WO2015063943A1 - 信号処理システム、信号処理方法および信号処理プログラム - Google Patents

信号処理システム、信号処理方法および信号処理プログラム Download PDF

Info

Publication number
WO2015063943A1
WO2015063943A1 PCT/JP2013/079667 JP2013079667W WO2015063943A1 WO 2015063943 A1 WO2015063943 A1 WO 2015063943A1 JP 2013079667 W JP2013079667 W JP 2013079667W WO 2015063943 A1 WO2015063943 A1 WO 2015063943A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform data
unit
signal processing
digital
digital waveform
Prior art date
Application number
PCT/JP2013/079667
Other languages
English (en)
French (fr)
Inventor
太郎 只野
Original Assignee
インフォメティス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インフォメティス株式会社 filed Critical インフォメティス株式会社
Priority to JP2015544737A priority Critical patent/JP6219401B2/ja
Priority to CN201380076934.7A priority patent/CN105431743A/zh
Priority to EP13896632.0A priority patent/EP2977772B1/en
Priority to PCT/JP2013/079667 priority patent/WO2015063943A1/ja
Priority to US14/778,477 priority patent/US10317438B2/en
Publication of WO2015063943A1 publication Critical patent/WO2015063943A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/085Payment architectures involving remote charge determination or related payment systems
    • G06Q20/0855Payment architectures involving remote charge determination or related payment systems involving a third party

Definitions

  • the present invention relates to a signal processing system, a signal processing method, and a signal processing program, and more particularly, to a signal processing system, a signal processing method, and a signal processing program for estimating each operation state from current and voltage information of an electrical device.
  • Patent Document 1 discloses a technique for estimating an electric device from a power demand fluctuation amount. This technology performs intermittent operation by comparing the size and period of the power demand fluctuation waveform of a plurality of electric devices with the size and period of the power demand fluctuation amount that appears during intermittent operation of the electric device.
  • the present invention relates to a device estimation apparatus for estimating an electrical device.
  • Patent Document 2 discloses a technique for identifying an electrical device by a discrimination model stored in a database. This technology relates to a power monitoring apparatus capable of identifying a detailed situation of an electric device by using an identification model corresponding to a plurality of states of each electric device stored in a database.
  • Patent No. 5235479 gazette JP, 2012-16270, A
  • the present invention has an object to estimate each operating condition in detail at a remote place from current and voltage information of a plurality of electric devices while reducing the amount of transmission data.
  • the signal processing system of the present invention is connected to a measuring device for measuring the current and voltage supplied from the power source to the plurality of electric devices, and to the measuring device via the communication path, and the measurement results of the measuring devices
  • a signal processing system comprising: a processing unit for estimating an operating condition, wherein the measuring unit is a detection unit for detecting analog waveform data of current and voltage supplied to the electric device, and an analog waveform data detected by the detection unit And a converter for transmitting the digital waveform data to the processing device, and the processing device receives the digital waveform data transmitted from the transmitter.
  • a reception unit a storage unit for storing the digital waveform data received by the reception unit, and the digital waveform data stored in the storage unit,
  • a separation unit for separating the digital waveform data of each electrical equipment, analyzes the digital waveform data separated by the separation unit, and a movement-estimating unit for estimating the respective operating status of the electrical device.
  • the conversion unit may convert analog waveform data into digital waveform data by a predetermined number of samples including three zero crossing points, and when conversion is completed, the conversion may be stopped until a predetermined time elapses.
  • the predetermined number of samples can be equal to or greater than the number of samples of one period of the analog waveform data.
  • the predetermined number of samples may be the number of samples obtained by adding the number of samples corresponding to the maximum frequency fluctuation of the analog waveform data to the number of samples of one period of the analog waveform data.
  • the measurement apparatus may further include a storage unit that stores the digital waveform data converted by the conversion unit, and a normalization unit that converts the digital waveform data stored in the storage unit into normalized waveform data.
  • the measuring apparatus further includes a determination unit that determines the waveform cycle from the time of the waveform start point of the digital waveform data stored in the storage unit and the time of the waveform end point, and the normalization unit determines the waveform cycle from the time of the waveform start point Minute digital waveform data can be cut out.
  • the normalization unit generates approximate waveform data of analog waveform data, calculates a normalization period from the number of samples of one period of the analog waveform data and the waveform period, and samples the approximate waveform data from the waveform starting point according to the normalization period can do.
  • the determination unit compares the sign of the voltage value at each adjacent sampling point of the digital waveform data, and the voltage value reverses from negative to positive, with the zero cross point where the voltage value reverses from negative to positive as the waveform starting point
  • the zero-crossing point adjacent in the positive direction on the time axis with respect to the starting point can be the waveform end point, and the difference between the waveform starting point and the waveform end point can be the waveform period.
  • the signal processing system further includes a compression unit for compressing the digital waveform data to be transmitted to the processing device into a data amount corresponding to the communication capacity of the communication path, and a decompression unit for decompressing the compressed waveform data after passing through the communication path. And a unit.
  • the signal processing system may further include a display unit for displaying the result of estimation in the estimation unit to the user.
  • a signal processing method includes a measuring step of measuring current and voltage supplied from a power source to a plurality of electrical devices, and a processing step of estimating the operation status of each of the electrical devices from the measurement result in the measuring step.
  • the measuring step is a detecting step of detecting analog waveform data of current and voltage supplied to the electric device, and the analog waveform data detected by the detecting step is sampled at a predetermined sampling frequency to obtain a digital waveform
  • the processing step includes a receiving step of receiving the digital waveform data transmitted by the transmitting step, and the digital waveform data received by the receiving step Step of storing and step of storing
  • a signal processing program comprises a computer, a measurement function of measuring current and voltage supplied from a power source to a plurality of electric devices, and a processing function of estimating the operation state of each of the electric devices
  • a signal processing program for realizing the signal processing function wherein the measurement function includes a detection function of detecting analog waveform data of current and voltage supplied to the electric device, and a predetermined sampling of the analog waveform data detected by the detection function.
  • a conversion function that samples by frequency and converts it to digital waveform data and a transmission function that transmits digital waveform data to the processing function are realized, and the processing function receives the digital waveform data transmitted by the transmission function to the computer.
  • Store function to store digital waveform data received by receive function and receive function
  • a function to separate the digital waveform data stored by the storage function into digital waveform data for each electrical device and an analysis of the digital waveform data separated by the separation function to estimate the operation status of each of the electrical devices
  • a motion estimation function to store digital waveform data received by receive function and receive function
  • the signal processing system According to the signal processing system, the signal processing method, and the signal processing program of the present invention, it is possible to estimate each operation situation in detail from the current and voltage information of a plurality of electric devices while reducing the amount of transmission data. Can.
  • the block diagram of the signal processing system in the embodiment of the present invention is shown.
  • the schematic diagram for demonstrating the flow of the process in the signal processing system which concerns on embodiment of this invention is shown.
  • the graph for demonstrating sampling of the conversion part in the signal processing system concerning the embodiment of the present invention is shown.
  • the graph for demonstrating the sampling number of the conversion part in the signal processing system which concerns on embodiment of this invention is shown.
  • 5 shows a graph for explaining phase shift in the signal processing system according to the embodiment of the present invention.
  • the graph for demonstrating determination of the waveform period of the determination part in the signal processing system which concerns on embodiment of this invention is shown.
  • the graph for demonstrating the normalization process of the normalization part in the signal processing system which concerns on embodiment of this invention is shown.
  • Fig. 7 shows a flowchart for explaining the processing in the signal processing method according to the embodiment of the present invention.
  • FIG. 1 shows a block diagram of a signal processing system according to an embodiment of the present invention.
  • the signal processing system of the present invention is a signal processing system including a measuring device 10 and a processing device 20, and the measuring device 10 includes a detection unit 110, a conversion unit 120, and a transmission unit.
  • the processing device 20 includes a reception unit 210, a storage unit 230, a separation unit 240, and an operation estimation unit 250.
  • the digital information management system 10 further includes a storage unit 130, a determination unit 140, a normalization unit 150, a compression unit 160, a decompression unit 220, and a display unit 260 is described. It is shown.
  • the signal processing system of the present invention measures waveform data of all current and voltage supplied from the distribution board 1 to a plurality of electric devices by means of the measuring device 10, and measures the measuring device 10.
  • the processing device 20 connected via the communication path separates waveform data of current and voltage of each of the electric devices from the measurement result, and estimates the operation status.
  • FIG. 2 the example in which the television 3a, the electric pot 3b, and / or the refrigerator 3c exist as an electric equipment is shown.
  • the measuring device 10 measures the current and voltage supplied from the power source to the plurality of electrical devices.
  • the measuring apparatus 10 may measure an active power amount value every predetermined time and / or estimate a power amount per predetermined time from a power amount of one cycle based on waveform data of current and voltage. it can.
  • the processing device 20 is connected to the measuring device 10 via a communication path, and estimates the operation status of each of the electrical devices from the measurement result of the measuring device 10.
  • the detection unit 110 detects analog waveform data of current and voltage supplied to the electric device.
  • the detection unit 110 can be installed on the main trunk side of the distribution board 1 in the home, at an ampermeter portion.
  • the detection unit 110 can measure, for example, a voltage in the range of 100V to 200V or 220V to 240V.
  • the detection unit 110 can measure, for example, a current whose upper limit is 60A, 120A, or 300A.
  • the detection unit 110 can detect a total of three channels: two current channels and one voltage channel.
  • the conversion unit 120 samples the analog waveform data detected by the detection unit 110 at a predetermined sampling frequency and converts it into digital waveform data.
  • the conversion unit 120 can set the resolution of analog / digital conversion to 14 bits or more, the sampling frequency to 7680 samples / sec or more per channel, the input offset to the lowermost 1 bit and / or the measurement error to ⁇ 1% or less .
  • the converter 120 can adjust the input offset and / or the measurement error by the hardware based on the hardware and / or the predetermined correction value.
  • the predetermined correction value may be embedded in non-volatile memory inside the measuring device 10, for example, at the time of factory shipment, and / or downloaded via a communication path.
  • the transmission unit 170 transmits digital waveform data to the processing device 20.
  • the transmission unit 170 can establish connection with a relay device such as a home server by a connection setting unit such as WPS, and can transmit communication data such as digital waveform data to a predetermined communication path via the relay device.
  • the transmission unit 170 can be connected to the processing device 20 wirelessly and / or by wire, for example, via the Internet and / or a dedicated communication network.
  • the transmission standard of the wireless communication can be, for example, IEEE 802.11b and / or an upward compatible communication standard.
  • the transmission standard of the wired communication can be, for example, Ethernet (100Base-T) or an upper compatible communication standard.
  • the transmission unit 170 has an effective communication speed of 19.2 kbps or more for upward and downward transmission, a communication interval of 1 or more times per second, and / or an error of 100 m line of sight at an output of 0 dBm.
  • the rate can be 1% or less.
  • the transmission unit 170 can be connected to a relay device by a communication protocol such as Transmission Control Protocol / Internet Protocol (TCP / IP). Also, the measuring apparatus 10 may acquire an IP address or the like from the relay device by using, for example, Dynamic Host Configuration Protocol (DHCP).
  • DHCP Dynamic Host Configuration Protocol
  • the transmission unit 170 may further encrypt communication data and communicate with the processing device 20.
  • the transmitting unit 170 can perform secure communication such as Hypertext Transfer Protocol Secure (HTTPS) in which communication data is encrypted according to a protocol such as Secure Sockets Layer (SSL), for example.
  • HTTPS Hypertext Transfer Protocol Secure
  • SSL Secure Sockets Layer
  • the transmitting unit 170 may use a hash function to encrypt transmission data.
  • the transmission unit 170 can perform authentication management using, for example, a Hash-based Message Authentication Code (HMAC) or the like.
  • HMAC Hash-based Message Authentication Code
  • the receiving unit 210 receives the digital waveform data transmitted from the transmitting unit 170.
  • the receiving unit 210 can decode the original digital waveform data and the like.
  • the storage unit 230 stores the digital waveform data received by the receiving unit 210.
  • the storage unit 230 can be a recording medium such as a hard disk and / or a non-volatile memory.
  • the storage unit 230 may temporarily store the digital waveform data until the processing is completed, or may store the digital waveform data according to the application such as data backup.
  • the separation unit 240 separates the digital waveform data stored in the storage unit 230 into digital waveform data for each electrical device.
  • the separating unit 240 can separate digital waveform data using, for example, a factorial HMM (Hidden Markov Model). Specifically, the separating unit 240 can first obtain model parameters obtained by modeling the operating conditions of the respective electric devices. Next, the separation unit 240 can separate the acquired digital waveform data into a plurality of state variables for each time series using the Factorial HMM. Furthermore, the separation unit 240 can detect one of the separated state variables that matches the model parameter of the same electrical device. In addition, when one electrical device is expressed by a plurality of state variables, the separation unit 240 may detect that the plurality of state variables correspond to the same electrical device.
  • a factorial HMM Hidden Markov Model
  • the operation estimation unit 250 analyzes the digital waveform data separated by the separation unit 240, and estimates the operation state of each of the electrical devices.
  • the motion estimation unit 250 can estimate which operation state of which electric device corresponds to each state variable.
  • the operation estimation unit 250 stores a current waveform pattern for each type and operation state of an electric device such as the television 3a, the electric pot 3b and / or the refrigerator 3c, for example, and the current waveform pattern and a state variable actually acquired. Can be compared to estimate the type and operating status of the electrical device.
  • the operating status can be, for example, information such as power consumption of the electric device, operation level, abnormality, deterioration, and / or presence.
  • the operation estimation unit 250 can also analyze the demand breakdown of the user's power from the information of each electrical device. Furthermore, the operation estimation unit 250 can also derive the recommended usage method of the electric device according to the demand response of the power and the variable price by the demand breakdown analysis. In addition, the motion estimation unit 250 can also derive predetermined information to be presented to the user based on the information of each electrical device.
  • the predetermined information is, for example, a recommendation for maintenance of the electrical device, a recommendation for replacement, a notification of forgetting to turn off, and / or a notification of fire or destruction.
  • the predetermined information may be information derived by combining information of a plurality of electrical devices. For example, the predetermined information may be information in which the user's behavior is estimated from the operation status of the plurality of electric devices and / or information in which the user's situation is estimated from the plurality of electric device abnormalities. Good.
  • the above-mentioned demand response is to perform price change and reward return according to the amount of power demand.
  • the demand response is, for example, dynamically setting a charge so that the power price becomes high during an expected peak time zone of tight supply and demand and / or reducing points by the power saving.
  • the conversion unit 120 converts analog waveform data into digital waveform data by a predetermined number of samples including three zero crossing points, and when conversion is completed, conversion can be stopped until a predetermined time passes. .
  • the predetermined number of samples can be equal to or greater than the number of samples of one period of the analog waveform data.
  • FIG. 3 is a graph for explaining sampling of the conversion unit 120 in the signal processing system according to the embodiment of the present invention.
  • FIG. 3 shows an example in which the converter 120 samples analog waveform data of 60 Hz frequency and 3 channels of current and voltage into digital waveform data with a resolution of 14 bits and 128 samples per cycle for one second.
  • the conversion unit 120 can perform sampling with 128 samples at a time interval of about 16.6 ms for one cycle of analog waveform data.
  • the sampling rate at this time is 128 [sample / sec] /16.66 [ms] ⁇ 7680 [sample / sec].
  • the conversion unit 120 can represent the zero value by the median value of the output.
  • the conversion unit 120 can express a zero value with 8192 in the case of a resolution of 14 bits.
  • the conversion unit 120 can sample three channels of two channels of current and one channel of voltage at the same time. In addition, when three channels can not be sampled simultaneously due to hardware restrictions, etc., the conversion unit 120 may sample each of the current channels and the voltage as a pair, and delay each sample timing by one cycle of the waveform for sampling. it can.
  • the predetermined number of samples may be the number of samples obtained by adding the number of samples corresponding to the maximum frequency fluctuation of the analog waveform data to the number of samples of one period of the analog waveform data.
  • FIG. 4 is a graph for explaining the number of samples of the conversion unit 120 in the signal processing system according to the embodiment of the present invention.
  • FIG. 4 shows an example of sampling in the case where the number of samples for one cycle of the analog waveform data is 128 and the maximum frequency fluctuation is ⁇ 0.6%.
  • the conversion unit 120 can perform sampling by sampling two samples before and after 128 samples and sampling so that three zero crossing points fall within 132 samples.
  • the measuring apparatus 10 further includes a storage unit 130 that stores the digital waveform data converted by the conversion unit 120, and a normalization unit 150 that converts the digital waveform data stored in the storage unit 130 into normalized waveform data. It can have.
  • the storage unit 130 can be, for example, a recording medium such as a hard disk and / or a non-volatile memory.
  • the storage unit 130 can have a capacity corresponding to the data amount of the digital waveform data.
  • the measuring apparatus 10 further includes a determination unit 140 that determines the waveform cycle from the time of the waveform start point and the time of the waveform end point of the digital waveform data stored in the storage unit 130. Digital waveform data can be cut out from the time of the waveform cycle.
  • the normalization unit 150 generates approximate waveform data of analog waveform data, calculates a normalization period from the number of samples of one period of the analog waveform data and the waveform period, and calculates the approximate waveform data from the waveform origin by the normalization period. It can be sampled.
  • the normalization unit 150 corrects the deviation between the start point and end point of the digital waveform data as shown in FIG. 5 and the start point and end point of the sampling, and performs sampling with the normalization period to accurately obtain 1 from the start point of the digital waveform data.
  • the voltage and current waveform data of the period can be cut out.
  • the determination unit 140 compares the sign of the voltage value at each adjacent sampling point of the digital waveform data, sets the zero cross point at which the voltage value reverses from negative to positive as the waveform start point, and reverses the voltage value from negative to positive,
  • the zero-cross point adjacent in the positive direction on the time axis with respect to the waveform start point can be used as the waveform end point, and the difference between the waveform start point and the waveform end point can be used as the waveform cycle.
  • the signal processing system further compresses the compressed waveform data after passing through the communication path, and a compression unit 160 that compresses the digital waveform data to be transmitted to the processing device to a data amount according to the communication capacity of the communication path.
  • a thawing unit 220 can be provided.
  • the compression unit 160 compresses the encoded data obtained by performing parametric encoding on the digital waveform data, the decoded data of the encoded data, and the differential data of the input digital waveform data into encoded differential encoded data. Lossless encoding of compression can be performed.
  • the differential data may be encoded by a code that efficiently compresses the differential, and may be encoded by, for example, entropy coding such as Huffman coding or arithmetic coding, linear predictive coding and / or differential coding, etc. it can.
  • the decompression unit 220 can decompress the original digital waveform data by decoding and adding the encoded data and the differentially encoded data compressed by the compression unit 160, respectively.
  • the signal processing system may further include a display unit 260 for displaying the result of estimation in the motion estimation unit 250 to the user.
  • the display unit 260 can automatically list and display information of each electrical device according to the estimation result.
  • the information of each electrical device may be, for example, the real-time operating status of the electrical device, frequency of use, and / or power consumption.
  • the determination unit 140 can perform a predetermined preparation process before performing the normalization process.
  • the predetermined preparation process is to correct the time-direction deviation between the voltage waveform data and the current waveform data caused by the detection unit 110 or the like, and set the time when the conversion unit 120 first samples as the absolute time 0 and / or It is possible to perform processing such as setting the coordinate of the intermediate value in the two-dimensional coordinate of the current value to 0 or the like.
  • the determination unit 140 can derive an absolute time t n at a predetermined sampling point n by using a sampling period T sample as Formula (1) as the predetermined preparation processing.
  • the determination unit 140 determines that the time accuracy when calculating t n is 1 microsecond, the calculation of the rounding error of T sample falls within 1 microsecond by including nanoseconds of the sampling period T sample in the formula.
  • the determination unit 140 can obtain the zero cross points of the start point and the end point of the voltage waveform data after the above-described preparation process is completed.
  • FIG. 6 is a graph for explaining the determination of the waveform cycle of the determination unit in the signal processing system according to the embodiment of the present invention.
  • the sampling number 132 there is an example where the zero cross point of the start point of the voltage waveform data exists between sample points 2 and 3 and the zero cross point of the end point of the voltage waveform data exists between sample points 129 and 130. It is shown.
  • the determination unit 140 determines the sign of data in the forward direction on the time axis from the first sample point, and when the sign changes from negative to positive at the sample point n, an interval between the sample point n-1 and the sample point n It can be determined that there is a zero crossing point of the waveform start point at.
  • the determination unit 140 can obtain the waveform start point and the start point time shift Tshift_S of the time t n by Formula (2). Further, the determination unit 140 can avoid the occurrence of a large rounding error due to the calculation of voltages by performing the calculation order in the order of the expressions in the calculation of the equation (2).
  • the determination unit 140 can obtain the waveform start time T S from the start time shift Tshift_S according to equation (3).
  • FIG. 6A shows an example in which the sign changes from negative to positive at sample point 3 of the waveform data.
  • the determination unit 140 can obtain the waveform start time T S as shown in equation (4).
  • the determination unit 140 determines the sign of the data in the reverse direction on the time axis from the last sample point (time t E ), and when the sign changes from negative to positive at the sample point n, the sample point n and the sample point It can be determined that there is a zero crossing point of the waveform end point in the section of n + 1.
  • the determination unit 140 can obtain the end point time shift Tshift_E of the waveform end point and the time point t n according to Expression (5). Further, the determination unit 140 can avoid the occurrence of a large rounding error due to the calculation of the voltages by performing the calculation order in the order of the expressions in the calculation of the equation (5).
  • the determination unit 140, the waveform ending time T E than the end point time shift Tshift_E can be determined from the equation (6).
  • FIG. 5A shows an example in which the sign changes from negative to positive at sample point 129 of the waveform data.
  • the determination unit 140 can obtain the waveform end point time t E as shown in equation (7).
  • the determination unit 140 can obtain the measurement cycle Tcycle of the waveform measured using the above-described start point and end point time shift according to Expression (8).
  • the normalization unit 150 can derive a normalized period T sample — NEW for sampling with a predetermined number of samples M using the measured period T cycle of the measured waveform according to equation (9).
  • the normalization unit 150 using the normalized period T Sample_NEW, the absolute time S m at a given sample point m can be derived as equation (10).
  • the normalization unit 150 generates approximate waveform data of analog waveform data from the digital waveform data by linear approximation or the like, and using the above-described waveform starting point and normalized period, the voltage of one period is accurately calculated from the approximate waveform data and Current waveform data can be cut out.
  • the normalization unit 150 may generate approximate waveform data at an arbitrary time, as long as the waveform data is cut out.
  • the normalization unit 150 can perform pseudo sampling by calculation using the normalization period from the start point to the end point of the approximate waveform data.
  • the normalization unit 150 can derive the index n of the sample point t n near the sample point S m in the pseudo sampling as shown in equation (11), as shown in FIG. 7B.
  • the normalization unit 150 may derive the digital voltage and current waveform data normalized on the basis of the measurement data of the sample point t n + 1 adjacent to the sample point t n as described above.
  • the normalization unit 150 can derive the normalized digital voltage waveform data Vnew m as shown in equation (12), as shown in FIG. 7C.
  • the normalization unit 150 can derive the normalized digital current waveform data Inew m as in equation (13).
  • the normalization unit 150 can perform pseudo sampling by calculation from the starting point to the end point of the approximate waveform data using the normalization period, and can accurately cut out a waveform for one period from the starting point of the digital waveform data.
  • the measuring device 10 is preferably small and lightweight, and can be adhered to a wall near the distribution board with a double-sided tape.
  • the size of the housing is preferably 60 mm or less, 70 mm or less, and 25 mm or less.
  • the measuring apparatus 10 can easily make settings regarding connection with a relay device such as a home router and security. It is possible to have a Wi-Fi® Protected Setup (WPS®) switch and / or a setup initialization switch to restore the settings of the factory measuring device 10.
  • WPS® Wi-Fi® Protected Setup
  • the measuring device 10 may have a clocking function, and the clocking error can be made 1 second or less in one day. Moreover, the measuring apparatus 10 can also synchronize time via a communication channel.
  • the measurement device 10 can communicate with the processing device 20 with a predetermined function using a Web application programming interface (Web API).
  • Web API Web application programming interface
  • the measuring apparatus 10 has, as predetermined functions, for example, an activation request for the processing apparatus 20, uploading of information on the measuring apparatus 10, uploading of measurement data, confirmation of firmware update instruction, firmware download, confirmation of reboot instruction and / or time It can have functions such as setting.
  • the measuring device 10 can transmit a device ID, such as a MAC address and / or a serial number, a firmware version and / or start time information, etc., to the processing device 20 as information of the measuring device 10.
  • a device ID such as a MAC address and / or a serial number, a firmware version and / or start time information, etc.
  • the measurement apparatus 10 can confirm settings and / or setting items from a remote location via a communication path.
  • the measuring device 10 can confirm settings and / or setting items, for example, through a built-in web server and / or by remote login using Secure Shell (SSH (registered trademark)).
  • SSH Secure Shell
  • the measuring device 10 may have a remote reset function.
  • the measuring apparatus 10 may periodically communicate with the processing apparatus 20, and may execute remote reset when a predetermined condition is satisfied or when firmware is updated.
  • the measuring device 10 can have two states, active and non-active, as normal states. When in the non-active state, the measuring device 10 can keep sending an activation request to the processing device 20 until it is activated. When performing the activation, the measurement device 10 can receive an access key from the processing device 20 in response to the transmitted activation request. In the active state, the measuring device 10 can continue to send measurement data to the processing device 20 while accessing the processing device 20 using the access key and performing time alignment, instruction confirmation from the processing device 20, etc. .
  • the processing device 20 activates the measuring device 10 through the communication path, deactivates the measuring device 10, receives measurement data from the measuring device 10, receives device information from the measuring device 10, and the measuring device 10
  • the firmware update instruction may be sent to update the firmware
  • the reboot instruction may be sent to the measuring device 10, rebooted, and / or the time of the measuring device 10 may be synchronized.
  • the processing apparatus 20 deactivates the predetermined measuring apparatus 10
  • the measuring apparatus 10 can not access the processing apparatus 20 by deactivating the access key.
  • the processing device 20 can shift the measuring device 10 to the non-active state when the access key becomes invalid.
  • the signal processing method of the present invention is a signal processing method including a measurement step (S100) and a processing step (S200), and the measurement step (S100) includes a detection step (S110). , Conversion step (S120) and transmission step (S130), and the processing step (S200) includes a reception step (S210), a storage step (S220), a separation step (S230), and an operation estimation step (S230). And S240).
  • the current and voltage supplied from the power supply to the plurality of electrical devices are measured. This step can be processed by the measuring device 10 described above.
  • the operation status of each of the electrical devices is estimated from the measurement result in the measurement step (S210). This step can be processed by the processing device 20 described above.
  • step (S110) analog waveform data of current and voltage supplied to the electric device are detected. This step can be processed by the detection unit 110 described above.
  • the analog waveform data detected in the detection step (S110) is sampled at a predetermined sampling frequency and converted into digital waveform data. This step can be processed by the conversion unit 120 described above.
  • step (S130) digital waveform data is transmitted. This step can be processed by the transmission unit 170 described above.
  • the digital waveform data transmitted in the transmitting step (S130) is received. This step can be processed by the receiving unit 210 described above.
  • the digital waveform data received in the receiving step (S210) is stored. This step can be processed by the storage unit 230 described above.
  • the separation step (S230) the digital waveform data stored in the storage step (S220) is separated into digital waveform data for each electrical device. This step can be processed by the separation unit 240 described above.
  • the digital waveform data separated in the separation step (S230) is analyzed to estimate the operation status of each of the electrical devices.
  • This step can be processed by the motion estimation unit 250 described above.
  • the signal processing program of the present invention is a signal processing program that causes a computer to realize a measurement function and a processing function, and the measurement function causes a computer to realize a detection function, a conversion function, and a transmission function.
  • the processing function is characterized by causing a computer to realize a reception function, a storage function, a separation function, and a motion estimation function.
  • the measurement function measures the current and voltage supplied from the power supply to a plurality of electrical devices. This function can be realized by the measuring device 10 described above.
  • the processing function estimates the operating status of each of the electrical devices from the measurement results of the measuring device. This function can be realized by the processing device 20 described above.
  • the detection function detects analog waveform data of current and voltage supplied to the electric device. This function can be realized by the detection unit 110 described above.
  • analog waveform data detected by the detection function is sampled at a predetermined sampling frequency and converted into digital waveform data.
  • This function can be realized by the conversion unit 120.
  • the transmission function transmits digital waveform data to the processing function.
  • This function can be realized by the transmission unit 170 described above.
  • the reception function receives the digital waveform data transmitted by the transmission function. This function can be realized by the receiving unit 210 described above.
  • the storage function stores digital waveform data received by the reception function. This function can be realized by the storage unit 230 described above.
  • the separation function separates the digital waveform data stored by the storage function into digital waveform data for each electrical device. This function can be realized by the separation unit 240 described above.
  • the motion estimation function analyzes the digital waveform data separated by the separation function to estimate the operation status of each of the electrical devices. This function can be realized by the motion estimation unit 250 described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 複数の電気機器の動作状況を遠隔地にて詳細に推定する。 本発明の信号処理システムは、電源から複数の電気機器に供給される電流および電圧を測定する測定装置と、測定装置に通信路を介して接続され、測定装置の測定結果から電気機器の各々の動作状況を推定する処理装置とを備える信号処理システムであって、測定装置は、電気機器に供給される電流および電圧のアナログ波形データを検知する検知部と、検知部により検知されたアナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する変換部と、デジタル波形データを処理装置へ送信する送信部とを有し、処理装置は送信部から送信されたデジタル波形データを受信する受信部と、受信部で受信されたデジタル波形データを格納する格納部と、格納部に格納されたデジタル波形データを、電気機器の電気機器毎のデジタル波形データに分離する分離部と、分離部により分離されたデジタル波形データを分析し、電気機器の各々の動作状況を推定する動作推定部とを有する。

Description

信号処理システム、信号処理方法および信号処理プログラム
 本発明は、信号処理システム、信号処理方法および信号処理プログラム、特に、電気機器の電流および電圧情報から各々の動作状況を推定する信号処理システム、信号処理方法および信号処理プログラムに関する。
 近年、分電盤の主幹に流れる電流を計測して各電気機器に流れる電流を分離推定するための技術が提案されている。分電盤の主幹一か所の計測によって施設中の電力消費を機器ごと把握できることが大きな利点となっている。
 例えば、特許文献1には、電力需用変動量から電気機器を推定する技術が開示されている。この技術は、複数の電気機器の電力需用変動波形の大きさおよび周期と、電気機器の間欠運転時に出現する電力需用変動量の大きさおよび周期を比較することにより、間欠運転をしている電気機器を推定する機器推定装置に関するものである。
 特許文献1記載の技術では、オン、オフ時の差分を観測しているため、電気機器の状況を2値でしか把握できない。また、特許文献1記載の技術では、閾値による判定を行っている為、多数の電気機器が接続された場合、閾値の検出が困難となる。
 一方で、電気機器の詳細な状況を判定する技術として、識別モデルを用いる方法が提案されている。例えば、特許文献2には、データベースに蓄積した識別モデルにより電気機器を識別する技術が開示されている。この技術は、データベースに蓄積した各電気機器の複数の状態に対応した識別モデルを用いることにより、電気機器の詳細な状況を識別することのできる電力監視装置に関するものである。
 しかしながら、特許文献2記載の技術では、監視する電気機器が設置された施設ごとに監視装置を設置する必要があり、導入には高いコストがかかる。これに対して、通信路を介して遠隔地に設置されたサーバに測定データを送信し、サーバ側で解析する方法が有効であるが、特許文献2記載の技術に適応した場合、送信データ量が膨大となり、通信容量をひっ迫する恐れがある。また、上記方法を、特許文献1記載の技術に適応した場合、通信容量に対する負荷が少ないが、電気機器の詳細な状況を判定することができない。
特許第5235479号公報 特開2012-16270号公報
 上記事情に鑑み、本発明は、送信データ量を削減しつつ、複数の電気機器の電流および電圧情報から各々の動作状況を遠隔地にて詳細に推定することを目的とするものである。
 本発明の信号処理システムは、電源から複数の電気機器に供給される電流および電圧を測定する測定装置と、測定装置に通信路を介して接続され、測定装置の測定結果から電気機器の各々の動作状況を推定する処理装置とを備える信号処理システムであって、測定装置は、電気機器に供給される電流および電圧のアナログ波形データを検知する検知部と、検知部により検知されたアナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する変換部と、デジタル波形データを処理装置へ送信する送信部とを有し、処理装置は、送信部から送信されたデジタル波形データを受信する受信部と、受信部で受信されたデジタル波形データを格納する格納部と、格納部に格納されたデジタル波形データを、電気機器毎のデジタル波形データに分離する分離部と、分離部により分離されたデジタル波形データを分析し、電気機器の各々の動作状況を推定する動作推定部とを有する。
 上記変換部は、アナログ波形データを、3個のゼロクロス点を含む所定のサンプル数だけデジタル波形データに変換し、変換が終了した場合、変換を所定の時間が経過するまで停止することができる。
 上記所定のサンプル数は、アナログ波形データの1周期分のサンプル数以上とすることができる。所定のサンプル数は、アナログ波形データの1周期分のサンプル数にアナログ波形データの最大周波数変動に対応するサンプル数を加えたサンプル数とすることもできる。
 上記測定装置は、さらに、変換部により変換されたデジタル波形データを記憶する記憶部と、記憶部に記憶されたデジタル波形データを正規化波形データに変換する正規化部とを有することができる。
 上記測定装置は、さらに、記憶部に記憶されたデジタル波形データの波形起点の時刻、波形終点の時刻から波形周期を判定する判定部を有し、正規化部は、波形起点の時刻から波形周期分のデジタル波形データを切り出すことができる。
 上記正規化部は、アナログ波形データの近似波形データを生成し、アナログ波形データの1周期分のサンプル数と波形周期により正規化周期を算出し、近似波形データを波形起点から正規化周期によりサンプリングすることができる。
 上記判定部は、デジタル波形データの隣接する各サンプリング点における電圧値の符号を比較し、電圧値が負から正に反転するゼロクロス点を波形起点とし、電圧値が負から正に反転し、波形起点に対して時間軸上で正方向に隣接するゼロクロス点を波形終点とし、波形起点と波形終点の差分時間を波形周期とすることができる。
 上記信号処理システムは、さらに、処理装置へ送信するデジタル波形データを通信路の通信容量に応じたデータ量に圧縮する圧縮部と、通信路を通った後に、圧縮された波形データを解凍する解凍部とを備えることができる。
 上記信号処理システムは、さらに、推定部における推定の結果を利用者に対して表示する表示部を備えることができる。
 本発明の信号処理方法は、電源から複数の電気機器に供給される電流および電圧を測定する測定ステップと、測定ステップにおける測定結果から電気機器の各々の動作状況を推定する処理ステップとを備える信号処理方法であって、測定ステップは、電気機器に供給される電流および電圧のアナログ波形データを検知する検知ステップと、検知ステップにより検知されたアナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する変換ステップと、デジタル波形データを送信する送信ステップとを有し、処理ステップは、送信ステップにより送信されたデジタル波形データを受信する受信ステップと、受信ステップにより受信されたデジタル波形データを格納する格納ステップと、格納ステップにより格納されたデジタル波形データを、電気機器毎のデジタル波形データに分離する分離ステップと、分離ステップにより分離されたデジタル波形データを分析し、電気機器の各々の動作状況を推定する動作推定ステップとを有することを特徴とする。
 本発明の信号処理プログラムは、コンピュータに、電源から複数の電気機器に供給される電流および電圧を測定する測定機能と、測定装置の測定結果から電気機器の各々の動作状況を推定する処理機能とを実現させる信号処理プログラムであって、測定機能は、コンピュータに、電気機器に供給される電流および電圧のアナログ波形データを検知する検知機能と、検知機能により検知されたアナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する変換機能と、デジタル波形データを処理機能へ送信する送信機能とを実現させ、処理機能は、コンピュータに、送信機能により送信されたデジタル波形データを受信する受信機能と、受信機能により受信されたデジタル波形データを格納する格納機能と、格納機能により格納されたデジタル波形データを、電気機器毎のデジタル波形データに分離する分離機能と、分離機能により分離されたデジタル波形データを分析し、電気機器の各々の動作状況を推定する動作推定機能とを実現させることを特徴とする。
 本発明の信号処理システム、信号処理方法および信号処理プログラムによれば、送信データ量を削減しつつ、複数の電気機器の電流および電圧情報から各々の動作状況を遠隔地にて詳細に推定することができる。
本発明の実施形態における信号処理システムの構成図を示す 本発明の実施形態に係る信号処理システムにおける処理の流れを説明する為の模式図を示す 本発明の実施形態に係る信号処理システムにおける変換部のサンプリングを説明する為のグラフを示す 本発明の実施形態に係る信号処理システムにおける変換部のサンプリング数を説明する為のグラフを示す 本発明の実施形態に係る信号処理システムにおける位相ずれを説明する為のグラフを示す 本発明の実施形態に係る信号処理システムにおける判定部の波形周期の判定を説明する為のグラフを示す 本発明の実施形態に係る信号処理システムにおける正規化部の正規化処理を説明する為のグラフを示す 本発明の実施形態に係る信号処理方法における処理を説明する為のフローチャートを示す
 本発明の実施形態における信号処理システムを、添付の図面を参照しながら詳細に説明する。
 図1は、本発明の実施形態における信号処理システムの構成図を示したものである。
 図1に示すように、本発明の信号処理システムは、測定装置10と、処理装置20とを備える信号処理システムであって、測定装置10は、検知部110と、変換部120と、送信部170とを有し、処理装置20は、受信部210と、格納部230と、分離部240と、動作推定部250とを有する。なお、図1では、上記デジタル情報管理システム10が、さらに、記憶部130と、判定部140と、正規化部150と、圧縮部160と、解凍部220と、表示部260とを備える例が示されている。
 本発明の信号処理システムは、図2に模式的に示すように、分電盤1から複数の電気機器に供給されるすべての電流および電圧の波形データを測定装置10により測定し、測定装置10に通信路を介して接続された処理装置20により測定結果から電気機器の各々の電流および電圧の波形データを分離し、動作状況を推定する。図2では、電気機器として、テレビ3a、電気ポット3bおよび/または冷蔵庫3cが存在する例を示している。
 上記測定装置10は、電源から複数の電気機器に供給される電流および電圧を測定する。また、測定装置10は、有効電力量値を所定の時間ごとに測定するおよび/または電流および電圧の波形データを元に1周期分の電力量から所定の時間当たりの電力量を推定することができる。
 上記処理装置20は、測定装置10に通信路を介して接続され、測定装置10の測定結果から電気機器の各々の動作状況を推定する。
 上記検知部110は、電気機器に供給される電流および電圧のアナログ波形データを検知する。検知部110は、家庭内の分電盤1の主幹側、アンペアメータ部分に設置することができる。検知部110は、例えば、100Vから200Vまたは220Vから240Vの範囲の電圧を測定することができる。検知部110は、例えば、60A、120Aまたは300Aを上限とする電流を測定することができる。検知部110は、電源が単相3線式電源である場合、電流2チャンネルおよび電圧1チャンネルの合計3チャンネルを検知することができる。
 上記変換部120は、検知部110により検知されたアナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する。変換部120は、アナログ/デジタル変換の分解能を14ビット以上、サンプリング周波数を1チャンネル当たり7680sample/sec以上、入力オフセットを最下位1ビット以内および/または測定誤差を±1%以下とすることができる。変換部120は、入力オフセットおよび/または測定誤差をハードウェアおよび/または所定の補正値を基にしてファームウェアにより調整することができる。所定の補正値は、例えば、工場出荷時に測定装置10の内部の不揮発性メモリに埋め込まれるおよび/または通信路経由でダウンロードされることができる。
 上記送信部170は、デジタル波形データを処理装置20へ送信する。送信部170は、WPS等の接続設定手段によりホームサーバ等の中継機器との接続を確立し、中継機器を介して所定の通信路へデジタル波形データ等の通信データを送信することができる。送信部170は、例えば、インターネットおよび/または専用の通信網を介し、処理装置20と無線および/または有線により接続することができる。無線通信の伝送規格は、例えば、IEEE802.11bおよび/または上位互換の通信規格とすることができる。有線通信の伝送規格は、例えば、Ethernet(100Base-T)または上位互換の通信規格とすることができる。送信部170は、処理装置20との通信において、実効通信速度を上り下りとも19.2kbps以上、通信間隔を1秒毎に1回以上および/または無線到達距離を出力0dBmにおいて、見通し100mでエラーレート1%以下とすることができる。
 上記送信部170は、中継機器とTransmission Control Protocol/Internet Protocol(TCP/IP)等の通信プロトコルにより接続することができる。また、測定装置10は、中継機器からIPアドレス等を、例えば、Dynamic Host Configuration Protocol(DHCP)を用いることにより取得してもよい。
 上記送信部170は、さらに、通信データを暗号化して処理装置20と通信を行ってもよい。送信部170は、例えば、Secure Sockets Layer(SSL)等のプロトコルにより通信データが暗号化されたHypertext Transfer Protocol Secure(HTTPS)のようなセキュアな通信を行うことができる。また、送信部170は、送信データの暗号化にハッシュ関数を使用してもよい。送信部170は、例えば、Hash-based Message Authentication Code(HMAC)等を用いて認証管理を行うことができる。
 上記受信部210は、送信部170から送信されたデジタル波形データを受信する。受信部210は、送信部170において、デジタル波形データ等が暗号化されている場合、元のデジタル波形データ等を復号することができる。
 上記格納部230は、受信部210で受信されたデジタル波形データを格納する。格納部230は、ハードディスクおよび/または不揮発性のメモリなどの記録媒体とすることができる。格納部230は、デジタル波形データを処理が完了するまでの期間、一時的に格納してもよく、データバックアップ等の用途に応じた期間、格納してもよい。
 上記分離部240は、格納部230に格納されたデジタル波形データを、電気機器毎のデジタル波形データに分離する。分離部240は、例えば、Factorial HMM(Hidden Markov Model)を用いてデジタル波形データを分離することができる。具体的には、まず、分離部240は、各電気機器の動作状況をモデル化したモデルパラメータを求めることができる。次に、分離部240は、Factorial HMMにより、取得したデジタル波形データを時系列毎に複数の状態変数に分離することができる。さらに、分離部240は、分離された状態変数のうち、同一の電気機器のモデルパラメータに適合するものを検出することができる。また、分離部240は、1つの電気機器が複数の状態変数で表現されている場合、その複数の状態変数が同一の電気機器に対応するものであることを検出してもよい。
 上記動作推定部250は、分離部240により分離されたデジタル波形データを分析し、電気機器の各々の動作状況を推定する。動作推定部250は、各状態変数がどの電気機器のどのような動作状況に対応するかを推定することができる。動作推定部250は、例えば、テレビ3a、電気ポット3bおよび/または冷蔵庫3cなど電気機器の種類および動作状況ごとに電流波形パターンを記憶し、その電流波形パターンと、実際に取得された状態変数とを比較して、電気機器の種類および動作状況を推定することができる。動作状況は、例えば、電気機器の消費電力、稼働レベル、異常や劣化および/または存在等の情報とすることができることができる。
 上記動作推定部250は、各電気機器の情報から利用者の電力の需要内訳分析を行うこともできる。さらに、動作推定部250は、需要内訳分析により、電力の需要応答や変動価格に応じた電気機器の推奨する使用方法を導出することもできる。また、動作推定部250は、各電気機器の情報に基づいて、利用者に提示する所定の情報を導出することもできる。所定の情報とは、電気機器のメンテナンスの実施の推奨、買い替えの推奨、切り忘れの報知および/または火災や破壊の報知等である。また、所定の情報は、複数の電気機器の情報を複合し、導出した情報でもよい。例えば、所定の情報は、複数の電気機器の稼働状況から利用者の行動を推定した情報および/または複数の電気機器の異常から利用者の置かれている状況を推定した情報等であってもよい。
 上記需要応答とは、電力需要量に応じて価格変更や、報酬の還元を行うものである。需要応答は、例えば、需給ひっ迫の予想されるピーク時間帯に電力価格が高くなるように動的に料金を設定するおよび/または節電分だけポイントを還元する等である。
 以上、説明した本発明の信号処理システムによれば、送信データ量を削減しつつ、複数の電気機器の電流および電圧情報から各々の動作状況を遠隔地にて詳細に推定することができる。
 上記変換部120は、アナログ波形データを、3個のゼロクロス点を含む所定のサンプル数だけデジタル波形データに変換し、変換が終了した場合、変換を所定の時間が経過するまで停止することができる。
 上記所定のサンプル数は、アナログ波形データの1周期分のサンプル数以上とすることができる。
 図3は、本発明の実施形態に係る信号処理システムにおける変換部120のサンプリングを説明する為のグラフである。図3では、変換部120が、周波数60Hzおよび3チャンネルの電流および電圧のアナログ波形データを1秒に1周期分、分解能14bitおよびサンプル数128でデジタル波形データにサンプリングする例が示されている。
 上記変換部120は、図3(a)に示すように、アナログ波形データ1周期分の時間間隔約16.6msにおいて、サンプル数128でサンプリングすることができる。この際のサンプリングレートは、128[sample/sec]/16.66[ms]≒7680[sample/sec]となる。また、変換部120は、0値を出力の中央値で表現することができる。変換部120は、解像度14bitの場合、0値を8192で表現することができる。
 上記変換部120は、図3(b)に示すように、電流および電圧のデジタル波形データを約16.66msの時間、サンプリングし、ペアとして管理することができる。その後、変換部120は、変換を約983.4msが経過するまで停止することができる。この際のデータ量は、14[bit]×128[sample/sec]×3[chanel]=5376[bit/sec]となる。
 上記変換部120は、同一時刻で電流2チャンネルおよび電圧1チャンネルの3チャンネルをサンプリングできる。また、変換部120は、ハードウェアの制約等により、3チャンネル同時のサンプリングが出来ない場合に、電流1チャンネルおよび電圧をそれぞれペアとして、それぞれのサンプルタイミングを波形1周期分遅らせてサンプリングすることもできる。
 上記所定のサンプル数は、アナログ波形データの1周期分のサンプル数にアナログ波形データの最大周波数変動に対応するサンプル数を加えたサンプル数とすることもできる。
 図4は、本発明の実施形態に係る信号処理システムにおける変換部120のサンプル数を説明する為のグラフである。図4では、上記変換部120が、アナログ波形データの1周期分のサンプル数が128で最大周波数変動が±0.6%であった場合のサンプリングの例が示されている。
 上記変換部120は、例えば、128サンプルの前後2サンプルずつ余分にサンプリングし、132サンプル内に3個のゼロクロス点が入るようにサンプリングすることができる。
 上記測定装置10は、さらに、変換部120により変換されたデジタル波形データを記憶する記憶部130と、記憶部130に記憶されたデジタル波形データを正規化波形データに変換する正規化部150とを有することができる。
 上記記憶部130は、例えば、ハードディスクおよび/または不揮発性のメモリなどの記録媒体とすることができる。また、記憶部130は、デジタル波形データのデータ量に応じた容量を有することができる。
 上記測定装置10は、さらに、記憶部130に記憶されたデジタル波形データの波形起点の時刻、波形終点の時刻から波形周期を判定する判定部140を有し、正規化部150は、波形起点の時刻から波形周期分のデジタル波形データを切り出すことができる。
 上記正規化部150は、アナログ波形データの近似波形データを生成し、アナログ波形データの1周期分のサンプル数と波形周期により正規化周期を算出し、近似波形データを波形起点から正規化周期によりサンプリングすることができる。
 上記正規化部150は、図5に示すようなデジタル波形データの起点および終点とサンプリングの起点および終点とのズレを補正し、正規化周期によりサンプリングすることでデジタル波形データの起点から正確に1周期分の電圧および電流波形データを切り出すことができる。
 上記判定部140は、デジタル波形データの隣接する各サンプリング点における電圧値の符号を比較し、電圧値が負から正に反転するゼロクロス点を波形起点とし、電圧値が負から正に反転し、波形起点に対して時間軸上で正方向に隣接するゼロクロス点を波形終点とし、波形起点と波形終点の差分時間を波形周期とすることができる。
 上記信号処理システムは、さらに、処理装置へ送信するデジタル波形データを通信路の通信容量に応じたデータ量に圧縮する圧縮部160と、通信路を通った後に、圧縮された波形データを解凍する解凍部220とを備えることができる。
 上記圧縮部160は、デジタル波形データにパラメトリック符号化を行った符号化データと、符号化データの復号データおよび入力したデジタル波形データの差分データを符号化した差分符号化データに圧縮することにより高圧縮の可逆符号化をすることができる。差分データは、差分を効率的に圧縮する符号により符号化され、例えば、ハフマン符号化や算術符号化などのエントロピー符号化、線形予測符号化および/または差分符号化などにより符号化されることができる。
 上記解凍部220は、圧縮部160により圧縮された符号化データと差分符号化データをそれぞれ復号し、加算することにより元のデジタル波形データへ解凍することができる。 
 上記信号処理システムは、さらに、動作推定部250における推定の結果を利用者に対して表示する表示部260を備えることができる。
 表示部260は、推定の結果により、各電気機器の情報を自動的にリスト化して表示することができる。各電気機器の情報は、例えば、電気機器のリアルタイムの動作状況、使用頻度、および/または消費電力などとすることができる。
 以下、本発明の実施形態に従う判定部140および正規化部150の正規化処理の詳細について説明する。
 上記判定部140は、デジタル波形データが入力されると正規化処理を行う前に所定の準備処理を行うことができる。所定の準備処理とは、検知部110等に起因する電圧波形データと電流波形データの時間方向のズレを補正する、変換部120が最初にサンプルした時刻を絶対時刻0とするおよび/または電圧と電流値の2次元座標における中間値の座標を0とする等の処理とすることができる。
 上記判定部140は、所定の準備処理として、所定のサンプリング点nにおける絶対時間tをサンプリング周期Tsampleにより式(1)のように導出することができる。
Figure JPOXMLDOC01-appb-I000001
 上記判定部140は、tを求めた際の時間精度1マイクロ秒とするため、サンプリング周期Tsampleのナノ秒まで計算式に含める事により、Tsampleの丸め誤差の累積が1マイクロ秒に収まるようにすることができる。
 上記判定部140は、上述した準備処理が完了したのち、電圧波形データの起点および終点のゼロクロス点を求めることができる。図6は、本発明の実施形態に係る信号処理システムにおける判定部の波形周期の判定を説明する為のグラフである。図6では、サンプリング数132の場合において、サンプル点2と3の間に電圧波形データの起点のゼロクロス点が、サンプル点129と130の間に電圧波形データの終点のゼロクロス点が存在する例が示されている。
 上記判定部140は、最初のサンプル点から時間軸上の順方向にデータの符号を判定し、サンプル点nで符号が負から正に変わった時、サンプル点n-1とサンプル点nの区間に波形起点のゼロクロス点があると判定することができる。
 上記判定部140は、サンプル点nにおける電圧値をVとすると、波形起点と時間tの起点時間偏移Tshift_Sを式(2)により求めることができる。また、判定部140は、式(2)の演算において、演算順序を式の順に行うことにより、電圧同士の演算による大きな丸め誤差の発生を回避することができる。
Figure JPOXMLDOC01-appb-I000002
 上記判定部140は、起点時間偏移Tshift_Sより波形起点時間Tを式(3)により求めることができる。
Figure JPOXMLDOC01-appb-I000003
 図6(a)では、波形データのサンプル点3で符号が負から正に変わる例を示している。この場合、上記判定部140は、図6(b)に示すように、波形起点時間Tを式(4)のように求めることができる。
Figure JPOXMLDOC01-appb-I000004
 上記判定部140は、最後のサンプル点(時間t)から時間軸上の逆方向にデータの符号を判定し、サンプル点nで符号が負から正に変わった時、サンプル点nとサンプル点n+1の区間に波形終点のゼロクロス点があると判定することができる。
 上記判定部140は、サンプル点nにおける電圧値をVとすると、波形終点と時間tの終点時間偏移Tshift_Eを式(5)により求めることができる。また、判定部140は、式(5)の演算において、演算順序を式の順に行うことにより、電圧同士の演算による大きな丸め誤差の発生を回避することができる。
Figure JPOXMLDOC01-appb-I000005
 上記判定部140は、終点時間偏移Tshift_Eより波形終点時間Tを式(6)より求めることができる。
Figure JPOXMLDOC01-appb-I000006
 図5Aでは、波形データのサンプル点129で符号が負から正に変わる例を示している。この場合、上記判定部140は、図6(c)に示すように、波形終点時間tを式(7)のように求めることができる。
Figure JPOXMLDOC01-appb-I000007
 上記判定部140は、上述した起点および終点時間偏移を用いて測定された波形の実測周期Tcycleを式(8)により求めることができる。
Figure JPOXMLDOC01-appb-I000008
 上記正規化部150は、測定された波形の実測周期Tcycleを用いて所定のサンプル数Mでサンプリングするための正規化周期Tsample_NEWを式(9)により導出することができる。
Figure JPOXMLDOC01-appb-I000009
 上記正規化部150は、正規化周期Tsample_NEWを用いて、所定のサンプル点mにおける絶対時間Sを式(10)のように導出することができる。
Figure JPOXMLDOC01-appb-I000010
 上記正規化部150は、デジタル波形データからアナログ波形データの近似波形データを線形近似等により生成し、上述した波形起点および正規化周期を用いて、近似波形データから正確に1周期分の電圧および電流波形データを切り出すことができる。正規化部150は、波形データの切り出し処理を行う前であれば、任意の時期に近似波形データを生成してもよい。
 上記正規化部150は、図7(a)に示すように、近似波形データの起点から終点まで正規化周期を用いて演算により疑似サンプリングすることができる。
 上記正規化部150は、図7(b)に示すように、疑似サンプリングにおけるサンプル点S近傍のサンプル点tのインデックスnを式(11)のように導出することができる。
Figure JPOXMLDOC01-appb-I000011
 上記正規化部150は、上述したサンプル点tと隣接するサンプル点tn+1の測定データを元に正規化されたデジタル電圧および電流波形データを導出することができる。
 上記正規化部150は、図7(c)に示すように、正規化されたデジタル電圧波形データVnewを式(12)のように導出することができる。
Figure JPOXMLDOC01-appb-I000012
 上記正規化部150は、正規化されたデジタル電流波形データInewを式(13)のように導出することができる。
Figure JPOXMLDOC01-appb-I000013
 上記正規化部150は、以上のように近似波形データの起点から終点まで正規化周期を用いて演算により疑似サンプリングし、デジタル波形データの起点から正確に1周期分の波形を切り出すことができる。
 測定装置10は、小型かつ軽量で、分電盤近くの壁面に両面テープで接着可能であるのが好ましい。例えば、筐体の大きさを縦60mm以下、横70mm以下、幅25mm以下とするのが好ましいまた、測定装置10は、ホームルータ等の中継機器との接続およびセキュリティに関する設定を容易に行うことができるWi-Fi(登録商標) Protected Setup(WPS(登録商標))スイッチおよび/または工場出荷時の測定装置10の設定に戻す設定初期化スイッチを備えることができる。
 上記測定装置10は、計時機能を備えてもよく、計時誤差を1日で1秒以下とすることができる。また、測定装置10は、通信路経由で時刻を合わせることもできる。
 上記測定装置10は、Web application programming interface(Web API)を利用して処理装置20と所定の機能を伴った通信を行うことができる。測定装置10は、所定の機能として、例えば、処理装置20に対するアクティベート要求、測定装置10の情報のアップロード、測定データのアップロード、ファームウェアのアップデート指示の確認、ファームウェアダウンロード、リブート指示の確認および/または時刻設定等の機能を有することができる。
 上記測定装置10は、測定装置10の情報として機器ID、例えば、MACアドレスおよび/またはシリアル番号、ファームウェアバージョンおよび/または起動時刻情報等を処理装置20へ送信することができる。
 上記測定装置10は、通信路経由で遠隔地より設定および/または設定事項等の確認ができる。測定装置10は、例えば、内蔵ウェブサーバーを介しておよび/またはSecure Shell(SSH(登録商標))によるリモートログインによって設定および/または設定事項等の確認ができる。
 上記測定装置10は、リモートリセット機能を備えてもよい。測定装置10は、例えば、処理装置20に定期的に通信を行い、所定の条件を満たした場合や、ファームウェアアップデートの際にリモートリセットを実施してもよい。
 上記測定装置10は、通常の状態としてアクティブおよびノンアクティブの2状態を持つことができる。測定装置10は、ノンアクティブ状態の場合、アクティベートされるまでアクティベーションリクエストを処理装置20へ送り続けることができる。測定装置10は、アクティベートを行う場合、送信したアクティベーションリクエストに対して、処理装置20からアクセスキーを受信することができる。測定装置10は、アクティブ状態の場合、アクセスキーを利用して処理装置20にアクセスし、時刻合わせや処理装置20からの指示確認等を行いつつ、測定データを処理装置20に送り続けることができる。
 上記処理装置20は、通信路を介して、測定装置10をアクティベートする、測定装置10をディアクティベートする、測定装置10から測定データを受信する、測定装置10から機器情報を受信する、測定装置10へファームウェア更新指示を送信し、ファームウェアを更新させる、測定装置10へリブート指示を送信し、リブートする、および/または測定装置10の時刻を合わせることができる。
 上記処理装置20は、所定の測定装置10をディアクティベートする場合、アクセスキーを無効化する事で測定装置10が処理装置20にアクセス出来なくすることができる。処理装置20は、アクセスキーが無効になった時点で測定装置10をノンアクティブ状態に移行させることができる。
 続いて、本発明の実施形態に従う信号処理方法の一例について、図面を参照しながら説明する。
 図8に示すように、本発明の信号処理方法は、測定ステップ(S100)と、処理ステップ(S200)とを備える信号処理方法であって、測定ステップ(S100)は、検知ステップ(S110)と、変換ステップ(S120)と、送信ステップ(S130)とを有し、処理ステップ(S200)は、受信ステップ(S210)と、格納ステップ(S220)と、分離ステップ(S230)と、動作推定ステップ(S240)とを有することを特徴とする。
 測定ステップ(S100)では、電源から複数の電気機器に供給される電流および電圧を測定する。このステップは、上述した測定装置10によって処理されることができる。
 処理ステップ(S200)では、測定ステップ(S210)における測定結果から電気機器の各々の動作状況を推定する。このステップは、上述した処理装置20によって処理されることができる。
 検知ステップ(S110)では、電気機器に供給される電流および電圧のアナログ波形データを検知する。このステップは、上述した検知部110によって処理されることができる。
 変換ステップ(S120)では、検知ステップ(S110)により検知されたアナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する。このステップは、上述した変換部120によって処理されることができる。
 送信ステップ(S130)では、デジタル波形データを送信する。このステップは、上述した送信部170によって処理されることができる。
 受信ステップ(S210)では、送信ステップ(S130)により送信されたデジタル波形データを受信する。このステップは、上述した受信部210によって処理されることができる。
 格納ステップ(S220)では、受信ステップ(S210)により受信されたデジタル波形データを格納する。このステップは、上述した格納部230によって処理されることができる。
 分離ステップ(S230)では、格納ステップ(S220)により格納されたデジタル波形データを、電気機器毎のデジタル波形データに分離する。このステップは、上述した分離部240によって処理されることができる。
 動作推定ステップ(S240)では、分離ステップ(S230)により分離されたデジタル波形データを分析し、電気機器の各々の動作状況を推定する。このステップは、上述した動作推定部250によって処理されることができる。
 続いて、本発明の実施形態に従う信号処理プログラムの一例について説明する。
 本発明の信号処理プログラムは、コンピュータに、測定機能と、処理機能とを実現させる信号処理プログラムであって、測定機能は、コンピュータに、検知機能と、変換機能と、送信機能とを実現させ、処理機能は、コンピュータに、受信機能と、格納機能と、分離機能と、動作推定機能とを実現させることを特徴とする。
 測定機能では、電源から複数の電気機器に供給される電流および電圧を測定する。この機能は、上述した測定装置10によって実現されることができる。
 処理機能では、測定装置の測定結果から電気機器の各々の動作状況を推定する。この機能は、上述した処理装置20によって実現されることができる。
 検知機能では、電気機器に供給される電流および電圧のアナログ波形データを検知する。この機能は、上述した検知部110によって実現されることができる。
 変換機能では、検知機能により検知されたアナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する。この機能は、変換部120によって実現されることができる。
 送信機能では、デジタル波形データを処理機能へ送信する。この機能は、上述した送信部170によって実現されることができる。
 受信機能では、送信機能により送信されたデジタル波形データを受信する。この機能は、上述した受信部210によって実現されることができる。
 格納機能では、受信機能により受信されたデジタル波形データを格納する。この機能は、上述した格納部230によって実現されることができる。
 分離機能では、格納機能により格納されたデジタル波形データを、電気機器毎のデジタル波形データに分離する。この機能は、上述した分離部240によって実現されることができる。
 動作推定機能では、分離機能により分離されたデジタル波形データを分析し、電気機器の各々の動作状況を推定する。この機能は、上述した動作推定部250によって実現されることができる。
 以上、本発明の信号処理システム、信号処理方法および信号処理プログラムについて詳細に説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよい。
1   分電盤
3a  テレビ
3b  電気ポット
3c  冷蔵庫
10  測定装置
20  処理装置
110 検知部
120 変換部
130 記憶部
140 判定部
150 正規化部
160 圧縮部
170 送信部
210 受信部
220 解凍部
230 格納部
240 分離部
250 動作推定部
260 表示部

Claims (12)

  1.  電源から複数の電気機器に供給される電流および電圧を測定する測定装置と、
     前記測定装置に通信路を介して接続され、前記測定装置の測定結果から前記電気機器の各々の動作状況を推定する処理装置と
    を備える信号処理システムであって、
     前記測定装置は、
     前記電気機器に供給される電流および電圧のアナログ波形データを検知する検知部と、
     前記検知部により検知された前記アナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する変換部と、
     前記デジタル波形データを前記処理装置へ送信する送信部と
    を有し、
     前記処理装置は、
     前記送信部から送信された前記デジタル波形データを受信する受信部と、
     前記受信部で受信された前記デジタル波形データを格納する格納部と、
     前記格納部に格納された前記デジタル波形データを、前記電気機器毎のデジタル波形データに分離する分離部と、
     前記分離部により分離された前記デジタル波形データを分析し、前記電気機器の各々の動作状況を推定する動作推定部と
    を有する信号処理システム。
  2.  前記変換部は、前記アナログ波形データを、3個のゼロクロス点を含む所定のサンプル数だけ前記デジタル波形データに変換し、該変換が終了した場合、該変換を所定の時間が経過するまで停止することを特徴とする請求項1に記載の信号処理システム。
  3.  前記所定のサンプル数は、前記アナログ波形データの1周期分のサンプル数以上であることを特徴とする請求項2に記載の信号処理システム。
  4.  前記所定のサンプル数は、前記アナログ波形データの1周期分のサンプル数に該アナログ波形データの最大周波数変動に対応するサンプル数を加えたサンプル数であることを特徴とする請求項2または3に記載の信号処理システム。
  5.  前記測定装置は、さらに、
     前記変換部により変換された前記デジタル波形データを記憶する記憶部と、
     前記記憶部に記憶された前記デジタル波形データを正規化波形データに変換する正規化部と
    を有することを特徴とする請求項1~4のいずれか一項に記載の信号処理システム。
  6.  前記測定装置は、さらに、
     前記記憶部に記憶された前記デジタル波形データの波形起点の時刻、波形終点の時刻から波形周期を判定する判定部を有し、
     前記正規化部は、前記波形起点の時刻から前記波形周期分の前記デジタル波形データを切り出すことを特徴とする請求項5に記載の信号処理システム。
  7.  前記正規化部は、前記アナログ波形データの近似波形データを生成し、前記アナログ波形データの1周期分のサンプル数と前記波形周期により正規化周期を算出し、前記近似波形データを前記波形起点から前記正規化周期によりサンプリングすることを特徴とする請求項5または6に記載の信号処理システム。
  8.  前記判定部は、前記デジタル波形データの隣接する各サンプリング点における電圧値の符号を比較し、前記電圧値が負から正に反転するゼロクロス点を前記波形起点とし、前記電圧値が正から負に反転し、前記波形起点に対して時間軸上で正方向に隣接するゼロクロス点を前記波形終点とし、該波形起点と該波形終点の差分時間を前記波形周期とすることを特徴とする請求項5~7のいずれか一項に記載の信号処理システム。
  9.  前記信号処理システムは、さらに、
     前記処理装置へ送信する前記デジタル波形データを前記通信路の通信容量に応じたデータ量に圧縮する圧縮部と、
     前記通信路を通った後に、前記圧縮された波形データを解凍する解凍部と
    を備えることを特徴とする請求項1~8のいずれか一項に記載の信号処理システム。
  10.  前記信号処理システムは、さらに、
     前記推定部における推定の結果を利用者に対して表示する表示部を備えることを特徴とする請求項1~9のいずれか一項に記載の信号処理システム。
  11.  電源から複数の電気機器に供給される電流および電圧を測定する測定ステップと、
     前記測定ステップにおける測定結果から前記電気機器の各々の動作状況を推定する処理ステップと
    を備える信号処理方法であって、
     前記測定ステップは、
     前記電気機器に供給される電流および電圧のアナログ波形データを検知する検知ステップと、
     前記検知ステップにより検知された前記アナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する変換ステップと、
     前記デジタル波形データを送信する送信ステップと
    を有し、
     前記処理ステップは、
     前記送信ステップにより送信された前記デジタル波形データを受信する受信ステップと、
     前記受信ステップにより受信された前記デジタル波形データを格納する格納ステップと、
     前記格納ステップにより格納された前記デジタル波形データを、前記電気機器毎のデジタル波形データに分離する分離ステップと、
     前記分離ステップにより分離された前記デジタル波形データを分析し、前記電気機器の各々の動作状況を推定する動作推定ステップと
    を有する信号処理方法。
  12.  コンピュータに、
     電源から複数の電気機器に供給される電流および電圧を測定する測定機能と、
     前記測定装置の測定結果から前記電気機器の各々の動作状況を推定する処理機能と
    を実現させる信号処理プログラムであって、
     前記測定機能は、コンピュータに、
     前記電気機器に供給される電流および電圧のアナログ波形データを検知する検知機能と、
     前記検知機能により検知された前記アナログ波形データを所定のサンプリング周波数によりサンプリングし、デジタル波形データに変換する変換機能と、
     前記デジタル波形データを前記処理機能へ送信する送信機能と
    を実現させ、
     前記処理機能は、コンピュータに、
     前記送信機能により送信された前記デジタル波形データを受信する受信機能と、
     前記受信機能により受信された前記デジタル波形データを格納する格納機能と、
     前記格納機能により格納された前記デジタル波形データを、前記電気機器毎のデジタル波形データに分離する分離機能と、
     前記分離機能により分離された前記デジタル波形データを分析し、前記電気機器の各々の動作状況を推定する動作推定機能と
    を実現させる信号処理プログラム。
PCT/JP2013/079667 2013-11-01 2013-11-01 信号処理システム、信号処理方法および信号処理プログラム WO2015063943A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015544737A JP6219401B2 (ja) 2013-11-01 2013-11-01 信号処理システム、信号処理方法および信号処理プログラム
CN201380076934.7A CN105431743A (zh) 2013-11-01 2013-11-01 信号处理系统、信号处理方法以及信号处理程序
EP13896632.0A EP2977772B1 (en) 2013-11-01 2013-11-01 Signal processing system, signal processing method, and signal processing program
PCT/JP2013/079667 WO2015063943A1 (ja) 2013-11-01 2013-11-01 信号処理システム、信号処理方法および信号処理プログラム
US14/778,477 US10317438B2 (en) 2013-11-01 2013-11-01 Signal processing system signal processing method and signal processing program for estimating operation conditions from pieces of current and voltage information of an electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079667 WO2015063943A1 (ja) 2013-11-01 2013-11-01 信号処理システム、信号処理方法および信号処理プログラム

Publications (1)

Publication Number Publication Date
WO2015063943A1 true WO2015063943A1 (ja) 2015-05-07

Family

ID=53003584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079667 WO2015063943A1 (ja) 2013-11-01 2013-11-01 信号処理システム、信号処理方法および信号処理プログラム

Country Status (5)

Country Link
US (1) US10317438B2 (ja)
EP (1) EP2977772B1 (ja)
JP (1) JP6219401B2 (ja)
CN (1) CN105431743A (ja)
WO (1) WO2015063943A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198791A1 (ja) 2018-04-13 2019-10-17 日東工業株式会社 分電盤
WO2019239699A1 (ja) * 2018-06-12 2019-12-19 インフォメティス株式会社 計測装置、時刻情報提供装置、計測装置制御方法、時刻情報提供制御方法、計測装置制御プログラムおよび時刻情報提供制御プログラム
US11360129B2 (en) 2018-07-23 2022-06-14 Nec Corporation Measurement apparatus and method
WO2022137477A1 (ja) * 2020-12-25 2022-06-30 日本電信電話株式会社 無線通信管理装置、無線通信管理方法、及び無線通信管理プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2973071B1 (en) * 2013-03-15 2020-05-06 Fluke Corporation Automatic recording and graphing of measurement data
CN107422177B (zh) * 2017-07-27 2020-10-09 北京德威特电气科技股份有限公司 信号采集电路及方法、保护电路及方法、以及马达
DE102017127766B3 (de) 2017-11-24 2018-10-18 Beckhoff Automation Gmbh Busklemme für ein automatisierungssystem und verfahren zum überwachen eines versorgungsstromnetzes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319049A (ja) * 1997-05-22 1998-12-04 Hioki Ee Corp 測定装置
JP2008039492A (ja) * 2006-08-02 2008-02-21 Univ Nagoya 電気機器稼働状態推定システム
JP2012016270A (ja) 2010-07-02 2012-01-19 Jiaotong Univ 電気機器の状態を識別する電力監視装置とその電力監視方法
JP2012255744A (ja) * 2011-06-10 2012-12-27 Sony Corp 情報処理装置およびその方法、サーバ装置およびその制御方法、並びにプログラム
JP2013044736A (ja) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp 稼働状況判別装置、稼働状況判別プログラム、稼働状況判別方法、波形パターン学習装置、波形パターン学習プログラム、及び波形パターン学習方法
JP5235479B2 (ja) 2008-04-17 2013-07-10 日本電信電話株式会社 電気機器推定装置及び電気機器推定方法
WO2013136935A1 (ja) * 2012-03-13 2013-09-19 インフォメティス株式会社 センサ、センサ信号処理装置および電力線信号符号化装置
JP2013213825A (ja) * 2012-03-30 2013-10-17 Infometis Co Ltd 電気機器をモニタするための方法、及び、モニタ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416771A (ja) * 1990-05-11 1992-01-21 Hioki Ee Corp メモリレコーダによる高調波測定方法
JPH07280853A (ja) * 1994-04-14 1995-10-27 Hitachi Ltd 物理量の計測方法および計測装置
JPH095362A (ja) 1995-06-16 1997-01-10 Koyo Denki Kk 波形検出方法およびその装置
JPH1183915A (ja) * 1997-09-01 1999-03-26 Yamaha Corp 信号入力検出装置
US8700828B2 (en) * 2007-09-21 2014-04-15 Loadstar Sensors, Inc. Universal interface for one or more sensors
JP2011058921A (ja) * 2009-09-09 2011-03-24 Hioki Ee Corp 電気特性測定装置および電気特性測定方法
US8311754B2 (en) * 2009-12-10 2012-11-13 Home Comfort Zones Power monitoring and analysis system for identifying and tracking individual electrical devices
JP6039555B2 (ja) * 2010-08-10 2016-12-07 センサス ユーエスエー インク.Sensus Usa Inc. 負荷識別データプロセッサを備えた電気ユーティリティメータ
JP5598200B2 (ja) * 2010-09-16 2014-10-01 ソニー株式会社 データ処理装置、データ処理方法、およびプログラム
JP5701079B2 (ja) * 2011-01-26 2015-04-15 日置電機株式会社 測定装置および測定方法
WO2012106709A2 (en) * 2011-02-04 2012-08-09 Myenersave, Inc. Systems and methods for improving the accuracy of appliance level disaggregation in non-intrusive appliance load monitoring techniques
JP5777102B2 (ja) * 2011-09-01 2015-09-09 国立研究開発法人産業技術総合研究所 周波数解析装置
JP5537535B2 (ja) * 2011-12-06 2014-07-02 シャープ株式会社 消費電力表示装置及び消費電力表示方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319049A (ja) * 1997-05-22 1998-12-04 Hioki Ee Corp 測定装置
JP2008039492A (ja) * 2006-08-02 2008-02-21 Univ Nagoya 電気機器稼働状態推定システム
JP5235479B2 (ja) 2008-04-17 2013-07-10 日本電信電話株式会社 電気機器推定装置及び電気機器推定方法
JP2012016270A (ja) 2010-07-02 2012-01-19 Jiaotong Univ 電気機器の状態を識別する電力監視装置とその電力監視方法
JP2012255744A (ja) * 2011-06-10 2012-12-27 Sony Corp 情報処理装置およびその方法、サーバ装置およびその制御方法、並びにプログラム
JP2013044736A (ja) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp 稼働状況判別装置、稼働状況判別プログラム、稼働状況判別方法、波形パターン学習装置、波形パターン学習プログラム、及び波形パターン学習方法
WO2013136935A1 (ja) * 2012-03-13 2013-09-19 インフォメティス株式会社 センサ、センサ信号処理装置および電力線信号符号化装置
JP2013213825A (ja) * 2012-03-30 2013-10-17 Infometis Co Ltd 電気機器をモニタするための方法、及び、モニタ装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198791A1 (ja) 2018-04-13 2019-10-17 日東工業株式会社 分電盤
US11209499B2 (en) 2018-04-13 2021-12-28 Nitto Kogyo Corporation Distribution board
WO2019239699A1 (ja) * 2018-06-12 2019-12-19 インフォメティス株式会社 計測装置、時刻情報提供装置、計測装置制御方法、時刻情報提供制御方法、計測装置制御プログラムおよび時刻情報提供制御プログラム
JP2019215207A (ja) * 2018-06-12 2019-12-19 インフォメティス株式会社 計測装置、時刻情報提供装置、計測装置制御方法、時刻情報提供制御方法、計測装置制御プログラムおよび時刻情報提供制御プログラム
US11442088B2 (en) 2018-06-12 2022-09-13 Informetis Corporation Measurement device, time information provision device, measurement device control method, time information provision control method, measurement device control program, and time information provision control program
JP7217491B2 (ja) 2018-06-12 2023-02-03 インフォメティス株式会社 計測システム
JP7449522B2 (ja) 2018-06-12 2024-03-14 インフォメティス株式会社 計測装置、時刻情報提供装置、計測装置制御方法、時刻情報提供制御方法、計測装置制御プログラムおよび時刻情報提供制御プログラム
US11360129B2 (en) 2018-07-23 2022-06-14 Nec Corporation Measurement apparatus and method
WO2022137477A1 (ja) * 2020-12-25 2022-06-30 日本電信電話株式会社 無線通信管理装置、無線通信管理方法、及び無線通信管理プログラム
JP7567936B2 (ja) 2020-12-25 2024-10-16 日本電信電話株式会社 無線通信管理装置、無線通信管理方法、及び無線通信管理プログラム

Also Published As

Publication number Publication date
JP6219401B2 (ja) 2017-10-25
CN105431743A (zh) 2016-03-23
EP2977772B1 (en) 2018-05-09
EP2977772A1 (en) 2016-01-27
EP2977772A4 (en) 2016-12-28
JPWO2015063943A1 (ja) 2017-03-09
US10317438B2 (en) 2019-06-11
US20160238639A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2015063943A1 (ja) 信号処理システム、信号処理方法および信号処理プログラム
AU2019351894B2 (en) System and methods of operation of a smart plug
US20240064442A1 (en) Identifying devices using power data and network data
US10349150B2 (en) Low delay low complexity lossless compression system
US9971388B2 (en) Energy management unit with diagnostic capabilities
US9542839B2 (en) Low delay low complexity lossless compression system
DK2946568T3 (en) ENERGY MANAGEMENT SYSTEM
KR20150117500A (ko) 무선통신을 활용하여 원격 모니터링 및 제어가 가능한 스마트 멀티탭 및 시스템
KR20190103522A (ko) 무선 IoT 기반 다중 센서 탑재형 화재 감지기 및 이를 적용한 화재 감지 시스템
WO2018156546A1 (en) Identifying device state changes using power data and network data
JP2014236280A5 (ja) 情報処理装置、撮像システム、撮像装置、情報処理方法及びプログラム
KR20200131416A (ko) 사물인터넷 기반의 배전반 상태감시 장치 및 방법
US9425819B1 (en) Adaptive compression of data
US9195262B2 (en) Information processing apparatus and computer program product
JP6471085B2 (ja) ネットワーク接続装置、データ圧縮収集方法およびプログラム
Höglund et al. Compressive sensing for bridge damage detection
KR102064530B1 (ko) Ems를 위한 sns 기반의 피크 제어 경보 시스템 및 그 방법
EP4451646A1 (en) Computerized systems and methods for compressed data communication between devices for a specifically configured network
US20240353136A1 (en) Computerized Systems and Methods for Compressed Data Communication Between Devices for a Specifically Configured Network
JP5833050B2 (ja) サーバ装置、通信システム、情報処理方法、およびプログラム
KR101730914B1 (ko) 포터블 환경 모니터링 시스템
US20160226887A1 (en) Communication system and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076934.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14778477

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013896632

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015544737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE