가능한 시퀀스의 코릴레이션을 손상시키지 않게 하기 위하여, 시퀀스에 0의 원소 또는 1의 원소를 부가할 수 있다.
4. m-시퀀스 및 제로-패딩(zero padding)에 따라, 아래의 두 가지 케이스들이 가능할 수 있다.
Figure PCTKR2014010256-appb-I000032
) (가중치 N/2 또는 (N-2)/2의 m-시퀀스로부터의) 발란스드 터너리 시퀀스
Figure PCTKR2014010256-appb-I000033
) (모든 가중치가 (N-2)/2 또는 N/2+1인) 언발란스드 터너리 시퀀스
획득된 터너리 시퀀스들은 좋은 코릴레이션 속성들에 의해 특징지어질 수 있다. 서로 다른 심볼들이 할당된 확산 시퀀스들의 셋은 획득된 터너리 시퀀스들의 사이클릭 쉬프트로 획득될 수 있다. 일 실시예에서, 상술한 8, 16 및 32의 확산 인자는 각각 심볼 사이즈 3, 4 및 5에 대응될 수 있다.
* 가중치 N/2의 m-시퀀스들로부터 획득된 발란스드 시퀀스
아래는 가중치 N/2의 m-시퀀스로부터 가중치 N/2의 발란스드 터너리 시퀀스를 획득하는 프로시저를 나타낼 수 있다.
1. 가중치 N/2의 m-시퀀스를 선택할 수 있다.
2. N이 완전 제곱일 경우, 프로시저 A를 이용하여 주기 N-1의 m-시퀀스로부터 주기 N-1의 터너리 시퀀스를 획득할 수 있다.
3. 평균 제곱 오토 코릴레이션(Mean Squared AutoCorrelation: MSAC)가 최소가 되도록, 획득한 터너리 시퀀스에 0의 원소를 부가할 수 있다. 여기서, 평균 제곱 오토 코릴레이션은 아래의 수학식 5와 같이 정의될 수 있다.
Figure PCTKR2014010256-appb-I000034
여기서,
Figure PCTKR2014010256-appb-I000035
는 딜레이
Figure PCTKR2014010256-appb-I000036
에서 시퀀스의 주기로 정규화된 오토 코릴레이션을 나타내고, 아래의 수학식 6과 같이 정의될 수 있다.
Figure PCTKR2014010256-appb-I000037
여기서, w는 시퀀스의 해밍 가중치(hamming weight)를 나타낼 수 있다. 가중치가 N/2인 대표적인 m-시퀀스로부터 획득된 발란스드 시퀀스들은 아래의 표 1과 같이 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000038
Figure PCTKR2014010256-appb-I000039
일 실시예에서, 다른 m-시퀀스들은 기본 시퀀스로 대체될 수 있다.
* 가중치 (N-2)/2의 m-시퀀스들로부터 획득된 발란스드 시퀀스
아래는 가중치 (N-2)/2의 m-시퀀스로부터 가중치 N/2의 발란스드 터너리 시퀀스를 획득하는 프로시저를 나타낼 수 있다.
1. m-시퀀스로부터 주기 N-1의 터너리 시퀀스를 획득할 수 있다. 가중치 (N-2)/2를 갖는 완전한 터너리 시퀀스는 존재하지 않을 수 있다. 이에 따라, 터너리 원소에서 양호한 코릴레이션 속성을 갖는 터너리 시퀀스를 도출하기 위해 프로시저 B를 이용할 수 있다.
2. 평균 제곱 오토 코릴레이션(Mean Squared AutoCorrelation: MSAC)가 최소가 되도록, 획득한 터너리 시퀀스에 1의 원소를 부가할 수 있다.
3. 결과 시퀀스들은 가중치 N/2에 의해 특징지어질 수 있다.
가중치가 (N-2)/2인 대표적인 m-시퀀스로부터 획득된 발란스드 시퀀스들은 아래의 표 2와 같이 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000040
Figure PCTKR2014010256-appb-I000041
일 실시예에서, 다른 m-시퀀스들은 기본 시퀀스로 대체될 수 있다.
* 통합된 리스트(consolidated list)
하기 표 3과 같은 시퀀스들을 도출하기 위하여, 0의 원소 및 0이 아닌 원소가 균일하게 분포된 시퀀스는 표 1 및 표 2로부터 선택될 수 있다.
Figure PCTKR2014010256-appb-I000042
표 3의 기본 터너리 확산 시퀀스들은 무선 채널을 통해 전송하기 위하여 데이터 심볼들을 인코딩하기 위해 이용될 수 있다. 데이터 심볼들을 인코딩하기 위한 확산 시퀀스들이 표 3의 하나의 기본 터너리 확산 시퀀스의 사이클릭 쉬프트를 통해 획득됨에 따라, 구별되는 확산 시퀀스(distinct spreading sequence)의 수는 확산 인자와 같아질 수 있다. 이에 따라, 확산 인자 M의 확산 시퀀스들은 크기가
Figure PCTKR2014010256-appb-I000043
인 데이터 심볼들을 인코딩하기 위해 이용될 수 있다. 예를 들어, 확산 인자 M=8의 확산 시퀀스는 크기
Figure PCTKR2014010256-appb-I000044
인 데이터 심볼을 인코딩하기 위해 이용될 수 있다.
또한, 확산 인자 16 및 32의 확산 시퀀스들은 각각 크기가 4 및 5인 데이터 심볼들을 인코딩하는데 이용될 수 있다. 표 3에서의 기본 터너리 확산 시퀀스들은 각각 3/8-OOK, 4/16-OOK 및 5/32-OOK로 표현될 수 있다. 후술하는 표 4는 표 3의 기본 터너리 시퀀스들을 3/8-OOK, 4/16-OOK 및 5/32-OOK로 분류하여 나타낸 것이다.
Figure PCTKR2014010256-appb-I000045
일 실시예에서, 확산 코드들은 어떠한 커스터마이즈 로직(예를 들어, 그레이 코딩(grey coding))을 기초로 데이터 심볼들이 할당될 수 있다. 표 5는 대표적인 k=3, M=8인 데이터 심볼들에의 확산 코드들의 대표적인 할당을 나타낼 수 있다. 여기서, 원 시퀀스(original sequence)에의 사이클릭 쉬프트는 바이너리 데이터 심볼의 십진 등가치(decimal equivalent) 일 수 있다.
Figure PCTKR2014010256-appb-I000046
* 최대 길이 쉬프트 레지스터 시퀀스(m-시퀀스)
m-시퀀스 또는 최대 길이 시퀀스는 두 단계의 이상적인 오토 코릴레이션 시퀀스의 일반적인 등급에 속하고, 모든
Figure PCTKR2014010256-appb-I000047
(m은 정수)을 위해 존재할 수 있다. m-시퀀스는 원시 다항식의 피드백을 갖는 선형 피드백 쉬프트 레지스터(Linear Feedback Shift Registers: LFSR)를 이용하여 생성될 수 있다. 이러한 시퀀스는 주어진 길이의 LFSR로부터 획득된 최대 주기에 대응할 수 있다.
* 시퀀스 설계에서 m-시퀀스를 이용할 경우의 이점
확산 시퀀스들의 설계에서 m-시퀀스의 이용은 코히런트 및 난코히런트 모두에 이점을 가질 수 있다.
난코히런트의 관점에서의 m-시퀀스의 이용의 이점은 아래와 같다.
1) m-시퀀스는
Figure PCTKR2014010256-appb-I000048
형태의 사이클릭 디퍼런스 셋과 대응할 수 있다.
2) 이는 유니폴라 바이너리 원소 {0, 1}상의 (N+1)/4의 위상 오토 코릴레이션(phase autocorrelation)에서의 상수를 나타낼 수 있다.
코히런트의 관점에서의 m-시퀀스의 이용의 이점은 아래와 같다.
1) m-시퀀스가 완전 제곱일 경우, 0의 원소를 유지하기 위하여, 원소 {0, -1, 1}상의 완전 시퀀스(perfect sequence)는 m-시퀀스(프로시저 A)로부터 생성될 수 있다.
2) 주기 7 및 31의 완전 시퀀스가 획득될 수 있다.
3) 이러한 시퀀스는 제로 패딩(zero padding)에 의해 확장될 수 있고, 이에 따라 코릴레이션 속성이 손상되지 않을 수 있다. 이 결과는 주기 8 및 32의 시퀀스로 나타날 수 있다. 완전에 가까운 터너리 시퀀스는 프로시저 B에서 설명한 방법에 의해 확산 인자 15를 위해 획득될 수 있다.
* 프로시저 A: m-시퀀스로부터 완전 터너리 시퀀스를 획득
x 및 y가 두 개의 이상적인 두 단계의 오토 코릴레이션 시퀀스일 경우, 이러한 시퀀스
Figure PCTKR2014010256-appb-I000049
는 위상 오토 코릴레이션에서의 0의 원소를 갖는 완전 시퀀스일 수 있다. 여기서,
Figure PCTKR2014010256-appb-I000050
는 시퀀스 x 및 y 사이의 크로스 코릴레이션(cross correlation) 시퀀스일 수 있다. 두 시퀀스들이 m-시퀀스들 중 선호되는 페어(pair)로서 선택되는 경우, 그 결과인
Figure PCTKR2014010256-appb-I000051
는 터너리일 수 있다. 예를 들어, 선호되는 페어가
Figure PCTKR2014010256-appb-I000052
일 때, 이는
Figure PCTKR2014010256-appb-I000053
로 나타날 수 있다.
Figure PCTKR2014010256-appb-I000054
Figure PCTKR2014010256-appb-I000055
로 나눈 결과는 원소
Figure PCTKR2014010256-appb-I000056
를 갖는 시퀀스로 나타낼 수 있다.
* 프로시저 B: m-시퀀스로부터 완전에 가까운 터너리 시퀀스를 획득
완전 터너리 시퀀스는 시퀀스의 가중치가 완전 제곱일 경우에 존재할 수 있다. 이에 따라, 주기가 15와 같은 완전 터너리 시퀀스는 존재하지 않을 수 있다. 이 경우, 완전 터너리 시퀀스에서 -1의 원소들과 +1의 원소들의 비율은 1/3과 2/3 사이로 나타날 수 있다. 이에 따라, 완전에 가까운 터너리 시퀀스는 이러한 비율을 기초로 획득될 수 있다. 평균 제곱 오토 코릴레이션(Mean Squared AutoCorrelation: MSAC)이 가장 적은 값을 갖는 시퀀스가 선택될 수 있다. 평균 제곱 오토 코릴레이션은 아래의 수학식 7과 같이 정의될 수 있다.
Figure PCTKR2014010256-appb-I000057
여기서,
Figure PCTKR2014010256-appb-I000058
는 딜레이가
Figure PCTKR2014010256-appb-I000059
에서 시퀀스의 주기적인 오토 코릴레이션일 수 있다.
<터너리 페이로드 시퀀스의 송수신>
도 2는 일 실시예에 따른 전송 프레임을 나타낸 도면이다.
도 2를 참조하면, 전송 프레임(200)은 프리앰블(preamble)(210), SFD(Start Frame Delimiter)(220), PHR(PHysical layer Header)(230), PSDU(Physical Service Data Unit)(240)를 포함할 수 있다. 일 실시예에서, 패킷은 전송 프레임(200)과 동일한 의미로 이용될 수 있다.
프리앰블(210)은 전송 프레임(200)의 선두에 기록되는 비트 열(bit string)일 수 있다. 프리앰블(210)은 시간 동기화(time synchronization)를 위한 특정한 비트-패턴을 포함할 수 있다.
SFD(220)는 프레임의 시작(beginning of the frame)을 식별하고, 동기화의 재확인을 식별할 수 있다. 또한, SFD(220)는 프레임 동기화(frame synchronization)를 획득하기 위한 필드를 의미할 수 있다.
PHR(230)은 물리적 계층(physical layer)에 관련된 유용한 정보들을 나타내는 필드일 수 있다. 예를 들어, 정보들은 길이 지시자, 사용된 모듈레이션 방식 및 사용된 부호화 방식에 관한 정보들일 수 있다. 또한, PHR(230)은 PSDU(240)의 형식에 관한 필드 및 헤더 체크 시퀀스(Header Check Sequence; HCS)를 포함할 수 있다. 여기서, HCS는 PHR(230)에 오류가 발생했는지 여부를 판단하는데 이용될 수 있다.
PSDU(240)는 물리적 계층의 상위 계층으로부터 전달된, 비트들의 형식의 부호화되지 않은 데이터의 유닛일 수 있다. PSDU(240)는 물리적 계층보다 상위 계층에서 실제로 송수신되는 데이터들을 포함할 수 있다. PSDU(240)는 페이로드(payload)로 표현될 수 있다.
도 3은 일 실시예에 따른 전송기를 나타낸 블록도이다.
도 3을 참조하면, 전송기(300)는 제1 신호 변환기(310) 및 제2 신호 변환기(320)를 포함할 수 있다. 여기서, 전송기(300)는 도 1에서 설명된 코히런트 전송기(110)를 의미할 수 있다. 이하에서, 전송기가 바이너리 데이터 시퀀스를 제1 신호 및 제2 신호를 변환하는 기법은 TASK(Ternary Amplitude Shift Keying), TFSK(Ternary Frequency Shift Keying) 또는 On-off FSK로 표현될 수 있다.
제1 신호 변환기(310)는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스(ternary payload sequence)를 제1 신호로 변환할 수 있다. 일 실시예에서, 원소들은 알파벳(alphabet) 또는 칩(chip)으로도 표현될 수 있다.
제1 신호 변환기(310)는 터너리 시퀀스 매퍼 및 변환기를 포함할 수 있다. 터너리 시퀀스 매퍼는 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 터너리 페이로드 시퀀스를 생성할 수 있다. 일 실시예에서, 터너리 시퀀스 매퍼는 0 또는 1의 원소들로 구성된 바이너리 데이터 시퀀스를 소정의 길이로 분할하고, 분할된 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 터너리 페이로드 시퀀스를 생성할 수 있다. 여기서, 미리 설계된 터너리 시퀀스는 앞서 설명한 터너리 시퀀스의 설계에서 추출된 터너리 시퀀스를 의미할 수 있다. 또한, 미리 설계된 터너리 시퀀스는 전송기(300)에 미리 저장될 수 있다. 예를 들어, 미리 설계된 터너리 시퀀스는 룩업 테이블로 저장될 수 있다.
일 실시예에서, 3/8 TASK(Ternary Amplitude Shift Keying)의 변조 기법에 의할 경우, 바이너리 데이터 시퀀스에 매핑되는 터너리 시퀀스는 표 6과 같이 나타날 수 있다.
Figure PCTKR2014010256-appb-I000060
여기서, C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 의미할 수 있고, Cm은 C0이 m만큼 오른쪽으로 사이클링 쉬프트된 시퀀스를 나타내고, m은 1 내지 7의 정수를 나타낼 수 있다. 예를 들어, C1은 [1 0 0 0 1 -1 0 1]의 시퀀스를 나타내고, C2는 [1 1 0 0 0 1 -1 0]의 시퀀스를 나타낼 수 있다.
또한, 5/32 TASK(Ternary Amplitude Shift Keying)의 변조 기법에 의할 경우, 바이너리 데이터 시퀀스에 매핑되는 터너리 시퀀스는 표 7과 같이 나타날 수 있다.
Figure PCTKR2014010256-appb-I000061
여기서, C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 의미할 수 있고, Cm은 C0이 m만큼 오른쪽으로 사이클링 쉬프트된 시퀀스를 나타내고, m은 1 내지 31의 정수를 나타낼 수 있다.
일 실시예에서, 터너리 시퀀스 매퍼는 상술한 표 6 또는 표 7에서 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 검색하고, 검색된 터너리 시퀀스를 미리 설계된 터너리 시퀀스로 추출하여, 이를 바이너리 데이터 시퀀스에 매핑할 수 있다.
변환기는 터너리 페이로드 시퀀스를 TASK 변조 기법에 따라 변조하여, 터너리 페이로드 시퀀스(또는, 페이로드의 칩 시퀀스, PPDU의 칩 시퀀스)를 제1 신호로 변환할 수 있다.
일 실시예에서, 변환기는 ASK(Amplitude Shift Keying) 변조 기법을 이용하여 터너리 페이로드 시퀀스를 변조할 수 있다. 이 때, 변환기는 아래의 수학식 8과 같이 터너리 페이로드 시퀀스를 매핑할 수 있다.
Figure PCTKR2014010256-appb-I000062
여기서,
Figure PCTKR2014010256-appb-I000063
은 터너리 페이로드 시퀀스를 나타내고,
Figure PCTKR2014010256-appb-I000064
은 n번째 원소(또는, 칩)의 크기를 나타내고,
Figure PCTKR2014010256-appb-I000065
는 전송 전압 레벨을 나타낼 수 있다. ASK 변조 기법에는 가우시안 펄스 쉐이핑이 이용될 수 있다. 터너리 페이로드 시퀀스의 각 원소들은 1 Mchip/s for 2.4 GHz band; 600 Kchips/s for 780 MHz, 863 MHz, 900 MHz and 950 MHz bands; and 250 Kchips/s for 433MHz 및 470 MHz bands의 레이트에서 생성될 수 있다.
또한, 제1 신호 변환기(310)는 펄스 쉐이핑 필터(pulse shaping filter)를 포함할 수 있다. 펄스 쉐이핑 필터는 터너리 페이로드 시퀀스의 각 원소를 순서대로 입력받아, 기저 대역의 제1 신호의 모양이 시간축에서 급격하게 변하지 않고 부드럽게 변하게 함으로써, 제1 신호의 주파수 대역이 넓게 분포하지 않게 조절할 수 있다.
일 실시예에서, 펄스 쉐이핑 필터는 전송 전력 스펙트럼(transmit power spectrum)을 조절할 수 있다. 펄스 쉐이핑 필터는 구간이 T이고, BT가 0.3 내지 0.5인 이상적인 가우시안 펄스를 근사화할 수 있다. 펄스 쉐이핑 필터의 임펄스 응답은 아래의 수학식 9와 같이 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000066
또한, 터너리 페이로드 시퀀스가 변조된 제1 신호는 아래의 수학식 10과 같이 나타날 수 있다.
Figure PCTKR2014010256-appb-I000067
여기서,
Figure PCTKR2014010256-appb-I000068
은 터너리 페이로드 시퀀스의 원소를 나타내고,
Figure PCTKR2014010256-appb-I000069
은 원소에 대응하는 제1 신호의 구간을 나타내고,
Figure PCTKR2014010256-appb-I000070
는 터너리 페이로드 시퀀스의 원소들의 개수를 나타낼 수 있다. 터너리 페이로드 시퀀스의 원소들은 아래의 수학식 11과 같이 나타날 수 있다.
Figure PCTKR2014010256-appb-I000071
여기서,
Figure PCTKR2014010256-appb-I000072
은 프리앰블 필드를 구성하는 칩 시퀀스를 나타내고,
Figure PCTKR2014010256-appb-I000073
는 확산 SFD 필드를 구성하는 칩 시퀀스를 나타내고,
Figure PCTKR2014010256-appb-I000074
는 확산 PHR 필드를 구성하는 칩 시퀀스를 나타내고,
Figure PCTKR2014010256-appb-I000075
는 인코딩된 터너리 시퀀스 확산 PSDU 필드를 구성하는 칩 시퀀스를 나타낼 수 있다.
터너리 페이로드 시퀀스가 변조된 제1 신호의 통과 대역은 아래의 수학식 12와 같이 나타날 수 있다.
Figure PCTKR2014010256-appb-I000076
여기서,
Figure PCTKR2014010256-appb-I000077
는 캐리어의 각 주파수(angular frequency)를 나타내고,
Figure PCTKR2014010256-appb-I000078
은 랜덤 위상(random phase)을 나타낼 수 있다.
또한, 제2 신호 변환기(320)는 터너리 페이로드 시퀀스의 원소를 기초로 제1 신호의 각 구간을 변환하여, 제1 신호를 제2 신호로 변환할 수 있다. 제2 신호 변환기(320)는 제1 신호 중 0의 원소에 대응하는 구간을 변환하는 0값 변환기 및 제1 신호 중 1의 원소에 대응하는 구간 및 -1의 원소에 대응하는 구간을 변환하는 절대값 1 변환기를 포함할 수 있다.
0값 변환기는 0값 검출기 및 온 오프 컨트롤러를 이용하여 제1 신호 중 0의 원소에 대응하는 구간을 변환할 수 있다. 0값 검출기는 제1 신호 중 0의 원소에 대응하는 구간을 검출할 수 있다. 예를 들어, 0값 검출기는 제1 신호의 크기가 0에 가까운 구간을 0의 원소에 대응하는 구간으로 검출할 수 있다. 온 오프 컨트롤러는 0값 검출기에서 검출된 0의 원소에 대응하는 구간의 출력을 오프할 수 있다. 이에 따라, 제2 신호 중 0의 원소에 대응되는 구간의 크기는 0일 수 있다.
또한, 절대값 1 변환기는 제1 신호 중 1의 원소에 대응하는 구간 및 -1의 원소에 대응하는 구간을 검출하고, 1의 원소에 대응하는 구간 및 -1의 원소에 대응하는 구간을 서로 다른 변환 기법으로 변환할 수 있다.
일 실시예에서, 절대값 1 변환기는 절대값 검출기 및 부호 검출기를 이용하여 제1 신호 중 1의 원소에 대응하는 구간 및 -1의 원소에 대응하는 구간을 검출할 수 있다. 절대값 검출기는 제1 신호 중 절대값 1의 원소와 대응하는 구간(예를 들어, 제1 신호의 크기가 미리 정해진 크기 이상인 구간)을 절대값 1의 원소에 대응하는 구간으로 검출할 수 있다. 부호 검출기는 절대값 1의 원소의 부호를 검출하여 절대값 1의 원소와 대응하는 구간을 1의 원소와 대응하는 구간 및 -1의 원소와 대응하는 구간으로 분류할 수 있다. 예를 들어, 부호 검출기는 절대값 1의 원소에 대응하는 구간 중 위상이 0도인 구간을 1의 원소에 대응하는 구간으로 검출하고, 위상이 180도인 구간을 -1의 원소에 대응하는 구간으로 검출할 수 있다.
또한, 절대값 1 변환기는 주파수 쉬프터 또는/및 위상 쉬프터를 이용하여 1의 원소와 대응하는 구간 및 -1의 원소와 대응하는 구간을 변환할 수 있다. 예를 들어, 절대값 1 변환기는 난코히런트 수신기에 제2 신호를 전송할 경우, 주파수 쉬프터를 이용하여 1의 원소와 대응하는 구간 및 -1의 원소와 대응하는 구간을 변환할 수 있다. 코히런트 수신기에 제2 신호를 전송할 경우, 절대값 1 변환기는 주파수 쉬프터와 위상 쉬프터를 함께 이용하여 1의 원소와 대응하는 구간 및 -1의 원소와 대응하는 구간을 변환할 수 있다.
주파수 쉬프터는 제1 신호 중 1의 원소에 대응하는 구간의 주파수를 주파수 f1으로 쉬프트하고, -1의 원소에 대응하는 구간의 주파수를 주파수 f2로 쉬프트할 수 있다.
예를 들어, 제1 신호 중 1의 원소와 대응하는 구간을 변환하는 경우, 주파수 쉬프터는 VCO에 의해 주파수가 조정된 캐리어 신호의 주파수를 주파수 f1으로 쉬프트하고, 절대값 1 변환기는 주파수 f1로 쉬프트된 캐리어 신호와 1의 원소와 대응하는 구간의 크기의 절대값을 곱할 수 있다. 또한, 주파수 쉬프터는 1의 원소와 대응하는 구간의 크기의 절대값에 비례하는 값을 포락선으로 갖는 캐리어 신호의 주파수를 주파수 f1으로 쉬프트할 수 있다. 다른 예로서, 제1 신호 중 -1의 원소와 대응하는 구간을 변환하는 경우, 주파수 쉬프터는 VCO에 의해 주파수가 조정된 캐리어 신호의 주파수를 주파수 f2로 쉬프트하고, 절대값 1 변환기는 주파수 f2로 쉬프트된 캐리어 신호와 -1의 원소와 대응하는 구간의 크기의 절대값을 곱할 수 있다. 또한, 주파수 쉬프터는 -1의 원소와 대응하는 구간의 크기의 절대값에 비례하는 값을 포락선으로 갖는 캐리어 신호의 주파수를 주파수 f2로 쉬프트할 수 있다. 일 실시예에서, 주파수 f1과 주파수 f2는 서로 다른 주파수 대역을 가질 수 있다. 예를 들어, 주파수 f2의 크기는 주파수 f1보다 클 수 있다.
또한, 위상 쉬프터는 제1 신호 중 1의 원소에 대응하는 구간의 위상을 위상 θ1으로 쉬프트하고, -1의 원소에 대응하는 구간의 위상을 위상 θ2로 쉬프트할 수 있다. 예를 들어, 위상 쉬프터는 캐리어 신호의 위상을 0도로 쉬프트하고, 절대값 1 변환기는 0도로 쉬프트된 캐리어 신호와 1의 원소와 대응하는 구간의 크기의 절대값을 곱할 수 있다. 또한, 위상 쉬프터는 1의 원소와 대응하는 구간의 크기의 절대값에 비례하는 값을 포락선으로 갖는 캐리어 신호의 위상을 0도로 쉬프트할 수 있다. 다른 예로서, 위상 쉬프터는 캐리어 신호의 위상을 180도로 쉬프트하고, 절대값 1 변환기는 180도로 쉬프트된 캐리어 신호와 -1의 원소와 대응하는 구간의 크기의 절대값을 곱할 수 있다. 또한, 위상 쉬프터는 -1의 원소와 대응하는 구간의 크기의 절대값에 비례하는 값을 포락선으로 갖는 캐리어 신호의 위상을 180도로 쉬프트할 수 있다.
일 실시예에서, 위상 쉬프터는 주파수 쉬프터에 의해 주파수 f1으로 쉬프트된 1의 원소와 대응하는 구간의 위상을 위상 θ1으로 쉬프트하고, 주파수 f2로 쉬프트된 -1의 원소와 대응하는 구간의 위상을 위상 θ2로 쉬프트할 수 있다.
또한, 제2 신호 변환기(320)는 증폭기를 포함할 수 있다. 증폭기는 변환된 제2 신호의 크기를 증폭할 수 있다. 전송기(300)는 증폭된 제2 신호를 안테나를 통하여 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다.
도 4 내지 도 6은 다른 일 실시예에 따른 전송기를 나타낸 블록도이다.
도 4를 참조하면, 전송기(400)는 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 데이터를 전송할 수 있다. 전송기(400)는 제1 신호 변환기(410) 및 제2 신호 변환기(420)를 포함할 수 있다. 제1 신호 변환기(410)는 터너리 시퀀스 매퍼(411) 및 펄스 쉐이핑 필터(412)를 포함할 수 있다.
터너리 시퀀스 매퍼(411)는 0 또는 1의 원소들로 구성된 바이너리 데이터 시퀀스를 소정의 길이로 분할하고, 분할된 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 터너리 페이로드 시퀀스를 생성할 수 있다. 예를 들어, 터너리 시퀀스 매퍼(411)에 [1 0 1 0 0 1 1 1 0]의 바이너리 데이터 시퀀스가 입력되는 경우, 터너리 시퀀스 매퍼(411)는 바이너리 데이터 시퀀스를 [1 0 1], [0 0 1], [1 1 0]로 분할할 수 있다. 터너리 시퀀스 매퍼(411)는 분할된 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑할 수 있다. 예를 들어, 분할된 바이너리 데이터 시퀀스 [1 0 1]에 대응하는 미리 설계된 터너리 시퀀스가 [0 1 -1 0 1 1 0 0]인 경우, 터너리 시퀀스 매퍼(411)는 분할된 바이너리 시퀀스 [1 0 1]에 터너리 시퀀스 [0 1 -1 0 1 1 0 0]를 매핑하여 터너리 페이로드 시퀀스 [0 1 -1 0 1 1 0 0]를 생성할 수 있다. 또한, 터너리 시퀀스 매퍼(411)는 터너리 페이로드 시퀀스를 제1 신호로 변조할 수 있다.
또한, 터너리 시퀀스 매퍼(411)는 ASK 변조 기법을 이용하여 터너리 페이로드 시퀀스를 변조할 수 있다. 일 실시예에서, 터너리 시퀀스 매퍼(411)는 도 3에서 설명한 변환기를 포함할 수 있다. 예를 들어, 터너리 페이로드 시퀀스 [0 1 -1 0 1 1 0 0]를 제1 신호로 변조하는 경우, 터너리 페이로드 시퀀스의 0에 대응하는 제1 신호의 구간의 크기는 0일 수 있고, 1에 대응하는 제1 신호의 구간의 크기는 양의 값을 가질 수 있고, -1에 대응하는 제1 신호의 구간의 크기는 음의 값을 가질 수 있다.
펄스 쉐이핑 필터(412)는 터너리 페이로드 시퀀스의 각 원소를 순서대로 입력받아 제1 신호의 주파수 대역이 넓게 분포하지 않게 조절할 수 있다.
제2 신호 변환기(420)는 0값 변환기(430), 절대값 1 변환기(440) 및 증폭기(450)를 포함할 수 있다.
0값 변환기(430)는 0값 검출기(431) 및 온 오프 컨트롤러(432)를 포함할 수 있다. 0값 검출기(431)는 제1 신호의 크기가 소정의 임계값보다 작은 구간을 0의 원소에 대응하는 구간으로 검출할 수 있다. 여기서, 소정의 임계값은 제1 신호의 노이즈의 크기를 나타낼 수 있다. 온 오프 컨트롤러(432)는 0값 검출기에서 검출된 0의 원소에 대응하는 구간의 출력을 오프할 수 있다.
절대값 1 변환기(440)는 절대값 검출기(441), 부호 검출기(442), VCO(443), 주파수 쉬프터(444) 및 연산기(445)를 포함할 수 있다.
절대값 검출기(441)는 제1 신호의 크기가 미리 정해진 임계값 이상인 구간을 절대값 1의 원소에 대응하는 구간으로 검출할 수 있다. 부호 검출기(442)는 절대값 1의 원소의 부호를 검출하여 절대값 1의 원소와 대응하는 구간을 1의 원소와 대응하는 구간 및 -1의 원소와 대응하는 구간으로 분류할 수 있다. 예를 들어, 부호 검출기(442)는 절대값 1의 원소에 대응하는 구간 중 위상이 0도인 구간을 1의 원소에 대응하는 구간으로 검출하고, 위상이 180도인 구간을 -1의 원소에 대응하는 구간으로 검출할 수 있다.
VCO(443)는 캐리어 신호의 주파수를 조절할 수 있다. 주파수 쉬프터(444)는 1의 원소에 대응하는 구간의 캐리어 신호를 주파수 f1으로 쉬프트하고, -1의 원소에 대응하는 구간의 캐리어 신호를 주파수 f2로 쉬프트할 수 있다.
연산기(445)는 주파수 f1으로 쉬프트된 캐리어 신호와 1의 원소에 대응하는 구간의 크기의 절대값을 곱하고, 주파수 f2로 쉬프트된 캐리어 신호와 -1의 원소에 대응하는 구간의 크기의 절대값을 곱하여 제2 신호를 생성할 수 있다.
증폭기(450)는 제2 신호의 크기를 증폭할 수 있다. 전송기(400)는 증폭된 제2 신호를 안테나를 통하여 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다.
도 5를 참조하면, 전송기(500)는 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 데이터를 전송할 수 있다. 전송기(500)는 제1 신호 변환기(510) 및 제2 신호 변환기(520)를 포함할 수 있다. 제1 신호 변환기(510)는 터너리 시퀀스 매퍼(511) 및 펄스 쉐이핑 필터(512)를 포함할 수 있다.
터너리 시퀀스 매퍼(511)는 0 또는 1의 원소들로 구성된 바이너리 데이터 시퀀스를 입력받아 소정의 길이로 분할하고, 분할된 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 터너리 페이로드 시퀀스를 생성할 수 있다.
또한, 제1 신호 변환기(510)는 터너리 페이로드 시퀀스를 변조하여 제1 신호를 생성할 수 있다. 일 실시예에서, 터너리 시퀀스 매퍼(511)는 도 3에서 설명한 변환기를 포함할 수 있다.
펄스 쉐이핑 필터(512)는 터너리 페이로드 시퀀스의 각 원소를 순서대로 입력받아 제1 신호의 주파수 대역이 넓게 분포하지 않게 조절할 수 있다.
제2 신호 변환기(520)는 0값 변환기(530), 절대값 1 변환기(540) 및 증폭기(550)를 포함할 수 있다.
0값 변환기(530)는 0값 검출기(531) 및 온 오프 컨트롤러(532)를 포함할 수 있다. 0값 검출기(531)는 제1 신호의 크기가 소정의 임계값보다 작은 구간을 0의 원소에 대응하는 구간으로 검출할 수 있다. 여기서, 소정의 임계값은 제1 신호의 노이즈의 크기를 나타낼 수 있다. 온 오프 컨트롤러(532)는 0값 검출기에서 검출된 0의 원소에 대응하는 구간의 출력을 오프할 수 있다.
절대값 1 변환기(540)는 절대값 검출기(541), 부호 검출기(542), 위상 쉬프터(543) 및 연산기(544)를 포함할 수 있다.
절대값 검출기(541)는 제1 신호의 크기가 미리 정해진 임계값 이상인 구간을 절대값 1의 원소에 대응하는 구간으로 검출할 수 있다. 부호 검출기(542)는 절대값 1의 원소의 부호를 검출하여 절대값 1의 원소와 대응하는 구간을 1의 원소와 대응하는 구간 및 -1의 원소와 대응하는 구간으로 분류할 수 있다.
위상 쉬프터(543)는 제1 신호 중 1의 원소에 대응하는 구간의 캐리어 신호의 위상을 제1 위상으로 쉬프트하고, -1의 원소에 대응하는 구간의 캐리어 신호의 위상을 제2 위상으로 쉬프트할 수 있다.
연산기(544)는 제1 위상으로 쉬프트된 캐리어 신호와 1의 원소에 대응하는 구간의 크기의 절대값을 곱하고, 제2 위상으로 쉬프트된 캐리어 신호와 -1의 원소에 대응하는 구간의 크기의 절대값을 곱하여 제2 신호를 생성할 수 있다.
증폭기(550)는 제2 신호의 크기를 증폭할 수 있다. 전송기(500)는 증폭된 제2 신호를 안테나를 통하여 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다.
도 6을 참조하면, 전송기(600)는 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 데이터를 전송할 수 있다. 전송기(600)는 제1 신호 변환기(610) 및 제2 신호 변환기(620)를 포함할 수 있다. 제1 신호 변환기(610)는 터너리 시퀀스 매퍼(611) 및 펄스 쉐이핑 필터(612)를 포함할 수 있다.
터너리 시퀀스 매퍼(611)는 0 또는 1의 원소들로 구성된 바이너리 데이터 시퀀스를 입력받아 소정의 길이로 분할하고, 분할된 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 터너리 페이로드 시퀀스를 생성할 수 있다.
또한, 제1 신호 변환기(610)는 터너리 페이로드 시퀀스를 변조하여 제1 신호를 생성할 수 있다. 일 실시예에서, 터너리 시퀀스 매퍼(611)는 도 3에서 설명한 변환기를 포함할 수 있다.
펄스 쉐이핑 필터(612)는 터너리 페이로드 시퀀스의 각 원소를 순서대로 입력받아 제1 신호의 주파수 대역이 넓게 분포하지 않게 조절할 수 있다.
제2 신호 변환기(620)는 0값 변환기(630), 절대값 1 변환기(640) 및 증폭기(650)를 포함할 수 있다.
0값 변환기(630)는 0값 검출기(631) 및 온 오프 컨트롤러(632)를 포함할 수 있다. 0값 검출기(631)는 제1 신호의 크기가 소정의 임계값보다 작은 구간을 0의 원소에 대응하는 구간으로 검출할 수 있다. 여기서, 소정의 임계값은 제1 신호의 노이즈의 크기를 나타낼 수 있다. 온 오프 컨트롤러(632)는 0값 검출기에서 검출된 0의 원소에 대응하는 구간의 출력을 오프할 수 있다.
절대값 1 변환기(640)는 절대값 검출기(641), 부호 검출기(642), VCO(643), 주파수 쉬프터(644), 위상 쉬프터(645) 및 연산기(646)를 포함할 수 있다.
절대값 검출기(641)는 제1 신호의 크기가 미리 정해진 임계값 이상인 구간을 절대값 1의 원소에 대응하는 구간으로 검출할 수 있다. 부호 검출기(642)는 절대값 1의 원소의 부호를 검출하여 절대값 1의 원소와 대응하는 구간을 1의 원소와 대응하는 구간 및 -1의 원소와 대응하는 구간으로 분류할 수 있다.
VCO(643)는 캐리어 신호의 주파수를 조절할 수 있다. 주파수 쉬프터(644)는 1의 원소에 대응하는 구간의 캐리어 신호를 주파수 f1으로 쉬프트하고, -1의 원소에 대응하는 구간의 캐리어 신호를 제 주파수 f2로 쉬프트할 수 있다. 위상 쉬프터(645)는 주파수 쉬프터(644)에서 주파수 f1으로 쉬프트된 캐리어 신호의 위상을 위상 θ1으로 쉬프트하고, 주파수 f2로 쉬프트된 캐리어 신호의 위상을 위상 θ2으로 쉬프트할 수 있다.
연산기(646)는 주파수 f1 및 위상 θ1으로 쉬프트된 캐리어 신호와 1의 원소에 대응하는 구간의 크기의 절대값을 곱하고, 주파수 f2 및 위상 θ2로 쉬프트된 캐리어 신호와 -1의 원소에 대응하는 구간의 크기의 절대값을 곱하여 제2 신호를 생성할 수 있다.
증폭기(650)는 제2 신호의 크기를 증폭할 수 있다. 전송기(600)는 증폭된 제2 신호를 안테나를 통하여 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다.
도 7 내지 도 9는 일 실시예에 따른 전송 신호를 설명하기 위한 도면이다.
도 7을 참조하면, 전송기는 바이너리 데이터 시퀀스를 변조하여 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다. 바이너리 데이터 시퀀스(710)가 전송기에 입력된 경우, 전송기는 바이너리 데이터 시퀀스(710)와 대응하는 것으로 미리 설정된 터너리 시퀀스(720)를 바이너리 데이터 시퀀스(710)에 매핑하고, 터너리 시퀀스(720)를 변조하여 제1 신호를 생성할 수 있다. 전송기는 제1 신호를 펄스 쉐이핑 필터에 입력하여 제1 신호의 주파수 대역이 넓게 분포하지 않게 조절할 수 있다. 펄스 쉐이핑 필터 출력 신호(730)에서, 1의 원소와 대응되는 구간의 크기는 양의 값을 가질 수 있고, -1의 원소와 대응되는 구간의 크기는 음의 값을 가질 수 있고, 0의 원소와 대응되는 구간의 크기는 0일 수 있다.
전송기는 펄스 쉐이핑 필터 출력 신호(730)에서 1의 원소와 대응되는 구간의 캐리어 신호를 주파수 f1으로 쉬프트하고, -1의 원소와 대응되는 구간의 캐리어 신호를 주파수 f2로 쉬프트할 수 있다. 여기서, 제2 주파수의 크기는 제1 주파수의 주파수의 크기보다 클 수 있다. 또한, 전송기는 주파수 f1으로 쉬프트된 캐리어 신호와 1의 원소에 대응하는 구간의 크기의 절대값을 곱하고, 주파수 f2로 쉬프트된 캐리어 신호와 -1의 원소에 대응하는 구간의 크기의 절대값을 곱하여 제2 신호를 생성할 수 있다. 전송기는 제2 신호를 증폭기에 입력하여 제2 신호를 증폭할 수 있다. 증폭된 제2 신호(740)에서, 1의 원소와 대응되는 구간의 주파수는 -1의 원소와 대응되는 구간의 주파수와 구별될 수 있고, 0의 원소에 대응되는 구간의 출력은 0일 수 있다. 전송기는 증폭된 제2 신호(740)를 저 선택도 난코히런트 수신기 및 고 선택도 난코히런트 수신기에 전송할 수 있다.
도 8을 참조하면, 전송기는 바이너리 데이터 시퀀스를 변조하여 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다. 바이너리 데이터 시퀀스(810)가 전송기에 입력된 경우, 전송기는 바이너리 데이터 시퀀스(810)와 대응하는 것으로 미리 설정된 터너리 시퀀스(820)를 바이너리 데이터 시퀀스(810)에 매핑하고, 터너리 시퀀스(820)를 변조하여 제1 신호를 생성할 수 있다. 전송기는 제1 신호를 펄스 쉐이핑 필터에 입력하여 제1 신호의 주파수 대역이 넓게 분포하지 않게 조절할 수 있다. 펄스 쉐이핑 필터 출력 신호(830)에서, 1의 원소와 대응되는 구간의 크기는 양의 값을 가질 수 있고, -1의 원소와 대응되는 구간의 크기는 음의 값을 가질 수 있고, 0의 원소와 대응되는 구간의 크기는 0일 수 있다.
전송기는 펄스 쉐이핑 필터 출력 신호(830)에서 1의 원소와 대응되는 구간의 캐리어 신호의 위상을 위상 θ1으로 쉬프트하고, -1의 원소와 대응되는 구간의 캐리어 신호의 위상을 위상 θ2로 쉬프트할 수 있다. 여기서, 위상 θ1과 위상 θ2의 차이는 180도 일 수 있다. 또한, 전송기는 위상 θ1으로 쉬프트된 캐리어 신호와 1의 원소에 대응하는 구간의 크기의 절대값을 곱하고, 위상 θ2로 쉬프트된 캐리어 신호와 -1의 원소에 대응하는 구간의 크기의 절대값을 곱하여 제2 신호를 생성할 수 있다. 전송기는 제2 신호를 증폭기에 입력하여 제2 신호를 증폭할 수 있다. 증폭된 제2 신호(840)에서, 신호(841)에서 나타나는 것과 같이, 1의 원소와 대응되는 구간의 위상은 -1의 원소와 대응되는 구간의 위상과 180도 차이를 가질 수 있다. 또한, 0의 원소에 대응되는 구간의 출력은 0일 수 있다. 전송기는 증폭된 제2 신호(840)를 난코히런트 수신기 및 코히런트 수신기에 전송할 수 있다.
도 9를 참조하면, 전송기는 바이너리 데이터 시퀀스를 변조하여 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다. 바이너리 데이터 시퀀스(910)가 전송기에 입력된 경우, 전송기는 바이너리 데이터 시퀀스(910)와 대응하는 것으로 미리 설정된 터너리 시퀀스(920)를 바이너리 데이터 시퀀스(910)에 매핑하고, 터너리 시퀀스(920)를 변조하여 제1 신호를 생성할 수 있다. 전송기는 제1 신호를 펄스 쉐이핑 필터에 입력하여 제1 신호의 주파수 대역이 넓게 분포하지 않게 조절할 수 있다. 펄스 쉐이핑 필터 출력 신호(930)에서, 1의 원소와 대응되는 구간의 크기는 양의 값을 가질 수 있고, -1의 원소와 대응되는 구간의 크기는 음의 값을 가질 수 있고, 0의 원소와 대응되는 구간의 크기는 0일 수 있다.
전송기는 펄스 쉐이핑 필터 출력 신호(930)에서 1의 원소와 대응되는 구간의 캐리어 신호를 주파수 f1으로 쉬프트하고, -1의 원소와 대응되는 구간의 캐리어 신호를 주파수 f2로 쉬프트할 수 있다. 또한, 전송기는 주파수 f1으로 쉬프트된 캐리어 신호의 위상을 위상 θ1으로 쉬프트하고, 주파수 f2로 쉬프트된 캐리어 신호의 위상을 위상 θ2로 쉬프트할 수 있다. 여기서, 주파수 f2의 크기는 주파수 f1의 주파수의 크기보다 크고, 위상 θ1과 위상 θ2의 차이는 180도 일 수 있다. 또한, 전송기는 주파수 f1 및 위상 θ1으로 쉬프트된 캐리어 신호와 1의 원소에 대응하는 구간의 크기의 절대값을 곱하고, 주파수 f2 및 위상 θ2으로 쉬프트된 캐리어 신호와 -1의 원소에 대응하는 구간의 크기의 절대값을 곱하여 제2 신호를 생성할 수 있다. 전송기는 제2 신호를 증폭기에 입력하여 제2 신호를 증폭할 수 있다. 증폭된 제2 신호(940)에서, 신호(941)에서 나타나는 것과 같이, 1의 원소와 대응되는 구간의 위상은 -1의 원소와 대응되는 구간의 위상과 180도 차이를 가질 수 있다. 또한, 0의 원소에 대응되는 구간의 출력은 0일 수 있다. 전송기는 증폭된 제2 신호(940)를 저 선택도 난코히런트 수신기, 고 선택도 난코히런트 수신기 또는 코히런트 수신기에 전송할 수 있다.
도 10 내지 도 12는 일 실시예에 따른 수신기를 나타낸 블록도이다.
도 10을 참조하면, 수신기(1000)는 필터(1010), 포락선 검출기(1020) 및 바이너리 데이터 시퀀스 검출기(1030)를 포함할 수 있다. 일 실시예에서, 수신기(1000)는 저 선택도 난코히런트 수신기를 나타낼 수 있다.
수신기(1000)는 도 3에 설명된 전송기로부터 신호를 수신할 수 있다. 이에 따라, 수신 신호는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 신호일 수 있다.
필터(1010)는 수신 신호를 주파수 f0으로 필터링할 수 있다. 여기서, 주파수 f0은 터너리 페이로드 시퀀스 중 1의 원소가 변환된 수신 신호의 구간의 주파수를 나타내는 주파수 f1 및 터너리 페이로드 시퀀스 중 -1의 원소가 변환된 수신 신호의 구간의 주파수를 나타내는 주파수 f2 사이의 주파수를 나타낼 수 있다. 예를 들어, 주파수 f0은 주파수 f1과 주파수 f2 의 산술 평균일 수 있다. 일례로, 주파수 f2의 크기는 주파수 f1 보다 클 수 있다. 저 선택도 난코히런트 수신기의 경우, 주파수 f1과 주파수 f2를 정확하게 구별하기 어려울 수 있으므로, 주파수 f1과 주파수 f2를 모두 커버할 수 있도록, 필터는 주파수 f1과 주파수 f2 사이인 주파수 f0로 수신 신호를 필터링하여, 수신 신호를 넓은 대역폭으로 수신할 수 있다.
포락선 검출기(1020)는 필터링된 수신 신호의 포락선의 크기값을 검출할 수 있다. 수신 신호 중 주파수 f1 내지 주파수 f2에서 크기가 0이 아닌 구간의 경우, 포락선 검출기(1020)는 해당 구간의 크기가 0이 아닌 포락선을 검출하고, 수신 신호 중 주파수 f1 내지 주파수 f2에서 크기가 0인 구간의 경우, 포락선 검출기(1020)는 해당 구간의 크기가 0이고, 노이즈만을 포함하는 신호를 검출할 수 있다. 이에 따라, 신호대 잡음비(Signal to Noise Rate: SNR)값이 미리 정해진 값 이상인 경우, 포락선상에서 주파수 f1과 주파수 f2는 구별될 수 없다. 이로 인해, 수신기(1000)는 터너리 페이로드 시퀀스의 1의 원소 및 -1의 원소를 구별할 수 없을 수 있다.
바이너리 데이터 시퀀스 검출기(1030)는 포락선 검출기(1020)에서 검출된 포락선의 크기값과 소정의 바이너리 시퀀스와의 코릴레이션을 기초로 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다. 바이너리 데이터 시퀀스 검출기(1030)는 코릴레이터(1031) 및 데이터 디코더(1032)를 포함할 수 있다.
코릴레이터(1031)는 검출된 포락선의 크기값과 소정의 바이너리 시퀀스들 간의 코릴레이션을 연산할 수 있다. 예를 들어, 코릴레이터(1031)는 포락선 검출기(1020)에서 검출된 포락선의 각 구간의 크기값과 소정의 바이너리 시퀀스들 간의 코릴레이션을 연산할 수 있다.
바이너리 데이터 시퀀스 검출기(1030)는 소정의 바이너리 시퀀스들 중 검출된 포락선의 크기값과의 코릴레이션이 가장 높은 바이너리 시퀀스와 대응하는 비트 시퀀스를 바이너리 데이터 시퀀스로 검출할 수 있다.
일 실시예에서, 바이너리 데이터 시퀀스 검출기(1030)는 상술한 표 6 또는 표 7에 관한 정보를 포함할 수 있다. 바이너리 데이터 시퀀스 검출기(1030)는 표 6 또는 표 7에 기재된 터너리 시퀀스들에서, -1의 원소를 절대값으로 변환하여 소정의 바이너리 시퀀스들을 추출할 수 있다. 바이너리 데이터 시퀀스 검출기(1030)는 소정의 바이너리 시퀀스들과 검출된 포락선의 크기값의 코릴레이션을 연산하고, 표 6 또는 표 7로부터 코릴레이션이 가장 높은 바이너리 시퀀스와 대응하는 비트 시퀀스를 검색하여, 검색된 비트 시퀀스를 바이너리 데이터 시퀀스로 검출할 수 있다.
예를 들어, 코릴레이터(1031)는 소정의 바이너리 시퀀스들 [0 0 0 1 1 0 1 1], [1 0 0 0 1 1 0 1], [1 1 0 0 0 1 1 0], [0 0 1 1 0 1 1 0]과 검출된 포락선의 각 구간의 크기값간의 코릴레이션을 연산할 수 있다. 소정의 바이너리 시퀀스들 중 [1 0 0 0 1 1 0 1]의 코릴레이션이 가장 높을 경우, 바이너리 데이터 시퀀스 검출기(1030)는 바이너리 시퀀스 [1 0 0 0 1 1 0 1]과 대응하는 비트 시퀀스(예를 들어, [1 0 0])를 바이너리 데이터 시퀀스로 추출할 수 있다.
데이터 디코더(1032)는 바이너리 데이터 시퀀스를 디코딩할 수 있다.
도 11을 참조하면, 수신기(1100)는 전체 포락선 검출기(1110) 및 바이너리 데이터 시퀀스 검출기(1120)를 포함할 수 있다. 일 실시예에서, 수신기(1100)는 고 선택도 난코히런트 수신기를 나타낼 수 있다.
수신기(1100)는 도 3 및 도 5에 설명된 전송기로부터 신호를 수신할 수 있다. 이에 따라, 수신 신호는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 신호일 수 있다. 전체 포락선 검출기(1110)는 수신 신호의 포락선의 크기값을 검출할 수 있다.
전체 포락선 검출기(1110)는 제1 필터(1111), 제1 포락선 검출기(1112), 제2 필터(1113), 제2 포락선 검출기(1114) 및 연산기(1115)를 포함할 수 있다.
제1 필터(1111)는 수신 신호를 주파수 f1으로 필터링할 수 있고, 제2 필터(1112)는 수신 신호를 주파수 f2로 필터링할 수 있다. 여기서, 주파수 f1은 터너리 페이로드 시퀀스 중 1의 원소가 변환된 수신 신호의 구간의 주파수를 나타낼 수 있고, 주파수 f2는 터너리 페이로드 시퀀스 중 -1의 원소가 변환된 수신 신호의 구간의 주파수를 나타낼 수 있다. 일례로, 주파수 f2의 크기는 주파수 f1 보다 클 수 있다.
제1 포락선 검출기(1112)는 주파수 f1을 기준으로 필터링된 수신 신호의 포락선을 나타내는 제1 포락선을 검출할 수 있다. 주파수 f1에서 수신 신호의 크기가 0이 아닌 구간의 경우, 제1 포락선 검출기(1112)는 해당 구간의 크기가 0이 아닌 포락선을 검출하고, 주파수 f1에서 수신 신호의 크기가 0인 구간의 경우, 제1 포락선 검출기(1112)는 해당 구간의 크기가 0이고, 노이즈만을 포함하는 신호를 검출할 수 있다. 또한, 주파수 f2에서 수신 신호의 크기가 0이 아닌 구간의 경우, 제1 포락선 검출기(1112)는 해당 구간의 크기가 0이고, 노이즈만을 포함하는 신호를 검출할 수 있다.
제2 포락선 검출기(1114)는 주파수 f2을 기준으로 필터링된 수신 신호의 포락선을 나타내는 제2 포락선을 검출할 수 있다. 주파수 f2에서 수신 신호의 크기가 0이 아닌 구간의 경우, 제2 포락선 검출기(1114)는 해당 구간의 크기가 0이 아닌 포락선을 검출하고, 주파수 f2에서 수신 신호의 크기가 0인 구간의 경우, 제2 포락선 검출기(1114)는 해당 구간의 크기가 0이고, 노이즈만을 포함하는 신호를 검출할 수 있다. 또한, 주파수 f1에서 수신 신호의 크기가 0이 아닌 구간의 경우, 제2 포락선 검출기(1114)는 해당 구간의 크기가 0이고, 노이즈만을 포함하는 신호를 검출할 수 있다.
연산기(1115)는 제1 포락선 검출기(1112)에서 출력되는 포락선에서 제2 포락선 검출기(1114)에서 출력되는 포락선을 뺄 수 있다. 이에 따라, 주파수 f1에서 수신 신호의 크기가 0이 아닌 구간의 경우, 연산기(1115)는 해당 구간의 크기값이 양수인 포락선을 출력하고, 주파수 f2에서 수신 신호의 크기가 0이 아닌 구간의 경우, 연산기(1115)는 해당 구간의 크기값이 음수인 포락선을 출력할 수 있다. 또한, 주파수 f1 및 주파수 f2에서 수신 신호의 크기가 0인 구간인 경우, 연산기(1115)는 해당 구간의 크기값이 0인 포락선을 출력할 수 있다.
바이너리 데이터 시퀀스 검출기(1120)는 전체 포락선 검출기(1110)에서 검출된 포락선의 크기값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다. 바이너리 데이터 시퀀스 검출기(1120)는 코릴레이터(1121) 및 데이터 디코더(1122)를 포함할 수 있다.
코릴레이터(1121)는 검출된 포락선의 크기값과 소정의 터너리 시퀀스들 간의 코릴레이션을 연산할 수 있다. 예를 들어, 코릴레이터(1121)는 연산기에서 출력되는 제3 포락선의 각 구간의 크기값과 소정의 터너리 시퀀스들 간의 코릴레이션을 연산할 수 있다.
바이너리 데이터 시퀀스 검출기(1120)는 소정의 터너리 시퀀스들 중 검출된 포락선의 크기값과의 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 바이너리 데이터 시퀀스로 검출할 수 있다.
일 실시예에서, 바이너리 데이터 시퀀스 검출기(1120)는 상술한 표 6 또는 표 7에 관한 정보를 포함할 수 있다. 바이너리 데이터 시퀀스 검출기(1120)는 표 6 또는 표 7에 기재된 터너리 시퀀스들과 검출된 포락선의 크기값의 코릴레이션을 연산하고, 표 6 또는 표 7로부터 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 검색하여, 검색된 비트 시퀀스를 바이너리 데이터 시퀀스로 검출할 수 있다.
예를 들어, 코릴레이터(1121)는 소정의 바이너리 시퀀스들 [0 0 0 1 -1 0 1 1], [1 0 0 0 1 -1 0 1], [1 1 0 0 0 1 -1 0], [0 0 1 -1 0 1 1 0]과 검출된 포락선의 각 구간의 크기값 간의 코릴레이션을 연산할 수 있다. 소정의 바이너리 시퀀스들 중 [1 0 0 0 1 -1 0 1]의 코릴레이션이 가장 높을 경우, 바이너리 데이터 시퀀스 검출기(1120)는 바이너리 시퀀스 [1 0 0 0 1 -1 0 1]과 대응하는 비트 시퀀스(예를 들어, [1 0 0])를 바이너리 데이터 시퀀스로 추출할 수 있다.
데이터 디코더(1122)는 바이너리 데이터 시퀀스를 디코딩할 수 있다.
도 12를 참조하면, 수신기(1200)는 코릴레이션 검출기(1210) 및 바이너리 데이터 시퀀스 검출기(1220)를 포함할 수 있다. 일 실시예에서, 수신기(1200)는 코히런트 수신기를 나타낼 수 있다.
수신기(1200)는 도 3 및 도 6에 설명된 전송기로부터 신호를 수신할 수 있다. 이에 따라, 수신 신호는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 신호일 수 있다. 코릴레이션 검출기(1210)는 수신 신호와 캐리어 신호와의 코릴레이션을 검출할 수 있다. 코릴레이션 검출기(1210)는 RF/아날로그 처리기(1211) 및 제1 코릴레이터(1212)를 포함할 수 있다.
RF/아날로그 처리기(1211)는 안테나를 통해 수신한 수신 신호를 제1 코릴레이터(1212)에서 처리할 수 있도록 변환할 수 있다. 제1 코릴레이터(1212)는 소정의 기준 신호와 수신 신호와의 코릴레이션을 검출할 수 있다. 예를 들어, 위상 검출기는 소정의 사인파형의 캐리어 신호(Sinusoidal carrier signal)와 수신 신호의 코릴레이션을 연산할 수 있다.
바이너리 데이터 시퀀스 검출기(1220)는 코릴레이션의 결과값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 수신 신호의 바이너리 데이터 시퀀스를 검출할 수 있다. 바이너리 데이터 시퀀스 검출기(1220)는 제2 코릴레이터(1221) 및 데이터 디코더(1222)를 포함할 수 있다.
제2 코릴레이터(1221)는 제1 코릴레이터(1212)에서 연산된 코릴레이션의 결과값과 소정의 터너리 시퀀스들 간의 코릴레이션을 연산할 수 있다. 바이너리 데이터 시퀀스 검출기(1220)는 소정의 터너리 시퀀스들 중 제1 코릴레이터(1212)에서 연산된 코릴레이션의 결과값과의 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 바이너리 데이터 시퀀스로 검출할 수 있다.
일 실시예에서, 바이너리 데이터 시퀀스 검출기(1220)는 상술한 표 6 또는 표 7에 관한 정보를 포함할 수 있다. 바이너리 데이터 시퀀스 검출기(1220)는 표 6 또는 표 7에 기재된 터너리 시퀀스들과 검출된 포락선의 크기값의 코릴레이션을 연산하고, 표 6 또는 표 7로부터 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 검색하여, 검색된 비트 시퀀스를 바이너리 데이터 시퀀스로 검출할 수 있다.
데이터 디코더(1222)는 바이너리 데이터 시퀀스를 디코딩할 수 있다.
도 13 내지 도 15는 일 실시예에 따른 바이너리 데이터 시퀀스의 검출을 설명하기 위한 도면이다.
도 13을 참조하면, 그래프는 전송기가 전송하는 전송 신호의 스펙트럼(1311) 및 저 선택도 난코히런트 수신기에서의 필터 주파수 응답(1312)를 나타낼 수 있다. 그래프의 가로축은 주파수를 나타내고, 세로축은 스펙트럼의 크기를 나타낼 수 있다.
전송기는 스펙트럼(1311)을 갖는 전송 신호를 저 선택도 난코히런트 수신기에 전송할 수 있다.
스펙트럼(1311)의 주파수 f1은 터너리 페이로드 시퀀스 중 1의 원소가 변환된 전송 신호의 구간의 주파수를 나타내고, 주파수 f2는 터너리 페이로드 시퀀스 중 -1의 원소가 변환된 전송 신호의 구간의 주파수를 나타낼 수 있다. 일 실시예에서, 주파수 f0은 주파수 f1과 주파수 f2 의 산술 평균일 수 있다.
저 선택도 난코히런트 수신기의 경우, 주파수 f1과 주파수 f2를 정확하게 구별하기 어려울 수 있다. 이에 따라, 저 선택도 난코히런트 수신기는 주파수 f1과 주파수 f2를 모두 커버할 수 있도록, 필터 주파수 응답(1312)을 이용하여 주파수 f1과 주파수 f2 사이인 주파수 f0을 기준으로 수신 신호를 필터링할 수 있다.
저 선택도 난코히런트 수신기는 필터링된 수신 신호의 포락선을 검출할 수 있다. 저 선택도 난코히런트 수신기는 검출된 포락선의 크기값과 소정의 바이너리 시퀀스들과의 코릴레이션을 기초로, 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다.
도 14를 참조하면, 그래프는 전송기가 전송하는 전송 신호의 스펙트럼(1411) 및 고 선택도 난코히런트 수신기에서의 필터 주파수 응답(1412, 1413)를 나타낼 수 있다. 그래프의 가로축은 주파수를 나타내고, 세로축은 스펙트럼의 크기를 나타낼 수 있다.
전송기는 스펙트럼(1411)을 갖는 전송 신호를 고 선택도 난코히런트 수신기에 전송할 수 있다.
스펙트럼(1411)의 주파수 f1은 터너리 페이로드 시퀀스 중 1의 원소가 변환된 전송 신호의 구간의 주파수를 나타내고, 주파수 f2는 터너리 페이로드 시퀀스 중 -1의 원소가 변환된 전송 신호의 구간의 주파수를 나타낼 수 있다. 일 실시예에서, 주파수 f0은 주파수 f1과 주파수 f2 의 산술 평균일 수 있다.
고 선택도 난코히런트 수신기의 경우, 주파수 f1이 중심 주파수로 설정된 제1 필터 및 주파수 f2가 중심 주파수로 설정된 제2 필터를 이용하여 수신 신호를 필터링할 수 있다. 제1 필터는 필터 주파수 응답(1412)을 이용하여 주파수 f1을 기준으로 수신 신호를 필터링할 수 있고, 제2 필터는 필터 주파수 응답(1413)을 이용하여 주파수 f2을 기준으로 수신 신호를 필터링할 수 있다.
고 선택도 난코히런트 수신기는 주파수 f1을 기준으로 필터링된 수신 신호의 포락선 및 주파수 f2를 기준으로 필터링된 수신 신호의 포락선을 검출하고, 주파수 f1을 기준으로 필터링된 수신 신호의 포락선에서 주파수 f2를 기준으로 필터링된 수신 신호의 포락선을 뺄 수 있다. 이에 따라, 주파수 f1에서 수신 신호의 크기가 0이 아닌 구간은 크기값이 양수인 포락선으로 나타날 수 있고, 주파수 f2에서 수신 신호의 크기가 0이 아닌 구간은 크기값이 음수인 포락선으로 나타날 수 있고, 주파수 f1 및 주파수 f2에서 수신 신호의 크기가 0인 구간은 크기값이 0인 포락선으로 나타날 수 있다.
고 선택도 난코히런트 수신기는 검출된 포락선의 크기값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로, 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다.
도 15를 참조하면, 좌표는 코히런트 수신기가 수신하는 수신 신호 중 터너리 페이로드 시퀀스의 1의 원소와 대응되는 구간의 위상 θ1(1511) 및 -1의 원소와 대응되는 구간의 위상 θ2(1512)을 나타낼 수 있다. 여기서, 위상 θ1(1511)은 0도를 나타내고, 위상 θ2(1512)은 180도를 나타낼 수 있다.
코히런트 수신기는 사인파형의 캐리어 신호와 수신 신호와의 코릴레이션을 검출할 수 있다.
또한, 코히런트 수신기는 코릴레이션 결과값과 소정의 터너리 시퀀스와의 코릴레이션을 기초로 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다.
도 16을 다른 일 실시예에 따른 전송기를 나타낸 블록도이다.
도 16을 참조하면, 전송기(1600)는 터너리 시퀀스 매퍼(1610) 및 변환기(1620)를 포함할 수 있다. 일 실시예에서, 전송기(1600)는 도 3에서 설명한 제1 신호 변환기(310)를 나타낼 수 있다.
터너리 시퀀스 매퍼(1610)는 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 생성할 수 있다.
일 실시예에서, 터너리 시퀀스 매퍼(1610)는 표 8로부터, 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 미리 설계된 터너리 시퀀스로 추출할 수 있다. 표 8에서, C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 C0이 m만큼 오른쪽으로 사이클릭 쉬프트된 시퀀스를 나타내고, m은 1 내지 7의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000079
다른 일 실시예에서, 터너리 시퀀스 매퍼(1610)는 표 9로부터, 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 미리 설계된 터너리 시퀀스로 추출할 수 있다. 표 9에서, C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 C0이 m만큼 오른쪽으로 사이클릭 쉬프트된 시퀀스를 나타내고, m은 1 내지 31의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000080
변환기(1620)는 터너리 페이로드 시퀀스를 신호로 변환할 수 있다.
도 16에 도시된 다른 일 실시예에 따른 전송기에는 도 1 내지 도 15를 통해 설명된 내용이 그대로 적용될 수 있으므로, 보다 상세한 설명은 생략한다.
도 17은 다른 일 실시예에 따른 수신기를 나타낸 블록도이다.
도 17을 참조하면, 수신기(1700)는 신호 수신기(1710) 및 검출기(1720)를 포함할 수 있다. 일 실시예에서, 수신기(1700)는 도 10 내지 도 12에서 설명한 수신기(1200, 1300, 1400)를 나타낼 수 있다.
신호 수신기(1710)는 바이너리 데이터 시퀀스에 미리 정해진 터너리 시퀀스가 매핑되어 -1, 0 또는 1의 원소들로 구성된 터너리 페이로드 시퀀스가 변조된 신호를 수신할 수 있다.
검출기(1720)는 미리 정해진 터너리 시퀀스 및 바이너리 데이터 시퀀스를 검출할 수 있다.
일 실시예에서, 검출기(1720)는 표 10을 이용하여 미리 정해진 터너리 시퀀스 및 바이너리 데이터 시퀀스를 검출할 수 있다. 표 10에서, C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 C0이 m만큼 오른쪽으로 사이클릭 쉬프트된 시퀀스를 나타내고, m은 1 내지 7의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000081
다른 일 실시예에서, 검출기(1720)는 표 11을 이용하여 미리 정해진 터너리 시퀀스 및 바이너리 데이터 시퀀스를 검출할 수 있다. 표 11에서, C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 C0이 m만큼 오른쪽으로 사이클릭 쉬프트된 시퀀스를 나타내고, m은 1 내지 31의 정수를 나타낼 수 있다.
Figure PCTKR2014010256-appb-I000082
도 17에 도시된 다른 일 실시예에 따른 수신기에는 도 1 내지 도 15를 통해 설명된 내용이 그대로 적용될 수 있으므로, 보다 상세한 설명은 생략한다.
도 18은 일 실시예에 따른 전송 방법을 나타낸 동작 흐름도이다.
도 18을 참조하면, 전송기는 바이너리 데이터 시퀀스에 미리 설계된 시퀀스를 매핑하여 터너리 페이로드 시퀀스를 생성할 수 있다(1810).
또한, 전송기는 터너리 페이로드 시퀀스를 제1 신호로 변환할 수 있다(1820).
도 18에 도시된 일 실시예에 따른 전송 방법에는 도 1 내지 도 15를 통해 설명된 내용이 그대로 적용될 수 있으므로, 보다 상세한 설명은 생략한다.
도 19는 다른 일 실시예에 따른 전송 방법을 나타낸 동작 흐름도이다.
도 19를 참조하면, 전송기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 제1 신호로 변환할 수 있다(1910).
또한, 전송기는 원소에 따라 제1 신호의 각 구간에 서로 다른 변환 방식을 적용하여 제1 신호를 제2 신호로 변환할 수 있다(1920).
도 19에 도시된 다른 일 실시예에 따른 전송 방법에는 도 1 내지 도 15를 통해 설명된 내용이 그대로 적용될 수 있으므로, 보다 상세한 설명은 생략한다.
도 20 내지 도 23은 일 실시예에 따른 수신 방법을 나타낸 동작 흐름도이다.
도 20을 참조하면, 수신기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호의 포락선의 크기값을 검출할 수 있다(2010).
또한, 수신기는 검출된 포락선의 크기값과 소정의 바이너리 시퀀스들과의 코릴레이션을 기초로 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다(2020).
도 20에 도시된 일 실시예에 따른 수신 방법에는 도 1 내지 도 15를 통해 설명된 내용이 그대로 적용될 수 있으므로, 보다 상세한 설명은 생략한다.
도 21을 참조하면, 수신기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호의 포락선의 크기값을 검출할 수 있다(2110).
또한, 수신기는 검출된 포락선의 크기값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다(2120).
도 21에 도시된 일 실시예에 따른 수신 방법에는 도 1 내지 도 15를 통해 설명된 내용이 그대로 적용될 수 있으므로, 보다 상세한 설명은 생략한다.
도 22를 참조하면, 수신기는 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호와 소정의 기준 신호와의 코릴레이션을 검출할 수 있다(2210).
또한, 수신기는 코릴레이션의 결과값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출할 수 있다(2220).
도 22에 도시된 일 실시예에 따른 수신 방법에는 도 1 내지 도 15를 통해 설명된 내용이 그대로 적용될 수 있으므로, 보다 상세한 설명은 생략한다.
도 23을 참조하면 수신기는 바이너리 데이터 시퀀스에 미리 정해진 터너리 시퀀스가 매핑되어 -1, 0 또는 1의 원소들로 구성된 터너리 페이로드 시퀀스가 변조된 신호를 수신할 수 있다(2310).
또한, 수신기는 미리 정해진 터너리 시퀀스 및 바이너리 데이터 시퀀스를 검출할 수 있다. 이 때, 수신기는 상술한 표 10 및 표 11을 이용하여 미리 정해진 터너리 시퀀스 및 바이너리 데이터 시퀀스를 검출할 수 있다(2320).
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (27)

  1. -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 제1 신호로 변환하는 제1 신호 변환기
    를 포함하고,
    상기 제1 신호 변환기는,
    바이너리 데이터 시퀀스에 미리 설계된 시퀀스를 매핑하여 상기 터너리 페이로드 시퀀스를 생성하는 터너리 시퀀스 매퍼; 및
    상기 터너리 페이로드 시퀀스를 상기 제1 신호로 변환하는 변환기
    를 포함하는,
    전송기.
  2. 제1항에 있어서,
    상기 터너리 시퀀스 매퍼는,
    0 또는 1의 원소들로 구성되는 바이너리 데이터 시퀀스(binary data sequence)를 소정의 길이로 분할하고, 상기 분할된 바이너리 데이터 시퀀스에 상기 미리 설계된 터너리 시퀀스를 매핑하는,
    전송기.
  3. 제1항에 있어서,
    상기 제1 신호 변환기는,
    상기 제1 신호의 전송 전력 스펙트럼을 조절하는 펄스 쉐이핑 필터(pulse shaping filter)
    를 포함하는,
    전송기.
  4. 제1항에 있어서,
    상기 원소를 기초로 상기 제1 신호의 각 구간을 변환하여, 상기 제1 신호를 상기 제2 신호로 변환하는 제2 신호 변환기
    를 더 포함하는,
    전송기.
  5. 제4항에 있어서,
    상기 제2 신호 변환기는,
    상기 제1 신호 중 상기 0의 원소에 대응하는 구간을 변환하는 0값(zero value) 변환기; 및
    상기 제1 신호 중 상기 1의 원소에 대응하는 구간 및 상기 -1의 원소에 대응하는 구간을 변환하는 절대값 1(absolute one value) 변환기
    를 포함하는,
    전송기.
  6. 제5항에 있어서,
    상기 0값 변환기는,
    상기 제1 신호 중 상기 0의 원소에 대응하는 구간을 검출하는 0값 검출기
    를 포함하는,
    전송기.
  7. 제5항에 있어서,
    상기 0값 변환기는,
    상기 0의 원소에 대응하는 구간의 출력을 오프(off)하는 온 오프 컨트롤러
    를 포함하는,
    전송기.
  8. 제5항에 있어서,
    상기 절대값 1 변환기는,
    상기 제1 신호 중 절대값 1의 원소와 대응하는 구간을 검출하는 절대값 검출기; 및
    상기 절대값 1의 원소의 부호를 검출하여, 상기 절대값 1의 원소와 대응하는 구간을 상기 1의 원소와 대응하는 구간 및 상기 -1의 원소와 대응하는 구간으로 분류하는 부호 검출기
    를 포함하는,
    전송기.
  9. 제5항에 있어서,
    상기 절대값 1 변환기는,
    상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 주파수를 제1 주파수로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 주파수를 제2 주파수로 쉬프트하는 주파수 쉬프터(frequency shifter)
    를 포함하는,
    전송기.
  10. 제5항에 있어서,
    상기 절대값 1 변환기는,
    상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 위상을 제1 위상으로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 위상을 제2 위상으로 쉬프트하는 위상 쉬프터(phase shifter)
    를 포함하는,
    전송기.
  11. 제5항에 있어서,
    상기 절대값 1 변환기는,
    상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 주파수를 제1 주파수로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 주파수를 제2 주파수로 쉬프트하는 주파수 쉬프터(frequency shifter); 및
    상기 제1 신호 중 상기 1의 원소에 대응하는 구간의 위상을 제1 위상으로 쉬프트하고, 상기 -1의 원소에 대응하는 구간의 위상을 제2 위상으로 쉬프트하는 위상 쉬프터(phase shifter)
    를 포함하는,
    전송기.
  12. 제4항에 있어서,
    상기 제2 신호 변환기는,
    상기 제2 신호의 크기를 증폭하는 증폭기
    를 포함하는,
    전송기.
  13. 제1항에 있어서,
    상기 터너리 시퀀스 매퍼는,
    하기 [표 1]로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고,
    하기 C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 7의 정수를 나타내는,
    전송기.
    Figure PCTKR2014010256-appb-I000083
  14. 제1항에 있어서,
    상기 터너리 시퀀스 매퍼는,
    하기 [표 2]로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고,
    하기 C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 31의 정수를 나타내는,
    전송기.
    Figure PCTKR2014010256-appb-I000084
  15. 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 생성하는 터너리 시퀀스 매퍼; 및
    상기 터너리 페이로드 시퀀스를 신호로 변환하는 변환기
    를 포함하고,
    상기 터너리 시퀀스 매퍼는,
    하기 [표 3]으로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고,
    하기 C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 7의 정수를 나타내는,
    전송기.
    Figure PCTKR2014010256-appb-I000085
  16. 바이너리 데이터 시퀀스에 미리 설계된 터너리 시퀀스를 매핑하여 -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스를 생성하는 터너리 시퀀스 매퍼; 및
    상기 터너리 페이로드 시퀀스를 신호로 변환하는 변환기
    를 포함하고,
    상기 터너리 시퀀스 매퍼는,
    하기 [표 4]로부터, 상기 바이너리 데이터 시퀀스와 대응되는 터너리 시퀀스를 상기 미리 설계된 터너리 시퀀스로 추출하고,
    하기 C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 31의 정수를 나타내는,
    전송기.
    Figure PCTKR2014010256-appb-I000086
  17. -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호의 포락선의 크기값을 검출하는 포락선 검출기; 및
    상기 검출된 포락선의 크기값과 소정의 바이너리 시퀀스들과의 코릴레이션을 기초로 상기 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출하는 바이너리 데이터 시퀀스 검출기
    를 포함하는,
    수신기.
  18. 제17항에 있어서,
    상기 수신 신호를 제1 주파수로 필터링하는 필터
    를 더 포함하고,
    상기 포락선 검출기는,
    상기 필터링된 수신 신호의 포락선을 검출하는,
    수신기.
  19. 제18항에 있어서,
    상기 제1 주파수는,
    상기 터너리 페이로드 시퀀스 중 1의 원소가 변환된 상기 수신 신호의 구간의 주파수를 나타내는 제2 주파수 및 상기 터너리 페이로드 시퀀스 중 -1의 원소가 변환된 상기 수신 신호의 구간의 주파수를 나타내는 제3 주파수 사이의 주파수인,
    수신기.
  20. 제17항에 있어서,
    상기 바이너리 데이터 시퀀스 검출기는,
    상기 소정의 바이너리 시퀀스들 중 상기 검출된 포락선의 크기값과의 코릴레이션이 가장 높은 바이너리 시퀀스와 대응하는 비트 시퀀스를 상기 바이너리 데이터 시퀀스로 검출하는,
    수신기.
  21. -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호의 포락선의 크기값을 검출하는 전체 포락선 검출기; 및
    상기 검출된 포락선의 크기값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 상기 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출하는 바이너리 데이터 시퀀스 검출기
    를 포함하는,
    수신기.
  22. 제21항에 있어서,
    상기 전체 포락선 검출기는,
    상기 수신 신호를 제1 주파수로 필터링하는 제1 필터;
    상기 수신 신호를 제2 주파수로 필터링하는 제2 필터;
    상기 제1 주파수로 필터링된 수신 신호의 포락선을 나타내는 제1 포락선을 검출하는 제1 포락선 검출기;
    상기 제2 주파수로 필터링된 수신 신호의 포락선을 나타내는 제2 포락선을 검출하는 제2 포락선 검출기; 및
    상기 제1 포락선과 상기 제2 포락선의 차이를 이용하여 제3 포락선을 추출하는 연산기
    를 포함하는,
    수신기.
  23. 제22항에 있어서,
    상기 바이너리 데이터 시퀀스 검출기는,
    상기 소정의 터너리 시퀀스들 중 상기 제3 포락선과의 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 상기 바이너리 데이터 시퀀스로 검출하는,
    수신기.
  24. -1, 0 또는 1의 원소들로 구성되는 터너리 페이로드 시퀀스가 변환된 수신 신호와 소정의 기준 신호와의 코릴레이션을 검출하는 코릴레이션 검출기; 및
    상기 코릴레이션의 결과값과 소정의 터너리 시퀀스들과의 코릴레이션을 기초로 상기 터너리 페이로드 시퀀스와 대응하는 바이너리 데이터 시퀀스를 검출하는 바이너리 데이터 시퀀스 검출기
    를 포함하는,
    수신기.
  25. 제24항에 있어서,
    상기 바이너리 데이터 시퀀스 검출기는,
    상기 소정의 터너리 시퀀스들 중 상기 코릴레이션의 결과값과의 코릴레이션이 가장 높은 터너리 시퀀스와 대응하는 비트 시퀀스를 상기 바이너리 데이터 시퀀스로 검출하는,
    수신기.
  26. 바이너리 데이터 시퀀스에 미리 정해진 터너리 시퀀스가 매핑되어 -1, 0 또는 1의 원소들로 구성된 터너리 페이로드 시퀀스가 변조된 신호를 수신하는 신호 수신기; 및
    하기 [표 5]를 이용하여 상기 미리 정해진 터너리 시퀀스 및 상기 바이너리 데이터 시퀀스를 검출하는 검출기
    를 포함하고,
    하기 C0은 [0 0 0 1 -1 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 7의 정수를 나타내는,
    수신기.
    Figure PCTKR2014010256-appb-I000087
  27. 바이너리 데이터 시퀀스에 미리 정해진 터너리 시퀀스가 매핑되어 -1, 0 또는 1의 원소들로 구성된 터너리 페이로드 시퀀스가 변조된 신호를 수신하는 신호 수신기; 및
    하기 [표 6]을 이용하여 상기 미리 정해진 터너리 시퀀스 및 상기 바이너리 데이터 시퀀스를 검출하는 검출기
    를 포함하고,
    하기 C0은 [-1 0 0 1 0 1 -1 0 -1 -1 1 -1 0 1 0 1 0 0 0 1 0 0 1 1-1 0 0 0 0 0 1 1]의 시퀀스를 나타내고, Cm은 상기 C0이 m만큼 오른쪽으로 사이클릭 쉬프트(cyclic shift)된 시퀀스를 나타내고, 상기 m은 1 내지 31의 정수를 나타내는,
    수신기.
    Figure PCTKR2014010256-appb-I000088
PCT/KR2014/010256 2013-10-29 2014-10-29 페이로드 시퀀스 전송 방법 및 장치 WO2015065045A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480071636.3A CN105874760B (zh) 2013-10-29 2014-10-29 有效载荷序列发送方法及装置
JP2016527351A JP6609249B2 (ja) 2013-10-29 2014-10-29 ターナリーシーケンスを用いた送信器及び受信器並びに送信器の動作方法
CN201910859388.3A CN110572339B (zh) 2013-10-29 2014-10-29 发送器及其发送方法
EP14856834.8A EP3065363B1 (en) 2013-10-29 2014-10-29 Method and device for transmitting pay load sequence
US15/033,352 US9967114B2 (en) 2013-10-29 2014-10-29 Method and device for transmitting pay load sequence
US15/971,825 US10348533B2 (en) 2013-10-29 2018-05-04 Method and device for transmitting pay load sequence
US16/504,633 US10735226B2 (en) 2013-10-29 2019-07-08 Method and device for transmitting pay load sequence

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IN4875CH2013 2013-10-29
IN4875/CHE/2013 2013-10-29
KR1020140148299A KR102265073B1 (ko) 2013-10-29 2014-10-29 페이로드 시퀀스 전송 방법 및 장치
KR10-2014-0148299 2014-10-29

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/033,352 A-371-Of-International US9967114B2 (en) 2013-10-29 2014-10-29 Method and device for transmitting pay load sequence
US15/971,825 Continuation US10348533B2 (en) 2013-10-29 2018-05-04 Method and device for transmitting pay load sequence
US15791825 Continuation 2018-05-04

Publications (1)

Publication Number Publication Date
WO2015065045A1 true WO2015065045A1 (ko) 2015-05-07

Family

ID=53004487

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/009873 WO2015064945A1 (en) 2013-10-29 2014-10-21 A method and system using ternary sequences for simultaneous transmission to coherent and non-coherent recievers
PCT/KR2014/010256 WO2015065045A1 (ko) 2013-10-29 2014-10-29 페이로드 시퀀스 전송 방법 및 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009873 WO2015064945A1 (en) 2013-10-29 2014-10-21 A method and system using ternary sequences for simultaneous transmission to coherent and non-coherent recievers

Country Status (6)

Country Link
US (6) US9887861B2 (ko)
EP (3) EP3767904A1 (ko)
JP (2) JP6609249B2 (ko)
KR (3) KR102233039B1 (ko)
CN (4) CN105745888B (ko)
WO (2) WO2015064945A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065355A1 (ko) * 2015-10-16 2017-04-20 고려대학교 산학협력단 다중 시퀀스 확산을 이용한 랜덤 접속 및 다중 사용자 검출 방법 및 장치
WO2017204470A1 (ko) * 2016-05-23 2017-11-30 엘지전자 주식회사 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745888B (zh) * 2013-10-29 2019-11-26 三星电子株式会社 使用用于向相干和非相干接收器同时传输的三进制序列的方法和系统
US20160278013A1 (en) * 2015-03-20 2016-09-22 Qualcomm Incorporated Phy for ultra-low power wireless receiver
EP3157217B1 (en) * 2015-10-13 2019-07-03 Samsung Electronics Co., Ltd. Method and system of transmitting independent data from transmitters to receivers
KR102509820B1 (ko) 2015-10-13 2023-03-14 삼성전자주식회사 적어도 두 개의 송신기들에 의해 수신기들로 독립 데이터를 전송하는 방법 및 시스템
US10212009B2 (en) * 2017-03-06 2019-02-19 Blackberry Limited Modulation for a data bit stream
CN112803967B (zh) * 2020-12-30 2022-07-12 湖南艾科诺维科技有限公司 用于非协同扩频信号的检测及参数估计方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166619A1 (en) * 2002-02-20 2006-07-27 Roberts Richard D Method for adjusting acquisition speed in a wireless network
US20060203931A1 (en) * 2005-03-07 2006-09-14 Philip Orlik M-ary modulation of signals for coherent and differentially coherent receivers

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242017A (en) 1975-09-29 1977-04-01 Fuji Xerox Co Ltd Run length code processing method for facsimile signal
US5363144A (en) * 1992-04-16 1994-11-08 Goldstar Co., Ltd. Television ghost canceling device
US5550865A (en) 1993-05-05 1996-08-27 National Semiconductor Corporation Frequency modulator for data transceiver
FR2719175B1 (fr) * 1994-04-20 1996-05-31 Cit Alcatel Procédé de transmission optique présentant une sensibilité réduite à la dispersion, et système de transmission pour la mise en Óoeuvre de ce procédé.
US5633631A (en) * 1994-06-27 1997-05-27 Intel Corporation Binary-to-ternary encoder
US5621580A (en) * 1994-08-26 1997-04-15 Cruz; Joao R. Ternary code magnetic recording system
GB9614561D0 (en) * 1996-07-11 1996-09-04 4Links Ltd Communication system with improved code
KR100233390B1 (ko) * 1997-02-21 1999-12-01 구자홍 티브이수상기의 칼라왜곡 보정 방법 및 장치
US6061818A (en) * 1997-05-08 2000-05-09 The Board Of Trustees Of The Leland Stanford Junior University Altering bit sequences to contain predetermined patterns
US6411799B1 (en) 1997-12-04 2002-06-25 Qualcomm Incorporated Method and apparatus for providing ternary power control in a communication system
ES2397266T3 (es) 1998-12-14 2013-03-05 Interdigital Technology Corporation Detección de preámbulo de canal de acceso aleatorio
KR20000060755A (ko) 1999-03-19 2000-10-16 정명식 전송 대역폭 확대를 위한 이진 삼진 변환 데이터 전송 시스템
US6735734B1 (en) * 2000-04-28 2004-05-11 John M. Liebetreu Multipoint TDM data distribution system
US6922685B2 (en) * 2000-05-22 2005-07-26 Mci, Inc. Method and system for managing partitioned data resources
US7401131B2 (en) * 2000-05-22 2008-07-15 Verizon Business Global Llc Method and system for implementing improved containers in a global ecosystem of interrelated services
CN1142636C (zh) * 2000-06-26 2004-03-17 连宇通信有限公司 一种正交扩频多址码组的构造方法
KR20020046118A (ko) 2000-12-12 2002-06-20 정용주 단극성 최소대역폭 신호 성형 방법 및 전송장치
US6683915B1 (en) * 2000-12-21 2004-01-27 Arraycomm, Inc. Multi-bit per symbol rate quadrature amplitude encoding
JP3582650B2 (ja) * 2001-08-16 2004-10-27 日本電気株式会社 位相変調装置とその位相変調方法、及び位相変調プログラム
DE60324043D1 (de) * 2002-01-08 2008-11-27 Nec Corp Kommunikationssystem und -verfahren mit Mehrpegelmodulation
DE10207610A1 (de) * 2002-02-22 2003-09-25 Rudolf Schwarte Verfahren und Vorrichtung zur Erfassung und Verarbeitung elektrischer und optischer Signale
US7274754B2 (en) 2003-02-14 2007-09-25 Focus Enhancements, Inc. Method and apparatus for frequency division multiplexing
EP1455498A1 (fr) * 2003-03-06 2004-09-08 STMicroelectronics N.V. Procédé et dispositif de génération d'impulsions à bande ultra large
JP2007521727A (ja) * 2003-06-25 2007-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ワイヤレスlanネットワークのフレームフォーマットデコーダおよびトレーニングシーケンス発生器
US7930331B2 (en) * 2005-09-26 2011-04-19 Temarylogic Llc Encipherment of digital sequences by reversible transposition methods
KR100557142B1 (ko) * 2003-10-14 2006-03-03 삼성전자주식회사 Rz-ami 광송신기 모듈
KR100656339B1 (ko) 2003-12-26 2006-12-11 한국전자통신연구원 초광대역 송수신을 위한 펄스신호 발생기 및 이를포함하는 송수신장치
WO2005067160A1 (en) * 2004-01-06 2005-07-21 Agency For Science, Technology And Research Method of generating uwb pulses
JP4005974B2 (ja) * 2004-01-09 2007-11-14 株式会社東芝 通信装置、通信方法、および通信システム
KR100608991B1 (ko) * 2004-04-08 2006-08-03 곽경섭 낮은 상관구간 또는 제로상관 구간을 특성으로 갖는 확산코드를 이용한 저간섭 초광대역 무선통신 시스템 및 그 시스템의 통신처리방법
US6956510B1 (en) * 2004-05-14 2005-10-18 Marvell International Ltd. Methods, software, circuits and systems for coding information
US7649956B2 (en) * 2004-10-27 2010-01-19 Nec Corporation Modulation and demodulation system, modulator, demodulator and phase modulation method and phase demodulation method used therefor
KR100657008B1 (ko) 2004-12-07 2006-12-14 한국전자통신연구원 Ds-cdma uwb 모뎀 송신기에서의 fir 필터장치 및 그 제어 방법
GB0426965D0 (en) 2004-12-09 2005-01-12 Tang Bob Methods to increase number of symbols in a transmission bit and to increase channel capacity in modulated transmissions, without needing to reduce signal
WO2006098701A1 (en) * 2005-03-16 2006-09-21 Agency For Science, Technology And Research Method and system for detecting code sequences in ultra-wideband systems
US7609773B2 (en) * 2005-04-18 2009-10-27 Qualcomm Incorporated Method of determining the location of the FFT window and the delay spread for the platinum broadcast channel estimator
US8005171B2 (en) * 2005-06-22 2011-08-23 Qualcomm Incorporated Systems and method for generating a common preamble for use in a wireless communication system
US20080247442A1 (en) 2005-07-18 2008-10-09 Orlik Philip V Method, Apparatus, and System for Modulating and Demodulating Signals Compatible with Multiple Receiver Types and Designed for Improved Receiver Performance
US20070183386A1 (en) * 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
WO2007021292A2 (en) * 2005-08-09 2007-02-22 Mitsubishi Electric Research Laboratories Device, method and protocol for private uwb ranging
US7428948B2 (en) * 2005-08-11 2008-09-30 Rpg Diffusor Systems, Inc. Hybrid amplitude-phase grating diffusers
WO2007126394A1 (en) * 2006-05-03 2007-11-08 Agency For Science, Technology And Research Method and system for decompressing at least two two-valued symbol sequences into a three-valued communication sequence
JP4805016B2 (ja) * 2006-05-19 2011-11-02 京セラ株式会社 通信システム、通信装置、及び通信レート変更方法
US7801107B2 (en) * 2006-05-25 2010-09-21 Mitsubishi Electric Research Laboratories, Inc. Method for transmitting a communications packet in a wireless communications network
WO2008004984A1 (en) 2006-07-03 2008-01-10 Agency For Science, Technology And Research Method and system for detecting a first symbol sequence in a data signal, method and system for generating a sub-sequence of a transmission symbol sequence, and computer program products
US20080279307A1 (en) * 2007-05-07 2008-11-13 Decawave Limited Very High Data Rate Communications System
JP4407724B2 (ja) * 2007-06-18 2010-02-03 ソニー株式会社 記録再生装置、記録再生方法、再生装置、再生方法
KR100922857B1 (ko) 2007-12-10 2009-10-22 한국전자통신연구원 초광대역 무선시스템의 수신장치 및 그 수신방법
US8121205B1 (en) * 2008-03-20 2012-02-21 Force10 Networks, Inc. Extended non-return-to-zero serial channel signaling
DE102008017644A1 (de) * 2008-04-04 2009-10-15 Adva Ag Optical Networking Vorrichtung und Verfahren zur Übertragung eines optischen Datensignals
US20090304094A1 (en) * 2008-06-04 2009-12-10 The University Of Reading Whiteknights Dual Carrier Modulation Soft Demapper
US8825480B2 (en) * 2008-06-05 2014-09-02 Qualcomm Incorporated Apparatus and method of obtaining non-speech data embedded in vocoder packet
JP5315546B2 (ja) * 2008-07-08 2013-10-16 マーベル ワールド トレード リミテッド 方法およびシステム
US8265098B2 (en) * 2008-07-11 2012-09-11 Qualcomm Incorporated Flash position signaling: multiplexing and interference management
EP2251999B1 (en) * 2009-05-13 2013-08-28 ADVA Optical Networking SE Data transmission method and network for transmitting a digital optical signal over optical transmission links and networks
EP2494713B1 (en) * 2009-10-29 2016-05-18 Hewlett-Packard Development Company, L. P. Optical data bus and method
US8243859B2 (en) * 2009-12-04 2012-08-14 Viasat, Inc. Joint frequency and unique word detection
WO2011094002A1 (en) * 2010-01-26 2011-08-04 Sirius Xm Radio Inc. Method for automatic reconfiguration in a hierarchical modulation system
US9294316B2 (en) * 2010-06-24 2016-03-22 Texas Instruments Incorporated Scrambling sequences for wireless networks
EP2413524B1 (en) * 2010-07-28 2013-01-16 Telefonaktiebolaget L M Ericsson (PUBL) Method and apparatus for determining signal path properties
US8767848B2 (en) * 2010-12-23 2014-07-01 Texas Instruments Incorporated Channel estimation based on long training symbol with doubled cyclic prefix
US9130679B1 (en) * 2011-05-27 2015-09-08 Nec Laboratories America, Inc. Polarization-switched differential ternary phase-shift keying
CN102368758B (zh) * 2011-09-01 2015-08-12 南京航空航天大学 关于gmsk调制技术的一种新的改进方案
US9246725B2 (en) * 2011-09-06 2016-01-26 Electronics And Telecommunications Research Institute Method of generating and receiving packets in low energy critical infrastructure monitoring system
CN102413086B (zh) * 2011-11-08 2013-11-20 哈尔滨工程大学 三进制调频键控调制方法
KR20130104289A (ko) * 2012-03-13 2013-09-25 삼성전자주식회사 오프셋 값을 추정하는 장치, 방법, 수신장치 및 수신장치에서 신호를 처리하는 방법
US9232505B2 (en) * 2012-07-10 2016-01-05 Electronics And Telecommunications Research Institute Method of generating packet, method of transmitting packet, and method of ranging of physical layer transmitter of wireless personal area network system
US9077442B2 (en) * 2012-07-16 2015-07-07 Texas Instruments Incorporated DSSS inverted spreading for smart utility networks
US9629114B2 (en) * 2012-09-19 2017-04-18 Siemens Aktiengesellschaft Method and apparatus for wireless transmission of data packets
JP2014220613A (ja) * 2013-05-07 2014-11-20 ソニー株式会社 送信回路、送信方法、及び、伝送システム
CN103248458A (zh) * 2013-05-11 2013-08-14 哈尔滨工业大学深圳研究生院 基于fqpsk调制的物理层网络编码系统及方法
US20150094082A1 (en) * 2013-09-30 2015-04-02 Qualcomm Incorporated Channel estimation using cyclic correlation
CN105745888B (zh) * 2013-10-29 2019-11-26 三星电子株式会社 使用用于向相干和非相干接收器同时传输的三进制序列的方法和系统
JP6491657B2 (ja) * 2013-10-30 2019-03-27 サムスン エレクトロニクス カンパニー リミテッド プリアンブルシーケンスを送信する方法及び装置
US9819444B2 (en) * 2014-05-09 2017-11-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Robust line coding scheme for communication under severe external noises
EP3167624A4 (en) * 2014-07-07 2017-12-20 Hewlett-Packard Development Company, L.P. Portable speaker
US9842020B2 (en) * 2014-11-26 2017-12-12 Qualcomm Incorporated Multi-wire symbol transition clocking symbol error correction
US9935681B2 (en) * 2016-03-16 2018-04-03 Texas Instruments Incorporated Preamble sequence detection of direct sequence spread spectrum (DSSS) signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166619A1 (en) * 2002-02-20 2006-07-27 Roberts Richard D Method for adjusting acquisition speed in a wireless network
US20060203931A1 (en) * 2005-03-07 2006-09-14 Philip Orlik M-ary modulation of signals for coherent and differentially coherent receivers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AYSE ADALAN ET AL.: "Ultra-Wideband Radio Pulse Shaping Filter Design for IEEE 802.15.4a Transmitter", IEEE 2009 WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, 8 April 2009 (2009-04-08), pages 1 - 6, XP031454502 *
JIAN XING LEE ET AL.: "UWB Piconet Interference Suppression Using Clustered Ternary Orthogonal Signaling Scheme", THE 2009 IEEE INTERNATIONAL CONFERENCE ON ULTRA- WIDEBAND, 11 September 2009 (2009-09-11), pages 83 - 87, XP031547625 *
See also references of EP3065363A4 *
ZHONGDING LEI ET AL.: "UWB Ranging with Energy Detectors using Ternary Preamble Sequences", 2006 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, vol. 2, 6 April 2006 (2006-04-06), pages 872 - 877, XP031387316 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065355A1 (ko) * 2015-10-16 2017-04-20 고려대학교 산학협력단 다중 시퀀스 확산을 이용한 랜덤 접속 및 다중 사용자 검출 방법 및 장치
US10567033B2 (en) 2015-10-16 2020-02-18 Korea University Research And Business Foundation Method and apparatus for detecting random access and multiuser using multiple sequence spreading
WO2017204470A1 (ko) * 2016-05-23 2017-11-30 엘지전자 주식회사 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
US10912117B2 (en) 2016-05-23 2021-02-02 Lg Electronics Inc. Method and apparatus for competition-based transmitting of uplink data in wireless communication system to which non-orthogonal multiple access scheme is applied

Also Published As

Publication number Publication date
CN105874760B (zh) 2019-10-11
CN105745888B (zh) 2019-11-26
US10205612B2 (en) 2019-02-12
EP3767904A1 (en) 2021-01-20
EP3063911A4 (en) 2017-05-17
US20180254929A1 (en) 2018-09-06
US20190334744A1 (en) 2019-10-31
WO2015064945A1 (en) 2015-05-07
CN110838997A (zh) 2020-02-25
US10735226B2 (en) 2020-08-04
CN105745888A (zh) 2016-07-06
CN110572339B (zh) 2022-11-01
JP6609249B2 (ja) 2019-11-20
KR20160078294A (ko) 2016-07-04
US20190140868A1 (en) 2019-05-09
US10348533B2 (en) 2019-07-09
KR20150050456A (ko) 2015-05-08
JP2020014258A (ja) 2020-01-23
CN110572339A (zh) 2019-12-13
US20170063579A1 (en) 2017-03-02
CN110838997B (zh) 2022-12-13
JP6970157B2 (ja) 2021-11-24
KR102265073B1 (ko) 2021-06-15
KR102233039B1 (ko) 2021-03-30
EP3063911A1 (en) 2016-09-07
US10491434B2 (en) 2019-11-26
EP3065363A4 (en) 2017-05-03
EP3065363B1 (en) 2022-11-30
US20180159705A1 (en) 2018-06-07
CN105874760A (zh) 2016-08-17
EP3063911B1 (en) 2020-10-14
KR20210032565A (ko) 2021-03-24
US9887861B2 (en) 2018-02-06
US9967114B2 (en) 2018-05-08
KR102349122B1 (ko) 2022-01-10
US20160261440A1 (en) 2016-09-08
JP2017503368A (ja) 2017-01-26
EP3065363A1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2015065045A1 (ko) 페이로드 시퀀스 전송 방법 및 장치
WO2015170927A1 (en) Apparatus and method for demodulating hybrid modulation symbol in wireless communication system using hybrid modulation scheme
WO2011136600A2 (en) Multiple-input multiple-output communication system supporting multiple reporting modes
WO2015041482A1 (en) Transmitting apparatus and puncturing method thereof
WO2015160210A1 (en) Apparatus and method searching neighboring cells in wireless communication system
WO2016186373A1 (en) Apparatus and method for performing paging process in wireless communication system
WO2014208844A1 (ko) 빔 트레이닝 장치 및 방법
WO2014035146A2 (ko) 환 동형 사상을 이용한 동형 암호화 방법과 복호화 방법 및 이를 이용한 장치
WO2015041475A1 (ko) 송신 장치 및 그의 펑처링 방법
EP3241299A1 (en) Method and apparatus of receiving downlink channel and/or downlink reference signal
WO2017069508A1 (en) Receiving apparatus and decoding method thereof
WO2019074267A1 (ko) Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
WO2016072771A1 (ko) D2d 통신을 위한 동기화 신호 구성 방법 및 장치
WO2013070022A1 (en) Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
WO2017131480A1 (en) Apparatus and method for transmitting and receiving signal in wireless communication system
WO2020166946A1 (en) Remote interference management method, gnb, electronic device, and readable storage medium
WO2015023150A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
EP2997727A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2019027180A1 (ko) 통신 시스템에서 동기 신호의 송수신 방법
WO2015034298A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2018231003A1 (ko) 동기화 신호 블록 지시 방법 및 장치
WO2017150943A1 (en) Apparatus and method for transmitting and receiving signal in wireless communication system supporting hybrid automatic repeat request scheme
WO2015102166A1 (ko) 저전력 엔벨로프 검출 수신기에서 간섭 신호를 검출하는 방법 및 장치
WO2012099398A2 (en) Apparatus and method for transmittng and receiving data in communication/broadcasting system
WO2015034316A1 (ko) 시변 주파수 기반의 심볼을 이용한 음파 송수신 방법 및 이를 이용한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014856834

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856834

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15033352

Country of ref document: US