WO2015064179A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2015064179A1
WO2015064179A1 PCT/JP2014/071399 JP2014071399W WO2015064179A1 WO 2015064179 A1 WO2015064179 A1 WO 2015064179A1 JP 2014071399 W JP2014071399 W JP 2014071399W WO 2015064179 A1 WO2015064179 A1 WO 2015064179A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
potential
negative electrode
capacity
secondary battery
Prior art date
Application number
PCT/JP2014/071399
Other languages
English (en)
French (fr)
Inventor
元章 奥田
厚志 南形
貴之 弘瀬
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to KR1020167014018A priority Critical patent/KR101871231B1/ko
Priority to DE112014005003.2T priority patent/DE112014005003T5/de
Priority to CN201480058682.XA priority patent/CN105684206A/zh
Priority to US15/030,241 priority patent/US20160254520A1/en
Publication of WO2015064179A1 publication Critical patent/WO2015064179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery provided with a current interrupt device.
  • the negative electrode In the overcharged state, the higher the positive electrode potential, the more lithium ions are generated by the reaction at the positive electrode. If the capacity of the negative electrode is sufficient, the negative electrode can accept and react with all lithium ions generated at the positive electrode. However, when the capacity of the negative electrode is insufficient with respect to lithium ions generated at the positive electrode, lithium metal is deposited on the surface of the negative electrode. When lithium metal is deposited, the thermal stability of the lithium ion secondary battery is lowered. Even if the current interrupting device is activated to interrupt the charging current and forcibly terminate the reaction at the positive electrode, the capacity of the negative electrode is insufficient with respect to the lithium ions generated at the positive electrode so far. Lithium metal is deposited on the negative electrode.
  • a lithium ion secondary battery includes a case, an electrolytic solution accommodated in the case, an electrode assembly accommodated in the case and having a positive electrode and a negative electrode, and provided in the case.
  • a current interrupting device that interrupts the current supplied to the positive electrode or the negative electrode in accordance with the internal pressure.
  • This lithium ion secondary battery electrolyte contains an additive.
  • the decomposition potential of the additive is a potential between the potential of the fully charged positive electrode of the lithium ion secondary battery and the decomposition potential of the solvent of the electrolytic solution.
  • the negative electrode can intercalate 100% or more of lithium ions deintercalated from the positive electrode when the potential of the positive electrode is overcharged from the fully charged state to the decomposition potential of the additive.
  • the capacity ratio between the capacity of the positive electrode and the capacity of the negative electrode is a capacity ratio at which 100% or more of lithium ions generated at the positive electrode can be received by the negative electrode before being overcharged to the decomposition potential of the additive. Note that both the capacity of the positive electrode and the capacity of the negative electrode in the capacity ratio can be capacities at the time of initial charge.
  • an electrode assembly and an electrolytic solution are accommodated in a case, and a current interruption device is provided in the case.
  • the electrolytic solution contains an additive that undergoes a decomposition reaction at a predetermined potential.
  • the decomposition potential of this additive is a potential between the fully charged state potential and the decomposition potential of the electrolyte solvent. Therefore, when the potential of the positive electrode during charging is higher than the fully charged potential (overcharged state), when the potential becomes the decomposition potential of the additive (potential lower than the decomposition potential of the solvent of the electrolyte), the additive Decomposes and generates gas. Due to the generated gas, the pressure in the case is increased, the current interrupt device is activated, and the charging current is interrupted.
  • the potential of the electrolyte solution decomposition reaction does not increase, and the decomposition reaction (exothermic reaction) of the electrolyte solution solvent can be prevented.
  • the positive electrode reacts to generate lithium ions (deintercalation) until it is overcharged to the decomposition potential of the additive.
  • the negative electrode of the lithium ion secondary battery has a sufficient capacity to accept all lithium ions generated at the positive electrode due to overcharging. Therefore, the capacity of the negative electrode does not become insufficient with respect to the amount of lithium ions generated at the positive electrode, and all of the lithium ions can be received (intercalated) at the negative electrode, and lithium metal does not deposit on the negative electrode. Thereby, this lithium ion secondary battery can prevent lithium precipitation in an overcharged state. As a result, the thermal stability is not lowered by lithium deposition, and the safety of the lithium ion secondary battery is improved.
  • the negative electrode may be increased by raising the potential of the positive electrode from a fully charged state to a predetermined potential between the decomposition potential of the additive and the decomposition potential of the solvent in the electrolytic solution. It has a capacity capable of intercalating 100% or more of lithium ions deintercalated from the positive electrode when charged.
  • the additive normally decomposes when the potential of the positive electrode reaches the decomposition potential of the additive, and the current interrupting device operates. It does not increase to the decomposition potential. However, even if the potential becomes the decomposition potential of the additive, there is a possibility that the additive does not normally decompose for some reason and the current interrupting device does not operate. In this case, overcharging continues, the potential of the positive electrode increases to the decomposition potential of the solvent of the electrolytic solution, and the solvent decomposes to generate gas. As a result, the pressure in the case increases, the current interrupting device operates, and the charging current is interrupted.
  • the capacity of the negative electrode is set by setting the upper limit of overcharge up to the decomposition potential of the solvent of the electrolytic solution.
  • the negative electrode is lithium that is deintercalated from the positive electrode when the potential of the positive electrode is increased from a fully charged state to the decomposition potential of the solvent in the electrolytic solution and overcharged. It has a capacity capable of intercalating 100% or more of ions.
  • the positive electrode reacts to generate lithium ions until it is overcharged to the decomposition potential of the solvent.
  • the capacity of the negative electrode is not insufficient with respect to the amount of lithium ions generated at the positive electrode, and lithium metal does not deposit on the negative electrode.
  • this lithium ion secondary battery can prevent lithium deposition due to overcharge up to the decomposition potential of the solvent of the electrolyte even when the current interrupting device does not operate at the decomposition potential of the additive. The safety of the secondary battery can be further improved.
  • the negative electrode is a lithium ion that is deintercalated from the positive electrode when the positive electrode is overcharged from a fully charged state to the decomposition potential of the additive. It has a capacity capable of intercalating up to 120%. In one form of the lithium ion secondary battery, the negative electrode is deintercalated from the positive electrode when the positive electrode is overcharged by raising the potential of the positive electrode from a fully charged state to the decomposition potential of the solvent in the electrolyte. It has a capacity capable of intercalating 100 to 120% of lithium ions.
  • lithium ion secondary batteries especially positive and negative electrodes
  • the capacities of the manufactured positive electrode and negative electrode vary with respect to the design values, and the capacity ratio also varies. Therefore, in consideration of this manufacturing variation, the capacity of the negative electrode is such that lithium ions generated at the positive electrode can be received 100% to 120% by the negative electrode.
  • an upper limit can be set for the capacity of the negative electrode relative to the capacity of the positive electrode, and the capacity of the negative electrode does not increase more than necessary. Therefore, this lithium ion secondary battery prevents lithium deposition in an overcharged state, improves safety, and can also suppress a decrease in volume energy density.
  • lithium deposition in an overcharged state can be prevented.
  • the present invention is applied to a lithium ion secondary battery (non-aqueous electrolyte secondary battery power storage device) provided with a current interrupt device.
  • a lithium ion secondary battery non-aqueous electrolyte secondary battery power storage device
  • the current interruption device is operated to forcibly terminate the charge, and the decomposition reaction of the electrolyte solution (exothermic reaction) To prevent. Therefore, in the present embodiment, the upper limit value of the operating voltage of the current interrupting device is set to be equal to or lower than the decomposition potential of the solvent of the electrolytic solution.
  • a predetermined potential between the potential of the fully charged state and the decomposition potential of the solvent of the electrolytic solution is set as the decomposition potential.
  • Additive overcharge compatible additive
  • FIG. 1 is a side sectional view schematically showing a lithium ion secondary battery 1.
  • FIG. 2 is a diagram showing the relationship between the overcharge potential in the lithium ion secondary battery 1 and the internal pressure of the case.
  • the lithium ion secondary battery 1 sets the capacity of the positive electrode, the capacity of the negative electrode, and the capacity ratio so that lithium deposition can be prevented until the current interrupting device operates in an overcharged state.
  • the lithium ion secondary battery 1 has a capacity of a negative electrode that is charged with lithium ions generated at the positive electrode when overcharged from a fully charged state to a decomposition potential of the additive or a decomposition potential of the solvent of the electrolyte.
  • the capacity is acceptable at 100% or more for the negative electrode.
  • the lithium ion secondary battery 1 mainly includes a case 2, an electrolytic solution 3, an electrode assembly 4, and a current interrupt device 5.
  • a case 2 an electrolytic solution 3, an electrode assembly 4, and a current interrupt device 5.
  • the case 2, the electrolyte solution 3, the electrode assembly 4, and the current interrupt device 5 described in detail below are in one form, and other forms may be applied.
  • Case 2 is a case for accommodating the electrolytic solution 3 and the electrode assembly 4.
  • the material, shape, and the like of the case 2 are not particularly limited, and are formed of various known materials such as resins and metals.
  • the electrode assembly 4 is preferably covered with the insulating sheet 4a in the case 2.
  • the case 2 has an open upper end surface, and a current interrupt device 5 is disposed at the upper end portion.
  • Electrolytic solution 3 is an organic electrolytic solution.
  • the electrolytic solution 3 includes an electrolyte, a solvent that dissolves the electrolyte, and an additive that reacts (decomposes) to generate gas when a predetermined potential is in an overcharged state.
  • the electrolytic solution 3 is accommodated in the case 2 and impregnated in the electrode assembly 4.
  • the electrolyte is a lithium salt.
  • the lithium salt include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • the electrolyte shown here is an example, and other known electrolytic solutions may be applied.
  • the solvent is a carbonate solvent.
  • the carbonate solvent include a solvent containing all of ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC).
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • the solvent containing EC, MEC, and DMC has a decomposition potential of 4.6 V, and undergoes a decomposition reaction when overcharged to this decomposition potential. This decomposition reaction is an exothermic reaction and generates heat. Moreover, this decomposition reaction generates gas.
  • the solvent shown here is an example, and other known solvents may be applied. The decomposition potential varies depending on the solvent to be applied.
  • the additive is an additive for preventing the decomposition reaction (exothermic reaction) of the solvent by operating the current interrupt device 5 during overcharge. Therefore, the additive is kept at a predetermined potential between the fully charged potential and the decomposition potential of the solvent of the electrolytic solution 3 (particularly, higher than the fully charged potential and lower than the solvent decomposition potential). It is an additive that generates gas through a decomposition reaction. As described above, in this embodiment, the potential at full charge is 4.1 V, and the decomposition potential of the solvent is 4.6 V. Therefore, the addition that decomposes at a predetermined potential between 4.1 V and 4.6 V is performed. It is an agent.
  • Examples of the additive that satisfies this condition are cyclohexylbenzene (CHB) and biphenyl (BP).
  • CHB cyclohexylbenzene
  • BP biphenyl
  • the additive in this example has a decomposition potential of 4.3 V to 4.5 V, and undergoes a decomposition reaction when overcharged to this decomposition potential. In this decomposition reaction, gas is generated.
  • the additive shown here is an example, and other known additives may be applied as long as the above conditions are satisfied.
  • the electrode assembly 4 includes a positive electrode 10, a negative electrode 20, and a separator 30 that insulates the positive electrode 10 from the negative electrode 20.
  • the electrode assembly 4 is configured by laminating a plurality of sheet-like positive electrodes 10, a plurality of negative electrodes 20, and a plurality of sheet-like (or bag-like) separators 30.
  • the electrode assembly 4 is accommodated in the case 2 and filled with the electrolytic solution 3 in the case 2.
  • the positive electrode 10 includes a metal foil 11 and positive electrode active material layers 12 and 12 formed on both surfaces of the metal foil 11.
  • the positive electrode 10 has a tab 11 a where the positive electrode active material layer 12 is not formed at the end of the metal foil 11.
  • the tab 11 a is electrically connected to the lead 13.
  • the metal foil 11 is, for example, an aluminum foil or an aluminum alloy foil.
  • the positive electrode active material layer 12 includes a positive electrode active material and a binder.
  • the positive electrode active material layer 12 may contain a conductive additive.
  • the positive electrode active material is, for example, a composite oxide, metallic lithium, or sulfur.
  • the composite oxide includes at least one of manganese, nickel, cobalt, and aluminum and lithium.
  • the binder is, for example, a thermoplastic resin such as polyamideimide or polyimide, or a polymer resin having an imide bond in the main chain.
  • the conductive auxiliary agent include carbon black, graphite, acetylene black, and ketjen black (registered trademark).
  • the structure of the substance contained in the metal foil 11 and the positive electrode active material layer 12 shown here is an example, and each of the substances contained in other known metal foils and the positive electrode active material layer may be applied.
  • the negative electrode 20 includes a metal foil 21 and negative electrode active material layers 22 and 22 formed on both surfaces of the metal foil 21.
  • the negative electrode 20 has a tab 21 a where the negative electrode active material layer 22 is not formed at the end of the metal foil 21.
  • the tab 21 a is electrically connected to the lead 23.
  • the metal foil 21 is, for example, a copper foil or a copper alloy foil.
  • the negative electrode active material layer 22 includes a negative electrode active material and a binder.
  • the negative electrode active material layer 22 may contain a conductive additive.
  • Examples of the negative electrode active material include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, and SiOx (0.5 ⁇ x ⁇ 1.5). ) And the like, and boron-added carbon.
  • the binder and the conductive auxiliary the same binder and conductive auxiliary as shown in the positive electrode 10 can be applied.
  • the structure of the material contained in the metal foil 21 and the negative electrode active material layer 22 shown here is merely an example, and other known materials in the metal foil and the negative electrode active material layer may be applied.
  • the capacity ratio between the capacity of the positive electrode 10 and the capacity of the negative electrode 20 included in the electrode assembly 4 will be described in detail later.
  • the capacity of the electrodes 10 and 20 (for example, the unit is A ⁇ hr) is determined by the amount of the active material layers 12 and 22 (particularly the active material) of the electrodes 10 and 20.
  • the active material layers 12, 22 are applied to the metal foils 11, 21 by applying each electrode paste for the electrodes 10, 20 (a material added to the above active material layer, kneaded and stirred) to the metal foils 11, 21. It is formed by letting.
  • the amount of the active material layers 12 and 22 (particularly, the active material) can be adjusted by adjusting the amount of the electrode paste for the electrodes 10 and 20 applied, and the capacity of the electrodes 10 and 20 can be adjusted.
  • capacity ratio (capacity of negative electrode 20) / (capacity of positive electrode 10).
  • the separator 30 separates the positive electrode 10 and the negative electrode 20 and allows lithium ions to pass through while preventing a short circuit of current due to contact between both electrodes.
  • the separator 30 is, for example, a porous film made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, or the like.
  • PE polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • the separator 30 shown here is an example, and other known separators may be applied.
  • the current interrupt device 5 disconnects the electrical connection with the outside and interrupts the current flowing through the electrode assembly 4.
  • the pressure threshold value at which the current interrupting device 5 operates is a pressure sufficiently higher than the normal pressure in the case 2 and is set in advance.
  • the upper limit value of the voltage at which the current interrupting device 5 operates is a voltage lower than the decomposition potential of the solvent of the electrolytic solution 3 (4.6 V in the present embodiment) and is set in advance.
  • the current interrupt device 5 includes a gasket 50, a diaphragm 51, a conductive member 52, a cover 53, and the like.
  • the configuration of the current interrupt device 5 shown here is an example, and other known current interrupt devices may be applied.
  • a gasket 50 is provided at the opening at the upper end of the case 2.
  • the gasket 50 has an opening 50a at the center.
  • a diaphragm 51 is provided on the upper surface of the gasket 50 so as to cover the opening 50a.
  • the diaphragm 51 has a recess 51a that protrudes toward the inside of the opening 50a at a portion facing the opening 50a. Further, a groove 51b surrounding the recess 51a is formed on the upper surface of the diaphragm 51.
  • a conductive member 52 is provided on the lower surface of the gasket 50 so that a part thereof faces the opening 50a. The upper surface of the conductive member 52 and the recess 51a of the diaphragm 51 are normally in contact with each other.
  • a cover 53 that covers the recess 51a is provided on the upper side of the diaphragm 51.
  • the diaphragm 51 and the cover 53 have conductivity.
  • the cover 53 has an opening 53a.
  • the upper end portion of the case 2 is caulked against the outer surface of the gasket 50 along the circumferential direction, whereby the gasket 50, the diaphragm 51, and the cover 53 are fixed to the upper end portion of the case 2, thereby sealing the case 2.
  • the tab 11 a of the positive electrode 10 and the conductive member 52 are electrically connected by the lead 13. That is, the lead 13, the conductive member 52, the diaphragm 51 (the recess 51 a), and the cover 53 constitute a current path that electrically connects the positive electrode 10 and the outside of the case 2.
  • the tab 21 a of the negative electrode 20 and a conductive member (not shown) are electrically connected by a lead 23. That is, the lead 23, a conductive member (not shown), the diaphragm 51 (the recess 51 a), and the cover 53 constitute a current path that electrically connects the negative electrode 20 and the outside of the case 2.
  • the diaphragm 51 comprises the electric current interruption
  • the tabs 11a and 21a of the electrodes 10 and 20 are connected to the conductive member via the leads 13 and 23, but other connection methods may be used. For example, the tab may be directly connected to the conductive member by welding. Good.
  • the electrolyte solution 3 contains an additive for overcharge.
  • the additive decomposes and generates gas. Due to this gas, the pressure in the case 2 is increased, and when the high pressure reaches the above threshold value, the current interrupt device 5 is activated (the recess 51a of the diaphragm 51 is reversed), and the positive electrode 10 and the negative electrode 20 and the case 2 The electrical connection with the outside is broken.
  • capacitance of the positive electrode 10 the capacity
  • the horizontal axis represents the potential (particularly, the potential of the positive electrode 10), and the vertical axis represents the internal pressure of the case 2, and shows the relationship between the potential and the internal pressure during overcharging.
  • the potential A is a potential when fully charged, and is 4.1 V in the present embodiment.
  • the SOC at this time is 100%.
  • the potential B is a decomposition potential of the additive of the electrolytic solution 3, and is 4.3 to 4.5 V in the present embodiment.
  • the SOC at this time is 113% in the present embodiment.
  • the potential C is a decomposition potential of the solvent of the electrolytic solution 3 and is 4.6 V in the present embodiment.
  • the SOC at this time is 129% in the present embodiment.
  • the internal pressure N is the pressure of the case 2 at normal times.
  • the internal pressure S is a threshold pressure at which the current interrupt device 5 operates.
  • the battery When charging the lithium ion secondary battery 1 and the potential of the positive electrode 10 exceeds the fully charged potential A, the battery is overcharged. Even when the battery is overcharged, the internal pressure of the case 2 is the normal internal pressure N as indicated by the solid line X until the potential reaches the decomposition potential B of the additive of the electrolytic solution 3. At this internal pressure N, the current interrupt device 5 does not operate.
  • the additive When the potential reaches the decomposition potential B of the additive of the electrolytic solution 3, the additive is decomposed to generate gas, so that the internal pressure of the case 2 rapidly increases as shown by the solid line Y.
  • the current interrupting device 5 When the internal pressure of the case 2 reaches the threshold value S, the current interrupting device 5 is activated, the electrical connection between the positive electrode 10 and the negative electrode 20 and the outside of the case 2 is disconnected, the charging current is interrupted, and the charging ends. . Therefore, the potential of the positive electrode 10 does not rise above the potential B if the additive is normally decomposed and the current interrupting device 5 operates.
  • the additive may not be decomposed normally (partially or not all).
  • the internal pressure of the case 2 does not increase and the current interrupt device 5 does not operate. Therefore, as indicated by the solid line Z, charging continues and the potential rises above the decomposition potential B.
  • the solvent is decomposed to generate gas, so that the internal pressure of the case 2 rapidly increases as shown by the solid line Z.
  • the current interrupting device 5 is activated and charging is completed in the same manner as described above. Therefore, the potential of the positive electrode 10 does not rise above the potential C.
  • the negative electrode 20 all lithium ions are not accepted (intercalated) in response to the lithium ions released from the positive electrode 10 (the amount of lithium ions generated in the positive electrode 10 is acceptable in the negative electrode 20.
  • the capacity of the negative electrode 20 is at least a capacity capable of receiving 100% or more of lithium ions generated in the positive electrode 10 when overcharged from the fully charged state to the decomposition potential B of the additive of the electrolytic solution 3. It is necessary to keep.
  • the capacity of the negative electrode 20 when the capacity of the negative electrode 20 is set to a capacity capable of receiving 100% or more of the lithium ions generated in the positive electrode 10 from the fully charged state to the overcharged state, When the capacity is excessively increased, the volume energy density of the lithium ion secondary battery 1 is lowered. Incidentally, it is the capacity of the positive electrode 10 that contributes to the capacity of the battery, and the volume energy density of the lithium ion secondary battery 1 decreases as the capacity of the negative electrode 20 increases with respect to the capacity of the positive electrode 10. When manufacturing a lithium ion secondary battery (especially positive electrode 10 and negative electrode 20), there is a manufacturing variation. For this reason, the capacities of the manufactured positive electrode 10 and negative electrode 20 vary with respect to design values, and the capacity ratio also varies.
  • the upper limit of the capacity (and hence the capacity ratio) of the negative electrode 20 with respect to the capacity of the positive electrode 10 is defined.
  • various variations during production were measured, and the measurement results were tabulated and analyzed to obtain a result of ⁇ 10%.
  • Examples of the various variations during manufacture include variations in the amount of electrode paste applied, variations in the amount of active material contained in the electrode paste, variations in the amount of active material layers 12 and 22 formed, and active material layers 12 and 22. There is a variation in the amount of active material contained in.
  • the capacity of the negative electrode is such that the capacity of the negative electrode can accept 100% to 120% of lithium ions generated in the positive electrode 10 in an overcharged state as the capacity of the negative electrode 20.
  • the volume ratio is set by taking into account ⁇ 10% of the manufacturing variation.
  • action at the time of the overcharge of the lithium ion secondary battery 1 is demonstrated.
  • the case where the additive is normally decomposed at the decomposition potential B and the current interrupting device 5 operates will be described.
  • the lower surface of the recess 51a of the diaphragm 51 of the current interrupt device 5 is in contact with the conductive member 52, and the positive electrode 10 and the negative electrode 20 are electrically connected to the outside of the case 2 to supply a charging current.
  • SOC full charge
  • the additive When the potential of the positive electrode 10 reaches the decomposition potential B of the additive of the electrolytic solution 3, the additive is decomposed to generate gas. Due to the generated gas, the internal pressure of the case 2 rapidly increases. When the internal pressure of the case 2 reaches the threshold value S, the depression 51 a of the diaphragm 51 is reversed by the high pressure, and the diaphragm 51 does not contact the conductive member 52. Thereby, the electrical connection between the positive electrode 10 and the negative electrode 20 and the outside of the case 2 is cut, and the charging current is cut off. Therefore, the charging is finished and the potential of the positive electrode 10 does not increase any more. Therefore, it is not overcharged to the decomposition potential C of the solvent of the electrolytic solution 3, and the solvent does not undergo a decomposition reaction (exothermic reaction).
  • the thermal stability of the electrode does not decrease due to lithium deposition, and the safety of the lithium ion secondary battery 1 is improved.
  • the current interrupting device 5 does not operate at the decomposition potential of the additive, lithium deposition in an overcharged state can be prevented, and the safety of the lithium ion secondary battery 1 can be further improved.
  • the negative electrode 20 can accept 100% to 120% of the capacity of the negative electrode that can generate lithium ions generated at the positive electrode 10 from a fully charged state.
  • the capacity of the negative electrode 20 can be limited with respect to the capacity of 10, and the capacity of the negative electrode 20 does not increase more than necessary. As a result, a decrease in volume energy density of the lithium ion secondary battery 1 can be suppressed.
  • the electrolytic solution 3 contains an additive having a predetermined potential between the fully charged potential and the decomposition potential of the solvent of the electrolytic solution 3.
  • the current interrupting device 5 can be operated before being overcharged to the decomposition potential of the solvent of the liquid 3 and can be prevented from being overcharged to the decomposition potential of the solvent of the electrolytic solution 3. As a result, the exothermic reaction of the solvent of the electrolytic solution 3 can be prevented, and the temperature rise of the lithium ion secondary battery 1 can be suppressed.
  • lithium ions generated at the positive electrode from the fully charged state are The capacity of the negative electrode acceptable by 100% or more was shown, but it was fully charged assuming that the battery was overcharged to a predetermined potential between the decomposition potential of the electrolyte additive and the decomposition potential of the electrolyte solvent. It is good also as a capacity
  • a negative electrode capacity range in which 100% to 120% of lithium ions generated from the fully charged state can be received by the negative electrode is obtained.
  • the manufacturing variation may be ⁇ several% or ⁇ 1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 ケース2と、ケース2内に収容された電解液3と、ケース2内に収容され、正極10及び負極20を有する電極組立体4と、ケース2内に設けられ、ケース2内の圧力に応じて正極又は負極に供給される電流を遮断する電流遮断装置5とを備えるリチウムイオン二次電池1であって、電解液3は、添加剤を含み、添加剤の分解電位は、満充電状態の正極の電位と電解液3の溶媒の分解電位との間の電位であり、負極は、正極の電位を満充電状態から添加剤の分解電位まで上げて過充電した場合に正極からデインターカレートされるリチウムイオンの100%以上をインターカレート可能な容量を有する。

Description

リチウムイオン二次電池
 本発明は、電流遮断装置を備えるリチウムイオン二次電池に関する。
 リチウムイオン二次電池では、充電中に過充電状態となり、正極の電位が電解液の溶媒の分解電位まで高くなると、溶媒の分解反応が起こる。この分解反応は発熱反応であるため、リチウムイオン二次電池の温度が上昇してしまう。このような発熱反応などを防止するために、リチウムイオン二次電池には、電流遮断装置(CID[Current Interrupt Device])が備えられているものがある。電流遮断装置は、電池のケース内の圧力が閾値まで高くなると外部との電気的な接続を切断し、外部からの充電電流を遮断する(例えば、特許文献1参照)。
特開2001-15155号公報
 また、過充電状態において、正極の電位が高くなるほど、正極での反応で多くのリチウムイオンが発生する。負極の容量が十分であれば、負極ではこの正極で発生した全てのリチウムイオンと反応して受け入れることができる。しかし、正極で発生したリチウムイオンに対して負極の容量が不足すると、負極の表面にリチウム金属が析出する。リチウム金属が析出すると、リチウムイオン二次電池での熱安定性が低下する。上記の電流遮断装置が作動して充電電流を遮断して、正極での反応を強制的に終了させても、それまでに正極で発生したリチウムイオンに対して負極の容量が不足していると、負極にリチウム金属が析出する。
 そこで、本技術分野においては、過充電状態でのリチウム析出を防止するリチウムイオン二次電池が要請されている。
 本発明の一側面に係るリチウムイオン二次電池は、ケースと、ケース内に収容された電解液と、ケース内に収容され、正極及び負極を有する電極組立体と、ケース内に設けられ、ケース内の圧力に応じて前記正極又は負極に供給される電流を遮断する電流遮断装置と、を備える。このリチウムイオン二次電池電解液は添加剤を含む。添加剤の分解電位は、リチウムイオン二次電池の満充電状態の正極の電位と電解液の溶媒の分解電位との間の電位である。
 そして、前記負極は、前記正極の電位を満充電状態から前記添加剤の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100%以上をインターカレート可能な容量を有する。
 別の観点では、正極の容量と負極の容量との容量比は、添加剤の分解電位まで過充電した状態までに正極で発生したリチウムイオンを負極で100%以上受け入れ可能な容量比である。なお、容量比における正極の容量及び負極の容量ともに、初回充電時の容量であることができる。
 このリチウムイオン二次電池は、ケース内に電極組立体及び電解液が収容されており、ケース内に電流遮断装置が設けられている。電解液は、所定の電位で分解反応する添加剤を含んでいる。この添加剤の分解電位は、満充電状態の電位と電解液の溶媒の分解電位との間の電位である。したがって、充電時に正極の電位が満充電状態の電位より高くなっているときに(過充電状態)、電位が添加剤の分解電位になると(電解液の溶媒の分解電位より低い電位)、添加剤が分解反応してガスを発生する。この発生したガスによって、ケース内の圧力が高くなって、電流遮断装置が作動し、充電電流が遮断される。したがって、過充電状態になっても電解液の溶媒が分解反応する電位まで高くなることはなく、電解液の溶媒の分解反応(発熱反応)を防止できる。この際、正極では、添加剤の分解電位まで過充電した状態まで、反応してリチウムイオンを発生(デインターカレート)する。しかし、このリチウムイオン二次電池の負極は、過充電により正極で発生したリチウムイオンを全て受け入れることができる十分な容量を有している。そのため、正極で発生したリチウムイオンの量に対して負極の容量が不足することはなく、負極でそのリチウムイオンを全て受け入れる(インターカレート)ことができ、負極にリチウム金属が析出しない。これによりこのリチウムイオン二次電池は、過充電状態でのリチウム析出を防止できる。その結果、リチウム析出によって熱安定性が低下することがなく、リチウムイオン二次電池の安全性が向上する。
 一形態のリチウムイオン二次電池では、前記負極は、前記正極の電位を満充電状態から前記添加剤の分解電位と前記電解液中の溶媒の分解電位との間の所定の電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100%以上をインターカレート可能な容量を有する。
 上記したように、過充電状態になっても、通常は、正極の電位が添加剤の分解電位になると添加剤が分解反応して、電流遮断装置が作動するので、電位が電解液の溶媒の分解電位まで高くなることはない。しかし、電位が添加剤の分解電位になっても、何らかの要因で添加剤が正常に分解反応せずに、電流遮断装置が作動しない可能性がある。この場合、過充電が継続し、正極の電位が電解液の溶媒の分解電位まで高くなり、溶媒が分解反応してガスが発生する。これによって、ケース内の圧力が高くなり、電流遮断装置が作動し、充電電流が遮断される。したがって、過充電状態になると、電流遮断装置が通常作動する添加剤の分解電位までは電位が高くなる可能性が高いが、電解液の溶媒の分解電位まで電位が高くなる可能性もある。そこで、このリチウムイオン二次電池は、過充電の上限を電解液の溶媒の分解電位までとして、負極の容量が設定している。
 一形態のリチウムイオン二次電池では、前記負極は、前記正極の電位を満充電状態から前記電解液中の溶媒の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100%以上をインターカレート可能な容量を有する。
 電解液の溶媒の分解電位で電流遮断装置が作動する場合、正極では、溶媒の分解電位まで過充電した状態まで、反応してリチウムイオンを発生する。しかし、このリチウムイオン二次電池では、その場合でも、正極で発生したリチウムイオンの量に対して負極の容量が不足することはなく、負極にリチウム金属が析出しない。このように、このリチウムイオン二次電池は、添加剤の分解電位で電流遮断装置が作動しなかった場合でも電解液の溶媒の分解電位までの過充電でのリチウム析出を防止でき、リチウムイオン二次電池の安全性をより向上できる。
 一形態のリチウムイオン二次電池では、前記負極は、前記正極の電位を満充電状態から前記添加剤の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100~120%をインターカレート可能な容量を有する。また、一形態のリチウムイオン二次電池では、前記負極は、前記正極の電位を満充電状態から前記電解液中の溶媒の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100~120%をインターカレート可能な容量を有する。
 リチウムイオン二次電池(特に、正極、負極)を製造する場合、製造バラツキがある。そのため、製造された正極や負極の容量は設計値に対してバラツキがあり、容量比にもバラツキがある。そこで、この製造バラツキを考慮して、正極で発生したリチウムイオンを負極で100%~120%受け入れ可能な負極の容量としている。120%を上限とすることにより、正極の容量に対して負極の容量に上限を設けることができ、必要以上に負極の容量が多くなることがない。そのため、このリチウムイオン二次電池は、過充電状態でのリチウム析出を防止して、安全性が向上するとともに、体積エネルギ密度の低下も抑制できる。
 本発明によれば、過充電状態でのリチウム析出を防止できる。
本実施の形態に係るリチウムイオン二次電池を模式的に示す側断面図である。 図1のリチウムイオン二次電池における過充電時の電位とケースの内圧との関係を示す図である。
 以下、図面を参照して、本発明に係るリチウムイオン二次電池の実施の形態を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。
 本実施の形態では、電流遮断装置を備えるリチウムイオン二次電池(非水電解質二次電池の蓄電装置)に適用する。本実施の形態に係るリチウムイオン二次電池は、過充電状態において所定の電位になると電流遮断装置を作動させて、充電を強制的に終了させて、電解液の溶媒の分解反応(発熱反応)を防止する。そのために、本実施の形態では、電流遮断装置の作動電圧の上限値を電解液の溶媒の分解電位以下に設定している。また、本実施の形態では、電解液の溶媒の分解電位までに電流遮断装置を作動させるために、満充電状態の電位と電解液の溶媒の分解電位との間の所定の電位を分解電位とする添加剤(過充電対応添加剤)を電解液に含有させている。なお、本実施の形態に係るリチウムイオン二次電池では、満充電状態(SOC[State Of Charge]=100%)の電位を4.1Vとする。
 図1及び図2を参照して、本実施の形態に係るリチウムイオン二次電池1について説明する。図1は、リチウムイオン二次電池1を模式的に示す側断面図である。図2は、リチウムイオン二次電池1における過充電時の電位とケースの内圧との関係を示す図である。
 リチウムイオン二次電池1は、過充電状態において電流遮断装置が作動するまでの間のリチウム析出を防止できるように、正極の容量と負極の容量やその容量比を設定する。特に、リチウムイオン二次電池1は、負極の容量を、満充電状態から添加剤の分解電位まで過充電した状態あるいは電解液の溶媒の分解電位まで過充電した場合に正極で発生したリチウムイオンを負極で100%以上受け入れ可能な容量としている。
 リチウムイオン二次電池1は、ケース2、電解液3、電極組立体4及び電流遮断装置5を主に備えている。なお、以下で詳細に説明するケース2、電解液3、電極組立体4及び電流遮断装置5については、一形態であり、他の形態のものを適用してもよい。
 ケース2は、電解液3及び電極組立体4を収容するケースである。ケース2の材料や形状などは特に限定されず、樹脂、金属などの公知の種々の物で形成される。ケース2が導電材料である場合、ケース2内において、電極組立体4が絶縁シート4aで覆われていることが好ましい。ケース2は、上端面が開口しており、上端部に電流遮断装置5が配設されている。
 電解液3は、有機電解液である。電解液3は、電解質と、この電解質を溶解する溶媒と、過充電状態の所定の電位のときに反応(分解)してガスを発生する添加剤とを含んでいる。電解液3は、ケース2内に収容され、電極組立体4内に含浸される。
 電解質は、リチウム塩である。リチウム塩としては、例えば、LiBF、LiPF、LiClO、LiAsF、LiCFSO、LiN(CFSOである。ここで示す電解質は一例であり、他の公知の電解液を適用してもよい。
 溶媒は、カーボネート溶媒である。カーボネート溶媒としては、例えば、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とジメチルカーボネート(DMC)を全て含む溶媒である。このECとMECとDMCを含む溶媒は、分解電位が4.6Vであり、この分解電位まで過充電されると分解反応する。この分解反応は、発熱反応であり、熱を発生する。また、この分解反応は、ガスを発生する。ここで示す溶媒は一例であり、他の公知の溶媒を適用してもよい。適用する溶媒によって、分解電位が変わる。
 添加剤は、過充電時に電流遮断装置5を作動させて、溶媒の分解反応(発熱反応)を防止するための添加剤である。したがって、添加剤は、満充電状態の電位と電解液3の溶媒の分解電位との間の(特に、満充電状態の電位よりも高くかつ溶媒の分解電位よりも低い)所定の電位でおいて分解反応してガスを発生する添加剤である。上記したように、本実施の形態では、満充電時の電位が4.1V、溶媒の分解電位が4.6Vであるので、この4.1V~4.6V間の所定の電位で分解する添加剤である。この条件を満たす添加剤としては、例えば、シクロヘキシルベンゼン(CHB)、ビフェニル(BP)である。この例の添加剤は、分解電位が4.3V~4.5Vであり、この分解電位まで過充電されると分解反応する。この分解反応では、ガスを発生する。ここで示す添加剤は一例であり、上記の条件を満たせば、他の公知の添加剤を適用してもよい。
 電極組立体4は、正極10、負極20及び正極10と負極20とを絶縁するセパレータ30を備えている。電極組立体4は、シート状の複数の正極10と複数の負極20及びシート状(または袋状)の複数のセパレータ30が積層されて構成されている。電極組立体4は、ケース2内に収容され、ケース2内において電解液3に満たされている。
 正極10は、金属箔11と、金属箔11の両面に形成された正極活物質層12,12からなる。正極10は、金属箔11の端部に正極活物質層12が形成されていないタブ11aを有する。タブ11aは、リード13に電気的に接続されている。
 金属箔11は、例えば、アルミニウム箔、アルミニウム合金箔である。正極活物質層12は、正極活物質、バインダを含んでいる。正極活物質層12は、導電助剤を含んでいてもよい。正極活物質は、例えば、複合酸化物、金属リチウム、硫黄である。複合酸化物は、マンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つとリチウムとを含む。バインダは、例えば、ポリアミドイミド、ポリイミド等の熱可塑性樹脂、主鎖にイミド結合を有するポリマ樹脂である。導電助剤は、例えば、カーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)である。ここで示す金属箔11、正極活物質層12に含まれる物質の構成は一例であり、他の公知の金属箔、正極活物質層に含まれる各物質を適用してもよい。
 負極20は、金属箔21と、金属箔21の両面に形成された負極活物質層22,22からなる。負極20は、金属箔21の端部に負極活物質層22が形成されていないタブ21aを有する。タブ21aは、リード23に電気的に接続されている。
 金属箔21は、例えば、銅箔、銅合金箔である。負極活物質層22は、負極活物質、バインダを含んでいる。負極活物質層22は、導電助剤を含んでいてもよい。負極活物質は、例えば、黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素である。バインダ、導電助剤は、正極10で示した同様のバインダ、導電助剤を適用できる。ここで示す金属箔21、負極活物質層22に含まれる物質の構成は一例であり、他の公知の金属箔、負極活物質層に含まれる各物質を適用してもよい。
 なお、電極組立体4に含まれる正極10の容量と負極の20の容量との容量比については、後で詳細に説明する。電極10,20の容量(例えば、単位はA・hr)は、電極10,20の活物質層12,22(特に、活物質)の量によって決まる。活物質層12,22は、電極10,20用の各電極ペースト(上記の活物質層に含まれる物質に溶剤を加えて、混練・攪拌したもの)を金属箔11,21に塗布して乾燥させることによって形成される。したがって、電極10,20用の各電極ペーストを塗布する量によって、活物質層12,22(特に、活物質)の量を調整でき、電極10,20の容量を調整できる。なお、本実施の形態では、容量比=(負極20の容量)/(正極10の容量)とする。
 セパレータ30は、正極10と負極20とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ30は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布である。ここで示すセパレータ30は一例であり、他の公知のセパレータを適用してもよい。
 電流遮断装置5は、ケース2内の圧力が所定圧力(閾値)以上になると、外部との電気的な接続を切断し、電極組立体4に流れる電流を遮断する。この電流遮断装置5が作動する圧力の閾値は、ケース2内の通常時の圧力より十分に高い圧力であり、予め設定される。また、電流遮断装置5が作動する電圧の上限値は、電解液3の溶媒の分解電位(本実施の形態では4.6V)より低い電圧であり、予め設定される。電流遮断装置5は、ガスケット50、ダイヤフラム51、導電部材52、カバー53などで構成される。ここで示す電流遮断装置5の構成は一例であり、他の公知の電流遮断装置を適用してもよい。
 ケース2の上端部の開口部には、ガスケット50が設けられている。ガスケット50は、中央部に開口50aを有している。ガスケット50の上面には、開口50aを覆うように、ダイヤフラム51が設けられている。ダイヤフラム51は、開口50aに面する部分に、開口50aの内部に向かって突出する窪み51aを有している。また、ダイヤフラム51の上面には、窪み51aを取り囲む溝51bが形成されている。ガスケット50の下面には、その一部が開口50aと面するように導電部材52が設けられている。導電部材52の上面とダイヤフラム51の窪み51aとは、通常、接触している。ダイヤフラム51の上側には、窪み51aを覆うカバー53が設けられている。ダイヤフラム51及びカバー53は、導電性を有する。カバー53は、開口53aを有している。ケース2の上端部は周方向に沿ってガスケット50の外面に対してかしめられることによって、ガスケット50、ダイヤフラム51及びカバー53がケース2の上端部に固定され、これによってケース2が密閉される。
 正極10のタブ11aと導電部材52とは、リード13によって電気的に接続されている。すなわち、リード13、導電部材52、ダイヤフラム51(窪み51a)及びカバー53が、正極10とケース2の外部とを電気的に接続する電流経路を構成している。同様に、負極20のタブ21aと図示しない導電部材とは、リード23によって電気的に接続されている。すなわち、リード23、図示しない導電部材、ダイヤフラム51(窪み51a)及びカバー53が、負極20とケース2の外部とを電気的に接続する電流経路を構成している。そして、ダイヤフラム51が、ケース2内の圧力に応じてそれらの電流経路を遮断する電流遮断機構を構成している。なお、各電極10,20のタブ11a,21aはリード13,23を介して導電部材に接続されているが、他の接続方法でもよく、例えば、タブを導電部材に溶接によって直接接続してもよい。
 ケース2内の圧力が電流遮断装置5の上記した閾値になると、その高い圧力によってダイヤフラム51の窪み51aが図中の破線で示すように反転する。これによって、上記の電流経路が遮断される。したがって、正極10及び負極20とケース2の外部とが電気的に接続されていない状態になる。
 上記したように電解液3には過充電対応の添加剤が含まれている。この添加剤の分解電位まで過充電されると、添加剤が分解反応し、ガスを発生する。このガスによって、ケース2内の圧力が高くなり、その高い圧力が上記の閾値に達すると、電流遮断装置5が作動(ダイヤフラム51の窪み51aが反転)し、正極10及び負極20とケース2の外部との電気的な接続が切断される。
 それでは、図2を参照して、正極10の容量と負極20の容量やその容量比について説明する。図2は、横軸が電位(特に、正極10の電位)であり、縦軸がケース2の内圧であり、過充電時の電位と内圧との関係を示している。電位Aは、満充電時の電位であり、本実施の形態では4.1Vである。このときのSOCは、100%である。電位Bは、電解液3の添加剤の分解電位であり、本実施の形態では4.3~4.5Vである。このときのSOCは、本実施の形態では113%である。電位Cは、電解液3の溶媒の分解電位であり、本実施の形態では4.6Vである。このときのSOCは、本実施の形態では129%である。内圧Nは、通常時のケース2の圧力である。内圧Sは、電流遮断装置5が作動する閾値の圧力である。
 リチウムイオン二次電池1を充電中に、正極10の電位が満充電時の電位Aを超えると、過充電になる。過充電になっても、電位が電解液3の添加剤の分解電位Bに達するまでは、実線Xで示すように、ケース2の内圧は通常時の内圧Nである。この内圧Nでは、電流遮断装置5は作動しない。
 電位が電解液3の添加剤の分解電位Bに達すると、添加剤が分解してガスを発生するので、実線Yで示すように、ケース2の内圧が急激に高くなる。このケース2の内圧が閾値Sに達すると、電流遮断装置5が作動し、正極10及び負極20とケース2の外部との電気的な接続が切断され、充電電流が遮断され、充電が終了する。したがって、正極10の電位は、添加剤が正常に分解して電流遮断装置5が作動すれば、電位B以上は上昇しない。
 しかし、電位が電解液3の添加剤の分解電位Bに達しても、添加剤が正常に分解しない(一部だけ分解あるいは全てが分解しない)場合も考えられる。この場合、ケース2の内圧が高くならず、電流遮断装置5が作動しない。そのため、実線Zで示すように、充電が継続し、電位が分解電位Bよりも上昇していく。やがて、電位が電解液3の溶剤の分解電位Cに達すると、溶剤が分解してガスを発生するので、実線Zで示すように、ケース2の内圧が急激に高くなる。このケース2の内圧が閾値Sに達すると、上記と同様に、電流遮断装置5が作動し、充電が終了する。したがって、正極10の電位は、電位C以上は上昇しない。
 電位Bまで過充電した場合、正極10では、SOC=113%に相当する容量まで反応し、その反応に応じた量のリチウムイオンを発生し、放出する(デインターカレート)。負極20では、この正極10から放出されるリチウムイオンに反応して、全てのリチウムイオンを受け入れ(インターカレート)られないと(正極10で発生したリチウムイオンの量が負極20での受け入れ可能なリチウムイオンの量を超えると)、表面にリチウム金属が析出する。リチウム金属が析出すると、電極の熱安定性が低下する。そこで、負極20の容量としては、少なくとも、満充電状態からこの電解液3の添加剤の分解電位Bまで過充電した場合に正極10で発生したリチウムイオンを100%以上受け入れることが可能な容量としておく必要がある。
 添加剤が正常に分解せず、電位Cまで過充電した場合、正極10では、SOC=129%に相当する容量まで反応し、その反応に応じた量のリチウムイオンを発生し、放出する。この場合も上記と同様に、負極20では、この正極10から放出される全てのリチウムイオンを受け入れられないと、表面にリチウム金属が析出する。そこで、負極20の容量としては、添加剤が正常に分解しない場合の安全性を考慮した場合には、満充電状態からこの電解液3の溶剤の分解電位Cまで過充電した場合に正極10で発生したリチウムイオンを100%以上受け入れることが可能な容量としておく必要がある。この負極20の容量は、上記の電位Bまで過充電した場合の負極20の容量よりも多くなる。
 上記のように、負極20の容量として満充電状態から過充電状態での正極10で発生したリチウムイオンを100%以上受け入れることが可能な容量とする場合、安全性を考慮して、負極20の容量を多くし過ぎると、リチウムイオン二次電池1の体積エネルギ密度が低下する。ちなみに、電池の容量に寄与するのは正極10の容量であり、正極10の容量に対して負極20の容量を多くするほど、リチウムイオン二次電池1の体積エネルギ密度が低下する。リチウムイオン二次電池(特に、正極10、負極20)を製造する場合、製造バラツキがある。そのため、製造された正極10や負極20の容量は設計値に対してバラツキがあり、容量比にもバラツキがある。そこで、リチウムイオン二次電池1(特に、正極10、負極20)の製造バラツキを考慮して、正極10の容量に対して負極20の容量(ひいては、容量比)の上限を規定する。この製造バラツキとしては、製造中の各種バラツキを測定し、その測定結果を集計及び解析して±10%という結果が得られた。製造中の各種バラツキとしては、例えば、電極ペーストの塗布量のバラツキ、電極ペーストに含まれる活物質の量のバラツキ、形成された活物質層12,22の量のバラツキ、活物質層12,22に含まれる活物質の量のバラツキがある。そこで、この製造バラツキの±10%を加味して、負極20での容量として過充電状態での正極10で発生したリチウムイオンを100%~120%受け入れることが可能な負極の容量として、負極の容量及び容量比(=負極20の容量/正極10の容量)を設定する。
 最適設計の場合(電解液3の添加剤の分解電位Bまで過充電すると想定した場合)、正極10の容量がSOC=113%に相当することにより(したがって、容量比として1.13が最低限必要)、これに製造バラツキの±10%分を加味して、容量比を設定する。この場合、容量比(=負極20の容量/正極10の容量)=1.13~1.33となる。そこで、この1.13~1.33の中央値の1.23を容量比の設計値とし、この容量比=1.23になるように正極10及び負極20を製造する。例えば、製造された負極20の容量が設計値よりも数%少なくなった(あるいは、正極10の容量が設計値よりも数%多くなった)としても、容量比=1.13を確保できる。
 安全設計の場合(電解液3の溶媒の分解電位Cまで過充電すると想定した場合)、正極10の容量がSOC=129%に相当することにより(したがって、容量比として1.29が最低限必要)、これに製造バラツキの±10%分を加味して、容量比を設定する。この場合、容量比(=負極20の容量/正極10の容量)=1.29~1.49となる。そこで、この1.29~1.49の中央値の1.39を容量比の設計値とし、この容量比になるように正極10及び負極20を製造する。例えば、製造された負極20の容量が設計値よりも数%少なくなったとしても、容量比=1.29を確保できる。
 図1及び図2を参照して、リチウムイオン二次電池1の過充電時の作用について説明する。ここでは、最適設計の容量比=1.23又は安全設計の容量比=1.39となるように正極10及び負極20が製造されているものとする。また、ここでは、添加剤が分解電位Bで正常に分解して、電流遮断装置5が作動する場合で説明する。
 充電中、電流遮断装置5のダイヤフラム51の窪み51aの下面は導電部材52に接触しており、正極10及び負極20とケース2の外部とが電気的に接続され、充電電流が供給される。正極10の電位が満充電(SOC=100%)の電位A(4.1V)を超えると、過充電状態になる。過充電後も、電流遮断装置5が作動するまでは、充電電流が供給され、正極10の電位が上昇する。正極10では、電位が上昇するほど、反応によって多くのリチウムイオンを発生する。負極20では、その発生されたリチウムイオンと反応して、リチウムイオンを受け入れる。
 正極10の電位が電解液3の添加剤の分解電位Bに達すると、添加剤が分解し、ガスを発生する。この発生したガスによって、ケース2の内圧が急激に高くなる。そして、ケース2の内圧が閾値Sに達すると、その高い圧力によってダイヤフラム51の窪み51aが反転し、ダイヤフラム51が導電部材52に接触しなくなる。これによって、正極10及び負極20とケース2の外部との電気的な接続が切断され、充電電流が遮断される。したがって、充電が終了し、正極10の電位はこれ以上上昇しない。したがって、電解液3の溶媒の分解電位Cまで過充電されることはなく、溶媒が分解反応(発熱反応)することはない。
 正極10では、この添加剤の分解電位Bまで過充電した状態まで反応して、SOC=113%に相当する容量に応じたリチウムイオンを発生する。負極20は、容量比(設計値)=1.23又は1.39に応じた容量(少なくとも容量比=1.13又は1.29に応じた容量)を有しているので、容量不足になることはなく、この正極10で発生した全てのリチウムイオンと反応でき、全てのリチウムイオンを受け入れることができる。したがって、負極20では、リチウム金属が析出することはない。
 このリチウムイオン二次電池1によれば、満充電状態から電解液3の添加剤の分解電位まで過充電した場合に正極10で発生したリチウムイオンを負極20で100%以上受け入れ可能な負極の容量とすることにより、過充電状態(特に、電流遮断装置5が作動する前)でのリチウム析出を防止できる。その結果、リチウム析出によって電極の熱安定性が低下することがなく、リチウムイオン二次電池1の安全性が向上する。
 このリチウムイオン二次電池1によれば、満充電状態から電解液3の溶媒の分解電位まで過充電した状態までに正極10で発生したリチウムイオンを負極20で100%以上受け入れ可能な負極の容量とすることにより、添加剤の分解電位で電流遮断装置5が作動しなかった場合でも過充電状態でのリチウム析出を防止でき、リチウムイオン二次電池1の安全性をより向上できる。
 このリチウムイオン二次電池1によれば、製造バラツキを考慮して、満充電状態から正極10で発生したリチウムイオンを負極20で100%~120%受け入れ可能な負極の容量とすることにより、正極10の容量に対して負極20の容量に制限を設けることができ、必要以上に負極20の容量が多くならない。その結果、リチウムイオン二次電池1の体積エネルギ密度の低下を抑制できる。
 このリチウムイオン二次電池1によれば、満充電状態の電位と電解液3の溶媒の分解電位との間の所定の電位を分解電位とする添加剤を電解液3に含有させることにより、電解液3の溶媒の分解電位まで過充電される前に電流遮断装置5を作動させることができ、電解液3の溶媒の分解電位まで過充電されるのを防止できる。その結果、電解液3の溶媒の発熱反応を防止でき、リチウムイオン二次電池1の温度上昇を抑制できる。
 以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。
 例えば、本実施の形態では電解液の添加剤の分解電位まで過充電した場合と電解液の溶剤の分解電位まで過充電した場合を想定して、満充電状態から正極で発生したリチウムイオンを負極で100%以上受け入れ可能な負極の容量を示したが、電解液の添加剤の分解電位と電解液の溶剤の分解電位との間の所定の電位まで過充電した場合を想定して、満充電状態から正極で発生したリチウムイオンを負極で100%以上受け入れ可能な負極の容量としてもよい。この場合も、製造バラツキを考慮して、受け入れる上限を設定するとよい。
 また、本実施の形態では製造バラツキの±10%を加味して、満充電状態から正極で発生したリチウムイオンを負極で100%~120%受け入れ可能な負極の容量の範囲を求めて、容量比の設計値を設定したが、製造バラツキについては±数%でもよいし、±1数%でもよい。
 1…リチウムイオン二次電池、2…ケース、3…電解液、4…電極組立体、4a…絶縁シート、5…電流遮断装置、10…正極、11…金属箔、11a…タブ、12…正極活物質層、13…リード、20…負極、21…金属箔、21a…タブ、22…負極活物質層、23…リード、30…セパレータ、50…ガスケット、50a…開口、51…ダイヤフラム、51a…窪み、51b…溝、52…導電部材、53…カバー、53a…開口。

Claims (5)

  1.  ケースと、前記ケース内に収容された電解液と、前記ケース内に収容され、正極及び負極を有する電極組立体と、前記ケース内に設けられ、前記ケース内の圧力に応じて前記正極又は負極に供給される電流を遮断する電流遮断装置と、を備えるリチウムイオン二次電池であって、
     前記電解液は、添加剤を含み、
     前記添加剤の分解電位は、前記リチウムイオン二次電池の満充電状態の正極の電位と前記電解液の溶媒の分解電位との間の電位であり、
     前記負極は、前記正極の電位を満充電状態から前記添加剤の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100%以上をインターカレート可能な容量を有する、リチウムイオン二次電池。
  2.  前記負極は、前記正極の電位を満充電状態から前記添加剤の分解電位と前記電解液中の溶媒の分解電位との間の所定の電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100%以上をインターカレート可能な容量を有する、請求項1に記載のリチウムイオン二次電池。
  3.  前記負極は、前記正極の電位を満充電状態から前記電解液中の溶媒の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100%以上をインターカレート可能な容量を有する、請求項2に記載のリチウムイオン二次電池。
  4.  前記負極は、前記正極の電位を満充電状態から前記添加剤の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100~120%をインターカレート可能な容量を有する、請求項1に記載のリチウムイオン二次電池。
  5.  前記負極は、前記正極の電位を満充電状態から前記電解液中の溶媒の分解電位まで上げて過充電した場合に前記正極からデインターカレートされるリチウムイオンの100~120%をインターカレート可能な容量を有する、請求項3に記載のリチウムイオン二次電池。
PCT/JP2014/071399 2013-10-31 2014-08-13 リチウムイオン二次電池 WO2015064179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167014018A KR101871231B1 (ko) 2013-10-31 2014-08-13 리튬 이온 2차 전지
DE112014005003.2T DE112014005003T5 (de) 2013-10-31 2014-08-13 Lithium-Ionen-Sekundärbatterie
CN201480058682.XA CN105684206A (zh) 2013-10-31 2014-08-13 锂离子二次电池
US15/030,241 US20160254520A1 (en) 2013-10-31 2014-08-13 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-226337 2013-10-31
JP2013226337A JP5765404B2 (ja) 2013-10-31 2013-10-31 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2015064179A1 true WO2015064179A1 (ja) 2015-05-07

Family

ID=53003795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071399 WO2015064179A1 (ja) 2013-10-31 2014-08-13 リチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20160254520A1 (ja)
JP (1) JP5765404B2 (ja)
KR (1) KR101871231B1 (ja)
CN (1) CN105684206A (ja)
DE (1) DE112014005003T5 (ja)
WO (1) WO2015064179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180649A (zh) * 2019-12-30 2020-05-19 合肥国轩高科动力能源有限公司 一体式高温分解接插件及含有该接插件的锂离子电池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265198B2 (ja) 2015-11-30 2018-01-24 トヨタ自動車株式会社 全固体電池システム
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102335696B1 (ko) * 2017-11-01 2021-12-07 주식회사 엘지에너지솔루션 전류차단부재 및 캡 조립체
JPWO2019151501A1 (ja) * 2018-02-02 2021-01-28 昭和電工マテリアルズ株式会社 リチウムイオン二次電池
CN117525550A (zh) 2018-03-23 2024-02-06 富山药品工业株式会社 蓄电设备用电解质和非水电解液

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064587A (ja) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd 非水二次電池
JP2012089413A (ja) * 2010-10-21 2012-05-10 Mitsubishi Chemicals Corp 非水系電解液電池
JP2013138014A (ja) * 2007-04-27 2013-07-11 Gs Yuasa Corp 非水電解質電池及び電池システム
JP2013157220A (ja) * 2012-01-30 2013-08-15 Toyota Motor Corp 非水電解質二次電池およびその製造方法
JP2013161731A (ja) * 2012-02-07 2013-08-19 Toyota Motor Corp 密閉型リチウム二次電池
WO2013125030A1 (ja) * 2012-02-24 2013-08-29 トヨタ自動車株式会社 密閉型二次電池
JP2013182778A (ja) * 2012-03-01 2013-09-12 Toyota Motor Corp 密閉型非水電解質二次電池
WO2013147094A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP2013206579A (ja) * 2012-03-27 2013-10-07 Toyota Motor Corp 正極とその製造方法ならびにその正極を用いた非水電解質二次電池
WO2013153619A1 (ja) * 2012-04-10 2013-10-17 トヨタ自動車株式会社 非水電解質二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293536A (ja) * 1996-04-25 1997-11-11 Seiko Instr Kk 非水電解質二次電池
JP3113652B1 (ja) 1999-06-30 2000-12-04 三洋電機株式会社 リチウム二次電池
CN102306827B (zh) * 2011-08-18 2014-04-02 江门三捷电池实业有限公司 一种安全锂离子电池
JP5822089B2 (ja) * 2011-10-06 2015-11-24 トヨタ自動車株式会社 密閉型リチウム二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064587A (ja) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd 非水二次電池
JP2013138014A (ja) * 2007-04-27 2013-07-11 Gs Yuasa Corp 非水電解質電池及び電池システム
JP2012089413A (ja) * 2010-10-21 2012-05-10 Mitsubishi Chemicals Corp 非水系電解液電池
JP2013157220A (ja) * 2012-01-30 2013-08-15 Toyota Motor Corp 非水電解質二次電池およびその製造方法
JP2013161731A (ja) * 2012-02-07 2013-08-19 Toyota Motor Corp 密閉型リチウム二次電池
WO2013125030A1 (ja) * 2012-02-24 2013-08-29 トヨタ自動車株式会社 密閉型二次電池
JP2013182778A (ja) * 2012-03-01 2013-09-12 Toyota Motor Corp 密閉型非水電解質二次電池
JP2013206579A (ja) * 2012-03-27 2013-10-07 Toyota Motor Corp 正極とその製造方法ならびにその正極を用いた非水電解質二次電池
WO2013147094A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
WO2013153619A1 (ja) * 2012-04-10 2013-10-17 トヨタ自動車株式会社 非水電解質二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180649A (zh) * 2019-12-30 2020-05-19 合肥国轩高科动力能源有限公司 一体式高温分解接插件及含有该接插件的锂离子电池

Also Published As

Publication number Publication date
JP5765404B2 (ja) 2015-08-19
JP2015088354A (ja) 2015-05-07
DE112014005003T5 (de) 2016-07-14
CN105684206A (zh) 2016-06-15
KR101871231B1 (ko) 2018-06-27
KR20160079033A (ko) 2016-07-05
US20160254520A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP3368877B2 (ja) 円筒形リチウムイオン電池
JP6287707B2 (ja) 非水電解質二次電池
WO2015064179A1 (ja) リチウムイオン二次電池
US20160043373A1 (en) Lithium-ion secondary cell and method for manufacturing same
KR20140085337A (ko) 리튬 이차 전지
JP6208239B2 (ja) 非水電解質二次電池
JP2011049064A (ja) 電池
CN107836061B (zh) 非水电解质电池及电池包
JP2011210390A (ja) 電池及び電池モジュール
WO2017154908A1 (ja) 非水電解質電池及び電池パック
KR20170107368A (ko) 비수전해질 전지, 전지 팩 및 차량
JP6346178B2 (ja) 非水電解質二次電池
US7604901B2 (en) Nonaqueous electrolyte secondary battery
US20140023898A1 (en) Non-aqueous electrolyte secondary cell
JP5699890B2 (ja) 非水電解液二次電池
JP2009259749A (ja) 非水電解液二次電池
JP2015043258A (ja) 密閉型電池
US11843088B2 (en) Graphite foil as an active heating and passive cooling material in a battery pack
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP2002222666A (ja) リチウム二次電池
JP7387437B2 (ja) 電極及び蓄電素子
JP2012195122A (ja) 非水電解液二次電池
JP4026587B2 (ja) リチウムイオン電池
JP2003022791A (ja) リチウム二次電池
JP2010080390A (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030241

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140050032

Country of ref document: DE

Ref document number: 112014005003

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167014018

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14858805

Country of ref document: EP

Kind code of ref document: A1