WO2015064752A1 - 分離膜エレメント - Google Patents
分離膜エレメント Download PDFInfo
- Publication number
- WO2015064752A1 WO2015064752A1 PCT/JP2014/079110 JP2014079110W WO2015064752A1 WO 2015064752 A1 WO2015064752 A1 WO 2015064752A1 JP 2014079110 W JP2014079110 W JP 2014079110W WO 2015064752 A1 WO2015064752 A1 WO 2015064752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separation membrane
- sheet
- protrusion
- separation
- protrusions
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 501
- 239000012528 membrane Substances 0.000 title claims abstract description 490
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 110
- 238000005470 impregnation Methods 0.000 claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims description 22
- 239000000463 material Substances 0.000 description 199
- 239000010410 layer Substances 0.000 description 61
- 238000004804 winding Methods 0.000 description 51
- 238000000034 method Methods 0.000 description 39
- 239000002346 layers by function Substances 0.000 description 34
- 239000012466 permeate Substances 0.000 description 34
- 239000000835 fiber Substances 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 30
- 229920005989 resin Polymers 0.000 description 29
- 239000011347 resin Substances 0.000 description 29
- 239000004745 nonwoven fabric Substances 0.000 description 25
- 239000002585 base Substances 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 23
- 239000012530 fluid Substances 0.000 description 22
- 239000000758 substrate Substances 0.000 description 19
- 239000000853 adhesive Substances 0.000 description 18
- 230000001070 adhesive effect Effects 0.000 description 18
- 238000004049 embossing Methods 0.000 description 15
- 229920002492 poly(sulfone) Polymers 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 239000012943 hotmelt Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- -1 polysulfone Chemical class 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000007789 sealing Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000007547 defect Effects 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 238000007665 sagging Methods 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 239000013535 sea water Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 239000013505 freshwater Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000011085 pressure filtration Methods 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229920006167 biodegradable resin Polymers 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 2
- 238000009730 filament winding Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009292 forward osmosis Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- IREVRWRNACELSM-UHFFFAOYSA-J ruthenium(4+);tetrachloride Chemical compound Cl[Ru](Cl)(Cl)Cl IREVRWRNACELSM-UHFFFAOYSA-J 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 238000012696 Interfacial polycondensation Methods 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000012296 anti-solvent Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- QWDJLDTYWNBUKE-UHFFFAOYSA-L magnesium bicarbonate Chemical compound [Mg+2].OC([O-])=O.OC([O-])=O QWDJLDTYWNBUKE-UHFFFAOYSA-L 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011070 membrane recovery Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920002961 polybutylene succinate Polymers 0.000 description 1
- 239000004631 polybutylene succinate Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/103—Details relating to membrane envelopes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/12—Specific discharge elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
- B01D2313/146—Specific spacers on the permeate side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
Definitions
- the present invention relates to a separation membrane element used for separating components contained in fluid such as liquid and gas.
- Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes from the viewpoints of pore sizes and separation functions. These membranes are used, for example, in the production of drinking water from seawater, brine, and water containing harmful substances, industrial ultrapure water, and wastewater treatment and recovery of valuable materials. Depending on the separation component and separation performance to be used.
- separation membrane elements There are various types of separation membrane elements, but they are common in that treated water (raw water) to be treated is supplied to one side of the separation membrane and a permeated fluid is obtained from the other side.
- the separation membrane element includes a large number of bundled separation membranes so that the membrane area per one separation membrane element is increased, that is, the amount of permeate fluid obtained per one separation membrane element is large. It is formed to become.
- Various separation membrane elements such as spiral type, hollow fiber type, plate and frame type, rotating flat membrane type, and flat membrane integrated type have been proposed as the separation membrane element. .
- spiral-type separation membrane elements are widely used for reverse osmosis filtration.
- the spiral type separation membrane element includes a central tube and a laminated body wound around the central tube.
- the laminated body includes a supply-side channel material that supplies raw water (that is, water to be treated) to the separation membrane surface, a separation membrane that separates components contained in the raw water, and a permeation side that is separated from the supply-side fluid through the separation membrane. It is formed by laminating permeation-side flow path materials for guiding fluid to the central tube.
- the spiral separation membrane element is preferably used in that a large amount of permeated fluid can be taken out because pressure can be applied to the raw water.
- Laminate type separation membrane is a separation functional layer (porous support layer) formed from a cross-linked polymer compound such as polyamide and porous formed from a polymer compound such as polysulfone, which are laminated from the supply side to the permeate side.
- a non-woven fabric substrate formed from a resin layer and a polymer compound such as polyethylene terephthalate is provided.
- a knitted member called a tricot having a smaller interval than the supply side channel material is used for the purpose of preventing the separation membrane from dropping and forming the permeate side channel. .
- a separation membrane element provided with an unevenly shaped sheet has been proposed as a permeate-side channel material (see Patent Document 1).
- a separation membrane element that does not require a supply-side passage material such as a net or a permeation-side passage material such as a tricot is proposed by arranging a passage material composed of an elastomer called a vane on the separation membrane. (See Patent Document 2).
- a separation membrane element provided with a flow path material in which yarns are arranged on a nonwoven fabric has been proposed (see Patent Document 3).
- an object of the present invention is to provide a separation membrane element that can stabilize the separation and removal performance when the separation membrane element is operated for a long time under a high pressure.
- a separation membrane comprising: a sheet having a plurality of projections fixed between the permeation-side surfaces of the separation membrane leaves that overlap each other, the projection-side height of the separation membrane leaf; The ratio of the maximum height to the minimum height is 1.10 or more and 1.50 or less, the coefficient of variation is 0.02 or more and 0.15 or less, and the impregnation ratio of the protrusions to the sheet is 10% or more and 100. % Separation membrane element.
- the tensile strength in the length direction of the sheet is 40 N / 5 cm or more and 600 N / 5 cm or less, the tensile strength in the width direction is 15 N / 5 cm or more and 500 N / 5 cm or less, and the length direction of the sheet is The separation membrane element according to any one of (1) to (4), wherein the tensile elongation is 5% to 50% and the tensile elongation in the width direction is 3% to 40%.
- a high-efficiency and stable permeation-side flow path can be formed, and a high-performance, high-efficiency separation membrane element having separation component removal performance and high permeation performance can be obtained.
- this separation membrane element in a water treatment device, it is expected to continue stable operation over a long period of time even under high-pressure operation conditions in desalination of brine or seawater.
- the flow resistance on the permeate side is reduced by reducing the drop of the separation membrane into the permeate side flow path, and a highly efficient and stable permeate side flow path can be formed.
- a high-performance and high-efficiency separation membrane element having high performance and high permeation performance can be obtained.
- this separation membrane element in the water treatment device, when the brine or seawater is desalinated, the drop of the separation membrane between the flow path materials is suppressed under high-pressure operation conditions, and stable operation can be continued over a long period of time. Be expected.
- FIG. 1 is a schematic configuration diagram showing one embodiment of a separation membrane leaf used in the present invention.
- FIG. 2 is a plan view showing a permeate-side channel material provided with protrusions continuously provided in the length direction (second direction) of the sheet used in the present invention.
- FIG. 3 is a plan view showing a permeation-side flow path member including protrusions provided discontinuously in the length direction (second direction) of the sheet used in the present invention.
- 4 (a) and 4 (b) are cross-sectional views showing a separation membrane used in the present invention provided with a permeate-side channel material.
- FIG. 5 is a cross-sectional view in the length direction of the separation membrane of FIG. FIG.
- FIG. 6 is a cross-sectional view of a permeate-side channel material including a sheet and a protrusion.
- FIG. 7 is a cross-sectional view showing a separation membrane provided with a permeate-side channel material, and is a schematic view after a separation membrane element is subjected to a start / stop test.
- 8 (a) and 8 (b) are developed perspective views showing one embodiment of the separation membrane element of the present invention.
- FIG. 9 is a schematic cross-sectional view of a permeate-side channel material used in the present invention.
- FIG. 10 is a cross-sectional view showing a schematic configuration of the separation membrane main body used in the present invention.
- the x axis may be referred to as a first direction and the y axis may be referred to as a second direction.
- the first direction may be referred to as a horizontal direction or a width direction
- the second direction may be referred to as a vertical direction or a length direction.
- the first direction (lateral direction) is represented by a CD arrow
- the second direction (vertical direction) is represented by an MD arrow.
- “mass” means “weight”.
- the separation membrane element of the present invention is a separation membrane element having a water collection pipe and a plurality of separation membrane leaves wound around the water collection pipe, and the separation membrane leaf is a surface on the supply side. And a separation membrane provided with a surface on the permeate side, with the surface on the supply side facing each other, and a sheet having protrusions fixed between the surfaces on the permeate side of the overlapping separation membrane leaf. .
- a separation membrane is a membrane that can separate components in the fluid supplied to the surface of the separation membrane and obtain a permeated fluid that has permeated the separation membrane.
- the separation membrane referred to in the present invention may include those that are embossed so as to form a flow path and those that are provided with resin or the like. Further, as in the prior art, a channel that cannot be formed and only exhibits a separation function may be referred to as a separation membrane body.
- FIG. 1 An exploded perspective view of a separation membrane leaf including an example of an embodiment of the separation membrane used in the present invention is shown in FIG. In FIG.
- the separation membrane 2 includes a plurality of separation membranes 2a, 2b, and 2c.
- the first separation membrane 2a has a supply-side surface 21a and a transmission-side surface 22a
- the second separation membrane 2b has a supply-side surface 21b and a transmission-side surface 22b
- the membrane 2c has a supply-side surface 21c and a transmission-side surface 22c.
- the overlapped first separation membrane 2a and second separation membrane 2b are arranged so that the supply-side surface 21a of the first separation membrane 2a and the supply-side surface 21b of the second separation membrane 2b face each other. Is arranged.
- the third separation membrane 2c superimposed thereon is arranged so that the transmission side surface 22c faces the transmission side surface 22b of the second separation membrane 2b.
- the supply side surface 21c of the third separation membrane 2c is the supply side surface of the separation membrane 2.
- the “supply-side surface” of the separation membrane means a surface on the side to which raw water is supplied out of the two surfaces of the separation membrane.
- the “permeate side surface” means the surface on the opposite side from which the permeated fluid that has permeated the separation membrane is discharged.
- the separation membrane 2 includes a base material 201, a porous support layer 202, and a separation function layer 203 as shown in FIG. 10, the surface on the separation function layer 203 side is generally supplied.
- the surface 21 on the side, and the surface on the substrate 201 side is the surface 22 on the transmission side.
- the separation membrane 2 is described as a laminate of a base material 201, a porous support layer 202 and a separation functional layer 203.
- the surface open to the outside of the separation functional layer 203 is the supply-side surface 21, and the surface open to the outside of the base material 201 is the transmission-side surface 22.
- the separation membrane 2 is rectangular, and the first direction (CD) and the second direction (MD) are parallel to the outer edge of the separation membrane 2.
- the separation membrane a membrane having separation performance according to the method of use and purpose is used.
- the separation membrane may be formed of a single layer or a composite membrane including a separation functional layer and a substrate. As shown in FIG. 10, in the composite membrane, a porous support layer 202 may be formed between the separation functional layer 203 and the base material 201.
- the thickness of the separation functional layer is preferably 5 nm or more and 3,000 nm or less in terms of separation performance and transmission performance.
- a reverse osmosis membrane, a forward osmosis membrane, and a nanofiltration membrane it is a preferable aspect that it is 5 nm or more and 300 nm or less.
- the thickness of the separation functional layer can be measured in accordance with an ordinary separation film thickness measurement method. For example, the separation membrane is embedded with resin, and an ultrathin section is prepared by cutting the separation membrane, and the obtained section is subjected to processing such as staining. Thereafter, the thickness can be measured by observing the thickness with a transmission electron microscope.
- the separation functional layer when it has a pleat structure, it can be measured at an interval of 50 nm in the cross-sectional length direction of the pleat structure located above the porous support layer, and the number of pleats can be measured to obtain 20 from the average. it can.
- the separation function layer may be a layer having both a separation function and a support function, or may have only a separation function.
- the “separation function layer” refers to a layer having at least a separation function.
- a layer containing cellulose, polyvinylidene fluoride, polyether sulfone, or polysulfone as a main component is preferably applied as the separation functional layer.
- X contains Y as a main component means that the Y content in X is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. Is more preferable, 90 mass% or more is still more preferable, and 95 mass% or more is especially preferable. In addition, when there are a plurality of components corresponding to Y, the total amount of these components only needs to satisfy the above range.
- a crosslinked polymer compound is preferably used as the separation functional layer supported by the porous support layer from the viewpoint of easy control of the pore diameter and excellent durability.
- a polyamide separation functional layer or an organic / inorganic hybrid functional layer obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide is preferably used.
- These separation functional layers can be formed by polycondensation of monomers on the porous support layer.
- the separation functional layer can contain polyamide as a main component.
- a film is formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. For example, by applying a polyfunctional amine aqueous solution to the porous support layer, removing excess amine aqueous solution with an air knife or the like, and then applying an organic solvent solution containing a polyfunctional acid halide, the polyamide separation functional layer Is obtained.
- the separation functional layer can have an organic-inorganic hybrid structure containing Si element or the like.
- the separation functional layer having an organic-inorganic hybrid structure can contain, for example, the following compounds (A) and (B): (A) a silicon compound in which a reactive group and a hydrolyzable group having an ethylenically unsaturated group are directly bonded to a silicon atom, and (B) a compound other than the above compound (A), wherein the ethylenically unsaturated group A compound having Specifically, the separation functional layer can contain a condensate of the hydrolyzable group of the compound (A) and a polymer of the ethylenically unsaturated group of the compound (A) and / or the compound (B).
- the separation functional layer is A polymer formed by condensation and / or polymerization of only the compound (A), A polymer formed by polymerizing only the compound (B), and a copolymer of the compound (A) and the compound (B), Among these, at least one polymer can be contained.
- the polymer includes a condensate.
- compound (A) may be condensed via a hydrolyzable group.
- the hybrid structure can be formed by a known method.
- An example of a method for forming a hybrid structure is as follows.
- a reaction solution containing the compound (A) and the compound (B) is applied to the porous support layer.
- heat treatment may be performed.
- a polymerization initiator, a polymerization accelerator, or the like can be added during the formation of the separation functional layer.
- the surface of the membrane can be hydrophilized with, for example, an alcohol-containing aqueous solution or an alkaline aqueous solution before use.
- the porous support layer is a layer that supports the separation functional layer, and is also referred to as a porous resin layer.
- Examples of the material used for the porous support layer and the shape thereof include those formed on a substrate with a porous resin.
- As the porous support layer polysulfone, cellulose acetate, polyvinyl chloride, epoxy resin or a mixture or laminate of them is used, and among them, the chemical, mechanical and thermal stability is high, and the pore size is controlled. It is a preferable embodiment to use polysulfone which is easy to be treated.
- the porous support layer gives mechanical strength to the separation membrane and does not have a separation performance like a separation functional layer for components having a small molecular size such as ions.
- the pore size and pore distribution of the porous support layer are, for example, the porous support layer may have uniform and fine pores, or the other side from the surface on which the separation functional layer is formed. It may have a pore size distribution such that the diameter gradually increases over the surface.
- the projected area equivalent circle diameter of the pores measured using an atomic force microscope or an electron microscope on the surface on the side where the separation functional layer is formed is 1 nm or more and 100 nm or less. preferable.
- the pores on the surface on the side where the separation functional layer is formed in the porous support layer may have a projected area equivalent circle diameter of 3 nm to 50 nm. preferable.
- the thickness of the porous support layer is preferably in the range of 20 ⁇ m or more and 500 ⁇ m or less, and more preferably in the range of 30 ⁇ m or more and 300 ⁇ m or less for reasons such as giving strength to the separation membrane.
- the form of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, and an atomic force microscope.
- a scanning electron microscope the porous support layer is peeled off from the substrate, and then cut by a freeze cleaving method to obtain a sample for cross-sectional observation.
- This sample was thinly coated with platinum or platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 kV to 6 kV. To do.
- a high-resolution field emission scanning electron microscope an S-900 electron microscope manufactured by Hitachi, Ltd. can be used. Based on the obtained electron micrograph, the film thickness of the porous support layer and the projected area equivalent circle diameter of the surface can be measured.
- the thickness and pore diameter of the porous support layer are average values, and the thickness of the porous support layer is measured at intervals of 20 ⁇ m in a direction orthogonal to the thickness direction in cross-sectional observation, and is an average value of 20 point measurements. .
- a hole diameter is an average value of each projected area circle equivalent diameter measured about 200 holes.
- the porous support layer is formed, for example, by applying an N, N-dimethylformamide (hereinafter sometimes referred to as DMF) solution of the above polysulfone on a substrate described later, for example, a densely woven polyester cloth or nonwoven fabric. It can be produced by casting to a certain thickness and wet coagulating it in water.
- DMF N, N-dimethylformamide
- the porous support layer is “Office of Saleen Water Research and Development Progress Report” no. 359 (1968). The polymer concentration, solvent temperature and antisolvent can be adjusted to obtain the desired form.
- a predetermined amount of polysulfone is dissolved in DMF to prepare a polysulfone resin solution having a predetermined concentration.
- this polysulfone resin solution is applied to a substrate made of polyester cloth or nonwoven fabric to a substantially constant thickness, and after removing the surface solvent in the air for a certain period of time, the polysulfone is coagulated in the coagulation liquid.
- a porous support layer can be obtained.
- the separation membrane can have a substrate.
- the base material it is preferable to use a fibrous base material from the viewpoints of strength, unevenness-forming ability, and fluid permeability.
- the fibrous base material either a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used.
- the long fiber nonwoven fabric has excellent film-forming properties, when the polymer solution is cast, the solution penetrates through the permeation, the porous support layer peels off, and Can suppress the film from becoming non-uniform due to the fluffing of the base material and the like, and the occurrence of defects such as pinholes.
- the fibrous base material by forming the fibrous base material from a long-fiber nonwoven fabric composed of thermoplastic continuous filaments, the film becomes non-uniform due to fiber fluffing when casting a polymer solution compared to a short-fiber nonwoven fabric. In addition, the occurrence of film defects can be suppressed. Furthermore, since the separation membrane is tensioned in the film-forming direction when continuously formed, it is preferable to use a long-fiber nonwoven fabric excellent in dimensional stability as a base material.
- the fibers in the surface layer located on the opposite side of the porous support layer are longitudinally oriented than the fibers in the surface layer on the porous support layer side. It is preferable.
- Such a structure not only realizes a high effect of preventing membrane breakage and the like by maintaining strength, but also includes a porous support layer and a base material when imparting irregularities to the separation membrane Formability as a body is also improved, and the uneven shape on the surface of the separation membrane is stabilized.
- the fiber orientation degree in the surface layer located on the side opposite to the porous support layer of the base material formed from the long-fiber nonwoven fabric is preferably 0 ° or more and 25 ° or less. It is a preferable aspect that the orientation degree difference with the fiber orientation degree in the surface layer on the porous support layer side of the material is 10 ° or more and 90 ° or less.
- the heating process is included in the manufacturing process of the separation membrane and the manufacturing process of the separation membrane element.
- the porous support layer or the separation functional layer may contract due to heating.
- the shrinkage is significant in the width direction where no tension is applied in continuous film formation. Since the separation membrane contracts, a problem arises in dimensional stability and the like, and therefore, a substrate having a small thermal dimensional change rate is desired.
- the difference between the fiber orientation degree in the surface layer of the base material located on the side opposite to the porous support layer and the fiber orientation degree in the surface layer of the base material on the porous support layer side is 10 ° or more and 90 ° or less, A change in the width direction can be suppressed, which is a preferable mode.
- the fiber orientation degree is an index indicating the direction of the fibers of the nonwoven fabric base material constituting the porous support layer.
- the fiber orientation degree is an average value of angles between the film forming direction when continuous film forming is performed, that is, the longitudinal direction of the nonwoven fabric substrate and the longitudinal direction of the fibers constituting the nonwoven fabric substrate. is there. That is, if the longitudinal direction of the fiber is parallel to the film forming direction, the fiber orientation degree is 0 °. If the longitudinal direction of the fiber is perpendicular to the film forming direction, that is, if it is parallel to the width direction of the nonwoven fabric substrate, the degree of orientation of the fiber is 90 °. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
- the fiber orientation degree is measured as follows. First, 10 small piece samples are randomly collected from the nonwoven fabric. Next, the surface of the sample is photographed at 100 to 1000 times with a scanning electron microscope. In the photographed image, 10 fibers are selected for each sample, and the angle of the fibers in the longitudinal direction when the longitudinal direction of the nonwoven fabric is 0 ° is measured.
- the longitudinal direction of the nonwoven fabric refers to “Machine direction” at the time of manufacturing the nonwoven fabric.
- the longitudinal direction of the nonwoven fabric coincides with the film forming direction of the porous support layer and the MD direction of FIGS.
- the CD direction in FIGS. 1 and 8 corresponds to “Cross direction” at the time of manufacturing the nonwoven fabric.
- the angle is measured for a total of 100 fibers per nonwoven fabric.
- an average value is calculated from the angle in the longitudinal direction.
- the value obtained by rounding off the first decimal place of the obtained average value is the fiber orientation degree.
- the total thickness of the substrate and the porous support layer is preferably in the range of 30 ⁇ m to 300 ⁇ m, or more preferably in the range of 50 ⁇ m to 250 ⁇ m.
- the thickness of the substrate is selected.
- the permeate side channel material has a sheet and a plurality of protrusions fixed to the sheet.
- the plurality of protrusions are formed integrally with the sheet.
- the permeate-side channel material of the present invention preferably has high rigidity and toughness that can withstand high pressure, particularly when used in reverse osmosis membrane elements.
- preferable rigidity is rigidity for preventing deformation at a high operating pressure.
- the toughness is toughness that prevents damage due to instantaneous force such as pressure fluctuation.
- the present inventors have found that even if only one of the tensile strength and the tensile elongation is increased, the rigidity and toughness suitable for the permeate side channel material are not improved. It has been found that both rigidity and toughness are improved by increasing both the tensile elongation.
- the permeation-side channel material that is, the sheet with the protrusions fixed, has a tensile strength in the longitudinal direction (length direction) of 50 N / 5 cm to 800 N / 5 cm, and a tensile elongation of 5% to 30%. Is preferred.
- tensile strength and tensile elongation of the permeate-side channel material are large, rigidity against stress applied to the permeate-side channel material during high-pressure load operation is improved. Further, when the element is surrounded, the winding pressure is concentrated, and it is possible to suppress a decrease in the amount of fresh water and salt blocking performance due to the deformation of the flow path material.
- the tensile elongation is too high, problems such as an increase in the amount of deformation of the permeate-side channel material and a residual strain remain.
- the deformation amount of the flow path material is reduced, the permeation side flow path is stabilized, and the performance change with respect to pressure can be suppressed. Further, the deformation of the membrane and the occurrence of defects caused by the deformation of the flow path material can be suppressed, and the permeation flux and the solute removal performance are stabilized even during high-pressure load operation.
- the tensile strength is measured as follows. Based on ISO9073-3: 1989, using a Tensilon universal material tester (RTF-2430) (manufactured by A & D Co., Ltd.), a sample with a spacing of 20 cm and a tensile speed of 10 cm / min is used.
- RTF-2430 Tensilon universal material tester
- the tensile strength in this document is a value obtained by measuring five points in the longitudinal direction and in the transverse direction, reading from the obtained strength elongation curve, and rounding off the first decimal place.
- a plurality of sheets are provided between the permeation side surfaces of adjacent separation membrane leaves, and a plurality of protrusions are fixed to at least one of the sheets.
- the separation membrane falls between adjacent projections fixed to the sheet, and the permeate-side channel volume is reduced, so that the amount of water produced by the separation membrane element is reduced.
- the protrusion has a width that is fixed to the sheet (the lower bottom side of the protrusion) is larger than the width of the tip of the protrusion (the upper bottom side of the protrusion). It is preferable that the surface not provided with the protrusion and the surface on the permeation side of the separation membrane are arranged so as to contact each other. Specifically, as shown in FIG. 4A, the width m of the fixing portion (projection lower bottom side) of the projection 301 fixed to the sheet 302 is the tip portion of the projection (projection upper bottom).
- the upper base side (separation film) of the protrusion 301 is larger than the distance n between the protrusions on the lower base side (separation film 303 B 1 side) of the protrusion 301 Since the distance h between the protrusions on the 303A1 side is large, the separation membrane 303A1 located on the upper bottom side of the protrusion 301 is more likely to fall than the separation membrane 303B1 located on the lower bottom side.
- the drop of the separation membrane 303A1 located on the upper bottom side of the protrusion is reduced, It is possible to suppress a decrease in the permeate side channel volume.
- a plurality of protrusions are fixed to at least two of the plurality of sheets.
- the sheet strength is improved. That is, the rigidity against the stress applied to the sheet 302 is improved. If the rigidity with respect to the stress applied to the sheet is improved, deformation of the sheet with respect to pressure can be suppressed, and the permeate-side flow path can be stabilized.
- the sheet 302 to which the plurality of protrusions 301 are fixed is in contact with the surface on which the protrusions 301 are not provided and the permeate side surfaces of the separation membranes 301A1 and 302B1. If a plurality of protrusions 301 are fixed to at least two of the plurality of sheets 302 between adjacent separation membranes 303A1 and 303B1, the distance h between the protrusions 301 located on the separation membrane 303A1 side , The drop of the separation membrane can be reduced even during high-pressure load operation, and the flow resistance can be reduced. Since the drop of the separation membrane can be reduced without reducing the permeate-side channel volume i, both high initial performance and pressure resistance can be achieved.
- the tensile strength in the longitudinal direction (length direction) of the sheet constituting the permeate-side channel material is 40 N / 5 cm or more and 600 N / 5 cm or less, and the tensile strength in the lateral direction (width direction) is 15 N / 5 cm or more. It is preferably 500 N / 5 cm or less.
- the rigidity against the stress applied to the sheet is improved. If the rigidity with respect to the stress applied to the sheet is improved, deformation of the sheet with respect to pressure can be suppressed, and the permeate-side flow path can be stabilized. Further, when the element is surrounded, the winding pressure is concentrated on the flow path material, and it is possible to suppress a decrease in the amount of water produced and the salt blocking performance due to the deformation of the flow path material. Furthermore, in the process of forming protrusions on the sheet, deformation of the sheet due to tension or heat can be suppressed, and protrusion formation can be stabilized.
- the winding tension may be increased in order to suppress sheet deformation caused by deformation due to protrusion solidification.
- the tensile strength of the sheet By setting the tensile strength of the sheet within the above range, sheet deformation due to winding tension can be suppressed.
- the shape and height of the protrusions of the permeate-side channel material are stabilized, and the permeated water amount and the solute removal performance are high when the element is formed.
- the tensile strength is too high, the flexibility decreases, and the toughness against pressure decreases.
- the tensile elongation in the longitudinal direction (length direction) of the sheet constituting the permeate-side channel material is 5% or more and 50% or less, and the tensile elongation in the transverse direction (width direction) is 3% or more and 40%.
- the following is preferable.
- the toughness of the sheet is improved.
- the sheet is not destroyed even when the winding pressure is concentrated when the element is surrounded or during high-pressure operation, and the permeated water amount and the solute removal performance are stabilized.
- the winding tension may be increased in order to suppress sheet deformation caused by deformation due to protrusion solidification.
- the sheet can be stably wound.
- problems such as an increase in the amount of deformation of the sheet and remaining residual strain occur when a pressure is applied to the element or in the process of forming protrusions on the sheet.
- the thickness of the sheet constituting the permeation side channel material is preferably in the range of 10 ⁇ m to 300 ⁇ m, more preferably in the range of 20 ⁇ m to 100 ⁇ m.
- the sheet thickness is 300 ⁇ m or less, the flow resistance of the permeate-side flow path is reduced, and the amount of water produced by the element is improved.
- the sheet is thin, it is possible to fill a large number of membranes per element, so that the amount of water produced by the element can be increased.
- seat improves because a sheet
- transmission side channel material has a space
- the air permeability of the sheet constituting the permeate-side channel material is preferably 0.1 ml / cm 2 / s or more and 10.0 ml / cm 2 / s or less, more preferably 0.1 ml / cm 2 / s or more. 5.0 ml / cm 2 / s or less.
- the air permeability is within the above range, the flow resistance of the sheet is small, and a separation membrane element having a high water production amount can be obtained. Further, when the protrusions are formed on the sheet, it is possible to prevent the protrusions from getting through due to the impregnation of the sheet and making the thickness of the sheet nonuniform.
- the protrusion 301 constituting the permeate-side channel material is impregnated in the sheet.
- the impregnation ratio with respect to the sheet thickness of the protrusion 301 is 10% or more and 100% or less.
- the content is preferably 20% or more and 100% or less.
- the impregnation ratio is in the above range, the adhesion between the sheet and the protrusions becomes strong, and the protrusions are not easily separated from the sheet even during high-pressure operation, and the performance of the separation membrane element is stabilized.
- the sheet gap is large, and the compression ratio of the sheet increases.
- the compression ratio of the sheet increases, a gap is generated between the separation membrane and the permeate side flow path, and the separation membrane constituting the separation membrane element becomes unstable. Therefore, the performance of the separation membrane element is degraded.
- the protrusion 301 is exposed to the sheet, the thickness of the sheet becomes non-uniform, and the permeate-side flow path becomes unstable, resulting in membrane displacement and performance degradation of the separation membrane element.
- the impregnation ratio of the protrusions into the sheet is calculated by observing the cross section of the separation membrane where the protrusions are present with a scanning electron microscope, a transmission electron microscope, or an atomic force microscope, and calculating the protrusion impregnation thickness and the sheet thickness.
- a scanning electron microscope the channel material is cut along with the protrusions in the depth direction, and the cross section is observed with a scanning electron microscope to measure the protrusion impregnation thickness and the substrate thickness. And it can calculate from the ratio of the protrusion maximum impregnation thickness which the protrusion in a sheet
- the “sheet thickness” when calculating the impregnation depth is the thickness (D2) of the sheet at the same location as the portion (D1) where the maximum impregnation thickness was measured (see FIG. 6).
- the arrow indicating the sheet thickness and the arrow indicating the maximum impregnation thickness are drawn so as to deviate from each other.
- the impregnation rate of the protrusions can be adjusted by changing the resin or basis weight of the sheet constituting the permeate-side channel material, or the resin constituting the protrusion or the content thereof.
- an impregnation rate can be adjusted also by changing process temperature etc.
- Resin is preferably used as a material constituting the permeate-side channel material, that is, a component constituting the sheet and the protrusion.
- ethylene vinyl acetate copolymer resin, polyolefin such as polyethylene and polypropylene, polyolefin copolymer and the like are preferably used.
- the material of the permeate side channel material is urethane resin, epoxy resin, polyethersulfone, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, styrene-acrylonitrile copolymer.
- Polymer styrene-butadiene-acrylonitrile copolymer, polyacetal, polymethyl methacrylate, methacryl-styrene copolymer, cellulose acetate, polycarbonate, polyethylene terephthalate, polybutadiene terephthalate and fluororesin (ethylene trifluorochloride, polyvinylidene fluoride, tetra Fluorinated ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, and tetrafluoroethylene-ethylene Can be selected polymer such as copolymer, etc.).
- fluororesin ethylene trifluorochloride, polyvinylidene fluoride, tetra Fluorinated ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro
- the biodegradable resin is also preferably used as a raw material because it is easy to discard and the environmental load is small.
- the biodegradable resin used in the present invention include polylactic acid resin, polybutylene succinate resin, polycaprolactone resin, polyethylene succinate resin, polyglycolic acid resin, and polyhydroxybutyrate resin. These materials are used alone or as a mixture of two or more.
- a thermoplastic resin is easy to mold, it is possible to form a permeate-side channel material having a uniform shape.
- the sheet and the protrusion may be the same material or different materials.
- a composite material is also applicable as the material for the permeate side channel material.
- the material of the composite material include a material containing the above-described resin as a base material and further containing a filler.
- the compression elastic modulus of the permeate-side channel material can be increased by adding a filler such as a porous inorganic material to the base material.
- alkaline earth metal silicates such as sodium silicate, calcium silicate and magnesium silicate, metal oxides such as silica, alumina and titanium oxide, alkaline earth metals such as calcium carbonate and magnesium carbonate Carbonate, pure meteorite, meteorite powder, caustic clay, wollastonite, sepiolite, attapulgite, kaolin, clay, bentonite, gypsum, talc and the like can be used as fillers.
- the addition amount of the filler is not particularly limited as long as the effect of the present invention is not impaired.
- ⁇ Flow channel material shape and arrangement> ⁇ Overview Conventionally used tricots are knitted fabrics and are composed of three-dimensionally intersecting yarns. That is, the tricot has a two-dimensional continuous structure. When such a tricot is applied as a permeate-side channel material, the height of the channel is smaller than the thickness of the tricot. That is, it is a structure with many ratios which do not become a groove.
- a protrusion 301 shown in FIG. 4 or the like is arranged on a sheet 302 having a gap.
- the height (that is, the thickness) of the protrusion 301 of this embodiment can be used as the height of the groove of the flow path, and the sheet 302 can be used as the flow path because it has a gap.
- the gap of the sheet becomes the channel and the permeate passes through the sheet. Can be moved to another groove. Therefore, the flow resistance (the groove between the protrusions 301 and the gap in the sheet 302) is wider than when a tricot having the same thickness as the flow path material of this embodiment is applied, so the flow resistance is Smaller.
- discontinuous protrusions 301 are fixed on one sheet 302.
- “Discontinuous” is a state in which a plurality of permeation-side flow path members are provided at intervals. That is, when one protrusion 301 is peeled from the sheet 302, a plurality of protrusions 301 separated from each other are obtained.
- members such as nets, tricots, and films exhibit a continuous and integral shape even when the flow path is separated from the sheet 302.
- the separation membrane can suppress the pressure loss when it is incorporated into a separation membrane element described later.
- the protrusions 301 are formed discontinuously only in the first direction (the width direction of the sheet 302), and in FIG. 3, the first direction (the width direction of the sheet 302) and the first It is formed discontinuously in any of the two directions (the sheet length direction).
- the permeate-side flow path 5 is formed in the space between the adjacent protrusions 301.
- the separation membrane is preferably disposed so that the second direction coincides with the winding direction. That is, in the separation membrane element, the separation membrane has a first direction (width direction of the separation membrane) parallel to the longitudinal direction of the water collection tube and a second direction (length direction of the separation membrane) in the longitudinal direction of the water collection tube. It is preferable to arrange them orthogonally.
- the permeation-side channel material 31 is provided discontinuously in the first direction and is provided so as to continue from one end of the sheet 302 to the other end in the second direction. That is, as shown in FIG. 8A, when the separation membrane 2 is incorporated in the separation membrane element 100, the protrusions 301 are continuous from the inner end to the outer end of the sheet 302 in the winding direction. Placed in. The inner side in the winding direction is the side close to the water collecting pipe 6 in the separation membrane, and the outer side in the winding direction is the side far from the water collecting pipe 6 in the separation membrane.
- FIG. 8A and FIG. 8B are explanatory views schematically showing a separation membrane element 100 in which the separation membrane leaf 4 is wound around the water collecting pipe 6.
- the separation membrane 2 is described as a surface on one side of the separation membrane leaf 4.
- an arrow indicated by CD indicates the longitudinal direction of the water collecting pipe 6 and the width direction of the separation membrane.
- the arrow shown by MD shows the length direction of the separation membrane and the direction wound around the water collection pipe 6.
- the passage material is “continuous in the second direction” means that the passage material is provided without interruption as shown in FIG. 2 and the passage material is interrupted as shown in FIG. It includes both cases where the channel material is substantially continuous.
- the “substantially continuous” form preferably means that, as shown in FIG. 3, the distance e between the flow path members in the second direction (that is, the length of the discontinuous portion in the flow path material) is 5 mm or less. Satisfy that there is.
- the interval e is more preferably 1 mm or less, and further preferably 0.5 mm or less.
- the total value of the intervals e included from the beginning to the end of the line of flow path materials arranged in the second direction is preferably 100 mm or less, more preferably 30 mm or less, and further preferably 3 mm or less. .
- the interval e is 0 (zero).
- the protrusions 301 are discontinuously provided not only in the first direction but also in the second direction. That is, the protrusions 301 are provided at intervals in the length direction. However, as described above, the protrusions 301 are substantially continuous in the second direction, so that film sagging is suppressed. However, by providing the discontinuous protrusions 301 in the two directions as described above, the contact area between the flow path material and the fluid is reduced, so that the pressure loss is reduced. In other words, this form is a configuration in which the flow path 5 includes a branch point. That is, in the configuration of FIG. 3, the permeating fluid is divided by the protrusions 301 and the sheet 302 while flowing through the flow path 5, and can further merge downstream.
- the protrusions 301 are provided so as to be continuous from one end to the other end of the sheet 302 in the second direction.
- the protrusion 301 is divided into a plurality of portions in the second direction, but the plurality of portions are provided so as to be arranged from one end to the other end of the sheet 302.
- the passage material is “provided from one end of the sheet to the other end” means that the protrusion 301 is provided to the edge of the sheet 302 and the region where the protrusion 301 is not provided in the vicinity of the edge. Includes both forms. That is, the protrusions 301 need only be distributed in the second direction to such an extent that a permeate-side flow path can be formed, and it is allowed that there are portions where the protrusions 301 are not provided in the sheet 302. . For example, the protrusion 301 does not necessarily have to be provided on a portion on the permeate side that is bonded to the separation membrane (in other words, a contact portion).
- the protrusions 301 are not disposed is provided in some places such as an end of the separation membrane due to other specifications or manufacturing reasons. Also in the first direction, the protrusions 301 can be distributed almost uniformly over the entire sheet 302. However, similarly to the distribution in the second direction, the protrusions 301 do not need to be provided at the bonding portion of the permeate side surface with the separation membrane. In addition, it is allowed to provide a region where the protrusions 301 are not disposed in some places such as an end portion of the sheet 302 due to other specifications or manufacturing reasons.
- a commercially available shape measuring system or a microscope is used for measurement of the above values a, b, c, d, e, f, g, h, i, j, k, l, m, and n.
- a commercially available shape measuring system or a microscope is used. it can.
- Each value is obtained by performing measurement at 30 or more locations on one separation membrane, and calculating an average value by dividing the sum of these values by the number of measurement total locations.
- each value obtained as a result of measurement at at least 30 locations satisfies the range described below.
- the length a of the separation membrane is a distance from one end of the separation membrane 2 to the other end in the second direction (length direction of the separation membrane). When this distance is not constant, the length a can be obtained by measuring this distance at 30 or more positions in one separation membrane 2 and obtaining an average value.
- An interval b between adjacent protrusions 301 in the first direction corresponds to the width of the flow path 5.
- the width of one flow path 5 is not constant in one cross section, that is, when the side surfaces of two adjacent protrusions 301 are not parallel, the maximum value and the minimum width of one flow path 5 are within one cross section. The average value is measured and the average value is calculated. As shown in FIG.
- the interval b decreases, the film sags less easily.
- the interval b is preferably 2.0 mm or less in order to suppress film sagging during high-pressure load operation.
- the larger the value of the interval b the smaller the membrane pressure loss.
- the distance b is preferably 0.1 mm or more and 2.0 mm or less, and more preferably 0.2 mm or more and 0.6 mm or less.
- the protrusion height c is a difference in height between the protrusion and the sheet surface. As shown in FIG. 4A, the height c is a difference in height between the highest portion of the protrusion and the sheet in a cross section perpendicular to the second direction. That is, in the height, the thickness of the portion impregnated in the sheet is not considered.
- the larger the height c the smaller the flow resistance. Therefore, the height c is preferably 0.01 mm or more.
- the smaller the height c the larger the number of films filled per element. Therefore, the height c is preferably 0.6 mm or less. More preferably, it is 0.1 mm or more and 0.5 mm or less.
- FIG. 5 shows a schematic diagram of a cross section in the length direction of the separation membrane in which the protrusions are continuous in the second direction.
- “Protrusion maximum height” / “projection minimum height” of one protrusion is 1.10 or more and 1.50 or less.
- the contact area between the sheet surface facing the projection and the projection decreases when the permeate-side channel material is wound. Further, it is possible to reduce the friction at the time of winding between the protrusion and the sheet surface. By reducing the friction, it is possible to carry out the process stably while suppressing the peeling, breakage, and displacement of the projection.
- the separation membrane is distorted during pressure filtration, so that a defect may occur in the separation membrane.
- the ratio of the maximum height to the minimum height of the protrusions is preferably 1.10 or more and 1.20 or less.
- the height of the protrusion can be adjusted by changing the constituent resin and amount.
- height can be adjusted also by changing process temperature and the discharge pressure of resin.
- the variation coefficient of the protrusion height is 0.02 or more and 0.15 or less.
- the coefficient of variation of the protrusion height is within the above range, so that the friction during winding between the protrusion and the sheet surface can be reduced, and the protrusion can be stably carried out while preventing peeling, destruction, and displacement. it can. Moreover, the deformation
- the coefficient of variation of the protrusion height is preferably 0.02 or more and 0.10 or less.
- the variation coefficient of the height c is calculated by measuring the height of the protrusions for the permeation-side flow path materials 31 at 100 locations in the same plane. The average value and the standard deviation were calculated, and the standard deviation / average value was taken as the coefficient of variation of the protrusion height.
- the difference of the height of two adjacent protrusions has a small value.
- the height difference between two adjacent protrusions is preferably 0.1 mm or less (100 ⁇ m or less), more preferably 0.06 mm or less, and further preferably 0.04 mm or less.
- the maximum height difference of all the protrusions 301 provided on the sheet 302 is preferably 0.25 mm or less, particularly preferably 0.1 mm or less, and further preferably 0.03 mm or less. .
- the width d of the protrusion 301 is measured as follows. First, in one section perpendicular to the first direction (the width direction of the separation membrane), the average value of the maximum width and the minimum width of one protrusion 301 is calculated. That is, in the protrusion 301 having a thin upper part and a thick lower part as shown in FIG. 4A, the width of the lower part and the upper part of the channel material are measured, and the average value is calculated. By calculating such an average value in at least 30 cross-sections and calculating an arithmetic average thereof, the width d of the protrusion per film can be calculated.
- the width d of the protrusion 301 is preferably 0.2 mm or more, and more preferably 0.3 mm or more. By setting the width d of the protrusions to 0.2 mm or more, the shape of the flow path material can be maintained even when pressure is applied to the protrusions 301 and the sheet 302 during operation of the separation membrane element. Is stably formed.
- the width d of the protrusion is preferably 2 mm or less, and more preferably 1.5 mm or less. By setting the width d of the protrusions to 2 mm or less, it is possible to sufficiently secure the transmission side flow path.
- the pressure applied to the flow path material can be dispersed.
- the protrusion 301 is formed so that its length is larger than its width. Such a long protrusion 301 is also referred to as a “wall-like object”.
- the interval e between the protrusions 301 in the second direction is the shortest distance between the adjacent protrusions 301 in the second direction (the length direction of the separation membrane).
- the protrusion 301 is provided continuously from one end to the other end of the separation membrane body 2 in the second direction (in the separation membrane element, from the inner end to the outer end in the winding direction).
- the interval e between the protrusions is 0 mm. As shown in FIG.
- the distance e between the protrusions is preferably 5 mm or less, more preferably 1 mm or less, and still more preferably 0.8. 5 mm or less.
- the length f of the protrusion 301 is the length of the protrusion 301 in the length direction of the separation membrane 2 (that is, the second direction).
- the length f of the protrusions is obtained by measuring the length of 30 or more protrusions 301 in one separation membrane 2 and calculating the average value. It is preferable that the length f of the protrusion 301 is not more than the length a of the separation membrane.
- the length f of the protrusion 301 is equal to the length a of the separation membrane, it means that the protrusion 301 is continuously provided from the inner end to the outer end in the winding direction of the separation membrane 2.
- the length f of the protrusion is preferably 10 mm or more, and more preferably 20 mm or more. By setting the length f to 10 mm or more, the flow path is secured even under pressure.
- the width g of the upper portion of the protrusion is measured in a cross section perpendicular to the first direction.
- the width of projections per one film (projection top bottom side) g can be calculated.
- the width of the protrusion refers to the width of the protrusion in the first direction at a position where the height of the protrusion is 90% in the cross section perpendicular to the first direction.
- the distance between the protrusions 301 in the width direction of the separation membrane 2 (upper bottom side of the protrusions) h As shown in FIG. 4A, the distance between the tops of two adjacent protrusions 301 is measured in a cross section perpendicular to the first direction, and the protrusion 301 has a cross section in any 30 or more cross sections.
- the distance (the top bottom side of the protrusion) h of the protrusion 301 in the width direction of the separation membrane 2 is calculated.
- the distance between the upper portions of the two adjacent protrusions 301 is the distance between the upper portions of the two adjacent protrusions 301 in the first direction at the position where the protrusion height is 90% in the cross section perpendicular to the first direction. Indicates distance.
- the width m of the lower portion of the protrusion is measured in a cross section perpendicular to the first direction.
- the width of the protrusion (one bottom side of the protrusion) m per film can be calculated.
- variety of protrusion upper part shows the protrusion width
- the distance between the protrusions 301 in the width direction of the separation membrane 2 is measured in a cross section perpendicular to the first direction, and the protrusion 301 has a cross section in any 30 or more cross sections.
- the distance (the lower bottom side of the protrusion) n of the protrusion 301 in the width direction of the separation membrane 2 is calculated.
- the distance between the lower portions of the two adjacent protrusions 301 is the distance between the lower portions of the two adjacent protrusions 301 in the first direction at a position where the protrusion height is 10% in the cross section perpendicular to the first direction. Indicates distance.
- the shape of the protrusion 301 can be selected so as to reduce the flow resistance of the flow path and stabilize the flow path when permeated.
- the shape of the protrusion 301 in any cross section perpendicular to the surface direction of the separation membrane, can be a semicircular shape, a trapezoidal shape, a straight column shape, a curved column shape, or a combination thereof.
- a semicircular or elliptical shape is preferred.
- the flatness of the protrusion cross section is more preferably 0.1 or more and 0.8 or less.
- the contact area between the sheet surface facing the protrusion and the protrusion decreases when the permeate-side channel material is wound, Friction at the time of winding between the protrusion and the sheet surface can be reduced, and the protrusion can be stably carried out while suppressing peeling, destruction, and deviation.
- the flatness ratio is smaller than 0.1, membrane sag is likely to occur during pressure filtration, and if it exceeds 0.8, the permeate-side flow path may be reduced and the element water production rate may be reduced.
- the flatness can be calculated from the protrusion width and the protrusion height by observing the cross section of the separation membrane where the protrusion is present with a scanning electron microscope, a transmission electron microscope, or an atomic force microscope.
- Flatness ratio (width of projection 301 (lower side of projection) m ⁇ height c of projection) / (width of projection 301 (lower side of projection) m)
- the sheet side surface is in contact with the permeation side surface of the separation membrane.
- the protrusions located on the separation membrane 303A1 side and the separation membrane 303B1 side It is preferable that the angle formed by the adjacent adjacent protrusions is 1 ° or more and 30 ° or less. By being in the above range, it is possible to reduce the drop of the separation membrane without reducing the permeate-side flow path volume i, so that both high initial performance and pressure resistance can be achieved.
- the protrusions located on the separation membrane 303A1 side and the protrusions located on the separation membrane 303B1 side are allowed to be shifted in the x-axis direction. However, it is preferable that the permeation side flow path volume i does not become 0 (zero).
- the protrusion 301 can be formed of a thermoplastic resin. If the protrusion 301 is a thermoplastic resin, the shape of the flow path material can be freely adjusted so that the required separation characteristics and permeation performance conditions can be satisfied by changing the processing temperature and the type of thermoplastic resin to be selected. Can be adjusted.
- the shape of the projection 301 in the planar direction of the separation membrane may be linear as a whole as shown in FIGS. 2 and 3, and other shapes such as a curved shape, a sawtooth shape, and a wavy shape are possible. It can also be.
- the protrusion 301 can be a broken line or a dot. From the viewpoint of reducing the flow resistance, a dot shape or a broken line shape is preferable, but since the flow path material is interrupted, there are many places where membrane sagging occurs during pressure filtration, so the shape can be set appropriately according to the application. it can.
- the adjacent flow path members can be arranged substantially parallel to each other. “Arranged substantially in parallel” means, for example, that the flow path material does not intersect on the separation membrane, the angle formed by the longitudinal direction of two adjacent flow path materials is 0 ° or more and 30 ° or less, and the above angle Includes 0 ° to 15 °, and the angle is 0 ° to 5 °.
- the angle formed by the longitudinal direction of the protrusion 301 and the longitudinal direction of the water collecting pipe is preferably 60 ° or more and 120 ° or less, more preferably 75 ° or more and 105 ° or less, and further preferably 85 ° or more. It is 95 degrees or less.
- the separation membrane body can be prevented from dropping when the separation membrane body is pressurized in the separation membrane element.
- the contact area between the separation membrane and the channel material is large, that is, the area of the channel material relative to the area of the separation membrane (projected area of the channel material with respect to the membrane surface of the separation membrane) is large.
- the cross-sectional area of a flow path is wide.
- the cross-sectional shape is preferably a concave lens shape.
- the protrusion 301 can be formed in a straight column shape having no change in width in the cross-sectional shape in the direction perpendicular to the winding direction.
- the protrusion 301 is a trapezoidal wall-like object or elliptical column whose width changes in the cross-sectional shape in the direction perpendicular to the winding direction as long as it does not affect the separation membrane performance.
- the shape may be an elliptical cone, a quadrangular pyramid, or a hemisphere.
- the shape of the protrusion 301 is not limited to the shape shown in FIGS.
- the required separation is performed by changing the processing temperature and the type of the hot melt resin to be selected.
- the shape of the protrusion 301 can be freely adjusted so that the conditions of the characteristics and the transmission performance can be satisfied.
- the planar shape of the protrusion 301 is linear in the length direction.
- the protrusion 301 can be changed to another shape as long as it is convex with respect to the surface of the separation membrane body 2 and does not impair the desired effect as the separation membrane element. That is, the shape of the channel material (projection) in the planar direction can be a curved line, a wavy line, or the like.
- a plurality of flow path materials (projections) included in one separation membrane can be formed so that at least one of width and length is different from each other.
- the projected area ratio of the projection 301 to the permeation side surface of the separation membrane is 0.03 or more and 0.90 or less, particularly from the viewpoint of reducing the flow resistance of the permeation side flow path and forming the flow path stably. It is preferably 0.15 or more and 0.90 or less, more preferably 0.20 or more and 0.75 or less, and particularly preferably 0.30 or more and 0.80 or less.
- the projected area ratio is the projected area of the channel material obtained when the separation membrane and the permeation side channel material are cut out at 5 cm ⁇ 5 cm and the permeation side channel material is projected onto a plane parallel to the surface direction of the separation membrane. , Divided by the cut-out area (25 cm 2 ).
- the water that has passed through the separation membranes 2 and 7 passes through the permeation side flow path 5 and is collected in the water collecting pipe 6.
- water that has passed through a region far from the water collecting pipe 6, that is, a region near the end on the outer side in the winding direction (a region near the right end in FIG. 8A) is directed to the water collecting pipe 6.
- the length L3 in the second direction (the length direction of the separation membrane) of the region R3, which is a region provided in the section and in which the permeation-side flow channel is not formed is The proportion of the length L1 in two directions (corresponding to “a” described above) is preferably 0% or more and 30% or less, more preferably 0% or more and 10% or less, and still more preferably. Is 0% or more and 3% or less. This ratio is called a defect rate.
- the region R2 is a region where a permeate side flow path is formed.
- the defect rate is represented by (L3 / L1) ⁇ 100 in FIG.
- FIG. 9 shows a form in which the protrusion 301 is not provided in the region R3.
- the region R3 can be a region provided with continuous protrusions in the width direction.
- FIG. 9 is a cross-sectional view of the end portion on the outer side in the winding direction of the permeate-side channel material cut in the length direction of the protrusion 301.
- the protrusion 301 is fixed to the sheet 302 and extends to the front of the outer end in the winding direction of the permeate-side channel material.
- FIG. 9 shows a form in which the protrusions 301 are continuously provided in the length direction.
- the various forms described above are applied as the protrusions 301 as described above. is there.
- a region where the permeate-side channel material is provided is indicated by R2
- a region where the protrusion 301 (permeate-side channel material) is not provided is indicated by R3.
- the length of the separation membrane 2 in the MD direction is indicated by L1
- the length of the protrusion 301 in the MD direction (that is, the length of the region R2) is indicated by L2
- the length of the region R3 in which the protrusion 301 is not present in the MD direction is indicated by L3.
- the MD direction represents the length direction of the separation membrane and the winding direction of the separation membrane.
- the separation membrane element 100 includes the water collecting pipe 6 and any of the above-described structures, and is wound around the water collecting pipe 6. A rotated separation membrane leaf 4 is provided.
- the separation membrane 2 and the permeation side flow path member 31 are wound around the water collecting pipe 6, and the width direction of the separation membrane 2 and the permeation side flow path member 31 is the water collection pipe. 6 are arranged along the longitudinal direction. As a result, the separation membrane 2 and the permeation side flow path member 31 are arranged so that the length direction is along the winding direction. Therefore, as shown in FIG. 8A, the protrusions 301 constituting the permeate-side channel material are disposed discontinuously at least in the longitudinal direction of the water collection pipe 6. That is, the permeate side channel 5 is formed so as to be continuous from the outer end to the inner end of the separation membrane in the winding direction. As a result, the permeated water can easily reach the central water collecting pipe 6, that is, the flow resistance is reduced, so that a large amount of fresh water can be obtained.
- “Inside in winding direction” and “outside in winding direction” are as shown in FIG. That is, the “inner end in the winding direction” and the “outer end in the winding direction” correspond to the end closer to the water collection pipe 6 and the far end in the separation membrane 2, respectively.
- the separation membrane forms a separation membrane leaf (in the present invention, it may be simply referred to as “leaf”).
- the separation membrane is arranged such that the supply side surface faces the supply side surface of the other separation membrane with the supply side channel material interposed therebetween.
- a supply-side flow path is formed between the supply-side surfaces of the separation membranes facing each other.
- the separation membrane leaf is disposed so that the permeation side surface of the other separation membrane leaf faces the permeation side surface of the other separation membrane leaf.
- the envelope-shaped membrane is a pair of separation membranes (for example, composed of separation membranes 2b and 2c as shown in FIG. 1) arranged so that the surfaces on the permeate side facing each other face each other.
- the envelope-like membrane is rectangular, and the permeate-side surface is rectangular in the separation membrane so that the permeate flows into the water collection pipe, and is opened only on one side inside the winding direction, and on the other three sides Sealed. The permeate is isolated from the raw water by the envelope membrane.
- sealing examples include a form bonded by an adhesive or hot melt, a form fused by heating or laser, and a form in which a rubber sheet is sandwiched. Sealing by adhesion is particularly preferred because it is the simplest and most effective.
- the inner end in the winding direction is closed by folding or sealing. Since the surface on the supply side of the separation membrane is sealed rather than folded, bending at the end of the separation membrane is unlikely to occur. By suppressing the occurrence of bending in the vicinity of the crease, the generation of voids between the separation membranes and the occurrence of leaks due to the voids are suppressed when wound.
- the recovery rate of the envelope film is obtained as follows. That is, an air leak test (air leak test) of the separation membrane element is performed in water, and the number of envelope-shaped membranes in which the leak has occurred is counted. Based on the count result, the ratio of (number of envelope films in which air leak has occurred / number of envelope films used for evaluation) is calculated as the recovery rate of the envelope film.
- a specific air leak test method is as follows.
- the end of the central pipe of the separation membrane element is sealed, and air is injected from the other end.
- the injected air passes through the holes of the water collection pipe and reaches the permeation side of the separation membrane.
- Air moves through the gap.
- the air moves to the supply side of the separation membrane, and the air reaches the water from the end (supply side) of the separation membrane element.
- the air leak can be confirmed as the generation of bubbles.
- the separation membranes facing each other may have the same configuration or different configurations. That is, in the separation membrane element, at least one of the two permeation-side surfaces facing each other only needs to be provided with the above-described permeation-side channel material, It can be set as the structure on which the separation membrane which is not provided with a flow-path material was piled up alternately.
- the “separation membrane” includes a separation membrane that does not include the permeate-side flow path material (for example, a membrane that has the same configuration as the separation membrane).
- the separation membranes facing each other on the permeate side surface or the supply side surface may be two different separation membranes, or a single membrane folded.
- the permeation-side channel material is disposed between the surfaces on the permeation side of two adjacent films.
- a permeate-side flow path is formed inside the envelope-shaped membrane, that is, between the permeate-side surfaces of the facing separation membrane.
- the separation membrane element 100 includes a channel material (not shown) having a projected area ratio with respect to the separation membrane 2 exceeding 0 and less than 1 between the surfaces on the supply side of the facing separation membrane.
- the projected area ratio of the supply-side channel material is preferably 0.03 or more and 0.50 or less, more preferably 0.10 or more and 0.40 or less, and particularly preferably 0.15 or more and 0.35 or less. is there. By setting the projected area ratio to 0.03 or more and 0.50 or less, the flow resistance can be kept relatively small.
- the projected area ratio means that the separation membrane and the supply-side channel material are cut out at 5 cm ⁇ 5 cm, and the projection area obtained when the supply-side channel material is projected onto a plane parallel to the surface direction of the separation membrane is divided by the cut-out area. Value.
- the height of the supply-side channel material is preferably more than 0.5 mm and not more than 2.0 mm, more preferably not less than 0.6 mm and not less than 1. 0 mm or less.
- the shape of the supply side channel material may have a continuous shape or a discontinuous shape. Examples of the channel material having a continuous shape include members such as a film and a net.
- the continuous shape means that it is continuous over the entire range of the flow path material.
- the continuous shape may include a portion where a part of the flow path material is discontinuous to such an extent that a problem such as a decrease in the amount of water produced does not occur.
- discontinuity is as described for the passage-side channel material.
- the material of the supply side channel material may be the same material as the separation membrane or a different material.
- a difference in height can be imparted to the supply side of the separation membrane by a method such as embossing, hydraulic forming, and calendering.
- embossing method include roll embossing.
- the pressure and processing temperature at which this is performed can be appropriately determined according to the melting point of the separation membrane.
- the linear pressure is preferably 10 kg / cm or more and 60 kg / cm or less, and the heating temperature is preferably 40 ° C. or more and 150 ° C. or less.
- a linear pressure is 10 kg / cm or more and 70 kg / cm or less
- a roll heating temperature is 70 to 160 degreeC.
- the winding speed is preferably 1 m / min or more and 20 m / min or less.
- the shape of the roll handle is configured so that the flow resistance of the flow path is reduced and the flow path is stabilized when fluid is supplied to and passed through the separation membrane element. is there.
- the difference in height on the supply-side surface of the separation membrane that can be applied by embossing can be adjusted freely by changing the pressure heat treatment conditions to satisfy the conditions that require separation characteristics and water permeation performance. it can.
- the difference in height on the supply side surface of the separation membrane is too deep, the flow resistance is reduced, but the number of membrane leaves that can be filled in the vessel when the element is formed is reduced. If the height difference is small, the flow resistance of the flow path increases, and the separation characteristics and water permeation performance deteriorate. Therefore, the fresh water generation capacity of the element is reduced, and the operation cost for increasing the fresh water generation amount is increased.
- the difference in height on the supply side surface of the separation membrane is preferably more than 0.5 mm and preferably 2.0 mm or less, more preferably 0. .6 mm or more and 1.0 mm or less.
- the difference in height on the supply side surface of the separation membrane can be obtained by the same method as in the case of the above-described difference in height on the permeation side of the separation membrane.
- the groove width is preferably 0.2 mm or more and 10 mm or less, and more preferably 0.5 mm or more and 3 mm or less. It is preferable that the pitch is appropriately designed between 1/10 and 50 times the groove width.
- the groove width is the part that sinks on the surface where the height difference exists, and the pitch is the highest point of the high part on the surface where the height difference exists to the highest part of the adjacent high part. It is the horizontal distance.
- the projected area ratio of the portion that becomes convex by embossing is preferably 0.03 or more and 0.5 or less, more preferably 0.10 or more and 0.40, for the same reason as in the case of the supply-side channel material. Or less, more preferably 0.15 or more and 0.35 or less.
- the “height difference” in the surface of the separation membrane is the difference in height between the surface of the separation membrane body and the apex of the flow channel material (that is, the height of the flow channel material). The height difference between the concave portion and the convex portion.
- the water collection pipe 6 is configured such that permeate flows through it, and the material, shape, size, and the like are not particularly limited.
- a cylindrical member having a side surface provided with a plurality of holes is used as the water collecting pipe 6, for example.
- the manufacturing method of a separation membrane element includes the process of manufacturing a separation membrane. Moreover, the process of manufacturing a separation membrane includes at least the following process. A step of preparing a separation membrane body having a base material and a separation functional layer; A process of softening a material having a composition different from that of the separation membrane body by heat; A step of forming a permeate-side flow path material by disposing the softened material on the base material side surface of the separation membrane main body; and a solidification of the material to obtain the separation membrane. A step of fixing the permeation side flow path material on the main body. Next, each process in the manufacturing method of a separation membrane element is demonstrated.
- the method for manufacturing a separation membrane includes a step of providing a discontinuous channel material on the permeation side surface of the separation membrane. This step can be performed at any time during the manufacture of the separation membrane.
- the flow path material may be provided before the porous support layer is formed on the base material, or after the porous support layer is provided and before the separation functional layer is formed. And may be performed after the separation functional layer is formed and before or after the above-described chemical treatment is performed.
- the method of arranging the flow path material includes, for example, a step of arranging a soft material on the separation membrane and a step of curing it.
- ultraviolet curable resin chemical polymerization, hot melt, drying, or the like is used for the arrangement of the flow path material.
- hot melt is preferably used.
- a step of softening a material such as resin by heat that is, heat melting
- a step of placing the softened material on the separation membrane and cooling the material by cooling
- a step of fixing on the separation membrane by curing is preferably used.
- Examples of the method for arranging the flow path material include coating, printing, and spraying.
- Examples of the equipment used include a nozzle type hot melt applicator, a spray type hot melt applicator, a flat nozzle type hot melt applicator, a roll type coater, an extrusion type coater, a printing machine, and a sprayer.
- the formation of the supply-side flow path material includes the permeation-side flow path material.
- the same method and timing as for the formation of can be applied.
- a difference in height can be imparted to the supply side of the separation membrane by a method such as embossing, hydraulic forming, and calendering. Examples of the embossing method include a roll embossing method and the like, and the pressure and processing temperature for carrying out this can be appropriately determined according to the melting point of the separation membrane.
- the linear pressure is preferably 10 kg / cm or more and 60 kg / cm or less, and the heating temperature is preferably 40 ° C. or more and 150 ° C. or less. .
- a linear pressure is 10 kg / cm or more and 70 kg / cm or less, and roll heating temperature is 70 degreeC or more and 160 degrees C or less. preferable.
- the winding speed is preferably 1 m / min or more and 20 m / min or less.
- the shape of the roll handle reduces the pressure loss of the flow path and stabilizes the flow path when the fluid is supplied to and passed through the separation membrane element.
- ellipses, circles, ellipses, trapezoids, triangles, rectangles, squares, parallelograms, rhombuses, indefinite shapes, and the like are adopted as shapes observed from the upper surface.
- three-dimensionally it may be formed so that the width becomes smaller as the height is higher, and conversely, it may be formed so that the width becomes wider as the height is higher. They can also be formed with the same width.
- the difference in height on the supply-side surface of the separation membrane that can be imparted by embossing can be freely adjusted by changing the pressure heat treatment conditions so as to satisfy the conditions that require separation characteristics and water permeation performance.
- the supply-side flow path is formed by fixing the supply-side flow path material to the separation membrane, or when the film is processed by uneven processing, these supply-side flow paths are used. Can be regarded as one step in the method of manufacturing the separation membrane.
- the supply-side flow path is a continuously formed member such as a net
- the separation membrane and the supply-side flow are manufactured after the separation membrane is manufactured by arranging the permeation-side flow path material in the separation membrane body.
- the road material can be overlaid.
- the separation membrane leaf may be formed by folding the separation membrane so that the surface on the supply side faces inward.
- the film can also be formed by bonding so that the surfaces on the supply side face each other.
- the manufacturing method of the separation membrane element preferably includes a step of sealing the inner end portion in the winding direction of the separation membrane on the surface on the supply side. In the sealing step, the two separation membranes are overlapped so that the surfaces on the supply side face each other. Furthermore, the inner end in the winding direction of the stacked separation membranes, that is, the left end in FIG. 8A is sealed.
- Examples of the method of “sealing” include adhesion by an adhesive or hot melt, fusion by heating or laser, and a method of sandwiching a rubber sheet. Sealing by adhesion is particularly preferred because it is the simplest and most effective.
- a supply-side channel material formed separately from the separation membrane can be disposed inside the overlapped separation membrane.
- the arrangement of the supply-side flow path member can be omitted by providing a difference in height in advance on the supply-side surface of the separation membrane by embossing or resin coating.
- Either the supply side surface sealing or the permeation side surface sealing may be performed first. It is also possible to perform the sealing of the surface on the transmission side in parallel. However, in order to suppress the generation of wrinkles in the separation membrane during winding, the adhesive or hot melt at the end in the width direction is allowed to allow the adjacent separation membranes to shift in the length direction due to winding. It is a preferable aspect that the solidification or the like, that is, the solidification for forming the envelope-like film is completed after the winding is completed.
- (4-5) Formation of an envelope-like membrane A single separation membrane is folded and bonded so that the surface on the permeation side faces inward, or two separation membranes are placed so that the surface on the permeation side faces inward.
- An envelope-like film can be formed by overlapping and bonding. In the rectangular envelope film, the other three sides are sealed so that only one end in the length direction is opened. Sealing can be performed by bonding with an adhesive or hot melt or by fusion with heat or laser.
- the adhesive used for forming the envelope-shaped film preferably has a viscosity in the range of 40 P (Poise) or more and 150 P or less, and more preferably an adhesive having a viscosity of 50 P or more and 120 P or less.
- a viscosity of the adhesive When the viscosity of the adhesive is too high, wrinkles are likely to occur when the laminated leaves are wrapped around the water collecting pipe. Wrinkles may impair the performance of the separation membrane element.
- the viscosity of the adhesive is too low, the adhesive may flow out from the end of the leaf and soil the device.
- the performance of the separation membrane element is impaired, and the work efficiency is significantly reduced due to the processing operation of the adhesive that has flowed out.
- the amount of the adhesive applied is preferably such that the width of the portion to which the adhesive is applied after the leaf is wrapped around the water collecting pipe is 10 mm or more and 100 mm or less. As a result, the separation membrane is securely bonded, so that inflow of the raw water to the permeate side is suppressed, and the effective membrane area of the separation membrane element can be secured relatively large.
- Urethane adhesive is preferably used as the adhesive.
- the viscosity of the urethane-based adhesive in the range of 40 P or more and 150 P or less, it is preferable to mix the main component isocyanate and the curing agent polyol so that the isocyanate / polyol mass ratio is 1/5 or more and 1 or less. Is achieved.
- the viscosity of the adhesive can be measured with a B-type viscometer (ISO 15605: 2000) as the viscosity of a mixture in which the main agent, the curing agent alone and the blending ratio are defined in advance.
- a spacer such as a tricot or base material is wound around the water collection pipe, the adhesive applied to the water collection pipe will not flow easily when the element is wrapped, leading to suppression of leakage, and the flow path around the water collection pipe is stable. Secured.
- the spacer is preferably wound longer than the circumference of the water collecting pipe.
- the method may further include winding a film, a filament, and the like around the wound body of the separation membrane formed as described above. Additional steps such as edge cutting to align the ends of the separation membrane in the longitudinal direction of the water collecting pipe, attachment of end plates, and the like can be included.
- the separation membrane element is further used as a separation membrane module by being connected in series or parallel and housed in a pressure vessel.
- the separation membrane element and the separation membrane module described above can be combined with a pump that supplies fluid to them, a device that pretreats the fluid, and the like to form a fluid separation device.
- a fluid separation device for example, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane to obtain water that meets the purpose.
- the separation membrane module It is preferable that the operation pressure when passing the water to be treated is 0.5 MPa or more and 10 MPa or less.
- the raw water temperature is preferably 5 ° C. or higher and 45 ° C. or lower.
- the pH of the raw water is in a neutral region, even if the raw water is a high salt concentration liquid such as seawater, the generation of scales such as magnesium is suppressed, and the deterioration of the membrane is also suppressed.
- TDS Total Dissolved Solids: total dissolved solids
- 100 g / L such as seawater, brine, and waste water
- TDS refers to the total amount of dissolved solids and is expressed by “mass / volume”, but 1 L may be regarded as 1 kg and may be expressed by “mass ratio”.
- the solution filtered with a 0.45 ⁇ m filter can be calculated from the mass of the residue by evaporating at a temperature of 39.5 ° C. or higher and 40.5 ° C. or lower. To do.
- the projection height variation coefficient is the standard deviation / average value obtained by measuring the projection height for 100 transmission side channel materials in the same plane and calculating the average value and standard deviation. The coefficient of variation of the object height was used.
- the separation membrane to which the permeate-side channel material was fixed was wound up 100 m at an unwinding tension of 50 N and a winding tension of 50 N, and stored at room temperature for 100 days. Thereafter, the separation membrane was unwound and the change in the height of the permeation side channel material of the separation membrane facing the permeation side channel material was measured.
- Permeation-side channel material height change average permeation-side channel material height of separation membrane unwound after winding / storage / permeation-side channel material average height of separation membrane before winding
- the separation membrane element subjected to the start / stop test was supplied with seawater (TDS concentration of about 3.5%, boron concentration of about 5 ppm) adjusted to a temperature of 25 ° C. and a pH of 6.5 at an operating pressure of 5.5 MPa. After 24 hours, sampling was performed for 30 minutes, and the amount of water per day (cubic meter) was expressed as the amount of water produced (m 3 / day).
- TDS removal rate 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in feed water) ⁇
- the separation membrane element subjected to the start / stop test was cut into a plane perpendicular to the separation membrane leaf membrane surface and parallel to the width direction, and cross-sectional observation was performed using a microscope “VHX-1000” (trade name) manufactured by Keyence Corporation. Went.
- the film depression depth j ( ⁇ m) indicates the maximum distance j in the position in the separation film z direction between adjacent protrusions.
- the depression depth on the separation membrane 303A1 side and the depression depth on the separation membrane 303B1 side were measured at 50 locations, and the total value of each value was divided by the number of measurements to obtain an average value.
- Membrane sagging amount (%) film sagging depth j ( ⁇ m) / distance between surfaces on the transmission side ( ⁇ m) ⁇ 100
- Example 1 On a non-woven fabric (polyethylene terephthalate, single fiber fineness: 1 dtex, thickness: about 0.08 mm, basis weight 1.0 g / cm 2 ), a 16.0% by mass DMF solution of polysulfone at a thickness of 200 ⁇ m at room temperature (25 C.) and immediately immersed in pure water for 5 minutes and immersed in warm water at 80 ° C. for 1 minute to produce a 0.12 mm thick porous support layer comprising a fiber-reinforced polysulfone support membrane did.
- a non-woven fabric polyethylene terephthalate, single fiber fineness: 1 dtex, thickness: about 0.08 mm, basis weight 1.0 g / cm 2
- porous support layer roll prepared as described above is unwound, 6.0% by mass of m-PDA is applied to the polysulfone surface, and nitrogen is blown from an air nozzle to remove excess aqueous solution from the support membrane surface. Thereafter, an n-decane solution containing 0.165% by mass of trimesic acid chloride at a temperature of 25 ° C. was applied so that the surface was completely wetted, thereby preparing a separation membrane.
- the separation membrane thus obtained was folded and cut so that the effective area at the separation membrane element was 37.0 m 2, and the net (thickness: 0.78 mm, pitch: 5 mm ⁇ 5 mm, fiber diameter: 0)
- a separation membrane leaf having a width of 900 mm and a leaf length of 800 mm was prepared using a supply side channel material of .39 mm and a projected area ratio of 0.12).
- the protrusion was formed over the entire sheet (polyethylene terephthalate nonwoven fabric, single fiber fineness: 1 dtex, thickness: about 30 ⁇ m, air permeability: 2.5 ml / cm 2 / s). That is, using a gravure roll having a different groove height in the circumferential direction while adjusting the temperature of the backup roll to 15 ° C., 75 mass of polypropylene (MFR 1000 g / 10 min at a temperature of 230 ° C. and a load of 2.16 kgf / cm 2 ) is 75 masses.
- MFR 1000 g / 10 min at a temperature of 230 ° C. and a load of 2.16 kgf / cm 2
- the pitch is an average value of the horizontal distances from the vertexes of the convex portions of the separation membrane to the vertexes of the neighboring convex portions, measured at 200 locations on the transmission side surface.
- Table 1 shows the maximum value, minimum value, maximum value / minimum value, and coefficient of variation of the obtained protrusion height.
- Table 1 shows the longitudinal and lateral tensile strengths, tensile elongations, and longitudinal tensile strengths of the sheets to which the protrusions are fixed.
- a sheet with protrusions fixed thereon is laminated on the surface of the obtained leaf on the transmission side, and spirally formed on an ABS water collecting pipe (width: 1,020 mm, diameter: 30 mm, number of holes 40 ⁇ 1 linear line).
- the film was wound around the outer periphery. After fixing with tape, edge cutting, end plate attachment, and filament winding were performed to produce an 8-inch separation membrane element.
- the obtained separation membrane element was put in a pressure vessel, a start / stop test was performed, and the water production amount, the TDS removal rate, and the membrane sagging amount were measured, and the values shown in Table 2 were obtained.
- separation membranes were produced in the same manner as in Example 1 under conditions not specifically mentioned.
- Examples 2 to 7 Except that the maximum value, the minimum value, the maximum value / minimum value, the coefficient of variation, and the tensile strength in the longitudinal direction of the sheet to which the protrusions were fixed were changed to the values shown in Table 1, the examples were obtained.
- a separation membrane was prepared in the same manner as in 1. When the height change of the permeation side channel material and the permeation side channel material peelability were evaluated, the values shown in Table 2 were obtained. Further, when an on / off test of an 8-inch separation membrane element was carried out and the amount of water produced, the TDS removal rate and the amount of membrane sagging were measured, the values shown in Table 2 were obtained.
- Example 8 to 15 The maximum value, minimum value, maximum value / minimum value, and coefficient of variation of the obtained protrusion height were changed to the values shown in Table 1.
- the values shown in Table 1 are the thickness and air permeability of the sheet constituting the permeation-side channel material, the tensile strength in the longitudinal direction and the transverse direction, the tensile elongation, and the tensile strength in the longitudinal direction of the sheet to which the protrusions are fixed. Changed to When the height change of the permeation side channel material and the permeation side channel material peelability were evaluated, the values shown in Table 2 were obtained.
- the sheet on which the protrusions are fixed and the sheet on which the protrusions are not fixed are laminated on the transmission side surface of the obtained leaf, and an ABS water collecting pipe (width: 1,020 mm, diameter: 30 mm, number of holes 40) X A straight line) was spirally wound, and a film was further wound around the outer periphery. After fixing with tape, edge cutting, end plate attachment, and filament winding were performed to produce an 8-inch separation membrane element. The obtained separation membrane element was put in a pressure vessel, a start / stop test was performed, and the water production amount, the TDS removal rate, and the membrane sagging amount were measured, and the values shown in Table 2 were obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
そこで、本発明の目的は、高い圧力をかけて分離膜エレメントを長時間運転したときの分離除去性能を安定化させることのできる分離膜エレメントを提供することにある。
(1)集水管と、複数枚重ねられて前記集水管の周囲に巻囲された分離膜リーフとを有する分離膜エレメントであって、前記分離膜リーフは、供給側の面および透過側の面を備えた分離膜を前記供給側の面を対向させて構成され、重なり合う前記分離膜リーフの前記透過側の面の間に、複数の突起物が固着されたシートを備え、前記突起物高さについて、最大高さと最小高さの比が1.10以上1.50以下、変動係数が0.02以上0.15以下であり、かつ前記突起物の前記シートへの含浸率が10%以上100%以下である分離膜エレメント。
(2)前記突起物が固着されたシートの長さ方向への引張強度が50N/5cm以上800N/5cm以下である前記(1)に記載の分離膜エレメント。
(3)重なり合う前記分離膜リーフの透過側の面の間に複数のシートを有し、前記シートの少なくとも一枚に前記複数の突起物が固着されていることを特徴とする前記(1)又は(2)に記載の分離膜エレメント。
(4)前記突起物は、前記シートに固着している側の下底長さが、上底長さよりも大きく、前記シートの前記複数の突起を備えていない面と、前記分離膜リーフの透過側の面とが接触するように配置された前記(1)~(3)のいずれか1つに記載の分離膜エレメント。
(5)前記シートの長さ方向への引張強度が40N/5cm以上600N/5cm以下、幅方向への引張強度が15N/5cm以上500N/5cm以下であり、かつ前記シートの長さ方向への引張伸度が5%以上50%以下、幅方向への引張伸度が3%以上40%以下である前記(1)~(4)のいずれか1つに記載の分離膜エレメント。
この分離膜エレメントを水処理装置に用いることで、かん水や海水の淡水化にあたり、高圧運転条件下でも長期間にわたって安定な運転の継続が期待される。
また、本発明によれば、分離膜の透過側流路への落ち込み低減により、透過側の流動抵抗が低減し、高効率かつ安定した透過側流路を形成することができ、分離成分の除去性能と高い透過性能を有する高性能で高効率の分離膜エレメントを得ることができる。
この分離膜エレメントを水処理装置に用いることにより、かん水や海水の淡水化にあたり、高圧運転条件下において、分離膜の流路材間への落ち込みが抑制され、長期間にわたって安定な運転の継続が期待される。
なお、図1~図9において、図中に、x軸、y軸およびz軸の方向軸を示す。x軸を第1方向と称し、y軸を第2方向と称することがある。また、第1方向を横方向または幅方向と称し、第2方向を縦方向または長さ方向と称することがある。また、図1、図8及び図9中、第1方向(横方向)をCDの矢印で表わし、第2方向(縦方向)をMDの矢印で表わす。
また、本明細書において、「質量」は「重量」のことを意味するものとする。
(1-1)分離膜の概要
分離膜とは、分離膜表面に供給される流体中の成分を分離し、分離膜を透過した透過流体を得ることができる膜である。本発明で言う分離膜とは、流路を形成するようにエンボス加工されたものや樹脂などが配置されたものも含むことができる。また、従来のように、流路を形成することができず、分離機能のみを発現するものを分離膜本体と呼ぶことがある。
このような分離膜の例として、本発明で用いられる分離膜の実施形態の一例を含む分離膜リーフの分解斜視図を図1に示す。図1において、分離膜2は、複数の分離膜2a、2b、2cを含む。第1の分離膜2aは、供給側の面21aと透過側の面22aを有し、第2の分離膜2bは、供給側の面21bと透過側の面22bを有し、第3の分離膜2cは、供給側の面21cと透過側の面22cを有している。重ねられた第1の分離膜2aと第2の分離膜2bは、第1の分離膜2aの供給側の面21aと、第2の分離膜2bの供給側の面21bとが対向するように配置されている。また、さらに、その上に重ねられた第3の分離膜2cは、その透過側の面22cが、第2の分離膜2bの透過側の面22bに対向するように配置されている。第3の分離膜2cの供給側の面21cは、分離膜2の供給側の面である。
また、図1等に示されるように、分離膜2は長方形であり、第1方向(CD)および第2方向(MD)は、分離膜2の外縁に平行である。
<概要>
分離膜としては、使用方法および目的等に応じた分離性能を有する膜が用いられる。分離膜は、単一層によって形成されていてもよいし、分離機能層と基材とを備える複合膜であってもよい。また、図10に示すように、複合膜においては、分離機能層203と基材201との間に、多孔性支持層202が形成されていてもよい。
分離機能層の厚さは、分離性能と透過性能の点で5nm以上3,000nm以下であることが好ましい態様である。特に、逆浸透膜、正浸透膜およびナノろ過膜では、5nm以上300nm以下であることが好ましい態様である。
分離機能層の厚さの測定は、通常の分離膜の膜厚測定法に準ずることができる。例えば、分離膜を樹脂により包埋し、それを切断することにより超薄切片を作製し、得られた切片に染色などの処理を行う。その後、透過型電子顕微鏡により厚さを観察することで、厚さの測定が可能である。また、分離機能層がひだ構造を有する場合は、多孔性支持層より上に位置するひだ構造の断面長さ方向に50nm間隔で測定し、ひだの数を20個測定しその平均から求めることができる。
分離機能層が分離機能および支持機能の両方を有する場合、分離機能層としては、セルロース、ポリフッ化ビニリデン、ポリエーテルスルホン、またはポリスルホンを主成分として含有する層が好ましく適用される。
(A)エチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物、ならびに
(B)前記の化合物(A)以外の化合物であって、エチレン性不飽和基を有する化合物。
具体的には、分離機能層は、化合物(A)の加水分解性基の縮合物ならびに化合物(A)および/または化合物(B)のエチレン性不飽和基の重合物を含有することができる。すなわち、分離機能層は、
・化合物(A)のみが縮合および/または重合することで形成された重合物、
・化合物(B)のみが重合して形成された重合物、ならびに
・化合物(A)と化合物(B)との共重合物、
のうちの少なくとも1種の重合物を含有することができる。ここで、重合物には縮合物が含まれる。また、化合物(A)と化合物(B)との共重合物中で、化合物(A)は加水分解性基を介して縮合していてもよい。
いずれの分離機能層についても、使用前に、例えばアルコール含有水溶液やアルカリ水溶液によって膜の表面を親水化させることができる。
多孔性支持層は、分離機能層を支持する層であり、多孔性樹脂層とも言い換えられる。
多孔性支持層に使用される材料やその形状については、例えば、多孔性樹脂によって基板上に形成されたものが挙げられる。多孔性支持層としては、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、エポキシ樹脂あるいはそれらを混合し、または積層したものが使用され、中でも化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい態様である。
多孔性支持層の厚さは、分離膜に強度を与えるため等の理由から、20μm以上500μm以下の範囲にあることが好ましく、より好ましくは30μm以上300μm以下の範囲である。
多孔性支持層は、“オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って形成することができる。所望の形態を得るために、ポリマー濃度、溶媒の温度および貧溶媒は調整可能である。
分離膜の強度および寸法安定性等の観点から、分離膜は基材を有することができる。基材としては、強度、凹凸形成能および流体透過性の観点から、繊維状基材を用いることが好ましい。
繊維状基材としては、長繊維不織布および短繊維不織布のいずれも好ましく用いることができる。特に、長繊維不織布は、優れた製膜性を有するので、高分子重合体の溶液を流延した際に、その溶液が過浸透により裏抜けすること、多孔性支持層が剥離すること、さらには基材の毛羽立ち等により膜が不均一化すること、およびピンホール等の欠点が生じること等を抑制することができる。また、繊維状基材が熱可塑性連続フィラメントから構成される長繊維不織布から形成されることにより、短繊維不織布と比べて、高分子化合物溶液の流延時に繊維の毛羽立ちによって起きる膜の不均一化および膜欠点の発生を抑制することができる。さらに、分離膜は、連続製膜されるときに、製膜方向に対し張力がかけられるので、寸法安定性に優れた長繊維不織布を基材として用いることが好ましい。
より具体的には、長繊維不織布から形成された基材の、多孔性支持層とは反対側に位置する表層における繊維配向度は、0°以上25°以下であることが好ましく、また、基材の多孔性支持層側の表層における繊維配向度との配向度差が10°以上90°以下であることが好ましい態様である。
また、基材の厚さについては、基材と多孔性支持層との厚さの合計が、好ましくは30μm以上300μm以下の範囲内、またはより好ましくは50μm以上250μm以下の範囲内にあるように、基材の厚さが選択されることが好ましい。
<概要>
透過側流路材は、シートと、前記シートに固着した複数の突起物とを有する。複数の突起物は、シートと一体的に形成されている。透過側流路材がこのような構成を有することで、透過側の流動抵抗を低減することができ、かつ高い耐圧性を両立させることができる。
高圧負荷運転時、分離膜はシートに固着された隣り合う突起物と突起物の間に落ち込み、透過側流路体積が減少するため、分離膜エレメントの造水量が減少する。
具体的には、図4(a)に示されるように、シート302に固着している突起物301の固着部(突起物下底側)の幅mが突起物の先端部(突起物上底側)の幅gよりも大きい台形状や半円状などのとき、突起物301の下底側(分離膜303B1側)の突起物間の距離nよりも突起物301の上底側(分離膜303A1側)の突起物間の距離hが大きいため、突起物301の上底側に位置する分離膜303A1は下底側に位置する分離膜303B1よりも落ち込みやすい。シート302の突起物301を備えていない面と、分離膜の透過側の面とが接触するように配置されることにより、突起物の上底側に位置する分離膜303A1の落ち込みを低減させ、透過側流路体積の減少を抑制することができる。
また、透過側流路材を構成するシートは、空隙を有する。透過側流路材を構成するシートの通気度は、0.1ml/cm2/s以上10.0ml/cm2/s以下であることが好ましく、より好ましくは0.1ml/cm2/s以上5.0ml/cm2/s以下である。
通気度が上記範囲内であると、シートの流動抵抗が小さく、高い造水量の分離膜エレメントを得ることができる。また、シート上への突起物形成時に、突起物がシートへの含浸により裏抜けしてシートの厚みが不均一化するのを防ぐことができる。
突起物の含浸率は、透過側流路材を構成するシートの樹脂や目付、また突起物を構成する樹脂やその含有量を変更することで、調整可能である。また、突起物をホットメルト法によって設ける場合には、処理温度等を変更することによっても、含浸率を調整することができる。
透過側流路材を構成する材料、すなわちシートおよび突起物を構成する成分としては、樹脂が好ましく用いられる。具体的には、耐薬品性の点で、エチレン酢酸ビニル共重合体樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィンやポリオレフィン共重合体などが好ましく用いられる。また、透過側流路材の材料としては、ウレタン樹脂、エポキシ樹脂、ポリエーテルスルホン、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル共重合体、ポリアセタール、ポリメチルメタクリレート、メタクリル-スチレン共重合体、酢酸セルロール、ポリカーボネート、ポリエチレンテレフタレート、ポリブタジエンテレフタレートやフッ素樹脂(三フッ化塩化エチレン、ポリフッ化ビニリデン、四フッ化エチレン、四フッ化エチレン-六フッ化プロピレン共重合、四フッ化エチレン-パーフルオロアルコキシエチレン共重合、および四フッ化エチレン-エチレン共重合など)などのポリマーを選択することができる。
<<概要>>
従来広く用いられているトリコットは、編み物であり立体的に交差した糸で構成されている。すなわち、トリコットは、二次元的に連続した構造を有している。このようなトリコットが透過側流路材として適用された場合、流路の高さはトリコットの厚さよりも小さくなる。すなわち、溝とならない割合が多い構造である。
これに対して、本発明の構成の例として、図4等に示す突起物301が、空隙を有するシート302に配置されている。よって、この実施形態の突起物301の高さ(すなわち厚さ)が流路の溝の高さとして活用され、さらにシート302が空隙を有するため流路として活用することができる。また、透過側流路材の形成プロセスの都合上、突起物の配置精度が不十分で溝が閉塞するような形状になった場合においても、シートの空隙が流路となり透過水はシートを介して別の溝へ移動させることができる。よって、この実施形態の流路材と同じ厚さを有するトリコットが適用された場合よりも、流路(突起物301の間の溝やシート302中の空隙)が広く存在するため、流動抵抗はより小さくなる。
分離膜は、分離膜エレメントにおいて、第2方向が巻回方向と一致するように配置されることが好ましい態様である。すなわち、分離膜エレメントにおいて、分離膜は、第1方向(分離膜の幅方向)が集水管の長手方向に平行であり、第2方向(分離膜の長さ方向)が集水管の長手方向に直交するように配置されることが好ましい。
図8(a)および図8(b)は、集水管6の周囲に分離膜リーフ4を巻回した分離膜エレメント100を模式的に示す説明図である。図8(a)において分離膜2は、分離膜リーフ4の片側の面として記載されている。図中、CDで示す矢印は、集水管6の長手方向および分離膜の幅方向を示す。また、MDで示す矢印は、分離膜の長さ方向および集水管6へ巻回する方向を示す。
第1方向においても、突起物301は、シート302の全体にわたってほぼ均等に分布させることができる。ただし、第2方向における分布と同様に、透過側の面における分離膜との接着部分には、突起物301が設けられる必要はない。また、その他の仕様上または製造上の理由により、シート302の端部などの一部の箇所に、突起物301が配置されない領域が設けられることも許容される。
図2~図4、図7において、符号a~nはそれぞれ下記の値を指す。
a:分離膜2の長さ
b:分離膜2の幅方向における突起物301の間隔
c:突起物301の高さ
d:突起物301の幅
e:分離膜2の長さ方向における突起物301の間隔
f:突起物301の長さ
g:突起物301の幅(突起物上底側)
h:分離膜2の幅方向における突起物301の間隔(突起物上底側)
i:1本あたりの透過側流路断面積
j:膜落ち込み深さ(隣接する突起物間における分離膜z方向位置の最大距離)
k:隣接する分離膜303A1と303B1間の距離
l:隣接する分離膜303A1と303B1間の距離(発停試験後)
m:突起物301の幅(突起物下底側)
n:分離膜2の幅方向における突起物301の間隔(突起物下底側)
分離膜の長さaは、第2方向(分離膜の長さ方向)における分離膜2の一端から他端までの距離である。この距離が一定でない場合、1枚の分離膜2において30箇所以上の位置でこの距離を測定し、平均値を求めることにより長さaを得ることができる。
第1方向(分離膜の幅方向)において隣接する突起物301の間隔bは、流路5の幅に相当する。1つの断面において1つの流路5の幅が一定でない場合、すなわち隣り合う2つの突起物301の側面が平行でない場合は、1つの断面内で、1つの流路5の幅の最大値と最小値の平均値を測定し、その平均値を算出する。
図4(a)に示されるように、第2方向に垂直な断面において、隣接する2つの突起物301は上が細く下が太い台形状を示す場合、まず、隣接する2つの突起物301の上部間の距離と下部間の距離を測定して、その平均値を算出する。任意の30箇所以上の断面において、突起物301の間隔を測定して、それぞれの断面において平均値を算出する。そして、このようして得られた平均値の相加平均値をさらに算出することにより、間隔bが算出される。
突起物高さcとは、突起物とシート表面との高低差である。図4(a)に示すように、高さcは、第2方向に垂直な断面における、突起物の最も高い部分とシートとの高さの差である。すなわち、高さにおいては、シートに含浸している部分の厚みは考慮しない。
高さcが大きい方が流動抵抗は小さくなる。よって、高さcは0.01mm以上であることが好ましい。その一方で、高さcが小さい方が、1つのエレメント当たりに充填される膜の数が多くなる。よって、高さcは、0.6mm以下であることが好ましい。より好ましくは、0.1mm以上0.5mm以下である。
突起物高さは、構成する樹脂や量を変更することで、調整可能である。また、突起物をホットメルト法によって設ける場合には、処理温度や樹脂の吐出圧力を変更することによっても、高さを調整することができる。
高さcの変動係数は、同一平面内100箇所の透過側流路材31について突起物の高さを測定し算出する。その平均値と標準偏差を算出して、標準偏差/平均値とした値を突起物高さの変動係数とした。
同様の理由から、シート302に設けられた全ての突起物301の最大高低差は0.25mm以下であることが好ましく、特に好ましくは0.1mm以下であり、さらに好ましくは0.03mm以下である。
突起物301の幅dは、次のようにして測定される。まず、第1方向(分離膜の幅方向)に垂直な1つの断面において、1つの突起物301の最大幅と最小幅の平均値を算出する。すなわち、図4(a)に示されるような上部が細く下部が太い突起物301においては、流路材下部の幅と上部の幅を測定し、その平均値を算出する。このような平均値を少なくとも30箇所の断面において算出し、その相加平均を算出することにより、1枚の膜当たりの突起物の幅dを算出することができる。
突起物301は、その長さがその幅よりも大きくなるように形成されている。このように長い突起物301は「壁状物」とも称される。
第2方向における突起物301の間隔eは、第2方向(分離膜の長さ方向)において隣り合う突起物301間の最短距離である。図2に示されるように、突起物301が第2方向において分離膜本体2の一端から他端まで(分離膜エレメント内では、巻回方向の内側端部から外側端部まで)連続して設けられている場合、突起物の間隔eは0mmである。また、図3に示されるように、突起物301が第2方向において途切れている場合、突起物の間隔eは、好ましくは5mm以下であり、より好ましくは1mm以下であり、さらに好ましくは0.5mm以下である。間隔eを上記範囲内とすることにより、膜落ち込みが生じても膜への機械的負荷が小さく、流路閉塞による圧力損失を比較的小さくすることができる。間隔eの下限は、0mmである。
突起物301の長さfは、分離膜2の長さ方向(すなわち第2方向)における突起物301の長さである。突起物の長さfは、1枚の分離膜2内で、30個以上の突起物301の長さを測定し、その平均値を算出することにより求められる。突起物301の長さfは、分離膜の長さa以下にすることが好ましい。突起物301の長さfが分離膜の長さaと同等のときは、突起物301が分離膜2の巻回方向内側端部から外側端部へ連続的に設けられていることを指す。突起物の長さfは、好ましくは10mm以上であり、より好ましくは20mm以上である。長さfを10mm以上とすることにより、圧力下でも流路が確保される。
図4(a)に示されるように、第1方向に垂直な断面において、突起物上部の幅gを測定する。少なくとも30箇所の断面において算出し、その相加平均を算出することにより、1枚の膜当たりの突起物の幅(突起物上底側)gを算出することができる。なお、突起物の幅(突起物上底側)とは、第1方向に垂直な断面において、突起物高さ90%の位置の第1方向における突起物の幅を示す。
図4(a)に示されるように、第1方向に垂直な断面において、隣接する2つの突起物301の上部間の距離を測定して、任意の30箇所以上の断面において、突起物301の間隔を測定して得られた相加平均値を算出することにより、分離膜2の幅方向における突起物301の間隔(突起物上底側)hが算出される。なお、隣接する2つの突起物301の上部間の距離とは、第1方向に垂直な断面において、突起物高さ90%の位置の第1方向における隣接する2つの突起物301の上部間の距離を示す。
図4(b)に示されるように、第1方向に垂直な断面において、隣接する2つの突起物301とシートに囲まれた部分の面積を1本あたりの透過側流路断面積iとする。
図4(a)および図4(b)に示されるように、第1方向に垂直な断面において、突起物下部の幅mを測定する。少なくとも30箇所の断面において算出し、その相加平均を算出することにより、1枚の膜当たりの突起物の幅(突起物下底側)mを算出することができる。なお、突起物上部の幅とは、第1方向に垂直な断面において、突起物高さ10%の位置の第1方向における突起物幅を示す。
図4(a)に示されるように、第1方向に垂直な断面において、隣接する2つの突起物301の下部間の距離を測定して、任意の30箇所以上の断面において、突起物301の間隔を測定して得られた相加平均値を算出することにより、分離膜2の幅方向における突起物301の間隔(突起物下底側)nが算出される。なお、隣接する2つの突起物301の下部間の距離とは、第1方向に垂直な断面において、突起物高さ10%の位置の第1方向における隣接する2つの突起物301の下部間の距離を示す。
突起物301の形状は、流路の流動抵抗を少なくし、透過させた際の流路を安定化させるような形状が選択され得る。これらの点で、分離膜の面方向に垂直ないずれかの断面において、突起物301の形状は、半円状や台形状、直柱状、曲柱状、あるいはそれらの組み合わせを採用することができるが、半円状や楕円状であることが好ましい。特に突起物断面の扁平率が0.1以上0.8以下であることがより好ましい。突起物断面の扁平率が上記範囲内にある半円状や楕円状であることで、透過側流路材巻取り時に、突起物に対向するシート表面と突起物との接触面積が低下し、突起物とシート表面間の巻取り時の摩擦を低減させ、突起物のはがれや破壊、ずれを抑制しながら安定に実施することができる。一方で、扁平率が0.1よりも小さいと、加圧ろ過時に膜落ち込みが発生しやすくなり、0.8を超えると、透過側流路が減少し、エレメント造水量が低下する恐れがある。扁平率は、走査型電子顕微鏡や透過型電子顕微鏡、原子間力顕微鏡により、突起物が存在する分離膜の断面を観察して突起物幅と突起物高さから算出することができる。
扁平率=(突起物301の幅(突起物下底側)m-突起物の高さc)/(突起物301の幅(突起物下底側)m)
分離膜の透過側の面に対する突起物301の投影面積比は、特に透過側流路の流動抵抗を低減し、流路を安定に形成させるという観点では、0.03以上0.90以下であることが好ましく、より好ましくは0.15以上0.90以下であり、さらに好ましくは0.20以上0.75以下であり、特に好ましくは0.30以上0.80以下である。投影面積比とは、分離膜と透過側流路材を5cm×5cmで切り出し、透過側流路材を分離膜の面方向に平行な平面に投影したときに得られる流路材の投影面積を、切り出し面積(25cm2)で割った値である。
図8(a)および図8(b)に示されように、分離膜2,7を透過した水は透過側流路5を通過して集水管6に集められる。分離膜2,7において、集水管6から遠い領域、すなわち巻回方向外側の端部近傍の領域(図8(a)における右側端部に近い領域)を透過した水は、集水管6に向かう間に、巻回方向においてより内側の領域を透過した水と合流し、集水管6へと向かう。よって、透過側流路5においては、集水管6から遠い方が存在する水量が少ない。
欠点率は、図9では、(L3/L1)×100で表される。図9では、説明の便宜上、領域R3に突起物301が設けられていない形態が示されている。ただし、領域R3は、幅方向に連続な突起物が設けられた領域とすることができる。
図9において、透過側流路材が設けられている領域をR2で示し、突起物301(透過側流路材)が設けられていない領域をR3で示している。また、分離膜2のMD方向の長さをL1、突起物301のMD方向の長さ(すなわち、領域R2の長さ)をL2で示し、突起物301が存在しない領域R3のMD方向の長さをL3で示している。ここでMD方向は、分離膜の長さ方向および分離膜の巻回方向を表す。
(3-1)概要
図8(a)および図8(b)に示されるように、分離膜エレメント100は、集水管6と、上述したいずれかの構成を備え、集水管6の周囲に巻回された分離膜リーフ4を備える。
<概要>
図8(a)に示すように、分離膜2および透過側流路材31は、集水管6の周囲に巻回されており、分離膜2および透過側流路材31の幅方向が集水管6の長手方向に沿うように配置されている。その結果、分離膜2および透過側流路材31は、長さ方向が巻回方向に沿うように配置されている。
従って、図8(a)に示されるように、透過側流路材を構成する突起物301は、少なくとも集水管6の長手方向に対して不連続状に配置される。すなわち、透過側流路5は、巻回方向において分離膜の外側端部から内側端部まで連続するように形成される。その結果、透過水が中心の集水管6へ到達し易く、すなわち流動抵抗が小さくなるので、大きな造水量が得られる。
分離膜は、分離膜リーフ(本発明において、単に「リーフ」と称することがある。)を形成する。分離膜リーフにおいて分離膜は、供給側の面が、供給側流路材を挟んで他の分離膜の供給側の面と対向するように配置される。分離膜リーフにおいて、互いに向かい合う分離膜の供給側の面の間には供給側流路が形成される。
封止としては、接着剤またはホットメルトなどにより接着されている形態、加熱またはレーザなどにより融着されている形態、およびゴム製シートが挟みこまれている形態が挙げられる。接着による封止は、最も簡便で効果が高いために特に好ましく用いられる。
また、分離膜の供給側の面において、巻回方向における内側端部は、折りたたみまたは封止により閉じられている。分離膜の供給側の面が、折り畳まれているのではなく封止されていることにより、分離膜の端部における撓みが発生しにくい。折り目近傍での撓みの発生が抑制されることにより、巻囲したときに分離膜間での空隙の発生およびこの空隙によるリークの発生が抑制される。
折り畳みによって分離膜リーフを形成する場合、リーフが長いほど(すなわち、元の分離膜が長いほど)分離膜の折りたたみに要する時間は長い。しかしながら、分離膜の供給側の面を、折り畳みでなく封止することで、リーフが長くても製造時間の増大を抑制することができる。
透過側の面において、または供給側の面において、互いに対向する分離膜は、2枚の異なる分離膜であってもよく、1枚の膜が折りたたまれた構成とすることもできる。
上述したように、透過側流路材は隣り合う2枚の膜の透過側の面の間に配置される。突起物301によって、封筒状膜の内側、すなわち向かい合う分離膜の透過側の面の間には、透過側流路が形成される。
(流路材)
分離膜エレメント100は、向かい合う分離膜の供給側の面の間に、分離膜2に対する投影面積比が0を超えて1未満となる流路材を備える(図示せず)。供給側流路材の投影面積比は0.03以上0.50以下であることが好ましく、より好ましくは0.10以上0.40以下であり、特に好ましくは0.15以上0.35以下である。投影面積比を0.03以上0.50以下とすることにより、流動抵抗が比較的小さく抑えられる。投影面積比とは、分離膜と供給側流路材を5cm×5cmで切り出し、供給側流路材を分離膜の面方向に平行な平面に投影した時に得られる投影面積を切り出し面積で割った値である。
供給側流路材の高さは、後述するように、各性能のバランスや運転コストを考慮すると0.5mmを超えて2.0mm以下であることが好ましく、より好ましくは0.6mm以上1.0mm以下である。
供給側流路材の形状は、連続形状を有していてもよく、不連続な形状を有することができる。連続形状を有する流路材としては、フィルムおよびネットのような部材が挙げられる。ここで、連続形状とは、実質的に流路材の全範囲において連続であることを意味する。連続形状には、造水量が低下するなどの不具合が生じない程度に、流路材の一部が不連続となる箇所が含まれていてもよい。また、「不連続」の定義については、透過側の流路材について説明したとおりである。供給側流路材の材料は、分離膜と同素材であっても異素材であってもよい。
また、分離膜の供給側の面に供給側流路材を配置するに代わりに、エンボス成形、水圧成形およびカレンダ加工のような方法で分離膜の供給側に高低差を付与することができる。
エンボス成形法としては、例えば、ロールエンボス加工などが挙げられる。これを実施する際の圧力や処理温度は、分離膜の融点に応じて適宜決定することができる。例えば、分離膜がエポキシ樹脂を含む多孔性支持層を有する場合では、線圧は10kg/cm以上60kg/cm以下であることが好ましく、加熱温度は40℃以上150℃以下であることが好ましい。また、ポリスルホン等の耐熱性樹脂を含む多孔性支持層を有する場合、線圧は10kg/cm以上70kg/cm以下であることが好ましく、ロール加熱温度は70℃以上160℃以下であることが好ましい。ロールエンボス加工ならば、いずれの場合も巻き取り速度を1m/分以上20m/分以下にすることが好ましい。
溝幅は、好ましくは0.2mm以上10mm以下であり、より好ましくは0.5mm以上3mm以下である。ピッチは、溝幅の10分の1倍以上50倍以下の間で適宜設計することが好ましい。溝幅とは、高低差が存在する表面で沈下している部位のことであり、ピッチとは、高低差が存在する表面における高い箇所の最も高いところから近接する高い箇所の最も高い箇所までの水平距離のことである。
分離膜の面における「高低差」とは、分離膜本体の表面と流路材の頂点との高低差(つまり流路材の高さ)であり、分離膜本体が凹凸加工されている場合は、凹部と凸部との高低差である。
集水管6は、その中を透過水が流れるように構成されており、材質、形状および大きさ等は特に限定されない。集水管6としては、例えば、複数の孔が設けられた側面を有する円筒状の部材が用いられる。
分離膜エレメントの製造方法は、分離膜を製造する工程を含む。また、分離膜を製造する工程は、少なくとも次の工程を含む。
・基材および分離機能層を有する分離膜本体を準備する工程、
・上記の分離膜本体とは異なる組成を有する材料を、熱によって軟化する工程、
・軟化した前記の材料を、上記の分離膜本体の基材側の面に配置することにより、透過側流路材を形成する工程、および
・上記の材料を固化することにより、上記の分離膜本体上に上記の透過側流路材を固着させる工程。
分離膜エレメントの製造方法における各工程について、次に説明する。
分離膜の製造方法については上述したが、簡単にまとめると次のとおりである。
良溶媒に樹脂を溶解し、得られた樹脂溶液を基材にキャストして純水中に浸漬して多孔性支持層と基材を複合させる。その後、上述したように、多孔性支持層上に分離機能層を形成する。さらに、必要に応じて分離性能と透過性能を高めるべく、塩素、酸、アルカリおよび亜硝酸などの化学処理を施し、さらにモノマー等を洗浄し分離膜の連続シートを作製する。
化学処理の前または後で、エンボス等によって分離膜本体に凹凸を形成することもできる。
分離膜の製造方法は、分離膜の透過側の面に、不連続な流路材を設ける工程を備える。この工程は、分離膜製造のどの時点でも行うことができる。例えば、流路材は、基材上に多孔性支持層が形成される前に設けられてもよく、多孔性支持層が設けられた後であって分離機能層が形成される前に設けられてもよく、および分離機能層が形成された後、上述の化学処理が施される前または後に行われることが含まれる。
流路材を配置する方法は、例えば、柔らかな材料を分離膜上に配置する工程と、それを硬化する工程とを備える。具体的には、流路材の配置には、紫外線硬化樹脂、化学重合、ホットメルトおよび乾燥等が利用される。特に、ホットメルトは好ましく用いられ、具体的には、熱により樹脂等の材料を軟化する(すなわち、熱溶融する)工程、軟化した材料を分離膜上に配置する工程、およびこの材料を冷却により硬化することで分離膜上に固着させる工程を含む。
供給側流路材が、分離膜と異なる材料で形成された不連続な部材である場合、供給側流路材の形成には、透過側流路材の形成と同じ方法およびタイミングを適用することができる。
また、エンボス成形、水圧成形およびカレンダ加工等の方法で、分離膜の供給側に高低差を付与することもできる。エンボス成形法としては、例えば、ロールエンボス加工法等が挙げられ、これを実施する際の圧力や処理温度は、分離膜の融点に応じて適宜決定することができる。
エンボス加工によって付与できる分離膜の供給側表面の高低差は、分離特性や水透過性能が要求される条件を満足するように加圧熱処理条件を変更することにより、自由に調整することができる。
供給側流路がネット等の連続的に形成された部材である場合は、分離膜本体に透過側流路材が配置されることによって分離膜が製造された後、この分離膜と供給側流路材とを重ね合わせることができる。
分離膜リーフは、上述したように、供給側の面が内側を向くように分離膜を折りたたむことで形成することされてもよく、別々の2枚の分離膜を、供給側の面が向かい合うように貼り合わせることにより形成することもできる。
分離膜エレメントの製造方法は、分離膜の巻回方向における内側端部を、供給側の面において封止する工程を備えることが好ましい。封止する工程においては、2枚の分離膜を、互いの供給側の面が向かい合うように重ねる。さらに、重ねられた分離膜の巻回方向における内側端部、すなわち図8(a)における左側端部を封止する。
このとき、重ねられた分離膜の内側に、分離膜とは別に形成された供給側流路材を配置することもできる。上述したように、エンボスまたは樹脂塗布等によって分離膜の供給側の面にあらかじめ高低差を設けることにより、供給側流路材の配置を省略することもできる。
1枚の分離膜を透過側の面が内側を向くように折り畳んで貼り合わせることにより、または2枚の分離膜を透過側の面が内側を向くように重ねて貼り合わせることにより、封筒状膜を形成することができる。長方形状の封筒状膜においては、長さ方向の一端のみが開口するように、他の3辺を封止する。封止は、接着剤またはホットメルト等による接着や、熱またはレーザによる融着等により実行できる。
分離膜エレメントの製造には、従来のエレメント製作装置を用いることができる。また、エレメント作製方法としては、参考文献(日本国特公昭44-14216号公報、日本国特公平4-11928号公報、および日本国特開平11-226366号公報)に記載されている方法を用いることができる。詳細には、次のとおりである。
集水管の周囲に分離膜を巻回するときは、分離膜を、リーフの閉じられた端部、すなわち封筒状膜の閉口部分が集水管を向くように配置する。このような配置で集水管の周囲に分離膜を巻きつけることにより、分離膜をスパイラル状に巻回する。
分離膜エレメントの製造方法においては、上述のように形成された分離膜の巻回体の外側に、フィルムおよびフィラメント等をさらに巻きつけることを含んでいてもよく、集水管の長手方向における分離膜の端を切りそろえるエッジカット、端板の取り付け等のさらなる工程を含むことができる。
分離膜エレメントは、さらに、直列または並列に接続して圧力容器に収納されることにより、分離膜モジュールとして使用される。
また、上記の分離膜エレメント、および分離膜モジュールは、それらに流体を供給するポンプや、その流体を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この流体分離装置を用いることにより、例えば、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
株式会社キーエンス製高精度形状測定システム「KS-1100」(商品名)を用い、10μm以上の高低差のある100箇所を測定した。
突起物高さの変動係数は、同一平面内100箇所の透過側流路材について突起物高さを測定し、その平均値と標準偏差を算出して、標準偏差/平均値とした値を突起物高さの変動係数とした。
透過側流路材が固着した分離膜を巻出張力50N、巻取張力50Nで100m巻き取り、室温で100日間保管した。その後、分離膜を巻き出し、透過側流路材の対向する分離膜の透過側流路材の高さ変化を測定した。
透過側流路材の高さ変化=巻取り後保管後巻き出した分離膜の透過側流路材平均高さ/巻取り前の分離膜の透過側流路材平均高さ
性能評価した分離膜エレメントについて、分離膜を巻き出し、透過側流路材の分離膜からの剥離を確認した。透過側流路材を株式会社キーエンス製マイクロスコープ「VHX-1000」(商品名)を用いて100点観察し、透過側流路材が分離膜から0.1mm以上剥離している箇所の数を測定した。
ISO9073-3:1989に基づいて、5cm×30cmのサンプルについて、テンシロン万能材料試験器「RTF-2430」(商品名、エー・アンド・デイ社製)を用いて、つかみ間隔20cm、引張速度10cm/minの条件で、縦方向および横方向それぞれ5点の測定を実施し、得られた強伸度曲線から読み取り、少数点以下第1位を四捨五入した値とした。
透過側流路材を突起物と共に深さ方向に切断し、断面を走査型電子顕微鏡「S-800」(商品名、株式会社日立製作所製)を用いて30個の任意の含浸部を100倍で写真撮影した。撮影された写真において最大含浸厚さ及びシート厚さを測定し、含浸率を、
含浸率(%)=(シート中の突起物の最大含浸厚さ/シート厚さ)×100
の式に基づいて算出した上で、1個の含浸部当たりの平均値を求めた。以下、得られた平均値を「含浸率」と表記する。
株式会社キーエンス製高精度形状測定システム「KS-1100」(商品名)を用い、5cm×5cmの透過側の測定結果から平均の高低差を解析した。10μm以上の高低差のある40箇所を測定し、各高さの値を総和した値を測定総箇所の数で割って求めた。
作製した分離膜エレメントについて、温度25℃、pH6.5に調整した海水(TDS濃度約3.5%、ホウ素濃度約5ppm)を、操作圧力6.5MPaで1分間×2000回通水した。
発停試験を実施した分離膜エレメントについて、温度25℃、pH6.5に調整した海水(TDS濃度約3.5%、ホウ素濃度約5ppm)を、操作圧力5.5MPaで供給して膜ろ過処理を24時間行なった後に30分間のサンプリングを行い、1日あたりの透水量(立方メートル)を造水量(m3/日)として表した。
造水量の測定における10分間の運転で用いた原水およびサンプリングした透過水について、TDS濃度を伝導率測定により求め、下記式からTDS除去率を算出した。
TDS除去率(%)=100×{1-(透過水中のTDS濃度/供給水中のTDS濃度)}
発停試験を実施した分離膜エレメントを、分離膜リーフ膜面に垂直かつ幅方向に平行な面に切断し、株式会社キーエンス社製マイクロスコープ「VHX-1000」(商品名)を用いて断面観察を行った。図7に示されるように、膜落ち込み深さj(μm)は隣接する突起物間における分離膜z方向位置の最大距離jを示す。分離膜303A1側の落ち込み深さと分離膜303B1側の落ち込み深さをそれぞれ50箇所について測定し、各値を総和した値を測定数で割って平均値を求めた。また、分離膜303A1と303B1の間の距離lについて100箇所について測定し、各値を総和した値を測定数で割って、次式で平均値を求めた。
膜落ち込み量(%)=膜落ち込み深さj(μm)/透過側の面間の距離l(μm)×100
不織布(ポリエチレンテレフタレート、単繊維繊度:1デシテックス、厚さ:約0.08mm、目付1.0g/cm2)上に、ポリスルホンの16.0質量%のDMF溶液を200μmの厚さで室温(25℃)においてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、厚さ0.12mmの多孔性支持層を作製した。
その後、上記のようにして作成された多孔性支持層ロールを巻き出し、ポリスルホン表面に、m-PDAの6.0質量%を塗布し、エアーノズルから窒素を吹き付けて支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.165質量%を含む25℃の温度のn-デカン溶液を表面が完全に濡れるように塗布し、分離膜を作成した。このように得られた分離膜を、分離膜エレメントでの有効面積が37.0m2となるように折り畳み断裁加工し、ネット(厚さ:0.78mm、ピッチ:5mm×5mm、繊維径:0.39mm、投影面積比:0.12)を供給側流路材として、幅が900mmで、かつリーフ長が800mmの分離膜リーフを作製した。
グラビアロールの表面に彫刻されたパターンは、シートの長さ方向に連続した直線状であり、得られた突起物の形状は、流路材幅が0.4mmであり、隣接する流路材の間隔が0.4mmであり、ピッチが0.8mmであった。ここで、ピッチとは、透過側の面において、200箇所で計測された、分離膜の凸部の頂点から近接する凸部の頂点までの水平距離の平均値である。得られた突起物高さの最大値、最小値、最大値/最小値、変動係数を表1に示す。また、透過側流路材を構成するシートの縦方向および横方向の引張強度、引張伸度、突起物が固着したシートの縦方向の引張強度、を表1に示す。透過側流路材の高さ変化、透過側流路材剥離性、を評価したところ表2に示す値であった。
以下、特に言及しない条件については、実施例1と同様にして分離膜を作製した。
得られた突起物高さの最大値、最小値、最大値/最小値、変動係数、突起物が固着したシートの縦方向の引張強度、を表1に示す値に変更した以外は、実施例1と同様にして分離膜を作製した。透過側流路材の高さ変化、透過側流路材剥離性、を評価したところ表2に示す値であった。また、8インチの分離膜エレメントの発停試験を実施し、造水量、TDS除去率および膜落ち込み量を測定したところ、表2に示す値であった。
得られた突起物高さの最大値、最小値、最大値/最小値、変動係数を表1に示す値に変更した。また、透過側流路材を構成するシートの厚さおよび通気度、縦方向および横方向の引張強度、引張伸度、突起物が固着したシートの縦方向の引張強度、を表1に示す値に変更した。透過側流路材の高さ変化、透過側流路材剥離性、を評価したところ表2に示す値であった。
2 分離膜
2a 第1の分離膜
2b 第2の分離膜
2c 第3の分離膜
21 供給側の面
21a,21b,21c 供給側の面
22 透過側の面
22a,22b,22c 透過側の面
201 基材
202 多孔性支持層
203 分離機能層
31 透過側流路材
301 突起物
302 シート
D1 突起物のシートへの最大含浸厚さ
D2 シート厚さ
303A1 分離膜
303A2 分離膜(発停試験後)
303B1 分離膜
4 分離膜リーフ
5 透過側流路
6 集水管
7 分離膜
R2 分離膜において巻回方向内側から外側に並んだ透過側流路材の先頭から最後尾までを含む領域
R3 分離膜の巻回方向外側端部において透過側流路材が設けられていない領域
L1 分離膜全体の長さ(上記長さa)
L2 領域R2の長さ
L3 領域R3の長さ
Claims (5)
- 集水管と、複数枚重ねられて前記集水管の周囲に巻囲された分離膜リーフとを有する分離膜エレメントであって、
前記分離膜リーフは、供給側の面および透過側の面を備えた分離膜を前記供給側の面を対向させて構成され、
重なり合う前記分離膜リーフの前記透過側の面の間に、複数の突起物が固着されたシートを備え、
前記突起物高さについて、最大高さと最小高さの比が1.10以上1.50以下、変動係数が0.02以上0.15以下であり、かつ前記突起物の前記シートへの含浸率が10%以上100%以下である分離膜エレメント。 - 前記突起物が固着されたシートの長さ方向への引張強度が50N/5cm以上800N/5cm以下である請求項1に記載の分離膜エレメント。
- 重なり合う前記分離膜リーフの透過側の面の間に複数のシートを有し、前記シートの少なくとも一枚に前記複数の突起物が固着されていることを特徴とする請求項1又は請求項2に記載の分離膜エレメント。
- 前記突起物は、前記シートに固着している側の下底長さが、上底長さよりも大きく、前記シートの前記複数の突起物を備えていない面と前記分離膜リーフの透過側の面とが接触するように配置された請求項1~請求項3のいずれか1項に記載の分離膜エレメント。
- 前記シートの長さ方向への引張強度が40N/5cm以上600N/5cm以下、幅方向への引張強度が15N/5cm以上500N/5cm以下であり、かつ前記シートの長さ方向への引張伸度が5%以上50%以下、幅方向への引張伸度が3%以上40%以下である請求項1~請求項4のいずれか1項に記載の分離膜エレメント。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/032,755 US9808767B2 (en) | 2013-10-31 | 2014-10-31 | Separation membrane element |
KR1020167011165A KR102263342B1 (ko) | 2013-10-31 | 2014-10-31 | 분리막 엘리먼트 |
EP14858236.4A EP3064267A4 (en) | 2013-10-31 | 2014-10-31 | Separation membrane element |
JP2014557655A JP6485044B2 (ja) | 2013-10-31 | 2014-10-31 | 分離膜エレメント |
CN201480059812.1A CN105658312B (zh) | 2013-10-31 | 2014-10-31 | 分离膜元件 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-226340 | 2013-10-31 | ||
JP2013226340 | 2013-10-31 | ||
JP2013-268548 | 2013-12-26 | ||
JP2013268548 | 2013-12-26 | ||
JP2014-131409 | 2014-06-26 | ||
JP2014131409 | 2014-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064752A1 true WO2015064752A1 (ja) | 2015-05-07 |
Family
ID=53004347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079110 WO2015064752A1 (ja) | 2013-10-31 | 2014-10-31 | 分離膜エレメント |
Country Status (6)
Country | Link |
---|---|
US (1) | US9808767B2 (ja) |
EP (1) | EP3064267A4 (ja) |
JP (1) | JP6485044B2 (ja) |
KR (1) | KR102263342B1 (ja) |
CN (1) | CN105658312B (ja) |
WO (1) | WO2015064752A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019529099A (ja) * | 2016-09-20 | 2019-10-17 | アクア メンブレインズ エルエルシー | 透過流パターン |
WO2021122663A3 (en) * | 2019-12-18 | 2021-08-05 | Saltkraft Aps | Support for high pressure osmotic membrane |
WO2023176272A1 (ja) * | 2022-03-17 | 2023-09-21 | 日東電工株式会社 | スパイラル型膜エレメント、透過スペーサ、及び膜分離方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6305729B2 (ja) * | 2013-11-05 | 2018-04-04 | 日東電工株式会社 | 複合半透膜 |
US10183254B2 (en) * | 2014-12-26 | 2019-01-22 | Toray Industries, Inc. | Separation membrane element |
US11040311B2 (en) | 2016-11-19 | 2021-06-22 | Aqua Membranes Inc. | Interference patterns for spiral wound elements |
EP3572141B1 (en) * | 2017-03-17 | 2022-06-22 | Sumitomo Chemical Company, Limited | Gas separation membrane element, gas separation membrane module, and gas separation device |
EP3609607B1 (en) | 2017-04-12 | 2024-05-22 | Aqua Membranes, Inc. | Graded spacers for filtration wound elements |
US11745143B2 (en) | 2017-04-20 | 2023-09-05 | Aqua Membranes, Inc. | Mixing-promoting spacer patterns for spiral-wound elements |
JP2020517423A (ja) | 2017-04-20 | 2020-06-18 | アクア メンブレインズ,インコーポレイテッド | スパイラル巻き要素のための非ネスティング、非変形パターン |
EP3459618B1 (de) * | 2017-09-25 | 2024-05-15 | Sartorius Stedim Biotech GmbH | Filtervorrichtung mit strömungseinbau |
CN111344053A (zh) | 2017-10-13 | 2020-06-26 | 阿夸曼布拉尼斯公司 | 螺旋缠绕元件的桥支撑件和减少的进给间隔件 |
US11420143B2 (en) | 2018-11-05 | 2022-08-23 | Hollingsworth & Vose Company | Filter media with irregular structure and/or reversibly stretchable layers |
CN113631243B (zh) * | 2019-01-27 | 2024-03-29 | 阿夸曼布拉尼斯公司 | 复合膜 |
EP3702017A1 (en) * | 2019-02-26 | 2020-09-02 | Sartorius Stedim Lab Ltd. | Crossflow filter device |
WO2021207256A1 (en) | 2020-04-07 | 2021-10-14 | Aqua Membranes Inc. | Independent spacers and methods |
WO2021226049A1 (en) * | 2020-05-04 | 2021-11-11 | Hollingsworth & Vose Company | Filter media with irregular structure and/or reversibly stretchable layers |
US11535531B2 (en) * | 2020-08-05 | 2022-12-27 | NL Chemical Technology, Inc. | Reduced lateral leakage in reverse osmosis devices |
CN112610433B (zh) * | 2020-12-08 | 2022-05-03 | 南京工业大学 | 基于多孔介质的正向渗透-电动盐差能高效连续发电装置 |
WO2022225061A1 (ja) * | 2021-04-22 | 2022-10-27 | 東レ株式会社 | 複合半透膜 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411928A (ja) | 1990-04-27 | 1992-01-16 | Toray Ind Inc | スパイラル型液体分離素子 |
JPH11226366A (ja) | 1998-02-19 | 1999-08-24 | Toray Ind Inc | 流体分離膜エレメントの製造方法および装置ならびに流体分離膜エレメント |
JP2000051671A (ja) * | 1998-08-06 | 2000-02-22 | Nitto Denko Corp | スパイラル型分離膜エレメント |
JP2002095935A (ja) * | 2000-09-25 | 2002-04-02 | Nitto Denko Corp | スパイラル型分離膜エレメント |
JP2006247453A (ja) | 2005-03-08 | 2006-09-21 | Toray Ind Inc | 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法 |
JP2008531270A (ja) * | 2005-02-28 | 2008-08-14 | アルファ ラヴァル コーポレイト アクチボラゲット | メンブレンモジュール用スペーサ |
JP2012518538A (ja) | 2009-02-25 | 2012-08-16 | プラット アンド ホイットニー ロケットダイン,インコーポレイテッド | ファウリングが低減された流体分離システム |
US20120261333A1 (en) | 2011-04-13 | 2012-10-18 | Shane James Moran | Filter element for fluid filtration system |
WO2013005826A1 (ja) * | 2011-07-07 | 2013-01-10 | 東レ株式会社 | 分離膜、分離膜エレメント、および分離膜の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4414216Y1 (ja) | 1966-09-16 | 1969-06-16 | ||
JP4414216B2 (ja) | 2002-12-26 | 2010-02-10 | 株式会社マルイ | 自転車用サドル |
JPWO2013047746A1 (ja) | 2011-09-29 | 2015-03-26 | 東レ株式会社 | 分離膜、分離膜エレメントおよび分離膜の製造方法 |
KR20140082677A (ko) | 2011-09-29 | 2014-07-02 | 도레이 카부시키가이샤 | 분리막 및 분리막 엘리먼트 |
KR20150035773A (ko) * | 2012-06-28 | 2015-04-07 | 도레이 카부시키가이샤 | 분리막 및 분리막 엘리먼트 |
US9802160B2 (en) * | 2013-10-30 | 2017-10-31 | Toray Industries, Inc. | Separation membrane, sheet flow path material, and separation membrane element |
-
2014
- 2014-10-31 US US15/032,755 patent/US9808767B2/en active Active
- 2014-10-31 WO PCT/JP2014/079110 patent/WO2015064752A1/ja active Application Filing
- 2014-10-31 JP JP2014557655A patent/JP6485044B2/ja not_active Expired - Fee Related
- 2014-10-31 KR KR1020167011165A patent/KR102263342B1/ko active IP Right Grant
- 2014-10-31 EP EP14858236.4A patent/EP3064267A4/en not_active Withdrawn
- 2014-10-31 CN CN201480059812.1A patent/CN105658312B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411928A (ja) | 1990-04-27 | 1992-01-16 | Toray Ind Inc | スパイラル型液体分離素子 |
JPH11226366A (ja) | 1998-02-19 | 1999-08-24 | Toray Ind Inc | 流体分離膜エレメントの製造方法および装置ならびに流体分離膜エレメント |
JP2000051671A (ja) * | 1998-08-06 | 2000-02-22 | Nitto Denko Corp | スパイラル型分離膜エレメント |
JP2002095935A (ja) * | 2000-09-25 | 2002-04-02 | Nitto Denko Corp | スパイラル型分離膜エレメント |
JP2008531270A (ja) * | 2005-02-28 | 2008-08-14 | アルファ ラヴァル コーポレイト アクチボラゲット | メンブレンモジュール用スペーサ |
JP2006247453A (ja) | 2005-03-08 | 2006-09-21 | Toray Ind Inc | 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法 |
JP2012518538A (ja) | 2009-02-25 | 2012-08-16 | プラット アンド ホイットニー ロケットダイン,インコーポレイテッド | ファウリングが低減された流体分離システム |
US20120261333A1 (en) | 2011-04-13 | 2012-10-18 | Shane James Moran | Filter element for fluid filtration system |
WO2013005826A1 (ja) * | 2011-07-07 | 2013-01-10 | 東レ株式会社 | 分離膜、分離膜エレメント、および分離膜の製造方法 |
Non-Patent Citations (2)
Title |
---|
OFFICE OF SALINE WATER RESEARCH AND DEVELOPMENT PROGRESS REPORT, 1968, pages 359 |
See also references of EP3064267A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019529099A (ja) * | 2016-09-20 | 2019-10-17 | アクア メンブレインズ エルエルシー | 透過流パターン |
JP2022191222A (ja) * | 2016-09-20 | 2022-12-27 | アクア メンブレインズ,インコーポレイテッド | 透過流パターン |
JP7474815B2 (ja) | 2016-09-20 | 2024-04-25 | アクア メンブレインズ,インコーポレイテッド | 透過流パターン |
WO2021122663A3 (en) * | 2019-12-18 | 2021-08-05 | Saltkraft Aps | Support for high pressure osmotic membrane |
WO2023176272A1 (ja) * | 2022-03-17 | 2023-09-21 | 日東電工株式会社 | スパイラル型膜エレメント、透過スペーサ、及び膜分離方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105658312A (zh) | 2016-06-08 |
KR20160078358A (ko) | 2016-07-04 |
EP3064267A1 (en) | 2016-09-07 |
KR102263342B1 (ko) | 2021-06-11 |
JP6485044B2 (ja) | 2019-03-20 |
US9808767B2 (en) | 2017-11-07 |
CN105658312B (zh) | 2018-04-20 |
EP3064267A4 (en) | 2017-07-26 |
JPWO2015064752A1 (ja) | 2017-03-09 |
US20160303514A1 (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6485044B2 (ja) | 分離膜エレメント | |
JP2017148805A (ja) | 分離膜、分離膜エレメントおよび分離膜の製造方法 | |
JP6136269B2 (ja) | 水処理用分離膜エレメント | |
JP6111668B2 (ja) | 分離膜エレメント、および分離膜エレメントの製造方法 | |
JP6179402B2 (ja) | 分離膜エレメント | |
JP6206185B2 (ja) | 分離膜および分離膜エレメント | |
WO2015016253A1 (ja) | 分離膜エレメント | |
JP6179403B2 (ja) | 分離膜および分離膜エレメント | |
JP2015071159A (ja) | 分離膜エレメント | |
WO2014208602A1 (ja) | 分離膜エレメント | |
JP2014064973A (ja) | 分離膜および分離膜エレメント | |
JP2015006661A (ja) | 分離膜エレメント | |
JP2015142894A (ja) | 分離膜エレメント | |
JP2015142911A (ja) | 分離膜および分離膜エレメント | |
JP2016068081A (ja) | 分離膜エレメント | |
JP2014193459A (ja) | 分離膜エレメント | |
JP2014193460A (ja) | 分離膜および分離膜エレメント | |
JP2014140840A (ja) | 分離膜エレメント | |
JP2015085322A (ja) | 分離膜エレメント | |
JP2015091574A (ja) | 分離膜エレメント | |
JP2015142899A (ja) | 分離膜エレメント | |
JP2017013055A (ja) | 分離膜エレメント | |
JP2016026865A (ja) | 分離膜エレメント | |
JP2015127051A (ja) | 分離膜エレメント |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014557655 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14858236 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167011165 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014858236 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15032755 Country of ref document: US Ref document number: 2014858236 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |