WO2015056583A1 - 二次電池の製造方法 - Google Patents

二次電池の製造方法 Download PDF

Info

Publication number
WO2015056583A1
WO2015056583A1 PCT/JP2014/076567 JP2014076567W WO2015056583A1 WO 2015056583 A1 WO2015056583 A1 WO 2015056583A1 JP 2014076567 W JP2014076567 W JP 2014076567W WO 2015056583 A1 WO2015056583 A1 WO 2015056583A1
Authority
WO
WIPO (PCT)
Prior art keywords
wound body
space
manufacturing
battery
battery case
Prior art date
Application number
PCT/JP2014/076567
Other languages
English (en)
French (fr)
Inventor
亮 津久井
博康 角
展弘 山田
水口 暁夫
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013214628A external-priority patent/JP6011877B2/ja
Priority claimed from JP2014049161A external-priority patent/JP6094823B2/ja
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020167012362A priority Critical patent/KR20160068929A/ko
Priority to US15/029,540 priority patent/US10396342B2/en
Priority to CN201480056398.9A priority patent/CN105637679B/zh
Publication of WO2015056583A1 publication Critical patent/WO2015056583A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • H01M50/664Temporary seals, e.g. for storage of instant batteries or seawater batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a secondary battery that performs a step of injecting an electrolyte into a battery case.
  • a wound body formed by winding a positive electrode, a negative electrode, and a separator is housed in the exterior in a lateral orientation.
  • a battery container is sealed and electrolyte solution is made to osmose
  • the present invention has been made in view of the above situation, and provides a method for manufacturing a secondary battery that can effectively infiltrate an electrolyte into a wound body.
  • the method of manufacturing a secondary battery according to the first aspect of the present invention includes a step of reducing the pressure inside a battery case, a step of injecting an electrolyte into the reduced pressure battery case, a winding body, and the winding A step of infiltrating the electrolytic solution from both ends of the body in the axial direction, and a wound body external space that is a space between the battery case and the wound body after the electrolytic solution is infiltrated, and the wound
  • the amount of penetration of the electrolytic solution at both axial end portions of the wound body is increased, and the permeated electrolytic solution
  • a step of pressurizing the outer space of the wound body is reducing the pressure inside a battery case, a step of injecting an electrolyte into the reduced pressure battery case, a winding body
  • the method for manufacturing a secondary battery according to the second aspect of the present invention further includes a step of sealing the injected battery case after injecting the electrolytic solution.
  • the method of manufacturing a secondary battery according to the third aspect of the present invention waits until the pressure between the outer space of the wound body and the inner space of the wound body is balanced in the airtightening step. It is.
  • the method for manufacturing a secondary battery according to the fourth aspect of the present invention is to open the battery case to the atmosphere in the step of pressurizing the outer space of the wound body.
  • the method for manufacturing a secondary battery according to the fifth aspect of the present invention is to pressurize the battery case from the outside in the step of pressurizing the outer space of the wound body.
  • the step of expanding the battery case to the outside is performed to pressurize the outer space of the wound body.
  • the battery case expanded outward is pressurized, and the battery case is compressed in a direction opposite to the expansion direction.
  • the battery case in the step of pressurizing the wound body outer space, the battery case is compressed to apply the wound body outer space to a pressure equal to or higher than atmospheric pressure. Pressure.
  • the manufacturing method of the secondary battery according to the eighth aspect of the present invention includes a vacuuming step of evacuating the inside of the battery case in a state where the electrode body is accommodated in the battery case, and injecting an electrolyte into the battery case And a sealing step for sealing the battery case, wherein in the evacuation step, the inside of the electrode body is made negative and the inside of the electrode body is In a state where the inside of the electrode body is airtight with respect to the outside of the electrode body in a negative pressure state, and the inside of the electrode body is airtight with respect to the outside of the electrode body, An air release step for opening the inside of the battery case to the atmosphere, and the sealing step is performed such that the inside of the electrode body is hermetically sealed with respect to the outside of the electrode body, and the inside of the battery case is opened to the atmosphere. It is to be done in the state.
  • the airtightness step is performed by impregnating the electrolyte solution into an end portion of the electrode body.
  • the airtightening step is carried out by impregnating the end portion of the electrode body with the electrolytic solution by a capillary phenomenon.
  • the present invention has an effect that the electrolytic solution can be effectively infiltrated into the wound body.
  • Explanatory drawing which shows the whole structure of a battery. Explanatory drawing which shows a mode that a winding body is manufactured.
  • A The figure which shows a mode that a positive electrode, a negative electrode, and a separator are wound.
  • B The figure which shows a mode that press processing is performed to the winding body.
  • Explanatory drawing which shows the mode from the pressure reduction process of 1st embodiment to a sealing process.
  • Explanatory drawing which shows an injection unit.
  • Explanatory drawing which shows a mode that a liquid injection unit is operated.
  • A) The figure which shows the mode at the time of a pressure reduction process.
  • B The figure which shows the mode at the time of a liquid injection process.
  • Explanatory drawing which shows the osmosis
  • A Sectional drawing.
  • B The perspective view of a winding body. Explanatory drawing which shows the mode from the standby process of the first embodiment to the initial charge process. Explanatory drawing which shows the osmosis
  • Explanatory drawing which shows the pressure fluctuation of the winding body external space at the time of a standby process and a pressurization process.
  • Explanatory drawing which shows the osmosis
  • Explanatory drawing which shows the mode from the main sealing process of 2nd embodiment to an initial stage charging process.
  • Explanatory drawing which shows the pressure fluctuation of the winding body external space at the time of the standby process of the 1st embodiment and 2nd embodiment, and the pressurization process.
  • Explanatory drawing which shows a mode that an exterior is pressurized at the time of an initial stage charge process.
  • Explanatory drawing which shows the penetration degree of the electrolyte solution in a prior art.
  • the schematic diagram which shows the whole structure of the secondary battery which is the application object of the manufacturing method of the secondary battery which concerns on 3rd embodiment of this invention.
  • (B) The perspective view of a winding body.
  • C The perspective view of an exterior.
  • the partial schematic diagram which shows the structure of the edge part of a secondary battery.
  • the flowchart which shows the manufacturing method of the secondary battery which concerns on 3rd embodiment of this invention.
  • the schematic diagram which shows the state of the secondary battery in each process of the manufacturing method of the secondary battery which concerns on 3rd embodiment of this invention.
  • the schematic diagram which shows the formation condition of a seal
  • the schematic diagram which shows the 1st method of accelerating
  • the schematic diagram which shows the 3rd method of promoting penetration of the electrolyte solution with respect to an electrode body.
  • the battery 10 of the first embodiment is a sealed lithium ion secondary battery.
  • the target to which the present invention is applied is not limited to the lithium ion secondary battery, but can be applied to other secondary batteries such as a nickel metal hydride secondary battery.
  • the battery 10 includes a power generation element 20, an exterior 30, a cap 40, and external terminals 50 and 50.
  • the power generation element 20 is obtained by infiltrating the electrolytic solution E into a wound body 100 obtained by winding the positive electrode 101, the negative electrode 102, and the separator 103 (see FIGS. 2 and 3).
  • a chemical reaction occurs in the power generation element 20 (strictly speaking, ion movement occurs between the positive electrode 101 and the negative electrode 102 via the electrolytic solution E), thereby generating a current flow. .
  • the exterior 30 that is a battery container is a prismatic can that is formed in a substantially rectangular shape in plan view with the left-right direction in FIG. 1 as the longitudinal direction.
  • the exterior 30 has a storage part 31 and a lid part 32.
  • the storage unit 31 is a bottomed rectangular tube-shaped member whose bottom surface and side surfaces are closed and whose top surface is open, and stores the power generation element 20 therein.
  • the lid portion 32 is a flat plate-like member having a shape corresponding to the opening surface of the storage portion 31, and is joined to the storage portion 31 in a state where the opening surface of the storage portion 31 is closed.
  • a liquid injection hole 33 for injecting the electrolytic solution E is formed between locations where the external terminals 50 and 50 are inserted as will be described later.
  • the liquid injection hole 33 is a hole penetrating the plate surface of the lid portion 32, that is, a hole formed in the upper surface of the exterior 30.
  • the liquid injection hole 33 is a hole having a substantially circular shape in a plan view in which the inner diameter dimension is different between the outside and the inside of the lid portion 32.
  • the liquid injection hole 33 is formed such that the upper (outer) inner diameter is larger than the lower (inner) inner diameter, and a step portion is formed in the middle of the upper and lower sides.
  • a film 120 having a substantially circular shape in plan view is welded to the step portion during the manufacturing process of the battery 10. The film 120 is pierced during the manufacturing process of the battery 10. For this reason, in FIG. 1 showing the completed battery 10, the film 120 is in a pierced state.
  • the cap 40 is a lid that seals the liquid injection hole 33.
  • the lower surface of the cap 40 is formed in a shape that covers the film 120 from the outside.
  • the outer diameter of the cap 40 is substantially the same as the inner diameter on the upper side of the liquid injection hole 33.
  • the cap 40 is placed on the step portion of the liquid injection hole 33 and joined to the lid portion 32 by laser welding of the outer peripheral edge portion.
  • the external terminals 50 and 50 are arranged in a state in which part of the external terminals 50 and 50 protrudes upward (outward) of the battery 10 from the outer surface of the lid portion 32.
  • the external terminals 50 and 50 are electrically connected to the positive electrode 101 or the negative electrode 102 of the power generation element 20 through current collecting terminals 51 and 51.
  • the external terminals 50 and 50 are fixed to the lid portion 32 in an insulated state with the insulating members 52 and 53 interposed therebetween by fitting the fixing member 34 on the outer peripheral surface portion thereof.
  • the external terminals 50 and 50 and the current collecting terminals 51 and 51 function as an energization path for taking out the electric power stored in the power generation element 20 to the outside or taking in electric power from the outside into the power generation element 20.
  • the current collecting terminals 51 and 51 are connected to the positive electrode plate and the negative electrode plate of the power generation element 20.
  • the material of the current collecting terminals 51 and 51 for example, aluminum can be used on the positive electrode side and copper on the negative electrode side.
  • the external terminals 50 and 50 are threaded by thread rolling at portions protruding outward of the battery 10 to form bolt portions.
  • a bus bar, a connection terminal of an external device, and the like are fastened and fixed to the external terminals 50 and 50 using the bolt portion.
  • a fastening torque is applied to the external terminals 50 and 50, and an external force is applied in the axial direction by screw fastening.
  • a high-strength material such as iron as the material of the external terminals 50 and 50.
  • a mixture (a positive electrode mixture and a negative electrode mixture) is applied to the surface of a current collector (a positive electrode current collector and a negative electrode current collector) using a coating machine such as a die coder. Allow the agent to dry.
  • a mixture layer (a positive electrode mixture layer and a negative electrode mixture layer) is formed on the surface of the current collector by pressing the mixture on the surface of the current collector. A positive electrode 101 and a negative electrode 102 are generated.
  • the separator 103 is sandwiched between the positive electrode 101 and the negative electrode 102 and stacked.
  • winding is performed by winding the separator 103 between the positive electrode 101 and the negative electrode 102 with the axial direction of the positive electrode 101 as the winding axis direction, and pressing the outer peripheral surface of the wound one. 100 is generated (see the arrow shown in FIG. 2B).
  • the external terminals 50 and 50 and the current collecting terminals 51 and 51 integrated with the lid portion 32 of the exterior 30 are connected to the wound body 100, and the wound body 100 is connected to the storage portion 31 of the exterior 30. Storing. Thereafter, in the manufacturing method, the storage portion 31 and the lid portion 32 of the exterior 30 are joined and sealed by welding.
  • the winding body 100 is in a lateral orientation, that is, the axial direction of the winding body 100 (the winding axis direction) is relative to the longitudinal direction of the exterior 30.
  • the wound body 100 is stored so as to be parallel to each other. That is, in FIG. 3, the axial direction of the wound body 100 is the left-right direction.
  • winding body internal space S1 a space between the exterior 30 and the wound body 100, that is, a space obtained by removing the wound body internal space S ⁇ b> 1 from the internal space of the exterior 30 is referred to as “winding body external space S”.
  • the air in the exterior 30 disposed in an atmospheric atmosphere of 1 atm is discharged from the liquid injection hole 33 to reduce the pressure in the exterior 30.
  • a decompression step is performed (see an upward arrow A shown in FIG. 3).
  • the inside of the exterior 30 is decompressed until a high degree of vacuum is obtained.
  • the air in the wound body internal space S1 passes through both end portions 100a and 100b in the axial direction of the wound body 100 and exits to the wound body outer space S, and is then discharged to the outside.
  • a liquid injection step of injecting the electrolytic solution E into the exterior 30 decompressed from the liquid injection hole 33 is performed (see arrow E shown in FIG. 3).
  • Such a decompression step and a liquid injection step are performed using, for example, a liquid injection unit 110 as shown in FIG.
  • the liquid injection unit 110 includes a liquid injection pod 111 in which an electrolytic solution E is stored, connected to the upper port of the three-way valve 112, and a vacuum pump connected to the left port of the three-way valve 112. Is connected to.
  • the liquid injection unit 110 is disposed above the exterior 30 and is configured to be movable in the vertical direction, that is, to be able to move up and down. In FIG. 4, the other port is not connected to the lower port of the three-way valve 112.
  • the liquid injection unit 110 is lowered to bring the three-way valve 112 and the step portion of the liquid injection hole 33 into contact with each other, thereby injecting the liquid injection hole 33.
  • the exterior 30 is connected to the lower port of the three-way valve 112.
  • the three-way valve 112 is controlled to connect the exterior 30 and the vacuum pump, and the vacuum pump is driven to decompress the interior of the exterior 30.
  • the three-way valve 112 is controlled so that the exterior 30 and the liquid injection pod 111 communicate with each other.
  • the electrolytic solution E is injected into the exterior 30 using a pressure difference from the above pressure.
  • the electrolyte E penetrates vigorously into the axial end portions 100 a and 100 b of the wound body 100 immediately after the injection due to capillary action (see arrows shown in FIG. 6).
  • the electrolyte solution E permeates the axially opposite ends 100 a and 100 b of the wound body 100 without air remaining between the stacked surfaces of the positive electrode 101, the negative electrode 102, and the separator 103.
  • the wound body inner space S1 is isolated from the wound body outer space S by the electrolytic solution E immediately after the injection, and becomes a sealed space. That is, the air A1 in the wound body 100 is confined in the wound body 100 immediately after the injection.
  • the step of causing the electrolytic solution E to permeate the wound body 100 from both axial ends of the wound body 100 is performed.
  • the manufacturing method returns the interior of the exterior 30 to atmospheric pressure (1 atmosphere in the first embodiment) (downward arrow shown in FIG. 3). A).
  • the liquid injection unit 110 is raised from the state shown in FIG. Thereby, in the manufacturing method, the wound body outer space S is returned to atmospheric pressure.
  • the differential pressure between the wound body outer space S and the wound body inner space S1 returned to the atmospheric pressure is about 1 atm at most, that is, small. Therefore, the air introduced into the exterior 30 (winding body outer space S) when the atmosphere is released cannot push out the electrolytic solution E that has permeated the axial end portions 100a and 100b of the winding body 100.
  • the wound body internal space S1 is in a state of being isolated from the wound body outer space S even after the exterior 30 is opened to the atmosphere, that is, in a state of being decompressed.
  • the pressure of the wound body external space is adjusted so that the wound body internal space can be kept isolated from the wound body external space even after the liquid injection process. It is not necessary to return the outer space of the wound body to atmospheric pressure after the liquid injection process.
  • the manufacturing method may pressurize the inner space of the wound body to a pressure higher by several Pa than atmospheric pressure or a pressure lower by several Pa after the liquid injection process.
  • the film 120 is placed on the stepped portion of the liquid injection hole 33, and laser is irradiated along the outer edge of the cap 40 by a laser welding machine (FIG. (Refer to the black triangle shown in 3).
  • a laser welding machine FIG. (Refer to the black triangle shown in 3).
  • the film 120 is welded to the step portion of the liquid injection hole 33, the liquid injection hole 33 is temporarily sealed (that is, temporarily sealed) by the film 120, and the liquid-filled exterior 30 is injected.
  • a sealing process for sealing is performed.
  • the wound body external space S is a sealed space.
  • the method of temporarily sealing the liquid injection hole is not limited to the first embodiment.
  • the liquid injection hole may be temporarily sealed by press-fitting a rubber plug into the liquid injection hole.
  • a standby process is performed in which the electrolytic solution E is infiltrated into the wound body 100 after waiting for a predetermined time (see the exterior 30 shown in the upper left of FIG. 7). .
  • the manufacturing method air enters the exterior 30 from the outside during the standby process by performing a sealing process before the standby process (after the electrolyte solution E has penetrated the axial ends 100a and 100b of the wound body 100). To prevent it. Thereby, the manufacturing method can suppress the fall of the battery performance resulting from the evaporation of the electrolyte solution E and the influence of the water
  • the pressure of the wound body outer space S is atmospheric pressure.
  • the pressure in the winding body internal space S1 is a high degree of vacuum, that is, a pressure close to vacuum.
  • the sealing step and the standby step are performed in a state where the pressure in the wound body outer space S is higher than the pressure in the wound body inner space S1. Accordingly, as shown in FIG. 8, in the manufacturing method, the electrolytic solution E is infiltrated into the wound body 100 so as to fill the differential pressure between the wound body outer space S and the wound body inner space S1.
  • the horizontal axis of the graph shown in FIG. 9 is 0 when the sealing process is completed.
  • the electrolyte E penetrates from both axial ends 100a and 100b toward the axial center 100c and moves the air A1 in the winding body internal space S1 toward the axial center 100c of the winding 100. (See the arrow shown in FIG. 8A). Therefore, the volume of the wound body internal space S1 decreases as the electrolyte E penetrates. For this reason, the pressure in the winding body internal space S1 increases as the electrolyte E penetrates (see the graph shown by the dotted line in FIG. 9).
  • the pressure in the wound body outer space S where the pressure decreases as the electrolyte E penetrates is increased in advance, and the pressure increases as the electrolyte E penetrates.
  • the differential pressure between the wound body outer space S and the wound body inner space S1 is eliminated by the permeation of the electrolyte E.
  • the manufacturing method can make the electrolyte solution E permeate
  • the electrolytic solution E penetrates the wound body 100 at a higher speed as the differential pressure between the wound body outer space S and the wound body inner space S1 is larger. For this reason, the electrolyte solution E penetrates the wound body 100 vigorously immediately after the sealing step. As the electrolytic solution E penetrates, the differential pressure between the wound body outer space S and the wound body inner space S1 becomes smaller, so that the speed of the electrolyte E penetrating into the wound body 100 with time elapses. Become. The electrolyte E stops permeating the wound body 100 when the pressures in the wound body outer space S and the wound body inner space S1 are balanced (when balanced) (see FIG. 9). (See time T1 shown).
  • the process waits until the pressures in the wound body outer space S and the wound body inner space S1 are balanced (the time shown in FIG. 10). T1).
  • the waiting time in such a waiting process is, for example, the time until the pressure in the outer package 30, that is, the wound body outer space S is measured with a commercially available pressure sensor, and the measurement result of the pressure sensor becomes constant. It is set appropriately based on this.
  • the horizontal axis of the graph shown in FIG. 10 is 0 when the sealing process is completed.
  • the wound body 100 is in a state where a slight gap is formed between both side surfaces in the thickness direction and both side surfaces in the short direction of the storage unit 31 or in the short direction of both side surfaces in the thickness direction and the storage unit 31. It is accommodated in the exterior 30 in a state where both side surfaces are in close contact (see FIG. 12).
  • the space on both the upper and lower sides and the left and right sides of the wound body 100 occupies most of the volume. Further, when the electrolytic solution E is injected into the exterior 30, the volume of the wound body outer space S is reduced to, for example, about half.
  • the pressure is likely to be lowered as the electrolytic solution E penetrates. Accordingly, even when waiting for the pressure in the wound body outer space S and the wound body inner space S1 to be balanced, the electrolyte E does not penetrate to the axially central portion 100c of the wound body 100.
  • the film 120 is pierced with a cutting tool or the like to open the exterior 30 to the atmosphere, that is, the temporary sealing is released (see arrow A shown in FIG. 7). ).
  • the pressure of the wound body outer space S that has become lower than the atmospheric pressure due to the permeation of the electrolytic solution E is returned to the atmospheric pressure (shown in FIG. 10). (See time T1).
  • the differential pressure between the wound body external space S and the wound body internal space S1 is smaller than 1 atmosphere.
  • the wound body 100 subjected to the standby process has a certain range (from the axial one end 100a to between the axial central part 100c and the axial one end 100a, the axial direction of the wound body 100, etc.
  • the electrolyte E penetrates from the end portion 100b to the axial center portion 100c and the other axial end portion 100b). Therefore, the air introduced into the wound body outer space S when the temporary sealing is released cannot push out the electrolytic solution E that has permeated the wound body 100.
  • the wound body inner space S1 remains isolated from the wound body outer space S, that is, a pressure lower than the atmospheric pressure, even after the temporary sealing is released.
  • the manufacturing method can release the temporary sealing so that the pressure of the wound body outer space S is once again higher than that of the wound body inner space S1.
  • the manufacturing method uses the differential pressure between the wound body outer space S and the wound body inner space S ⁇ b> 1 again to the wound body 100.
  • the electrolytic solution E can be permeated (see the arrow shown in FIG. 11A).
  • the electrolytic solution E is vigorously applied to the wound body 100 in which the electrolytic solution E has permeated to a certain extent, that is, the wound body 100 in which the volume of the wound body internal space S1 is reduced to some extent. It will penetrate well. Therefore, the manufacturing method can confine the air A1 in the wound body internal space S1 in a small region of the axially central portion 100c of the wound body 100 immediately after releasing the temporary sealing. That is, the manufacturing method uses the differential pressure between the wound body outer space S and the wound body inner space S1 to move the wound body inner space S1 to a slight region of the axially central portion 100c of the wound body 100. It can be compressed.
  • the amount of air A1 in the wound body internal space S1 is reduced by discharging most of the air in the wound body internal space S1 to the outside during the decompression step. Therefore, in the manufacturing method, immediately after releasing the temporary sealing, the electrolytic solution E can be infiltrated into all regions except a slight region of the axially central portion 100c of the wound body 100.
  • the manufacturing method can effectively permeate the wound body 100 with the electrolytic solution E.
  • the manufacturing method can perform a pressurization process easily, without using the equipment for adjusting the pressure in an exterior by performing a pressurization process by opening the exterior to air
  • the standby step it is not always necessary to wait until the pressures in the wound body outer space and the wound body inner space are balanced. However, in the standby step, it is preferable to wait until the pressures in the wound body outer space S and the wound body inner space S1 are in equilibrium as in the manufacturing method of the first embodiment.
  • the manufacturing method can make the volume of winding body internal space S1 smaller before a pressurization process. Therefore, the manufacturing method can compress the wound body internal space S1 to a narrow area to the extent that it cannot be visually recognized by the permeation of the electrolytic solution E during the pressurizing step. That is, in the manufacturing method, the electrolytic solution E can be surely permeated from one end 100a in the axial direction of the wound body 100 to the other end 100b in the axial direction, that is, the entire surface of the wound body 100.
  • the manufacturing method performs a main sealing step of main sealing the liquid injection hole 33.
  • the cap 40 is placed in the liquid injection hole 33, and laser irradiation is performed along the outer edge portion of the cap 40 by a laser welding machine, so that the liquid injection hole 33 is fully sealed (see FIG. 7). See black triangles).
  • an initial charging step for initial charging the battery 10 is performed.
  • the exterior 30 is restrained by a restraining jig, and a load having a predetermined size is applied to the exterior 30 along the thickness direction of the exterior 30 (the direction toward the back side in FIG. 7).
  • the electrode of the power supply device 130 is connected to the external terminals 50 and 50, and the battery 10 is initially charged.
  • a film is formed on the wound body 100 by performing such an initial charging step.
  • the manufacturing method after the initial charging is performed, the voltage is inspected and the restraint of the exterior 30 by the restraining jig is released. In the manufacturing method, the battery 10 is manufactured in this way.
  • the electrolytic solution E can be infiltrated into the entire surface of the wound body 100 before the initial charging step is performed by performing the pressurizing step. That is, in the manufacturing method, since the initial charging step can be performed in a state in which the permeation unevenness is eliminated, a uniform film can be formed. For this reason, in the manufacturing method, the battery 10 capable of maximizing the potential can be manufactured.
  • the electrolyte solution is applied to the winding body to such an extent that pressurization of the outer space of the winding body performed during the pressurizing step does not allow the electrolyte that has permeated the winding body to be pushed away by the air in the outer space of the winding body. What is necessary is just to make it osmose
  • the penetration degree of the electrolytic solution E was confirmed by using the transmission probe 210 and the reception probe 220 that are opposed to each other on both sides in the thickness direction of the exterior 30.
  • the outer package 30, the transmission probe 210, and the reception probe 220 are moved relative to each other in the vertical direction and the axial direction of the wound body 100 (the direction toward the back side in FIG. 12). Ultrasonic waves were applied to the entire surface of 100. In the evaluation of the decompression conditions, the penetration degree of the electrolyte E in the vertical direction and the axial direction of the wound body 100 was confirmed by confirming whether or not the reception probe 220 received the ultrasonic wave at this time.
  • the batteries of the third comparative example were manufactured from the following first comparative example.
  • the battery of the first comparative example is a battery manufactured in the same manner as in the first embodiment except that the degree of vacuum in the decompression process is low.
  • the battery of the second comparative example is a battery manufactured by reversing the order of the decompression process and the liquid injection process. That is, in the battery of the second comparative example, after performing the liquid injection process in the air atmosphere, the pressure reduction process is performed, and the inside of the exterior 30 is decompressed, and the sealing process, the standby process, and the addition process as in the first embodiment are performed.
  • the battery is manufactured by performing the pressure step and the main sealing step.
  • the degree of vacuum in the decompression step is lower than the degree of vacuum in the decompression step of the first embodiment.
  • the battery of the third comparative example is a battery manufactured in the same manner as the second comparative example except that the degree of vacuum in the decompression process is high.
  • the standby time in the standby process in the first comparative example to the third comparative example was the same as the standby time in the standby process of the first embodiment.
  • the electrolyte solution E penetrated the axially opposite ends 100a and 100b of the wound body 100 immediately after the injection, but the electrolyte solution E did not penetrate much during the standby process. This is because the degree of vacuum during the decompression process is too low, and the differential pressure between the wound body outer space S and the wound body inner space S1 during the standby process is smaller than in the first embodiment. It is thought to be a thing.
  • the manufacturing method preferably increases the degree of vacuum in the exterior 30 during the decompression step. Thereby, since the manufacturing method can discharge more air in the wound body 100, the electrolytic solution can be permeated into a wider range.
  • the electrolytic solution E permeated only into a part of the axial end portions 100a and 100b of the wound body 100 even after the pressurizing step.
  • the electrolytic solution E permeated only a part of the axial end portions 100a and 100b of the wound body 100 immediately after the liquid injection process. This is because, by performing the liquid injection process before the pressure reducing process, a gap is formed between both side surfaces in the thickness direction of the wound body 100 and both side surfaces in the short direction of the storage portion 31, and the air in the gap It is thought that this is due to the fact that the ultrasonic wave has been reflected. Therefore, also in the second comparative example, it is considered that the electrolyte solution penetrates into both axial ends 100a and 100b of the wound body 100 immediately after the liquid injection process. The same applies to the third comparative example.
  • the electrolytic solution E did not penetrate to the central portion 100c in the axial direction of the wound body 100 even after the pressing step.
  • the electrolyte solution E has permeated immediately after injection at the lower ends of the axial end portions 100a and 100b of the wound body 100, but after the standby process and the pressurizing process. Air has entered. This is considered to be a portion of an air passage formed when air in the wound body 100 is pulled out by decompression.
  • the electrolyte E penetrates into the axial ends 100a and 100b of the wound body 100 immediately after the injection, and the electrolyte E is directed toward the axial center 100c of the wound body 100 during the standby process. It was penetrating.
  • the electrolyte solution E osmose permeated the whole surface of the winding body 100 after the pressurization process.
  • the manufacturing method it is only necessary that the air in the wound body 100 can be discharged before the electrolytic solution E penetrates into both end portions 100a and 100b in the axial direction of the wound body 100. Therefore, in the manufacturing method, it is not always necessary to perform the liquid injection process after the pressure reduction process. For example, the liquid injection process may be started immediately before the pressure reduction process is completed.
  • the pressure in the wound body external space S and the wound body internal space S1 is determined by checking the degree of penetration of the electrolyte E based on the reflection of ultrasonic waves as in the evaluation of the decompression condition. You may check the time to reach equilibrium.
  • the degree of permeation of the electrolytic solution E was confirmed based on the difference in the amount of reflected ultrasonic waves as in the evaluation of the decompression condition (see FIG. 12).
  • the batteries of the fourth comparative example and the fifth comparative example were manufactured, and the degree of permeation of the electrolytic solution E of the battery 10 of the first embodiment confirmed by the evaluation of the reduced pressure conditions Compared.
  • the inside of the exterior 30 is returned to atmospheric pressure after the decompression step is performed at a degree of vacuum lower than the degree of vacuum in the decompression step of the first embodiment, and the injection hole 33 is fully sealed. It is a manufactured battery. That is, the battery of the fourth comparative example is manufactured without performing the pressurizing process while making the differential pressure between the wound body outer space S and the wound body inner space S1 during the standby process smaller than in the first embodiment. Battery.
  • the battery of the fifth comparative example is manufactured by pressurizing the interior 30 to a pressure higher than the atmospheric pressure after the decompression step at the same degree of vacuum as in the first embodiment, and sealing the injection hole 33. Battery. That is, the battery of the fifth comparative example makes the pressure difference between the wound body outer space S and the wound body inner space S1 during the standby process larger than that of the battery of the first embodiment, and performs the pressurizing process.
  • the battery was manufactured without any problems.
  • the electrolyte solution E penetrated into the axial end portions 100a and 100b of the wound body 100, but the electrolyte solution E did not penetrate into the axial center portion 100c of the wound body 100. This is considered due to the fact that the differential pressure between the wound body outer space S and the wound body inner space S1 during the standby process is too small.
  • the electrolyte solution E penetrated the lower side of the wound body 100, but the electrolyte solution E did not penetrate the upper side of the wound body 100. This is because the pressure in the wound body outer space S is too high relative to the pressure in the wound body inner space S1 (the differential pressure between the wound body outer space S and the wound body inner space S1 is too large). It is considered that the air in the wound body outer space S has entered the wound body internal space S1.
  • the differential pressure between the wound body outer space S and the wound body inner space S1 during the standby process is preferably kept at about 1 atm.
  • it turns out that it is preferable to osmose
  • the electrolytic solution E can be effectively permeated into the wound body 100 without the air in the wound body outer space S entering the wound body inner space S1.
  • the pressurization step may be performed twice or more.
  • the wound body 100 is generated in the same manner as the manufacturing method of the first embodiment, and the wound body 100 is stored in the storage portion 31 of the exterior 30.
  • the outer package 30 is sealed.
  • the inside of the exterior 30 is pressurized to expand the storage portion 31 of the exterior 30 outward in the thickness direction (downward direction shown in FIG. 15). (See arrow A, arrow shown in FIG. 16B and storage portion 31).
  • the liquid injection hole 33 is sealed with a substantially cylindrical sealing member, and compressed air is introduced into the exterior 30 from the sealing member.
  • a clearance gap is formed between the thickness direction both sides
  • the expanded state of the exterior 30 is held by a predetermined jig so that the exterior 30 does not return to its original shape.
  • the decompression step and the liquid injection step are sequentially performed in the same manner as in the first embodiment while maintaining the expanded state of the exterior 30, and then the atmospheric pressure (second implementation) is performed in the exterior 30.
  • the pressure is returned to 1 atm (see the upward arrow A and arrow E shown in FIG. 15).
  • the step of expanding the exterior 30 outward is performed before the step of decompressing the interior of the exterior 30.
  • the substantially disc-shaped cap 140 is placed in the liquid injection hole 33 while maintaining the expanded state of the exterior 30. Then, the laser is irradiated along the outer edge portion of the cap 140 by a laser welding machine. Thereby, in a manufacturing method, the sealing process which seals the exterior 30 which carried out the main sealing of the liquid injection hole 33 and injected was performed. That is, in the manufacturing method of the second embodiment, the liquid injection hole 33 is not temporarily sealed.
  • a standby process is performed to reduce the differential pressure between the wound body external space S and the wound body internal space S1 while maintaining the expanded state of the exterior 30.
  • the standby process is performed in a state where the volume of the wound body external space S10 is larger than the volume of the wound body external space S of the first embodiment.
  • the manufacturing method of the second embodiment even when the electrolytic solution E penetrates and the height of the liquid surface of the electrolytic solution E is lowered, the degree of expansion of the volume of the wound body outer space S10 is further increased. Can be small. That is, in the manufacturing method, it is possible to suppress a pressure drop in the wound body outer space S10 due to the penetration of the electrolytic solution E.
  • the manufacturing method of the second embodiment can maintain a state in which the differential pressure between the wound body outer space S10 and the wound body inner space S1 is large even when the electrolytic solution E penetrates. Therefore, it is possible to further promote the penetration of the electrolytic solution E during the standby process.
  • the wound body outer space S10 when the volume of the wound body outer space S10 is larger than the volume of the wound body outer space S of the first embodiment, the wound body outer space S10. And the time until the pressure in the wound body internal space S1 is balanced becomes longer than in the first embodiment.
  • the manufacturing method according to the second embodiment it is possible to wait until the electrolytic solution E is infiltrated into the wound body 100 to the same extent as the standby step according to the first embodiment (see time T2 shown in FIG. 18). That is, in the manufacturing method of the second embodiment, it is not necessary to wait until the pressures in the wound body external space S10 and the wound body internal space S1 are balanced. Thereby, in the manufacturing method of 2nd embodiment, the time of a standby process can be shortened rather than the standby process of 1st embodiment.
  • the expanded state of the exterior 30 is released and the initial charging process is performed. That is, as shown in FIG. 19, in the manufacturing method, after removing the jig for maintaining the expanded state of the exterior 30, the exterior 30 is restrained by the restraining jig, and the exterior 30 is arranged along the thickness direction of the exterior 30. A load having a predetermined magnitude is applied to 30 (see the arrow shown in FIG. 19).
  • the exterior 30 is pressed from the outside to compress the exterior 30, and the volume of the wound body external space S ⁇ b> 10 is restored.
  • the pressurizing step of reducing the volume of the wound body outer space S10 in this way and pressurizing the wound body outer space S10 relative to the wound body inner space S1.
  • the manufacturing method of the second embodiment can make the pressure of the wound body outer space S10 higher than the pressure of the wound body inner space S1 before the battery 10 is initially charged. Therefore, in the manufacturing method of the second embodiment, before the battery 10 is initially charged, the electrolytic solution E is applied to the wound body 100 by utilizing the pressure difference between the wound body outer space S10 and the wound body inner space S1. Can be effectively infiltrated.
  • the manufacturing method After performing the initial charging process, the manufacturing method performs voltage inspection, and releases the restraint of the outer package 30 by the restraining jig to manufacture the battery 10.
  • the outer package 30 when the outer package 30 is compressed, the outer package 30 is expanded so that the pressure of the wound body outer space S10 is equal to or higher than the atmospheric pressure.
  • the pressure of the wound body external space S10 immediately before compressing the exterior 30 is measured by a commercially available pressure sensor, and the exterior 30 is measured based on the measurement result.
  • the degree of expansion is set.
  • the pressure of the wound body outer space S10 immediately before compressing the exterior 30 is a half pressure of the atmospheric pressure
  • the volume of the wound body outer space S10 is a volume that is twice or more.
  • the exterior 30 will be inflated until
  • the outer package 30 is compressed to pressurize the wound body outer space S10 to a pressure equal to or higher than atmospheric pressure.
  • a manufacturing method can enlarge the pressure difference of the wound body outer space S10 and the wound body internal space S1 at the time of a pressurization process, it can permeate
  • the manufacturing method does not necessarily need to compress the exterior expand
  • the manufacturing method is, for example, by applying a load partially higher than the restraining load at the time of initial charging to the left and right ends of the exterior, strictly speaking, to the left and right sides of the wound body. What is necessary is just to compress both the right and left both ends of this intentionally, and to make the volume of winding body external space small.
  • the manufacturing method as in the second embodiment, it is preferable to pressurize the exterior 30 expanded outward in a pressurizing step and compress the exterior 30 to the side opposite to the expansion direction.
  • the manufacturing method can accelerate
  • the manufacturing method can make the compression rate of the exterior 30 higher during the pressurizing step, the pressure difference between the wound body outer space S and the wound body inner space S1 during the pressurizing step can be further increased. That is, in the manufacturing method, the electrolytic solution E can more reliably permeate the entire surface of the wound body 100 during the pressurizing step.
  • the standby step may wait until the pressures in the wound body outer space and the wound body internal space are balanced.
  • a cell sealing operation is performed using a decompression chamber while decompressing the inside of the cell. This makes it possible to reduce the internal pressure of the cell after sealing.
  • a large-scale device such as a decompression chamber in order to reduce the internal pressure of the cell after sealing. For this reason, development of the technique which reduces the internal pressure of the cell after sealing was desired, using the apparatus of simple structure, without using large-scale apparatuses, such as a decompression chamber.
  • the battery 10 to which the manufacturing method according to the third embodiment of the present invention is applied will be described again.
  • the battery 10 includes a wound body 100 and a wound body 100. And a lid portion 32 that seals the opening 30a of the exterior 30, and an electrolytic solution E is injected into the interior of the exterior 30.
  • a liquid injection hole 33 for injecting the electrolytic solution E is formed in the lid portion 32, and a sealed space is formed by sealing the liquid injection hole 33 with the cap 40.
  • the wound body 100 constituting the battery 10 is a wound type, in which a sheet-like positive electrode 101 and a negative electrode 102 as shown in FIG.
  • the wound body is formed and further formed by flattening the wound body in a direction perpendicular to the winding axis.
  • one end 100a in the axial direction on the positive electrode side in the winding axis direction is configured as a positive electrode uncoated portion
  • the other axial end 100b on the negative electrode side is configured as a negative electrode uncoated portion.
  • the current collection terminal 51 (current collector 51a) connected to the external terminal 50 (positive electrode terminal 50a) is welded to the axial direction one end part 100a on the positive electrode side
  • the negative electrode side A current collecting terminal 51 (current collector 51b) connected to the external terminal 50 (negative electrode terminal 50b) is welded to the other axial end portion 100b.
  • Fig.21 (a) which makes the protrusion method of each terminal 6 * 8 upward is the attitude
  • the horizontal direction is the width direction of the battery 10, and the direction perpendicular to the paper surface is the thickness direction of the battery 10.
  • the exterior 30 constituting the battery 10 has a box shape, and an opening 30a is formed in the upper part.
  • casing of the battery 10 is formed by welding the cover part 32 to the opening part 30a.
  • the box-type battery 10 including the wound-type wound body 100 is illustrated, but the type of the secondary battery to which the manufacturing method according to the third embodiment of the present invention is applied.
  • a secondary battery having a stacked electrode body, a secondary battery having a cylindrical shape, or the like may be used.
  • the inside of the outer package 30 is made negative pressure, and the gas remaining inside the wound body 100 is also sucked out to make the inside of the wound body 100 negative pressure.
  • the ultimate pressure in the outer package 30 in the evacuation step (STEP-1) is defined as the pressure P1, and the pressure in the wound body 100 is also the pressure P1.
  • negative pressure means a pressure lower than atmospheric pressure
  • atmosphere means an atmosphere outside the exterior 30, and “atmospheric pressure” means outside the exterior 30. Is the air pressure.
  • the electrolytic solution E is then injected into the exterior 30 (STEP-2).
  • the liquid injection step (STEP-2) is performed in a state where the interior of the exterior 30 is maintained at the pressure P1 (negative pressure).
  • P1 negative pressure
  • a method of injecting while maintaining the inside of the exterior 30 at a negative pressure a method in which the inside of the container (pot) for injecting the electrolytic solution E is decompressed, or after the interior of the exterior 30 is made negative is reversed.
  • a seal portion 60 (in FIG. 24) that is a part for ensuring the inside and outside of the wound body 100 is hermetically sealed. (Shaded portions indicated by axial end portions 100a and 100b) are formed (STEP-3).
  • the wound portion 100 is impregnated with the electrolytic solution E from the axial one end portions 100a and 100b, thereby forming the seal portion 60.
  • the inside and the outside of the wound body 100 are divided by the seal portion 60 that is a portion impregnated with the electrolytic solution E in the axial end portions 100a and 100b.
  • the pressure inside the winding body 100 inside the seal part 60 maintains the pressure P1.
  • the wound body 100 is configured by laminating a positive electrode 101, a negative electrode 102, and a separator 23, as shown in FIG.
  • the active material covering the surfaces of the positive electrode 101 and the negative electrode 102 is porous, and the electrolytic solution E enters each hole to ensure the airtightness of the positive electrode 101 and the negative electrode 102, and between the members 101, 102, and 103.
  • the electrolyte solution E flows into the gap, and the seal portion 60 is formed by sealing the gap.
  • the seal portion 60 When the seal portion 60 is formed by capillary action, the seal portion 60 is formed while the gap in which the fluid can flow is gradually reduced between the inside and the outside of the wound body 100.
  • the seal portion 60 positively applies the electrolyte solution E to the axial one end portions 100a and 100b of the wound body 100 by rotating or shaking the outer package 30 in which the wound body 100 and the electrolyte solution E are accommodated. It is good also as a structure which makes it contact and forms in a short time.
  • the seal portion 60 In determining whether or not the seal portion 60 has been formed, not only whether or not the penetration of the electrolyte E reaches the entire end surface of the axial one end portions 100a and 100b, but also in the axial one end portions 100a and 100b. Judgment is made in consideration of ventilation resistance (pressure loss). When the ventilation resistance (pressure loss) at the axial one ends 100a and 100b of the wound body 100 is sufficiently large, the penetration of the electrolyte E into the axial one ends 100a and 100b is incomplete (a gap remains). Even in this state, air or the like does not flow and sealability is ensured. In such a case, it may be determined that the seal portion 60 has been formed.
  • the liquid injection hole 33 of the lid portion 32 is sealed (STEP-5).
  • the sealing step (STEP-5) can be performed under atmospheric pressure. Immediately after sealing the liquid injection hole 33 in the sealing step (STEP-5), the pressure in the exterior 30 outside the wound body 100 is substantially equal to the atmospheric pressure P2, and the pressure inside the wound body 100 is A state substantially equal to the pressure P1 is maintained.
  • the sealing step (STEP-5) is preferably completed after the injection, with the electrolyte E penetrating into the wound body 100 as little as possible. For this reason, using an electrode body configured to be able to determine that the seal portion 60 has been formed while the penetration of the electrolyte solution E into the axial end portions 100a and 100b is incomplete, the airtightness is as quickly as possible after the injection. It is preferable to complete the steps from the conversion step (STEP-3) to the sealing step (STEP-5).
  • the wound body 100 is further impregnated with the electrolytic solution E (STEP-6).
  • the electrolytic solution E is infiltrated from the one axial end portions 100a and 100b in the winding axis direction of the winding body 100 toward the center, and reaches the inside of the winding body 100.
  • the electrolytic solution E is impregnated.
  • the sealing performance of the seal portion 60 has such a strength that the inside of the wound body 100 can be maintained at the pressure P1 in a short time (for example, about several hours), and for a long time (for example, several days). In this case, the fluid can move back and forth inside and outside the wound body 100.
  • the pressure in the exterior 30 is lower than the atmospheric pressure P2 without using a large-scale device such as a vacuum chamber.
  • the manufacturing facility for the battery 10 can be simplified.
  • the steps after the atmosphere release step (STEP-4) can be performed under atmospheric pressure, so that the manufacturing efficiency of the battery 10 is also improved. is doing.
  • the method for manufacturing the battery 10 according to the third embodiment of the present invention includes a vacuuming step (STEP-1) for evacuating the interior of the exterior 30 in a state where the wound body 100 is accommodated in the exterior 30, and the exterior 30. And a sealing step (STEP-5) for sealing the outer package 30.
  • a vacuuming step for evacuating the interior of the exterior 30 in a state where the wound body 100 is accommodated in the exterior 30, and the exterior 30.
  • a sealing step (STEP-5) for sealing the outer package 30.
  • An air-tightening step (STEP-3) in which the inside of the wound body 100 is negatively pressurized and the inside of the wound body 100 is negatively pressurized with respect to the outside of the wound body 100.
  • an air release step for opening the inside of the outer package 30 to the atmosphere in a state where the inside of the wound body 100 is airtight with respect to the outside of the wound body 100
  • a sealing step for sealing the inside of the wound body 100 is outside the wound body 100 Hermetically against, and is performed in the open state of the exterior 30 to the atmosphere.
  • the airtight step (STEP-3) is performed by impregnating the electrolyte solution E into the axial one end portions 100a and 100b of the wound body 100.
  • the air-tightening step (STEP-3) is performed by impregnating the electrolytic solution E into the axial one end portions 100a and 100b of the wound body 100 by a capillary phenomenon.
  • the internal pressure of the cell can be reduced while using a device with a simple configuration. Further, by constantly reducing the internal pressure of the cell, the tolerance for the gas generated by the reductive decomposition of the electrolyte E and the like increases, and as a result, the occurrence of metal fatigue due to the increase in internal pressure (ie, safety valve and current interruption) The malfunction of the apparatus) can be suppressed, and the reliability of the battery 10 can be improved.
  • the first method for promoting the penetration of the electrolytic solution E into the wound body 100 is to invert the battery 10 up and down, It is a method of infiltration.
  • the battery 10 is inverted so as to be vertically symmetric with respect to an axis parallel to the width direction of the battery 10.
  • the electrolytic solution E is infiltrated from the lower part of the wound body 100, and then the battery 10 is turned upside down so that the electrolytic solution E is discharged from the portion corresponding to the upper part of the wound body 100. It is configured to penetrate. With such a configuration, the amount of the electrolytic solution E impregnated into the wound body 100 can be increased.
  • the second method for promoting the penetration of the electrolytic solution E into the wound body 100 is to roll the battery 10 left and right to It is a method of infiltration.
  • the battery 10 is rotated left and right around an axis parallel to the thickness direction of the battery 10.
  • the electrolytic solution E is infiltrated from one axial end portion 100a of the wound body 100 in a state where the wound body 100 is rotated 90 degrees to either the left or right, and then The battery 10 is rotated 180 degrees to allow the electrolytic solution E to permeate from the other axial direction other end portion 100b of the wound body 100.
  • the third method for promoting the penetration of the electrolytic solution E into the wound body 100 is to rotate the battery 10 and place the electrolytic solution E on the exterior 30. It is a method of infiltration by making it rise inside.
  • the battery 10 is rotated about an axis that passes through the center of the battery 10 in a plan view and is parallel to the height direction of the battery 10.
  • the battery 10 is rotated so that the electrolytic solution E is pushed upward along the left and right wall surfaces in the exterior 30 by centrifugal force.
  • the electrolyte solution E that has swollen up is brought into contact with the left and right axial end portions 100a and 100b of the wound body 100, so that it is wider than the axial end portions 100a and 100b of the wound body 100.
  • the electrolyte solution E is infiltrated from the range, and the amount of the electrolyte solution E impregnated into the wound body 100 is increased.
  • FIG. 29 shows the result of measuring the cell internal pressure after 2 days from the start of the impregnation step (STEP-6) for the secondary battery to which the method for manufacturing a secondary battery according to the third embodiment of the present invention is applied.
  • the manufacturing method differs between Example 1 to Example 4 and Comparative Example 1 shown in FIG.
  • Comparative Example 1 is a case where a conventional method for manufacturing a secondary battery is applied, and the inside of the outer package 30 is opened to the atmosphere before pouring and the pressure inside the wound body 100 is atmospheric pressure. In this case, the liquid injection hole 33 is sealed.
  • Example 1 corresponds to the mode shown in FIG. 25, and in the air-tightening step (STEP-3), the electrolyte solution E is permeated into the axial one ends 100a and 100b of the wound body 100 by capillary action. In this case, the seal portion 60 is formed.
  • the amount of electrolyte E to be injected is increased by 50%.
  • Example 2 corresponds to the mode shown in FIG. 26, and in the air-tightening step (STEP-3), the electrolyte solution E penetrates into the axial one ends 100a and 100b of the wound body 100 by capillary action. In this case, the seal portion 60 is formed, and in the impregnation step (STEP-6), the battery 10 is turned upside down to promote the penetration of the electrolytic solution E into the wound body 100.
  • Example 3 corresponds to the mode shown in FIG. 27, and in the airtight process (STEP-3), penetration of the electrolytic solution E into the axial one ends 100a and 100b of the wound body 100 is caused by capillary action.
  • the seal portion 60 is formed, and in the impregnation step (STEP-6), the battery 10 is rotated left and right to promote the penetration of the electrolytic solution E into the wound body 100.
  • Example 4 corresponds to the mode shown in FIG. 28, and in the air-tightening step (STEP-3), the electrolyte solution E is permeated into the axial one end portions 100a and 100b of the wound body 100 by capillary action.
  • the sealing portion 60 is formed, and in the impregnation step (STEP-6), the battery 10 is rotated to cause the electrolytic solution E to be pushed up inside the exterior 30, so that the electrolytic solution E with respect to the wound body 100 is obtained. This is a case where the penetration of the water is promoted.
  • Example 3 the method of manufacturing the secondary battery according to Example 3 is the most effective in reducing the cell internal pressure, and then Example 2, Example 4, Example 1 It turned out to be effective in the order of. In the case of Comparative Example 1, the cell internal pressure was not reduced.
  • the cell internal pressure can be reduced by applying the method for manufacturing the battery 10 according to the third embodiment of the present invention. Moreover, when the manufacturing method of the battery 10 according to the third embodiment of the present invention is applied, the cell internal pressure is further enhanced by further promoting the penetration of the electrolytic solution E into the wound body 100 after sealing the exterior 30. It has been found that further reduction of the above becomes possible.

Abstract

 捲回体に電解液を効果的に浸透させることができる二次電池の製造方法を提供する。 外装30内を減圧する工程と、減圧した外装30内に電解液Eを注液する工程と、外装30内を減圧する工程と、減圧した外装30内に電解液Eを注液する工程と、捲回体に、捲回体100の軸方向両端部100a・100bから電解液Eを浸透させる工程と、電解液Eを浸透させた後、外装30と捲回体との間の空間である捲回体外部空間Sと、捲回体内部空間S1との差圧を減少させるために待機する工程と、捲回体外部空間Sを加圧する工程と、を行う。

Description

二次電池の製造方法
 本発明は、電池ケース内に電解液を注液する工程を行う二次電池の製造方法に関する。
 従来から、リチウムイオン二次電池等の二次電池の製造工程では、正極、負極、およびセパレータを捲回してなる捲回体を横向きの姿勢で外装に収納する。
 そして、二次電池の製造工程では、外装内に電解液を注液した後で電池容器を密閉し、捲回体に電解液を浸透させる。
 特許文献1に開示される技術では、ケース(電池ケース)の開口部を閉塞してケース内を減圧し、減圧したケースに電解液を注液する。
 特許文献1に開示される技術では、電解液を注液しながら(または、電解液の注液と同時に)、ケース内の圧力を大気圧よりも高い圧力まで上昇させて電解液を捲回体に浸透させている。
 電解液は、注液直後に毛細管現象によって捲回体の軸方向両端部に浸透する。これにより、捲回体の内側には密閉空間が形成される。
 特許文献1に開示される技術のように、電解液を注液しながらケース内の圧力を上昇させた場合には、図20に示すように、加圧されたケース内の空気が捲回体の軸方向両端部に浸透した電解液を押しのけて、捲回体内に空気が侵入してしまう可能性がある(図20に示す矢印参照)。
 つまり、この場合には、空気の浸入経路および捲回体の軸方向中央部等に空気が残ってしまう可能性がある。
 以上のように、特許文献1に開示される技術では、捲回体に電解液を効果的に浸透させることができない可能性がある。
特開平9-102443号公報
 本発明は、以上の如き状況を鑑みてなされたものであり、捲回体に電解液を効果的に浸透させることができる二次電池の製造方法を提供するものである。
 本願発明の第一の態様である二次電池の製造方法は、電池ケース内を減圧する工程と、減圧した前記電池ケース内に電解液を注液する工程と、捲回体に、前記捲回体の軸方向両端部から前記電解液を浸透させる工程と、前記電解液を浸透させた後、前記電池ケースと前記捲回体との間の空間である捲回体外部空間と、前記捲回体の内部空間である捲回体内部空間との差圧を減少させるために、前記捲回体の軸方向両端部における前記電解液の浸透量を増大させるとともに、浸透させた前記電解液によって、前記捲回体の内部空間である捲回体内部空間と、前記電池ケースと前記捲回体との間の空間である捲回体外部空間を気密化する工程と、差圧を減少させた前記捲回体外部空間を加圧する工程と、を行う、ものである。
 本願発明の第二の態様である二次電池の製造方法は、前記電解液を注液した後に、注液した前記電池ケースを密閉する工程、をさらに行う、ものである。
 本願発明の第三の態様である二次電池の製造方法は、前記気密化する工程において、前記捲回体外部空間と前記捲回体の内部空間との圧力が平衡になるまで待機する、ものである。
 本願発明の第四の態様である二次電池の製造方法は、前記捲回体外部空間を加圧する工程において、前記電池ケースを大気開放する、ものである。
 本願発明の第五の態様である二次電池の製造方法は、前記捲回体外部空間を加圧する工程では、前記電池ケースを外側から加圧する、ものである。
 本願発明の第六の態様である二次電池の製造方法は、前記電池ケース内を減圧する工程より前に、前記電池ケースを外側に膨張させる工程を行い、前記捲回体外部空間を加圧する工程では、外側に膨張した前記電池ケースを加圧して、前記電池ケースを前記膨張方向とは反対側に圧縮する、ものである。
 本願発明の第七の態様である二次電池の製造方法は、前記捲回体外部空間を加圧する工程において、前記電池ケースを圧縮して前記捲回体外部空間を大気圧以上の圧力まで加圧する、ものである。
 本願発明の第八の態様である二次電池の製造方法は、電池ケースに電極体を収容した状態で前記電池ケースの内部を真空引きする真空引き工程と、前記電池ケースに電解液を注液する注液工程と、前記電池ケースを封口する封口工程と、を備える二次電池の製造方法であって、前記真空引き工程において、前記電極体の内部を負圧化し、前記電極体の内部を負圧化した状態で、前記電極体の内部を前記電極体の外部に対して気密化する気密化工程と、前記電極体の内部が前記電極体の外部に対して気密化された状態で、前記電池ケース内を大気に開放する大気開放工程と、を備え、前記封口工程を、前記電極体の内部が前記電極体の外部に対して気密化し、かつ、前記電池ケース内を大気に開放した状態で行うものである。
 本願発明の第八の態様である二次電池の製造方法は、前記気密化工程は、前記電極体の端部に前記電解液を含浸させることにより行うものである。
 本願発明の第九の態様である二次電池の製造方法は、前記気密化工程は、毛細管現象により、前記電極体の端部に前記電解液を含浸させることにより行うものである。
 本発明は、捲回体に電解液を効果的に浸透させることができる、という効果を奏する。
電池の全体的な構成を示す説明図。 捲回体を製造する様子を示す説明図。(a)正極、負極、およびセパレータを捲回する様子を示す図。(b)捲回体にプレス加工を施す様子を示す図。 第一実施形態の減圧工程から密閉工程までの様子を示す説明図。 注液ユニットを示す説明図。 注液ユニットを動作させる様子を示す説明図。(a)減圧工程時の様子を示す図。(b)注液工程時の様子を示す図。 注液工程時における電解液の浸透度合いを示す説明図。(a)断面図。(b)捲回体の斜視図。 第一実施形態の待機工程から初期充電工程までの様子を示す説明図。 待機工程時における電解液の浸透度合いを示す説明図。(a)断面図。(b)捲回体の斜視図。 捲回体外部空間と捲回体内部空間との差圧を利用して捲回体に電解液を浸透させたときの、捲回体外部空間と捲回体内部空間との圧力変動を示す図。 待機工程時および加圧工程時における捲回体外部空間の圧力変動を示す説明図。 加圧工程時における電解液の浸透度合いを示す説明図。(a)断面図。(b)捲回体の斜視図。 電解液の浸透度合いを確認する様子を示す説明図。(a)電解液が捲回体に浸透している部分を確認する様子を示す図。(b)電解液が捲回体に浸透していない部分を確認する様子を示す図。 第一実施形態と第一比較例から第三比較例とを評価した結果を示す図。 第一実施形態と第四比較例と第五比較例とを評価した結果を示す図。 第二実施形態の外装を膨張させてから外装を大気圧に戻すまでの様子を示す説明図。 外装を膨張させる様子を示す説明図。(a)外装を膨張させる最中の外装の状態を示す図。(b)膨張後の外装の状態を示す図。 第二実施形態の本封止工程から初期充電工程までの様子を示す説明図。 第一実施形態および第二実施形態の待機工程時および加圧工程時における、捲回体外部空間の圧力変動を示す説明図。 初期充電工程時に外装を加圧する様子を示す説明図。 従来技術における電解液の浸透度合いを示す説明図。 本発明の第三実施形態に係る二次電池の製造方法の適用対象たる二次電池の全体構成を示す模式図。(a)断面図。(b)捲回体の斜視図。(c)外装の斜視図。 二次電池の端部の構造を示す部分模式図。 本発明の第三実施形態に係る二次電池の製造方法を示すフロー図。 本発明の第三実施形態に係る二次電池の製造方法の各工程における二次電池の状態を示す模式図。 シール部の形成状況を示す模式図。 電極体に対する電解液の浸透を促進させる第一の方法を示す模式図。 電極体に対する電解液の浸透を促進させる第二の方法を示す模式図。 電極体に対する電解液の浸透を促進させる第三の方法を示す模式図。 本発明の第三実施形態に係る二次電池の製造方法の適用効果を確認した結果を示す図。
 以下では、第一実施形態の密閉型電池の製造方法(以下、単に「製造方法」と表記する)について説明する。
 まず、本発明に係る二次電池の実施形態である電池の概略構成について説明する。
 第一実施形態の電池10は、密閉型のリチウムイオン二次電池である。なお、本発明が適用される対象はリチウムイオン二次電池に限定されるものではなく、ニッケル水素二次電池等の他の二次電池についても適用可能である。
 図1に示すように、電池10は、発電要素20、外装30、キャップ40、および外部端子50・50を具備する。
 発電要素20は、正極101、負極102、およびセパレータ103を捲回してなる捲回体100に電解液Eを浸透させたものである(図2および図3参照)。電池10の充放電時には、発電要素20内で化学反応が起こる(厳密には、正極101と負極102との間で電解液Eを介したイオンの移動が起こる)ことによって電流の流れが発生する。
 電池容器である外装30は、図1における左右方向を長手方向とする平面視略矩形状に形成される角柱型缶である。外装30は、収納部31と蓋部32とを有する。
 収納部31は、下面および側面が閉塞するとともに、上面が開口した有底角筒状の部材であり、内部に発電要素20を収納する。
 蓋部32は、収納部31の開口面に応じた形状を有する平板状の部材であり、収納部31の開口面を塞いだ状態で収納部31と接合される。蓋部32において、後述するように外部端子50・50が挿通される箇所の間には、電解液Eを注液するための注液孔33が形成される。
 注液孔33は、蓋部32の板面を貫通する孔、すなわち、外装30の上面に形成される孔である。注液孔33は、蓋部32の外側と内側とで内径寸法が異なる平面視略円状の孔である。注液孔33は、上側(外側)の内径が下側(内側)の内径よりも大径に形成され、上下中途部に段差部が形成される。
 前記段差部には、電池10の製造工程の中で平面視略円状のフィルム120が溶着される。フィルム120は、電池10の製造工程の中で突き破られる。このため、完成した電池10を示す図1において、フィルム120は、突き破られた状態となっている。
 キャップ40は、注液孔33を封止する蓋体である。キャップ40の下面は、フィルム120を外側から覆うような形状に形成される。キャップ40の外径は、注液孔33の上側の内径と略同一の寸法となっている。
 キャップ40は、注液孔33の前記段差部に載置され、外周縁部がレーザ溶接されることで、蓋部32と接合される。
 外部端子50・50は、その一部が蓋部32の外側面から電池10の上方(外方)に突出した状態で配置される。外部端子50・50は、集電端子51・51を介して発電要素20の正極101または負極102に電気的に接続される。外部端子50・50は、その外周面部に固定部材34が嵌装されることにより、絶縁部材52・53を間に介して蓋部32に対して絶縁状態で固定される。外部端子50・50および集電端子51・51は、発電要素20に蓄えられる電力を外部に取り出す、若しくは、外部からの電力を発電要素20に取り入れる通電経路として機能する。
 集電端子51・51は、発電要素20の正極板、負極板と接続されている。集電端子51・51の材料としては、例えば正極側にアルミニウム、負極側に銅を採用することができる。
 外部端子50・50には、電池10の外方側に突出する部位にねじ転造によりねじ加工が施され、ボルト部が形成される。電池10の実使用時には、このボルト部を用いて外部端子50・50にバスバー、外部装置の接続端子等が締結固定される。
 締結固定する際、外部端子50・50には締結トルクがかかるとともに、ねじ締結によって軸方向へ外力が付与される。このため、外部端子50・50の材料としては、鉄等の高強度材料を採用することが好ましい。
 次に、第一実施形態の製造方法について説明する。
 まず、製造方法では、ダイコーダ等の塗工機を用いて集電体(正極集電体および負極集電体)の表面に合剤(正極合剤および負極合剤)を塗工した後、合剤を乾燥させる。
 次に、製造方法では、集電体の表面上の合剤に対してプレス加工を施すことで、集電体の表面に合剤層(正極合剤層および負極合剤層)を形成して正極101および負極102を生成する。
 図2に示すように、製造方法では、正極101および負極102の間にセパレータ103を挟んで積層する。
 製造方法では、正極101の軸方向を捲回軸方向として正極101および負極102の間にセパレータ103を挟んで捲回し、前記捲回したものの外周面に対してプレス加工を施すことで捲回体100を生成する(図2(b)に示す矢印参照)。
 そして、製造方法では、外装30の蓋部32に一体化された外部端子50・50および集電端子51・51等を捲回体100に接続し、外装30の収納部31に捲回体100を収納する。その後、製造方法では、外装30の収納部31と蓋部32とを溶接によって接合して封缶する。
 このとき、図2および図3に示すように、製造方法では、捲回体100を横向きの姿勢、すなわち、捲回体100の軸方向(前記捲回軸方向)が外装30の長手方向に対して平行となるように、捲回体100を収納する。
 つまり、図3において、捲回体100の軸方向は、左右方向となる。
 以下では、捲回体100の内部空間、すなわち、正極101、負極102、およびセパレータ103の積層面の間に形成される隙間を「捲回体内部空間S1」と表記する。
 また、外装30と捲回体100との間の空間、すなわち、外装30の内部空間の中から捲回体内部空間S1を除いた空間を「捲回体外部空間S」と表記する。
 図3に示すように、外装30を封缶した後で、製造方法では、1気圧の大気雰囲気下に配置される外装30内の空気を注液孔33より排出し、外装30内を減圧する減圧工程を行う(図3に示す上向きの矢印A参照)。
 このとき、製造方法では、高い真空度となるまで外装30内を減圧する。捲回体内部空間S1の空気は、捲回体100の軸方向両端部100a・100bを通って捲回体外部空間Sに出た後で、外部に排出される。
 外装30内を減圧した後で、製造方法では、注液孔33より減圧した外装30内に電解液Eを注液する注液工程を行う(図3に示す矢印E参照)。
 このような減圧工程および注液工程は、例えば、図4に示すような注液ユニット110を用いて行われる。
 図4に示すように、注液ユニット110は、内部に電解液Eが貯溜される注液ポッド111が三方弁112の上側のポートに接続されるとともに、真空ポンプが三方弁112の左側のポートに接続されるものである。
 注液ユニット110は、外装30の上方に配置され、上下方向に移動可能、すなわち、昇降可能に構成される。図4において、三方弁112の下側のポートには、他の部材が接続されていない状態である。
 図5(a)に示すように、製造方法では、減圧工程を行うときに、注液ユニット110を下降させて、三方弁112と注液孔33の段差部とを接触させて注液孔33をシールし、外装30を三方弁112の下側のポートに接続する。
 そして、製造方法では、三方弁112を制御して外装30と真空ポンプとを連通し、真空ポンプを駆動させて外装30内を減圧する。
 図5(b)に示すように、外装30を減圧した後で、製造方法では、三方弁112を制御して外装30と注液ポッド111とを連通し、外装30内の圧力と真空ポッド内の圧力との差圧を利用して外装30内に電解液Eを注液する。
 このとき、図6に示すように、電解液Eは、毛細管現象によって、注液直後に捲回体100の軸方向両端部100a・100bに勢いよく浸透する(図6に示す矢印参照)。
 これにより、捲回体100の軸方向両端部100a・100bには、正極101、負極102、およびセパレータ103の積層面の間に空気が残ることなく、電解液Eが浸透する。
 従って、捲回体内部空間S1は、注液直後に電解液Eによって捲回体外部空間Sから隔絶されて密閉空間となる。
 つまり、捲回体100内の空気A1は、注液直後に捲回体100内に閉じ込められることとなる。
 このように、製造方法では、捲回体100に、捲回体100の軸方向両端部から電解液Eを浸透させる工程を行う。
 図3に示すように、電解液Eを外装30内に注液した後で、製造方法では、外装30内を大気圧(第一実施形態では1気圧)に戻す(図3に示す下向きの矢印A参照)。
 このとき、製造方法では、図6(a)に示す状態から注液ユニット110を上昇させ、外装30を大気開放する。これにより、製造方法では、捲回体外部空間Sを大気圧に戻す。
 大気圧に戻した捲回体外部空間Sと捲回体内部空間S1との差圧は、最大でも1気圧程度、つまり、小さいものとなる。
 従って、大気開放時に外装30(捲回体外部空間S)に導入される空気は、捲回体100の軸方向両端部100a・100bに浸透した電解液Eを押しのけることができない。
 このため、捲回体内部空間S1は、外装30を大気開放した後も、捲回体外部空間Sから隔絶されたままの状態、すなわち、減圧されたままの状態である。
 なお、製造方法では、注液工程後も捲回体内部空間が捲回体外部空間から隔絶されたままの状態を維持できる程度に、捲回体外部空間の圧力を捲回体内部空間の圧力よりも高くすればよく、必ずしも注液工程後に捲回体外部空間を大気圧に戻す必要はない。
 例えば、製造方法は、注液工程後に、捲回体内部空間を大気圧よりも数Pa程度高い圧力、または数Pa程度低い圧力まで加圧しても構わない。
 外装30内を大気圧に戻した後で、製造方法では、フィルム120を注液孔33の段差部に載置して、レーザ溶接機によってキャップ40の外縁部に沿ってレーザを照射する(図3に示す黒塗りの三角形参照)。
 これにより、製造方法では、フィルム120を注液孔33の前記段差部に溶着し、フィルム120によって注液孔33を仮封止(つまり、一時的に封止)して、注液した外装30を密閉する密閉工程を行う。このとき、捲回体外部空間Sは、密閉空間となる。
 なお、注液孔を仮封止する手法は、第一実施形態に限定されるものでない。例えば、製造方法は、注液孔にゴム栓を圧入することで注液孔を仮封止しても構わない。
 図7に示すように、密閉工程を行った後で、製造方法では、一定時間待機して捲回体100に電解液Eを浸透させる待機工程を行う(図7の左上に示す外装30参照)。
 製造方法では、待機工程前(捲回体100の軸方向両端部100a・100bに電解液Eを浸透させた後)に密閉工程を行うことで、待機工程時に外部から外装30内に空気が浸入することを防止している。
 これにより、製造方法は、電解液Eの蒸発や空気に含まれる水分および酸素の影響に起因する電池性能の低下を抑制できる。
 密閉工程および待機工程を行うとき、捲回体外部空間Sの圧力は大気圧である。一方、捲回体内部空間S1の圧力は、高い真空度すなわち、真空に近い圧力である。
 つまり、製造方法では、捲回体外部空間Sの圧力が捲回体内部空間S1の圧力よりも高い状態で、密閉工程および待機工程を行う。
 これにより、図8に示すように、製造方法では、捲回体外部空間Sと捲回体内部空間S1との差圧を埋めるように、捲回体100に電解液Eを浸透させている。
 具体的には、電解液Eの浸透に伴って電解液Eの液面の高さ位置が下がるため、捲回体外部空間Sの体積は大きくなる。
 従って、図8および図9に示すように、密閉工程後の捲回体外部空間Sの圧力は、電解液Eの浸透に伴って低くなる(図9に実線で示すグラフ参照)。
 なお、図9に示すグラフの横軸は、密閉工程が完了した時点を0としている。
 電解液Eは、軸方向両端部100a・100bから軸方向中央部100cに向けて浸透するとともに、捲回体内部空間S1の空気A1を、捲回体100の軸方向中央部100cに向けて移動させる(図8(a)に示す矢印参照)。
 従って、捲回体内部空間S1の体積は、電解液Eの浸透に伴って小さくなる。このため、捲回体内部空間S1の圧力は、電解液Eの浸透に伴って高くなる(図9に点線で示すグラフ参照)。
 つまり、製造方法では、電解液Eの浸透に伴って圧力が低くなる捲回体外部空間Sの圧力を予め高くしておくとともに、電解液Eの浸透に伴って圧力が高くなる捲回体内部空間S1の圧力を予め低くしておくことで、電解液Eの浸透によって捲回体外部空間Sと捲回体内部空間S1との差圧がなくなるようにしているのである。
 これによれば、製造方法は、捲回体外部空間Sと捲回体内部空間S1との差圧を利用して、捲回体100に電解液Eを効果的に浸透させることができる。
 従って、製造方法は、電解液Eの捲回体100への浸透を促進できる。
 このように、待機工程では、捲回体100の幅方向両端部100a・100bに電解液Eを浸透させた後、捲回体外部空間Sと捲回体内部空間S1との圧力差を減少させるために待機する。
 電解液Eは、捲回体外部空間Sと捲回体内部空間S1との差圧が大きいほど、速い速度で捲回体100に浸透する。このため、電解液Eは、密閉工程直後において、捲回体100に勢いよく浸透する。
 電解液Eの浸透に伴って、捲回体外部空間Sと捲回体内部空間S1との差圧が小さくなるため、電解液Eは、時間の経過とともに捲回体100に浸透する速度が遅くなる。
 そして、電解液Eは、捲回体外部空間Sと捲回体内部空間S1との圧力が平衡になったとき(釣り合ったとき)に、捲回体100への浸透が停止する(図9に示す時間T1参照)。
 そこで、図8および図10に示すように、第一実施形態の待機工程では、捲回体外部空間Sと捲回体内部空間S1との圧力が平衡になるまで待機する(図10に示す時間T1参照)。
 このような待機工程における待機時間は、例えば、外装30内、すなわち、捲回体外部空間Sの圧力を市販の圧力センサで測定し、前記圧力センサの測定結果が一定となるまでの時間等に基づいて適宜設定される。
 なお、図10に示すグラフの横軸は、密閉工程が完了した時点を0としている。
 ここで、捲回体100は、厚み方向両側面と収納部31の短手方向両側面との間に僅かな隙間が形成された状態、若しくは、厚み方向両側面と収納部31の短手方向両側面とが密着した状態で、外装30に収納される(図12参照)。
 従って、捲回体外部空間Sは、電解液Eを注液する前の状態において、捲回体100の上下両側方と左右両側方の空間が、その体積の大部分を占めている。
 また、外装30内に電解液Eが注液されることにより、捲回体外部空間Sの体積は、例えば、半分程度まで小さくなる。
 つまり、捲回体外部空間Sは、待機工程を開始した時点における体積が小さいため、電解液Eの浸透に伴って圧力が低くなり易い。
 従って、捲回体外部空間Sと捲回体内部空間S1との圧力が平衡になるまで待機した場合でも、電解液Eは、捲回体100の軸方向中央部100cまで浸透しない。
 図7に示すように、待機工程を行った後で、製造方法では、刃具等によってフィルム120を突き破って外装30を大気開放する、すなわち、仮封止を解除する(図7に示す矢印A参照)。
 これにより、図10に示すように、製造方法では、電解液Eの浸透に伴って大気圧よりも低い圧力となった捲回体外部空間Sの圧力を、大気圧に戻す(図10に示す時間T1参照)。
 このとき、捲回体外部空間Sと捲回体内部空間S1との差圧は、1気圧よりも小さいものとなる。また、待機工程が行われた捲回体100には、ある程度の範囲(軸方向一端部100aから軸方向中央部100cと軸方向一端部100aとの間まで、および捲回体100の軸方向他端部100bから軸方向中央部100cと軸方向他端部100bとの間)まで電解液Eが浸透している。
 従って、仮封止を解除したときに捲回体外部空間Sに導入される空気は、捲回体100に浸透した電解液Eを押しのけることができない。
 このため、捲回体内部空間S1は、仮封止を解除した後も、捲回体外部空間Sと隔絶されたままの状態、すなわち、大気圧よりも低い圧力のままである。
 つまり、製造方法は、仮封止を解除することで、捲回体外部空間Sの圧力を、もう一度捲回体内部空間S1よりも高い圧力にすることができる。
 このように、製造方法では、外装30を大気開放することで、差圧を減少させた捲回体外部空間Sを捲回体内部空間S1に対して相対的に加圧する加圧工程を行う。
 これによれば、図11(a)(b)に示すように、製造方法は、捲回体外部空間Sと捲回体内部空間S1との差圧を利用して、もう一度捲回体100に電解液Eを浸透させることができる(図11(a)に示す矢印参照)。
 このとき、製造方法では、ある程度の範囲まで電解液Eが浸透している捲回体100、すなわち、捲回体内部空間S1の体積がある程度小さくなった捲回体100に、電解液Eを勢いよく浸透させることとなる。
 従って、製造方法は、仮封止を解除した直後に、捲回体内部空間S1の空気A1を、捲回体100の軸方向中央部100cの僅かな領域に閉じ込めることができる。つまり、製造方法は、捲回体外部空間Sと捲回体内部空間S1との差圧を利用して、捲回体内部空間S1を捲回体100の軸方向中央部100cの僅かな領域まで圧縮できる。
 また、製造方法では、減圧工程時に捲回体内部空間S1の空気の多くを外部に排出することで、捲回体内部空間S1の空気A1の量を減らしている。
 従って、製造方法は、仮封止を解除した直後に、前記捲回体100の軸方向中央部100cの僅かな領域を除く全ての領域に、電解液Eを浸透させることができる。
 これによれば、製造方法は、捲回体100に電解液Eを効果的に浸透させることができる。
 また、製造方法は、外装を大気開放することで加圧工程を行うことにより、外装内の圧力を調整するための設備を用いることなく、簡単に加圧工程を行うことができる。
 なお、第一実施形態の製造方法において、待機工程では、必ずしも捲回体外部空間と捲回体内部空間との圧力が平衡になるまで待機する必要はない。
 ただし、待機工程では、第一実施形態の製造方法のように、捲回体外部空間Sと捲回体内部空間S1との圧力が平衡になるまで待機することが好ましい。
 これによれば、製造方法は、加圧工程前に捲回体内部空間S1の体積をより小さくすることができる。従って、製造方法は、加圧工程時の電解液Eの浸透によって、捲回体内部空間S1を視認不能となる程度まで狭い領域に圧縮できる。
 つまり、製造方法は、捲回体100の軸方向一端部100aから軸方向他端部100bまで、すなわち、捲回体100の全面に電解液Eを確実に浸透させることができる。
 図7に示すように、加圧工程を行った後で、製造方法では、注液孔33を本封止する本封止工程を行う。
 このとき、製造方法では、キャップ40を注液孔33に載置して、レーザ溶接機によってキャップ40の外縁部に沿ってレーザを照射し、注液孔33を本封止する(図7に示す黒塗りの三角形参照)。
 本封止した後で、製造方法では、電池10に対して初期充電する初期充電工程を行う。
 このとき、製造方法では、外装30を拘束治具によって拘束し、外装30の厚み方向(図7における紙面奥側に向かう方向)に沿って、外装30に対して所定の大きさの荷重を付与する。そして、製造方法では、電源装置130の電極を外部端子50・50に接続し、電池10を初期充電する。
 このような初期充電工程が行われることにより、捲回体100には皮膜が形成される。
 初期充電を行った後で、製造方法では、電圧の検査を行って、前記拘束治具による外装30の拘束を解除する。
 製造方法では、このようにして電池10を製造する。
 第一実施形態の製造方法は、加圧工程を行うことによって、初期充電工程が行われる前に捲回体100の全面に電解液Eを浸透させることができる。
 つまり、製造方法では、浸透ムラを解消した状態で初期充電工程を行うことができるため、均一な皮膜を形成することができる。
 このため、製造方法では、ポテンシャルを最大限引き出すことが可能な電池10を製造できる。
 なお、製造方法では、加圧工程時行う捲回体外部空間の加圧によって、捲回体に浸透した電解液が捲回体外部空間の空気に押しのけられない程度に捲回体に電解液を浸透させていればよく、必ずしも電解液を注液した後に密閉工程を行う必要はない。
 次に、減圧工程の条件を変更した場合における、電解液Eの浸透度合いを評価した結果について説明する。
 図12に示すように、減圧条件の評価では、外装30の厚み方向両側方に対向配置される送信プローブ210および受信プローブ220を用いて、電解液Eの浸透度合いを確認した。
 図12(a)に示すように、正極101、負極102、およびセパレータ103の積層面の間に空気が残ることなく、捲回体100に電解液Eが浸透している部分に当てられる超音波は、受信プローブ220で受信される。
 一方、図12(b)に示すように、捲回体100に電解液Eが浸透していない部分、すなわち、前記積層面の間に空気が残存している部分に当てられる超音波は、その反射量が大きくなるため、受信プローブ220で受信されない。
 減圧条件の評価では、外装30と送信プローブ210および受信プローブ220とを、上下方向および捲回体100の軸方向(図12における紙面奥側に向かう方向)に相対的に移動させ、捲回体100の全面に超音波を当てた。
 減圧条件の評価では、このときに受信プローブ220が前記超音波を受信したかどうかを確認することで、上下方向および捲回体100の軸方向における電解液Eの浸透度合いを確認した。
 図13に示すように、減圧条件の評価では、以下の第一比較例から第三比較例の電池を製造した。
 第一比較例の電池は、減圧工程の真空度が低い点を除いて、第一実施形態と同様に製造された電池である。
 第二比較例の電池は、減圧工程と注液工程との順番を逆にして製造された電池である。
 つまり、第二比較例の電池は、大気雰囲気下で注液工程を行った後で減圧工程を行い、外装30内を減圧した状態で、第一実施形態のような密閉工程、待機工程、加圧工程、本封止工程が行われて製造された電池である。
 第二比較例において減圧工程の真空度は、第一実施形態の減圧工程の真空度よりも低い。
 第三比較例の電池は、減圧工程の真空度が高い点を除いて、第二比較例と同様に製造された電池である。
 なお、第一比較例から第三比較例までにおける待機工程での待機時間は、第一実施形態の待機工程での待機時間と同じ時間とした。
 第一比較例の電池では、注液直後に捲回体100の軸方向両端部100a・100bに電解液Eが浸透したものの、待機工程時に電解液Eがあまり浸透しなかった。
 これは、減圧工程時の真空度が低すぎて、待機工程時の捲回体外部空間Sと捲回体内部空間S1との差圧が、第一実施形態よりも小さくなってしまったことによるものであると考えられる。
 また、第一比較例では、加圧工程直後でも、捲回体100の軸方向中央部100cに多くの空気が残っていた。
 これは、減圧工程時の真空度が低すぎて、注液直後に捲回体100内に多くの空気が残ってしまい、その結果、加圧工程時に捲回体内部空間S1を視認不能となる程度まで圧縮できなかったことによるものであると考えられる。
 以上より、製造方法は、減圧工程時に外装30内の真空度を高くすることが好ましい。これにより、製造方法は、捲回体100内の空気をより多く排出できるため、より広い範囲に電解液を浸透させることができる。
 第二比較例では、加圧工程後も捲回体100の軸方向両端部100a・100bの一部だけにしか電解液Eが浸透しなかった。
 なお、第二比較例では、注液工程直後に捲回体100の軸方向両端部100a・100bの一部にしか電解液Eが浸透しなかった。
 これは、減圧工程前に注液工程を行ったことにより、捲回体100の厚み方向両側面と収納部31の短手方向両側面との間に隙間が形成されてしまい、前記隙間の空気によって超音波が反射してしまったことによるものであると考えられる。
 従って、第二比較例でも、注液工程直後に捲回体100の軸方向両端部100a・100bに電解液が浸透していると考えられる。これは、第三比較例においても同様である。
 第二比較例のように、注液工程を行った後で減圧工程を行った場合には、捲回体外部空間Sの空気だけが排出されてしまい、待機工程時に捲回体外部空間Sの圧力が捲回体内部空間S1の圧力よりも低くなってしまう。
 従って、第二比較例では、捲回体外部空間Sと捲回体内部空間S1との差圧を利用して、電解液Eの浸透を促進できなかったものであると考えられる。
 第三比較例では、第二比較例よりも電解液Eが浸透した部分が増えたものの、加圧工程後も捲回体100の軸方向中央部100cまで電解液Eが浸透しなかった。
 また、第三比較例では、捲回体100の軸方向両端部100a・100bの下端部等において、注液直後に電解液Eが浸透していたにも関わらず、待機工程および加圧工程後に空気が入り込んでしまった。
 これは、減圧によって捲回体100内の空気を引き抜こうとした際に形成された空気の通り道の部分であると考えられる。
 第一実施形態では、注液直後に捲回体100の軸方向両端部100a・100bに電解液Eが浸透し、待機工程時に捲回体100の軸方向中央部100cに向けて電解液Eが浸透していた。
 第一実施形態では、加圧工程後に捲回体100の全面に電解液Eが浸透していた。
 以上の評価結果より、捲回体外部空間Sの圧力を捲回体内部空間S1の圧力よりも高くすることで、捲回体外部空間Sと捲回体内部空間S1との差圧を利用して、電解液Eの捲回体100への浸透を促進できることがわかる。
 つまり、製造方法では、捲回体100の軸方向両端部100a・100bに電解液Eが浸透するまでに、捲回体100内の空気を排出できればよい。
 従って、製造方法では、必ずしも減圧工程後に注液工程を行う必要はなく、例えば、減圧工程が完了する直前に、注液工程を開始しても構わない。
 また、製造方法では、減圧条件の評価にあるような超音波の反射に基づいて電解液Eの浸透度合いを確認することにより、捲回体外部空間Sと捲回体内部空間S1との圧力が平衡になるまでの時間を確認しても構わない。
 次に、捲回体外部空間Sと捲回体内部空間S1との差圧を利用して電解液Eを浸透させるための条件を変更した場合における、電解液Eの浸透度合いを評価した結果について説明する。
 浸透条件の評価では、減圧条件の評価と同様に、超音波の反射量の違いに基づいて電解液Eの浸透度合いを確認した(図12参照)。
 図14に示すように、浸透条件の評価では、第四比較例および第五比較例の電池を製造し、減圧条件の評価で確認した第一実施形態の電池10の電解液Eの浸透度合いと比較した。
 第四比較例の電池は、第一実施形態の減圧工程の真空度よりも低い真空度で減圧工程を行った後で外装30内を大気圧に戻し、注液孔33を本封止して製造された電池である。
 つまり、第四比較例の電池は、待機工程時の捲回体外部空間Sと捲回体内部空間S1との差圧を第一実施形態よりも小さくするとともに、加圧工程を行うことなく製造された電池である。
 第五比較例の電池は、第一実施形態と同じ真空度で減圧工程を行った後で外装30内を大気圧よりも高い圧力まで加圧し、注液孔33を本封止して製造された電池である。
 つまり、第五比較例の電池は、待機工程時の捲回体外部空間Sと捲回体内部空間S1との差圧を第一実施形態の電池よりも大きくするとともに、加圧工程を行うことなく製造された電池である。
 なお、図14に示す結果は、加圧直後の電解液Eの浸透度合いを確認したものを示している。
 第四比較例の電池では、捲回体100の軸方向両端部100a・100bに電解液Eが浸透したものの、捲回体100の軸方向中央部100cまで電解液Eが浸透しなかった。
 これは、待機工程時の捲回体外部空間Sと捲回体内部空間S1との差圧が小さすぎたことによるものであると考えられる。
 第五比較例の電池では、捲回体100の下側に電解液Eが浸透したものの、捲回体100の上側に電解液Eが浸透しなかった。
 これは、捲回体外部空間Sの圧力が捲回体内部空間S1の圧力に対して高くなりすぎて(捲回体外部空間Sと捲回体内部空間S1との差圧が大きくなりすぎて)、捲回体外部空間Sの空気が捲回体内部空間S1に侵入してしまったことによるものであると考えられる。
 以上の評価結果より、待機工程時の捲回体外部空間Sと捲回体内部空間S1との差圧は、1気圧程度にとどめておくことが好ましいことがわかる。
 また、製造方法では、待機工程および加圧工程の二回に分けて、捲回体100に電解液Eを浸透させることが好ましいことがわかる。
 これにより、製造方法は、捲回体外部空間Sの空気が捲回体内部空間S1に侵入することなく、捲回体100に電解液Eを効果的に浸透させることができる。
 なお、製造方法では、必ずしも一回だけ加圧工程を行う必要はなく、加圧工程を二回以上行っても構わない。
 次に、第二実施形態の製造方法について説明する。
 なお、以下では、第一実施形態と同様に構成される部材について、第一実施形態と同様の符号を付し、その説明を省略する。
 図15に示すように、第二実施形態の製造方法では、第一実施形態の製造方法と同じ要領で捲回体100を生成し、外装30の収納部31に捲回体100を収納して外装30を封缶する。
 図15および図16に示すように、外装30を封缶した後で、製造方法では、外装30内を加圧して、外装30の収納部31を厚み方向外側に膨張させる(図15に示す下向きの矢印A、図16(b)に示す矢印および収納部31参照)。
 このとき、製造方法では、例えば、注液孔33を略筒状のシール部材でシールして、前記シール部材より外装30に圧縮エアを導入する。
 これにより、第二実施形態の製造方法では、捲回体100の厚み方向両側面と収納部31の短手方向両側面との間に隙間を形成し、捲回体外部空間S10の体積を第一実施形態の捲回体外部空間Sの体積よりも大きくする。
 外装30を膨張させた後で、製造方法では、外装30が元の形状に戻らないように所定の治具によって外装30の膨張状態を保持する。
 そして、製造方法では、外装30の膨張状態を保持したままで、第一実施形態と同じ要領で減圧工程と注液工程とを順番に行った後で、外装30内を大気圧(第二実施形態では1気圧)に戻す(図15に示す上向きの矢印Aおよび矢印E参照)。
 このように、第二実施形態の製造方法では、外装30内を減圧する工程より前に、外装30を外側に膨張させる工程を行う。
 図17に示すように、外装30内を大気圧に戻した後で、製造方法では、外装30の膨張状態を保持したままで、略円板状のキャップ140を注液孔33に載置して、レーザ溶接機によってキャップ140の外縁部に沿ってレーザを照射する。
 これにより、製造方法では、注液孔33を本封止して注液した外装30を密閉する密閉工程を行う。つまり、第二実施形態の製造方法では、注液孔33を仮封止しない。
 そして、製造方法では、外装30の密閉後に、外装30の膨張状態を保持したままで待機して、捲回体外部空間Sと捲回体内部空間S1との差圧を減少させる待機工程を行う(図17に二点鎖線で示す電解液E参照)。
 つまり、第二実施形態の製造方法では、捲回体外部空間S10の体積を第一実施形態の捲回体外部空間Sの体積よりも大きくした状態で待機工程を行う。
 これによれば、第二実施形態の製造方法では、電解液Eが浸透して電解液Eの液面の高さ位置が下がった場合でも、捲回体外部空間S10の体積の拡大度合いをより小さくできる。
 つまり、製造方法では、電解液Eの浸透に伴う捲回体外部空間S10の圧力低下を抑制できる。
 従って、図18に示すように、第二実施形態の製造方法は、電解液Eが浸透しても、捲回体外部空間S10と捲回体内部空間S1との差圧が大きい状態を維持できるため、待機工程時における電解液Eの浸透をより促進できる。
 ここで、第二実施形態の製造方法のように、捲回体外部空間S10の体積を第一実施形態の捲回体外部空間Sの体積よりも大きくした場合には、捲回体外部空間S10と捲回体内部空間S1との圧力が平衡になるまでの時間が、第一実施形態よりも長くなってしまう。
 そこで、第二実施形態の製造方法では、第一実施形態の待機工程と同程度まで捲回体100に電解液Eを浸透させるまで待機させてもよい(図18に示す時間T2参照)。つまり、第二実施形態の製造方法では、捲回体外部空間S10と捲回体内部空間S1との圧力が平衡になるまで待機しなくてもよい。
 これにより、第二実施形態の製造方法では、待機工程の時間を第一実施形態の待機工程よりも短縮することができる。
 図17に示すように、待機工程を行った後で、製造方法では、外装30の膨張状態を解除して初期充電工程を行う。
 つまり、図19に示すように、製造方法では、外装30の膨張状態を保持するための治具を外してから、外装30を拘束治具によって拘束し、外装30の厚み方向に沿って、外装30に対して所定の大きさの荷重を付与する(図19に示す矢印参照)。
 これにより、図18および図19に示すように、製造方法では、電解液Eを浸透させた後、外装30を外側から加圧して外装30を圧縮し、捲回体外部空間S10の体積を元に戻す。
 第二実施形態の製造方法では、このようにして捲回体外部空間S10の体積を小さくし、捲回体外部空間S10を捲回体内部空間S1に対して相対的に加圧する加圧工程を行う。
 これによれば、第二実施形態の製造方法は、電池10を初期充電する前に、捲回体外部空間S10の圧力を捲回体内部空間S1の圧力よりも高い状態にすることができる。
 従って、第二実施形態の製造方法では、電池10を初期充電する前に、捲回体外部空間S10と捲回体内部空間S1との圧力差を利用して、捲回体100に電解液Eを効果的に浸透させることができる。
 初期充電工程を行った後で、製造方法では、電圧の検査を行って、前記拘束治具による外装30の拘束を解除して電池10を製造する。
 第二実施形態の製造方法では、外装30を圧縮したときに、捲回体外部空間S10の圧力が大気圧以上の圧力となるように、外装30を膨張させている。
 つまり、製造方法では、実際に電池10を製造する前に、市販の圧力センサによって外装30を圧縮する直前の捲回体外部空間S10の圧力を測定し、当該測定結果に基づいて、外装30の膨張度合いを設定している。
 例えば、外装30を圧縮する直前の捲回体外部空間S10の圧力が大気圧の2分の1の圧力であった場合、製造方法では、捲回体外部空間S10の体積が2倍以上の体積となるまで、外装30を膨張させることとなる。
 このように、加圧工程では、外装30を圧縮して捲回体外部空間S10を大気圧以上の圧力まで加圧する。
 これにより、製造方法は、加圧工程時に捲回体外部空間S10と捲回体内部空間S1との圧力差をより大きくできるため、捲回体に電解液Eをより効果的に浸透させることができる。
 従って、製造方法は、捲回体100の全面に電解液Eを確実に浸透させることができる。
 なお、製造方法は、必ずしも加圧工程時に外側に膨張した外装を圧縮する必要はない。
 この場合、製造方法は、例えば、外装の左右両端部、厳密には、捲回体の左右両側方に対して、初期充電時の拘束荷重よりも高い荷重を部分的に付与する等して外装の左右両端部を意図的に圧縮し、捲回体外部空間の体積を小さくすればよい。
 ただし、製造方法では、第二実施形態のように、外側に膨張した外装30を加圧工程で加圧して、外装30を膨張方向とは反対側に圧縮することが好ましい。
 これにより、製造方法は、待機工程における捲回体外部空間S10の体積をより大きくできるため、待機工程時に電解液Eの浸透をより促進できる。
 また、製造方法は、加圧工程時に外装30の圧縮率をより高くできるため、加圧工程時の捲回体外部空間Sと捲回体内部空間S1との圧力差をより大きくできる。つまり、製造方法は、加圧工程時に捲回体100の全面に電解液Eをより確実に浸透させることができる。
 なお、第二実施形態において、待機工程では、捲回体外部空間と捲回体内部空間との圧力が平衡になるまで待機しても構わない。
 これにより、製造方法は、待機工程時に捲回体により多くの電解液を浸透させることができるため、加圧工程時に捲回体の全面に電解液をより確実に浸透させることができる。
 ここで、本発明の係る二次電池の製造方法のさらに別の第三実施形態について、説明をする。
 リチウムイオン二次電池は、使用中に発生するガスによってセルの内圧が上昇するため、ガスの発生時においてもセルの内圧が許容される圧力となるように、セル製造時におけるセルの内圧を低く抑えておくことが望まれる。
 初充電時に発生したガスが電極体内に残留していると、セル内圧が高くなるため、初充電後にセル内を減圧し、ガスを除去してからセルを封口する技術が公知となっている。
 従来の二次電池の製造方法では、減圧チャンバーを使用して、セル内を減圧しながらセルの封口作業を行う構成としている。
 これにより、封口後におけるセルの内圧を低減することを可能にしている。
 しかしながら従来は、封口後におけるセルの内圧を低減するために、減圧チャンバー等の大掛かりな装置を使用する必要があった。
 このため、減圧チャンバー等の大掛かりな装置を使用することなく、簡易な構成の装置を使用しながら、封口後のセルの内圧を低減する技術の開発が望まれていた。
 ここで、本発明の第三実施形態に係る製造方法を適用する電池10について、改めて説明をすると、図21(a)に示すように、電池10は、捲回体100と、捲回体100を収容する外装30と、外装30の開口部30aを封止する蓋部32を備え、外装30の内部には電解液Eが注液されている。
 蓋部32には、電解液Eを注液するための注液孔33が形成されており、注液孔33をキャップ40で封口することによって、密閉された空間が形成されている。
 図21(b)に示す如く、電池10を構成する捲回体100は捲回型であり、図22に示すようなシート状の正極101と負極102を、セパレータ103を介して積層したもので捲回体を形成するとともに、さらにその捲回体を捲回軸に対して垂直な方向に扁平させることによって形成される。
 捲回体100の、捲回軸方向における正極側の軸方向一端部100aは正極未塗工部として構成され、負極側の軸方向他端部100bは負極未塗工部として構成される。
 そして、図21(a)に示すように、正極側の軸方向一端部100aには外部端子50(正極端子50a)に接続された集電端子51(集電体51a)が溶接され、負極側の軸方向他端部100bには外部端子50(負極端子50b)に接続された集電端子51(集電体51b)が溶接される。
 尚、各端子6・8の突出方法を上向きにしている図21(a)に示す態様が、電池10の通常の使用状態における姿勢であり、図21(a)における上下方向が電池10の高さ方向であり、左右方向が電池10の幅方向であり、紙面に垂直な方向が電池10の厚み方向である。
 図21(c)に示す如く、電池10を構成する外装30は箱型であり、上部に開口部30aが形成されている。
 そして、図21(a)に示すように、開口部30aに蓋部32を溶接することで、電池10の筐体が形成される。
 尚、本実施形態では、捲回型の捲回体100を備える箱型の電池10を例示しているが、本発明の第三実施形態に係る製造方法を適用する二次電池の種類をこれに限定するものではなく、例えば、積層型の電極体を有する二次電池や、筒型の形状を有する二次電池等であってもよい。
 次に、本発明の第三実施形態に係る電池10の製造方法について、図23~図25を用いて説明をする。
 (真空引き工程)
 本発明の第三実施形態に係る電池10の製造方法では、まず始めに、図23および図24に示すように、外装30内に捲回体100を収容し、外装30の開口部30aを蓋部32で封止した状態で、蓋部32の注液孔33から、外装30内を真空引きする(STEP-1)。
 真空引き工程(STEP-1)では、外装30内を負圧化するとともに、捲回体100の内部に残留する気体も吸い出して、捲回体100の内部を負圧化する。
 また、真空引き工程(STEP-1)における外装30内の到達圧力を圧力P1と規定し、捲回体100内部の圧力も圧力P1となっている。
 尚、ここでいう「負圧」とは、大気圧よりも低い圧力を意味しており、また「大気」とは、外装30外側の雰囲気であり、「大気圧」とは、外装30の外側の空気の圧力である。
 (注液工程)
 本発明の第三実施形態に係る電池10の製造方法では、次に、外装30内に電解液Eを注液する(STEP-2)。
 注液工程(STEP-2)は、外装30内を圧力P1(負圧)に維持した状態で行う。
 外装30内を負圧に維持したまま注液を行う方法としては、電解液Eを注液するための容器(ポット)内を減圧しながら行う方法や、外装30内を負圧にした後に逆止弁を有する配管系統から電解液Eを供給する方法などがある。
 (気密化工程)
 本発明の第三実施形態に係る電池10の製造方法では、次に、捲回体100において、捲回体100の内部と外部の気密を確保するための部位であるシール部60(図24中の軸方向一端部100a・100bに示す斜線部)を形成する(STEP-3)。
 気密化工程(STEP-3)では、捲回体100に対して、軸方向一端部100a・100bから電解液Eを含浸させることによって、シール部60を形成する。捲回体100の内部と外部とは、軸方向一端部100a・100bおける電解液Eが含浸した部分であるシール部60により分断されることとなる。そして、シール部60が形成された状態において、シール部60の内側における捲回体100の内部の圧力は、圧力P1を維持している。
 捲回体100は、図22に示すように、正極101、負極102およびセパレータ23を積層して構成されている。正極101および負極102の表面を覆う活物質は多孔性であり、各孔に電解液Eが入り込むことで正極101および負極102の気密性が確保されるとともに、各部材101・102・103同士の隙間に電解液Eが流入し、隙間が封止されることでシール部60が形成される。
 また捲回体100は、図25に示すように、その下部が電解液Eに浸されていると、毛細管現象によって、電解液Eの液面よりも高い位置に電解液Eが浸透していき、やがて、両軸方向一端部100a・100bの端面全体に電解液Eが含浸した状態に至ることで、シール部60・60が形成される。
 毛細管現象によってシール部60を形成する場合には、捲回体100の内部と外部で流体の流通が可能な隙間が徐々に減少しながら、シール部60が形成される。シール部60は、例えば、捲回体100と電解液Eが収容された外装30を回転させたり振ったりすることで、捲回体100の軸方向一端部100a・100bに電解液Eを積極的に接触させて、より短時間で形成する構成としてもよい。
 尚、シール部60が形成されたか否かの判断においては、電解液Eの浸透が軸方向一端部100a・100bの端面全体に及んだか否かだけでなく、軸方向一端部100a・100bにおける通気抵抗(圧損)を考慮して判断する。
 捲回体100の軸方向一端部100a・100bにおける通気抵抗(圧損)が十分に大きい場合には、軸方向一端部100a・100bに対する電解液Eの浸透が不完全な(隙間が残っている)状態であっても、空気等が流通することがなく、シール性が確保されるため、このような場合には、シール部60が形成されたと判断してもよい。
 (大気開放工程)
 本発明の第三実施形態に係る電池10の製造方法では、次に、図23および図24に示すように、外装30内を大気圧P2に復圧する(STEP-4)。
 大気開放工程(STEP-4)では、大気圧下で、注液孔33から電解液Eを注液するためのポットを取り外すことで、自然に行われる。
 大気開放工程(STEP-4)では、捲回体100の外部における外装30内の圧力は、大気圧P2となっており、一方、捲回体100の内部の圧力は、圧力P1が維持されている。
 尚、捲回体100の軸方向一端部100a・100bにおける通気抵抗(圧損)が十分に大きい場合には、軸方向一端部100a・100bに対する電解液Eの浸透が不完全な(隙間が残っている)状態で外装30内を大気に開放しても、捲回体100の内部の圧力P1が上昇することはない。
 このため、このような場合には、軸方向一端部100a・100bに対する電解液Eの浸透が不完全であってもシール部60が形成されたものとして、気密化工程(STEP-3)から大気開放工程(STEP-4)に移行してもよい。
 また、大気開放工程(STEP-4)は、できる限り短時間で済ませて、次工程に移行することが好ましい。
 (封口工程)
 本発明の第三実施形態に係る電池10の製造方法では、次に、蓋部32の注液孔33を封口する(STEP-5)。
 本発明の第三実施形態に係る電池10の製造方法において、封口工程(STEP-5)は、大気圧下で行うことができる。
 封口工程(STEP-5)で、注液孔33を封口した直後においては、捲回体100の外部における外装30内の圧力は大気圧P2に略等しく、捲回体100の内部の圧力は、圧力P1に略等しい状態が維持されている。
 尚、封口工程(STEP-5)は、注液後、捲回体100に対する電解液Eの浸透ができるだけ少ない状態で完了させるのが好適である。
 このため、軸方向一端部100a・100bに対する電解液Eの浸透が不完全でありながらシール部60が形成されたと判断できるように構成した電極体を用いて、注液後、できるだけ速やかに、気密化工程(STEP-3)~封口工程(STEP-5)まで完了させる構成とするのが好適である。
 (含浸工程)
 本発明の第三実施形態に係る電池10の製造方法では、次に、捲回体100の内部に電解液Eをさらに含浸させる(STEP-6)。
 含浸工程(STEP-6)では、捲回体100の捲回軸方向における両軸方向一端部100a・100bから中央側に向けて電解液Eを浸透させていき、捲回体100の内部にまで電解液Eを含浸させる。
 シール部60のシール性は、短時間(例えば、数時間程度)においては、捲回体100の内部を圧力P1に維持できる程度の強さを有しており、長時間(例えば、数日)においては、捲回体100の内部と外部で流体の行き来が可能な性質を有するものである。
 このため、捲回体100に対する電解液Eの浸透が進み、含浸量が増大していくと、図24に示す如く、捲回体100の外部における外装30内の圧力P2と、捲回体100の内部の圧力P1が平衡すべく変化し、捲回体100の外部における外装30内の圧力P2は低下して圧力P3となる。
 また、捲回体100の内部における圧力P1を維持している範囲は、捲回体100に対する電解液Eの浸透が進むのに伴って減少していく。
 本発明の第三実施形態に係る電池10の製造方法では、このようにして、真空チャンバー等の大掛かりな装置を用いることなく、外装30内の圧力を、大気圧P2に比して低い圧力P3にすることができ、電池10の製造設備の簡素化を実現している。
 また、本発明の第三実施形態に係る電池10の製造方法では、大気開放工程(STEP-4)以降の工程は、大気圧下で行うことができるため、電池10の製造効率の向上も実現している。
 即ち、本発明の第三実施形態に係る電池10の製造方法は、外装30に捲回体100を収容した状態で外装30の内部を真空引きする真空引き工程(STEP-1)と、外装30に電解液Eを注液する注液工程(STEP-2)と、外装30を封口する封口工程(STEP-5)と、を備えるものであって、真空引き工程(STEP-1)において、捲回体100の内部を負圧化し、捲回体100の内部を負圧化した状態で、捲回体100の内部を捲回体100の外部に対して気密化する気密化工程(STEP-3)と、捲回体100の内部が捲回体100の外部に対して気密化された状態で、外装30内を大気に開放する大気開放工程(STEP-4)と、を備え、封口工程(STEP-5)を、捲回体100の内部が捲回体100の外部に対して気密化し、かつ、外装30内を大気に開放した状態で行うものである。
 また、本発明の第三実施形態に係る電池10の製造方法において、気密化工程(STEP-3)は、捲回体100の軸方向一端部100a・100bに電解液Eを含浸させることにより行うものであり、さらに、気密化工程(STEP-3)は、毛細管現象により、捲回体100の軸方向一端部100a・100bに電解液Eを含浸させることにより行うものである。
 このような構成により、簡易な構成の装置を使用しながら、セルの内圧低減を実現することができる。
 そして、定常的にセルの内圧を低く抑えることで、電解液E等の還元分解に伴い発生するガスに対する許容度が増し、ひいては、内圧上昇に起因する金属疲労の発生(即ち、安全弁や電流遮断装置の誤作動)を抑制して、電池10の信頼性向上を図ることができる。
 次に、捲回体100に対する電解液Eの浸透を促進させるための方法について、図26~図28を用いて説明をする。
 本発明の第三実施形態に係る電池10の製造方法における、捲回体100に対する電解液Eの浸透を促進させるための第一の方法は、電池10を上下に反転させて、電解液Eを浸透させる方法である。
 図26に示す如く、第一の方法では、電池10の幅方向に平行な軸を基準として上下対称となるように電池10を反転させる構成としている。
 第一の方法では、初めに、捲回体100の下部から電解液Eを浸透させておき、その後、電池10を上下に反転させることで、捲回体100の上部にあたる部位から電解液Eを浸透させる構成としている。
 このような構成によって、捲回体100に対する電解液Eの含浸量を増大させることができる。
 本発明の第三実施形態に係る電池10の製造方法における、捲回体100に対する電解液Eの浸透を促進させるための第二の方法は、電池10を左右に横転させて、電解液Eを浸透させる方法である。
 図27に示す如く、第二の方法では、電池10の厚み方向に平行な軸を基準として、その軸回りに左右に電池10を回転させる構成としている。
 第二の方法では、初めに、左右の何れかに捲回体100を90度回転させた状態で、捲回体100の一方の軸方向一端部100aから電解液Eを浸透させておき、その後、電池10を180度回転させることで、捲回体100の他方の軸方向他端部100bから電解液Eを浸透させる構成としている。尚、第二の方法における捲回体100の回転角度は、適宜変更してもよい。
 このような構成によって、捲回体100に対する電解液Eの含浸量を増大させることができる。
 本発明の第三実施形態に係る電池10の製造方法における、捲回体100に対する電解液Eの浸透を促進させるための第三の方法は、電池10を回転させて、電解液Eを外装30の内部で迫上がらせることによって浸透させる方法である。
 図28に示す如く、第三の方法では、平面視において電池10の中心を通り、電池10の高さ方向に平行な軸回りに電池10を回転させる構成としている。
 第三の方法では、電池10を回転させることで、遠心力によって、電解液Eを外装30内の左右の壁面に沿って上方に迫上がらせる構成としている。
 そして、第三の方法では、迫上がった電解液Eを捲回体100の左右の軸方向一端部100a・100bに接触させることで、捲回体100の軸方向一端部100a・100bにおけるより広い範囲から電解液Eを浸透させて、捲回体100に対する電解液Eの含浸量を増大させる。
 次に、本発明の第三実施形態に係る二次電池の製造方法の適用効果について、図29を用いて説明をする。
 図29には、本発明の第三実施形態に係る二次電池の製造方法を適用した二次電池について、含浸工程(STEP-6)の開始2日後におけるセル内圧を測定した結果を示している。
 図29に示す実施例1~実施例4および比較例1では、製造方法が異なっている。
 比較例1は、従来の二次電池の製造方法を適用した場合であり、注液前に外装30内を大気に開放し、捲回体100内部の圧力が大気圧になっている状態で注液し、その後注液孔33を封口した場合である。
 実施例1は、図25に示した態様に対応しており、気密化工程(STEP-3)において、毛細管現象によって、捲回体100の軸方向一端部100a・100bに電解液Eの浸透をさせて、シール部60を形成した場合である。尚、実施例1においては、他の実施例2~4、比較例1に比して、注液する電解液Eの量を50%増量している。
 実施例2は、図26に示した態様に対応しており、気密化工程(STEP-3)において、毛細管現象によって、捲回体100の軸方向一端部100a・100bに電解液Eの浸透をさせて、シール部60を形成するとともに、含浸工程(STEP-6)において、電池10を上下に反転させることで、捲回体100に対する電解液Eの浸透を促進させた場合である。
 実施例3は、図27に示した態様に対応しており、気密化工程(STEP-3)において、毛細管現象によって、捲回体100の軸方向一端部100a・100bに電解液Eの浸透をさせて、シール部60を形成するとともに、含浸工程(STEP-6)において、電池10を左右に回転させることで、捲回体100に対する電解液Eの浸透を促進させた場合である。
 実施例4は、図28に示した態様に対応しており、気密化工程(STEP-3)において、毛細管現象によって、捲回体100の軸方向一端部100a・100bに電解液Eの浸透をさせて、シール部60を形成するとともに、含浸工程(STEP-6)において、電池10を回転させて、電解液Eを外装30の内部で迫上がらせることによって、捲回体100に対する電解液Eの浸透を促進させた場合である。
 図29に示す結果によると、実施例3に係る二次電池の製造方法の場合が、セル内圧の低減に最も効果的であることが判り、次いで、実施例2、実施例4、実施例1の順に効果的であることが判った。また、比較例1の場合には、セル内圧は低減しなかった。
 即ち、図29に示す結果から、本発明の第三実施形態に係る電池10の製造方法を適用すれば、セル内圧の低減を実現できることが確認できた。
 また、本発明の第三実施形態に係る電池10の製造方法を適用した場合には、外装30を封口した後で、捲回体100に対する電解液Eの浸透をさらに促進させることで、セル内圧の更なる低減が可能になることが判った。

Claims (10)

  1.  電池ケース内を減圧する工程と、
     減圧した前記電池ケース内に電解液を注液する工程と、
     捲回体に、前記捲回体の軸方向両端部から前記電解液を浸透させる工程と、
     前記電解液を浸透させた後、前記電池ケースと前記捲回体との間の空間である捲回体外部空間と、前記捲回体の内部空間である捲回体内部空間との差圧を減少させるために、前記捲回体の軸方向両端部における前記電解液の浸透量を増大させるとともに、浸透させた前記電解液によって、前記捲回体の内部空間である捲回体内部空間と、前記電池ケースと前記捲回体との間の空間である捲回体外部空間を気密化する工程と、
     差圧を減少させた前記捲回体外部空間を加圧する工程と、
     を行う、
     二次電池の製造方法。
  2.  前記電解液を注液した後に、注液した前記電池ケースを密閉する工程、
     をさらに行う、
     請求項1に記載の二次電池の製造方法。
  3.  前記気密化する工程では、
     前記捲回体外部空間と前記捲回体の内部空間との圧力が平衡になるまで待機する、
     請求項2に記載の二次電池の製造方法。
  4.  前記捲回体外部空間を加圧する工程では、
     前記電池ケースを大気開放する、
     請求項2または請求項3に記載の二次電池の製造方法。
  5.  前記捲回体外部空間を加圧する工程では、
     前記電池ケースを外側から加圧する、
     請求項2または請求項3に記載の二次電池の製造方法。
  6.  前記電池ケース内を減圧する工程より前に、前記電池ケースを外側に膨張させる工程を行い、
     前記捲回体外部空間を加圧する工程では、
     外側に膨張した前記電池ケースを加圧して、前記電池ケースを前記膨張方向とは反対側に圧縮する、
     請求項5に記載の二次電池の製造方法。
  7.  前記捲回体外部空間を加圧する工程では、
     前記電池ケースを圧縮して前記捲回体外部空間を大気圧以上の圧力まで加圧する、
     請求項6に記載の二次電池の製造方法。
  8.  電池ケースに捲回体を収容した状態で前記電池ケースの内部を減圧する工程と、
     前記電池ケースに電解液を注液する工程と、
     前記電池ケースを封口する工程と、
     を備える二次電池の製造方法であって、
     前記電池ケースの内部を減圧する工程において、前記捲回体の内部空間である捲回体内部空間を負圧化し、
     前記捲回体内部空間を負圧化した状態で、前記捲回体内部空間を前記電池ケースと前記捲回体との間の空間である捲回体外部空間に対して気密化する工程と、
     前記捲回体内部空間が前記捲回体外部空間に対して気密化された状態で、前記電池ケース内を大気に開放する工程と、
     を備え、
     前記電池ケースを封口する工程を、
     前記捲回体内部空間が前記捲回体外部空間に対して気密化し、かつ、前記電池ケース内を大気に開放した状態で行う、
     ことを特徴とする二次電池の製造方法。
  9.  前記捲回体内部空間を負圧化した状態で、前記捲回体内部空間を前記電池ケースと前記捲回体との間の空間である捲回体外部空間に対して気密化する工程は、
     前記捲回体の端部に前記電解液を含浸させることにより行う、
     ことを特徴とする請求項8に記載の二次電池の製造方法。
  10.  前記捲回体内部空間を負圧化した状態で、前記捲回体内部空間を前記電池ケースと前記捲回体との間の空間である捲回体外部空間に対して気密化する工程は、
     毛細管現象により、前記捲回体の端部に前記電解液を含浸させることにより行う、
     ことを特徴とする請求項9に記載の二次電池の製造方法。
PCT/JP2014/076567 2013-10-15 2014-10-03 二次電池の製造方法 WO2015056583A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167012362A KR20160068929A (ko) 2013-10-15 2014-10-03 이차 전지의 제조 방법
US15/029,540 US10396342B2 (en) 2013-10-15 2014-10-03 Method for manufacturing secondary cell having a wound body effectively impregnated with electrolytic solution
CN201480056398.9A CN105637679B (zh) 2013-10-15 2014-10-03 二次电池的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-214628 2013-10-15
JP2013214628A JP6011877B2 (ja) 2013-10-15 2013-10-15 二次電池の製造方法
JP2014049161A JP6094823B2 (ja) 2014-03-12 2014-03-12 二次電池の製造方法
JP2014-049161 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015056583A1 true WO2015056583A1 (ja) 2015-04-23

Family

ID=52828031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076567 WO2015056583A1 (ja) 2013-10-15 2014-10-03 二次電池の製造方法

Country Status (4)

Country Link
US (1) US10396342B2 (ja)
KR (1) KR20160068929A (ja)
CN (1) CN105637679B (ja)
WO (1) WO2015056583A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022337A1 (ja) * 2015-08-05 2017-02-09 株式会社皆藤製作所 巻回装置
JP2017045547A (ja) * 2015-08-24 2017-03-02 日産自動車株式会社 電気化学素子の検査方法、および電気化学素子の製造方法
WO2018055717A1 (ja) * 2016-09-23 2018-03-29 日産自動車株式会社 フィルム外装電池の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351154A1 (en) * 2016-01-29 2018-12-06 Lg Chem, Ltd. Battery cell and method for manufacturing battery cell
DE102016225173A1 (de) * 2016-12-15 2018-06-21 Robert Bosch Gmbh Verfahren und System zur Herstellung einer Batteriezelle
KR102394495B1 (ko) 2017-11-14 2022-05-04 주식회사 엘지에너지솔루션 이차 전지용 파우치, 이차 전지 및 그의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250107A (ja) * 1995-03-08 1996-09-27 Sony Corp 液含浸装置及び液含浸方法
JP2005285584A (ja) * 2004-03-30 2005-10-13 Tdk Corp 液含浸方法及び液含浸装置
JP2009032450A (ja) * 2007-07-25 2009-02-12 Panasonic Corp アルカリ乾電池の製造方法
JP2009181862A (ja) * 2008-01-31 2009-08-13 Nec Tokin Corp フィルム外装電気デバイスの製造方法及び製造装置
JP2012134047A (ja) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd 二次電池の製造方法および電解液注入装置
JP2013110033A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp 非水電解液二次電池の製造方法
JP2013140782A (ja) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd フィルム外装電気デバイスの製造方法及び製造装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529020A (en) * 1980-01-29 1985-07-16 General Electric Company Method and apparatus for pressure filling an electrochemical cell
US4483909A (en) * 1981-06-22 1984-11-20 Duracell Inc. Electrochemical cell with pressurized liquid electrolyte
JP3467135B2 (ja) 1995-10-05 2003-11-17 阿波エンジニアリング株式会社 電解液の充填方法
JP4433650B2 (ja) * 2001-10-03 2010-03-17 日本碍子株式会社 リチウム二次単電池及びリチウム二次単電池の接続構造体
CN102326288A (zh) * 2009-02-19 2012-01-18 丰田自动车株式会社 全固体电池
JP5531641B2 (ja) * 2010-01-21 2014-06-25 日産自動車株式会社 電解液注入装置及び電解液注入方法
JP5737289B2 (ja) * 2010-05-26 2015-06-17 株式会社Gsユアサ 電池
KR101300591B1 (ko) * 2010-09-30 2013-08-27 주식회사 엘지화학 이차 전지의 전해액 함침 증진 장치 및 방법
JP5492125B2 (ja) * 2011-03-24 2014-05-14 株式会社東芝 二次電池、および二次電池の製造方法
JP5787194B2 (ja) * 2011-06-08 2015-09-30 トヨタ自動車株式会社 電源システム
JP2013008550A (ja) 2011-06-24 2013-01-10 Sharp Corp 二次電池およびその製造方法
US8626428B2 (en) * 2011-06-28 2014-01-07 Honeywell International Inc. Selectable display of aircraft traffic on tracks
JP5670854B2 (ja) 2011-09-29 2015-02-18 株式会社東芝 二次電池の製造方法
JP5573812B2 (ja) 2011-10-24 2014-08-20 トヨタ自動車株式会社 電池の製造方法
DE112011105809B4 (de) * 2011-11-04 2019-10-02 Toyota Jidosha Kabushiki Kaisha Abgedichtete Lithiumsekundärbatterie und Verfahren zum Herstellen derselben
JP2013152834A (ja) 2012-01-25 2013-08-08 Toyota Motor Corp 電池の製造方法
WO2014010024A1 (ja) * 2012-07-09 2014-01-16 トヨタ自動車株式会社 電池製造方法
US20150135522A1 (en) * 2012-08-09 2015-05-21 Sanyo Electric Co., Ltd. Method for producing battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250107A (ja) * 1995-03-08 1996-09-27 Sony Corp 液含浸装置及び液含浸方法
JP2005285584A (ja) * 2004-03-30 2005-10-13 Tdk Corp 液含浸方法及び液含浸装置
JP2009032450A (ja) * 2007-07-25 2009-02-12 Panasonic Corp アルカリ乾電池の製造方法
JP2009181862A (ja) * 2008-01-31 2009-08-13 Nec Tokin Corp フィルム外装電気デバイスの製造方法及び製造装置
JP2012134047A (ja) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd 二次電池の製造方法および電解液注入装置
JP2013110033A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp 非水電解液二次電池の製造方法
JP2013140782A (ja) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd フィルム外装電気デバイスの製造方法及び製造装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022337A1 (ja) * 2015-08-05 2017-02-09 株式会社皆藤製作所 巻回装置
JP6108373B1 (ja) * 2015-08-05 2017-04-05 株式会社皆藤製作所 巻回装置及び巻回方法
US11158465B2 (en) 2015-08-05 2021-10-26 Kaido Manufacturing Co., Ltd. Winder
US11170949B2 (en) 2015-08-05 2021-11-09 Kaido Manufacturing Co., Ltd. Winder
JP2017045547A (ja) * 2015-08-24 2017-03-02 日産自動車株式会社 電気化学素子の検査方法、および電気化学素子の製造方法
WO2018055717A1 (ja) * 2016-09-23 2018-03-29 日産自動車株式会社 フィルム外装電池の製造方法
JPWO2018055717A1 (ja) * 2016-09-23 2019-03-28 日産自動車株式会社 フィルム外装電池の製造方法

Also Published As

Publication number Publication date
CN105637679B (zh) 2017-11-21
US10396342B2 (en) 2019-08-27
US20160254523A1 (en) 2016-09-01
KR20160068929A (ko) 2016-06-15
CN105637679A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6011877B2 (ja) 二次電池の製造方法
WO2015056583A1 (ja) 二次電池の製造方法
JP5151755B2 (ja) 二次電池の製造方法
US9831531B2 (en) Method of manufacturing battery
WO2014103603A1 (ja) 密閉型電池の製造方法
JP5790604B2 (ja) 密閉型電池の製造方法
JP6066213B2 (ja) 二次電池の製造方法および二次電池
JP2002509350A (ja) 二重電気層を備えるコンデンサ
JP2013152834A (ja) 電池の製造方法
JP2011054539A (ja) 電池の製造方法
KR102124824B1 (ko) 전지셀 제조방법 및 전지셀의 가스 제거 장치
JP5724858B2 (ja) 電池の製造方法
WO2015111665A1 (ja) 蓄電装置の製造方法、製造装置、注液装置、及び注液方法
WO2014171169A1 (ja) 密閉型電池の製造方法
JP7249982B2 (ja) 非水電解液二次電池の製造方法
JP6094823B2 (ja) 二次電池の製造方法
JP4617784B2 (ja) 電気二重層キャパシタの電解液注入方法とその装置
KR102264683B1 (ko) 진공을 이용한 전해액 주액 방법
CN116207366A (zh) 二次电池的制造方法
JP2009021093A (ja) 電池またはキャパシタの製造方法
JP2009021388A (ja) 電気二重層キャパシタの製造方法
JP2014229360A (ja) 密閉型電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15029540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012362

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14853677

Country of ref document: EP

Kind code of ref document: A1