WO2015064527A1 - 副室式ガスエンジン - Google Patents

副室式ガスエンジン Download PDF

Info

Publication number
WO2015064527A1
WO2015064527A1 PCT/JP2014/078470 JP2014078470W WO2015064527A1 WO 2015064527 A1 WO2015064527 A1 WO 2015064527A1 JP 2014078470 W JP2014078470 W JP 2014078470W WO 2015064527 A1 WO2015064527 A1 WO 2015064527A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
engine
fuel
chamber
injection amount
Prior art date
Application number
PCT/JP2014/078470
Other languages
English (en)
French (fr)
Inventor
良一 萩原
修 山岸
Original Assignee
ヤンマー株式会社
一般社団法人日本舶用工業会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013223754A external-priority patent/JP6148600B2/ja
Priority claimed from JP2013223755A external-priority patent/JP6148601B2/ja
Priority claimed from JP2013223756A external-priority patent/JP6148602B2/ja
Application filed by ヤンマー株式会社, 一般社団法人日本舶用工業会 filed Critical ヤンマー株式会社
Priority to US15/032,842 priority Critical patent/US20160252030A1/en
Priority to CN201480059520.8A priority patent/CN105683534B/zh
Priority to EP14858310.7A priority patent/EP3064747B1/en
Priority to KR1020167013419A priority patent/KR101829042B1/ko
Publication of WO2015064527A1 publication Critical patent/WO2015064527A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • B63H2021/202Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type
    • B63H2021/205Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type the second power unit being of the internal combustion engine type, or the like, e.g. a Diesel engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/023Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a technology of a sub-chamber type gas engine.
  • a gas engine is known as an engine that drives a mixture of air and fuel gas as fuel.
  • a sub-chamber gas engine is also known as a type of gas engine.
  • a sub-chamber gas engine is a gas engine of a type that injects fuel into a sub-chamber provided in a cylinder head (for example, Patent Document 1).
  • city gas 13A etc.
  • fuel gas having a different composition may be supplied in a sub-chamber type gas engine used overseas.
  • Fuel gas having a different composition has a lower calorific value than city gas (such as 13A). Therefore, in the sub-chamber type gas engine, when fuel gas having a different composition is supplied, fuel consumption is deteriorated.
  • the problem to be solved by the present invention is to provide a sub-chamber gas engine that can prevent deterioration of fuel consumption even when fuel gases having different compositions are supplied.
  • the sub-chamber type gas engine of the present invention is a sub-chamber type gas engine comprising control means for determining the fuel flow rate and the air flow rate from the engine speed and the engine load, wherein the control means is based on the determined fuel flow rate. When a large fuel flow rate is required, correction is made so that the determined air flow rate becomes small.
  • control means determines the sub-chamber fuel flow rate from the engine speed and the engine load, and is determined when the fuel flow rate is higher than the determined fuel flow rate.
  • the sub-chamber fuel flow rate is corrected so as to increase.
  • the control means includes a fuel injection amount map for determining a command fuel injection amount with respect to the engine speed and the engine load, and a target air supply with respect to the engine speed and the engine load.
  • a target air supply manifold pressure map for determining the manifold pressure is set, and when the fuel injection amount is larger than the command fuel injection amount determined for the engine speed and the engine load, The correction is made so that the target supply manifold pressure in the supply manifold pressure map becomes smaller.
  • the control means sets a target sub-chamber fuel gas pressure that determines a target sub-chamber fuel gas pressure with respect to the engine speed and the engine load, and the engine speed and the engine load.
  • the target sub-chamber fuel gas pressure in the target sub-chamber fuel gas pressure map is corrected so as to increase. .
  • the fuel injection amount map corrects the command fuel injection amount based on at least the fuel pressure, fuel temperature, or lubricating oil temperature.
  • the sub-chamber type gas engine of the present invention it is possible to prevent deterioration of fuel consumption even when fuel gases having different compositions are supplied.
  • the schematic diagram which shows the structure of an electric propulsion ship The schematic diagram which showed the structure of the subchamber type gas engine. The schematic diagram which similarly showed the structure of the cylinder head.
  • the configuration of the electric propulsion ship 1000 will be described with reference to FIG. In FIG. 1, the configuration of the electric propulsion ship 1000 is schematically shown.
  • the electric propulsion ship 1000 is equipped with the sub chamber type gas engine 100 of the present embodiment.
  • the electric propulsion ship 1000 includes an LNG tank 101, a vaporizer 102, a sub-chamber gas engine 100, a generator 103, a power control panel 104, a propulsion motor 105, a speed reducer 106, and a variable pitch propeller 107. It is equipped with.
  • the fuel gas stored in the LNG tanks 101 and 101 is mixed with air by the carburetors 102 and 102 and supplied to the sub-chamber type gas engines 100, 100, and 100.
  • the generators 103, 103, 103 are driven by the sub-chamber type gas engines 100, 100, 100, and power is supplied to the propulsion motors 105, 105 and the ship load by the power control panel 104.
  • the drive of the propulsion motors 105 and 105 is transmitted to the variable pitch propellers 107 and 107 via the speed reducers 106 and 106.
  • the configuration of the sub-chamber gas engine 100 will be described with reference to FIG. In FIG. 2, the configuration of the sub-chamber gas engine 100 is schematically shown.
  • the sub chamber type gas engine 100 is an embodiment according to the sub chamber type gas engine of the present invention.
  • the sub-chamber gas engine 100 is an engine that drives gas as fuel, and is a gas engine that injects fuel into the sub-chamber S provided in the cylinder head 70 (see FIG. 3).
  • the sub-chamber gas engine 100 includes an engine main body 10, an air supply system 20, an exhaust system 30, and an ECU (Engine Control Unit) 50 as a control means.
  • the engine main body 10 includes six cylinders 11.
  • the cylinders 11... 11 communicate with each other through an air supply manifold 21 and air supply ports 22... 22, and communicate with each other through an exhaust manifold 31 and exhaust ports 32.
  • Gas supply ports 22... 22 are provided with gas injectors 42.
  • the air supply system 20 includes an air supply manifold 21, an intercooler 23, a throttle valve 24, a compressor 25, and a bypass throttle 26.
  • an intercooler 23, a throttle valve 24, and a compressor 25 are sequentially arranged from the air supply manifold 21 toward the upstream side of the air flow.
  • the bypass throttle 26 is provided on a bypass path that bypasses the compressor 25.
  • the exhaust system 30 includes an exhaust manifold 31 and a turbine 33.
  • a turbine 33 is disposed from the exhaust manifold 31 toward the downstream side of the air flow.
  • the ECU 50 is connected to the throttle valve 24, the bypass throttle 26, and the gas injectors 42.
  • the ECU 50 has a function of controlling the throttle valve 24 or the bypass throttle 26 so that the supply manifold pressure Pi as the air flow rate becomes the target supply manifold pressure Pim.
  • the ECU 50 is also connected to an accelerator lever 59 that commands load application.
  • the air flow rate is the supply manifold pressure Pi, but the present invention is not limited to this.
  • the air flow rate supplied to the air supply manifold 21 may be detected by a mass flow meter or an orifice flow meter, and the detected air flow rate may be used as the air amount of the present invention.
  • the configuration of the cylinder head 70 will be described with reference to FIG. In FIG. 3, the configuration of the cylinder head 70 is schematically shown.
  • the cylinder head 70 is disposed above the cylinder block 80 and includes a main chamber system 40 and a sub chamber system 60.
  • a sub chamber S is formed, and an air supply valve 71 and an exhaust valve 72 are provided. Above the sub chamber S, a spark plug 75 and a sub chamber system 60 are provided.
  • a cylinder 11 is formed, and a piston P is slidably accommodated.
  • a main chamber M is formed in the cylinder 11 by the top of the piston P.
  • the main chamber system 40 includes a fuel supply pipe 41, a gas injector 42, a main chamber fuel gas temperature sensor 56 that detects the main chamber fuel gas temperature Tm, and a main chamber fuel gas pressure sensor that detects the main chamber fuel gas pressure Pm. 57 and a main chamber fuel gas pressure regulator 58.
  • the sub chamber system 60 includes a fuel supply pipe 61, a check valve 65, a sub chamber fuel gas pressure sensor 54 that detects a sub chamber fuel gas pressure Ps as a sub chamber fuel flow rate, a sub chamber fuel gas pressure regulator 55, Are provided.
  • the sub-chamber fuel flow rate is set to the sub-chamber fuel gas pressure Ps.
  • the present invention is not limited to this.
  • the sub chamber fuel flow rate supplied by the sub chamber fuel gas pressure regulator 55 may be detected by a mass flow meter or an orifice flow meter, and the detected sub chamber fuel flow rate may be used as the sub chamber fuel flow rate of the present invention.
  • the ECU 50 includes an engine speed sensor 51 that detects the engine speed Ne, an engine load sensor 52 that detects the engine load Ac, a lubricant temperature sensor 53 that detects the lubricant temperature Tj, a gas injector 42, a main chamber, A fuel gas temperature sensor 56, a main chamber fuel gas pressure sensor 57, a main chamber fuel gas pressure regulator 58, a sub chamber fuel gas pressure sensor 54, a sub chamber fuel gas pressure regulator 55, a spark plug 75, It is connected to the.
  • the ECU 50 has a function of controlling the sub chamber fuel gas pressure regulator 55 so that the sub chamber fuel gas pressure Ps becomes the target sub chamber fuel gas pressure Pms.
  • a fuel injection amount map is set.
  • the fuel injection amount map represents the correlation between the engine speed Ne, the engine load Ac, and the command fuel injection amount Q as the fuel flow rate, and the command fuel injection amount Q with respect to the engine speed Ne and the engine load Ac. Is to determine.
  • the fuel flow rate is set to the command fuel injection amount Q, but the present invention is not limited to this.
  • the fuel flow rate supplied by the gas injector 42 may be detected by a mass flow meter or an orifice flow meter, and the detected fuel flow rate may be used as the fuel flow rate of the present invention.
  • the ECU 50 has a target air supply manifold pressure map.
  • the target air supply manifold pressure map represents the correlation between the engine speed Ne, the engine load Ac, and the target air supply manifold pressure Pim, and the target air supply manifold pressure Pim with respect to the engine speed Ne and the engine load Ac. Is to determine.
  • the ECU 50 has a target sub chamber fuel gas pressure map.
  • the target sub-chamber fuel gas pressure map represents the correlation between the engine speed Ne, the engine load Ac, and the target sub-chamber fuel gas pressure Psm, and the target sub-chamber fuel with respect to the engine speed Ne and the engine load Ac.
  • the gas pressure Psm is determined.
  • the ECU 50 controls the sub chamber fuel gas pressure regulator 55 to supply the fuel gas to the sub chamber S, and ignites the fuel gas in the sub chamber S.
  • the ECU 50 controls the throttle valve 24 or the bypass throttle 26 to supply air to the main chamber M, and controls the main chamber fuel gas pressure regulator 58 and the gas injector 42 to supply fuel gas to the main chamber M. .
  • the fuel gas ignited in the sub chamber S is released as a flame with a high flow velocity, and the mixed gas is ignited and explodes.
  • FIG. 4 schematically shows an image of fuel injection amount map correction control.
  • the command fuel injection amount Q calculated from the engine speed Ne and the engine load Ac by the fuel injection amount map is set to at least the first correction amount ⁇ Qp, the second correction amount ⁇ Qt, or the third correction amount.
  • the corrected injection amount Q ′ is corrected by ⁇ Qtj.
  • the command fuel injection amount Q is corrected so as to decrease by the first correction amount ⁇ Qp in proportion to the increase in the main chamber fuel gas pressure Pm. That is, the first correction amount ⁇ Qp decreases in proportion to the increase in the main chamber fuel gas pressure Pm.
  • the command fuel injection amount Q is corrected so as to increase by the second correction amount ⁇ Qt in proportion to the increase in the main chamber fuel gas temperature Pt. That is, the second correction amount ⁇ Qt increases in proportion to the increase in the main chamber fuel gas temperature Pt.
  • the command fuel injection amount Q is corrected so as to decrease by the third correction amount ⁇ Qtj in proportion to the increase in the lubricating oil temperature Tj. That is, the third correction amount ⁇ Qtj decreases in proportion to the increase in the lubricating oil temperature Tj.
  • an appropriate fuel gas can be injected according to the state of the main chamber fuel gas or the lubricating oil.
  • the flow of the target supply manifold pressure map correction control S100 will be described with reference to FIG.
  • amendment control S100 is represented with the flowchart.
  • the target air supply manifold pressure map correction control S100 is a control for correcting the target air supply manifold pressure Pim calculated from the engine speed Ne and the engine load Ac based on the target air supply manifold pressure map.
  • step S110 the ECU 50 confirms whether the fuel injection amount is larger than the command fuel injection amount Q calculated from the engine speed Ne and the engine load Ac by using the fuel injection amount map. If a large amount of fuel injection is required, the process proceeds to step S120, otherwise the target supply manifold pressure map correction control S100 is terminated.
  • the case where the fuel injection amount is larger than the command fuel injection amount Q is, for example, that the command fuel injection amount Q does not reach the target engine speed Nem with respect to the engine load Ac or a predetermined engine speed Ne.
  • the command fuel injection amount Q does not reach the target engine speed Nem with respect to the engine load Ac or a predetermined engine speed Ne.
  • a larger fuel injection amount than the command fuel injection amount Q calculated by the fuel injection amount map is required at a predetermined engine load Ac.
  • step S120 the ECU 50 corrects (rewrites) the target air supply manifold pressure map so that the target air supply manifold pressure Pim becomes smaller.
  • the effect of the target air supply manifold pressure map correction control S100 will be described. According to the target supply manifold pressure map correction control S100, it is possible to prevent deterioration of fuel consumption even when fuel gases having different compositions are supplied.
  • the target air supply manifold pressure Pim when fuel gas having a different composition is supplied, the amount of heat generated by the fuel gas having a different composition is low, so that a larger fuel injection amount is required than usual. At this time, by correcting the target air supply manifold pressure Pim to be small, an appropriate excess air ratio can be realized, and deterioration of fuel consumption can be prevented.
  • FIG. 6 schematically illustrates another target air supply manifold map correction control image.
  • the target air supply manifold map correction control is a control for correcting the target air supply manifold pressure Pim calculated from the engine speed Ne and the engine load Ac by the target air supply manifold pressure map by the correction amount ⁇ Ptj.
  • the target air supply manifold pressure Pim is corrected so as to increase by the correction amount ⁇ Ptj in proportion to the decrease in the lubricating oil temperature Tj.
  • the flow of the target sub chamber fuel gas pressure map correction control S200 will be described with reference to FIG.
  • amendment control S200 is represented with the flowchart.
  • the target sub-chamber fuel gas pressure map correction control S200 is a control for correcting the target sub-chamber fuel gas pressure Psm calculated from the engine speed Ne and the engine load Ac based on the target sub-chamber fuel gas pressure map.
  • step S210 the ECU 50 confirms whether the fuel injection amount is larger than the command fuel injection amount Q calculated from the engine speed Ne and the engine load Ac by using the fuel injection amount map. If a large amount of fuel injection is required, the process proceeds to step S220, otherwise the target sub chamber fuel gas pressure map correction control S200 is terminated.
  • the case where the fuel injection amount is larger than the command fuel injection amount Q is, for example, that the command fuel injection amount Q does not reach the target engine speed Nem with respect to the engine load Ac or a predetermined engine speed Ne.
  • the command fuel injection amount Q does not reach the target engine speed Nem with respect to the engine load Ac or a predetermined engine speed Ne.
  • a larger fuel injection amount than the command fuel injection amount Q calculated by the fuel injection amount map is required at a predetermined engine load Ac.
  • step S220 the ECU 50 corrects (rewrites) the target sub chamber fuel gas pressure map so that the target sub chamber fuel gas pressure Psm increases.
  • the effect of the target sub chamber fuel gas pressure map correction control S200 will be described. According to the target sub chamber fuel gas pressure map correction control S200, it is possible to prevent deterioration of fuel consumption even when fuel gases having different compositions are supplied.
  • the amount of heat generated by the fuel gas having a different composition is low, so that a larger fuel injection amount is required than usual.
  • Psm target sub chamber fuel gas pressure
  • the flow of the first throttle opening degree control S300 will be described using FIG. In addition, in FIG. 8, the flow of 1st throttle opening control S300 is represented with the flowchart.
  • the first throttle opening degree control S300 is a control for increasing the throttle opening degree D of the throttle valve 24 when the sub-chamber gas engine 100 is operated from a low load state to a high load state. is there.
  • step S310 the ECU 50 is currently operating the sub-chamber gas engine 100 at a predetermined load Ac1 or less, receives a load application command from the accelerator lever 59, and inputs the load commanded from the accelerator lever 59. Is greater than or equal to a predetermined load application rate rAc1.
  • the load input rate rAc is the ratio of the input load to the engine rating addition.
  • the predetermined load Ac1 and the predetermined load application rate rAc1 are stored in the ECU 50 in advance.
  • step S310 if the above condition is satisfied, the ECU 50 proceeds to step S320. On the other hand, if the above condition is not satisfied, the first throttle opening degree control S300 is terminated.
  • step S320 the ECU 50 causes the throttle valve 24 to increase the throttle opening D by a predetermined opening ⁇ D.
  • the predetermined opening degree ⁇ D is determined by the engine speed Ne and the load application rate rAc, and is stored in the ECU 50 in advance.
  • step S330 the ECU 50 determines whether or not the air supply manifold pressure Pi is equal to or higher than the target air supply manifold pressure Pim. When the supply manifold pressure Pi becomes equal to or higher than the target supply manifold pressure Pim, the process proceeds to step S340.
  • the throttle valve 24 may be increased by a predetermined opening degree ⁇ D, and may be controlled to wait for a predetermined time until the process proceeds to step S340.
  • step S340 the ECU 50 causes the gas injectors 42... 42 to cause the cylinders 11. Actually, when the load is applied and the engine speed Ne decreases, the fuel gas injection amount increases.
  • FIG. 9 The effect
  • action of 1st throttle opening control S300 is represented with the time chart.
  • the load input command is represented by ON or OFF
  • the throttle opening D is represented by a ratio (%) with respect to full opening
  • the fuel gas injection amount q is represented by an injection time (deg).
  • the first throttle opening control S300 will be described in chronological order. First, a load application command is issued from the accelerator lever 59. Next, the throttle opening D is increased by the predetermined opening ⁇ D by the throttle valve 24. Then, the supply manifold pressure Pi reaches the target supply manifold pressure Pim, and then the amount of fuel gas injected into the cylinders 11... 11 is increased by the gas injectors 42.
  • the effect of the first throttle opening control S300 will be described. According to the first throttle opening degree control S300, it is possible to reduce hydrocarbon discharge at a low load and increase the load input limit.
  • the first throttle opening control S300 when a load is applied from a low load to a high load, an increase in the supply air inflow amount by the throttle valve 24 is performed before the fuel gas is increased by the gas injectors 42.
  • the load input limit can be increased. Moreover, it is not necessary to control to increase the supply air inflow amount from the time of low load, and hydrocarbon emission at the time of low load can be reduced.
  • the second throttle opening degree control S400 is a control for reducing the throttle opening degree D of the throttle valve 24 when the sub-chamber gas engine 100 is in a low load operation state from a high load operation state. is there.
  • step S410 for example, it is assumed that the ECU 50 receives a command to reduce the throttle opening D of the throttle valve 24 by reducing the load by the accelerator lever 59.
  • step S420 the ECU 50 causes the throttle valve 24 to gradually decrease the throttle opening D toward the target throttle opening Dm.
  • reducing the throttle opening D in stages means that the throttle opening D is reduced at a speed of 10% / s.
  • the speed of 10% / s is a speed at which the throttle opening D is decreased by an opening of 10% when the full opening is 100% per second.
  • step S430 the ECU 50 confirms whether or not the supply manifold pressure Pi has decreased to a predetermined pressure value Pi1.
  • the predetermined pressure value Pi1 is stored in advance in the ECU 50. ECU50 will complete
  • action of 2nd throttle opening control S400 is represented with the time chart.
  • the engine load Ac is represented by a ratio (%) with respect to the engine rated load
  • the throttle opening D is represented by a ratio (%) with respect to full opening
  • the supply manifold pressure Pi is represented by a pressure value (MPa). .
  • the second throttle opening degree control S400 will be described in chronological order. First, there is a command to reduce the throttle opening degree D of the throttle valve 24, and then the air supply manifold pressure Pi reaches the predetermined pressure value Pi1. 24, the throttle opening D is decreased stepwise.
  • FIG. 12 The effect
  • the operation of the second throttle opening control S400 is represented by a compressor performance curve.
  • the horizontal axis is represented by the passage flow rate (m3 / s) of the compressor 25, and the vertical axis is represented by the compressor compression ratio (the outlet pressure with respect to the inlet pressure of the compressor 25).
  • step S410 since the sub-chamber type gas engine 100 is operating at a high load, the passage flow rate and the compressor compression ratio of the compressor 25 are relatively high and are close to the surging line (the left end side of the graph area).
  • step S420 since the throttle opening D is gradually reduced by the throttle valve 24 toward the target throttle opening Dm, the compressor passage flow rate is gradually reduced (solid arrow in FIG. 12). At this time, the flow rate through the compressor rapidly decreases, reaches the surging line, and surging does not occur (broken arrows in FIG. 12).
  • step S430 and step S440 since the supply manifold pressure Pi has decreased to the predetermined pressure value Pi1, the throttle opening D is immediately decreased to the target throttle opening Dm by the throttle valve 24, so that the compressor passage flow rate is rapidly decreased. (Solid arrow in FIG. 12). However, since it is sufficiently separated from the surging line, it reaches the surging line and surging does not occur (solid arrow in FIG. 12).
  • the present invention can be used for a sub-chamber gas engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 組成の異なる燃料ガスを供給された場合であっても燃料消費の悪化を防止することができる副室式ガスエンジン(100)を提供することを課題とする。エンジン回転数(Ne)及びエンジン負荷(Ac)より決定される燃料流量としての指令燃料噴射量(Q)を設定する燃料噴射量マップと、エンジン回転数(Ne)及びエンジン負荷(Ac)より決定される空気流量としての目標給気マニホールド圧力(Pim)を設定する目標給気マニホールド圧力マップと、が設定されるECU(50)を備える副室式ガスエンジン(100)であって、ECU(50)は、エンジン回転数(Ne)及びエンジン負荷(Ac)より決定される燃料流量としての指令燃料噴射量(Q)と比較して燃料流量としての燃料噴射量が多く必要な場合には、空気流量としての目標給気マニホールド圧力マップの目標給気マニホールド圧力(Pim)が小さくなるように補正する。

Description

副室式ガスエンジン
 本発明は、副室式ガスエンジンの技術に関する。
 ガスエンジンは、空気と燃料ガスとの混合気を燃料として駆動するエンジンとして公知である。また、ガスエンジンの一形式として副室式ガスエンジンも公知である。副室式ガスエンジンは、シリンダヘッドに設けられた副室内に燃料の噴射を行う形式のガスエンジンである(例えば、特許文献1)
 副室式ガスエンジンでは、燃料ガスとして、主に、都市ガス(13A等)が使用される。しかし、海外で使用される副室式ガスエンジンでは、組成の異なる燃料ガスが供給される場合がある。組成の異なる燃料ガスは、都市ガス(13A等)と比較して発熱量が低い。そのため、副室式ガスエンジンでは、組成の異なる燃料ガスが供給されると、燃料消費が悪化することになる。
特開2013-185515号公報
 本発明の解決しようとする課題は、組成の異なる燃料ガスを供給された場合であっても燃料消費の悪化を防止することができる副室式ガスエンジンを提供することである。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 本発明の副室式ガスエンジンにおいては、エンジン回転数及びエンジン負荷より燃料流量及び空気流量を決定する制御手段を備える副室式ガスエンジンであって、前記制御手段は、決定された燃料流量より燃料流量が多く必要な場合には、決定された空気流量が小さくなるように補正するものである。
 本発明の副室式ガスエンジンにおいては、前記制御手段は、エンジン回転数及びエンジン負荷より副室燃料流量を決定し、決定された燃料流量より燃料流量が多く必要な場合には、決定された副室燃料流量が大きくなるように補正するものである。
 本発明の副室式ガスエンジンにおいては、前記制御手段は、エンジン回転数及びエンジン負荷に対して指令燃料噴射量を決定する燃料噴射量マップと、エンジン回転数及びエンジン負荷に対して目標給気マニホールド圧力を決定する目標給気マニホールド圧力マップと、が設定され、エンジン回転数及びエンジン負荷に対して決定される指令燃料噴射量と比較して燃料噴射量が多く必要な場合には、前記目標給気マニホールド圧力マップの目標給気マニホールド圧力が小さくなるように補正するものである。
 本発明の副室式ガスエンジンにおいては、前記制御手段は、エンジン回転数及びエンジン負荷に対して目標副室燃料ガス圧力を決定する目標副室燃料ガス圧力が設定され、エンジン回転数及びエンジン負荷に対して決定される指令燃料噴射量と比較して燃料噴射量が多く必要な場合には、前記目標副室燃料ガス圧力マップの目標副室燃料ガス圧力が大きくなるように補正するものである。
 本発明の副室式ガスエンジンにおいては、前記燃料噴射量マップは、少なくとも、燃料圧力、燃料温度又は潤滑油温度に基づいて指令燃料噴射量を補正するものである。
 本発明の副室式ガスエンジンによれば、組成の異なる燃料ガスを供給された場合であっても燃料消費の悪化を防止することができる。
電気推進船の構成を示す模式図。 副室式ガスエンジンの構成を示した模式図。 同じくシリンダヘッドの構成を示した模式図。 燃料噴射量マップ補正制御のイメージを示す模式図。 目標給気マニホールド圧力マップ補正制御の流れを示すフロー図。 別の目標給気マニホールド圧力マップ補正制御の流れを示す模式図。 目標副室燃料ガス圧力マップ補正制御の流れを示すフロー図。 第一スロットル開度制御の流れを示すフロー図。 同じくタイムチャート図。 第二スロットル開度制御の流れを示すフロー図。 同じくタイムチャート図。 同じくコンプレッサ性能曲線図。
 図1を用いて、電気推進船1000の構成について説明する。
 なお、図1では、電気推進船1000の構成を模式的に表している。
 電気推進船1000は、本実施形態の副室式ガスエンジン100を搭載している。電気推進船1000は、LNGタンク101と、気化器102と、副室式ガスエンジン100と、発電機103と、電力コントロール盤104と、推進モータ105と、減速機106と、可変ピッチプロペラ107と、を備えている。
 電気推進船1000では、LNGタンク101・101に貯溜された燃料ガスが気化器102・102によって空気と混合され、副室式ガスエンジン100・100・100に供給される。そして、副室式ガスエンジン100・100・100によって発電機103・103・103が駆動され、電力コントロール盤104によって、推進モータ105・105及び船内負荷に電力が供給される。推進モータ105・105の駆動は減速機106・106を介して可変ピッチプロペラ107・107に伝達される。
 図2を用いて、副室式ガスエンジン100の構成について説明する。
 なお、図2では、副室式ガスエンジン100の構成を模式的に表している。
 副室式ガスエンジン100は、本発明の副室式ガスエンジンに係る実施形態である。副室式ガスエンジン100は、ガスを燃料として駆動するエンジンであって、シリンダヘッド70に設けられた副室Sに燃料の噴射を行う形式のガスエンジンである(図3参照)。
 副室式ガスエンジン100は、エンジン本体10と、給気系統20と、排気系統30と、制御手段としてのECU(Engine Control Unit)50と、を具備している。
 エンジン本体10は、6つの気筒11・・・・11を具備している。気筒11・・・・11は、給気マニホールド21と給気ポート22・・・・22によって連通され、排気マニホールド31と排気ポート32・・・・32によって連通されている。給気ポート22・・・・22には、ガスインジェクタ42・・・・42が設けられている。
 給気系統20は、給気マニホールド21と、インタークーラ23と、スロットル弁24と、コンプレッサ25と、バイパススロットル26と、を具備している。給気系統20では、給気マニホールド21から空気の流れの上流側に向かって、インタークーラ23と、スロットル弁24と、コンプレッサ25と、が順に配置されている。バイパススロットル26は、コンプレッサ25をバイパスするバイパス経路上に設けられている。
 排気系統30は、排気マニホールド31と、タービン33と、を具備している。排気系統30では、排気マニホールド31から空気の流れの下流側に向かって、タービン33が配置されている。
 ECU50は、スロットル弁24と、バイパススロットル26と、ガスインジェクタ42・・・・42と、に接続されている。ECU50は、空気流量としての給気マニホールド圧力Piが目標給気マニホールド圧力Pimとなるように、スロットル弁24又はバイパススロットル26を制御する機能を有している。なお、ECU50は、負荷投入を指令するアクセルレバー59にも接続されている。
 なお、本実施形態では空気流量を給気マニホールド圧力Piとしたが、これに限定されない。例えば、給気マニホールド21に供給される空気流量をマスフローメータ又はオリフィス流量計によって検知し、検知した空気流量を本発明の空気量としても良い。
 図3を用いて、シリンダヘッド70の構成について説明する。
 なお、図3では、シリンダヘッド70の構成を模式的に表している。
 シリンダヘッド70は、シリンダブロック80の上部に配置され、主室系統40と、副室系統60と、を具備している。
 シリンダヘッド70には、副室Sが形成され、給気バルブ71と、排気バルブ72と、が設けられている。副室Sの上方には、スパークプラグ75と、副室系統60と、が設けられている。
 シリンダブロック80には、気筒11が形成され、ピストンPが摺動可能に収納されている。気筒11には、ピストンPの頂部によって、主室Mが形成されている。
 主室系統40は、燃料供給管41と、ガスインジェクタ42と、主室燃料ガス温度Tmを検知する主室燃料ガス温度センサ56と、主室燃料ガス圧力Pmを検知する主室燃料ガス圧力センサ57と、主室燃料ガス圧力調整器58と、を具備している。
 副室系統60は、燃料供給管61と、チェックバルブ65と、副室燃料流量としての副室燃料ガス圧力Psを検知する副室燃料ガス圧力センサ54と、副室燃料ガス圧力調整器55と、を具備している。
 なお、本実施形態では副室燃料流量を副室燃料ガス圧力Psとしたが、これに限定されない。例えば、副室燃料ガス圧力調整器55によって供給される副室燃料流量をマスフローメータ又はオリフィス流量計によって検知し、検知した副室燃料流量を本発明の副室燃料流量としても良い。
 ECU50は、エンジン回転数Neを検知するエンジン回転数センサ51と、エンジン負荷Acを検知するエンジン負荷センサ52と、潤滑油温度Tjを検知する潤滑油温度センサ53と、ガスインジェクタ42と、主室燃料ガス温度センサ56と、主室燃料ガス圧力センサ57と、主室燃料ガス圧力調整器58と、副室燃料ガス圧力センサ54と、副室燃料ガス圧力調整器55と、スパークプラグ75と、に接続されている。
 ECU50は、副室燃料ガス圧力Psが目標副室燃料ガス圧力Pmsとなるように、副室燃料ガス圧力調整器55を制御する機能を有している。
 ECU50には、燃料噴射量マップが設定されている。燃料噴射量マップは、エンジン回転数Neとエンジン負荷Acと燃料流量としての指令燃料噴射量Qとの相関を表すものであって、エンジン回転数Ne及びエンジン負荷Acに対して指令燃料噴射量Qを決定するものである。
 なお、本実施形態では燃料流量を指令燃料噴射量Qとしたが、これに限定されない。例えば、ガスインジェクタ42によって供給される燃料流量をマスフローメータ又はオリフィス流量計によって検知し、検知した燃料流量を本発明の燃料流量としても良い。
 ECU50には、目標給気マニホールド圧力マップが設定されている。目標給気マニホールド圧力マップは、エンジン回転数Neとエンジン負荷Acと目標給気マニホールド圧力Pimとの相関を表すものであって、エンジン回転数Ne及びエンジン負荷Acに対して目標給気マニホールド圧力Pimを決定するものである。
 ECU50には、目標副室燃料ガス圧力マップが設定されている。目標副室燃料ガス圧力マップは、エンジン回転数Neとエンジン負荷Acと目標副室燃料ガス圧力Psmとの相関を表すものであって、エンジン回転数Ne及びエンジン負荷Acに対して目標副室燃料ガス圧力Psmを決定するものである。
 このような構成とすることで、ECU50は、副室燃料ガス圧力調整器55を制御して副室Sに燃料ガスを供給し、副室S内で燃料ガスを着火させる。一方、ECU50は、スロットル弁24又はバイパススロットル26を制御して主室Mに空気を供給し、主室燃料ガス圧力調整器58及びガスインジェクタ42を制御して主室Mに燃料ガスを供給する。主室Mでは、副室Sで着火した燃料ガスが高い流速の火炎となって放出され、混合ガスが発火され爆発する。
 図4を用いて、燃料噴射量マップ補正制御について説明する。
 なお、図4では、燃料噴射量マップ補正制御のイメージを模式的に表している。
 燃料噴射量マップ補正制御は、燃料噴射量マップによってエンジン回転数Neとエンジン負荷Acとから算出される指令燃料噴射量Qを、少なくとも第一補正量ΔQp、第二補正量ΔQt又は第三補正量ΔQtjによって補正して補正噴射量Q´とする制御である。
 副室式ガスエンジン100では、主室燃料ガス圧力Pmが上昇すると、燃料ガスの密度が上昇し、所定エンジン回転数Neで同じエンジン負荷Acに対応するための必要な燃料噴射量が減少する。そのため、指令燃料噴射量Qは、主室燃料ガス圧力Pmの上昇に比例して、第一補正量ΔQpによって減少するように補正される。つまり、第一補正量ΔQpは、主室燃料ガス圧力Pmの上昇に比例して減少するものである。
 副室式ガスエンジン100では、主室燃料ガス温度Tmが上昇すると、燃料ガスの密度が低下し、所定エンジン回転数Neで同じエンジン負荷Acに対応するための必要な燃料噴射量が増加する。そのため、指令燃料噴射量Qは、主室燃料ガス温度Ptの上昇に比例して、第二補正量ΔQtによって増加するように補正される。つまり、第二補正量ΔQtは、主室燃料ガス温度Ptの上昇に比例して増加するものである。
 副室式ガスエンジン100では、潤滑油温度Tjが上昇すると、潤滑油の粘度が低下して、所定エンジン回転数Neで同じエンジン負荷Acに対応するための必要な燃料噴射量が減少する。そのため、指令燃料噴射量Qは、潤滑油温度Tjの上昇に比例して、第三補正量ΔQtjによって減少するように補正される。つまり、第三補正量ΔQtjは、潤滑油温度Tjの上昇に比例して減少するものである。
 燃料噴射量マップ補正制御の効果について説明する。
 燃料噴射量マップ補正制御によれば、主室燃料ガス又は潤滑油の状態に応じた適正な燃料ガスを噴射できる。
 図5を用いて、目標給気マニホールド圧力マップ補正制御S100の流れについて説明する。
 なお、図5では、目標給気マニホールド圧力マップ補正制御S100の流れをフローチャートによって表している。
 目標給気マニホールド圧力マップ補正制御S100は、目標給気マニホールド圧力マップによってエンジン回転数Neとエンジン負荷Acとから算出される目標給気マニホールド圧力Pimを補正する制御である。
 ステップS110において、ECU50は、燃料噴射量マップによってエンジン回転数Neとエンジン負荷Acとから算出される指令燃料噴射量Qに対して、燃料噴射量が多く必要かどうかを確認する。燃料噴射量が多く必要な場合は、ステップS120に移行し、それ以外では目標給気マニホールド圧力マップ補正制御S100を終了する。
 指令燃料噴射量Qに対して燃料噴射量が多く必要な場合とは、例えば、指令燃料噴射量Qではエンジン負荷Acに対して目標エンジン回転数Nemに到達しない、或いは、所定のエンジン回転数Neと所定のエンジン負荷Acにおいて、燃料噴射量マップによって算出される指令燃料噴射量Qよりも多くの燃料噴射量が必要とされる等の場合が考えられる。
 ステップS120において、ECU50は、目標給気マニホールド圧力マップを目標給気マニホールド圧力Pimが小さくなるように補正する(書き換える)。
 目標給気マニホールド圧力マップ補正制御S100の効果について説明する。
 目標給気マニホールド圧力マップ補正制御S100によれば、組成の異なる燃料ガスを供給された場合であっても燃料消費の悪化を防止することができる。
 すなわち、副室式ガスエンジン100では、組成の異なる燃料ガスが供給されると、組成の異なる燃料ガスの発熱量が低いため、通常よりも燃料噴射量が多く必要となる。このとき、目標給気マニホールド圧力Pimが小さくなるように補正することによって、適正な空気過剰率を実現し、燃料消費の悪化を防止することができる。
 図6を用いて、別の目標給気マニホールドマップ補正制御について説明する。
 なお、図6では、別の目標給気マニホールドマップ補正制御のイメージを模式的に表している。
 目標給気マニホールドマップ補正制御は、目標給気マニホールド圧力マップによってエンジン回転数Neとエンジン負荷Acとから算出される目標給気マニホールド圧力Pimを補正量ΔPtjによって補正する制御である。
 副室式ガスエンジン100では、冷態(潤滑油温度Tjが低下している状態)では、空気過剰率がリッチ側にシフトするため、燃焼が不安定となって、調速制御ができなくなってエンジンストールに至るおそれがある。そのため、目標給気マニホールド圧力Pimは、潤滑油温度Tjの下降に比例して、補正量ΔPtjによって増加するように補正される。
 目標給気マニホールドマップ補正制御の効果について説明する。
 目標給気マニホールドマップ補正制御によれば、冷態時であっても適正な空気過剰率を維持できる。
 図7を用いて、目標副室燃料ガス圧力マップ補正制御S200の流れについて説明する。
 なお、図7では、目標副室燃料ガス圧力マップ補正制御S200の流れをフローチャートによって表している。
 目標副室燃料ガス圧力マップ補正制御S200は、目標副室燃料ガス圧力マップによってエンジン回転数Neとエンジン負荷Acとから算出される目標副室燃料ガス圧力Psmを補正する制御である。
 ステップS210において、ECU50は、燃料噴射量マップによってエンジン回転数Neとエンジン負荷Acとから算出される指令燃料噴射量Qに対して、燃料噴射量が多く必要かどうかを確認する。燃料噴射量が多く必要な場合は、ステップS220に移行し、それ以外では目標副室燃料ガス圧力マップ補正制御S200を終了する。
 指令燃料噴射量Qに対して燃料噴射量が多く必要な場合とは、例えば、指令燃料噴射量Qではエンジン負荷Acに対して目標エンジン回転数Nemに到達しない、或いは、所定のエンジン回転数Neと所定のエンジン負荷Acにおいて、燃料噴射量マップによって算出される指令燃料噴射量Qよりも多くの燃料噴射量が必要とされる等の場合が考えられる。
 ステップS220において、ECU50は、目標副室燃料ガス圧力マップを目標副室燃料ガス圧力Psmが大きくなるように補正する(書き換える)。
 目標副室燃料ガス圧力マップ補正制御S200の効果について説明する。
 目標副室燃料ガス圧力マップ補正制御S200によれば、組成の異なる燃料ガスを供給された場合であっても燃料消費の悪化を防止することができる。
 すなわち、副室式ガスエンジン100では、組成の異なる燃料ガスが供給されると、組成の異なる燃料ガスの発熱量が低いため、通常よりも燃料噴射量が多く必要となる。このとき、目標副室燃料ガス圧力Psmが大きくなるように補正することによって、適正な空燃比を実現し、燃料消費の悪化を防止することができる。
 図8を用いて、第一スロットル開度制御S300の流れについて説明する。
 なお、図8では、第一スロットル開度制御S300の流れをフローチャートによって表している。
 第一スロットル開度制御S300は、副室式ガスエンジン100が低負荷で運転している状態から高負荷に運転する状態になった場合において、スロットル弁24のスロットル開度Dを増加させる制御である。
 ステップS310において、ECU50は、現在、副室式ガスエンジン100が所定負荷Ac1以下で運転しており、かつ、アクセルレバー59より負荷投入指令を受信し、かつ、アクセルレバー59より指令された負荷投入が所定負荷投入率rAc1以上であるかを確認する。なお、負荷投入率rAcとは、エンジン定格付加に対する投入された負荷の割合である。また、所定負荷Ac1及び所定負荷投入率rAc1は、予めECU50に記憶されている。
 ステップS310において、ECU50は、上記条件が成立すれば、ステップS320に移行する。一方、上記条件が成立しなければ、第一スロットル開度制御S300を終了する。
 ステップS320において、ECU50は、スロットル弁24によってスロットル開度Dを所定開度ΔDだけ増加させる。なお、所定開度ΔDは、エンジン回転数Neと、負荷投入率rAcとによって決定されるものであって、予めECU50に記憶されている。
 ステップS330において、ECU50は、給気マニホールド圧力Piが目標給気マニホールド圧力Pim以上となったかどうか判断する。給気マニホールド圧力Piが目標給気マニホールド圧力Pim以上となった場合には、ステップS340に移行する。
 なお、ステップS330の制御の代わりに、スロットル弁24を所定開度ΔDだけ増加させて、ステップS340に移行するまで所定時間だけ待機させる制御であっても良い。
 ステップS340において、ECU50は、ガスインジェクタ42・・・・42によって気筒11・・・・11に燃料ガスの噴射量をさせる。実際には、負荷が投入されて、エンジン回転数Neが低下することにより燃料ガスの噴射量が増加する。
 図9を用いて、第一スロットル開度制御S300の作用について説明する。
 なお、図9では、第一スロットル開度制御S300の作用をタイムチャートによって表している。また、図9では、負荷投入指令をON又はOFFによって表し、スロットル開度Dを全開に対する割合(%)によって表し、燃料ガス噴射量qを噴射時間(deg)によって表している。
 第一スロットル開度制御S300を時系列に沿って説明すると、まず、アクセルレバー59より負荷投入指令があり、次に、スロットル弁24によってスロットル開度Dが所定開度ΔDだけ増加され、次に、給気マニホールド圧力Piが目標給気マニホールド圧力Pimに到達し、次に、ガスインジェクタ42・・・・42によって気筒11・・・・11に燃料ガスの噴射量が増加される。
 第一スロットル開度制御S300の効果について説明する。
 第一スロットル開度制御S300によれば、低負荷時の炭化水素の排出を低減させ、かつ、負荷投入限界を増加することができる。
 従来、ガスエンジンでは、低負荷から高負荷に負荷投入された場合には、ガスインジェクタによる燃料ガスの増加に対して、スロットル弁による給気流入量の増加が追い付かず、リッチ状態となり、失火のおそれがあった。そのため、負荷投入限界(エンジン定格付加に対する投入できる負荷の割合)を低く設定されていた。
 一方、負荷投入限界を高く設定するために、低負荷時から給気流入量を多くするように制御した場合には、リーン状態となって、炭化水素の排出量が多くなっていた。
 第一スロットル開度制御S300では、低負荷から高負荷に負荷投入された場合には、ガスインジェクタ42・・・・42による燃料ガスの増加の前に、スロットル弁24による給気流入量の増加を行い、負荷投入限界を増加することができる。また、低負荷時から給気流入量を多くするように制御する必要もなく、低負荷時の炭化水素の排出を低減させることができる。
 図10を用いて、第二スロットル開度制御S400の流れについて説明する。
 なお、図10では、第二スロットル開度制御S400の流れをフローチャートによって表している。
 第二スロットル開度制御S400は、副室式ガスエンジン100が高負荷で運転している状態から低負荷に運転する状態になった場合において、スロットル弁24のスロットル開度Dを減少させる制御である。
 ステップS410において、ECU50は、例えば、アクセルレバー59によって負荷が軽減され、スロットル弁24のスロットル開度Dを減少させる指令を受信したものとする。
 ステップS420において、ECU50は、スロットル弁24によってスロットル開度Dを目標スロットル開度Dmに向けて段階的に減少させる。ここで、スロットル開度Dを段階的に減少させるとは、スロットル開度Dを10%/sの速度でスロットル開度Dを減少させるものとする。なお、10%/sの速度とは、1秒間に全開を100%としたとき10%の開度だけスロットル開度Dを減少させる速さとする。
 ステップS430において、ECU50は、給気マニホールド圧力Piが所定圧力値Pi1まで低下したかどうかを確認する。なお、所定圧力値Pi1は、予めECU50に記憶されている。ECU50は、上記条件が成立すれば、第二スロットル開度制御S400を終了する。一方、上記条件が成立しなければ、再度ステップS420に移行する。
 図11を用いて、第二スロットル開度制御S400の作用について説明する。
 なお、図11では、第二スロットル開度制御S400の作用をタイムチャートによって表している。また、図11では、エンジン負荷Acをエンジン定格負荷に対する割合(%)によって表し、スロットル開度Dを全開に対する割合(%)によって表し、給気マニホールド圧力Piを圧力値(MPa)によって表している。
 第二スロットル開度制御S400を時系列に沿って説明すると、まず、スロットル弁24のスロットル開度Dを減少させる指令があり、次に、給気マニホールド圧力Piが所定圧力値Pi1まで、スロットル弁24によってスロットル開度Dが段階的に減少される。
 図12を用いて、第二スロットル開度制御S400の作用について説明する。
 なお、図12では、第二スロットル開度制御S400の作用をコンプレッサ性能曲線によって表している。また、図12では、横軸をコンプレッサ25の通過流量(m3/s)によって表し、縦軸をコンプレッサ圧縮比(コンプレッサ25の入口圧力に対する出口圧力)によって表している。
 ステップS410では、副室式ガスエンジン100が高負荷で運転しているため、コンプレッサ25の通過流量及びコンプレッサ圧縮比は比較的高く、サージングライン(グラフ領域の左端側)に近い位置にある。
 ステップS420では、スロットル弁24によってスロットル開度Dが目標スロットル開度Dmに向けて段階的に減少するため、コンプレッサ通過流量が段階的に減少する(図12中の実線矢印)。このとき、コンプレッサ通過流量が急激に減少し、サージングラインに到達し、サージングが発生することはない(図12中の破線矢印)。
 ステップS430及びステップS440では、給気マニホールド圧力Piが所定圧力値Pi1まで低下したので、スロットル弁24によってスロットル開度Dが目標スロットル開度Dmまで直ちに減少するため、コンプレッサ通過流量が急激に減少する(図12中の実線矢印)。しかし、サージングラインからは十分に離間しているため、サージングラインに到達し、サージングが発生することはない(図12中の実線矢印)。
 第二スロットル開度制御S400の効果について説明する。
 第二スロットル開度制御S400によれば、コンプレッサ25のサージングを防止することができる。
 サージングは、エンジン負荷が高負荷から急に低負荷になり、スロットル弁24のスロットル開度Dが急激に減少され、コンプレッサ25の通過流量が急激に減少したときに発生しやすい。そのため、第二スロットル開度制御S400では、スロットル弁24によってスロットル開度Dを目標スロットル開度Dmに向けて段階的に減少させることによって、コンプレッサ25のサージングを防止することができる。
 本発明は、副室式ガスエンジンに利用可能である。
 11   気筒
 21   給気マニホールド
 42   ガスインジェクタ
 50   ECU
 51   エンジン回転数センサ
 52   エンジン負荷センサ
 53   潤滑油温度センサ
 54   副室燃料ガス圧力センサ
 55   副室燃料ガス圧力調整器
 56   主室燃料ガス温度センサ
 57   主室燃料ガス圧力センサ
 58   主室燃料ガス圧力調整器
 100  副室式ガスエンジン
 Ne   エンジン回転数
 Ac   エンジン負荷
 Tj   潤滑油温度
 Pi   給気マニホールド圧力
 Pim  目標給気マニホールド圧力
 Ps   副室燃料ガス圧力
 Psm  目標副室燃料ガス圧力

Claims (5)

  1.  エンジン回転数及びエンジン負荷より燃料流量及び空気流量を決定する制御手段を備える副室式ガスエンジンであって、
     前記制御手段は、
     決定された燃料流量より燃料流量が多く必要な場合には、決定された空気流量が小さくなるように補正する、
     副室式ガスエンジン。
  2.  請求項1記載の副室式ガスエンジンであって、
     前記制御手段は、
     エンジン回転数及びエンジン負荷より副室燃料流量を決定し、決定された燃料流量より燃料流量が多く必要な場合には、決定された副室燃料流量が大きくなるように補正する、
     副室式ガスエンジン。
  3.  請求項1記載の副室式ガスエンジンであって、
     前記制御手段は、
     エンジン回転数及びエンジン負荷に対して指令燃料噴射量を決定する燃料噴射量マップと、エンジン回転数及びエンジン負荷に対して目標給気マニホールド圧力を決定する目標給気マニホールド圧力マップと、が設定され、
     エンジン回転数及びエンジン負荷に対して決定される指令燃料噴射量と比較して燃料噴射量が多く必要な場合には、前記目標給気マニホールド圧力マップの目標給気マニホールド圧力が小さくなるように補正する、
     副室式ガスエンジン。
  4.  請求項3記載の副室式ガスエンジンであって、
     前記制御手段は、
     エンジン回転数及びエンジン負荷に対して目標副室燃料ガス圧力を決定する目標副室燃料ガス圧力が設定され、エンジン回転数及びエンジン負荷に対して決定される指令燃料噴射量と比較して燃料噴射量が多く必要な場合には、前記目標副室燃料ガス圧力マップの目標副室燃料ガス圧力が大きくなるように補正する、
     副室式ガスエンジン。
  5.  請求項3又は4に記載の副室式ガスエンジンであって、
     前記燃料噴射量マップは、少なくとも、燃料圧力、燃料温度又は潤滑油温度に基づいて指令燃料噴射量を補正する、
     副室式ガスエンジン。
PCT/JP2014/078470 2013-10-28 2014-10-27 副室式ガスエンジン WO2015064527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/032,842 US20160252030A1 (en) 2013-10-28 2014-10-27 Auxiliary-chamber-type gas engine
CN201480059520.8A CN105683534B (zh) 2013-10-28 2014-10-27 副室式燃气发动机
EP14858310.7A EP3064747B1 (en) 2013-10-28 2014-10-27 Auxiliary-chamber-type gas engine
KR1020167013419A KR101829042B1 (ko) 2013-10-28 2014-10-27 부실식 가스 엔진

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-223756 2013-10-28
JP2013-223755 2013-10-28
JP2013223754A JP6148600B2 (ja) 2013-10-28 2013-10-28 ガスエンジン
JP2013-223754 2013-10-28
JP2013223755A JP6148601B2 (ja) 2013-10-28 2013-10-28 副室式ガスエンジン
JP2013223756A JP6148602B2 (ja) 2013-10-28 2013-10-28 ガスエンジン

Publications (1)

Publication Number Publication Date
WO2015064527A1 true WO2015064527A1 (ja) 2015-05-07

Family

ID=53004130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078470 WO2015064527A1 (ja) 2013-10-28 2014-10-27 副室式ガスエンジン

Country Status (5)

Country Link
US (1) US20160252030A1 (ja)
EP (1) EP3064747B1 (ja)
KR (1) KR101829042B1 (ja)
CN (1) CN105683534B (ja)
WO (1) WO2015064527A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10953960B1 (en) * 2018-01-22 2021-03-23 Robert John Sharp Self-propelled emissions control servicing watercraft
US12071205B2 (en) * 2018-01-22 2024-08-27 Robert John Sharp Emissions control watercraft
CN109878685A (zh) * 2019-02-28 2019-06-14 哈尔滨工程大学 一种带lng冷却的气电混联式船舶混合动力系统
DE102019208930A1 (de) * 2019-06-19 2020-12-24 Hitachi Automotive Systems, Ltd. Vorrichtung und verfahren zum steuern einer temperatur einer in einer zündvorrichtung einer brennkraftmaschine enthaltenen vorkammer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161176A (ja) * 2001-11-27 2003-06-06 Nissan Diesel Motor Co Ltd 希薄燃焼式ガスエンジンの燃料供給装置およびその制御方法
JP2008215130A (ja) * 2007-03-01 2008-09-18 Nikki Co Ltd ガスエンジンのインジェクタ制御装置
JP2009057870A (ja) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd ガスエンジンの統合制御方法及び装置
JP2009057873A (ja) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd ガスエンジンの統合制御方法及び装置
JP2009057872A (ja) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd ガスエンジンの統合制御方法及び装置
JP2013185515A (ja) 2012-03-08 2013-09-19 Yanmar Co Ltd 副室式ガスエンジン

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527856A1 (de) * 1984-08-03 1986-02-27 Nissan Motor Co., Ltd., Yokohama, Kanagawa Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
US4864989A (en) * 1988-06-30 1989-09-12 Tice Technologies Corp. Pre-combustion chamber spark plug and method of igniting lean fuel
US5353765B1 (en) * 1993-05-10 1997-03-18 Hitachi America Ltd Fuel management system for a gaseous fuel internal combustion engine
DE69430596T2 (de) * 1993-12-28 2002-11-14 Hitachi Ltd Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US5558064A (en) * 1995-10-19 1996-09-24 General Motors Corporation Adaptive engine control
JP3871375B2 (ja) * 1996-06-19 2007-01-24 株式会社日本自動車部品総合研究所 内燃機関の燃料噴射装置
US6304815B1 (en) * 2000-03-29 2001-10-16 Ford Global Technologies, Inc. Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems
US6415762B1 (en) * 2000-07-13 2002-07-09 Caterpillar Inc. Accurate deliver of total fuel when two injection events are closely coupled
US6705278B2 (en) * 2001-06-26 2004-03-16 Caterpillar Inc Fuel injector with main shot and variable anchor delay
EP1327764B1 (en) * 2002-01-15 2006-03-22 Denso Corporation Fuel injection system
US20040000275A1 (en) * 2002-05-01 2004-01-01 Mcintyre Michael Gene Multi map fuel detection fuel injection
US6868839B2 (en) * 2003-04-10 2005-03-22 Alex Chu Vaporized fuel injection system and method
JP4196733B2 (ja) * 2003-05-27 2008-12-17 トヨタ自動車株式会社 筒内直噴cngエンジンの燃料噴射時期制御方法
JP4120495B2 (ja) * 2003-06-26 2008-07-16 三菱自動車工業株式会社 アイドル運転時空気量制御装置及びアイドル運転時空気量制御方法
AU2005207858B2 (en) * 2004-01-17 2008-03-20 Optimum Power Technology L.P. Engine starting method
JP2005248748A (ja) * 2004-03-02 2005-09-15 Isuzu Motors Ltd ディーゼルエンジン
JP4696863B2 (ja) * 2005-11-15 2011-06-08 株式会社デンソー 燃料噴射制御装置
JP2007218223A (ja) * 2006-02-20 2007-08-30 Mitsubishi Heavy Ind Ltd モータ駆動過給機付きガスエンジン
CA2538984C (en) * 2006-03-10 2007-11-06 Westport Research Inc. Method of accurately metering a gaseous fuel that is injected directly into a combustion chamber of an internal combustion engine
JP4823948B2 (ja) * 2007-03-23 2011-11-24 富士重工業株式会社 エンジンの制御装置
CN101285426B (zh) * 2007-04-09 2010-10-06 山东申普汽车控制技术有限公司 组合脉谱对发动机怠速控制的方法
GB2452909B (en) * 2007-09-18 2012-02-22 T Baden Hardstaff Ltd Dual fuel engine control unit
DE102009033082B3 (de) * 2009-07-03 2011-01-13 Mtu Friedrichshafen Gmbh Verfahren zur Regelung eines Gasmotors
US8306722B2 (en) * 2010-02-05 2012-11-06 GM Global Technology Operations LLC Power-based engine speed control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161176A (ja) * 2001-11-27 2003-06-06 Nissan Diesel Motor Co Ltd 希薄燃焼式ガスエンジンの燃料供給装置およびその制御方法
JP2008215130A (ja) * 2007-03-01 2008-09-18 Nikki Co Ltd ガスエンジンのインジェクタ制御装置
JP2009057870A (ja) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd ガスエンジンの統合制御方法及び装置
JP2009057873A (ja) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd ガスエンジンの統合制御方法及び装置
JP2009057872A (ja) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd ガスエンジンの統合制御方法及び装置
JP2013185515A (ja) 2012-03-08 2013-09-19 Yanmar Co Ltd 副室式ガスエンジン

Also Published As

Publication number Publication date
KR20160070155A (ko) 2016-06-17
CN105683534B (zh) 2019-05-10
EP3064747A4 (en) 2017-07-12
KR101829042B1 (ko) 2018-02-13
EP3064747A1 (en) 2016-09-07
EP3064747B1 (en) 2020-01-01
CN105683534A (zh) 2016-06-15
US20160252030A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
RU2685783C2 (ru) Управление вспрыском топлива
JP4450083B2 (ja) セタン価推定方法
JP5338997B2 (ja) 多種燃料内燃機関及びその制御方法
CN100513774C (zh) 内燃机的点火时间控制装置
US20160053729A1 (en) Dual fuel systems and methods with advanced exhaust gas recirculation
WO2015064527A1 (ja) 副室式ガスエンジン
WO2014156209A1 (ja) 内燃機関の制御装置
EP1631739A1 (en) Method and apparatus for controlling transition between operating modes in a multimode engine
JP5557094B2 (ja) 内燃機関の燃料供給装置
US20130046453A1 (en) System and method for controlling multiple fuel systems
US6581565B2 (en) Engine torque controller
WO2019017928A1 (en) TECHNIQUES FOR TRANSIENT ESTIMATION AND COMPENSATION OF CONTROL PARAMETERS FOR DEDICATED EGR ENGINES
JP2011140882A (ja) 圧縮着火式多種燃料エンジン
CN111379631A (zh) 用于运行具有燃烧马达的马达系统的方法和装置
EP2700803A1 (en) Control device and method for internal combustion engine
JP6148602B2 (ja) ガスエンジン
JP6148601B2 (ja) 副室式ガスエンジン
JP4968206B2 (ja) 内燃機関及び内燃機関の燃料噴射制御装置
CN105121819A (zh) 用于自动点火内燃机的发动机控制单元及操作自动点火内燃机的方法
JP2015129491A (ja) 内燃機関の燃料供給制御装置
JP6148600B2 (ja) ガスエンジン
JP4858647B2 (ja) 内燃機関の燃料噴射圧力制御装置
JP4821248B2 (ja) 圧縮着火内燃機関の燃焼切替制御システム
JP2008121494A (ja) 内燃機関の制御装置
JP2008291662A (ja) 内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15032842

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014858310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014858310

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167013419

Country of ref document: KR

Kind code of ref document: A