WO2015060236A1 - 副室式ガスエンジン - Google Patents

副室式ガスエンジン Download PDF

Info

Publication number
WO2015060236A1
WO2015060236A1 PCT/JP2014/077809 JP2014077809W WO2015060236A1 WO 2015060236 A1 WO2015060236 A1 WO 2015060236A1 JP 2014077809 W JP2014077809 W JP 2014077809W WO 2015060236 A1 WO2015060236 A1 WO 2015060236A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sub
gas
fuel gas
prechamber
Prior art date
Application number
PCT/JP2014/077809
Other languages
English (en)
French (fr)
Inventor
柚木 晃広
大育 竹本
雄太 古川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480057433.9A priority Critical patent/CN105658928B/zh
Priority to JP2015543836A priority patent/JP6072284B2/ja
Priority to US15/026,169 priority patent/US9816430B2/en
Priority to EP14854912.4A priority patent/EP3061939B1/en
Publication of WO2015060236A1 publication Critical patent/WO2015060236A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/08Engines characterised by precombustion chambers the chamber being of air-swirl type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • F02B19/1019Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber
    • F02B19/108Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber with fuel injection at least into pre-combustion chamber, i.e. injector mounted directly in the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/02Engines characterised by means for increasing operating efficiency
    • F02B43/04Engines characterised by means for increasing operating efficiency for improving efficiency of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0242Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0281Adapters, sockets or the like to mount injection valves onto engines; Fuel guiding passages between injectors and the air intake system or the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to an auxiliary chamber gas engine that performs spark ignition in the auxiliary chamber.
  • a spark plug is provided in a combustion chamber, and flame propagation combustion is performed starting from the ignition of fuel gas by the spark plug.
  • flame propagation combustion is performed starting from the ignition of fuel gas by the spark plug.
  • the bore diameter is as large as, for example, 150 mm or more
  • flame propagation combustion within a limited time becomes difficult with ignition using an ignition plug, and combustion efficiency is improved. I can not expect it.
  • the secondary chamber type gas engine is used for a gas engine that performs lean premixed combustion with a large bore diameter.
  • the combustion process of the sub-chamber gas engine is as follows. (1) The fuel gas or the rich mixture is supplied to the sub chamber from the ignition fuel gas supply line. (2) In the compression step, the lean premixed air of the main combustion chamber flows in from the injection holes of the sub chamber, and is mixed with the fuel gas or the rich air mixture in the sub chamber, and reaches the theoretical combustion mixing ratio just before ignition. (3) The spark plug sparks in the auxiliary chamber, and flame propagation combustion occurs. (4) The combustion gas flows from the injection hole of the sub chamber to the main combustion chamber as a torch. (5) Torch combustion and flame propagation combustion occur in the main combustion chamber.
  • the main combustion chamber is lean premixed gas
  • low emission is possible.
  • the main combustion chamber is a lean premixed gas
  • the torch flame having a certain degree of energy is ejected from the sub chamber, the main combustion chamber can also complete combustion at a sufficient speed.
  • a valve opened and closed by a cam is provided in the sub-chamber gas passage for supplying the ignition fuel gas, and the fuel gas is supplied at a predetermined timing and lift amount.
  • a check valve is provided in the sub chamber gas passage, and at any timing according to the pressure difference between the supply pressure (in-cylinder pressure) of the fuel gas supplied from the main combustion chamber to the sub chamber and the sub chamber pressure. Supply ignition fuel gas.
  • the method (b) has the advantage of having a smaller space and lower cost than the method (b).
  • Patent Document 1 discloses a sub-chamber type gas engine having a spark plug in a sub chamber and having a fuel gas passage for ignition opened in the sub chamber.
  • a throat-like passage or a shelf-like projection for narrowing the cross section of the sub chamber is provided in front of the spark plug provided in the sub chamber, so that the flow is small near the spark plug.
  • a rich mixture is formed, which makes it possible to ensure stable ignition.
  • Patent Document 2 discloses a sub-chamber type gas engine provided with a check valve in a sub-chamber gas passage. As described above, the check valve opens and closes according to the pressure difference between the passage upstream side pressure and the pressure in the sub-chamber (in-cylinder pressure), and opens when the pressure in the sub-chamber decreases to a predetermined value.
  • FIG. 17 shows an example of the operating state of the check valve when system (b) is employed in one combustion cycle (crank angle -360 °) to (+ 360 °) of the gas engine.
  • line A indicates the sub-chamber gas supply pressure (set pressure) on the upstream side of the check valve
  • line B indicates the sub-chamber pressure (that is, the pressure of the main combustion chamber).
  • FIG. 17 (B) shows the lift amount of the check valve in one combustion cycle
  • FIG. 17 (C) shows the total flow rate of the ignition fuel gas that has passed through the check valve in one combustion cycle.
  • the piston is at the upper end position in the cylinder at (crank angle -360 °), (0 °) and (+ 360 °), and the piston is at the lower end position at (-180 °) and (+ 180 °).
  • the intake valve opens at (+ 360 °) and closes at an earlier stage than (-180 °).
  • the exhaust valve opens at an earlier stage than (+ 180 °), and the exhaust valve closes at ( ⁇ 360 °).
  • Region C shown in FIG. 17A shows the combustion strokes of the main combustion chamber and the auxiliary chamber.
  • the in-cylinder pressure may fall below the fuel gas supply pressure in the exhaust stroke and the check valve may open.
  • Yes (area E) The fuel gas for ignition supplied to the sub chamber in the exhaust stroke flows into the main combustion chamber by the time the air-fuel mixture flows from the main combustion chamber into the sub chamber in the compression step, and further from the exhaust valve to the outside of the main combustion chamber. May leak out.
  • the ignition fuel gas supplied for combustion in the sub chamber flows out without burning, it is necessary to supply an excess of the ignition fuel gas to compensate for this.
  • the check valve opens at the timing before the compression process.
  • the amount of fuel gas supplied to the sub chamber may be reduced, and the required amount of fuel gas may not be obtained (Region D). Even when the check valve is opened in the region D, depending on the supply direction, the ignition fuel gas supplied to the sub chamber may not be trapped in the sub chamber and leak out to the main combustion chamber.
  • the theoretical cycle of a gas engine is the Otto cycle, and raising the maximum pressure and temperature increases thermal efficiency.
  • gas engines have large combustion fluctuations, and when the maximum pressure decreases, the thermal efficiency decreases.
  • the mixing state in the sub chamber of the ignition fuel gas supplied from the sub chamber gas passage and the lean premixed gas flowing in from the main combustion chamber greatly affects the combustion fluctuation of the main combustion chamber. . Therefore, in order to increase the thermal efficiency of the gas engine, it is necessary to promote the mixing in the sub chamber and make the mixture in the sub chamber uniform.
  • At least one embodiment of the present invention has been made in view of the above problems, and in the sub-chamber gas engine, the trapping effect of the ignition fuel gas supplied to the sub-chamber is improved and the ignition fuel gas is used.
  • An object of the present invention is to reduce the amount of unburned fuel gas for ignition flowing out to the sub-outdoor by suppressing the decrease in combustion efficiency by prolonging the residence time of the sub-chamber.
  • a sub-chamber gas engine to which at least one embodiment of the present invention is applied includes a sub-chamber provided in a cylinder head, an ignition plug provided in the upper portion of the sub-chamber, and a sub-chamber gas opened in the upper portion of the sub-chamber.
  • An ignition fuel gas supply mechanism for supplying an ignition fuel gas to the sub chamber via a passage, and an on-off valve for opening and closing the sub chamber gas passage are provided.
  • the on-off valve is, for example, a check valve that opens and closes according to the difference between the pressure in the passage opened to the sub chamber and the pressure in the sub chamber, or detects the pressure in the sub chamber, and opens or closes according to the detected value. It is a solenoid valve controlled to Alternatively, it may be an on-off valve that opens and closes in conjunction with the crank angle of the piston.
  • the sub-chamber gas passage opens at the top of the upper wall or side wall of the partition forming the sub-chamber and is tangent to the inner peripheral surface of the side wall forming the sub-chamber It is formed to open in the direction. Therefore, the ignition fuel gas supplied to the sub-chamber forms a first swirling flow that swirls around the longitudinal axis about the longitudinal axis of the sub-chamber inside the sub-chamber.
  • the time for which the ignition fuel gas stays in the sub chamber can be extended, so that the ignition fuel gas can be reduced from being unburned and flowing out from the injection holes provided in the sub chamber to the main combustion chamber. Therefore, the combustion efficiency can be improved, and the excessive supply of the ignition fuel gas can be suppressed.
  • the sub-chamber gas passage when the sub-chamber gas passage has a space locatable outside the side wall forming the sub-chamber, the sub-chamber gas passage is disposed outside the side wall forming the sub-chamber and the sub-chamber is It can be connected to the top of the side wall to be formed. This makes it possible to effectively use the space outside the side wall of the sub chamber and to facilitate the injection in the direction orthogonal to the longitudinal axis of the sub chamber when injecting the ignition fuel gas into the sub chamber. . Therefore, the time for which the ignition fuel gas stays in the sub chamber can be further lengthened.
  • the sub-chamber gas passage can be disposed only above the sub-chamber due to the restriction on the arrangement of the sub-chamber gas passage.
  • the sub-chamber gas passage extends downward from above the sub-chamber toward the sub-chamber and is connected to the sub-chamber.
  • an internal space where the ignition fuel gas flows from the sub-chamber gas passage, the internal space and the sub-chamber are connected to the connection portion between the sub-chamber gas passage and the partition forming the sub-chamber. It is possible to provide a pocket portion that is in communication and has a communication hole that is opened tangentially to the side wall inner circumferential surface of the sub chamber.
  • the ignition fuel gas can be sub-sustained while forming a swirling flow that pivots about the longitudinal axis of the sub-chamber. It can be injected in a direction perpendicular to the longitudinal axis of the chamber. Therefore, the trapping effect of the ignition fuel gas in the sub chamber can be further improved.
  • the pocket portion can be formed inside the upper side wall of the partition wall forming the sub chamber. This facilitates the formation of the pocket and has the advantage of not requiring extra space to form the pocket on the outside of the sub-chamber.
  • the region on the side to which the ignition fuel gas approaches and flows from the opening of the sub-chamber gas passage is cut .
  • the circular arc surface can be formed by the cutting surface. This facilitates the formation of a swirling flow having a larger centrifugal force, and can further improve the trapping effect of the ignition fuel gas in the sub chamber.
  • the air-fuel mixture flowing from the main combustion chamber into the sub-chamber through the injection hole formed at the end of the sub-chamber is elongated around the longitudinal axis of the sub-chamber inside the sub-chamber.
  • a second swirling flow can be formed that pivots around the axis in a direction opposite to the first swirling flow.
  • the time for which the ignition fuel gas stays in the sub-chamber is extended. be able to. As a result, combustion efficiency can be improved, and excessive supply of ignition fuel gas can be suppressed.
  • FIG. 1 It is front view sectional drawing which shows the cylinder head part of the subchamber type gas engine which concerns on 1st Embodiment of this invention. It is front view sectional drawing of the non-return valve provided in the said cylinder head part.
  • (A) is a front view which shows the subchamber of the said subchamber type gas engine typically,
  • (B) is the top view.
  • (A) is a front view which shows typically the subchamber shown as a comparative example,
  • B) is the top view.
  • (A) is explanatory drawing which shows the trap effect of the subchamber which concerns on 1st Embodiment shown in FIG. 3
  • B) is explanatory drawing which shows the trap effect of the subchamber of the comparative example shown in FIG.
  • FIG. 11 is a cross-sectional view taken along the line AA in FIG. It is front view sectional drawing of the subchamber of the subchamber type gas engine which concerns on 4th Embodiment of this invention.
  • FIG. 13 is a cross-sectional view of the sub-chamber in FIG. 12 taken along the line B-B. It is a front view which shows typically the subchamber of the subchamber type gas engine which concerns on 5th Embodiment of this invention.
  • FIG. 15 is a cross-sectional view taken along the line B-B in FIG.
  • (A) is a front view which shows typically the subchamber of the subchamber type gas engine which concerns on 6th Embodiment of this invention
  • (B) is the top view.
  • the behavior of the sub-chamber of the conventional sub-chamber gas engine is shown, (A) is a diagram showing the fuel gas supply pressure for ignition and the in-cylinder pressure, and (B) is a diagram showing the lift amount of the check valve. And (C) is a diagram showing the flow rate of the ignition fuel gas that has passed through the check valve.
  • FIG. 1 shows a cylinder head portion 10 of a sub-chamber type gas engine according to the present embodiment.
  • a main combustion chamber Mc is formed inside the cylinder 12.
  • the sub chamber Sr is formed by a hollow cylindrical base member 14 having a different outer diameter in the longitudinal axis direction, and a cover member 16 provided so as to cover the upper opening of the base member 14.
  • the base member 14 is press-fitted and fixed in a fitting hole formed at the upper center of the cylinder 12.
  • a large diameter portion having a large inner diameter at the upper side is formed, and a cylindrical throat portion t having an inner diameter smaller than the large diameter portion is formed at the lower side thereof. Between the large diameter portion and the throat portion t, a transition portion in which the inner diameter gradually decreases from the large diameter portion toward the throat portion t is formed.
  • a plurality of injection holes 18 opened to the main combustion chamber Mc are formed dispersed in the circumferential direction. The plurality of injection holes 18 communicate with the throat portion t.
  • An intake port (not shown) having an intake valve and an exhaust port (not shown) having an exhaust valve are provided on both sides of the sub chamber Sr of the cylinder head portion.
  • a spark plug 20 is built in the cover member 16, and a sub chamber gas passage 22a is formed in the sub chamber Sr to supply a fuel gas such as methane or a fuel gas for ignition such as a rich mixture. That is, in the present embodiment, the sub-chamber gas passage 22a is opened in the upper wall of the partition forming the sub-chamber Sr.
  • the sub-chamber gas passage 22a is opened in the upper wall of the partition forming the sub-chamber Sr.
  • flame propagation combustion occurs starting from the ignition of the ignition fuel gas by the spark plug 20.
  • the flame formed in the sub chamber Sr becomes a torch f from the injection hole 18 and jets out to the main combustion chamber Mc.
  • an auxiliary chamber gas passage 22b having a diameter larger than that of the auxiliary chamber gas passage 22a is formed on the upstream side of the auxiliary chamber gas passage 22a, and a check valve 24 is provided in the auxiliary chamber gas passage 22b.
  • a compressor (not shown) for feeding the fuel gas g for ignition to the sub-chamber Sr is provided in the sub-chamber gas passage upstream of the check valve 24.
  • the ignition fuel gas supply pressure at the set pressure is applied to the check valve 24 as indicated by line A in FIG. 17A.
  • the check valve 24 When the pressure in the sub chamber (that is, the in-cylinder pressure in the main combustion chamber Mc) falls below the ignition fuel gas supply pressure applied to the check valve 24, the check valve 24 is opened and the ignition fuel gas g is stored in the sub chamber Sr. To be injected.
  • a hollow cylindrical body 26 constituting a valve seat is fixed to the inner wall of the sub-chamber gas passage 22b.
  • a movable member 28 integrally formed with a conical valve body 30, a valve rod 32, and a valve head 34 having a diameter larger than the valve rod 32 is disposed in the sub-chamber gas passage 22b.
  • a valve body 30 is provided on one end side (downstream side) of the valve stem 32, and a valve head 34 is provided on the other end side (upstream side) of the valve stem 32.
  • the movable member 28 is disposed in the sub-chamber gas passage 22 b in a state where the valve rod 32 is inserted into the hollow portion of the hollow cylindrical body 26.
  • the valve body 30 has an outer diameter larger than the inner diameter of the hollow portion of the hollow cylindrical body 26.
  • a coil spring 36 is disposed between the hollow cylindrical body 26 and the valve head 34. In the illustrated embodiment, the coil spring 36 is disposed in a compressed state, and the elastic force of the coil spring 36 causes the valve body 30 to press against the valve seat 26 a of the conical surface formed at the lower end of the hollow cylindrical body 26. It is biased by
  • Gas flow paths are formed between the valve head 34 and the hollow cylindrical body 26 and the inner wall of the sub-chamber gas passage 22 b and between the hollow cylindrical body 26 and the valve rod 32.
  • the set pressure fuel gas supply pressure Pg for ignition is applied to the valve head 34 of the check valve 24 by the compressor, Pg> in-cylinder pressure Pm + elastic force of the coil spring 36
  • the check valve 24 is opened against the force, and the ignition fuel gas g is injected into the sub chamber Sr.
  • FIGS. 3 and 4 are views schematically showing the mouthpiece member 14 forming the sub-chamber Sr and the sub-chamber gas passages 22a and 22b, FIG. 3 shows the present embodiment, and FIG. 4 shows a comparative example. ing.
  • FIGS. 3 and 4 the illustration of the cover member 16 covering the upper opening of the mouthpiece member 14 is omitted.
  • FIG. 3A front view
  • the sub-chamber gas passage 22a of the present embodiment is formed slightly obliquely in the vertical direction in the cover member 18, and is opened in the upper surface of the sub-chamber Sr. Further, as shown in FIG.
  • the sub-chamber gas passage 22a opens in a tangential direction with respect to the side wall inner peripheral surface 14a of the mouthpiece member 14 forming the sub-chamber Sr. Therefore, the ignition fuel gas g injected into the sub chamber Sr forms a swirling flow s1 that swirls around the longitudinal axis x about the longitudinal axis x of the sub chamber Sr.
  • the sub-chamber gas passage 22a 'of the comparative example is open at a position in contact with the side wall of the upper opening of the sub-chamber Sr. Further, as shown in FIG. 4B, the sub-chamber gas passage 22a 'is opened in a direction substantially orthogonal to the tangential direction with respect to the side wall inner peripheral surface 14a' of the mouthpiece member 14 '.
  • FIG. 5 shows experimental results in the case where methane gas is supplied to the auxiliary chamber Sr as the ignition fuel gas g
  • FIG. 5A shows the experimental result of the present embodiment
  • FIG. 5B shows the experimental result of the comparative example. From the figure, it can be seen that the ignition fuel gas g is injected to the sub-chamber Sr in the stroke of the crank angle ( ⁇ 240 °) to ( ⁇ 120 °).
  • the leakage of the ignition fuel gas g from the sub chamber Sr to the main combustion chamber Mc is large at (-180 °), and the ignition fuel gas g accumulated in the sub chamber Sr at (-120 °) It shows that the concentration is lower than in the present embodiment. From the above, it can be seen that the trapping effect of the ignition fuel gas g supplied to the sub chamber Sr is better than that of the comparative example in the present embodiment.
  • FIG. 6 shows the flow rate of methane gas passing from the injection hole 18 to the main combustion chamber Mc in the intake / compression stroke with crank angle (-360 °) to (0 °), and (B) shows the same intake In the compression stroke, the amount of subchamber gas trapped in the subchamber Sr is shown.
  • line F is the experimental result of the present embodiment
  • line G is the experimental result of the comparative example. From the figure, it can be seen that the trapping effect of the ignition fuel gas g in the sub chamber Sr is better in the present embodiment.
  • the ignition fuel gas g supplied to the sub chamber Sr forms the swirling flow s1 that swirls around the longitudinal axis x of the sub chamber Sr inside the sub chamber Sr
  • the ignition fuel gas The time for which the gas g stays in the sub chamber Sr can be lengthened. Therefore, it is possible to reduce the flow of the ignition fuel gas g unburned from the injection holes 18 into the main combustion chamber Mc. Therefore, the combustion efficiency can be improved, and the excessive supply of the ignition fuel gas g can be suppressed.
  • the capacity of the compressor for supplying the ignition fuel gas g to the sub-chamber Sr can be reduced, and the cost can be reduced.
  • a sensor for detecting the pressure in the sub chamber is provided instead of the check valve 24, and an opening / closing operation is interlocked with a solenoid valve controlled to open / close according to the detection value of this sensor, or a crank angle of a piston.
  • An on-off valve can be used.
  • a sub chamber gas supply pipe 40 (sub chamber gas passage) for supplying the ignition fuel gas g to the sub chamber Sr is disposed on the side of the mouthpiece member 14.
  • the sub chamber gas supply pipe 40 is attached substantially horizontally at the upper end portion of the sub chamber Sr, that is, the upper end portion of the large diameter portion of the sub chamber Sr. That is, in the present embodiment, the sub-chamber gas passage is opened at the upper side wall of the partition forming the sub-chamber Sr.
  • a check valve 42 having the same configuration as the check valve 24 of the first embodiment is provided inside the sub-chamber gas supply pipe 40. Illustration of the cover member 16 which covers the upper opening of the nozzle member 14 is omitted.
  • the operation mode of the check valve 42 is the same as that of the check valve 24 of the first embodiment. That is, when the fuel gas supply pressure for ignition Pg + elastic force of the coil spring 36 ⁇ in-cylinder pressure Pm, the check valve 42 is closed, and when the fuel gas supply pressure for ignition Pg> in-cylinder pressure Pm + elastic force of the coil spring 36 The stop valve 42 is opened.
  • the sub-chamber gas supply pipe 40 is opened tangentially to the side wall inner peripheral surface 14 a of the mouthpiece member 14. Therefore, the ignition fuel gas g injected from the sub-chamber gas supply pipe 40 to the sub-chamber Sr forms a swirling flow s1 swirling around the longitudinal axis x of the sub-chamber Sr.
  • the ignition fuel gas g forms a swirling flow s1 that swirls around the longitudinal axis x around the longitudinal axis x of the subchamber Sr in the subchamber Sr.
  • the trapping effect of the fuel gas g can be improved.
  • the fuel gas for ignition g is injected from the sub-chamber gas supply pipe 40 substantially horizontally to the sub-chamber Sr, the trap effect can be further enhanced.
  • the sub-chamber gas supply pipe 40 can be disposed on the side of the mouthpiece member 14 forming the sub-chamber Sr, the configuration of the sub-chamber gas supply pipe 40 can be simplified and the cost can be reduced.
  • the sub-chamber gas passages 22a and 22b are formed inside the cover member 16 provided above the mouthpiece member 14 and extended to the upper end of the mouthpiece member 14 as in the first embodiment. There is. As shown in FIG. 9, the cover member 16 is connected to a pocket 50 formed at the upper end of the mouthpiece 14.
  • the pocket portion 50 is composed of a substantially horizontal upper surface 50a and a lower surface 50b, and a semi-cylindrical side surface 50c.
  • the upper surface 50 a is configured by the lower surface of the cover member 16.
  • a sub-chamber gas passage 22a is opened at an outer end of the upper surface 50a.
  • On the upper end surface of the partition wall of the mouthpiece member 14, a bottom surface is continuous with the bottom surface 50b without a step, and a hole 52 having a linear axis directed tangential to the side wall inner circumferential surface 14a of the mouthpiece member 14 is formed. , Open to the sub-chamber Sr.
  • the wall surface on the outer side (long side) of the hole 52 extends along the tangential direction of the side wall inner peripheral surface 14 a of the mouthpiece member 14.
  • the sub chamber gas g flowing into the pocket portion 50 from the sub chamber gas passage 22a strikes the bottom surface 50b, and then turns in the horizontal direction, passes through the hole 52, and is injected into the sub chamber Sr. Since the sub-chamber gas g is injected tangentially to the side wall inner peripheral surface 14a, a swirling flow s1 is formed around the longitudinal axis x of the mouthpiece member 14. As described above, since the fuel gas for ignition g is injected horizontally to the sub chamber Sr to form the swirling flow s1, the trapping effect of the fuel gas for ignition g in the sub chamber Sr can be greatly enhanced. As a result of the experiment, it was found that the trapping effect of the ignition fuel gas g in the present embodiment is higher than the trapping effect in the first embodiment shown in FIG. 5 (A).
  • the present embodiment is the same as the first and third embodiments in that the sub-chamber gas passage 22a is formed slightly obliquely downward in the cover member 16. Moreover, the point which provides the pocket part 60 is the same as that of 3rd Embodiment.
  • the present embodiment differs from the third embodiment in that the pocket portion 60 is formed inside the partition wall of the mouthpiece member 14. That is, while the pocket portion 50 of the third embodiment is located outside the outer peripheral surface of the partition wall of the mouthpiece member 14, the pocket portion 60 of the present embodiment is located inside the outer peripheral surface of the partition wall of the mouthpiece member 14. It is located in
  • the pocket portion 60 is formed by engraving the inner peripheral side of the upper end surface of a part of the partition wall of the mouthpiece member 14.
  • the bottom surface 60b of the pocket portion 60 forms a substantially horizontal flat surface
  • the side surface 60c forms a semicircular arc surface continuous with the sub chamber gas passage 22a without any step.
  • a hole 62 communicating with the pocket portion 60 and having a bottom surface continuous with the bottom surface 60b is open to the sub-chamber Sr.
  • the hole 62 is directed substantially horizontally and directed tangentially to the side wall inner peripheral surface 14 a of the mouthpiece 14.
  • the wall surface on the outer side (long side) of the hole 62 extends along the tangential direction of the side wall inner peripheral surface 14 a of the mouthpiece member 14.
  • the sub-chamber gas g flowing from the sub-chamber gas passage 22 into the pocket portion 60 is sprayed to the sub-chamber Sr while changing its direction in the pocket portion 60 in the horizontal direction and centered on the longitudinal axis x. Since the swirling flow s1 swirling around the longitudinal axis x is formed, the trapping effect of the sub-chamber gas g in the sub-chamber Sr can be further enhanced. Further, since the pocket portion 60 is formed on the partition wall of the mouthpiece 14, the pocket portion can be easily formed as compared with the third embodiment, and there is an advantage that a special space for pocket portion formation is not required.
  • a fifth embodiment of the present invention will be described based on FIG. 14 and FIG.
  • a plurality of (six in FIG. 15) injection holes 18 formed at the lower end of the base member 14 are transverse lines (horizontal straight lines) y located on a transverse cross section orthogonal to the longitudinal axis x. Is inclined by a set angle a. Further, the inclination direction of the injection holes 18 is opposite to the inclination direction of the sub chamber gas passage 22 a with respect to the side wall inner peripheral surface 14 a of the mouthpiece 14.
  • the setting angle a is selected to be an arbitrary angle among the inclination angles equal to or less than the angle at which the injection holes 18 are directed in the tangential direction of the inner peripheral surface of the throat portion t. As the set angle a is larger, a swirling flow having a strong centrifugal force can be formed.
  • the other configuration is the same as that of the first embodiment, for example, the configuration of the sub chamber Sr, the sub chamber gas passage 22a, the check valve 24 and the like.
  • the lean premixed gas flowing from the main combustion chamber Mc into the sub-chamber Sr forms a swirling flow s2 that swirls around the longitudinal axis x around the longitudinal axis x inside the throat portion t. While rising. Since this swirling flow s2 is a swirling flow that swirls in the direction opposite to the swirling flow s1 of the ignition fuel gas g, these two swirling flows collide in the sub chamber Sr, and mixing is promoted. Therefore, since the lean premixed mixture and the ignition fuel gas g are uniformly mixed in the sub chamber Sr, the thermal efficiency of the sub-chamber gas engine can be improved, and the trapping effect of the ignition fuel gas can be further improved.
  • the configuration of the injection hole 18 of the present embodiment can be adopted to the second embodiment to the fourth embodiment. Further, as the configuration of the injection hole 18 of this embodiment, the center line of the injection hole 18 is parallel to the transverse line y, and the center line of the injection hole 18 from the center of the throat portion t to the circumferential direction of the throat portion t.
  • the injection holes 18 may be inclined in the direction opposite to the inclination direction of the sub-chamber gas passage 22 a by moving in parallel.
  • Embodiment 6 Next, a sixth embodiment of the present invention will be described based on FIG.
  • the region on the side to which the ignition fuel gas g approaches and flows from the opening of the sub chamber gas passage 22 a Cutting is performed to form an arc-shaped cutting surface c.
  • the arc-shaped cutting face c is formed in a band-like region extending in the horizontal direction at the same height as the opening of the sub-chamber gas passage 22a.
  • FIG. 16B the opening side of the sub-chamber gas passage 22a is cut the deepest, and the cutting depth is shallower toward the downstream side of the swirling flow s1.
  • the other configuration is the same as that of the fifth embodiment.
  • the arc-shaped cutting surface c is formed on the side wall inner peripheral surface 14a of the mouthpiece member 14 provided with the pocket 50 or the pocket 60 as in the third embodiment and the fourth embodiment. It is also good.
  • the present invention by improving the trapping effect of the ignition fuel gas supplied to the auxiliary chamber, the amount of unburned ignition fuel gas flowing out to the auxiliary chamber is reduced, and combustion efficiency is improved. It is possible to realize a sub-chamber type gas engine capable of suppressing the decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 副室に供給された点火用燃料ガスのトラップ効果を向上させ、副室外へ流出する未燃の点火用燃料ガス量を低減し、燃焼効率の低下を抑制することを目的とし、シリンダヘッド部10に設けられた副室Srと、副室Srの上部に設けられた点火プラグ20と、副室Srの上部に開口した副室ガス通路22a及び22bを介して副室Srに点火用燃料ガスgを供給する副室ガス供給機構と、副室ガス通路22bに設けられた逆止弁24とを備えている。副室ガス通路22aは副室Srを形成するカバー部材16の下面又は口金部材14の側壁上部に開口すると共に、口金部材14の側壁内周面14aの接線方向へ向けて開口する。副室Srに供給された点火用燃料ガスgは、副室Srの内部で副室Srの長手軸線xを中心に旋回する旋回流s1を形成する。

Description

副室式ガスエンジン
 本開示は、副室内で火花点火を行う副室式ガスエンジンに関する。
 一般的なガスエンジンは、燃焼室に点火プラグが設けられ、点火プラグによる燃料ガスの着火を起点にして火炎伝播燃焼が行われる。しかし、希薄予混合燃焼を行う場合、あるいはボア径が例えば150mm程度以上と大きい場合、点火プラグを用いた着火では、限られた時間内での火炎伝播燃焼は困難になり、燃焼効率の向上は見込めない。
 この対策として、多点プラグ化や副室式ガスエンジンの採用が考えられる。
 副室式ガスエンジンは、大口径のボア径で希薄予混合燃焼を行うガスエンジンに用いられている。副室式ガスエンジンの燃焼過程は次の通りである。
(1)副室に点火用燃料ガスの供給ラインから燃料ガス又は過濃混合気が供給される。
(2)圧縮工程で、主燃焼室の希薄予混合気が副室の噴孔から流入し、副室で燃料ガス又は過濃混合気とミキシングされ、着火直前で理論燃焼混合比となる。
(3)副室内で点火プラグがスパークし、火炎伝播燃焼が起る。
(4)副室の噴孔から燃焼ガスがトーチとなって主燃焼室に流出する。
(5)主燃焼室でトーチ燃焼及び火炎伝播燃焼が起る。
 前記燃焼過程によれば、主燃焼室は希薄予混合気であるため、低エミッションが可能となる。また、主燃焼室は希薄予混合気であっても、副室からある程度エネルギのあるトーチ火炎が噴出するため、主燃焼室も十分な速度で燃焼を完了できる。
 副室に点火用燃料ガスを供給する方式として、例えば、次の2つの方式がある。
(イ)点火用燃料ガスを供給する副室ガス通路にカムで開閉するバルブが設けられ、予め決められたタイミングとリフト量で燃料ガスを供給する。
(ロ)副室ガス通路に逆止弁が設けられ、主燃焼室から副室へ供給される燃料ガスの供給圧(筒内圧)と、副室内圧力との差圧に応じた任意のタイミングで点火用燃料ガスを供給する。
 方式(ロ)は、方式(イ)と比べて設備が小スペース、低コストとなる利点がある。
 特許文献1には、副室に点火プラグを有し、副室に点火用燃料ガス通路が開口した副室式ガスエンジンが開示されている。この副室式ガスエンジンは、副室内に設けられた点火プラグの前方に、副室の横断面を絞るためのスロート状通路又は棚状の突起を設けたことで、点火プラグ付近に流動の少ない濃厚混合気を形成し、これによって、安定な点火を確保可能にしている。
 特許文献2には、副室ガス通路に逆止弁を備えた副室式ガスエンジンが開示されている。この逆止弁は、前述のように、通路上流側圧力と副室内圧力(筒内圧)との差圧に応じて開閉し、副室内圧力が所定値まで低下すると開動作する。
実開平03-042025号公報 特開2001-003753号公報
 図17は、ガスエンジンの一燃焼サイクル(クランク角度-360°)~(+360°)における、方式(ロ)を採用したときの逆止弁の作動状態の一例を示している。図17(A)中、ラインAは逆止弁の上流側の副室ガス供給圧(設定圧)を示し、ラインBは副室内圧(即ち主燃焼室の圧力)を示している。図17(B)は一燃焼サイクルにおける逆止弁のリフト量を示し、図17(C)は一燃焼サイクルにおける逆止弁を通過した点火用燃料ガスの総流量を示している。
 図17において、(クランク角度-360°)、(0°)及び(+360°)でピストンがシリンダ内の上端位置にあり、(-180°)及び(+180°)でピストンが下端位置にある。(+360°)で吸気弁が開動作し、(-180°)より早い段階で吸気弁が閉動作する。また、(+180°)より早い段階で排気弁が開動作し、(-360°)で排気弁が閉動作する。図17(A)に示す領域Cは主燃焼室及び副室の燃焼行程を示している。
 図17(A)に示すように、ラインAで示す点火用燃料ガスの供給圧(設定圧)によっては、排気行程で筒内圧が燃料ガス供給圧を下回り、逆止弁が開動作する場合がある(領域E)。排気行程で副室に供給された点火用燃料ガスは、圧縮工程で主燃焼室から混合気が副室に流入してくるまでに主燃焼室に流入したり、さらには排気弁から主燃焼室外に流出する可能性がある。このように、副室での燃焼のために供給された点火用燃料ガスが燃焼せずに流出するため、これを補うべく過剰な点火用燃料ガスの供給が必要となる。
 また、排気行程での逆止弁の開動作をなくすため、逆止弁上流側の点火用燃料ガスの供給圧の設定値を下げると、圧縮工程前のタイミングで逆止弁が開動作する場合に、副室への燃料ガス供給量が低減し、必要な燃料ガス量が得られなくなるおそれがある(領域D)。
 領域Dで逆止弁が開動作する場合も、供給方向によっては、副室に供給された点火用燃料ガスが副室にトラップされず、主燃焼室に漏れ出る可能性がある。
 ガスエンジンの理論サイクルはオットーサイクルであり、最高圧力及び最高温度を上げることで、熱効率が高まる。一方、ガスエンジンは燃焼変動が大きく、最高圧力が低下すると、熱効率が低下する。前記工程(2)で、副室ガス通路から供給される点火用燃料ガスと主燃焼室から流入する希薄予混合気との副室内でのミキシング状態は、主燃焼室の燃焼変動に大きく影響する。そのため、ガスエンジンの熱効率を高めるために、副室内の混合を促進させ、副室内の混合気を均一化させる必要がある。
 本発明の少なくとも一実施形態は、前記の問題点に鑑みなされたものであり、副室式ガスエンジンにおいて、副室に供給された点火用燃料ガスのトラップ効果を向上させ、点火用燃料ガスの副室の滞留時間を長くすることで、副室外へ流出する未燃の点火用燃料ガス量を低減し、燃焼効率の低下を抑制することを目的とする。
 本発明の少なくとも一実施形態が適用される副室式ガスエンジンは、シリンダヘッドに設けられた副室と、副室の上部に設けられた点火プラグと、副室の上部に開口した副室ガス通路を介して副室に点火用燃料ガスを供給する点火用燃料ガス供給機構と、副室ガス通路を開閉する開閉弁とを備えている。
 前記開閉弁は、例えば、副室に開口する通路の圧力と副室内圧力との差に応じて開閉動作する逆止弁であり、あるいは副室内圧力を検出し、この検出値に応じて開閉動作するように制御された電磁弁である。あるいはピストンのクランク角度に連動して開閉動作する開閉弁であってもよい。
 前記目的を達成するため、本発明の少なくとも一実施形態では、副室ガス通路は副室を形成する隔壁の上壁又は側壁上部に開口すると共に、副室を形成する側壁の内周面の接線方向へ向けて開口するように形成されている。そのため、副室に供給された点火用燃料ガスが、副室の内部で副室の長手軸線を中心に該長手軸線の周囲を旋回する第1の旋回流を形成する。
 これによって、点火用燃料ガスが副室に留まる時間を長くすることができるので、点火用燃料ガスが未燃のまま副室に設けられた噴孔から主燃焼室へ流出するのを低減できる。そのため、燃焼効率を向上できると共に、過剰な点火用燃料ガスの供給を抑制できる。
 本発明の一態様として、副室ガス通路を副室を形成する側壁の外側に配置可能なスペースを有する場合、副室ガス通路を副室を形成する側壁の外側に配置すると共に、副室を形成する側壁上部に接続することができる。これによって、副室の側壁外側のスペースを有効利用できると共に、点火用燃料ガスを副室の内部へ噴射する場合に、副室の長手軸線に対して直交する方向へ噴射するのが容易になる。そのため、点火用燃料ガスが副室に留まる時間をさらに長くすることができる。
 一方、副室ガス通路の配置上の制約から、副室ガス通路を副室の上方にしか配置できない場合がある。このような場合、副室ガス通路は副室の上方から副室に向けて下方へ延設され、副室に接続される。
 そして、本発明の一態様として、副室ガス通路と副室を形成する隔壁との接続部に、副室ガス通路から点火用燃料ガスが流入する内部空間と、この内部空間と副室とを連通し、副室の側壁内周面の接線方向へ向けて開口した連通孔とを有するポケット部を備えるようにすることができる。
 このように、ポケット部を備えることで、副室ガス通路を副室の上方にしか配置できない場合でも、副室の長手軸線を中心に旋回する旋回流を形成させつつ、点火用燃料ガスを副室の長手軸線と直交する方向に噴射できる。そのため、点火用燃料ガスの副室内でのトラップ効果をさらに向上できる。
 さらに、ポケット部を備えた場合の一態様として、ポケット部を副室を形成する隔壁の上部側壁の内部に形成することができる。これによって、ポケット部の形成が容易になると共に、副室の外側にポケット部を形成するために余分なスペースを必要としない利点がある。
 また、本発明の一態様として、副室を形成し副室ガス通路が開口する側壁内周面のうち、副室ガス通路の開口部から点火用燃料ガスが接近流入する側の領域を切削し、その切削面によって円弧面を形成させることができる。
 これによって、遠心力がさらに大きい旋回流の形成が容易になり、点火用燃料ガスの副室内でのトラップ効果をさらに向上できる。
 また、本発明の一態様として、主燃焼室から副室の端部に形成された噴孔を介して副室に流入する混合気が、副室の内部で副室の長手軸線を中心に長手軸線の周囲を第1の旋回流と逆方向に旋回する第2の旋回流を形成するようにすることができる。
 これによって、この第2の旋回流は点火用燃料ガスが形成する第1の旋回流と逆方向の旋回流であるので、2つの旋回流は副室内で衝突し混合が促進される。そのため、副室内で混合気の均一化が促進され、ガスエンジンの熱効率を向上できると共に、点火用燃料ガスのトラップ効果をさらに向上できる。
 本発明の少なくとも一実施形態によれば、副室に開口する副室ガス通路の開口を副室の内周面の接線方向へ向けることで、点火用燃料ガスが副室に留まる時間を長くすることができる。これによって、燃焼効率を向上できると共に、過剰な点火用燃料ガスの供給を抑制できる。
本発明の第1実施形態に係る副室式ガスエンジンのシリンダヘッド部を示す正面視断面図である。 前記シリンダヘッド部に設けられた逆止弁の正面視断面図である。 (A)は前記副室式ガスエンジンの副室を模式的に示す正面図であり、(B)はその平面図である。 (A)は比較例として示す副室を模式的に示す正面図であり、(B)はその平面図である。 (A)は図3に示す第1実施形態に係る副室のトラップ効果を示す説明図であり、(B)は図4に示す比較例の副室のトラップ効果を示す説明図である。 (A)及び(B)は第1実施形態及び比較例の副室のトラップ効果を示す線図である。 本発明の第2実施形態に係る副室式ガスエンジンの副室の正面図である。 図8に示す副室の平面図である。 本発明の第3実施形態に係る副室式ガスエンジンの副室の斜視図である。 図9に示す副室の正面視断面図である。 図10中のA―A線に沿う断面図である。 本発明の第4実施形態に係る副室式ガスエンジンの副室の正面視断面図である。 図12の副室のB-B線に沿う断面図である。 本発明の第5実施形態に係る副室式ガスエンジンの副室を模式的に示す正面図である。 図14中のB―B線に沿う断面図である。 (A)は本発明の第6実施形態に係る副室式ガスエンジンの副室を模式的に示す正面図であり、(B)はその平面図である。 従来の副室式ガスエンジンの副室の挙動を示し、(A)は点火用燃料ガス供給圧及び筒内圧を示す線図であり、(B)は逆止弁のリフト量を示す線図であり、(C)は逆止弁を通過した点火用燃料ガスの流量を示す線図である。
 以下、本発明の実施形態を図を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
(実施形態1)
 次に、本発明の第1実施形態に係る副室式ガスエンジンを図1~図5により説明する。図1は、本実施形態に係る副室式ガスエンジンのシリンダヘッド部10を示している。シリンダ12の内部に主燃焼室Mcが形成されている。副室Srは、長手軸方向で異なる外径を有する中空円筒形の口金部材14と、口金部材14の上部開口を覆うように設けられたカバー部材16とで形成されている。口金部材14はシリンダ12の上部中央に形成された嵌合孔に圧入固定されている。口金部材14の内部には、上方に大きな内径を有する大径部が形成されるとともに、その下方に大径部よりも小さな内径を有する円柱状のスロート部tが形成されている。大径部とスロート部tとの間には、大径部からスロート部tに向かって内径が徐々に小さくなっている遷移部が形成されている。口金部材14の下端には主燃焼室Mcに開口する複数の噴孔18が周方向に分散されて形成されている。これら複数の噴孔18は、スロート部tに連通している。
 シリンダヘッド部の副室Srの両側に、吸気弁を有する吸気ポート(図示省略)及び排気弁を有する排気ポート(図示省略)が設けられている。カバー部材16には点火プラグ20が内蔵され、かつ副室Srにメタンなどの燃料ガス又は過濃混合気等の点火用燃料ガスを供給する副室ガス通路22aが形成されている。すなわち本実施形態では、副室ガス通路22aは、副室Srを形成する隔壁の上壁に開口している。副室式ガスエンジンは、点火プラグ20による点火用燃料ガスの着火を起点として、火炎伝播燃焼が起きる。副室Srで形成された火炎は噴孔18からトーチfとなって主燃焼室Mcに噴出する。
 図2に示すように、副室ガス通路22aの上流側には、副室ガス通路22aより大径の副室ガス通路22bが形成され、副室ガス通路22bに逆止弁24が設けられている。逆止弁24より上流側の副室ガス通路には、副室Srに点火用燃料ガスgを送る圧縮機(図示省略)が設けられている。この圧縮機で、逆止弁24に対して、図17(A)のラインAで示すように、設定された圧力の点火用燃料ガス供給圧を付与している。副室内圧力(即ち、主燃焼室Mcの筒内圧)が逆止弁24に付加された点火用燃料ガス供給圧を下回ると、逆止弁24が開放され、点火用燃料ガスgが副室Srに噴射される。
 次に、図2に基づいて逆止弁24の構成を説明する。弁座を構成する中空円筒体26が副室ガス通路22bの内壁に固定されている。円錐形状の弁体30、弁棒32、及び弁棒32よりも大径部分を有する弁頭34が一体に形成された可動部材28が副室ガス通路22bに配置されている。弁棒32の一端側(下流側)には弁体30が設けられ、弁棒32の他端側(上流側)には弁頭34が設けられている。可動部材28は、その弁棒32が中空円筒体26の中空部に挿通された状態で副室ガス通路22bに配置されている。弁体30は、中空円筒体26の中空部の内径よりも大きな外径を有している。中空円筒体26と弁頭34との間にコイルバネ36が配置されている。図示した実施形態では、コイルばね36は圧縮した状態で配置されており、コイルバネ36の弾性力は、弁体30が中空円筒体26の下端に形成された円錐面の弁座26aに圧接する方向に付勢されている。
 弁頭34及び中空円筒体26と副室ガス通路22bの内壁との間や、中空円筒体26と弁棒32との間にはガス流路が形成されている。前記圧縮機によって逆止弁24の弁頭34には、設定された点火用燃料ガス供給圧Pgが付与されている、Pg>筒内圧Pm+コイルばね36の弾性力になると、コイルばね36の付勢力に抗して逆止弁24が開放され、点火用燃料ガスgが副室Srに噴射される。
 図3及び図4は、副室Srを形成する口金部材14及び副室ガス通路22a及び22bを模式的に示した図であり、図3は本実施形態を示し、図4は比較例を示している。図3及び図4において、口金部材14の上部開口を覆うカバー部材16の図示は省略されている。図3(A)(正面図)において、本実施形態の副室ガス通路22aはカバー部材18に上下方向でやや斜めに形成され、副室Srの上面に開口している。また、図3(B)(平面図)に示すように、副室ガス通路22aは副室Srを形成する口金部材14の側壁内周面14aに対し接線方向に向けて開口している。そのため、副室Srに噴射された点火用燃料ガスgは、副室Srの長手軸線xを中心とし長手軸線xの周囲を旋回する旋回流s1を形成している。
 一方、図4(A)(正面図)において、比較例の副室ガス通路22a’は、副室Srの上部開口の側壁に接した位置に開口している。また、図4(B)に示すように、副室ガス通路22a’は口金部材14’の側壁内周面14a’に対し接線方向とほぼ直交する方向に向けて開口している。
 かかる構成において、点火用燃料ガスgとしてメタンガスを副室Srに供給した場合の実験結果を図5及び図6に示す。図5では、メタンガスの濃度が濃いほど色彩を濃くして表している。図5(A)は本実施形態の実験結果を示し、図5(B)は比較例の実験結果を示している。図から、クランク角度が(-240°)~(-120°)の行程で点火用燃料ガスgが副室Srへ噴射されていることがわかる。本実施形態において、クランク角度が(-240°)~(-180°)の行程で副室Srから主燃焼室Mcへの点火用燃料ガスgの漏れが少なく、(-120°)で副室Srに溜まった点火用燃料ガスgの濃度が高いことを示している。
 一方、比較例では、(-180°)で副室Srから主燃焼室Mcへの点火用燃料ガスgの漏れが大きく、(-120°)で副室Srに溜まった点火用燃料ガスgの濃度が、本実施形態と比べて低いことを示している。
 以上から、本実施形態のほうが比較例より副室Srに供給された点火用燃料ガスgのトラップ効果が優れていることがわかる。
 図6(A)は、クランク角度が(-360°)から(0°)の吸気・圧縮行程で、噴孔18から主燃焼室Mcに通過したメタンガス流量を示し、(B)は、同じ吸気・圧縮行程で、副室Srにトラップされた副室ガス量を示している。図において、ラインFが本実施形態の実験結果であり、ラインGが比較例の実験結果である。図から、本実施形態のほうが副室Srにおける点火用燃料ガスgのトラップ効果が優れていることがわかる。
 本実施形態によれば、副室Srに供給された点火用燃料ガスgが、副室Srの内部で副室Srの長手軸線xの周囲を旋回する旋回流s1を形成するので、点火用燃料ガスgが副室Srに留まる時間を長くすることができる。そのため、点火用燃料ガスgが未燃のまま噴孔18から主燃焼室Mcへ流出するのを低減できる。従って、燃焼効率を向上できると共に、過剰な点火用燃料ガスgの供給を抑制できる。
 さらに、点火用燃料ガスgの供給を抑制できるので、副室Srに点火用燃料ガスgを供給する圧縮機の容量を低減でき低コスト化できる。
 なお、逆止弁24の代わりに、副室内圧力を検出するセンサを設け、このセンサの検出値に応じて開閉動作するように制御された電磁弁、又はピストンのクランク角度に連動して開閉動作する開閉弁を用いることができる。
(実施形態2)
 次に、本発明の第2実施形態を図7及び図8に基づいて説明する。本実施形態は、副室Srの側方に副室ガス通路を形成できるスペースを確保可能な場合の例である。本実施形態では、副室Srに点火用燃料ガスgを供給する副室ガス供給管40(副室ガス通路)が、口金部材14の側方に配置されている。そして副室ガス供給管40は、副室Srの上端部、すなわち副室Srの大径部の上端部において、ほぼ水平方向に取り付けられている。すなわち本実施形態では、副室ガス通路は、副室Srを形成する隔壁の側壁上部に開口している。副室ガス供給管40の内部には、前記第1実施形態の逆止弁24と同一構成を有する逆止弁42が設けられている。口金部材14の上部開口を覆うカバー部材16の図示は省略されている。
 即ち、逆止弁42の作動態様は第1実施形態の逆止弁24と同様である。即ち、点火用燃料ガス供給圧Pg+コイルばね36の弾性力≦筒内圧Pmのとき、逆止弁42は閉じられ、点火用燃料ガス供給圧Pg>筒内圧Pm+コイルばね36の弾性力のとき逆止弁42は開放される。
 図8に示すように、副室ガス供給管40は口金部材14の側壁内周面14aに対し接線方向に向けて開口している。そのため、副室ガス供給管40から副室Srに噴射された点火用燃料ガスgは、副室Srの長手軸線xを中心に旋回する旋回流s1を形成する。
 本実施形態によれば、副室Srの内部で点火用燃料ガスgが副室Srの長手軸線xを中心とし長手軸線xの周囲を旋回する旋回流s1を形成するため、副室Srにおける点火用燃料ガスgのトラップ効果を向上できる。また、点火用燃料ガスgは副室ガス供給管40から副室Srにほぼ水平方向へ噴射されるので、さらにトラップ効果を増すことができる。さらに、副室ガス供給管40を副室Srを形成する口金部材14の側方に配置できるので、副室ガス供給管40の構成を簡素化かつ低コスト化できる。
(実施形態3)
 次に、本発明の第3実施形態を図9~図11に基づいて説明する。本実施形態は、前記第1実施形態と同様に、副室ガス通路22a及び22bは口金部材14の上方に設けられたカバー部材16の内部に形成され、口金部材14の上端まで延設されている。
 図9に示すように、カバー部材16は口金部材14の上端に形成されたポケット部50に接続されている。
 図10及び図11に示すように、ポケット部50は、ほぼ水平な上面50a及び底面50bと、半円筒形の側面50cとで構成されている。上面50aはカバー部材16の下面で構成されている。上面50aの外側の端部には、副室ガス通路22aが開口している。口金部材14の隔壁の上端面には、底面が底面50bと段差なく連続し、口金部材14の側壁内周面14aに対し接線方向に向けて直線状の軸線を有する孔52が形成されており、副室Srに開口している。図示した実施形態では、孔52の外側(長辺側)の壁面が、口金部材14の側壁内周面14aにおける接線方向に沿って延在している。
 かかる構成において、副室ガス通路22aからポケット部50に流入した副室ガスgは底面50bに当たり、その後水平方向へ向きを変えて孔52を通り、副室Srに噴射される。副室ガスgは側壁内周面14aに対して接線方向に噴射されるので、口金部材14の長手軸線xを中心に、旋回流s1を形成する。
 このように、点火用燃料ガスgは副室Srへ水平方向へ噴射されながら旋回流s1を形成するので、副室Srにおける点火用燃料ガスgのトラップ効果を大きく高めることができる。実験の結果、本実施形態における点火用燃料ガスgのトラップ効果は、図5(A)に示す第1実施形態におけるトラップ効果より高いことがわかった。
(実施形態4)
 次に、本発明の第4実施形態を図12及び図13に基づいて説明する。本実施形態は、カバー部材16の内部に副室ガス通路22aをやや斜め下向きに形成する点は第1実施形態及び第3実施形態と同様である。また、ポケット部60を設ける点は第3実施形態と同様である。
 本実施形態が第3実施形態と異なる点は、ポケット部60を口金部材14の隔壁の内部に形成する点である。すなわち、第3実施形態のポケット部50は、口金部材14の隔壁の外周面の外側に位置していたのに対し、本実施形態のポケット部60は、口金部材14の隔壁の外周面の内側に位置している。
 本実施形態では、口金部材14の隔壁の一部において、その上端面の内周側を刻設してポケット部60を形成している。ポケット部60の底面60bは、ほぼ水平な平面をなし、側面60cは副室ガス通路22aと段差なく連続した半円弧面を形成している。そして、ポケット部60と連通し、底面60bと連続した底面を有する孔62が副室Srに開口している。孔62はほぼ水平方向に向けられ、かつ口金部材14の側壁内周面14aに対して接線方向に向いている。図示した実施形態では、孔62の外側(長辺側)の壁面が、口金部材14の側壁内周面14aにおける接線方向に沿って延在している。
 本実施形態では、副室ガス通路22からポケット部60に流入した副室ガスgは、ポケット部60で水平方向へ向きを変えながら、副室Srに噴射されると共に、長手軸線xを中心に長手軸線xの周囲を旋回する旋回流s1を形成するので、副室Srにおける副室ガスgのトラップ効果をさらに高めることができる。
 また、ポケット部60を口金部材14の隔壁に形成するので、第3実施形態と比べて、ポケット部の形成が容易になり、ポケット部形成のための特別なスペースを必要としない利点がある。
(実施形態5)
 次に、本発明の第5実施形態を図14及び図15に基づいて説明する。本実施形態では、口金部材14の下端に形成された複数(図15では6個)の噴孔18は、長手軸線xと直角に交わる横断面上に位置する横断線(水平方向の直線)yに対して設定角度aだけ傾斜している。また、噴孔18の傾斜方向は口金部材14の側壁内周面14aに対する副室ガス通路22aの傾斜方向とは逆向きになっている。なお、設定角度aは、噴孔18がスロート部tの内周面の接線方向へ向く角度以下の傾斜角のうち任意の角度に選定される。設定角度aが大きいほど、強い遠心力をもつ旋回流を形成できる。
 その他の構成は、前記第1実施形態の構成、例えば、副室Sr、副室ガス通路22a、逆止弁24等の構成と同一である。
 本実施形態によれば、主燃焼室Mcから副室Srに流入する希薄予混合気は、スロート部tの内部で長手軸線xを中心とし長手軸線xの周囲を旋回する旋回流s2を形成しながら上昇する。この旋回流s2は点火用燃料ガスgの旋回流s1とは逆方向に旋回する旋回流であるので、これら2つの旋回流は副室Sr内で衝突し混合が促進される。そのため、副室Srで希薄予混合気と点火用燃料ガスgとが均一に混合されるため、副室式ガスエンジンの熱効率を向上できると共に、点火用燃料ガスのトラップ効果をさらに向上できる。
 なお、本実施形態の噴孔18の構成は、前記第2実施形態から前記第4実施形態にも採用できる。
 また、本実施形態の噴孔18の構成として、噴孔18の中心線を横断線yに対して平行とし、噴孔18の中心線をスロート部tの中心よりスロート部tの円周方向へ平行移動させるようにして、噴孔18を副室ガス通路22aの傾斜方向とは逆向きに傾斜させるようにしてもよい。
(実施形態6)
 次に、本発明の第6実施形態を図16に基づいて説明する。本実施形態は、副室ガス通路22aが開口する副室Srの側壁内周面14aのうち、副室ガス通路22aの開口部から点火用燃料ガスgが接近流入する側の領域を円弧状に切削し、円弧状切削面cを形成している。図16(A)に示すように、円弧状切削面cは、副室ガス通路22aの開口部と同一高さで水平方向に延びる帯状領域に形成されている。また図16(B)に示すように、副室ガス通路22aの開口部側が最も深く切削されており、旋回流s1の下流側に向かって切削深が浅くなっている。その他の構成は前記第5実施形態と同一である。
 これによって、点火用燃料ガスgによって形成される旋回流s1はさらに遠心力が大きい旋回流となり、希薄予混合気の旋回流s2との混合がさらに促進される。そのため、点火用燃料ガスgの副室Sr内でのトラップ効果をさらに向上できる。
 なお、円弧状切削面cは、前記第3実施形態及び前記第4実施形態のように、ポケット部50又はポケット部60が設けられた口金部材14の側壁内周面14aに形成するようにしてもよい。
 本発明の少なくとも一実施形態によれば、副室に供給された点火用燃料ガスのトラップ効果を向上させることで、副室外へ流出する未燃の点火用燃料ガス量を低減し、燃焼効率の低下を抑制可能な副室式ガスエンジンを実現できる。
 10                 シリンダヘッド部
 12                 シリンダ
 14、14’             口金部材
  14a、14a’          側壁内周面
 16                 カバー部材
 18                 噴孔
 20                 点火プラグ
 22a、22b、22a’、22b’  副室ガス通路
 24、42              逆止弁(開閉弁)
 26                 中空円筒体
  26a               弁座
 28                 可動部材
  30                弁体
  32                弁棒
  34                弁頭
 36                 コイルバネ
 40                 副室ガス供給管
 50,60              ポケット部
  50a               上面
  50b、60b           底面
  50c、60c           側面
 52、62              孔
 Mc                 主燃焼室
 Pg                 点火用燃料ガス供給圧
 Pm                 筒内圧
 Sr                 副室
 a                  設定角度
 c                  円弧状切削面
 f                  トーチ
 g                  点火用燃料ガス
 s1                 旋回流(第1の旋回流)
 s2                 旋回流(第2の旋回流)
 t                  スロート部
 x                  長手軸線
 y                  横断線

Claims (6)

  1.  シリンダヘッドに設けられた副室と、該副室の上部に設けられた点火プラグと、前記副室の上部に開口した副室ガス通路を介して前記副室に点火用燃料ガスを供給する副室ガス供給機構と、前記副室ガス通路を開閉する開閉弁とを備えた副室式ガスエンジンにおいて、
     前記副室ガス通路は前記副室を形成する隔壁の上壁又は側壁上部に開口すると共に、前記副室を形成する側壁内周面の接線方向へ向けて開口するように形成され、
     前記副室に供給された前記点火用燃料ガスが、前記副室の内部で前記副室の長手軸線を中心に旋回する第1の旋回流を形成するようにしたことを特徴とする副室式ガスエンジン。
  2.  前記副室ガス通路は前記副室を形成する隔壁の外側に配置され、かつ前記副室を形成する側壁上部に接続されていることを特徴とする請求項1に記載の副室式ガスエンジン。
  3.  前記副室ガス通路は前記副室の上方から前記副室に向けて下方へ延設され、
     前記副室ガス通路と前記副室を形成する隔壁との接続部に、前記副室ガス通路から前記点火用燃料ガスが流入する内部空間と、前記内部空間と前記副室とを連通し、前記副室の側壁内周面の接線方向へ向けて開口した連通孔とを有するポケット部を備えていることを特徴とする請求項2に記載の副室式ガスエンジン。
  4.  前記ポケット部が前記副室を形成する隔壁の内部に形成されていることを特徴とする請求項3に記載の副室式ガスエンジン。
  5.  前記副室ガス通路が開口する前記副室の側壁内周面において、
     前記副室ガス通路の開口部から点火用燃料ガスが接近流入する側の領域が切削され、切削面が円弧面を形成していることを特徴とする請求項1に記載の副室式ガスエンジン。
  6.  主燃焼室から前記副室の端部に形成された噴孔を介して前記副室に流入する混合気が、前記副室の内部で前記副室の長手軸線を中心に前記第1の旋回流と逆方向に旋回する第2の旋回流を形成するようにしたことを特徴とする請求項1~5の何れか1項に記載の副室式ガスエンジン。
PCT/JP2014/077809 2013-10-21 2014-10-20 副室式ガスエンジン WO2015060236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480057433.9A CN105658928B (zh) 2013-10-21 2014-10-20 副室式燃气发动机
JP2015543836A JP6072284B2 (ja) 2013-10-21 2014-10-20 副室式ガスエンジン
US15/026,169 US9816430B2 (en) 2013-10-21 2014-10-20 Pre-combustion-chamber type gas engine
EP14854912.4A EP3061939B1 (en) 2013-10-21 2014-10-20 Prechamber type gas engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-218385 2013-10-21
JP2013218385 2013-10-21

Publications (1)

Publication Number Publication Date
WO2015060236A1 true WO2015060236A1 (ja) 2015-04-30

Family

ID=52992832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077809 WO2015060236A1 (ja) 2013-10-21 2014-10-20 副室式ガスエンジン

Country Status (5)

Country Link
US (1) US9816430B2 (ja)
EP (1) EP3061939B1 (ja)
JP (1) JP6072284B2 (ja)
CN (1) CN105658928B (ja)
WO (1) WO2015060236A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041453A (zh) * 2015-07-01 2015-11-11 江苏盛源燃气动力机械有限公司 一种大排量燃气内燃机的预燃室系统
JP2017115581A (ja) * 2015-12-21 2017-06-29 三菱重工業株式会社 副室式エンジン
EP3203050A1 (en) * 2016-02-06 2017-08-09 Prometheus Applied Technologies, LLC Lean-burn pre-combustion chamber
JP2017137867A (ja) * 2016-02-06 2017-08-10 プロメテウス アプライド テクノロジーズ,エルエルシー 希薄燃焼予燃焼室
JP2017137853A (ja) * 2016-02-04 2017-08-10 本田技研工業株式会社 ガスエンジン
JP2018119485A (ja) * 2017-01-26 2018-08-02 三菱重工エンジン&ターボチャージャ株式会社 副室式ガスエンジン
CN109072762A (zh) * 2016-04-26 2018-12-21 莱奥林奇有限责任公司 预燃室火花塞容纳装置
JP7419912B2 (ja) 2020-03-24 2024-01-23 株式会社Ihi 内燃機関

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021778B4 (de) * 2012-11-06 2016-03-10 Mtu Friedrichshafen Gmbh Gemischaufgeladener Gasmotor und Verfahren zur Kompensation von Liefergradabweichungen in einem gemischaufgeladenen Gasmotor
AT516618B1 (de) * 2015-02-27 2016-07-15 Ge Jenbacher Gmbh & Co Og Zylinderkopf
EP3181854A1 (en) * 2015-12-14 2017-06-21 Caterpillar Energy Solutions GmbH Pre-chamber of internal combustion engine
GB2553317B (en) * 2016-09-01 2020-05-27 Caterpillar Energy Solutions Gmbh Fuel inlet assembly for engine
US10724423B2 (en) * 2017-02-16 2020-07-28 Caterpillar Inc. Vented pre-chamber assembly for an engine
CN106894934A (zh) * 2017-03-24 2017-06-27 潍柴动力股份有限公司 火花塞及具有火花塞的发动机
CN107061061A (zh) * 2017-06-28 2017-08-18 哈尔滨工程大学 一种混合进气的集成式交叉环槽气体燃料喷射混合装置
EP3434887B1 (en) * 2017-07-25 2019-08-14 C.R.F. Società Consortile per Azioni Internal combustion engine with gas feeding system
DE102017009228A1 (de) * 2017-10-04 2019-04-04 Daimler Ag Verbrennungskraftmaschine für ein Kraftfahrzeug
DE102017009607A1 (de) * 2017-10-17 2019-04-18 Daimler Ag Zuführungs- und Zündvorrichtung für einen Gasmotor und Verfahren zum Betrieb einer Zuführungs- und Zündvorrichtung für einen Gasmotor
US10174667B1 (en) * 2017-11-17 2019-01-08 Caterpillar Inc. Prechamber ignition device for internal combustion engines and method
JP6825553B2 (ja) * 2017-12-28 2021-02-03 トヨタ自動車株式会社 内燃機関の制御装置
US10837355B2 (en) * 2017-12-28 2020-11-17 Honda Motor Co., Ltd. Internal combustion engine
DE102018101092B3 (de) 2018-01-18 2019-05-16 Elias Russegger Zündvorrichtung für einen Gasmotor
EP3521585A1 (en) * 2018-02-01 2019-08-07 Innio Jenbacher GmbH & Co OG Prechamber device for combustion engine
SE542877C2 (en) * 2018-10-11 2020-07-28 Scania Cv Ab A pre-chamber arrangement for a gas engine and a gas engine
SE1851241A1 (en) * 2018-10-11 2019-07-02 Scania Cv Ab A pre-chamber arrangement for a gas engine, a method and a gas engine
US11047341B2 (en) * 2018-11-13 2021-06-29 Caterpillar Inc. Prechamber fluid injection
WO2020124102A1 (de) 2018-12-21 2020-06-25 Innio Jenbacher Gmbh & Co Og Zylinderkopf für eine brennkraftmaschine
AT16719U1 (de) * 2018-12-21 2020-07-15 Innio Jenbacher Gmbh & Co Og Zylinderkopf für eine Brennkraftmaschine
CN109989822A (zh) * 2019-04-10 2019-07-09 广西玉柴机器股份有限公司 燃气发动机预燃室结构
CN110206630A (zh) * 2019-06-06 2019-09-06 大连理工大学 一种具备点火室复合通道的发动机燃烧系统
DE102019209753A1 (de) * 2019-07-03 2021-01-07 Ford Global Technologies, Llc Zündkerze mit Vorkammer und Vorrichtung zum Spülen der Vorkammer
US11415041B2 (en) 2019-09-16 2022-08-16 Woodward, Inc. Flame triggered and controlled volumetric ignition
WO2022040705A1 (en) * 2020-08-28 2022-03-03 Innio Jenbacher Gmbh & Co Og Pre-chamber for an internal combustion engine and combustion engine
AT524198A1 (de) * 2021-02-25 2022-02-15 Avl List Gmbh Vorkammerzündeinheit
GB2605985B (en) * 2021-04-20 2023-07-26 Caterpillar Energy Solutions Gmbh Prevention of backfiring of a pre-chamber gas valve of a combustion engine
GB2605988B (en) * 2021-04-20 2023-07-26 Caterpillar Energy Solutions Gmbh Conditioning of a pre-chamber gas flow for a combustion engine
CN117716122A (zh) * 2021-06-02 2024-03-15 西港燃料系统加拿大公司 用于内燃机中的燃料喷射和燃料点燃的装置和方法
CN115095463B (zh) * 2022-06-22 2023-05-26 中山大学 一种可适配多种试验器的射流点火装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162922A (ja) * 1986-12-24 1988-07-06 Yanmar Diesel Engine Co Ltd 副室式ガス機関の副室構造
JPH0342025U (ja) 1989-09-01 1991-04-22
JPH0539721A (ja) * 1991-08-05 1993-02-19 Yanmar Diesel Engine Co Ltd 副室式ガス機関
JP2001003753A (ja) 1999-06-21 2001-01-09 Mitsubishi Heavy Ind Ltd ガスエンジンの副室システム
JP2009197704A (ja) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd 副室式ガスエンジン
JP2009221936A (ja) * 2008-03-14 2009-10-01 Osaka Gas Co Ltd 副室式エンジン
JP2010144516A (ja) * 2008-12-16 2010-07-01 Ihi Corp ガスエンジンの予燃焼器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155754A (ja) 1984-12-27 1986-07-15 Toshiba Corp 孔検査装置
JP2688198B2 (ja) 1987-05-30 1997-12-08 大阪瓦斯株式会社 管内通線具
JPH0245755A (ja) 1988-08-05 1990-02-15 Ishikawajima Harima Heavy Ind Co Ltd 拡管部の密着性検査方法
CN1048071C (zh) * 1993-07-17 2000-01-05 久保田铁工株式会社 分隔式燃烧室式柴油机
US5947076A (en) * 1998-04-17 1999-09-07 Caterpillar Inc. Fuel combustion assembly for an internal combustion engine having an encapsulated spark plug for igniting lean gaseous fuel within a precombustion chamber
US6513483B2 (en) * 2001-02-07 2003-02-04 Cooper Cameron Corporation Pre-combustion chamber for an internal combustion engine
NO322345B1 (no) * 2004-09-27 2006-09-18 Rolls Royce Marine As Anordning ved en forkammerenhet til en gassmotor
CN1320261C (zh) * 2005-02-07 2007-06-06 大连理工大学 活塞顶涡流室燃烧系统
AT13172U1 (de) 2011-12-28 2013-07-15 Ge Jenbacher Gmbh & Co Ohg Vorkammersystem für eine Brennkraftmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162922A (ja) * 1986-12-24 1988-07-06 Yanmar Diesel Engine Co Ltd 副室式ガス機関の副室構造
JPH0342025U (ja) 1989-09-01 1991-04-22
JPH0539721A (ja) * 1991-08-05 1993-02-19 Yanmar Diesel Engine Co Ltd 副室式ガス機関
JP2001003753A (ja) 1999-06-21 2001-01-09 Mitsubishi Heavy Ind Ltd ガスエンジンの副室システム
JP2009197704A (ja) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd 副室式ガスエンジン
JP2009221936A (ja) * 2008-03-14 2009-10-01 Osaka Gas Co Ltd 副室式エンジン
JP2010144516A (ja) * 2008-12-16 2010-07-01 Ihi Corp ガスエンジンの予燃焼器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041453A (zh) * 2015-07-01 2015-11-11 江苏盛源燃气动力机械有限公司 一种大排量燃气内燃机的预燃室系统
JP2017115581A (ja) * 2015-12-21 2017-06-29 三菱重工業株式会社 副室式エンジン
WO2017110516A1 (ja) * 2015-12-21 2017-06-29 三菱重工エンジン&ターボチャージャ株式会社 副室式エンジン
US10316733B2 (en) 2015-12-21 2019-06-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Precombustion-chamber engine
JP2017137853A (ja) * 2016-02-04 2017-08-10 本田技研工業株式会社 ガスエンジン
EP3203050A1 (en) * 2016-02-06 2017-08-09 Prometheus Applied Technologies, LLC Lean-burn pre-combustion chamber
JP2017137867A (ja) * 2016-02-06 2017-08-10 プロメテウス アプライド テクノロジーズ,エルエルシー 希薄燃焼予燃焼室
US10208651B2 (en) 2016-02-06 2019-02-19 Prometheus Applied Technologies, Llc Lean-burn pre-combustion chamber
CN109072762A (zh) * 2016-04-26 2018-12-21 莱奥林奇有限责任公司 预燃室火花塞容纳装置
JP2018119485A (ja) * 2017-01-26 2018-08-02 三菱重工エンジン&ターボチャージャ株式会社 副室式ガスエンジン
US10837373B2 (en) 2017-01-26 2020-11-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Precombustion chamber gas engine
JP7419912B2 (ja) 2020-03-24 2024-01-23 株式会社Ihi 内燃機関

Also Published As

Publication number Publication date
EP3061939A1 (en) 2016-08-31
CN105658928A (zh) 2016-06-08
EP3061939A4 (en) 2017-07-05
US20160245151A1 (en) 2016-08-25
JPWO2015060236A1 (ja) 2017-03-09
EP3061939B1 (en) 2020-09-09
JP6072284B2 (ja) 2017-02-01
CN105658928B (zh) 2018-06-26
US9816430B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2015060236A1 (ja) 副室式ガスエンジン
US7926463B2 (en) Cylinder injection type spark ignition internal combustion engine
KR101996085B1 (ko) 질소 산화물 저감을 위한 직접 분사식 디젤 엔진의 연소실
JP4601401B2 (ja) 直接噴射式エンジン
JP2003534495A (ja) 燃料噴射システム
JP5060353B2 (ja) 副室式エンジン
JP2003534486A (ja) 燃料噴射システム及び噴射方法
JP5060386B2 (ja) エンジン
JP5543540B2 (ja) エンジン
KR20170070750A (ko) 가솔린-디젤 혼합 연소 엔진
JP5486645B2 (ja) 副室式エンジン
JP2006257943A (ja) 火花点火式直噴エンジン
US9810140B2 (en) Combustion chamber of direct injection diesel engine having inducers
JP2005155624A (ja) 燃料噴射システム
US6701883B2 (en) Cylinder head for use on a spark-ignition internal combustion engine and such spark-ignition internal combustion engine
JP6405352B2 (ja) 直噴内燃機関のピストン
JP2018162726A (ja) 火花点火式内燃機関
KR20090064171A (ko) 가솔린 직접 분사 엔진용 피스톤 헤드
JP2007303339A (ja) 内燃機関
JP2006152825A (ja) 内燃機関の燃焼室
JP2009270542A (ja) エンジン及びエンジン用点火プラグ
JP2007278095A (ja) 4ストロークサイクル内燃機関
JP2023143082A (ja) エンジン
JP2009074498A (ja) 燃料噴射弁
JP2006009660A (ja) 2点点火内燃機関

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015543836

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014854912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15026169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854912

Country of ref document: EP

Kind code of ref document: A1