WO2015056615A1 - ばね成形装置および成形方法 - Google Patents

ばね成形装置および成形方法 Download PDF

Info

Publication number
WO2015056615A1
WO2015056615A1 PCT/JP2014/076914 JP2014076914W WO2015056615A1 WO 2015056615 A1 WO2015056615 A1 WO 2015056615A1 JP 2014076914 W JP2014076914 W JP 2014076914W WO 2015056615 A1 WO2015056615 A1 WO 2015056615A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
cutting
coil
heating
coiling
Prior art date
Application number
PCT/JP2014/076914
Other languages
English (en)
French (fr)
Inventor
啓太 高橋
透 白石
裕一朗 小野
肇 長澤
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to EP14854805.0A priority Critical patent/EP3059025B1/en
Priority to KR1020167012009A priority patent/KR102189662B1/ko
Priority to US15/027,393 priority patent/US10052677B2/en
Priority to CN201480055675.4A priority patent/CN105592951B/zh
Publication of WO2015056615A1 publication Critical patent/WO2015056615A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F11/00Cutting wire
    • B21F11/005Cutting wire springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F23/00Feeding wire in wire-working machines or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/02Coiling wire into particular forms helically
    • B21F3/06Coiling wire into particular forms helically internally on a hollow form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces

Definitions

  • the present invention relates to a spring forming apparatus for continuously hot forming a spring such as a coil spring while feeding a steel wire, and in particular, continuously cutting without stopping the feeding of the steel wire when cutting the steel wire. It is related with the technique which reduces the heating nonuniformity of a steel wire.
  • a relatively small coil spring such as a valve spring or a clutch damper spring is generally manufactured by cold forming using a coil material.
  • a relatively large spring such as a suspension spring is generally manufactured by hot forming using a bar material. This is because, since the wire used is thick, the workability is poor in cold forming and the forming is difficult.
  • hot forming is advantageous over cold forming in that no coiling distortion occurs during processing.
  • the spring index D is the ratio of the coil average diameter D to the wire diameter d.
  • / d is small, it is used for forming a coil spring, which is difficult to cold form due to its poor workability.
  • hot forming since the material is soft, it is necessary to wind around a metal core and coil it into a coil spring shape. Therefore, the degree of freedom of the shape is low, and it is necessary to arrange the metal core for each product.
  • the heating temperature of the steel wire during forming greatly affects the shape and performance of the product. Therefore, in order to maintain the quality (shape accuracy, crystal grain size) of the product, it is desired to be molded in a state of being heated uniformly throughout. That is, it is desired to make the feed rate of the steel wire that affects the heating temperature as uniform as possible.
  • the cutting tool driving motor reciprocally rotates with the cutting position of the coil spring as an intermediate point so that the coil spring is cut not only when the cutting tool driving motor moves forward but also when it moves backward.
  • a mechanism that enables cutting at higher speed is disclosed.
  • the supply of the steel wire is generally stopped when the spring is cut.
  • the supply of the steel wire is also stopped during the cutting.
  • hot forming if the feeding of the steel wire is stopped at the time of cutting, the heating time of the wire is different between when feeding and when feeding is stopped. Therefore, there was a problem that the required quality could not be ensured.
  • hot forming is usually performed on a bar material, and cold forming is usually performed on a coil material.
  • spring forming of a valve spring class using a coil material as a material If hot forming is forcibly performed, there is a problem as described above, and therefore, hot forming has not been adopted so far.
  • an object of the present invention is to provide a spring forming apparatus that can continuously cut a steel wire without stopping the feeding of the steel wire and can uniformly heat the steel wire. .
  • the present invention includes a wire supply mechanism that supplies steel wire by a plurality of pairs of feed rollers, a heating mechanism that heats the steel wire, a coiling mechanism that forms the heated steel wire into a coil shape, and steel that has been coiled at a predetermined number of turns.
  • the coiling mechanism includes a wire guide for guiding the steel wire supplied by the feed roller to an appropriate position in the processing portion, and the wire guide.
  • a cutting blade that includes a coiling tool for processing the supplied steel wire into a coil shape and a pitch tool that applies a coil-shaped pitch, and the cutting mechanism separates the coil that has been coiled a predetermined number of turns from the steel wire behind.
  • a receiving blade that is disposed opposite to the cutting blade and supports the steel wire, and the region for heating the steel wire by the heating mechanism is intermediate between the feed roller and the wire guide.
  • the cutting blade when cutting a steel wire, forms a trajectory having a speed Va toward the receiving blade and a speed Vc toward the axial direction of the coiled steel wire.
  • the feed can be continued at a speed close to the speed Vc. Therefore, variation in the heating time of the steel wire due to the heating mechanism is suppressed, and the heating temperature of the steel wire becomes more uniform.
  • the feed rate of the steel wire at the time of cutting is preferably 50% or more of the feed rate at other times, more preferably 90% or more.
  • Vc> Vw where Vw is the feed rate of the steel wire when cutting the steel wire. That is, if the speed Vc in the same direction of the cutting blade is smaller than the feed speed Vw of the steel wire, the cutting surface of the steel wire is pressed by the flank of the cutting blade, so that the steel wire is buckled and cannot be coiled. It becomes.
  • Vc / Vw> 1 since the degree to which the cut surface of the steel wire is pressed by the flank of the cutting blade is reduced, coiling is possible, but the roundness of the coil diameter of the terminal deteriorates. To do. Therefore, in order to surely avoid such inconvenience, it is desirable that Vc / Vw ⁇ 1.1. Moreover, it is desirable that 2.5 ⁇ Vc / Vw. Even if Vc / Vw exceeds 2.5, further improvement cannot be expected, but the equipment cost for moving the cutting blade at a high speed becomes high.
  • the speed Vc of the cutting blade in the axial direction of the steel wire may be constant until the steel wire is cut.
  • the cutting blade moves linearly obliquely with respect to the steel wire.
  • the cutting blade can be moved to draw an ellipse or a circle.
  • the heating mechanism is preferably a high-frequency heating mechanism, and the coil length of the heating coil disposed so as to be concentric with the steel wire is preferably 100 to 350 mm.
  • the coil length of the heating coil is less than 100 mm, sufficient heating capacity for uniformly heating the steel wire to the inside cannot be secured, and when the steel wire supply speed is fast or the steel wire diameter is large It becomes difficult to raise the temperature of the steel wire to the austenite region.
  • the coil length of a heating coil into 100 mm or more and making it heat up to an austenite area within 2.5 second, the austenite crystal grain coarsening is suppressed and the refinement
  • the coil length of the heating coil exceeds 350 mm, the distance between the feed roller supporting the steel wire and the wire guide also increases, so that the steel wire swells and buckles during that period, that is, in the heating coil. May occur.
  • the spatial distance between the feed roller and the receiving blade is 200 to 500 mm.
  • a heating coil having a length having sufficient heating capability and a wire guide for guiding the steel wire to an appropriate position of the coiling portion are provided. Area cannot be secured.
  • the spatial distance between the feed roller and the receiving blade exceeds 500 mm, the length of the wire guide must be increased more than necessary, which is uneconomical.
  • the steel wire when cutting a steel wire, it can be continuously cut without stopping the feeding of the steel wire, the steel wire can be heated more uniformly, and the valve spring class can be obtained by hot forming. The effect of being able to mold the spring is obtained.
  • SYMBOLS 10 Wire rod supply mechanism, 11 ... Feed roller, 20 ... Heating mechanism, 21 ... High frequency heating coil, 30 ... Coiling mechanism, 31 ... Wire guide, 32 ... Coiling tool, 33 ... Pitch tool, 40 ... Cutting mechanism, 41 ... Cutting Blade, 42 ... receiving blade, W ... steel wire.
  • reference numeral 10 denotes a wire supply mechanism.
  • the wire rod supply mechanism 10 includes a plurality of feed rollers 11 arranged in a horizontal direction.
  • a wire guide 12 that guides the steel wire W is disposed between the feed rollers 11.
  • a heating mechanism 20 is disposed on the downstream side of the wire rod supply mechanism 10.
  • the heating mechanism 20 includes a spiral high-frequency heating coil 21 disposed coaxially with the steel wire W.
  • the high frequency heating coil 21 raises the temperature of the steel wire W to the austenite region within 2.5 seconds.
  • the high-frequency heating coil 21 is not limited to a spiral shape as shown in FIG. 1, but has a suitable shape in consideration of heating performance and setup, such as a side-opened axial cross section. A shape may be used.
  • a coiling mechanism 30 is disposed on the downstream side of the heating mechanism 20.
  • reference numeral 31 denotes a wire guide, and the wire guide 31 guides the steel wire W supplied by the feed roller 11 to an appropriate position of the coiling mechanism 30.
  • two coiling tools 32 made of coiling pins (or coiling rollers) and a pitch tool 33 for applying a pitch are arranged on the downstream side of the wire guide 31.
  • the steel wire W that has passed through the wire guide 31 comes into contact with the initial coiling tool 32 and is bent with a predetermined curvature, and further comes into contact with the downstream coiling tool 32 and is bent with a predetermined curvature.
  • the steel wire W is in contact with the pitch tool 33 and is given a pitch so as to have a desired coil shape.
  • the coiling tool 32 may be in the form of a single coiling pin (or coiling roller).
  • reference numeral 40 denotes a cutting mechanism.
  • the cutting mechanism 40 includes a cutting blade 41 that can be moved in the vertical direction by a crank mechanism (not shown). Moreover, the cutting blade 41 can be moved in the horizontal direction by a moving mechanism (not shown). As a result, as shown in FIG. 4A, the cutting blade 41 moves with a speed Va toward the lower side and a speed Vc toward the horizontal direction (the left direction in the figure).
  • the cutting edge 41a enters the steel wire rod W with a straight trajectory obliquely downward. Further, the speed Vc is set faster than the feed speed Vw when the steel wire W is cut.
  • a receiving blade 42 is disposed below the cutting blade 41.
  • the receiving blade 42 functions as a lower blade, and is supported in a cantilevered manner in the cutting mechanism 40 as shown in FIG. Then, when the steel wire W is bent by the coiling tool 32 and reaches a predetermined number of turns, the cutting blade 41 descends, is cut by shearing with the straight portion of the receiving blade 42, and is supplied from the rear. W and coiled steel wire W are separated. 4A, when the steel wire W is cut, the cutting blade 41 escapes in a direction substantially perpendicular to the moving direction so far and avoids interference with the steel wire W.
  • the cutting blade 41 when cutting the steel wire W, the cutting blade 41 has a trajectory having a downward velocity Va and a horizontal velocity Vc. It is sent at the speed Vw without stopping the feed. Therefore, variation in the heating time of the steel wire W by the heating mechanism 20 is suppressed, and the heating temperature of the steel wire W becomes more uniform. And the dispersion
  • the cutting blade 41 moves with a downward speed Va and a horizontal speed Vc, but the axial feed speed Vw when cutting the steel wire W is higher than Vc. small.
  • the cutting blade 41 advances in the feed direction at a faster speed than the cutting surface of the steel wire W, so that the cutting surface of the steel wire W is not pressed against the flank 41b of the cutting blade 41, and the cutting surface is deformed. Is prevented, and the roundness of the coil diameter is improved.
  • the cutting blade 41 carries out the linear motion which goes diagonally downward, it is not limited to this,
  • the cutting blade 41 can be comprised so that arbitrary motions may be carried out.
  • the cutting blade 41 may be configured to perform an elliptical motion.
  • a circular motion may be configured.
  • Such movement of the cutting blade 41 can be realized by guiding the cutting blade 41 in a reciprocating motion between the top dead center and the bottom dead center.
  • Heating coil length 170mm -Spatial distance between feed roller and receiving blade: 400mm ⁇
  • High-frequency heating coil oscillation frequency 200 kHz ⁇
  • Feeding speed of steel wire during coil forming 40-50m / min ⁇
  • Feeding speed of steel wire when cutting coil 8-50m / min ⁇
  • Horizontal speed Vc of cutting blade 40-120m / min ⁇
  • Steel Wire diameter 2-5mm ⁇
  • Heating temperature 900 °C -Coil average diameter / steel wire diameter: 6.0 ⁇ Number of winding: 5.75
  • Table 1 shows the crystal grain size and coil outer diameter of a coil spring produced by changing the feed speed of the steel wire at the time of coil separation in the range of 8 to 50 m / min.
  • the feed rate of the steel wire is the same at the time of separation (a) and molding (b) and when the separation (a) is 90% of the time of molding (b)
  • the crystal grain size of the sample There was no difference between the two end portions and the effective portion, and the particle size number was 12.2.
  • the outer diameter of the coil was the same at both ends and the effective portion of the coil.
  • the feed speed of the steel wire when cutting the steel wire is preferably 50 to 100%, more preferably 90 to 100% of the feed speed during coiling.
  • the heating temperature difference between both ends of the coil and the effective portion becomes large, and excessive heating occurs at both ends Therefore, the crystal grains became coarse and the particle size number became 10 or less. Further, the coil outer diameter had a difference of 0.4 mm or more, and a coil satisfying the required quality was not obtained.
  • the steel wire feed rate at the time of separation (a) was 20% of that at the time of forming (b)
  • buckling occurred and coiling was impossible.
  • Table 2 shows the roundness of the coil diameter of the coil start side terminal of the coil spring manufactured by changing Vc / Vw in the range of 1.00 to 3.00.
  • the steel wire diameter is preferably 1.5 mm or more.
  • the steel wire diameter is 2 mm or more is more desirable.
  • the steel wire diameter is desirably 9 mm or less.
  • the steel wire diameter exceeds 5 mm and is 9 mm or less, an incompletely hardened portion remains in the vicinity of the center of the steel wire, but the load stress is low in the vicinity of the center of the steel wire. No problem.
  • the diameter of the steel wire is more preferably 5 mm or less in order to form a spring having a homogeneous structure over the entire area up to the inside of the steel wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Wire Processing (AREA)

Abstract

鋼線材の切断時に鋼線材の送りを停止することなく連続的に切断することができ、鋼線材を均一に加熱することができるばね成形装置を提供する。複数対のフィードローラ(11)により鋼線材(W)を供給する線材供給機構(10)と、鋼線材(W)を加熱する加熱機構(20)と、加熱された鋼線材(W)をコイル状に成形するコイリング機構(30)と、所定巻数コイリングされた鋼線材(W)を後方の鋼線材(W)と切離する切断機構(40)とを備えている。切断機構(40)の切断刃(41)は、鋼線材(W)を切断する際に、受け刃(42)の方向へ向かう速度Vaと、コイリングされた鋼線材(W)の軸方向へ向かう速度Vcとを備える軌跡をなす。

Description

ばね成形装置および成形方法
 本発明は、例えば、鋼線材を送りながらコイルばねなどのばねを連続的に熱間成形するばね成形装置に係り、特に、鋼線材の切断時に鋼線材の送りを停止することなく連続的に切断することで鋼線材の加熱むらを軽減する技術に関する。
 近年、地球温暖化を背景に輸送機器、特に自動車への低燃費化要求が年々厳しくなっており、自動車部品に対する小型・軽量化がこれまで以上に強く求められている。この小型・軽量化要求に対し、例えばエンジン内で使用されるバルブスプリングや、クラッチ内で使用されるクラッチダンパースプリングをはじめとする圧縮コイルばね部品においては、これまで材料の高強度化や表面処理による表面強化によって、コイルばねの特性として重要な耐疲労性の向上や、耐へたり性の向上を図ってきている。
 バルブスプリングやクラッチダンパースプリングといった比較的小さいコイルばねは、一般にはコイル材を用い、冷間成形によって製造される。一方、懸架ばねのような比較的大きいばねは、バー材を用い、熱間成形によって製造されるのが一般的である。これは、用いる線材が太いため、冷間成形では加工性が悪く成形が困難であるためである。
 コイルばねの冷間成形と熱間成形には一長一短があり、いずれが優れているとは一概に言うことはできない。例えば、比較的線径が細い、あるいはばね指数が大きいなどの要因から冷間成形が可能な形状のコイルばねについては、加工技術の容易さや、加工速度や設備費等による量産性(タクト、寸法精度、コスト)の観点から、一般的に冷間成形が採用されている。また、冷間成形では、無芯金での成形技術が確立されており、コイルばねの形状自由度が高いことも冷間成形が用いられる大きな一因となっている。一般には、バルブスプリングクラスのばねは冷間成形により製造されている。
 一方、熱間成形は加工時のコイリング歪みが発生しないといった点で冷間成形に対し有利であり、線径dが大きい場合や、コイル平均径Dと線径dとの比であるばね指数D/dが小さい場合など、その加工性の悪さから冷間成形が困難であるコイルばねの成形に用いられる。しかしながら、熱間成形では、材料が軟らかいため芯金に巻き付けてコイルばね形状にコイリングする必要があるため、形状の自由度が低く、しかも、製品ごとに芯金を揃える必要がある。
 熱間成形では、成形時の鋼線材の加熱温度が製品の形状や性能に大きく影響を及ぼす。そのため、製品の品質(形状精度、結晶粒度)を維持するためには、全体に亘って均一に加熱された状態で成形されることが望まれる。すなわち、加熱温度に影響を与える鋼線材の送り速度をできるだけ均一にすることが望まれている。
 特許文献1には、切断工具駆動用モータがコイルばねの切断位置を中間点として往復回転運動し、切断工具駆動用モータの往動時だけでなく復動時にもコイルばねの切断がなされるようにして、より高速な切断が可能となる機構が開示されている。
特開2008-080386号公報
 冷間成形用コイリングマシンでは、ばね切断時は鋼線材の供給を停止させることが一般的であり、特許文献1に記載の技術においても切断時には鋼線材の供給を停止させている。
 しかしながら、熱間成形の場合には、切断時に鋼線材の送りを停止してしまうと、送りを行っているときと送りを停止しているときで線材の加熱時間が異なるため、均一に加熱されず、要求された品質を確保することができないという問題があった。また、上述のように、熱間成形はバー材に対して行われ、コイル材に対しては冷間成形が行われるのが普通であり、コイル材を材料とするバルブスプリングクラスのばね成形において無理に熱間成形を行うと、上記のような問題があることから熱間成形はこれまで採用されていないのが実情である。
 したがって、本発明は、鋼線材の切断時に鋼線材の送りを停止することなく連続的に切断することができ、鋼線材を均一に加熱することができるばね成形装置を提供することを目的としている。
 本発明は、複数対のフィードローラにより鋼線材を供給する線材供給機構と、鋼線材を加熱する加熱機構と、加熱された鋼線材をコイル状に成形するコイリング機構と、所定巻数コイリングされた鋼線材を後方の鋼線材と切離する切断機構とを備え、コイリング機構は、フィードローラにより供給された鋼線材を加工部の適切な位置へ誘導するためのワイヤガイドと、ワイヤガイドを経由して供給された鋼線材をコイル形状に加工するためのコイリングツールと、コイル形状のピッチを付けるピッチツールとを備え、切断機構は、所定巻数コイリングされたコイルを後方の鋼線材と切離する切断刃と、切断刃と対向配置されて鋼線材を支える受け刃とを備え、加熱機構により鋼線材を加熱する領域がフィードローラとワイヤガイドとの中間に設けられ、切断刃は、鋼線材を切断する際に、受け刃の方向へ向かう速度Vaと、コイリングされた鋼線材の軸方向へ向かう速度Vcとを備える軌跡をなすことを特徴とする。
 本発明においては、鋼線材を切断する際に、切断刃は受け刃の方向へ向かう速度Vaとコイリングされた鋼線材の軸方向へ向かう速度Vcとを備える軌跡をなすから、鋼線材は、切断するときも例えば速度Vcに近い速度で送り続けることができる。したがって、加熱機構による鋼線材の加熱時間のばらつきが抑制され、鋼線材の加熱温度がより均一となる。
 ここで、鋼線材を切断するときに鋼線材の送り速度を遅くすることもできる。しかしながら、鋼線材を切断する際の鋼線材の送り速度が極端に遅いと、切断時の加熱温度とそれ以外のときの加熱温度に大きな差が生じる。このため、熱間成形されるコイルばねの部位によって温度差が生じ、コイルばね個体内での品質(形状、組織など)が不均一となる。あるいは、温度差がより大きい場合には、過剰加熱により線材が座屈する。したがって、切断する際の鋼線材の送り速度は、それ以外のときの送り速度の50%以上であることが好ましく、より好ましくは90%以上がよい。
 鋼線材を切断する際の鋼線材の送り速度をVwとすると、Vc>Vwであることが望ましい。すなわち、鋼線材の送り速度Vwよりも切断刃の同方向へ向かう速度Vcが小さいと、鋼線材の切断面が切断刃の逃げ面によって押圧されるため、鋼線材が座屈してコイリングが不可能となる。1.1>Vc/Vw>1では、鋼線材の切断面が切断刃の逃げ面によって押圧される度合いが低減されるため、コイリングは可能であるが、端末のコイル径の真円度が悪化する。したがって、このような不都合を確実に回避するために、Vc/Vw≧1.1であることが望ましい。また、2.5≧Vc/Vwであることが望ましい。Vc/Vwが2.5を超えてもさらなる改善は期待できない一方、切断刃を高速で移動させるための設備費用が割高となる。
 切断刃の鋼線材の軸方向へ向かう速度Vcは、鋼線材を切断するまで一定であってもよい。切断刃が受け刃の方向へ向かう速度Vaが一定の場合には、切断刃は鋼線材に対して斜めに直線的に移動する。あるいは、切断刃は、楕円や円を描くように移動させることもできる。
 まず、加熱機構は高周波加熱機構であることが望ましく、鋼線材と同心となるように配置される加熱コイルのコイル長は100~350mmであることが望ましい。加熱コイルのコイル長が100mm未満であると、鋼線材を内部まで均一に加熱するための十分な加熱能力を確保できず、鋼線材の供給速度が速い場合や、鋼線材径が太い場合には鋼線材をオーステナイト域まで昇温することが困難となる。そして、加熱コイルのコイル長を100mm以上としてオーステナイト域まで2.5秒以内で昇温させることにより、オーステナイト結晶粒の粗大化が抑制されるとともに、急速加熱による微細化効果が得られる。これにより、耐久性に優れたばねの製造が可能となる。なお、コイルばねは、オーステナイト域まで加熱しコイリングした後に焼入れされ、その後焼戻しされる。
 一方、加熱コイルのコイル長が350mmを超えると、鋼線材を支持しているフィードローラとワイヤガイドとの間の距離も長くなるため、その間、すなわち加熱コイルの中において鋼線材がうねって座屈が生じるおそれがある。
 上記のような加熱コイルを配置するために、フィードローラと受け刃との間の空間距離は200~500mmであることが望ましい。フィードローラと受け刃との間の空間距離が200mm未満であると、十分な加熱能力を有する長さの加熱コイルと、鋼線材をコイリング加工部の適切な位置へ誘導するためのワイヤガイドを備えるための領域を確保することができない。一方、フィードローラと受け刃との間の空間距離が500mmを超えると、ワイヤガイドの長さを必要以上に長くしなければならなくなるため非経済的である。
 本発明によれば、鋼線材の切断時に鋼線材の送りを停止することなく連続的に切断することができ、鋼線材をより均一に加熱することができ、また、熱間成形によってバルブスプリングクラスのばねを成形することができる等の効果が得られる。
本発明の実施形態におけるコイリングマシンの側面図である。 本発明の実施形態におけるコイリング機構の側面図である。 本発明の実施形態におけるコイリング機構の斜視図である。 本発明の実施形態における切断刃の軌跡を示す側面図である。
 10…線材供給機構、11…フィードローラ、20…加熱機構、21…高周波加熱コイル、30…コイリング機構、31…ワイヤガイド、32…コイリングツール、33…ピッチツール、40…切断機構、41…切断刃、42…受け刃、W…鋼線材。
 以下、本発明の実施形態を図1~図4を参照して説明する。図1において符号10は線材供給機構である。線材供給機構10は、水平方向に連設された複数のフィードローラ11を備えている。フィードローラ11の間には、鋼線材Wを案内するワイヤガイド12が配置されている。
 線材供給機構10の下流側には、加熱機構20が配置されている。加熱機構20は、鋼線材Wと同軸に配置された螺旋状の高周波加熱コイル21を備えている。高周波加熱コイル21は、鋼線材Wを2.5秒以内でオーステナイト域に昇温させる。なお、高周波加熱コイル21は図1に示すような螺旋状のものに限らず、側方が開放された軸断面がコ字状のものなど、加熱性能と段取性を考慮して適宜相応な形状のものを用いればよい。
 加熱機構20の下流側には、コイリング機構30が配置されている。図において符号31はワイヤガイドであり、ワイヤガイド31は、フィードローラ11により供給された鋼線材Wをコイリング機構30の適切な位置に誘導する。ワイヤガイド31の下流側には、コイリングピン(もしくはコイリングローラ)からなる2つのコイリングツール32と、ピッチを付けるためのピッチツール33が配置されている。ワイヤガイド31を抜けた鋼線材Wは、最初のコイリングツール32に当接して所定の曲率で曲げられ、さらに下流のコイリングツール32に当接して所定の曲率で曲げられる。そして、鋼線材Wは、ピッチツール33に当接して、所望のコイル形状となるようにピッチが付与される。なお、コイリングツール32は、1つのコイリングピン(もしくはコイリングローラ)の形態のものも用いることができる。
 図において符号40は切断機構である。切断機構40は、図示しないクランク機構によって上下方向に移動可能とされた切断刃41を備えている。また、切断刃41は、図示しない移動機構により水平方向にも移動可能とされている。これにより、切断刃41は、図4(A)に示すように、下降するときには下方へ向かう速度Vaと水平方向(図中左方向)へ向かう速度Vcを持った運動をし、切断刃41の刃先41aは、鋼線材Wに対して斜め下方へ向けて直線の軌跡を持って突入する。また、速度Vcは、鋼線材Wの切断時の送り速度Vwよりも速く設定されている。
 切断刃41の下方には受け刃42が配置されている。受け刃42は、下刃の機能をなすもので、図3に示すように切断機構40内において片持ち状態で支持されている。そして、鋼線材Wがコイリングツール32によって曲げられて所定の巻数となったところで切断刃41が下降し、受け刃42の直線部分との間でせん断によって切断して、後方より供給される鋼線材Wとコイリングされた鋼線材Wとが切り離される。なお、切断刃41は、図4(A)に示すように、鋼線材Wを切断するとそれまでの移動方向とほぼ直角方向に逃げて鋼線材Wとの干渉を回避する。
 上記構成のばね成形装置にあっては、鋼線材Wを切断する際に、切断刃41は下方へ向かう速度Vaと水平方向へ向かう速度Vcとを持った軌跡をなし、鋼線材Wは、その送りを停止させることなく速度Vwで送られる。したがって、加熱機構20による鋼線材Wの加熱時間のばらつきが抑制され、鋼線材Wの加熱温度がより均一となる。そして、鋼線材Wが送られて加熱およびコイリングされるときの送り速度に切断時の速度Vwが近ければ近い程、鋼線材Wの加熱時間のばらつきがより一層抑制される。
 特に、上記実施形態においては、切断刃41は、下方へ向かう速度Vaと水平方向へ向かう速度Vcを持った運動をするが、鋼線材Wの切断時の軸方向の送り速度VwはVcよりも小さい。これにより、切断刃41は鋼線材Wの切断面よりも速い速度で送り方向へ進み、このため切断刃41の逃げ面41bに鋼線材Wの切断面が押圧されることなく、切断面の変形が防止され、コイル径の真円度が向上する。
 なお、上記実施形態では切断刃41は斜め下方に向かう直線運動をするが、これに限定されるものではなく、切断刃41は任意の運動をするように構成することができる。例えば、図4(B)に示すように、切断刃41が楕円運動をするように構成してもよい。あるいは、図4(C)に示すように、円運動をするように構成してもよい。このような切断刃41の運動は、上死点と下死点との間の往復運動において切断刃41をガイドすることで実現することができる。
 次に、本発明の好ましい態様の数値限定を検証した実施例について説明する。実施例におけるばね成形装置および作製ばねの条件は以下のとおりである。
・加熱コイル長:170mm
・フィードローラと受け刃の間の空間距離:400mm
・高周波加熱コイルの発振周波数:200kHz
・コイル成形時の鋼線材の送り速度:40~50m/分
・コイル切離時の鋼線材の送り速度:8~50m/分
・切断刃の水平方向の速度Vc:40~120m/分
・鋼線材径:2~5mm
・加熱温度:900℃
・コイル平均径/鋼線材径:6.0
・巻数:5.75巻
[実施例1]
 表1にコイル切離時の鋼線材の送り速度を8~50m/分の範囲で変化させて作製したコイルばねの結晶粒度とコイル外径を示す。発明例のうち、鋼線材の送り速度が切離時(a)と成形時(b)で同じ場合と切離時(a)が成形時(b)の90%の場合では、試料の結晶粒度は両端部と有効部で差がなく、粒度番号は12.2となった。また、コイル外径はコイルの両端部と有効部で同じであった。また、切離時(a)の鋼線送り速度が成形時(b)の50%の場合では、粒度番号は10.5で十分であり、コイルの両端部と有効部でのコイル外径の差は許容範囲であった。したがって、鋼線材を切断する際の鋼線材の送り速度はコイリング時の送り速度の50~100%であることが好ましく、より好ましくは90~100%であることが確認された。
Figure JPOXMLDOC01-appb-T000001
 
 一方、切離時(a)の鋼線送り速度が成形時(b)の50%未満である比較例では、コイルの両端部と有効部の加熱温度差が大きくなり、両端部で過剰に加熱されるため、結晶粒は粗大化し、粒度番号は10以下となった。また、コイル外径は、0.4mm以上の差が生じ、要求品質を満足するものが得られなかった。特に、切離時(a)の鋼線送り速度が成形時(b)の20%である比較例では、座屈が生じてコイリングは不可能であった。
[実施例2]
 表2にVc/Vwを1.00~3.00の範囲で変化させて作製したコイルばねの巻始側端末のコイル径の真円度を示す。
Figure JPOXMLDOC01-appb-T000002
 
 Vc/Vwが1.05~2.50である発明例1~9では、鋼線材径が2~5mm(本発明においては、鋼線材の横断面の面積から算出した真円とした場合の直径であり、角形や楕円などの非円形断面も含めた円相当直径が2~5mmの場合を含む)において、真円度が0.995~1.000でコイリングが可能であった。特にVc/Vwが1.10~2.50である発明例1~8では、真円度が1.000であり、端末変形が全くなくコイリング可能であった。
 表2に示す例以外では、鋼線材径は、1.5~9mmまで熱間コイリングが可能である。すなわち、鋼線材径が1.5mm未満の場合には、鋼線材としての強度が低いためコイリング中に変形したり座屈したりしてコイリングができないことがある。したがって、歩留まりを向上させる上で鋼線材径は1.5mm以上であることが望ましいが、コイリング中の変形や座屈をより確実に防止して歩留まりを一層向上させるためには、鋼線材径は2mm以上がより望ましい。
 一方、鋼線材径が9mmを超える場合は、負荷応力が高い鋼線材の表面近傍から鋼線材の内部にかけて、不完全焼入れ部が残存する。したがって、鋼線材径は9mm以下であることが望ましい。鋼線材径が5mmを超え9mm以下の場合には、鋼線材の中心部近傍に不完全焼入れ部が残存するが、鋼線材中心部近傍は負荷応力が低いため、コイルばねとして使用する上での問題はない。ただし、鋼線材内部まで全域に亘り均質な組織を有するばねを成形するために鋼線材径は5mm以下がより望ましい。
 Vc/Vwが1.00である比較例10では、鋼線材の座屈が生じ、コイリングが不可能であった。Vc/Vwが3.00の発明例8では、真円度は発明例1~7と同じであるが、Vcを高くするための設備がオーバースペックとなって非経済的である。すなわち、発明例8では、切断刃を駆動するモータを高性能なものとする必要があり、経済的ではない。よって、Vc/Vwは、発明例1~7、9のように1.00を超え2.50以下であることが望ましく、精度(真円度)の高いコイルばねを成形するためには、発明例1~7のように1.10~2.50であることがより望ましい。

Claims (8)

  1.  複数対のフィードローラにより鋼線材を供給する線材供給機構と、前記鋼線材を加熱する加熱機構と、加熱された前記鋼線材をコイル状に成形するコイリング機構と、所定巻数コイリングされた前記鋼線材を後方の前記鋼線材と切離する切断機構とを備え、
     前記コイリング機構は、前記フィードローラにより供給された前記鋼線材を加工部の適切な位置へ誘導するためのワイヤガイドと、前記ワイヤガイドを経由して供給された前記鋼線材をコイル形状に加工するためのコイリングツールと、前記コイル形状のピッチを付けるピッチツールとを備え、
     前記切断機構は、所定巻数コイリングされたコイルを後方の前記鋼線材と切離する切断刃と、該切断刃と対向配置されて前記鋼線材を支持する受け刃とを備え、
     前記加熱機構により鋼線材を加熱する領域が前記フィードローラと前記ワイヤガイドとの中間に設けられ、
     前記切断刃は、前記鋼線材を切断する際に、前記受け刃の方向へ向かう速度Vaと、コイリングされた前記鋼線材の軸方向へ向かう速度Vcとを備える軌跡をなすことを特徴とするばね成形装置。
  2.  前記フィードローラと前記受け刃との間の空間距離が200~500mmであることを特徴とする請求項1に記載のばね成形装置。
  3.  前記加熱機構が高周波加熱を用いており、前記鋼線材と同心となるように配置される加熱コイルのコイル長が100~350mmであることを特徴とする請求項1または2に記載のばね成形装置。
  4.  前記切断刃が前記鋼線材を切断する際の鋼線材の送り速度は、それ以外のときの前記鋼線材の送り速度の50~100%であることを特徴とする請求項1~3のいずれかに記載のばね成形装置。
  5.  前記切断刃が前記鋼線材を切断する際の鋼線材の送り速度は、それ以外のときの前記鋼線材の送り速度の90~100%であることを特徴とする請求項4に記載のばね成形装置。
  6.  前記鋼線材を切断する際の該鋼線材の送り速度をVwとしたときに、Vc>Vwであることを特徴とする請求項1~5のいずれかに記載のばね成形装置。
  7.  前記鋼線材を切断する際の該鋼線材の送り速度をVwとしたときに、2.5≧Vc/Vw≧1.1であることを特徴とする請求項1~5のいずれかに記載のばね成形装置。
  8.  鋼線材を送りながら加熱する加熱工程と、
     加熱された前記鋼線材をコイル形状にコイリングするコイリング工程と、
     所定巻数コイリングされたコイルを後方の前記鋼線材と切離する切断工程とを備え、
     前記切断工程は、受け刃と、この受け刃に対して接近離間する切断刃によって行い、前記切断刃は、前記コイルを切断する際に、前記受け刃の方向へ向かう速度Vaと、コイリングされた前記鋼線材の軸方向へ向かう速度Vcとを備える軌跡をなすことを特徴とするばね成形方法。
PCT/JP2014/076914 2013-10-18 2014-10-08 ばね成形装置および成形方法 WO2015056615A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14854805.0A EP3059025B1 (en) 2013-10-18 2014-10-08 Spring forming method
KR1020167012009A KR102189662B1 (ko) 2013-10-18 2014-10-08 스프링 성형 장치 및 성형 방법
US15/027,393 US10052677B2 (en) 2013-10-18 2014-10-08 Spring forming device and forming method therefor
CN201480055675.4A CN105592951B (zh) 2013-10-18 2014-10-08 弹簧成形装置以及成形方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013217889A JP6148148B2 (ja) 2013-10-18 2013-10-18 ばね成形装置および成形方法
JP2013-217889 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056615A1 true WO2015056615A1 (ja) 2015-04-23

Family

ID=52828061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076914 WO2015056615A1 (ja) 2013-10-18 2014-10-08 ばね成形装置および成形方法

Country Status (6)

Country Link
US (1) US10052677B2 (ja)
EP (1) EP3059025B1 (ja)
JP (1) JP6148148B2 (ja)
KR (1) KR102189662B1 (ja)
CN (1) CN105592951B (ja)
WO (1) WO2015056615A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034319A1 (de) * 2014-09-04 2016-03-10 ThyssenKrupp Federn und Stabilisatoren GmbH Verfahren zum herstellen von kaltgeformten stahlfedern
CN107735191B (zh) * 2015-06-25 2019-08-30 欧立美克株式会社 螺旋弹簧制造方法以及螺旋弹簧制造装置
KR101561998B1 (ko) 2015-08-11 2015-10-20 주수근 그리드 커플링 성형장치
CN106493578A (zh) * 2016-12-28 2017-03-15 新乡辉簧弹簧有限公司 扁卡圈绕制方法及装置
CN108672617B (zh) * 2018-06-08 2021-11-05 西安亿利华弹簧科技股份有限公司 一种微型弹簧的加工设备及其制备方法
CN108714669B (zh) * 2018-06-08 2021-11-16 常宁市福宏弹簧有限公司 一种微型异型弹簧的加工设备及制备方法
CN108787958B (zh) * 2018-06-08 2021-11-19 常宁市福宏弹簧有限公司 一种微型弹簧加工设备
CN110238329A (zh) * 2019-07-08 2019-09-17 昆山升甫电子制品有限公司 一种热卷弹簧成形系统
CN111545688B (zh) * 2020-05-18 2022-02-08 苏州兆能精密弹簧五金有限公司 一种环形压力弹簧成型设备及成型方法
CN112845975A (zh) * 2020-12-18 2021-05-28 无锡市晶飞电子有限公司 一种线圈成型装置及其成型方法
CN114762883B (zh) * 2021-01-15 2024-04-02 佛山市锐义弹簧精密制造有限公司 一种弹簧加工用折弯成型装置
CN113102660B (zh) * 2021-03-04 2023-09-15 浙江尖峰通信电缆有限公司 一种网线生产用分段裁剪设备
CN113617971A (zh) * 2021-08-11 2021-11-09 中国电子科技集团公司第三十八研究所 一种大螺距大长径比螺旋天线的成型装置
EP4151333A1 (en) 2021-09-17 2023-03-22 Spühl GmbH Coil spring production with rotary cutter
CN114433756A (zh) * 2021-12-28 2022-05-06 吕永发 一种屏蔽电缆回收定长裁剪设备
CN114480817A (zh) * 2022-01-10 2022-05-13 东莞市旺高实业有限公司 一种高频回火包丝机
CN115429100A (zh) * 2022-10-09 2022-12-06 东莞市国福节能工程有限公司 一种加热器具制造方法
CN115592050B (zh) * 2022-10-28 2023-10-31 中国人民解放军92578部队 一种气胀式救生筏系统连接线缆自动切割装置
CN117548591B (zh) * 2024-01-10 2024-04-02 常州泰山弹簧有限公司 一种弹簧加工用弹簧绕制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181235U (ja) * 1984-05-08 1985-12-02 加藤発条株式会社 形状記憶合金コイルばねの成形装置
JPH07115101B2 (ja) * 1990-12-19 1995-12-13 ヴアフイオス・マシーネンフアブリーク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト 針金の成形装置
US20060196242A1 (en) * 2003-07-22 2006-09-07 Katsuhide Tsuritani Wire rod cutting apparatus of spring manufacturing machine
JP2008080386A (ja) 2006-09-28 2008-04-10 Asahi-Seiki Mfg Co Ltd コイルばね製造機およびコイルばね製造方法。

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976635A (ja) * 1982-10-26 1984-05-01 Itaya Seisakusho:Kk 二重コイルねじりばねの製法及びその製造装置
CN2044524U (zh) * 1989-01-13 1989-09-20 金国安 连续送料万能全自动盘簧机
JPH0729164B2 (ja) * 1993-01-27 1995-04-05 株式会社板屋製作所 バネ製造装置
US6584823B2 (en) * 2000-09-18 2003-07-01 L&P Property Management Company Two wire spring making machine and method
JP3854242B2 (ja) * 2003-04-30 2006-12-06 株式会社板屋製作所 スプリング製造装置及び当該装置を用いたワイヤの切断方法
CN101214523A (zh) * 2008-01-01 2008-07-09 长安汽车(集团)有限责任公司 一种超长护套弹簧的自动绕制方法
FR2937890B1 (fr) * 2008-11-05 2010-12-24 Ressorts Huon Dubois Procede et installation de fabrication d'un ressort
CN202377441U (zh) * 2011-04-01 2012-08-15 韶关市技师学院 车床绕制弹簧的成型装置
JP5064590B1 (ja) * 2011-08-11 2012-10-31 日本発條株式会社 圧縮コイルばねおよびその製造方法
DE102012204513B3 (de) * 2012-03-21 2013-09-19 Wafios Ag Verfahren und Vorrichtung zur Herstellung von Schraubenfedern durch Federwinden
CN102641975A (zh) * 2012-05-11 2012-08-22 乐清市力升弹簧有限公司 一种c形卡簧制造方法以及实施该方法的专用设备
DE102013207028B3 (de) * 2013-04-18 2014-06-26 Wafios Ag Federwindemaschine mit einstellbarer Schnitteinrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181235U (ja) * 1984-05-08 1985-12-02 加藤発条株式会社 形状記憶合金コイルばねの成形装置
JPH07115101B2 (ja) * 1990-12-19 1995-12-13 ヴアフイオス・マシーネンフアブリーク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト 針金の成形装置
US20060196242A1 (en) * 2003-07-22 2006-09-07 Katsuhide Tsuritani Wire rod cutting apparatus of spring manufacturing machine
JP2008080386A (ja) 2006-09-28 2008-04-10 Asahi-Seiki Mfg Co Ltd コイルばね製造機およびコイルばね製造方法。

Also Published As

Publication number Publication date
CN105592951B (zh) 2018-04-24
EP3059025A4 (en) 2017-06-28
EP3059025A1 (en) 2016-08-24
US20160243607A1 (en) 2016-08-25
JP2015077631A (ja) 2015-04-23
CN105592951A (zh) 2016-05-18
KR20160071412A (ko) 2016-06-21
KR102189662B1 (ko) 2020-12-11
US10052677B2 (en) 2018-08-21
JP6148148B2 (ja) 2017-06-14
EP3059025B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6148148B2 (ja) ばね成形装置および成形方法
CN110226055B (zh) 一种车辆悬挂用螺旋弹簧
CN102388232B (zh) 压缩螺旋弹簧、螺旋弹簧的制造装置及制造方法
US20120047741A1 (en) Method of manufacturing coil spring using helicoid reduction mill
JP2007301587A (ja) 異形管の曲げ加工方法およびその曲げ加工装置、並びにそれらを用いた曲げ加工製品
JP6420690B2 (ja) コイリングマシンと、コイルばねの製造方法
JPS6250028A (ja) 高強度太径線材使用冷間成形コイルばね成形時の切断方法
EP3578844B1 (en) Mcpherson-strut-type suspension
CN106825164B (zh) 涡卷簧自动成型方法
US10335843B2 (en) Method for manufacturing bent member, and hot-bending apparatus for steel material
WO2018118035A1 (en) System and method of producing a coil for a mattress
CN106041219A (zh) 一种钢带除毛刺装置
CN101758151B (zh) 大中型钛合金实心盘形锻件的轧制成形方法
CN104400352B (zh) 一种半硬态铜管加工方法
WO2004092424A1 (ja) 鋼線の熱処理方法
KR101032164B1 (ko) 전기저항 용접을 이용한 강관 제조 방법
KR101049676B1 (ko) Tig 용접을 이용한 강관 제조 방법
JP5005648B2 (ja) 螺旋体製造装置、螺旋体、及びスパイラル
JP6966884B2 (ja) 内面螺旋溝付管の製造方法
CN103688451B (zh) 背铁及制造背铁的方法
RU2501620C2 (ru) Способ и устройство для изготовления винтовых пружин
KR100732329B1 (ko) 편심 하중형 코일 스프링
JP2000117335A (ja) 薄板リングの製造方法
JP2014024311A (ja) 合成樹脂ばねを成形する製造装置及び製造方法
CN102896271A (zh) 制造套环的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15027393

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012009

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014854805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854805

Country of ref document: EP