WO2015053211A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2015053211A1
WO2015053211A1 PCT/JP2014/076664 JP2014076664W WO2015053211A1 WO 2015053211 A1 WO2015053211 A1 WO 2015053211A1 JP 2014076664 W JP2014076664 W JP 2014076664W WO 2015053211 A1 WO2015053211 A1 WO 2015053211A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressor
indoor blower
predetermined
temperature
Prior art date
Application number
PCT/JP2014/076664
Other languages
English (en)
French (fr)
Inventor
鈴木 謙一
竜 宮腰
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112014004619.1T priority Critical patent/DE112014004619T5/de
Priority to US15/027,415 priority patent/US10391836B2/en
Priority to CN201480055399.1A priority patent/CN105612069B/zh
Publication of WO2015053211A1 publication Critical patent/WO2015053211A1/ja
Priority to US16/378,195 priority patent/US10946719B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00678Damper doors moved by rotation; Grilles the axis of rotation being in the door plane, e.g. butterfly doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • B60H1/10Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle
    • B60H1/12Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle using an air blower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00957Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising locations with heat exchange within the refrigerant circuit itself, e.g. cross-, counter-, or parallel heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3282Cooling devices output of a control signal related to an evaporating unit to control the air flow

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner that can be applied to an electric vehicle and a hybrid vehicle.
  • a heat absorber an interior heat exchanger for heat absorption that is provided in the air flow passage in the vehicle interior and absorbs the refrigerant
  • an outdoor heat exchanger an exterior heat exchanger that is disposed outside the vehicle cabin and radiates the refrigerant
  • Etc. an exterior heat exchanger that is disposed outside the vehicle cabin and radiates the refrigerant
  • Etc. an exterior heat exchanger that is disposed outside the vehicle cabin and radiates the refrigerant
  • a heater core (heat generating means) through which engine coolant is circulated is provided in the vehicle interior air flow passage so that the heating capability is exhibited by the heater core in addition to the heating by the radiator.
  • the start timing of the compressor, the indoor blower, and the heat generating means is not appropriate, the following various problems occur. For example, if the period during which high-temperature refrigerant is supplied to the radiator by the compressor in a windless state (indoor fan stop) becomes long, the heat pump cycle is not established, and the high-pressure side pressure rises abnormally and the compressor is stopped. Inconvenience occurs. On the other hand, if the indoor blower is operated before the radiator and the heater core exhibit sufficient heating capacity, low-temperature air is blown into the passenger compartment, resulting in a loss of comfort.
  • the present invention has been made to solve the conventional technical problems, and it is possible to realize comfortable vehicle interior heating by activating a compressor, an indoor blower, and a heating means at appropriate timing.
  • An object of the present invention is to provide a vehicle air conditioner that can be used.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, a radiator that is provided in the air flow passage and radiates heat from the refrigerant, and an air flow A heat absorber that absorbs the refrigerant provided in the passage, an indoor blower that circulates air through the air flow passage, and a control means that controls the operation of the compressor and the indoor blower. Heating the supplied air to heat the vehicle interior, provided in the air flow passage, provided with heat generating means for heating the air supplied to the vehicle interior, the control means based on the outside air temperature, The timing for starting the compressor, the indoor blower, and the heat generating means is controlled.
  • the air conditioning apparatus for a vehicle according to a second aspect of the present invention is the air conditioning apparatus for a vehicle according to the present invention, wherein the control means starts the compressor before the indoor blower and the heat generation means when the outside air temperature is the first low outside air temperature environment. It starts at the same time as the indoor blower, immediately after the start of the indoor blower, or after the start of the indoor blower.
  • an air conditioning apparatus for a vehicle wherein the control means starts the indoor blower at the time when the rotation speed of the compressor becomes equal to or higher than a predetermined rotation speed after starting the compressor.
  • the air volume of the blower is controlled to a predetermined low value, and when the temperature of the heat generating means becomes higher than the predetermined value, the air volume of the indoor fan is increased to a target value.
  • an air conditioning apparatus for a vehicle wherein the control means starts the compressor, and then the time when the rotational speed of the compressor becomes a predetermined rotational speed or higher, or the high pressure side pressure.
  • the indoor fan is started when the pressure becomes equal to or higher than the predetermined pressure, and the heating means is started when the air volume of the indoor fan becomes a predetermined low value until the temperature of the heating means becomes higher than the predetermined value.
  • the air volume of the indoor fan is controlled to a predetermined low value, and when the temperature of the heat generating means becomes higher than the predetermined value, the air volume of the indoor fan is increased to a target value.
  • the control means starts the indoor blower at the time when the rotation speed of the compressor becomes equal to or higher than a predetermined rotation speed after starting the compressor.
  • the air volume of the indoor blower is controlled to a predetermined low value, and when the rotation speed of the compressor reaches the target rotation speed, the air volume of the indoor blower is increased to the target value.
  • a vehicle air conditioner according to a sixth aspect of the present invention is the vehicle air conditioner according to the second to fifth aspects, wherein the control means is a second low outside air temperature environment in which the outside air temperature is higher than the first low outside air temperature environment.
  • the indoor blower is started at the same time as the compressor, immediately after the start of the compressor, or after the start of the compressor, and the heat generating means is started at the same time as the indoor blower, immediately after the start of the indoor blower, or the start of the indoor blower. It is characterized by starting later.
  • the control means controls the air volume of the indoor blower to a predetermined low value after starting the indoor blower, and the temperature of the heat generating means is higher than the predetermined value. In this case, the air volume of the indoor fan is increased to a target value.
  • the air conditioning apparatus for a vehicle according to an eighth aspect of the present invention is the air conditioning apparatus for a vehicle according to the sixth aspect, wherein the control means activates the heat generating means when the air volume of the indoor blower becomes a predetermined low value after the indoor blower is activated. Until the temperature of the heating means becomes higher than a predetermined value or until the high-pressure side pressure becomes equal to or higher than the predetermined pressure, the air volume of the indoor fan is controlled to a predetermined low value, and the temperature of the heating means becomes higher than the predetermined value. In this case, or when the high-pressure side pressure becomes equal to or higher than a predetermined pressure, the air volume of the indoor fan is increased to a target value.
  • the air conditioning apparatus for a vehicle according to a ninth aspect of the present invention is the air conditioning apparatus for a vehicle according to the sixth aspect, wherein the control means controls the air volume of the indoor blower to a predetermined low value after starting the indoor blower, and the rotational speed of the compressor is The heat generating means is activated when the rotational speed exceeds a predetermined rotational speed, and when the rotational speed of the compressor reaches the target rotational speed, the air volume of the indoor blower is increased to a target value.
  • a vehicle air conditioner according to a tenth aspect of the present invention is the vehicle air conditioner according to any of the sixth to ninth aspects, wherein the control means is a third low outside air temperature environment in which the outside air temperature is higher than the second low outside air temperature environment.
  • the indoor blower is started before the compressor, and the heat generating means is started simultaneously with the indoor blower, immediately after the start of the indoor blower, or after the start of the indoor blower.
  • the control means starts the compressor when the air flow rate of the indoor blower becomes a predetermined low value after starting the indoor blower, and generates heat.
  • the air volume of the indoor blower is controlled to a predetermined low value until the temperature of the indoor fan becomes higher than a predetermined value, and when the temperature of the heating means becomes higher than the predetermined value, the air volume of the indoor blower is increased to a target value.
  • the vehicle air conditioner according to a twelfth aspect of the present invention is the air conditioning apparatus for a vehicle according to the tenth aspect of the present invention, wherein the control means starts the heat generating means when the air flow rate of the indoor blower becomes a predetermined low value after starting the indoor blower.
  • the compressor is started simultaneously with the start of the heat generating means, or immediately after the heat generating means is started, and until the temperature of the heat generating means becomes higher than a predetermined value, or until the high-pressure side pressure becomes equal to or higher than the predetermined pressure.
  • the air volume is controlled to a predetermined low value, and the air volume of the indoor fan is increased to a target value when the temperature of the heat generating means becomes higher than the predetermined value or when the high pressure side pressure becomes equal to or higher than the predetermined pressure.
  • the control means starts the compressor when the air flow rate of the indoor fan becomes a predetermined low value after starting the indoor fan.
  • the air flow rate of the indoor fan is controlled to a predetermined low value until the rotation speed of the compressor becomes equal to or higher than the predetermined rotation speed, and when the rotation speed of the compressor becomes equal to or higher than the predetermined rotation speed, It is characterized by increasing to.
  • a vehicular air conditioner according to the first aspect of the present invention, wherein the heat generating means is disposed on the downstream side of the air flowing through the air flow passage with respect to the radiator, and the control means is the outside air temperature.
  • the compressor and the heat generating means are started before the indoor blower.
  • the control means starts the indoor blower at the time when the rotation speed of the compressor becomes equal to or higher than the predetermined rotation speed after starting the compressor. Is controlled to a predetermined low value, and when the rotational speed of the compressor reaches the target rotational speed, the air volume of the indoor blower is increased to the target value.
  • a vehicle air conditioner according to a sixteenth aspect of the invention is the vehicle air conditioner according to the fourteenth or fifteenth aspect, wherein the control means is a second low outside air temperature environment in which the outside air temperature is higher than the first low outside air temperature environment.
  • the indoor blower and the heat generating means are started immediately after starting the compressor or after starting the compressor.
  • control means controls the air volume of the indoor blower to a predetermined low value after starting the indoor blower, and the rotational speed of the compressor is the target rotational speed. In this case, the air volume of the indoor fan is increased to a target value.
  • the vehicle air conditioner according to an eighteenth aspect of the present invention is the vehicle air conditioner according to the sixteenth or seventeenth aspect, wherein the control means is a third low outside temperature environment in which the outside air temperature is higher than the second low outside temperature environment.
  • the heating means and the compressor are started immediately after the indoor blower is started or after the indoor blower is started.
  • the control means starts the compressor when the air flow rate of the indoor blower becomes a predetermined low value after starting the indoor blower.
  • the air volume of the indoor blower is controlled to a predetermined low value until the rotation speed of the compressor becomes equal to or higher than the predetermined rotation speed, and when the rotation speed of the compressor exceeds the predetermined rotation speed, the air volume of the indoor blower is increased to the target value. It is characterized by that.
  • a vehicle air conditioner includes the heat medium-air heat exchanger provided in the air flow passage in each of the above inventions, and the heat medium heated by the electric heater or the engine is used as the heat medium-air heat.
  • the heat generating means is constituted by a heat medium circulation circuit circulating in the exchanger.
  • the vehicle air conditioner according to a twenty-first aspect of the present invention is the vehicle air conditioner according to the twenty-first aspect, wherein the heat medium circulation circuit includes a valve device that controls circulation of the heat medium to the heat medium-air heat exchanger, and the control means includes the valve device.
  • the heat generating means is activated by opening.
  • an air conditioning apparatus for a vehicle according to the first to nineteenth aspects of the present invention, wherein the heating means is configured by an electric heater that is provided in the air flow passage and heats the air supplied to the passenger compartment.
  • the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the passenger compartment flows, the radiator that is provided in the air flow passage to dissipate the refrigerant, and the air flow passage are provided.
  • the vehicle air conditioner for heating the interior of the vehicle by heating the vehicle interior the vehicle is provided with heat generating means provided in the air flow passage for heating the air supplied to the interior of the vehicle, and the control means is based on the outside air temperature. Since the start timing of the indoor blower and the heat generating means is controlled, the compressor, the indoor blower, and the heat generating means can be started at an appropriate timing according to the outside air temperature environment.
  • the control means starts the compressor before the indoor blower and the heat generating means simultaneously with the indoor blower, or By starting up immediately after starting the indoor blower or after starting the indoor blower, it is possible to accelerate the increase in the high pressure side pressure of the compressor in an environment where the outside air temperature is extremely low, and to quickly raise the heating capacity Become.
  • the indoor blower is started when the rotational speed of the compressor becomes equal to or higher than the predetermined rotational speed, and the air volume of the indoor blower is set to a predetermined level.
  • the increase of the high-pressure side pressure is promoted by increasing the air volume of the indoor blower to the target value, and the temperature of the heat generating means is increased. It is also possible to quickly raise the heating capacity of the radiator and the heat generating means, and to realize comfortable vehicle interior heating.
  • the interior of the chamber is increased when the rotation speed of the compressor becomes equal to or higher than the predetermined speed or when the high-pressure side pressure becomes equal to or higher than the predetermined pressure.
  • the heat generating means is started, and the air flow rate of the indoor blower is set to a predetermined low value until the temperature of the heat generating means becomes higher than the predetermined value.
  • the increase in the high-pressure side pressure and the temperature rise of the heating means are promoted by increasing the air volume of the indoor blower to the target value.
  • the heat medium-air heat exchanger provided in the air flow passage as in the invention of claim 20 is provided, and the heat medium heated by the electric heater or the engine is circulated to the heat medium-air heat exchanger.
  • the heat medium circuit comprises a heat generating means, and the heat medium circuit as in the invention of claim 21 further comprises a valve device for controlling the circulation of the heat medium to the heat medium-air heat exchanger.
  • the control unit starts the indoor blower when the rotation speed of the compressor becomes equal to or higher than the predetermined rotation speed, and sets the air volume of the indoor blower to a predetermined low value.
  • the compressor speed reaches the target speed
  • increasing the air volume of the indoor blower to the target value also promotes the increase of the high-pressure side pressure and the temperature of the heating means.
  • the control means as in the invention of claim 6 sets the indoor blower at the same time as the compressor or the compressor. Is started immediately after the start of the compressor, or after the start of the compressor, and the heat generating means is started simultaneously with the indoor blower, immediately after the start of the indoor blower, or after the start of the indoor blower. If the high-pressure side pressure rise is not slower than the first low outside air temperature environment, start the indoor blower earlier and speed up the start of the vehicle interior heating. Will be able to.
  • the control means controls the air volume of the indoor blower to a predetermined low value after starting the indoor blower as in the invention of claim 7, and the temperature of the heat generating means becomes higher than the predetermined value, the indoor blower
  • the indoor blower By increasing the air volume to the target value, the increase in the high-pressure side pressure can be promoted, and the start-up of the vehicle interior heating can be effectively accelerated.
  • control means starts the heat generating means when the air flow rate of the indoor blower becomes a predetermined low value after starting the indoor blower, and the temperature of the heat generating means is higher than the predetermined value.
  • the air volume of the indoor blower is controlled to a predetermined low value, and the temperature of the heating means becomes higher than the predetermined value, or the high-pressure side pressure is the predetermined pressure.
  • increasing the air volume of the indoor blower to the target value can also promote the rise of the high-pressure side pressure and effectively speed up the startup of the vehicle interior heating.
  • the heat medium-air heat exchanger provided in the air flow passage as in the invention of claim 20 is provided, and the heat medium heated by the electric heater or the engine is circulated to the heat medium-air heat exchanger.
  • the heat medium circuit comprises a heat generating means, and the heat medium circuit as in the invention of claim 21 further comprises a valve device for controlling the circulation of the heat medium to the heat medium-air heat exchanger.
  • control means controls the air flow rate of the indoor blower to a predetermined low value after starting the indoor blower as in the ninth aspect of the invention, and generates heat when the rotational speed of the compressor becomes equal to or higher than the predetermined rotational speed.
  • the compressor rotation speed reaches the target rotation speed, increasing the air flow rate of the indoor blower to the target value promotes the increase of the high-pressure side pressure and effectively starts up the vehicle interior heating. To be able to speed up.
  • the control means activates the indoor fan prior to the compressor as in the invention of claim 10.
  • the heating means is activated at the same time as the indoor blower, immediately after the start of the indoor blower, or after the start of the indoor blower, so that the outside air temperature is higher than the second low outside temperature environment described above. It is possible to avoid the inconvenience that the side pressure rises early and the compressor stops and the like, and the vehicle interior heating can be started smoothly.
  • the control means starts when the air flow rate of the indoor blower becomes a predetermined low value, and the temperature of the heat generating means exceeds the predetermined value.
  • the air volume of the indoor fan is controlled to a predetermined low value until it becomes high, and when the temperature of the heat generating means becomes higher than the predetermined value, the air volume of the indoor fan is increased to the target value, thereby increasing the pressure on the high pressure side. While avoiding inconvenience, the vehicle interior heating can be started quickly and smoothly.
  • the control means starts the heat generating means when the air flow rate of the indoor blower becomes a predetermined low value after starting the indoor blower, and simultaneously with the start of the heat generating means or heat generation. Start the compressor immediately after starting the means, and control the air volume of the indoor blower to a predetermined low value until the temperature of the heat generating means becomes higher than a predetermined value, or until the high-pressure side pressure becomes equal to or higher than the predetermined pressure, When the temperature of the heat generating means becomes higher than a predetermined value, or when the high-pressure side pressure exceeds the predetermined pressure, the inconvenience due to excessive increase of the high-pressure side pressure can be avoided by increasing the air volume of the indoor fan to the target value. However, the vehicle interior heating can be started quickly and smoothly.
  • the heat medium-air heat exchanger provided in the air flow passage as in the invention of claim 20 is provided, and the heat medium heated by the electric heater or the engine is circulated to the heat medium-air heat exchanger.
  • the heat medium circuit comprises a heat generating means, and the heat medium circuit as in the invention of claim 21 further comprises a valve device for controlling the circulation of the heat medium to the heat medium-air heat exchanger.
  • the control means starts the compressor when the air flow rate of the indoor blower becomes a predetermined low value, and the rotational speed of the compressor is the predetermined rotational speed. Until this is reached, the air flow rate of the indoor fan is controlled to a predetermined low value, and when the rotation speed of the compressor becomes equal to or higher than the predetermined rotation speed, it is possible to increase the air flow rate of the indoor blower to the target value. It is possible to quickly and smoothly start up the vehicle interior heating while avoiding inconvenience due to excessively rising.
  • the heating means when the heating means is disposed downstream of the air flowing through the air flow passage with respect to the radiator, the heat generated by the heating means is not transmitted to the radiator even when the indoor blower is activated.
  • the control means is the first low outside air temperature environment where the outside air temperature is low as in the invention of the fourteenth aspect, the compressor and the heat generating means are started before the indoor blower, so that the outside air temperature is extremely low.
  • the indoor blower is started at the time when the rotational speed of the compressor becomes equal to or higher than the predetermined rotational speed, and the air volume of the indoor blower is reduced to a predetermined low level.
  • the compressor rotation speed reaches the target rotation speed, the air volume of the indoor fan is increased to the target value, thereby promoting the increase of the high-pressure side pressure and the temperature increase of the heating means.
  • the heating capacity of the radiator and the heat generating means can be quickly started up, and comfortable vehicle interior heating can be realized.
  • the control unit as in the invention of claim 16 immediately after the start of the compressor, Or when the outside air temperature is higher than the first low outside air temperature environment described above by starting after the compressor is started, and the increase in the high pressure side pressure is not delayed compared to the case of the first low outside air temperature environment. Makes it possible to start the indoor blower more quickly and speed up the start of the vehicle interior heating.
  • control means controls the air volume of the indoor fan to a predetermined low value after starting the indoor blower as in the invention of claim 17, and the rotation speed of the compressor reaches the target rotation speed,
  • the increase in the high-pressure side pressure can be promoted, and the start-up of the vehicle interior heating can be effectively accelerated.
  • the control means sets the heat generating means and the compressor immediately after the start of the indoor blower.
  • the high-pressure side pressure rises early and the compressor stops in an environment where the outside air temperature is higher than the second low outside air temperature environment described above. Inconveniences can be avoided in advance, and vehicle interior heating can be started smoothly.
  • the control means starts the compressor at the time when the air flow rate of the indoor fan becomes a predetermined low value after starting the indoor fan as in the nineteenth aspect of the invention, and the rotation speed of the compressor reaches the predetermined rotation.
  • the air volume of the indoor blower is controlled to a predetermined low value until the number exceeds the predetermined value, and when the compressor rotation speed exceeds the predetermined rotation speed, the air flow of the indoor blower is increased to the target value to increase the pressure on the high pressure side. It is possible to quickly and smoothly start up the vehicle interior heating while avoiding inconvenience due to the excessive rise of the vehicle.
  • the heat medium-air heat exchanger provided in the air flow passage is provided as in the twentieth aspect of the invention, and the heat medium heated by the electric heater or the engine is circulated to the heat medium-air heat exchanger. It is effective when the heat generating means is constituted by the heat medium circuit, and the heat medium circuit as in the invention of claim 21 comprises a valve device for controlling the circulation of the heat medium to the heat medium-air heat exchanger, The control means starts the heat generating means by opening the valve device, and opens the valve device (starts the heat generating means) when the temperature of the heat medium to the heat medium-air heat exchanger rises as described above.
  • the disadvantage that the temperature of the air is lowered by the heat medium-air heat exchanger can be solved.
  • the heat generating means is constituted by an electric heater provided in the air flow passage as in the invention of claim 22 to heat the air supplied to the passenger compartment, the structure can be simplified.
  • FIG. 3 is a timing chart for explaining control of the compressor, the indoor fan, and the heat medium circulation circuit by the controller of FIG. 2 (Example 1).
  • FIG. 3 is another timing chart for explaining the control of the compressor, the indoor fan, and the heat medium circulation circuit by the controller of FIG. 2 (Example 1).
  • FIG. 5 is still another timing chart for explaining control of the compressor, the indoor fan, and the heat medium circulation circuit by the controller of FIG.
  • Example 1 It is a block diagram of the air conditioning apparatus for vehicles of other embodiment to which this invention is applied (Example 2).
  • Example 2 which is a timing chart explaining control of the compressor, the indoor air blower, and the solenoid valve for cooling water by the controller of FIG. 2 in the case of FIG.
  • Example 2 which is another timing chart explaining control of the compressor, the indoor air blower, and the solenoid valve for cooling water by the controller of FIG. 2 in the case of FIG.
  • FIG. 9 is still another timing chart for explaining the control of the compressor, the indoor fan, and the electromagnetic valve for cooling water by the controller of FIG. 2 in the case of FIG. 7 (Example 2).
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of other embodiment to which this invention is applied (Example 2).
  • Example 2 which is a timing chart explaining control of the compressor, the indoor air blower, and the solenoid valve for cooling water by the controller of FIG. 2 in the case of FIG.
  • Example 2 which is another timing chart explaining control
  • FIG. 9 is still another timing chart for explaining the control of the compressor, the indoor fan, and the electromagnetic valve for cooling water by the controller of FIG. 2 in the case of FIG. 7 (Example 2).
  • FIG. 9 is still another timing chart for explaining the control of the compressor, the indoor fan, and the electromagnetic valve for cooling water by the controller of FIG. 2 in the case of FIG. 7 (Example 2).
  • FIG. 9 is still another timing chart for explaining the control of the compressor, the indoor fan, and the electromagnetic valve for cooling water by the controller of FIG. 2 in the case of FIG. 7 (Example 2).
  • It is a block diagram of the air conditioning apparatus for vehicles of another other embodiment to which this invention is applied (Example 3).
  • FIG. 3 is a block diagram of the air conditioning apparatus for vehicles of another other embodiment to which this invention is applied (Example 3).
  • FIG. 15 is a timing chart for explaining control of the compressor, the indoor fan, and the electric heater by the controller of FIG. 2 in the case of FIG. 14 (Example 3).
  • FIG. 15 is another timing chart for explaining control of the compressor, the indoor fan, and the electric heater by the controller of FIG. 2 in the case of FIG. 14 (Example 3).
  • FIG. 15 is still another timing chart for explaining the control of the compressor, the indoor fan, and the electric heater by the controller of FIG. 2 in the case of FIG. 14 (Example 3).
  • It is a block diagram of the air conditioning apparatus for vehicles of other another embodiment to which this invention is applied (Example 4).
  • FIG. 19 is a timing chart for explaining control of the compressor, the indoor blower, and the electric heater by the controller of FIG.
  • FIG. 19 is another timing chart for explaining control of the compressor, the indoor blower, and the electric heater by the controller of FIG. 2 in the case of FIG. 18 (Example 4).
  • FIG. 19 is still another timing chart for explaining control of the compressor, the indoor blower, and the electric heater by the controller of FIG. 2 in the case of FIG. 18 (Example 4).
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that does not have an engine (internal combustion engine), or a so-called hybrid vehicle that uses an engine and an electric motor for traveling, and has a battery ( The vehicle is driven by an electric motor for driving with electric power charged in either of them (not shown), or performs driving assistance, or is an ordinary automobile that runs on an engine.
  • EV electric vehicle
  • engine internal combustion engine
  • hybrid vehicle that uses an engine and an electric motor for traveling
  • the vehicle is driven by an electric motor for driving with electric power charged in either of them (not shown), or performs driving assistance, or is an ordinary automobile that runs on an engine.
  • the vehicle air conditioner 1 of the present invention is driven by the power of a battery or the like (external power if plug-in is possible). That is, the vehicle air conditioner 1 of the embodiment performs heating of the vehicle interior by a heat pump operation in which an electric compressor constituting a refrigerant circuit is driven by a battery or the like, and further performs dehumidification heating, cooling dehumidification, cooling, etc. Each operation mode is selectively executed.
  • the vehicle air conditioner 1 of this embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an automobile, and an electric compressor (electric compressor) 2 that compresses refrigerant.
  • a radiator 4 that is provided in the air flow passage 3 of the HVAC unit 10 through which air in the passenger compartment is circulated to dissipate the high-temperature and high-pressure refrigerant discharged from the compressor 2 into the passenger compartment, and the refrigerant is decompressed during heating.
  • An outdoor expansion valve 6 composed of an electric valve for expansion, an outdoor heat exchanger 7 that functions as a radiator during cooling and functions as an evaporator during heating, and that exchanges heat between the refrigerant and the outside air.
  • An indoor expansion valve 8 comprising an electric valve for expansion and an air flow passage 3 on the upstream side of the air flowing through the air flow passage 3 with respect to the radiator 4 are provided in the refrigerant from outside the vehicle compartment during cooling and dehumidification.
  • Endothermic device 9 for absorbing heat and endothermic Evaporation capacity control valve 11 for adjusting the evaporating ability in the 9, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15 for exchanging heat between the outside air and the refrigerant.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side.
  • a bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel.
  • the bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (open / close valve) for bypassing the outdoor expansion valve 6 and flowing refrigerant. ) 20 is interposed.
  • the refrigerant pipe 13E immediately after exiting the radiator 4 (before branching to the refrigerant pipes 13F and 13I) is branched, and the branched refrigerant pipe 13K is provided with an injection expansion valve 30 comprising an electric valve for injection control.
  • the compressor 2 is in communication with the compressor 2 during compression.
  • coolant piping 13K between the exit side of this injection expansion valve 30 and the compressor 2 is provided in the refrigerant
  • the refrigerant circuit 13K, the injection expansion valve 30, and the discharge side heat exchanger 35 constitute an injection circuit 40.
  • the injection circuit 40 is a circuit for diverting a part of the refrigerant from the radiator 4 and returning it to the middle of compression of the compressor 2 (gas injection).
  • the injection expansion valve 30 is a refrigerant that has flowed into the refrigerant pipe 13K. After the pressure is reduced, it is caused to flow into the discharge side heat exchanger 35.
  • the refrigerant flowing into the discharge side heat exchanger 35 is discharged from the compressor 2 to the refrigerant pipe 13G, exchanges heat with the refrigerant before flowing into the radiator 4, and absorbs heat from the refrigerant flowing through the refrigerant pipe 13G to evaporate. It is said that.
  • Gas refrigerant to the compressor 2 is performed by evaporating the refrigerant diverted to the refrigerant pipe 13K in the discharge side heat exchanger 35.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 is provided on the air downstream side of the suction switching damper 26 for supplying and circulating the introduced inside air and outside air to the air flow passage 3.
  • an indoor blower (blower fan) 27 is provided on the air downstream side of the suction switching damper 26 for supplying and circulating the introduced inside air and outside air to the air flow passage 3.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • reference numeral 61 denotes a heat medium circulation circuit as heat generating means provided in the vehicle air conditioner 1 of the embodiment.
  • the heat medium circulation circuit 61 includes a circulation pump 62 constituting a circulation means, a heat medium heating electric heater (indicated by ECH in the drawing) 63, an upstream side of air flowing through the air flow passage 3 with respect to the radiator 4, and And a heat medium-air heat exchanger 64 provided in the air flow passage 3, which are sequentially connected in an annular shape by a heat medium pipe 66.
  • a heat medium heating electric heater indicated by ECH in the drawing
  • a heat medium-air heat exchanger 64 provided in the air flow passage 3, which are sequentially connected in an annular shape by a heat medium pipe 66.
  • As the heat medium circulated in the heat medium circuit 61 for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
  • the circulation pump 62 When the circulation pump 62 is operated and the heat medium heating electric heater 63 is energized to generate heat, the heat medium heated by the heat medium heating electric heater 63 is converted into the heat medium-air heat exchanger 64 in the air flow path 3. It is configured to be circulated. That is, the heat medium-air heat exchanger 64 of the heat medium circuit 61 serves as a so-called heater core and contributes to the heating of the passenger compartment. By adopting such a heat medium circulation circuit 61, it is possible to improve the electrical safety of the passenger.
  • reference numeral 32 in FIG. 2 denotes a controller (ECU) as a control means constituted by a microcomputer, and an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
  • ECU controller
  • an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
  • An outside air humidity sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, and the vehicle interior
  • the inside air humidity sensor 38 that detects the humidity of the air in the vehicle
  • the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
  • the blowout temperature sensor 41 that detects the temperature of the air blown from the blowout port 29 into the vehicle interior.
  • a discharge pressure sensor 42 for detecting the discharge refrigerant pressure of the compressor 2 for detecting the discharge refrigerant pressure of the compressor 2, a discharge temperature sensor 43 for detecting the discharge refrigerant temperature of the compressor 2, and a compression
  • An endothermic temperature sensor 48 for detecting the temperature of the endothermic device 9 (the temperature immediately after exiting the endothermic device 9, or the endothermic device 9 itself, or the temperature of air immediately after being cooled by the endothermic device 9);
  • a heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9) and, for example, a photosensor for detecting the amount of solar radiation into the vehicle interior Type solar radiation sensor 51 and a vehicle speed sensor for detecting the moving speed (vehicle speed) of the vehicle Sensor 52, air-conditioning (air conditioner) operation unit 53 for setting the set temperature and operation mode, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, or the outdoor
  • the outdoor heat exchanger temperature sensor 54 for detecting the temperature of the heat exchanger 7 itself, and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat
  • the input of the controller 32 includes an injection pressure sensor 50 that detects the pressure of the injection refrigerant that flows into the refrigerant pipe 13K of the injection circuit 40 and returns to the middle of the compression of the compressor 2 through the discharge side heat exchanger 35, and Each output of an injection temperature sensor 55 that detects the temperature of the injection refrigerant is also connected.
  • the input of the controller 32 further includes the temperature of the heating medium heating electric heater 63 of the heating medium circulation circuit 61 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 63 or the heating medium heating electric heater 63.
  • the outputs of the heat medium-air heat exchanger temperature sensor 68 for detecting the temperature of the heat medium-air heat exchanger 64 itself are also connected.
  • the output of the controller 32 includes the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the suction port switching damper 31, and the outdoor expansion.
  • the valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20, the injection expansion valve 30, the evaporation capacity control valve 11, the heat medium heating electric heater 63, and the circulation pump 62 are connected. .
  • the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • the controller 32 opens the solenoid valve 21, and the solenoid valve 17, the solenoid valve 22, and the solenoid valve. 20 is closed.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 64 and the radiator 4. .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 after passing through the discharge-side heat exchanger 35.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of the refrigerant is diverted to the refrigerant pipe 13K of the injection circuit 40, and mainly reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the functional operation of the injection circuit 40 will be described later.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat pump).
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 determines that the heating capability of the radiator 4 is insufficient in the heating mode as will be described later, the controller 32 energizes the heat medium heating electric heater 63 to generate heat, and operates the circulation pump 62 to thereby heat the heat medium. Heating by the circulation circuit 61 is performed. In that case, since the air heated by the heat medium-air heat exchanger 64 and further heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the radiator pressure sensor 47 (or the discharge pressure sensor 42) as will be described later in the embodiment.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the passing air volume and the target blowing temperature, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • the valve opening degree of the outdoor expansion valve 6 may be controlled based on the temperature of the radiator 4 or the outside air temperature instead of or in addition to them.
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and adjusts the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Based on this, the valve opening degree of the outdoor expansion valve 6 is controlled. In this dehumidifying and heating mode, gas injection by the injection circuit 40 is not performed, so the injection expansion valve 30 is fully closed (fully closed position). Further, the heat medium circulation circuit 61 is not operated.
  • coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure. Even in this internal cycle mode, gas injection by the injection circuit 40 is not performed, so the injection expansion valve 30 is fully closed (fully closed position). Further, the heat medium circulation circuit 61 is not operated.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 64 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 and controls the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above.
  • the injection expansion valve 30 is fully closed (fully closed position). Further, the heat medium circulation circuit 61 is not operated.
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is controlled to an upper limit)).
  • the air mix damper 28 is in a state in which air is not passed through the heat medium-air heat exchanger 64 and the radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • the injection expansion valve 30 is fully closed (fully closed position). Further, the heat medium circulation circuit 61 is not operated.
  • the controller 32 selects the operation mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. Further, after the start-up, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowing temperature TAO and the set conditions. In this case, the controller 32 basically shifts from the heating mode to the dehumidifying heating mode, or from the dehumidifying heating mode to the heating mode, and from the dehumidifying heating mode to the dehumidifying cooling mode, or from the dehumidifying cooling mode to the dehumidifying heating mode.
  • shifting to the transition is made via the internal cycle mode.
  • the cooling mode is changed to the internal cycle mode, and the internal cycle mode is changed to the cooling mode.
  • the amount of refrigerant discharged from the compressor 2 increases, so that the heating capacity in the radiator 4 is improved.
  • the refrigerant returns liquid compression is caused. Therefore, the refrigerant returned from the injection circuit 40 to the compressor 2 must be a gas.
  • the controller 32 monitors the degree of superheat of the refrigerant toward the middle of compression of the compressor 2 from the pressure and temperature of the refrigerant after the discharge-side heat exchanger 35 detected by the injection pressure sensor 50 and the injection temperature sensor 55, respectively.
  • the valve opening degree of the injection expansion valve 30 is controlled so that a predetermined degree of superheat is obtained by heat exchange with the discharged refrigerant.
  • the discharge side heat exchanger 35 discharges from the compressor 2. Since the extremely high-temperature refrigerant before flowing into the radiator 4 and the refrigerant flowing through the injection circuit 40 are subjected to heat exchange, a large amount of heat exchange can be obtained. Therefore, even if the valve opening degree of the injection expansion valve 30 is increased to increase the injection amount, the refrigerant can be sufficiently evaporated in the discharge side heat exchanger 35, and a necessary degree of superheat can be obtained.
  • the heating capacity can be improved.
  • the target radiator pressure The target compressor speed TGNC (target speed) of the compressor 2 is determined on the basis of the PCO (target value of high pressure), and compression is performed so that the speed NC of the compressor 2 becomes the target compressor speed TGNC.
  • the machine 2 is controlled.
  • a target blower voltage TGBLV (target value of air flow) of the indoor blower 27 is determined based on the target blowout temperature TAO and the like, and the indoor blower 27 is controlled so that the blower voltage BLV of the indoor blower 27 becomes the target blower voltage TGBLV. To do.
  • This target blower voltage TGBLV becomes the target value of the air volume of the indoor blower 27.
  • the controller 32 calculates the target blowing temperature TAO which is the target value of the air temperature blown out from the blower outlet 29 into the vehicle interior from the following formula (I).
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (1)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 has a target heating capacity (required heating capacity) Qtgt which is the heating capacity of the radiator 4 required using the formulas (II) and (III), and the maximum heating capacity that the radiator 4 can generate.
  • Qtgt target heating capacity
  • the temperature of air flowing into the radiator 4 or the temperature of air flowing out of the radiator 4 may be adopted.
  • the rotational speed NC of the compressor 2 in the formula (III) is an example of an index indicating the refrigerant flow rate
  • the blower voltage BLV is an example of an index indicating the air volume in the air flow passage 3
  • the heating capacity estimation value Qhp is Calculated from these functions. In addition, it is calculated from any one or a combination of these, the outlet refrigerant pressure of the radiator 4, the outlet refrigerant temperature of the radiator 4, the inlet refrigerant pressure of the radiator 4, and the inlet refrigerant temperature of the radiator 4. Also good.
  • the controller 32 determines whether or not to operate the heat medium circuit 61 as shown in the flowchart of FIG. 3 based on the target heating capacity (required heating capacity) Qtgt and the HP maximum heating capacity estimated value Qhp. . That is, when the vehicle is started (IGN ON), the controller 32 reads data from each sensor in step S1, calculates the target heating capacity Qtgt using the above equation (II) in step S2, and calculates the above equation (III). Is used to calculate the heating capacity estimated value Qhp, and it is determined in step S3 whether the target heating capacity Qtgt is greater than the heating capacity estimated value Qhp.
  • step S4 select the start mode of the compressor 2, the indoor blower 27, and the heat medium circulation circuit (heat generating means) 61, and the selected start Based on the mode, the compressor 2, the indoor blower 27, and the heat medium circulation circuit 61 (heat generating means in this case including the heat medium heating electric heater 63 and the circulation pump 62) are activated and controlled in steps S5 to S7.
  • the selection of the start mode in step S4 will be described later.
  • the controller 32 activates and controls the compressor 2 and the indoor blower 27 in steps S8 and S9. That is, when the target heating capacity Qtgt is larger than the estimated heating capacity value Qhp, the controller 32 determines that the heating capacity of the radiator 4 is insufficient, operates the heat medium circulation circuit 61, and the target heating capacity Qtgt is equal to the heating capacity. If the capacity is less than the estimated value Qhp, it is determined that the heating capacity of the radiator 4 is sufficient, and the heat medium circulation circuit 61 is not operated.
  • the controller 32 has three types of startup modes 1 to 3 and switches between them based on the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the controller 32 selects the start-up mode 1 when the outside air temperature Tam is the first low outside air temperature environment that is equal to or lower than a predetermined extremely low extremely low temperature A (first threshold value).
  • the controller 32 activates the compressor 2 before the indoor blower 27, and activates the heat medium circulation circuit 61 simultaneously with, immediately after, or after the activation of the indoor blower 27 (described later).
  • first threshold value a predetermined extremely low extremely low temperature A
  • the controller 32 activates the indoor fan 27 simultaneously with the compressor 2, or immediately after the activation, or after the activation, and the heat medium circulation circuit 61 simultaneously with the indoor fan 27 or immediately after the activation. Or after the activation (including the embodiments described later).
  • the start mode 3 is changed. select.
  • the controller 32 activates the indoor blower 27 before the compressor 2, and activates the heat medium circulation circuit 61 simultaneously with, immediately after, or after the activation of the indoor blower 27 (described later). Each example included).
  • FIG. 4 shows an example of a specific activation pattern in the activation mode 1.
  • the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above.
  • the controller 32 activates the indoor blower 27, raises the blower voltage BLV, and the air volume becomes a predetermined low value Qblw1.
  • the controller 32 starts the heat medium circulation circuit 61 simultaneously with the start of the indoor blower 27 or immediately after the start.
  • the activation of the heat medium circulation circuit 61 means the start of energization of the heat medium heating electric heater 63 and the circulation pump 62.
  • the heat medium heated by the heat medium heating electric heater 63 is circulated to the heat medium-air heat exchanger 64, so that the temperature of the heat medium-air heat exchanger 64 rises.
  • Thtr1 the controller 32 reaches the target blower voltage TGBLV at which the air volume of the indoor blower 27 becomes the target value over a predetermined time t1.
  • the blower voltage BLV of the indoor blower 27 is increased.
  • the heat medium circulation circuit 61 is started simultaneously with the indoor air blower 27, or its activation.
  • the indoor blower 27 is started when the rotational speed NC of the compressor 2 becomes equal to or higher than a predetermined rotational speed Nec1, and the air volume of the indoor blower 27 is reduced.
  • the refrigerant When the temperature of the heat medium-air heat exchanger 64 of the heat medium circulation circuit 61 is controlled to a predetermined low value Qblw1, and the air volume of the indoor blower 27 is increased to the target value when the temperature becomes higher than the predetermined value Thtr1, the refrigerant The rise of the high-pressure side pressure of the circuit R is promoted, the temperature rise of the heat medium-air heat exchanger 64 of the heat medium circulation circuit 61 is also promoted, and the heating capacity of the radiator 4 and the heat medium circulation circuit 61 is quickly established. It will be possible to achieve a comfortable heating of the passenger compartment.
  • the timing chart of FIG. 5 shows an example of a specific activation pattern in the activation mode 2.
  • the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Simultaneously with the start of the compressor 2 or immediately after that, the controller 32 starts the indoor blower 27 and increases the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • the controller 32 activates the heat medium circulation circuit 61 simultaneously with the activation of the indoor blower 27 or immediately after the activation.
  • the activation of the heat medium circulation circuit 61 means the start of energization of the heat medium heating electric heater 63 and the circulation pump 62.
  • the heat medium heated by the heat medium heating electric heater 63 is circulated to the heat medium-air heat exchanger 64, so that the temperature of the heat medium-air heat exchanger 64 rises.
  • Thtr1 the controller 32 reaches the target blower voltage TGBLV at which the air volume of the indoor blower 27 becomes the target value over a predetermined time t1.
  • the blower voltage BLV of the indoor blower 27 is increased.
  • the indoor blower 27 is started at the same time as the compressor 2 or immediately after the start.
  • the heat medium circulation circuit 61 is started at the same time as or immediately after the indoor blower 27, so that the outside air temperature Tam is higher than the first low outside air temperature environment described above, and the high pressure side pressure of the refrigerant circuit R increases.
  • the indoor blower 27 can be started earlier, and the start-up of the vehicle interior heating can be accelerated.
  • the air volume of the indoor blower 27 is controlled to a predetermined low value Qblw1, and the temperature of the heat medium-air heat exchanger 64 of the heat medium circulation circuit 61 is controlled. Is higher than the predetermined value Thtr1, the air volume of the indoor blower 27 is increased to the target value, so that the increase of the high-pressure side pressure of the refrigerant circuit R can be promoted, and the start-up of the vehicle interior heating can be effectively accelerated. It becomes like this.
  • the timing chart of FIG. 6 shows an example of a specific activation pattern in the activation mode 3.
  • the controller 32 first activates the indoor blower 27 to increase the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • the heat medium circulation circuit 61 is activated simultaneously with the activation of the indoor blower 27 or immediately after the activation.
  • the activation of the heat medium circulation circuit 61 means the start of energization of the heat medium heating electric heater 63 and the circulation pump 62.
  • the heat medium heated by the heat medium heating electric heater 63 is circulated to the heat medium-air heat exchanger 64, so that the temperature of the heat medium-air heat exchanger 64 rises.
  • the controller 32 starts the compressor 2 when the air volume of the indoor blower 27 reaches a predetermined low value Qblw1, and increases the rotational speed NC toward the target compressor rotational speed TGNC described above.
  • the controller 32 takes a predetermined time t1 so that the air volume of the indoor blower 27 reaches the target blower voltage TGBLV at which the target value is reached.
  • the blower voltage BLV of the indoor blower 27 is increased.
  • the indoor blower 27 is started before the compressor 2 and the heat medium circulation circuit. 61 is started at the same time as or immediately after the indoor blower 27, so that the high-pressure side pressure of the refrigerant circuit R is early in an environment where the outside air temperature Tam is higher than the second low outside air temperature environment described above. It is possible to avoid the inconvenience that the compressor 2 stops and the compressor 2 is stopped and the like, and the vehicle interior heating can be started smoothly.
  • the compressor 2 is started when the air volume of the indoor blower 27 reaches a predetermined low value Qblw1, and the heat medium of the heat medium circulation circuit 61 is started.
  • the air volume of the indoor blower 27 is controlled to a predetermined low value Qblw1, and the temperature of the heat medium-air heat exchanger 64 becomes higher than the predetermined value Thtr1.
  • the air volume of the indoor blower 27 is increased to the target value, it is possible to quickly and smoothly start up the vehicle interior heating while avoiding inconvenience due to excessive increase in the high-pressure side pressure of the refrigerant circuit R. .
  • the controller 32 controls the timing of starting the compressor 2, the indoor blower 27, and the heat medium circulation circuit 61 based on the outside air temperature Tam, so that the compressor 2, the indoor The blower 27 and the heat medium circulation circuit 61 can be started at an appropriate timing.
  • FIG. 7 is a configuration diagram of the vehicle air conditioner 1 in this case, and components denoted by the same reference numerals as those in FIG. 1 have the same or similar functions.
  • the automobile has an engine ENG.
  • the heat generating means is configured by the heat medium circulation circuit 61.
  • the engine ENG is present, and therefore, the cooling water of the engine ENG is used as a heat medium and heat is generated by the cooling water pipe 72. Circulate through the media-air heat exchanger 64.
  • the cooling water pipe 72 is provided with an electromagnetic valve (valve device) for controlling the circulation of the cooling water (heat medium) to the heat medium-air heat exchanger 64 and is controlled by the controller 32. That is, in this case, the heat medium-air heat exchanger 64 including the engine ENG, the electromagnetic valve 69 for cooling water (heat medium), and the cooling water pipe 72 constitute heating means, and the heat medium-air heat exchanger 64 is It becomes a heater core.
  • the activation modes 1 to 3 are selected and executed. However, the activation of step S7 in the flowchart of FIG. 3 opens the electromagnetic valve 69 in this case, as will be described later.
  • FIG. 8 shows a specific activation pattern in the activation mode 1 of this embodiment.
  • the controller 32 When the automobile is started (IGN ON), the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. In the middle of this, when the rotational speed NC of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1, the controller 32 activates the indoor blower 27, raises the blower voltage BLV, and the air volume becomes a predetermined low value Qblw1. To control.
  • the temperature of the heat medium which is the cooling water of the engine ENG, rises with the start of the automobile (IGN ON) (indicated by a broken line in FIG. 8), but the controller 32 initially closed the solenoid valve 69, The heat medium (cooling water) is not circulated in the medium-air heat exchanger 64, and the temperature does not change. Then, the controller 32 opens the electromagnetic valve 69 when the air flow rate reaches a predetermined low value Qblw1 after the indoor blower 27 is activated, and the heat medium (cooling water) whose temperature has risen is transferred to the heat medium-air heat exchanger 64. Start circulating. This is the activation of the heating means in this case at step S7 in FIG.
  • the temperature of the heat medium-air heat exchanger 64 increases.
  • the controller 32 reaches the target blower voltage TGBLV at which the air volume of the indoor blower 27 becomes the target value over a predetermined time t1.
  • the blower voltage BLV of the indoor blower 27 is increased.
  • the compressor 2 is started before the indoor blower 27, and the electromagnetic valve 69 of the heat medium (cooling water) is set to the indoor blower 27.
  • the electromagnetic valve 69 of the heat medium cooling water
  • the indoor blower 27 is started when the rotational speed of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1, and the air volume of the indoor blower 27 is When the predetermined low value Qblw1 is reached, the electromagnetic valve 69 of the heat medium (cooling water) is opened, and the air volume of the indoor blower 27 is set to a predetermined value until the temperature of the heat medium-air heat exchanger 64 becomes higher than the predetermined value Thtr1.
  • the increase in the high-pressure side pressure of the refrigerant circuit R is increased. This also promotes the temperature rise of the heat medium-air heat exchanger 64 to quickly raise the heating capacity of the radiator 4 and the heat medium-air heat exchanger 64 to realize comfortable vehicle interior heating. to be able to do That.
  • the solenoid valve 69 is opened when the temperature of the heat medium (cooling water) to the heat medium-air heat exchanger 64 rises (the heating means is activated), so that the heat medium (cooling) having a low temperature is Water) is circulated to the heat medium-air heat exchanger 64 to eliminate the inconvenience that the temperature of the air is lowered in the heat medium-air heat exchanger 64, and the high pressure side pressure of the refrigerant circuit R is increased. An increase in the heating capacity of the radiator 4 can be promoted more effectively.
  • FIG. 9 shows a specific activation pattern of the activation mode 2 of this embodiment.
  • the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Simultaneously with the start of the compressor 2 or immediately after that, the controller 32 starts the indoor blower 27 and increases the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • the temperature of the heat medium which is the cooling water of the engine ENG, rises with the start of the automobile (IGN ON) (indicated by a broken line in FIG. 9), but the controller 32 initially closes the solenoid valve 69, so The heat medium (cooling water) is not circulated in the medium-air heat exchanger 64, and the temperature does not change. Then, the controller 32 opens the electromagnetic valve 69 when the air flow rate reaches a predetermined low value Qblw1 after the indoor blower 27 is activated, and the heat medium (cooling water) whose temperature has risen is transferred to the heat medium-air heat exchanger 64. Start circulating. This is the activation of the heating means.
  • the temperature of the heat medium-air heat exchanger 64 increases.
  • the controller 32 reaches the target blower voltage TGBLV at which the air volume of the indoor blower 27 becomes the target value over a predetermined time t1.
  • the blower voltage BLV of the indoor blower 27 is increased.
  • the indoor blower 27 is started at the same time as the compressor 2 or immediately after the start.
  • the electromagnetic valve 69 of the heat medium By opening the electromagnetic valve 69 of the heat medium after starting the indoor blower 27, the outside air temperature Tam is higher than the first low outside air temperature environment described above, and the increase in the high pressure side pressure of the refrigerant circuit R is the first low outside.
  • the indoor blower 27 can be started earlier and the start-up of the vehicle interior heating can be accelerated.
  • the electromagnetic valve 69 of the heat medium is opened (starting of the heating means), Until the temperature of the heat medium-air heat exchanger 64 becomes higher than the predetermined value Thtr1, the air volume of the indoor fan 27 is controlled to a predetermined low value Qblw1, and the temperature of the heat medium-air heat exchanger 64 is higher than the predetermined value Thtr1.
  • the air volume of the indoor blower 27 is increased to the target value, so that the increase of the high-pressure side pressure of the refrigerant circuit R can be promoted, and the start-up of the vehicle interior heating can be effectively accelerated.
  • the timing chart of FIG. 10 shows a specific activation pattern in the activation mode 3 of this embodiment.
  • the controller 32 when the automobile is activated (IGN ON), the controller 32 first activates the indoor blower 27 and raises the blower voltage BLV so as to control the air volume to be a predetermined low value Qblw1. .
  • the temperature of the heat medium which is the cooling water of the engine ENG
  • the controller 32 initially closes the electromagnetic valve 69, so The heat medium (cooling water) is not circulated in the medium-air heat exchanger 64, and the temperature does not change.
  • the controller 32 opens the electromagnetic valve 69 when the air flow rate reaches a predetermined low value Qblw1 after the indoor blower 27 is activated, and the heat medium (cooling water) whose temperature has risen is transferred to the heat medium-air heat exchanger 64. Start circulating. This is the activation of the heating means. Since the heat medium (cooling water) whose temperature has been increased by the engine ENG is circulated to the heat medium-air heat exchanger 64, the temperature of the heat medium-air heat exchanger 64 increases.
  • the controller 32 activates the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above.
  • the controller 32 reaches the target blower voltage TGBLV at which the air volume of the indoor blower 27 becomes the target value over a predetermined time t1.
  • the blower voltage BLV of the indoor blower 27 is increased.
  • the indoor blower 27 is started before the compressor 2 and the electromagnetic valve 69 is turned on.
  • the high-pressure side pressure of the refrigerant circuit R rises early in an environment where the outside air temperature Tam is higher than the second low outside air temperature environment described above, and the compressor 2 is stopped. This makes it possible to avoid the inconvenience that occurs and to start the vehicle interior heating smoothly.
  • the electromagnetic valve 69 is opened (heating unit is started), and the electromagnetic valve 69 is turned on.
  • the compressor 2 is started, and the air volume of the indoor blower 27 is controlled to a predetermined low value Qblw1 until the temperature of the heat medium-air heat exchanger 64 becomes higher than the predetermined value Thtr1.
  • the air volume of the indoor blower 27 is increased to the target value, thereby avoiding inconvenience due to excessive increase in the high-pressure side pressure of the refrigerant circuit R.
  • the vehicle interior heating can be started quickly and smoothly.
  • FIG. 11 shows another activation pattern of the activation mode 1 of this embodiment.
  • the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above.
  • the high-pressure side pressure of the refrigerant circuit R in the embodiment, the refrigerant pressure PCI of the radiator 4 detected by the radiator pressure sensor 47
  • the controller 32 activates the indoor blower 27.
  • the blower voltage BLV is increased, and the air volume is controlled to be a predetermined low value Qblw1.
  • the temperature of the heat medium which is the cooling water of the engine ENG, rises with the start of the automobile (IGN ON) (indicated by a broken line in FIG. 11), but the controller 32 initially closes the solenoid valve 69, so The heat medium (cooling water) is not circulated in the medium-air heat exchanger 64, and the temperature does not change. Then, the controller 32 opens the electromagnetic valve 69 when the air flow rate reaches a predetermined low value Qblw1 after the indoor blower 27 is activated, and the heat medium (cooling water) whose temperature has risen is transferred to the heat medium-air heat exchanger 64. Start circulating. This is the activation of the heating means in this case.
  • the temperature of the heat medium-air heat exchanger 64 increases.
  • the controller 32 reaches the target blower voltage TGBLV at which the air volume of the indoor blower 27 becomes the target value over a predetermined time t1.
  • the blower voltage BLV of the indoor blower 27 is increased. This also facilitates an increase in the high-pressure side pressure of the refrigerant circuit R in an environment where the outside air temperature Tam is extremely low, thereby quickly raising the heating capacity and realizing comfortable vehicle interior heating.
  • FIG. 12 shows another activation mode 2 activation pattern of this embodiment.
  • the controller 32 when the automobile is started (IGN ON), the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Simultaneously with the start of the compressor 2 or immediately after that, the controller 32 starts the indoor blower 27 and increases the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • the temperature of the heat medium which is the cooling water of the engine ENG
  • the controller 32 initially closes the solenoid valve 69.
  • the heat medium (cooling water) is not circulated in the heat medium-air heat exchanger 64, and the temperature thereof does not change.
  • the controller 32 opens the electromagnetic valve 69 when the air flow rate reaches a predetermined low value Qblw1 after the indoor blower 27 is activated, and the heat medium (cooling water) whose temperature has risen is transferred to the heat medium-air heat exchanger 64. Start circulating. This is the activation of the heating means. Since the heat medium (cooling water) whose temperature has been increased by the engine ENG is circulated to the heat medium-air heat exchanger 64, the temperature of the heat medium-air heat exchanger 64 increases.
  • the blower voltage BLV of the indoor blower 27 is increased so as to reach the target blower voltage TGBLV at which the air volume of the indoor blower 27 reaches the target value over a predetermined time t1. Also by this, the indoor blower 27 can be started earlier, the rise of the high-pressure side pressure of the refrigerant circuit R can be promoted, and the start-up of the vehicle interior heating can be effectively accelerated.
  • FIG. 13 shows another activation pattern of the activation mode 3 of this embodiment.
  • the controller 32 when the automobile is activated (IGN ON), the controller 32 first activates the indoor blower 27 and raises the blower voltage BLV so as to control the air volume to be a predetermined low value Qblw1. .
  • the temperature of the heat medium which is the cooling water of the engine ENG, increases with the start of the automobile (IGN ON) (indicated by a thin broken line in FIG. 13), but the controller 32 initially closes the electromagnetic valve 69.
  • the heat medium (cooling water) is not circulated in the heat medium-air heat exchanger 64, and the temperature thereof does not change.
  • the controller 32 opens the electromagnetic valve 69 when the air flow rate reaches a predetermined low value Qblw1 after the indoor blower 27 is activated, and the heat medium (cooling water) whose temperature has risen is transferred to the heat medium-air heat exchanger 64. Start circulating. This is the activation of the heating means. Since the heat medium (cooling water) whose temperature has been increased by the engine ENG is circulated to the heat medium-air heat exchanger 64, the temperature of the heat medium-air heat exchanger 64 increases.
  • the controller 32 activates the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above.
  • the temperature of the heat medium-air heat exchanger 64 becomes higher than the predetermined value Thtr1 (solid line), or when the high-pressure side pressure of the refrigerant circuit R becomes equal to or higher than the predetermined pressure P1 (thick broken line).
  • the blower voltage BLV of the indoor blower 27 is increased so as to reach the target blower voltage TGBLV at which the air volume of the indoor blower 27 reaches the target value over a predetermined time t1.
  • FIG. 14 is a configuration diagram of the vehicle air conditioner 1 in this case, and components denoted by the same reference numerals as those in FIG. 1 perform the same or similar functions.
  • the heat generating means is configured by the heat medium circulation circuit 61.
  • the heat generating means is configured by the electric heater (PTC heater) 71, and the heat radiator 4 is connected to the radiator 4 in the air flow path 3. On the other hand, it is provided upstream of the circulating air.
  • Other configurations and the control flowchart of FIG. 3 are the same as those in the above-described embodiment.
  • the activation modes 1 to 3 are selected and executed.
  • step S7 in the flowchart of FIG. 3 starts energization of the electric heater 71 in this case, as will be described later.
  • FIGS. (10-1) Startup mode 1 (Example 3)
  • the timing chart of FIG. 15 shows a specific activation pattern of the activation mode 1 in this case.
  • the controller 32 when the automobile is started (IGN ON), the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. In the middle of this, when the rotational speed NC of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1, the controller 32 activates the indoor blower 27, raises the blower voltage BLV, and the air volume becomes a predetermined low value Qblw1. To control.
  • the controller 32 starts energizing the electric heater 71 immediately after the indoor blower 27 is activated or after the activation (activation). As a result, the temperature of the electric heater 71 rises, and the controller 32 controls the energization rate to finally set the temperature of the electric heater 71 to a predetermined target value TGAD.
  • the controller 32 takes the predetermined time t1 so that the air volume of the indoor blower 27 reaches the target blower voltage TGBLV that becomes the target value.
  • the blower voltage BLV of the blower 27 is increased.
  • the compressor 2 is started before the indoor fan 27 and the electric heater 71 is started immediately after the indoor fan 27 is started or after the start.
  • the indoor blower 27 is started when the rotational speed of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1, and the air volume of the indoor blower 27 is set to a predetermined level.
  • the heat generating means is configured by the electric heater 71 that is provided in the air flow passage 3 and heats the air supplied to the vehicle interior as in this embodiment, the structure can be simplified.
  • the timing chart of FIG. 16 shows a specific activation pattern of the activation mode 2 in this case.
  • the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Immediately after the start of the compressor 2 or after the start, the controller 32 starts the indoor blower 27 and raises the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • the controller 32 starts energizing the electric heater 71 when the rotational speed NC of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1 (startup). Thereby, the temperature of the electric heater 71 rises, and finally the controller 32 controls the temperature of the electric heater 71 to a predetermined target value TGAD.
  • the controller 32 takes the predetermined time t1 so that the air volume of the indoor blower 27 reaches the target blower voltage TGBLV that becomes the target value. The blower voltage BLV of the blower 27 is increased.
  • the indoor blower 27 is started immediately after the start of the compressor 2 or after the start.
  • the electric heater 71 After starting the indoor blower 27, the outside air temperature Tam is higher than the first low outside air temperature environment described above, and the increase in the high pressure side pressure of the refrigerant circuit R is the first low outside air temperature environment.
  • the indoor air blower 27 can be started earlier and the start-up of vehicle interior heating can be accelerated.
  • the air volume of the indoor blower 27 is controlled to a predetermined low value Qblw1, and the rotation speed of the compressor 2 becomes equal to or higher than the predetermined rotation speed Nec1.
  • the electric heater 71 is started and the rotational speed NC of the compressor 2 reaches the target rotational speed TGNC, the air volume of the indoor blower 27 is increased to the target value. Can be effectively accelerated.
  • the timing chart of FIG. 17 shows a specific activation pattern of the activation mode 3 in this case.
  • the controller 32 first activates the indoor blower 27 to increase the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • energization of the electric heater 71 is started (starting). Thereby, the temperature of the electric heater 71 rises, and finally the controller 32 controls the temperature of the electric heater 71 to a predetermined target value TGAD.
  • the controller 32 starts the compressor 2 when the air volume of the indoor blower 27 reaches a predetermined low value Qblw1, and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Then, when the rotational speed NC of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1, the controller 32 takes the predetermined time t1 so that the air volume of the indoor blower 27 reaches the target blower voltage TGBLV that becomes the target value. The blower voltage BLV of the blower 27 is increased.
  • the indoor blower 27 is started before the compressor 2 and the electric heater 71 is turned on.
  • the high-pressure side pressure of the refrigerant circuit R rises early in an environment where the outside air temperature Tam is higher than the second low outside air temperature environment described above immediately after the indoor blower 27 is started or after the start-up.
  • the compressor 2 is stopped and the like and to start the vehicle interior heating smoothly.
  • the compressor 2 is started when the air volume of the indoor blower 27 reaches a predetermined low value Qblw1, and the rotational speed NC of the compressor 2 is
  • the air volume of the indoor blower 27 is controlled to a predetermined low value Qblw1 until the rotation speed Nec1 is equal to or higher than the predetermined rotation speed Nec1, and when the rotation speed NC of the compressor 2 is equal to or higher than the predetermined rotation speed Nec1, Therefore, the vehicle interior heating can be quickly and smoothly started up while avoiding inconvenience due to excessive increase in the high-pressure side pressure.
  • FIG. 18 is a configuration diagram of the vehicle air conditioner 1 in this case, and the components denoted by the same reference numerals as those in FIG. 14 have the same or similar functions.
  • the electric heater (PTC heater) 71 as the heat generating means is provided on the upstream side of the circulation air with respect to the radiator 4 in the air flow passage 3.
  • an electric heater (PTC heater) 71 is provided on the downstream side of the air flowing through the air flow passage 3 with respect to the radiator 4.
  • step S7 is the start of energization of the electric heater 71 in this case).
  • the startup modes 1 to 3 are selected and executed. Since the electric heater 71 is on the air downstream side of the radiator 4, the heat is not transmitted to the radiator 4 even if the electric heater 71 generates heat regardless of the stop / operation of the indoor blower 27.
  • the heat generating means is not limited to the electric heater (PTC heater) 71 of the embodiment, and the heat generating means (implementing) using the heat medium circulation circuit 61 (embodiment 1) of the above-described embodiment or the cooling water of the engine ENG as a heat medium. Example 2) may be provided, and the heat medium-air heat exchanger 64 may be provided on the air downstream side of the radiator 4.
  • FIG. 19 shows a specific activation pattern of the activation mode 1 in this case.
  • the controller 32 when the automobile is started (IGN ON), the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Simultaneously with the start-up of the compressor 2, the controller 32 starts energizing the electric heater 71 (start-up). Thereby, the temperature of the electric heater 71 rises, and finally the controller 32 controls the temperature of the electric heater 71 to a predetermined target value TGAD.
  • the controller 32 starts the indoor blower 27, raises the blower voltage BLV, and the air volume becomes a predetermined low value. Control to be Qblw1. Then, when the rotational speed NC of the compressor 2 reaches the target compressor rotational speed TGNC, the indoor blower 27 has a predetermined time t1 so that the air volume of the indoor blower 27 reaches the target blower voltage TGBLV that becomes the target value. Increase the blower voltage BLV.
  • the electric heater (heat generating means) 71 when the electric heater (heat generating means) 71 is disposed on the downstream side of the air flowing through the air flow passage 3 with respect to the radiator 4, the heat generated by the electric heater 71 even when the indoor blower 27 is activated. Is not transmitted to the radiator 4, but in the first low outside air temperature environment where the outside air temperature Tam is low, the outside air temperature is increased by starting the compressor 2 and the electric heater 71 before the indoor fan 27. Under an environment where Tam is extremely low, both the increase of the high-pressure side pressure of the compressor 2 and the increase of the temperature of the electric heater 27 are promoted, and the heating capacity can be quickly started up.
  • the indoor blower 27 is started when the rotational speed NC of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1, and the air volume of the indoor blower 27 is set to a predetermined level.
  • the rotational speed NC of the compressor 2 reaches the target rotational speed TGNC, the air volume of the indoor blower 27 is increased to the target value, and the increase of the high-pressure side pressure is promoted.
  • the temperature rise of 71 is also promoted, and the heating capacity of the radiator 4 and the electric heater 71 can be quickly raised to realize comfortable vehicle interior heating.
  • FIG. 20 shows a specific activation pattern of the activation mode 2 in this case.
  • the controller 32 when the automobile is started (IGN ON), the controller 32 first starts the compressor 2 and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Immediately after the start of the compressor 2 or after the start, the controller 32 starts the indoor blower 27 and raises the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • the controller 32 activates the electric heater 71 simultaneously with the activation of the indoor blower 27, and controls the temperature of the electric heater 71 to a predetermined target value TGAD. Then, when the rotational speed NC of the compressor 2 reaches the target compressor rotational speed TGNC, the indoor blower 27 has a predetermined time t1 so that the air volume of the indoor blower 27 reaches the target blower voltage TGBLV that becomes the target value. Increase the blower voltage BLV.
  • the indoor blower 27 and the electric heater 71 are started immediately after starting the compressor 2 or the starting thereof.
  • the outdoor air temperature Tam is higher than the first low outside air temperature environment described above and the increase in the high-pressure side pressure does not become slower than that in the first low outside air temperature environment by starting later, the indoor blower 27 Can be started earlier, and the start-up of vehicle interior heating can be accelerated.
  • the startup pattern 2 in this case, after the indoor blower 27 is started, the air volume of the indoor blower 27 is controlled to a predetermined low value Qblw1, and the rotational speed NC of the compressor 2 becomes the target rotational speed TGNC. Since the air volume of the indoor blower 27 is increased to the target value, the increase in the high-pressure side pressure can be promoted, and the start-up of the vehicle interior heating can be effectively accelerated.
  • the timing chart of FIG. 21 shows a specific activation pattern of the activation mode 3 in this case.
  • the controller 32 first activates the indoor blower 27 to increase the blower voltage BLV so as to control the air volume to a predetermined low value Qblw1.
  • energization of the electric heater 71 is started (starting). Thereby, the temperature of the electric heater 71 rises, and finally the controller 32 controls the temperature of the electric heater 71 to a predetermined target value TGAD.
  • the controller 32 starts the compressor 2 when the air volume of the indoor blower 27 reaches a predetermined low value Qblw1, and increases the rotational speed NC toward the target compressor rotational speed TGNC described above. Then, when the rotational speed NC of the compressor 2 becomes equal to or higher than the predetermined rotational speed Nec1, the controller 32 takes the predetermined time t1 so that the air volume of the indoor blower 27 reaches the target blower voltage TGBLV that becomes the target value. The blower voltage BLV of the blower 27 is increased.
  • the electric heater 71 and the compressor 2 are set immediately after the indoor blower 27 is started or By starting after the blower 27 is started, the high pressure side pressure rises early and the compressor 2 is stopped in an environment where the outside air temperature Tam is higher than the second low outside air temperature environment described above. Can be avoided and the vehicle interior heating can be started smoothly.
  • the compressor 2 is started when the air volume of the indoor blower 27 reaches a predetermined low value Qblw1, and the rotational speed NC of the compressor 2 is
  • the air volume of the indoor blower 27 is controlled to a predetermined low value Qblw1 until the rotation speed Nec1 is equal to or higher than the predetermined rotation speed Nec1, and when the rotation speed NC of the compressor 2 is equal to or higher than the predetermined rotation speed Nec1, Therefore, the vehicle interior heating can be quickly and smoothly started up while avoiding inconvenience due to excessive increase in the high-pressure side pressure.
  • the present invention is applied to the vehicle air conditioner 1 that switches between the heating mode, the dehumidifying and heating mode, the dehumidifying and cooling mode, and the cooling mode.
  • the present invention is not limited thereto, and only the heating mode is performed.
  • the present invention is effective.
  • the configuration and each numerical value of the refrigerant circuit R described in the above embodiment are not limited thereto, and it is needless to say that the refrigerant circuit R can be changed without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】圧縮機や室内送風機、発熱手段を適切なタイミングで起動することにより、快適な車室内暖房を実現することができる車両用空気調和装置を提供する。 【解決手段】冷媒を圧縮する圧縮機2と、空気流通路3に設けられて冷媒を放熱させる放熱器4と、冷媒を吸熱させる吸熱器9と、空気流通路に空気を流通させる室内送風機27を備える。放熱器4からの放熱により車室内を暖房する。空気流通路に設けられ、車室内に供給される空気を加熱する熱媒体循環回路61の熱媒体-空気熱交換器64を備える。外気温度に基づき、圧縮機、室内送風機、及び、熱媒体循環回路を起動するタイミングを制御する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の車両用空気調和装置、特に電気自動車やハイブリッド自動車に適用可能な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内空気流通路に設けられて冷媒を放熱させる放熱器(放熱用車室内熱交換器)と、車室内空気流通路に設けられて冷媒を吸熱させる吸熱器(吸熱用車室内熱交換器)と、車室外に設けられて冷媒を放熱させる室外熱交換器(車室外熱交換器)等から構成される冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、室内送風機(ブロワファン)から送給される空気を加熱して車室内を暖房するものが開発されている(例えば、特許文献1参照)。
 また、特許文献1ではエンジン冷却水が循環されるヒータコア(発熱手段)を車室内空気流通路に設け、放熱器による暖房に加えてヒータコアによっても暖房能力が発揮されるように構成していた。
特開2002-211234号公報
 ここで、上記圧縮機や室内送風機、発熱手段の起動タイミングが適切でない場合、下記のような種々の問題が生じる。例えば、無風状態(室内送風機停止)で圧縮機により放熱器に高温冷媒が供給される期間が長くなると、ヒートポンプサイクルが成立せず、また、高圧側圧力が異常に上昇して圧縮機が停止されてしまう不都合が発生する。一方、放熱器や上記ヒータコアが十分な暖房能力を発揮する以前に室内送風機が運転されると、低温の空気が車室内に吹き出されて快適性を損なう結果となる。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、圧縮機や室内送風機、発熱手段を適切なタイミングで起動することにより、快適な車室内暖房を実現することができる車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられて冷媒を放熱させる放熱器と、空気流通路に設けられて冷媒を吸熱させる吸熱器と、空気流通路に空気を流通させる室内送風機と、圧縮機と室内送風機の運転を制御する制御手段とを備え、放熱器からの放熱により車室内に供給される空気を加熱して当該車室内を暖房するものであって、空気流通路に設けられ、車室内に供給される空気を加熱する発熱手段を備え、制御手段は、外気温度に基づき、圧縮機、室内送風機、及び、発熱手段を起動するタイミングを制御することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御手段は、外気温度が低い第1の低外気温環境である場合、圧縮機を室内送風機より先に起動すると共に、発熱手段を室内送風機と同時、又は、室内送風機の起動直後、又は、室内送風機の起動後に起動することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記発明において制御手段は、圧縮機を起動した後、この圧縮機の回転数が所定回転数以上となった時点で室内送風機を起動し、室内送風機の風量を所定の低い値に制御すると共に、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項4の発明の車両用空気調和装置は、請求項2の発明において制御手段は、圧縮機を起動した後、圧縮機の回転数が所定回転数以上となった時点、又は、高圧側圧力が所定圧力以上となった時点で室内送風機を起動すると共に、この室内送風機の風量が所定の低い値となった時点で発熱手段を起動し、この発熱手段の温度が所定値より高くなるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項5の発明の車両用空気調和装置は、請求項2の発明において制御手段は、圧縮機を起動した後、圧縮機の回転数が所定回転数以上となった時点で室内送風機を起動し、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項2乃至請求項5の発明において制御手段は、外気温度が第1の低外気温環境よりも高い第2の低外気温環境である場合、室内送風機を圧縮機と同時、又は、圧縮機の起動直後、又は、圧縮機の起動後に起動すると共に、発熱手段を室内送風機と同時、又は、室内送風機の起動直後、又は、室内送風機の起動後に起動することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記発明において制御手段は、室内送風機を起動した後、室内送風機の風量を所定の低い値に制御すると共に、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項8の発明の車両用空気調和装置は、請求項6の発明において制御手段は、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で発熱手段を起動すると共に、発熱手段の温度が所定値より高くなるまで、又は、高圧側圧力が所定圧力以上となるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、又は、高圧側圧力が所定圧力以上となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項9の発明の車両用空気調和装置は、請求項6の発明において制御手段は、室内送風機を起動した後、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が所定回転数以上となった時点で発熱手段を起動し、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項10の発明の車両用空気調和装置は、請求項6乃至請求項9の発明において制御手段は、外気温度が第2の低外気温環境よりも高い第3の低外気温環境である場合、室内送風機を圧縮機より先に起動すると共に、発熱手段を室内送風機と同時、又は、室内送風機の起動直後、又は、室内送風機の起動後に起動することを特徴とする。
 請求項11の発明の車両用空気調和装置は、上記発明において制御手段は、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で圧縮機を起動すると共に、発熱手段の温度が所定値より高くなるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項12の発明の車両用空気調和装置は、請求項10の発明において制御手段は、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で発熱手段を起動し、発熱手段の起動と同時、又は、発熱手段の起動直後に圧縮機を起動すると共に、発熱手段の温度が所定値より高くなるまで、又は、高圧側圧力が所定圧力以上となるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、又は、高圧側圧力が所定圧力以上となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項13の発明の車両用空気調和装置は、請求項10の発明において制御手段は、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で圧縮機を起動すると共に、圧縮機の回転数が所定回転数以上となるまでは室内送風機の風量を所定の低い値に制御し、圧縮機の回転数が所定回転数以上となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項14の発明の車両用空気調和装置は、請求項1の発明において発熱手段は、放熱器に対して空気流通路を流通する空気の下流側に配置されると共に、制御手段は、外気温度が低い第1の低外気温環境である場合、圧縮機及び発熱手段を室内送風機より先に起動することを特徴とする。
 請求項15の発明の車両用空気調和装置は、上記発明において制御手段は、圧縮機を起動した後、圧縮機の回転数が所定回転数以上となった時点で室内送風機を起動し、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項16の発明の車両用空気調和装置は、請求項14又は請求項15の発明において制御手段は、外気温度が第1の低外気温環境よりも高い第2の低外気温環境である場合、室内送風機及び発熱手段を圧縮機の起動直後、又は、圧縮機の起動後に起動することを特徴とする。
 請求項17の発明の車両用空気調和装置は、上記発明において制御手段は、室内送風機を起動した後、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項18の発明の車両用空気調和装置は、請求項16又は請求項17の発明において制御手段は、外気温度が第2の低外気温環境よりも高い第3の低外気温環境である場合、発熱手段及び圧縮機を室内送風機の起動直後、又は、室内送風機の起動後に起動することを特徴とする。
 請求項19の発明の車両用空気調和装置は、上記発明において制御手段は、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で圧縮機を起動すると共に、圧縮機の回転数が所定回転数以上となるまでは室内送風機の風量を所定の低い値に制御し、圧縮機の回転数が所定回転数以上となった場合、室内送風機の風量を目標値まで増大させることを特徴とする。
 請求項20の発明の車両用空気調和装置は、上記各発明において空気流通路に設けられた熱媒体-空気熱交換器を備え、電気ヒータ又はエンジンにより加熱された熱媒体を熱媒体-空気熱交換器に循環する熱媒体循環回路から発熱手段を構成したことを特徴とする。
 請求項21の発明の車両用空気調和装置は、上記発明において熱媒体循環回路は、熱媒体-空気熱交換器への熱媒体の循環を制御する弁装置を備え、制御手段は、弁装置を開放することにより、発熱手段を起動することを特徴とする。
 請求項22の発明の車両用空気調和装置は、請求項1乃至請求項19の発明において空気流通路に設けられ、車室内に供給される空気を加熱する電気ヒータにより発熱手段を構成したことを特徴とする。
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられて冷媒を放熱させる放熱器と、空気流通路に設けられて冷媒を吸熱させる吸熱器と、空気流通路に空気を流通させる室内送風機と、圧縮機と室内送風機の運転を制御する制御手段とを備え、放熱器からの放熱により車室内に供給される空気を加熱して当該車室内を暖房する車両用空気調和装置において、空気流通路に設けられ、車室内に供給される空気を加熱する発熱手段を備え、制御手段が、外気温度に基づき、圧縮機、室内送風機、及び、発熱手段を起動するタイミングを制御するようにしたので、外気温環境に応じて圧縮機、室内送風機、及び、発熱手段を適切なタイミングで起動することが可能となる。
 例えば、外気温度が低い第1の低外気温環境である場合、請求項2の発明の如く制御手段が、圧縮機を室内送風機より先に起動すると共に、発熱手段を室内送風機と同時、又は、室内送風機の起動直後、又は、室内送風機の起動後に起動することにより、外気温度が極めて低い環境下で、圧縮機の高圧側圧力の上昇を促進し、暖房能力を迅速に立ち上げることが可能となる。
 この場合、請求項3の発明の如く制御手段が、圧縮機を起動した後、この圧縮機の回転数が所定回転数以上となった時点で室内送風機を起動し、室内送風機の風量を所定の低い値に制御すると共に、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させるようにすることで、高圧側圧力の上昇を促進し、発熱手段の温度上昇も促進して、放熱器と発熱手段の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 また、請求項4の発明の如く制御手段が、圧縮機を起動した後、圧縮機の回転数が所定回転数以上となった時点、又は、高圧側圧力が所定圧力以上となった時点で室内送風機を起動すると共に、この室内送風機の風量が所定の低い値となった時点で発熱手段を起動し、この発熱手段の温度が所定値より高くなるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させるようにすることでも、高圧側圧力の上昇を促進し、発熱手段の温度上昇も促進して、放熱器と発熱手段の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 特にこの場合は、例えば請求項20の発明の如く空気流通路に設けられた熱媒体-空気熱交換器を備えて電気ヒータ又はエンジンにより加熱された熱媒体を熱媒体-空気熱交換器に循環する熱媒体循環回路から発熱手段を構成し、更に、請求項21の発明の如く熱媒体循環回路に、熱媒体-空気熱交換器への熱媒体の循環を制御する弁装置を備え、制御手段が、弁装置を開放することで発熱手段を起動するようにすることにより、熱媒体-空気熱交換器への熱媒体温度が上がったところで弁装置を開放(発熱手段を起動)することで、熱媒体-空気熱交換器で却って空気の温度が低下してしまう不都合を解消し、高圧側圧力の上昇による放熱器の暖房能力の増大をより効果的に促進することができるようになる。
 これは発熱手段が放熱器に対して流通空気の上流側に設けられる場合に有効であり、熱媒体-空気熱交換器での温度低下で放熱器に流入する空気の温度が低下し、高圧側圧力上昇が阻害される不都合を回避できる。
 また、請求項5の発明の如く制御手段が、圧縮機を起動した後、圧縮機の回転数が所定回転数以上となった時点で室内送風機を起動し、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることでも、高圧側圧力の上昇を促進し、発熱手段の温度上昇も促進して、放熱器と発熱手段の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 一方、外気温度が第1の低外気温環境よりも高い第2の低外気温環境である場合は、請求項6の発明の如く制御手段が、室内送風機を圧縮機と同時、又は、圧縮機の起動直後、又は、圧縮機の起動後に起動すると共に、発熱手段を室内送風機と同時、又は、室内送風機の起動直後、又は、室内送風機の起動後に起動することで、外気温度が前述した第1の低外気温環境よりも高く、高圧側圧力の上昇が第1の低外気温環境の場合に比して遅くならない場合は、室内送風機をより早く起動し、車室内暖房の立ち上げを早めることができるようになる。
 この場合、請求項7の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量を所定の低い値に制御すると共に、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させることで、高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 また、請求項8の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で発熱手段を起動すると共に、発熱手段の温度が所定値より高くなるまで、又は、高圧側圧力が所定圧力以上となるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、又は、高圧側圧力が所定圧力以上となった場合、室内送風機の風量を目標値まで増大させることでも、高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 特にこの場合は、例えば請求項20の発明の如く空気流通路に設けられた熱媒体-空気熱交換器を備えて電気ヒータ又はエンジンにより加熱された熱媒体を熱媒体-空気熱交換器に循環する熱媒体循環回路から発熱手段を構成し、更に、請求項21の発明の如く熱媒体循環回路に、熱媒体-空気熱交換器への熱媒体の循環を制御する弁装置を備え、制御手段が、弁装置を開放することで発熱手段を起動するようにすることにより、熱媒体-空気熱交換器への熱媒体温度が上がったところで弁装置を開放(発熱手段を起動)することで、同様に熱媒体-空気熱交換器で空気の温度が低下してしまう不都合を解消し、高圧側圧力の上昇による放熱器の暖房能力の増大をより効果的に促進することができるようになる。
 これは同様に発熱手段が放熱器に対して流通空気の上流側に設けられる場合に有効であり、熱媒体-空気熱交換器での温度低下で放熱器に流入する空気の温度が低下し、高圧側圧力上昇が阻害される不都合を回避できる。
 また、請求項9の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が所定回転数以上となった時点で発熱手段を起動し、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることでも、高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 他方、外気温度が第2の低外気温環境よりも更に高い第3の低外気温環境である場合は、請求項10の発明の如く制御手段が、室内送風機を圧縮機より先に起動すると共に、発熱手段を室内送風機と同時、又は、室内送風機の起動直後、又は、室内送風機の起動後に起動することで、外気温度が前述した第2の低外気温環境よりも更に高い環境下において、高圧側圧力が早期に上昇して圧縮機の停止等が発生する不都合を未然に回避し、車室内暖房を円滑に開始することができるようになる。
 この場合、請求項11の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で圧縮機を起動すると共に、発熱手段の温度が所定値より高くなるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、室内送風機の風量を目標値まで増大させることで、高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 また、請求項12の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で発熱手段を起動し、発熱手段の起動と同時、又は、発熱手段の起動直後に圧縮機を起動すると共に、発熱手段の温度が所定値より高くなるまで、又は、高圧側圧力が所定圧力以上となるまでは室内送風機の風量を所定の低い値に制御し、発熱手段の温度が所定値より高くなった場合、又は、高圧側圧力が所定圧力以上となった場合、室内送風機の風量を目標値まで増大させることでも、高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 特にこの場合は、例えば請求項20の発明の如く空気流通路に設けられた熱媒体-空気熱交換器を備えて電気ヒータ又はエンジンにより加熱された熱媒体を熱媒体-空気熱交換器に循環する熱媒体循環回路から発熱手段を構成し、更に、請求項21の発明の如く熱媒体循環回路に、熱媒体-空気熱交換器への熱媒体の循環を制御する弁装置を備え、制御手段が、弁装置を開放することで発熱手段を起動するようにすることにより、熱媒体-空気熱交換器への熱媒体温度が上がったところで弁装置を開放(発熱手段を起動)することで、同様に熱媒体-空気熱交換器で空気の温度が低下してしまう不都合を解消し、高圧側圧力の上昇による放熱器の暖房能力の増大をより効果的に促進することができるようになる。
 これは同様に発熱手段が放熱器に対して流通空気の上流側に設けられる場合に有効であり、熱媒体-空気熱交換器での温度低下で放熱器に流入する空気の温度が低下し、高圧側圧力上昇が阻害される不都合を回避できる。
 また、請求項13の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で圧縮機を起動すると共に、圧縮機の回転数が所定回転数以上となるまでは室内送風機の風量を所定の低い値に制御し、圧縮機の回転数が所定回転数以上となった場合、室内送風機の風量を目標値まで増大させることでも、高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 また、発熱手段を放熱器に対して空気流通路を流通する空気の下流側に配置したときは、室内送風機を起動しても発熱手段が発生した熱が放熱器に伝達されることは無いが、請求項14の発明の如く制御手段が、外気温度が低い第1の低外気温環境である場合、圧縮機及び発熱手段を室内送風機より先に起動することにより、外気温度が極めて低い環境下で、圧縮機の高圧側圧力の上昇と発熱手段の温度の上昇の双方を促進し、暖房能力を迅速に立ち上げることが可能となる。
 この場合、請求項15の発明の如く制御手段が、圧縮機を起動した後、圧縮機の回転数が所定回転数以上となった時点で室内送風機を起動し、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることで、高圧側圧力の上昇を促進し、発熱手段の温度上昇も促進して、放熱器と発熱手段の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 一方、外気温度が第1の低外気温環境よりも高い第2の低外気温環境である場合は、請求項16の発明の如く制御手段が、室内送風機及び発熱手段を圧縮機の起動直後、又は、圧縮機の起動後に起動することで、外気温度が前述した第1の低外気温環境よりも高く、高圧側圧力の上昇が第1の低外気温環境の場合に比して遅くならない場合は、室内送風機をより早く起動し、車室内暖房の立ち上げを早めることができるようになる。
 この場合、請求項17の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量を所定の低い値に制御すると共に、圧縮機の回転数が目標回転数となった場合、室内送風機の風量を目標値まで増大させることで、高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 他方、外気温度が第2の低外気温環境よりも更に高い第3の低外気温環境である場合は、請求項18の発明の如く制御手段が、発熱手段及び圧縮機を室内送風機の起動直後、又は、室内送風機の起動後に起動することで、外気温度が前述した第2の低外気温環境よりも更に高い環境下において、高圧側圧力が早期に上昇して圧縮機の停止等が発生する不都合を未然に回避し、車室内暖房を円滑に開始することができるようになる。
 この場合、請求項19の発明の如く制御手段が、室内送風機を起動した後、室内送風機の風量が所定の低い値となった時点で圧縮機を起動すると共に、圧縮機の回転数が所定回転数以上となるまでは室内送風機の風量を所定の低い値に制御し、圧縮機の回転数が所定回転数以上となった場合、室内送風機の風量を目標値まで増大させることで、高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 以上のことは、請求項20の発明の如く空気流通路に設けられた熱媒体-空気熱交換器を備え、電気ヒータ又はエンジンにより加熱された熱媒体を熱媒体-空気熱交換器に循環する熱媒体循環回路から発熱手段を構成した場合に有効であり、請求項21の発明の如く熱媒体循環回路が、熱媒体-空気熱交換器への熱媒体の循環を制御する弁装置を備え、制御手段が、弁装置を開放することにより、発熱手段を起動することで、前述した如く熱媒体-空気熱交換器への熱媒体温度が上がったところで弁装置を開放(発熱手段を起動)し、熱媒体-空気熱交換器で空気の温度が低下してしまう不都合を解消することができるようになる。
 また、発熱手段を請求項22の発明の如く空気流通路に設けられて車室内に供給される空気を加熱する電気ヒータにより構成すれば、構造を簡素化することが可能となる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である(実施例1)。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 図2のコントローラの動作を説明するフローチャートである。 図2のコントローラによる圧縮機、室内送風機、熱媒体循環回路の制御を説明するタイミングチャートである(実施例1)。 図2のコントローラによる圧縮機、室内送風機、熱媒体循環回路の制御を説明するもう一つのタイミングチャートである(実施例1)。 図2のコントローラによる圧縮機、室内送風機、熱媒体循環回路の制御を説明する更にもう一つのタイミングチャートである(実施例1)。 本発明を適用した他の実施形態の車両用空気調和装置の構成図である(実施例2)。 図7の場合の図2のコントローラによる圧縮機、室内送風機、冷却水用の電磁弁の制御を説明するタイミングチャートである(実施例2)。 図7の場合の図2のコントローラによる圧縮機、室内送風機、冷却水用の電磁弁の制御を説明するもう一つのタイミングチャートである(実施例2)。 図7の場合の図2のコントローラによる圧縮機、室内送風機、冷却水用の電磁弁の制御を説明する更にもう一つのタイミングチャートである(実施例2)。 図7の場合の図2のコントローラによる圧縮機、室内送風機、冷却水用の電磁弁の制御を説明する更にもう一つのタイミングチャートである(実施例2)。 図7の場合の図2のコントローラによる圧縮機、室内送風機、冷却水用の電磁弁の制御を説明する更にもう一つのタイミングチャートである(実施例2)。 図7の場合の図2のコントローラによる圧縮機、室内送風機、冷却水用の電磁弁の制御を説明する更にもう一つのタイミングチャートである(実施例2)。 本発明を適用したもう一つの他の実施形態の車両用空気調和装置の構成図である(実施例3)。 図14の場合の図2のコントローラによる圧縮機、室内送風機、電気ヒータの制御を説明するタイミングチャートである(実施例3)。 図14の場合の図2のコントローラによる圧縮機、室内送風機、電気ヒータの制御を説明するもう一つのタイミングチャートである(実施例3)。 図14の場合の図2のコントローラによる圧縮機、室内送風機、電気ヒータの制御を説明する更にもう一つのタイミングチャートである(実施例3)。 本発明を適用した更にもう一つの他の実施形態の車両用空気調和装置の構成図である(実施例4)。 図18の場合の図2のコントローラによる圧縮機、室内送風機、電気ヒータの制御を説明するタイミングチャートである(実施例4)。 図18の場合の図2のコントローラによる圧縮機、室内送風機、電気ヒータの制御を説明するもう一つのタイミングチャートである(実施例4)。 図18の場合の図2のコントローラによる圧縮機、室内送風機、電気ヒータの制御を説明する更にもう一つのタイミングチャートである(実施例4)。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。この場合、本発明を適用する実施例の車両は、エンジン(内燃機関)を有さない電気自動車(EV)、又は、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車であって、バッテリ(何れも図示せず)に充電された電力で走行用の電動モータを駆動して走行、又は、走行補助を行うもの、若しくは、エンジンで走行する通常の自動車である。
 但し、本発明の車両用空気調和装置1は、バッテリ等(プラグイン可能な場合には外部電力)の電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、冷媒回路を構成する電動式の圧縮機をバッテリ等で駆動するヒートポンプ運転により車室内の暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。
 この実施例の車両用空気調和装置1は、自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられて圧縮機2から吐出された高温高圧の冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、放熱器4に対して空気流通路3を流通する空気の上流側における空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。尚、室外熱交換器7には、外気と冷媒とを熱交換させるための室外送風機15が設けられている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(開閉弁)20が介設されている。
 また、放熱器4を出た直後(冷媒配管13F、13Iに分岐する手前)の冷媒配管13Eは分岐しており、この分岐した冷媒配管13Kはインジェクション制御用の電動弁から成るインジェクション膨張弁30を介して圧縮機2の圧縮途中に連通接続されている。そして、このインジェクション膨張弁30の出口側と圧縮機2間の冷媒配管13Kは、圧縮機2の吐出側に位置する冷媒配管13Gと熱交換関係に設けられ、両者で吐出側熱交換器35を構成している。
 これら冷媒配管13K、インジェクション膨張弁30、及び、吐出側熱交換器35からインジェクション回路40が構成される。このインジェクション回路40は、放熱器4から出た冷媒の一部を分流して圧縮機2の圧縮途中に戻す(ガスインジェクション)ための回路であり、インジェクション膨張弁30は冷媒配管13Kに流入した冷媒を減圧した後、吐出側熱交換器35に流入させる。吐出側熱交換器35に流入した冷媒は、圧縮機2から冷媒配管13Gに吐出され、放熱器4に流入する前の冷媒と熱交換し、冷媒配管13Gを流れる冷媒から吸熱して蒸発する構成とされている。吐出側熱交換器35で冷媒配管13Kに分流された冷媒が蒸発することで、圧縮機2へのガスインジェクションが行われることになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給し、流通させるための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 また、図1において61は実施例の車両用空気調和装置1に設けられた発熱手段としての熱媒体循環回路を示している。この熱媒体循環回路61は循環手段を構成する循環ポンプ62と、熱媒体加熱電気ヒータ(図面ではECHで示す)63と、放熱器4に対して空気流通路3を流通する空気の上流側となる空気流通路3内に設けられた熱媒体-空気熱交換器64とを備え、これらが熱媒体配管66により順次環状に接続されている。尚、この熱媒体循環回路61内で循環される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等が採用される。
 そして、循環ポンプ62が運転され、熱媒体加熱電気ヒータ63に通電されて発熱すると、この熱媒体加熱電気ヒータ63により加熱された熱媒体が空気流通路3内の熱媒体-空気熱交換器64に循環されるよう構成されている。即ち、この熱媒体循環回路61の熱媒体-空気熱交換器64が所謂ヒータコアの役割を果たし、車室内の暖房に寄与する。係る熱媒体循環回路61を採用することで、搭乗者の電気的な安全性を向上することができるようになる。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4から出た直後の温度、又は、放熱器4自体の温度、又は、放熱器4にて加熱された直後の空気の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9から出た直後の温度、又は、吸熱器9自体、又は、吸熱器9にて冷却された直後の空気の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には、インジェクション回路40の冷媒配管13Kに流入し、吐出側熱交換器35を経て圧縮機2の圧縮途中に戻るインジェクション冷媒の圧力を検出するインジェクション圧力センサ50と、該インジェクション冷媒の温度を検出するインジェクション温度センサ55の各出力も接続されている。
 また、コントローラ32の入力には更に、熱媒体循環回路61の熱媒体加熱電気ヒータ63の温度(熱媒体加熱電気ヒータ63で加熱された直後の熱媒体の温度、又は、熱媒体加熱電気ヒータ63に内蔵された図示しない電気ヒータ自体の温度)を検出する熱媒体加熱電気ヒータ温度センサ67と、熱媒体-空気熱交換器64の温度(熱媒体-空気熱交換器64を経た空気の温度、又は、熱媒体-空気熱交換器64自体の温度)を検出する熱媒体-空気熱交換器温度センサ68の各出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吸込口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、インジェクション膨張弁30と、蒸発能力制御弁11と、熱媒体加熱電気ヒータ63と、循環ポンプ62が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モードの冷媒の流れ
 コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体-空気熱交換器64及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経た後、放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、一部はインジェクション回路40の冷媒配管13Kに分流され、主には冷媒配管13Eを経て室外膨張弁6に至る。尚、インジェクション回路40の機能作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(ヒートポンプ)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気が吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 また、コントローラ32は、この暖房モードにおいて後述する如く放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ63に通電して発熱させ、循環ポンプ62を運転することにより、熱媒体循環回路61による加熱を実行する。その場合は、この熱媒体-空気熱交換器64で加熱され、更に放熱器4にて加熱された空気が吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は、実施例では後述するように放熱器圧力センサ47(又は吐出圧力センサ42)が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、放熱器4の通過風量と目標吹出温度に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。尚、室外膨張弁6の弁開度は、それらの代わりに或いはそれらに加えて放熱器4の温度や外気温度に基づいて制御してもよい。
 (2)除湿暖房モードの冷媒の流れ
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。尚、この除湿暖房モードではインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。また、熱媒体循環回路61も動作させない。
 (3)内部サイクルモードの冷媒の流れ
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21も閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。尚、この内部サイクルモードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。また、熱媒体循環回路61も動作させない。
 (4)除湿冷房モードの冷媒の流れ
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22、及び、電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体-空気熱交換器64及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。尚、この除湿冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。また、熱媒体循環回路61も動作させない。
 (5)冷房モードの冷媒の流れ
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は熱媒体-空気熱交換器64及び放熱器4に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。尚、この冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。また、熱媒体循環回路61も動作させない。
 (6)運転モードの切換制御
 コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていく。この場合、コントローラ32は基本的には暖房モードから除湿暖房モードへ、或いは、除湿暖房モードから暖房モードへと移行し、除湿暖房モードから除湿冷房モードへ、或いは、除湿冷房モードから除湿暖房モードへと移行し、除湿冷房モードから冷房モードへ、或いは、冷房モードから除湿冷房モードへと移行するものであるが、除湿暖房モードから除湿冷房モードへ移行する際、及び、除湿冷房モードから除湿暖房モードへ移行する際には、前記内部サイクルモードを経由して移行する。また、冷房モードから内部サイクルモードへ、内部サイクルモードから冷房モードへ移行する場合もある。
 (7)暖房モードにおけるガスインジェクション
 次に、前記暖房モードにおけるガスインジェクションについて説明する。放熱器4を出て冷媒配管13Eに入り、その後分流されてインジェクション回路40の冷媒配管13Kに流入した冷媒は、インジェクション膨張弁30で減圧された後、吐出側熱交換器35に入り、そこで圧縮機2の吐出冷媒(圧縮機2から吐出されて放熱器4に流入する前の冷媒)と熱交換し、吸熱して蒸発する。蒸発したガス冷媒はその後圧縮機2の圧縮途中に戻り、アキュムレータ12から吸い込まれて圧縮されている冷媒と共に更に圧縮された後、再度圧縮機2から冷媒配管13Gに吐出されることになる。
 インジェクション回路40から圧縮機2の圧縮途中に冷媒を戻すことにより、圧縮機2から吐出される冷媒量が増大するので、放熱器4における暖房能力が向上するものであるが、圧縮機2に液冷媒が戻ると液圧縮を引き起こしてしまうので、インジェクション回路40から圧縮機2に戻す冷媒はガスでなければならない。
 そのためにコントローラ32は、インジェクション圧力センサ50及びインジェクション温度センサ55がそれぞれ検出する吐出側熱交換器35後の冷媒の圧力及び温度から圧縮機2の圧縮途中に向かう冷媒の過熱度を監視しており、吐出冷媒との熱交換で所定の過熱度が付くようにインジェクション膨張弁30の弁開度を制御するものであるが、実施例では吐出側熱交換器35において、圧縮機2から吐出されて放熱器4に流入する前の極めて高温の冷媒とインジェクション回路40を流れる冷媒とを熱交換させているので、大きな熱交換量が得られる。従って、インジェクション膨張弁30の弁開度を大きくしてインジェクション量を増やしても、冷媒は吐出側熱交換器35において十分に蒸発することができ、必要な過熱度が得られることになる。
 これにより、従来の如く放熱器後の冷媒とインジェクション冷媒とを熱交換させる場合に比して、圧縮機2へのガスインジェクション量を十分に確保し、圧縮機2の吐出冷媒量を増大させて暖房能力の向上を図ることができるようになる。
 (8)暖房モードでの圧縮機、室内送風機、熱媒体循環回路の制御
 コントローラ32は、放熱器4に放熱させて車室内を暖房する暖房モード(除湿暖房モードも含む)では、目標放熱器圧力PCO(高圧圧力の目標値)に基づいて圧縮機2の目標圧縮機回転数TGNC(目標回転数)を決定し、圧縮機2の回転数NCがこの目標圧縮機回転数TGNCとなるように圧縮機2を制御する。また、目標吹出温度TAO等に基づいて室内送風機27の目標ブロワ電圧TGBLV(風量の目標値)を決定し、室内送風機27のブロワ電圧BLVがこの目標ブロワ電圧TGBLVとなるように室内送風機27を制御する。この目標ブロワ電圧TGBLVが室内送風機27の風量の目標値となる。
 尚、吹出口29から車室内に吹き出される空気温度の目標値である目標吹出温度TAOは、下記式(I)からコントローラ32が算出する。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 また、コントローラ32は式(II)、式(III)を用いて要求される放熱器4の暖房能力である目標暖房能力(要求暖房能力)Qtgtと、放熱器4が発生可能な最大の暖房能力推定値Qhpを算出する。
 Qtgt=(TCO-Te)×Cpa×ρ×Qair・・(II)
 Qhp=f(Tam、NC、BLV、VSP、Te)・・(III)
 ここで、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Cpaは放熱器4に流入する空気の比熱[kj/kg・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m3]、Qairは放熱器4を通過する風量[m3/h](通過風量Qairは室内送風機27のブロワ電圧BLV等から推定)、VSPは車速センサ52から得られる車速である。
 上記式(II)においてはQairに代えて、或いは、それに加えて、放熱器4に流入する空気の温度、又は、放熱器4から流出する空気の温度を採用してもよい。また、式(III)の圧縮機2の回転数NCは冷媒流量を示す指標の一例であり、ブロワ電圧BLVは空気流通路3内の風量を示す指標の一例であり、暖房能力推定値Qhpはこれらの関数から算出される。また、それらと放熱器4の出口冷媒圧力、放熱器4の出口冷媒温度、放熱器4の入口冷媒圧力、及び、放熱器4の入口冷媒温度のうちの何れか、若しくは、組み合わせから算出してもよい。
 次に、コントローラ32は上述した目標暖房能力(要求暖房能力)Qtgtと、HP最大暖房能力推定値Qhpに基づいて、図3のフローチャートの如く熱媒体循環回路61を動作させるか否かを決定する。即ち、コントローラ32は自動車が起動(IGN ON)されると、ステップS1で各センサからデータを読み込み、ステップS2で上記式(II)を用い、目標暖房能力Qtgtを算出し、上記式(III)を用い、暖房能力推定値Qhpを算出し、ステップS3で目標暖房能力Qtgtが暖房能力推定値Qhpより大きいか否か判断する。
 ステップS3で、目標暖房能力Qtgtが暖房能力推定値Qhpより大きい場合、ステップS4に進んで圧縮機2、室内送風機27、熱媒体循環回路(発熱手段)61の起動モードを選択し、選択した起動モードに基づいてステップS5~ステップS7で圧縮機2、室内送風機27、熱媒体循環回路61(熱媒体加熱電気ヒータ63と循環ポンプ62からなるこの場合の発熱手段)を起動し、制御する。尚、上記ステップS4における起動モードの選択については後述する。
 また、ステップS3で目標暖房能力Qtgtが暖房能力推定値Qhp以下の場合、コントローラ32はステップS8、ステップS9で圧縮機2、室内送風機27を起動し、制御する。即ち、コントローラ32は目標暖房能力Qtgtが暖房能力推定値Qhpより大きい場合は放熱器4の暖房能力が不足していると判断し、熱媒体循環回路61を動作させると共に、目標暖房能力Qtgtが暖房能力推定値Qhp以下の場合は、放熱器4の暖房能力が足りていると判断し、熱媒体循環回路61は動作させない。
 (8-1)暖房モードにおける圧縮機、室内送風機、熱媒体循環回路の起動タイミング
 次に、図3のステップS4における圧縮機2、室内送風機27、熱媒体循環回路61の起動モードの選択について説明する。実施例ではコントローラ32は、起動モード1~3の三種類の起動モードを有しており、外気温度センサ33が検出する外気温度Tamに基づいてこれらを切り換える。
 この場合、コントローラ32は外気温度Tamが所定の極めて低い極低温度A(第1のしきい値)以下の第1の低外気温環境である場合、起動モード1を選択する。この起動モード1では、コントローラ32は圧縮機2を室内送風機27より先に起動し、熱媒体循環回路61を室内送風機27と同時、又は、その起動直後、又は、その起動後に起動する(後述する各実施例を含む)。
 また、外気温度Tamが上記極低温度Aより高く、この極低温度Aよりも高い所定の低温度B(第2のしきい値)以下の第2の低外気温環境である場合(第2の低外気温環境は第1の低外気温環境よりも温度が高い)、起動モード2を選択する。この起動モード2では、コントローラ32は室内送風機27を圧縮機2と同時、又は、その起動直後、又は、その起動後に起動し、熱媒体循環回路61を室内送風機27と同時、又は、その起動直後、又は、その起動後に起動する(後述する各実施例を含む)。
 更に、外気温度Tamが上記低温度Bよりも高い第3の低外気温環境である場合(第3の低外気温環境は第2の低外気温環境よりも温度が高い)、起動モード3を選択する。この起動モード3では、コントローラ32は室内送風機27を圧縮機2より先に起動し、熱媒体循環回路61を室内送風機27と同時、又は、その起動直後、又は、その起動後に起動する(後述する各実施例を含む)。
 次に、図4~図6を用いて各起動モードについて詳細に説明する。
 (8-2)起動モード1(実施例1)
 図4のタイミングチャートは、起動モード1の具体的な起動パターンの一例を示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。その途中、圧縮機2の回転数NCが所定回転数Nec1以上となった時点で、コントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 一方、コントローラ32は室内送風機27の起動と同時、又は、起動直後に熱媒体循環回路61を起動する。この場合の熱媒体循環回路61の起動とは、熱媒体加熱電気ヒータ63と循環ポンプ62への通電開始を意味するものとする。これにより、熱媒体加熱電気ヒータ63で加熱された熱媒体が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。そして、コントローラ32はこの熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが低い第1の低外気温環境である場合、圧縮機2を室内送風機27より先に起動すると共に、熱媒体循環回路61を室内送風機27と同時、又は、その起動直後に起動することにより、外気温度Tamが極めて低い環境下で、冷媒回路Rの高圧側圧力の上昇を促進し、暖房能力を迅速に立ち上げることが可能となる。特に、この場合の起動モード1では、圧縮機2を起動した後、この圧縮機2の回転数NCが所定回転数Nec1以上となった時点で室内送風機27を起動し、室内送風機27の風量を所定の低い値Qblw1に制御すると共に、熱媒体循環回路61の熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、室内送風機27の風量を目標値まで増大させるので、冷媒回路Rの高圧側圧力の上昇を促進し、熱媒体循環回路61の熱媒体-空気熱交換器64の温度上昇も促進して、放熱器4と熱媒体循環回路61の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 (8-3)起動モード2(実施例1)
 次に、図5のタイミングチャートは、起動モード2の具体的な起動パターンの一例を示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。この圧縮機2の起動と同時、又は、その直後にコントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 更に、コントローラ32はこの室内送風機27の起動と同時、又は、起動直後に熱媒体循環回路61を起動する。この場合も熱媒体循環回路61の起動とは、熱媒体加熱電気ヒータ63と循環ポンプ62への通電開始を意味する。これにより、熱媒体加熱電気ヒータ63で加熱された熱媒体が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。そして、コントローラ32はこの熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第1の低外気温環境よりも高い第2の低外気温環境である場合は、室内送風機27を圧縮機2と同時、又は、その起動直後に起動すると共に、熱媒体循環回路61を室内送風機27と同時、又は、その起動直後に起動することで、外気温度Tamが前述した第1の低外気温環境よりも高く、冷媒回路Rの高圧側圧力の上昇が第1の低外気温環境の場合に比して遅くならない場合は、室内送風機27をより早く起動し、車室内暖房の立ち上げを早めることができるようになる。特に、この場合の起動モード2では、室内送風機27を起動した後、室内送風機27の風量を所定の低い値Qblw1に制御すると共に、熱媒体循環回路61の熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、室内送風機27の風量を目標値まで増大させるので、冷媒回路Rの高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 (8-4)起動モード3(実施例1)
 次に、図6のタイミングチャートは、起動モード3の具体的な起動パターンの一例を示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。また、この室内送風機27の起動と同時、又は、起動直後に熱媒体循環回路61を起動する。この場合も熱媒体循環回路61の起動とは、熱媒体加熱電気ヒータ63と循環ポンプ62への通電開始を意味する。これにより、熱媒体加熱電気ヒータ63で加熱された熱媒体が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。
 一方、コントローラ32は室内送風機27の風量が所定の低い値Qblw1となった時点で圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。そして、コントローラ32は熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第2の低外気温環境よりも更に高い第3の低外気温環境である場合は、室内送風機27を圧縮機2より先に起動すると共に、熱媒体循環回路61を室内送風機27と同時、又は、その起動直後に起動することで、外気温度Tamが前述した第2の低外気温環境よりも更に高い環境下において、冷媒回路Rの高圧側圧力が早期に上昇して圧縮機2の停止等が発生する不都合を未然に回避し、車室内暖房を円滑に開始することができるようになる。特に、この場合の起動モード3では、室内送風機27を起動した後、室内送風機27の風量が所定の低い値Qblw1となった時点で圧縮機2を起動すると共に、熱媒体循環回路61の熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなるまでは室内送風機27の風量を所定の低い値Qblw1に制御し、熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、室内送風機27の風量を目標値まで増大させるので、冷媒回路Rの高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 以上のようにコントローラ32が、外気温度Tamに基づき、圧縮機2、室内送風機27、及び、熱媒体循環回路61を起動するタイミングを制御することによって、外気温環境に応じて圧縮機2、室内送風機27、及び、熱媒体循環回路61を適切なタイミングで起動することが可能となる。
 次に、図7~図13を参照して本発明の他の実施例を説明する。図7はこの場合の車両用空気調和装置1の構成図であり、図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。また、この場合の自動車はエンジンENGを有しているものとする。前述した実施例(実施例1)では、発熱手段を熱媒体循環回路61により構成したが、この場合はエンジンENGが存在するので、このエンジンENGの冷却水を熱媒体として冷却水配管72により熱媒体-空気熱交換器64に循環させる。
 また、冷却水配管72には、熱媒体-空気熱交換器64への冷却水(熱媒体)の循環を制御する電磁弁(弁装置)が設けられ、コントローラ32により制御されるものとする。即ち、この場合はエンジンENGを含む熱媒体-空気熱交換器64、冷却水(熱媒体)用の電磁弁69、冷却水配管72で発熱手段が構成され、熱媒体-空気熱交換器64がヒータコアとなる。他の構成並びに図3の制御フローチャートは前記実施例と同様であり、この場合も起動モード1~3が選択して実行される。但し、図3のフローチャートのステップS7の起動は、この場合は後述するように電磁弁69の開放となる。
 次に、図8~図13を用いてこの実施例の場合の各起動モードについて詳細に説明する。
 (9-1)起動モード1(実施例2)
 図8のタイミングチャートは、この実施例の起動モード1の具体的な起動パターンを示している。コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。その途中、圧縮機2の回転数NCが所定回転数Nec1以上となった時点で、コントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 一方、自動車の起動(IGN ON)と共にエンジンENGの冷却水である熱媒体の温度も上昇していくが(図8に破線で示す)、コントローラ32は当初電磁弁69を閉じているので、熱媒体-空気熱交換器64には熱媒体(冷却水)は循環されず、その温度に変化は無い。そして、コントローラ32は室内送風機27の起動後、その風量が所定の低い値Qblw1となった時点で電磁弁69を開き、温度が上昇した熱媒体(冷却水)を熱媒体-空気熱交換器64に循環させ始める。これが図3のステップS7におけるこの場合の発熱手段の起動となる。エンジンENGで温度上昇した熱媒体(冷却水)が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。そして、コントローラ32はこの熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 この実施例においても、外気温度Tamが低い第1の低外気温環境である場合、圧縮機2を室内送風機27より先に起動すると共に、熱媒体(冷却水)の電磁弁69を室内送風機27の起動後に起動することにより、外気温度Tamが極めて低い環境下で、冷媒回路Rの高圧側圧力の上昇を促進し、暖房能力を迅速に立ち上げることが可能となる。特に、この場合の起動モード1では、圧縮機2を起動した後、圧縮機2の回転数が所定回転数Nec1以上となった時点で室内送風機27を起動すると共に、この室内送風機27の風量が所定の低い値Qblw1となった時点で熱媒体(冷却水)の電磁弁69を開き、熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなるまでは室内送風機27の風量を所定の低い値Qblw1に制御し、熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、室内送風機27の風量を目標値まで増大させるので、冷媒回路Rの高圧側圧力の上昇を促進し、熱媒体-空気熱交換器64の温度上昇も促進して、放熱器4と熱媒体-空気熱交換器64の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 特にこの実施例の場合は、熱媒体-空気熱交換器64への熱媒体(冷却水)の温度が上がったところで電磁弁69を開く(発熱手段を起動)ので、温度が低い熱媒体(冷却水)が熱媒体-空気熱交換器64に循環されて熱媒体-空気熱交換器64において、逆に空気の温度が低下してしまう不都合を解消し、冷媒回路Rの高圧側圧力の上昇による放熱器4の暖房能力の増大をより効果的に促進することができるようになる。
 これは実施例の如く熱媒体-空気熱交換器64が放熱器4に対して流通空気の上流側に設けられる場合に有効であり、熱媒体-空気熱交換器64での温度低下で放熱器4に流入する空気の温度が低下し、冷媒回路Rの高圧側圧力上昇が阻害される不都合を回避できる。
 (9-2)起動モード2(実施例2)
 次に、図9のタイミングチャートは、この実施例の起動モード2の具体的な起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。この圧縮機2の起動と同時、又は、その直後にコントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 一方、自動車の起動(IGN ON)と共にエンジンENGの冷却水である熱媒体の温度も上昇していくが(図9に破線で示す)、コントローラ32は当初電磁弁69を閉じているので、熱媒体-空気熱交換器64には熱媒体(冷却水)は循環されず、その温度に変化は無い。そして、コントローラ32は室内送風機27の起動後、その風量が所定の低い値Qblw1となった時点で電磁弁69を開き、温度が上昇した熱媒体(冷却水)を熱媒体-空気熱交換器64に循環させ始める。これが発熱手段の起動となる。エンジンENGで温度上昇した熱媒体(冷却水)が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。そして、コントローラ32はこの熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第1の低外気温環境よりも高い第2の低外気温環境である場合は、室内送風機27を圧縮機2と同時、又は、その起動直後に起動すると共に、熱媒体の電磁弁69を室内送風機27の起動後に開くことで、外気温度Tamが前述した第1の低外気温環境よりも高く、冷媒回路Rの高圧側圧力の上昇が第1の低外気温環境の場合に比して遅くならない場合は、室内送風機27をより早く起動し、車室内暖房の立ち上げを早めることができるようになる。特に、この場合の起動モード2では、室内送風機27を起動した後、室内送風機27の風量が所定の低い値Qblw1となった時点で熱媒体の電磁弁69を開く(発熱手段の起動)と共に、熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなるまでは室内送風機27の風量を所定の低い値Qblw1に制御し、熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、室内送風機27の風量を目標値まで増大させるので、冷媒回路Rの高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 (9-3)起動モード3(実施例2)
 次に、図10のタイミングチャートは、この実施例の起動モード3の具体的な起動パターンを示している。この実施例の場合、コントローラ32は自動車が起動(IGN ON)されると、先ず室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。一方、自動車の起動(IGN ON)と共にエンジンENGの冷却水である熱媒体の温度も上昇していくが(図10に破線で示す)、コントローラ32は当初電磁弁69を閉じているので、熱媒体-空気熱交換器64には熱媒体(冷却水)は循環されず、その温度に変化は無い。そして、コントローラ32は室内送風機27の起動後、その風量が所定の低い値Qblw1となった時点で電磁弁69を開き、温度が上昇した熱媒体(冷却水)を熱媒体-空気熱交換器64に循環させ始める。これが発熱手段の起動となる。エンジンENGで温度上昇した熱媒体(冷却水)が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。
 一方、電磁弁69を開くのと同時に、又は、その直後にコントローラ32は圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。そして、コントローラ32はこの熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第2の低外気温環境よりも更に高い第3の低外気温環境である場合は、室内送風機27を圧縮機2より先に起動すると共に、電磁弁69を室内送風機27の起動後に開くことで、外気温度Tamが前述した第2の低外気温環境よりも更に高い環境下において、冷媒回路Rの高圧側圧力が早期に上昇して圧縮機2の停止等が発生する不都合を未然に回避し、車室内暖房を円滑に開始することができるようになる。特に、この場合の起動モード3では、室内送風機27を起動した後、室内送風機27の風量が所定の低い値Qblw1となった時点で電磁弁69を開き(発熱手段を起動)、電磁弁69を開くのと同時、又は、その直後に圧縮機2を起動すると共に、熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなるまでは室内送風機27の風量を所定の低い値Qblw1に制御し、熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、室内送風機27の風量を目標値まで増大させるので、冷媒回路Rの高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 (9-4)もう一つの起動モード1(実施例2)
 図11のタイミングチャートは、この実施例のもう一つの起動モード1の起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。その途中、冷媒回路Rの高圧側圧力(実施例では放熱器圧力センサ47が検出する放熱器4の冷媒圧力PCI)が所定圧力P1以上となった時点で、コントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 一方、自動車の起動(IGN ON)と共にエンジンENGの冷却水である熱媒体の温度も上昇していくが(図11に破線で示す)、コントローラ32は当初電磁弁69を閉じているので、熱媒体-空気熱交換器64には熱媒体(冷却水)は循環されず、その温度に変化は無い。そして、コントローラ32は室内送風機27の起動後、その風量が所定の低い値Qblw1となった時点で電磁弁69を開き、温度が上昇した熱媒体(冷却水)を熱媒体-空気熱交換器64に循環させ始める。これがこの場合の発熱手段の起動となる。エンジンENGで温度上昇した熱媒体(冷却水)が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。そして、コントローラ32はこの熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。これによっても、外気温度Tamが極めて低い環境下で、冷媒回路Rの高圧側圧力の上昇を促進し、暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することが可能となる。
 (9-5)もう一つの起動モード2(実施例2)
 次に、図12のタイミングチャートは、この実施例のもう一つの起動モード2の起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。この圧縮機2の起動と同時、又は、その直後にコントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 一方、自動車の起動(IGN ON)と共にエンジンENGの冷却水である熱媒体の温度も上昇していくが(図12に細破線で示す)、コントローラ32は当初電磁弁69を閉じているので、熱媒体-空気熱交換器64には熱媒体(冷却水)は循環されず、その温度に変化は無い。そして、コントローラ32は室内送風機27の起動後、その風量が所定の低い値Qblw1となった時点で電磁弁69を開き、温度が上昇した熱媒体(冷却水)を熱媒体-空気熱交換器64に循環させ始める。これが発熱手段の起動となる。エンジンENGで温度上昇した熱媒体(冷却水)が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。
 そして、コントローラ32はこの熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合(実線)、又は、冷媒回路Rの高圧側圧力が所定圧力P1以上となった場合(太破線)、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。これによっても、室内送風機27をより早く起動し、冷媒回路Rの高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 (9-6)もう一つの起動モード3(実施例2)
 次に、図13のタイミングチャートは、この実施例のもう一つの起動モード3の起動パターンを示している。この実施例の場合、コントローラ32は自動車が起動(IGN ON)されると、先ず室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。一方、自動車の起動(IGN ON)と共にエンジンENGの冷却水である熱媒体の温度も上昇していくが(図13に細破線で示す)、コントローラ32は当初電磁弁69を閉じているので、熱媒体-空気熱交換器64には熱媒体(冷却水)は循環されず、その温度に変化は無い。そして、コントローラ32は室内送風機27の起動後、その風量が所定の低い値Qblw1となった時点で電磁弁69を開き、温度が上昇した熱媒体(冷却水)を熱媒体-空気熱交換器64に循環させ始める。これが発熱手段の起動となる。エンジンENGで温度上昇した熱媒体(冷却水)が熱媒体-空気熱交換器64に循環されるので、熱媒体-空気熱交換器64の温度は上昇していく。
 一方、電磁弁69を開くのと同時に、又は、その直後にコントローラ32は圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。そして、コントローラ32は熱媒体-空気熱交換器64の温度が所定値Thtr1より高くなった場合(実線)、又は、冷媒回路Rの高圧側圧力が所定圧力P1以上となった場合(太破線)、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。これによっても外気温度Tamが第2の低外気温環境よりも更に高い第3の低外気温環境下において、冷媒回路Rの高圧側圧力が早期に上昇して圧縮機2の停止等が発生する不都合を未然に回避し、車室内暖房を円滑に開始することができるようになると共に、冷媒回路Rの高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 次に、図14~図17を参照して本発明のもう一つの他の実施例を説明する。図14はこの場合の車両用空気調和装置1の構成図であり、図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。前述した実施例(実施例1)では、発熱手段を熱媒体循環回路61により構成したが、この場合は電気ヒータ(PTCヒータ)71により発熱手段を構成し、空気流通路3において放熱器4に対し、流通空気の上流側に設ける。他の構成並びに図3の制御フローチャートは前記実施例と同様であり、この場合も起動モード1~3が選択して実行される。但し、図3のフローチャートのステップS7はこの場合は後述するように電気ヒータ71の通電開始となる。
 次に、図15~図17を用いてこの実施例の場合の各起動モードについて詳細に説明する。
 (10-1)起動モード1(実施例3)
 図15のタイミングチャートは、この場合の起動モード1の具体的な起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。その途中、圧縮機2の回転数NCが所定回転数Nec1以上となった時点で、コントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 一方、コントローラ32は室内送風機27の起動直後、又は、その起動後に電気ヒータ71に通電を開始する(起動)。これにより、電気ヒータ71の温度は上昇していき、コントローラ32はその通電率を制御して、最終的に電気ヒータ71の温度を所定の目標値TGADとする。また、コントローラ32は圧縮機2の回転数NCが目標圧縮機回転数TGNCに到達した場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが低い第1の低外気温環境である場合、圧縮機2を室内送風機27より先に起動すると共に、電気ヒータ71を室内送風機27の起動直後、又は、起動後に起動することにより、外気温度Tamが極めて低い環境下で、冷媒回路Rの高圧側圧力の上昇を促進し、暖房能力を迅速に立ち上げることが可能となる。特に、この場合の起動モード1では、圧縮機2を起動した後、圧縮機2の回転数が所定回転数Nec1以上となった時点で室内送風機27を起動し、室内送風機27の風量を所定の低い値Qblw1に制御すると共に、圧縮機2の回転数NCが目標回転数TGNCとなった場合、室内送風機27の風量を目標値まで増大させるので、高圧側圧力の上昇を促進し、電気ヒータ71の温度上昇も促進して、放熱器4と電気ヒータ71の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 また、この実施例のように空気流通路3に設けられて車室内に供給される空気を加熱する電気ヒータ71により発熱手段を構成すれば、構造を簡素化することができる。
 (10-2)起動モード2(実施例3)
 次に、図16のタイミングチャートは、この場合の起動モード2の具体的な起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。この圧縮機2の起動直後、又は、その起動後にコントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 一方、コントローラ32は圧縮機2の起動後、圧縮機2の回転数NCが所定回転数Nec1以上となった時点で、電気ヒータ71に通電を開始する(起動)。これにより、電気ヒータ71の温度は上昇していき、最終的にコントローラ32は電気ヒータ71の温度を所定の目標値TGADに制御する。また、コントローラ32は圧縮機2の回転数NCが目標圧縮機回転数TGNCに到達した場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第1の低外気温環境よりも高い第2の低外気温環境である場合は、室内送風機27を圧縮機2の起動直後、又は、その起動後に起動すると共に、電気ヒータ71を室内送風機27の起動後に起動することで、外気温度Tamが前述した第1の低外気温環境よりも高く、冷媒回路Rの高圧側圧力の上昇が第1の低外気温環境の場合に比して遅くならない場合は、室内送風機27をより早く起動し、車室内暖房の立ち上げを早めることができるようになる。特に、この場合の起動モード2では、室内送風機27を起動した後、室内送風機27の風量を所定の低い値Qblw1に制御すると共に、圧縮機2の回転数が所定回転数Nec1以上となった時点で電気ヒータ71を起動し、圧縮機2の回転数NCが目標回転数TGNCとなった場合、室内送風機27の風量を目標値まで増大させるので、高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 (10-3)起動モード3(実施例3)
 次に、図17のタイミングチャートは、この場合の起動モード3の具体的な起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。また、この室内送風機27の起動直後、又は、起動後に電気ヒータ71に通電を開始する(起動)。これにより、電気ヒータ71の温度は上昇していき、最終的にコントローラ32は電気ヒータ71の温度を所定の目標値TGADに制御する。
 一方、コントローラ32は室内送風機27の風量が所定の低い値Qblw1となった時点で圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。そして、コントローラ32は圧縮機2の回転数NCが所定回転数Nec1以上となった時点で、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第2の低外気温環境よりも更に高い第3の低外気温環境である場合は、室内送風機27を圧縮機2より先に起動すると共に、電気ヒータ71を室内送風機27の起動直後、又は、その起動後に起動することで、外気温度Tamが前述した第2の低外気温環境よりも更に高い環境下において、冷媒回路Rの高圧側圧力が早期に上昇して圧縮機2の停止等が発生する不都合を未然に回避し、車室内暖房を円滑に開始することができるようになる。特に、この場合の起動モード3では、室内送風機27を起動した後、室内送風機27の風量が所定の低い値Qblw1となった時点で圧縮機2を起動すると共に、圧縮機2の回転数NCが所定回転数Nec1以上となるまでは室内送風機27の風量を所定の低い値Qblw1に制御し、圧縮機2の回転数NCが所定回転数Nec1以上となった場合、室内送風機27の風量を目標値まで増大させるので、高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 次に、図18~図21を参照して本発明の更にもう一つの他の実施例を説明する。図18はこの場合の車両用空気調和装置1の構成図であり、図14と同一符号で示すものは同一若しくは同様の機能を奏するものとする。前述した実施例(実施例3)では、発熱手段としての電気ヒータ(PTCヒータ)71を、空気流通路3において放熱器4に対し、流通空気の上流側に設けたが、この実施例(実施例4)では、放熱器4に対して空気流通路3を流通する空気の下流側に電気ヒータ(PTCヒータ)71を設けている。
 他の構成並びに図3の制御フローチャートは前記実施例と同様であり(ステップS7はこの場合は電気ヒータ71への通電開始)、この場合も起動モード1~3が選択して実行されるが、電気ヒータ71が放熱器4の空気下流側にあることにより、室内送風機27の停止/運転に拘わらず、電気ヒータ71が発熱してもその熱は放熱器4に伝わらないものとする。尚、発熱手段としては実施例の電気ヒータ(PTCヒータ)71に限らず、前述した実施例の熱媒体循環回路61(実施例1)やエンジンENGの冷却水を熱媒体とした発熱手段(実施例2)を設けて、それらの熱媒体-空気熱交換器64を放熱器4の空気下流側に設けた構造でも良い。
 次に、図19~図21を用いてこの実施例の場合の各起動モードについて詳細に説明する。
 (11-1)起動モード1(実施例4)
 図19のタイミングチャートは、この場合の起動モード1の具体的な起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。また、圧縮機2の起動と同時にコントローラ32は電気ヒータ71にも通電を開始する(起動)。これにより、電気ヒータ71の温度は上昇していき、最終的にコントローラ32は電気ヒータ71の温度を所定の目標値TGADに制御する。
 一方、圧縮機2の起動後、その回転数NCが所定回転数Nec1以上となった時点で、コントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。そして、圧縮機2の回転数NCが目標圧縮機回転数TGNCに到達した場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、電気ヒータ(発熱手段)71を放熱器4に対して空気流通路3を流通する空気の下流側に配置したときは、室内送風機27を起動しても電気ヒータ71が発生した熱が放熱器4に伝達されることは無いが、外気温度Tamが低い第1の低外気温環境である場合、圧縮機2及び電気ヒータ71を室内送風機27より先に起動することにより、外気温度Tamが極めて低い環境下で、圧縮機2の高圧側圧力の上昇と電気ヒータ27の温度の上昇の双方を促進し、暖房能力を迅速に立ち上げることが可能となる。特に、この場合の起動モード1では、圧縮機2を起動した後、圧縮機2の回転数NCが所定回転数Nec1以上となった時点で室内送風機27を起動し、室内送風機27の風量を所定の低い値Qblw1に制御すると共に、圧縮機2の回転数NCが目標回転数TGNCとなった場合、室内送風機27の風量を目標値まで増大させるので、高圧側圧力の上昇を促進し、電気ヒータ71の温度上昇も促進して、放熱器4と電気ヒータ71の暖房能力を迅速に立ち上げ、快適な車室内暖房を実現することができるようになる。
 (11-2)起動モード2(実施例4)
 次に、図20のタイミングチャートは、この場合の起動モード2の具体的な起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。この圧縮機2の起動直後、又は、その起動後にコントローラ32は室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。
 また、コントローラ32は室内送風機27の起動と同時に電気ヒータ71を起動し、電気ヒータ71の温度を所定の目標値TGADに制御する。そして、圧縮機2の回転数NCが目標圧縮機回転数TGNCに到達した場合、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第1の低外気温環境よりも高い第2の低外気温環境である場合は、室内送風機27及び電気ヒータ71を圧縮機2の起動直後、又は、その起動後に起動することで、外気温度Tamが前述した第1の低外気温環境よりも高く、高圧側圧力の上昇が第1の低外気温環境の場合に比して遅くならない場合は、室内送風機27をより早く起動し、車室内暖房の立ち上げを早めることができるようになる。特に、この場合の起動パターン2では、室内送風機27を起動した後、室内送風機27の風量を所定の低い値Qblw1に制御すると共に、圧縮機2の回転数NCが目標回転数TGNCとなった場合、室内送風機27の風量を目標値まで増大させるので、高圧側圧力の上昇を促進し、車室内暖房の立ち上げを効果的に早めることができるようになる。
 (11-3)起動モード3(実施例4)
 次に、図21のタイミングチャートは、この場合の起動モード3の具体的な起動パターンを示している。この場合、コントローラ32は自動車が起動(IGN ON)されると、先ず室内送風機27を起動し、ブロワ電圧BLVを上昇させて、その風量が所定の低い値Qblw1となるように制御する。また、この室内送風機27の起動直後、又は、起動後に電気ヒータ71に通電を開始する(起動)。これにより、電気ヒータ71の温度は上昇していき、最終的にコントローラ32は電気ヒータ71の温度を所定の目標値TGADに制御する。
 一方、コントローラ32は室内送風機27の風量が所定の低い値Qblw1となった時点で圧縮機2を起動し、前述した目標圧縮機回転数TGNCに向けて回転数NCを上昇させていく。そして、コントローラ32は圧縮機2の回転数NCが所定回転数Nec1以上となった時点で、所定時間t1をかけて室内送風機27の風量が目標値となる目標ブロワ電圧TGBLVに到達するように室内送風機27のブロワ電圧BLVを増大させる。
 このように、外気温度Tamが前記第2の低外気温環境よりも更に高い第3の低外気温環境である場合は、電気ヒータ71及び圧縮機2を室内送風機27の起動直後、又は、室内送風機27の起動後に起動することで、外気温度Tamが前述した第2の低外気温環境よりも更に高い環境下において、高圧側圧力が早期に上昇して圧縮機2の停止等が発生する不都合を未然に回避し、車室内暖房を円滑に開始することができるようになる。特に、この場合の起動パターン3では、室内送風機27を起動した後、室内送風機27の風量が所定の低い値Qblw1となった時点で圧縮機2を起動すると共に、圧縮機2の回転数NCが所定回転数Nec1以上となるまでは室内送風機27の風量を所定の低い値Qblw1に制御し、圧縮機2の回転数NCが所定回転数Nec1以上となった場合、室内送風機27の風量を目標値まで増大させるので、高圧側圧力の上がり過ぎによる不都合を回避しながら、迅速且つ円滑な車室内暖房の立ち上げを行うことができるようになる。
 尚、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに限らず、暖房モードのみ行うものにも本発明は有効である。また、上記実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22、69 電磁弁
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 30 インジェクション膨張弁
 32 コントローラ(制御手段)
 35 吐出側熱交換器
 40 インジェクション回路
 61 熱媒体循環回路(発熱手段)
 63 熱媒体加熱電気ヒータ
 64 熱媒体-空気熱交換器
 71 電気ヒータ(発熱手段)
 ENG エンジン
 R 冷媒回路

Claims (22)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に設けられて冷媒を放熱させる放熱器と、
     前記空気流通路に設けられて冷媒を吸熱させる吸熱器と、
     前記空気流通路に空気を流通させる室内送風機と、
     前記圧縮機と室内送風機の運転を制御する制御手段とを備え、
     前記放熱器からの放熱により前記車室内に供給される空気を加熱して当該車室内を暖房する車両用空気調和装置において、
     前記空気流通路に設けられ、前記車室内に供給される空気を加熱する発熱手段を備え、
     前記制御手段は、外気温度に基づき、前記圧縮機、前記室内送風機、及び、前記発熱手段を起動するタイミングを制御することを特徴とする車両用空気調和装置。
  2.  前記制御手段は、外気温度が低い第1の低外気温環境である場合、前記圧縮機を前記室内送風機より先に起動すると共に、
     前記発熱手段を前記室内送風機と同時、又は、該室内送風機の起動直後、又は、該室内送風機の起動後に起動することを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御手段は、前記圧縮機を起動した後、該圧縮機の回転数が所定回転数以上となった時点で前記室内送風機を起動し、該室内送風機の風量を所定の低い値に制御すると共に、
     前記発熱手段の温度が所定値より高くなった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項2に記載の車両用空気調和装置。
  4.  前記制御手段は、前記圧縮機を起動した後、該圧縮機の回転数が所定回転数以上となった時点、又は、高圧側圧力が所定圧力以上となった時点で前記室内送風機を起動すると共に、
     該室内送風機の風量が所定の低い値となった時点で前記発熱手段を起動し、該発熱手段の温度が所定値より高くなるまでは前記室内送風機の風量を前記所定の低い値に制御し、前記発熱手段の温度が所定値より高くなった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項2に記載の車両用空気調和装置。
  5.  前記制御手段は、前記圧縮機を起動した後、該圧縮機の回転数が所定回転数以上となった時点で前記室内送風機を起動し、該室内送風機の風量を所定の低い値に制御すると共に、
     前記圧縮機の回転数が目標回転数となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項2に記載の車両用空気調和装置。
  6.  前記制御手段は、外気温度が前記第1の低外気温環境よりも高い第2の低外気温環境である場合、前記室内送風機を前記圧縮機と同時、又は、該圧縮機の起動直後、又は、該圧縮機の起動後に起動すると共に、
     前記発熱手段を前記室内送風機と同時、又は、該室内送風機の起動直後、又は、該室内送風機の起動後に起動することを特徴とする請求項2乃至請求項5のうちの何れかに記載の車両用空気調和装置。
  7.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量を所定の低い値に制御すると共に、前記発熱手段の温度が所定値より高くなった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項6に記載の車両用空気調和装置。
  8.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量が所定の低い値となった時点で前記発熱手段を起動すると共に、
     前記発熱手段の温度が所定値より高くなるまで、又は、高圧側圧力が所定圧力以上となるまでは前記室内送風機の風量を前記所定の低い値に制御し、前記発熱手段の温度が所定値より高くなった場合、又は、高圧側圧力が所定圧力以上となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項6に記載の車両用空気調和装置。
  9.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量を所定の低い値に制御すると共に、前記圧縮機の回転数が所定回転数以上となった時点で前記発熱手段を起動し、
     前記圧縮機の回転数が目標回転数となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項6に記載の車両用空気調和装置。
  10.  前記制御手段は、外気温度が前記第2の低外気温環境よりも高い第3の低外気温環境である場合、前記室内送風機を前記圧縮機より先に起動すると共に、
     前記発熱手段を前記室内送風機と同時、又は、該室内送風機の起動直後、又は、該室内送風機の起動後に起動することを特徴とする請求項6乃至請求項9のうちの何れかに記載の車両用空気調和装置。
  11.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量が所定の低い値となった時点で前記圧縮機を起動すると共に、
     前記発熱手段の温度が所定値より高くなるまでは前記室内送風機の風量を前記所定の低い値に制御し、前記発熱手段の温度が所定値より高くなった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項10に記載の車両用空気調和装置。
  12.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量が所定の低い値となった時点で前記発熱手段を起動し、該発熱手段の起動と同時、又は、該発熱手段の起動直後に前記圧縮機を起動すると共に、
     前記発熱手段の温度が所定値より高くなるまで、又は、高圧側圧力が所定圧力以上となるまでは前記室内送風機の風量を前記所定の低い値に制御し、前記発熱手段の温度が所定値より高くなった場合、又は、高圧側圧力が所定圧力以上となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項10に記載の車両用空気調和装置。
  13.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量が所定の低い値となった時点で前記圧縮機を起動すると共に、
     該圧縮機の回転数が所定回転数以上となるまでは前記室内送風機の風量を前記所定の低い値に制御し、前記圧縮機の回転数が前記所定回転数以上となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項10に記載の車両用空気調和装置。
  14.  前記発熱手段は、前記放熱器に対して前記空気流通路を流通する空気の下流側に配置されると共に、
     前記制御手段は、外気温度が低い第1の低外気温環境である場合、前記圧縮機及び前記発熱手段を前記室内送風機より先に起動することを特徴とする請求項1に記載の車両用空気調和装置。
  15.  前記制御手段は、前記圧縮機を起動した後、該圧縮機の回転数が所定回転数以上となった時点で前記室内送風機を起動し、該室内送風機の風量を所定の低い値に制御すると共に、
     前記圧縮機の回転数が目標回転数となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項14に記載の車両用空気調和装置。
  16.  前記制御手段は、外気温度が前記第1の低外気温環境よりも高い第2の低外気温環境である場合、前記室内送風機及び前記発熱手段を前記圧縮機の起動直後、又は、該圧縮機の起動後に起動することを特徴とする請求項14又は請求項15に記載の車両用空気調和装置。
  17.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量を所定の低い値に制御すると共に、
     前記圧縮機の回転数が目標回転数となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項16に記載の車両用空気調和装置。
  18.  前記制御手段は、外気温度が前記第2の低外気温環境よりも高い第3の低外気温環境である場合、前記発熱手段及び前記圧縮機を前記室内送風機の起動直後、又は、該室内送風機の起動後に起動することを特徴とする請求項16又は請求項17に記載の車両用空気調和装置。
  19.  前記制御手段は、前記室内送風機を起動した後、該室内送風機の風量が所定の低い値となった時点で前記圧縮機を起動すると共に、
     該圧縮機の回転数が所定回転数以上となるまでは前記室内送風機の風量を前記所定の低い値に制御し、前記圧縮機の回転数が前記所定回転数以上となった場合、前記室内送風機の風量を目標値まで増大させることを特徴とする請求項18に記載の車両用空気調和装置。
  20.  前記空気流通路に設けられた熱媒体-空気熱交換器を備え、電気ヒータ又はエンジンにより加熱された熱媒体を前記熱媒体-空気熱交換器に循環する熱媒体循環回路から前記発熱手段を構成したことを特徴とする請求項1乃至請求項19のうちの何れかに記載の車両用空気調和装置。
  21.  前記熱媒体循環回路は、前記熱媒体-空気熱交換器への熱媒体の循環を制御する弁装置を備え、
     前記制御手段は、前記弁装置を開放することにより、前記発熱手段を起動することを特徴とする請求項20に記載の車両用空気調和装置。
  22.  前記空気流通路に設けられ、前記車室内に供給される空気を加熱する電気ヒータにより前記発熱手段を構成したことを特徴とする請求項1乃至請求項19のうちの何れかに記載の車両用空気調和装置。
PCT/JP2014/076664 2013-10-07 2014-10-06 車両用空気調和装置 WO2015053211A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014004619.1T DE112014004619T5 (de) 2013-10-07 2014-10-06 Fahrzeug-Klimaanlageneinrichtung
US15/027,415 US10391836B2 (en) 2013-10-07 2014-10-06 Vehicle air-conditioning device
CN201480055399.1A CN105612069B (zh) 2013-10-07 2014-10-06 车辆用空调装置
US16/378,195 US10946719B2 (en) 2013-10-07 2019-04-08 Vehicle air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-210059 2013-10-07
JP2013210059A JP6207958B2 (ja) 2013-10-07 2013-10-07 車両用空気調和装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/027,415 A-371-Of-International US10391836B2 (en) 2013-10-07 2014-10-06 Vehicle air-conditioning device
US16/378,195 Division US10946719B2 (en) 2013-10-07 2019-04-08 Vehicle air-conditioning device

Publications (1)

Publication Number Publication Date
WO2015053211A1 true WO2015053211A1 (ja) 2015-04-16

Family

ID=52813027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076664 WO2015053211A1 (ja) 2013-10-07 2014-10-06 車両用空気調和装置

Country Status (5)

Country Link
US (2) US10391836B2 (ja)
JP (1) JP6207958B2 (ja)
CN (1) CN105612069B (ja)
DE (1) DE112014004619T5 (ja)
WO (1) WO2015053211A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005484B2 (ja) * 2012-11-09 2016-10-12 サンデンホールディングス株式会社 車両用空気調和装置
JP5999637B2 (ja) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 車両用空気調和装置
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
KR101774322B1 (ko) * 2015-12-22 2017-09-04 엘지전자 주식회사 공기조화기 및 그 제조방법
JP6710061B2 (ja) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6917794B2 (ja) * 2017-06-14 2021-08-11 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11413932B2 (en) * 2017-10-12 2022-08-16 Ford Global Technologies, Llc Blower motor operation
JP6852642B2 (ja) 2017-10-16 2021-03-31 株式会社デンソー ヒートポンプサイクル
JP6870570B2 (ja) 2017-10-26 2021-05-12 株式会社デンソー 車両用熱管理システム
CN107757298B (zh) * 2017-11-01 2021-03-23 蔚来(安徽)控股有限公司 喷气增焓热泵空调系统和包括该热泵空调系统的电动车
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
DE102018127108B4 (de) * 2018-10-30 2021-04-22 Hanon Systems Vorrichtungen für ein Klimatisierungssystem eines Kraftfahrzeugs sowie ein Verfahren zum Betreiben der Vorrichtungen
JP7280770B2 (ja) * 2019-07-29 2023-05-24 サンデン株式会社 車両用空気調和装置
KR20210026705A (ko) * 2019-09-02 2021-03-10 현대자동차주식회사 차량용 히트펌프 시스템
DE102019135056A1 (de) * 2019-12-19 2021-06-24 Audi Ag Kältemittelmanagement für ein Nachheizverfahren zum Betreiben einer Kälteanlage für ein Kraftfahrzeug, Kälteanlage und Kraftfahrzeug mit einer solchen Kälteanlage
CN111845255A (zh) * 2020-05-29 2020-10-30 江西江铃集团新能源汽车有限公司 电动车中鼓风机的控制方法及系统
US20230031077A1 (en) * 2021-07-29 2023-02-02 Rivian Ip Holdings, Llc Heating, ventilation, and air conditioning case with multi-position door for case recirculation
CN114459138B (zh) * 2022-02-25 2023-12-12 智己汽车科技有限公司 带自主发热鼓风机的空调控制方法及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558140A (ja) * 1991-08-30 1993-03-09 Mitsubishi Motors Corp 車両用エアコンデイシヨナ
JPH05106921A (ja) * 1991-10-18 1993-04-27 Nippondenso Co Ltd 車両用空気調和装置
JPH08142805A (ja) * 1994-11-22 1996-06-04 Nippon Climate Syst:Kk 自動車用フロントガラス曇り除去装置
JP2004155264A (ja) * 2002-11-05 2004-06-03 Denso Corp 車両用空調装置
JP2010013044A (ja) * 2008-07-07 2010-01-21 Calsonic Kansei Corp 車両用空気調和システム
JP2010058587A (ja) * 2008-09-02 2010-03-18 Honda Motor Co Ltd 車両用空調装置
JP2013248966A (ja) * 2012-05-31 2013-12-12 Denso Corp 車両システム

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2301725A (en) * 1938-03-30 1942-11-10 Detroit Lubricator Co Apparatus for conditioning air
US2628480A (en) * 1952-04-08 1953-02-17 Archie S Feinberg Combination refrigeration and evaporating cooling unit
JPS5719806A (en) * 1980-07-09 1982-02-02 Toyota Central Res & Dev Lab Inc Fluctuation driving device
US4557115A (en) * 1983-05-25 1985-12-10 Mitsubishi Denki Kabushiki Kaisha Heat pump having improved compressor lubrication
KR900005722B1 (ko) * 1985-11-18 1990-08-06 마쯔시다덴기산교 가부시기가이샤 공기조화기의 제상(除霜)제어장치
US5257508A (en) * 1990-09-14 1993-11-02 Nartron Corporation Environmental control system
US5271238A (en) * 1990-09-14 1993-12-21 Nartron Corporation Environmental control system
US5253483A (en) * 1990-09-14 1993-10-19 Nartron Corporation Environmental control system
US5598887A (en) * 1993-10-14 1997-02-04 Sanden Corporation Air conditioner for vehicles
JP3555187B2 (ja) * 1994-04-25 2004-08-18 株式会社デンソー 空調装置
JP3237463B2 (ja) * 1995-05-17 2001-12-10 松下電器産業株式会社 電気自動車用空調制御装置
JP3596090B2 (ja) * 1995-06-06 2004-12-02 株式会社デンソー 車両用空調装置
JP3327053B2 (ja) * 1995-06-06 2002-09-24 株式会社デンソー 空調装置
US5623156A (en) * 1995-09-28 1997-04-22 Cypress Semiconductor Corporation Electrostatic discharge (ESD) protection circuit and structure for output drivers
JP3492849B2 (ja) * 1996-05-01 2004-02-03 サンデン株式会社 車両用空気調和装置
JPH115439A (ja) * 1997-06-17 1999-01-12 Denso Corp 車両用空気調和装置
JP4134399B2 (ja) * 1997-11-28 2008-08-20 株式会社デンソー 冷凍サイクル制御装置
JP3985384B2 (ja) 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
DE60031808T2 (de) * 1999-07-26 2007-09-20 Denso Corp., Kariya Kühlkreisvorrichtung
JP3985394B2 (ja) * 1999-07-30 2007-10-03 株式会社デンソー 冷凍サイクル装置
JP2001248920A (ja) * 2000-03-06 2001-09-14 Mitsubishi Electric Corp 冷凍回路の制御装置
CN1331538C (zh) * 2000-08-28 2007-08-15 夏普公司 空气改质机器及使用于此的离子产生装置
JP2002211234A (ja) 2000-11-14 2002-07-31 Calsonic Kansei Corp 車両用空調装置
EP1489367B1 (en) * 2002-03-28 2011-08-24 Panasonic Corporation Refrigerating cycle device
JP3925286B2 (ja) * 2002-04-19 2007-06-06 株式会社デンソー 車両用冷凍サイクル装置およびその制御方法
JP4626125B2 (ja) * 2003-03-14 2011-02-02 日産自動車株式会社 燃料電池システム
JP2004342461A (ja) * 2003-05-15 2004-12-02 Nissan Motor Co Ltd 燃料電池システム
JP3861918B2 (ja) * 2004-11-30 2006-12-27 ダイキン工業株式会社 空気調和機
JP4804839B2 (ja) * 2005-09-05 2011-11-02 カルソニックカンセイ株式会社 車両用空調装置の制御システム
JP2010260449A (ja) * 2009-05-07 2010-11-18 Nippon Soken Inc 車両用空調装置
JP2011005982A (ja) * 2009-06-26 2011-01-13 Denso Corp 車両用空調装置
JP5446524B2 (ja) * 2009-07-08 2014-03-19 株式会社デンソー 車両用空調装置
JP5265010B2 (ja) * 2009-07-22 2013-08-14 三菱電機株式会社 ヒートポンプ装置
JP5751028B2 (ja) * 2010-06-10 2015-07-22 株式会社デンソー ヒートポンプサイクル
WO2012004987A1 (ja) * 2010-07-07 2012-01-12 株式会社デンソー 二段昇圧式冷凍サイクル装置
JP5626198B2 (ja) * 2010-12-28 2014-11-19 株式会社デンソー 冷媒放熱器
EP2679421B1 (en) * 2011-02-21 2019-11-13 Hitachi, Ltd. Vehicle air conditioning system
KR101342931B1 (ko) * 2011-03-09 2013-12-18 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
DE102012205200B4 (de) * 2011-04-04 2020-06-18 Denso Corporation Kältemittelkreislaufvorrichtung
JP5659925B2 (ja) * 2011-04-04 2015-01-28 株式会社デンソー 車両用空調装置
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
KR101342385B1 (ko) * 2011-06-10 2013-12-16 엘지전자 주식회사 전기자동차용 공기조화장치
JP5533816B2 (ja) * 2011-08-08 2014-06-25 株式会社デンソー 車両用空調装置
CN103423928B (zh) * 2012-05-21 2016-07-06 本田技研工业株式会社 车辆用空调装置
KR101394771B1 (ko) * 2012-06-04 2014-05-15 현대자동차주식회사 차량의 공조 제어 방법
JP6088753B2 (ja) * 2012-06-13 2017-03-01 サンデンホールディングス株式会社 車両用空気調和装置
KR101416357B1 (ko) * 2012-09-07 2014-07-08 현대자동차 주식회사 차량용 히트펌프 시스템 및 그 제어방법
JP6073653B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6073652B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6073651B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
JP5999637B2 (ja) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 車両用空気調和装置
JP6005484B2 (ja) * 2012-11-09 2016-10-12 サンデンホールディングス株式会社 車両用空気調和装置
EP2962878B1 (en) * 2013-03-29 2017-10-25 Japan Climate Systems Corporation Vehicle air conditioner
JP6125312B2 (ja) * 2013-04-26 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置
JP6040099B2 (ja) * 2013-05-28 2016-12-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6125330B2 (ja) * 2013-05-28 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置
JP6174414B2 (ja) * 2013-08-07 2017-08-02 サンデンホールディングス株式会社 車両用空気調和装置
JP6192434B2 (ja) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 車両用空気調和装置
JP6241595B2 (ja) * 2013-08-23 2017-12-06 サンデンホールディングス株式会社 車両用空気調和装置
JP6192435B2 (ja) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 車両用空気調和装置
JP6223753B2 (ja) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
US20150153078A1 (en) * 2013-12-02 2015-06-04 Hyundai Motor Company Heat pump system for vehicle
JP6233009B2 (ja) * 2013-12-26 2017-11-22 株式会社デンソー 車両用空調装置
JP6028756B2 (ja) * 2014-03-19 2016-11-16 トヨタ自動車株式会社 電池温度調節装置
JP6418779B2 (ja) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6418787B2 (ja) * 2014-05-26 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6470026B2 (ja) * 2014-12-04 2019-02-13 サンデンホールディングス株式会社 車両用空気調和装置
JP6571405B2 (ja) * 2015-06-19 2019-09-04 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6619572B2 (ja) * 2015-07-01 2019-12-11 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6710061B2 (ja) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6692723B2 (ja) * 2016-09-02 2020-05-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6767841B2 (ja) * 2016-10-14 2020-10-14 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR102474376B1 (ko) * 2018-02-12 2022-12-05 현대자동차 주식회사 압축기 제어 장치 및 그 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558140A (ja) * 1991-08-30 1993-03-09 Mitsubishi Motors Corp 車両用エアコンデイシヨナ
JPH05106921A (ja) * 1991-10-18 1993-04-27 Nippondenso Co Ltd 車両用空気調和装置
JPH08142805A (ja) * 1994-11-22 1996-06-04 Nippon Climate Syst:Kk 自動車用フロントガラス曇り除去装置
JP2004155264A (ja) * 2002-11-05 2004-06-03 Denso Corp 車両用空調装置
JP2010013044A (ja) * 2008-07-07 2010-01-21 Calsonic Kansei Corp 車両用空気調和システム
JP2010058587A (ja) * 2008-09-02 2010-03-18 Honda Motor Co Ltd 車両用空調装置
JP2013248966A (ja) * 2012-05-31 2013-12-12 Denso Corp 車両システム

Also Published As

Publication number Publication date
DE112014004619T5 (de) 2016-07-14
US20160236539A1 (en) 2016-08-18
US10946719B2 (en) 2021-03-16
CN105612069B (zh) 2018-01-19
CN105612069A (zh) 2016-05-25
US10391836B2 (en) 2019-08-27
JP6207958B2 (ja) 2017-10-04
US20190232757A1 (en) 2019-08-01
JP2015074274A (ja) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6207958B2 (ja) 車両用空気調和装置
JP6271195B2 (ja) 車両用空気調和装置
JP6125325B2 (ja) 車両用空気調和装置
JP6125312B2 (ja) 車両用空気調和装置
JP6241595B2 (ja) 車両用空気調和装置
JP6125330B2 (ja) 車両用空気調和装置
JP6339419B2 (ja) 車両用空気調和装置
JP6040099B2 (ja) 車両用空気調和装置
WO2017146270A1 (ja) 車両用空気調和装置
WO2014084343A1 (ja) 車両用空気調和装置
JP6590551B2 (ja) 車両用空気調和装置
JP6571405B2 (ja) 車両用空気調和装置
WO2015020030A1 (ja) 車両用空気調和装置
WO2017002547A1 (ja) 車両用空気調和装置
JP6571430B2 (ja) 車両用空気調和装置
JP6680601B2 (ja) 車両用空気調和装置
WO2017179597A1 (ja) 車両用空気調和装置
JP6047387B2 (ja) 車両用空気調和装置
JP6047388B2 (ja) 車両用空気調和装置
WO2017146267A1 (ja) 車両用空気調和装置
JP2018103879A (ja) 車両用空気調和装置
JP2019131038A (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15027415

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140046191

Country of ref document: DE

Ref document number: 112014004619

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852113

Country of ref document: EP

Kind code of ref document: A1