WO2015053139A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015053139A1
WO2015053139A1 PCT/JP2014/076234 JP2014076234W WO2015053139A1 WO 2015053139 A1 WO2015053139 A1 WO 2015053139A1 JP 2014076234 W JP2014076234 W JP 2014076234W WO 2015053139 A1 WO2015053139 A1 WO 2015053139A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
metal
base
drive circuit
power conversion
Prior art date
Application number
PCT/JP2014/076234
Other languages
English (en)
French (fr)
Inventor
達也 中澤
秀則 篠原
芳春 山下
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP14852207.1A priority Critical patent/EP3057217A4/en
Priority to US15/026,041 priority patent/US9814154B2/en
Priority to JP2015541535A priority patent/JPWO2015053139A1/ja
Publication of WO2015053139A1 publication Critical patent/WO2015053139A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1401Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
    • H05K7/1402Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards
    • H05K7/1407Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards by turn-bolt or screw member
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14322Housings specially adapted for power drive units or power converters wherein the control and power circuits of a power converter are arranged within the same casing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors

Definitions

  • the present invention relates to a power converter, and more particularly, to a power converter having a structure for connecting a ground pattern of a drive circuit board to a metal base.
  • high-voltage storage batteries for driving power
  • inverters for driving the motor by converting the DC high-voltage output of the high-voltage storage battery to AC high-voltage output Device
  • DC-DC converter device that converts DC high voltage output of high voltage storage battery to DC low voltage output and supplies power to low voltage loads such as vehicle lights and radios, and as auxiliary power source for low voltage load
  • a low-voltage storage battery is installed.
  • a DC-DC converter device is a high voltage switching circuit that converts a high DC voltage into an AC voltage, a transformer that converts the AC high voltage into an AC low voltage, and converts the low voltage AC voltage into a DC voltage.
  • a low voltage rectifier circuit and an output terminal for outputting a voltage converted voltage are provided.
  • a DC-DC converter device employing a metal case.
  • Such a DC-DC converter device has a structure in which a transformer, a step-down circuit unit, a step-up circuit unit, and a control circuit unit are mounted on the inner surface of a metal case.
  • the part is formed of a metal circuit board (see, for example, paragraph [0018] of Patent Document 1).
  • the ground pattern of the step-down circuit and the step-up circuit is connected to a metal case.
  • the step-down circuit board and the step-up circuit board are fixed to a metal case by a fastening member such as a screw, and the ground pattern and the metal case are electrically connected.
  • a fastening member having a large head outer diameter is used in order to improve vibration resistance, secure a large area discharge path and current flow path, and the like. For this reason, when a resin substrate such as an epoxy resin containing glass fiber is used as the step-down circuit substrate or the step-up circuit substrate in order to reduce the weight and cost of the DC-DC converter device, Cracks and pattern peeling occur.
  • the power conversion device of the present invention includes a metal base provided with a protrusion having a grounding mounting surface, a transformer mounted on the metal base and performing power conversion between the input side and the output side, and current input / output of the transformer At least a pair of rectifying elements for controlling the power supply, a drive circuit board mounted on a metal base and provided with first and second wirings and a ground pattern for supplying a main current to each of the rectifying elements, and for grounding the protrusions A grounding metal conductor installed on the mounting surface and connected to the ground pattern.
  • the ground pattern and the metal base are connected in a state where the ground metal conductor is installed on the ground mounting surface of the protrusion. For this reason, the crack of a drive circuit board and pattern peeling can be prevented.
  • FIG. 2 is an external exploded perspective view of the DC-DC converter device illustrated in FIG. 1.
  • A is a plan view of the embodiment of the DC-DC converter device of FIG. 2
  • (b) is a side view of (a) seen from the IIIb side.
  • the enlarged view of the bus-bar molded object of FIG. The disassembled perspective view of a bus-bar molded object.
  • the perspective view of the drive circuit board assembly which attached the bus-bar molded object to the drive circuit board of FIG.
  • FIG. 12 is a sectional view taken along line XIII-XIII in FIG. 11.
  • FIG. 12 is a sectional view taken along line XIV-XIV in FIG. 11.
  • the DC-DC converter device shown as an embodiment of the power conversion device of the present invention is used for an electric vehicle, a plug-in hybrid vehicle, and the like.
  • a high voltage storage battery is mounted as a power source for the traveling motor
  • a low voltage storage battery for operating auxiliary equipment such as a light and a radio is mounted.
  • the DC-DC converter device includes a high voltage switching circuit, a low voltage rectifier circuit, and a transformer that connects both of these circuits, and converts the high voltage of the high voltage storage battery into a low voltage or the low voltage of the low voltage storage battery. Or convert power to high voltage.
  • the DC-DC converter device of the present invention includes a grounding metal conductor for connecting a ground pattern provided on the drive circuit board to a metal base, and the grounding metal conductor is provided on the grounding mounting surface provided on the metal base. It has the structure installed in and attached to a metal base. As a result, the prevention of substrate cracks and pattern peeling due to the tightening force on the drive circuit substrate is achieved.
  • a DC-DC converter device of the present invention will be described with reference to the drawings.
  • FIG. 1 is a circuit diagram of a DC-DC converter device 100 of the present invention.
  • the DC-DC converter device 100 includes a high-voltage side switching circuit 210 that converts a high-voltage DC voltage into an AC voltage, a main transformer 250 that converts an AC high voltage into an AC low voltage, and a low-voltage AC voltage as a DC voltage.
  • the low voltage side rectifier circuit 220 for converting to The high voltage side switching circuit 210 and the low voltage side rectifier circuit 220 are subjected to switching control by the control circuit 240.
  • a resonance coil 203 (Lr) is connected between the high voltage side switching circuit 210 and the main transformer 250, and a high voltage is obtained using a combined inductance of the inductance of the resonance coil 203 and the leakage inductance of the main transformer 250.
  • the zero voltage switching of the MOSFET constituting the side switching circuit 210 is enabled.
  • a filter coil 207 (L1) and a filter capacitor 205 (C1) are provided on the output side of the low voltage side rectifier circuit 220 in order to remove noise superimposed on the output voltage.
  • the resonance coil 203, the filter coil 207, and the filter capacitor 205 can be omitted.
  • the high voltage side switching circuit 210 includes four MOSFETs H1 to H4 connected as an H bridge type and a smoothing input capacitor 202 (Cin). Each MOSFET H1 to H4 is provided with a snubber capacitor in parallel. By performing phase shift PWM control on the four MOSFETs H1 to H4 of the high voltage side switching circuit 210, an AC voltage is generated on the primary side of the main transformer 250.
  • the low-voltage side rectifier circuit 220 has two rectification phases constituted by MOSFETs S1 and S2, and a smoothing circuit constituted by a choke coil 206 (Lout) and a smoothing capacitor 208 (Cout).
  • the high potential side wirings of the respective rectification phases that is, the drain side wirings of the MOSFETs S1 and S2, are connected to secondary side coil terminals (output terminals) 251 and 252 (see FIG. 11 and the like) of the main transformer 250.
  • a secondary side center tap terminal 253 (see FIG.
  • the low voltage side rectifier circuit 220 is also provided with a smoothing circuit including a filter coil 207 (L1) and a filter capacitor 205 (C1).
  • the rectifying element is indicated by two MOSFETs S1 and S2.
  • the rectifying elements are shown as three pairs of six MOSFETs in total. The number of MOSFETs is appropriately determined in design.
  • a drive signal is supplied from the control circuit 240 to the gates of the MOSFETs S1 and S2 via a first wiring pattern 301 for transmitting a drive signal (see FIG. 12 and the like).
  • the drain terminal of the MOSFET S1 is connected to the secondary high potential side coil terminal 252 (see FIG. 11 etc.) of the main transformer 250 via the third wiring pattern 303 for main current transmission, and the drain terminal of the MOSFET S2 is Further, it is connected to the secondary low potential side coil terminal 251 (see FIG. 12, etc.) of the main transformer 250 through the third wiring pattern 303 for main current transmission.
  • the source terminals of the MOSFETs S1 and S2 are connected to the second wiring pattern 302 for main current transmission, and are grounded via a shunt resistor 230 (Ri) for detecting current.
  • the DC-DC converter device 100 can also include an active clamp circuit for suppressing a surge voltage applied to the MOSFETs S1 and S2 of the low voltage side rectifier circuit 220.
  • the active clamp circuit includes an active clamp MOSFET and an active clamp capacitor.
  • FIG. 2 is an exploded perspective view of the DC-DC converter device 100 illustrated in FIG. 1
  • FIG. 3 is a diagram illustrating an arrangement of components of the DC-DC converter device 100 illustrated in FIG.
  • the DC-DC converter device 100 includes a metal base 10 made of metal having a rectangular shape, for example, aluminum die casting, and members constituting the DC-DC-converter circuit described with reference to FIG. . These members are covered with a top cover 1.
  • the metal base 10 includes a drive circuit board assembly 300A having a high voltage / low voltage circuit section, a main transformer 250 (T), a resonance coil 203 (Lr), a choke coil 206 (Lout), and a control circuit board assembly. 600A is attached.
  • FIG. 9 shows an enlarged perspective view of the metal base 10.
  • the metal base 10 is integrally formed with a GND protruding terminal 10b for connecting a GND terminal for low voltage output.
  • the metal base 10 is integrally formed with a GND protruding terminal 10a (protruding portion) for grounding a ground pattern 302a (see FIG. 12) described later, a protruding terminal 10c for attaching the main transformer 250, and the like.
  • the metal base 10 has an external appearance including a high voltage connector (not shown) for inputting a high voltage, a signal connector (not shown) for connecting a signal with an external electrical component, and an output terminal for outputting a low voltage output ( (Not shown) is attached.
  • a cooling unit 800 is attached to the bottom surface of the metal base 10 via a seal member such as an O-ring (not shown).
  • the cooling unit 800 is provided with a cooling flow path, and the heat generating components in the DC-DC converter device 100 are cooled by the refrigerant flowing through the cooling flow path.
  • the refrigerant a mixture of antifreeze and water in a ratio of 1: 1 is generally suitable, but other refrigerants can also be used.
  • the cooling device for cooling the DC-DC converter device 100 is shown as an embodiment, and a cooling device using a cooling gas such as air may be used.
  • FIG. 10 is a perspective view in which a switching element and a rectifying element are attached to a metal base.
  • FIG. 10 is referred to together with FIGS.
  • the drive circuit board assembly 300A is configured by mounting the components of the high voltage side switching circuit 210 and the components of the low voltage side rectifier circuit 220 described in FIG. 1 on a drive circuit board 300 made of a single glass epoxy board. It is configured.
  • MOSFETs H1 to H4 that constitute the high-voltage side switching circuit 210, smoothing input capacitors 202 (Cin), electronic components such as a gate resistor (not shown), and MOSFETs S1 and S2 that constitute the low-voltage side rectifier circuit 220 , Choke coil 206 (Lout), smoothing capacitor 208 (Cout), filter coil 207 (L1) and filter capacitor 205 (C1) constituting the smoothing circuit, shunt resistor 230 (Ri) for current detection, and not shown An electronic component such as a gate resistor is mounted.
  • the MOSFETs H1 to H4 and the terminals of S1 and S2 are electrically connected to the circuit pattern of the drive circuit board 300 by solder. The circuit pattern will be described later with reference to FIGS.
  • a bus bar molded body 400 having metal conductors 402A 1 , 402A 2 and the like is attached to a region where the MOSFETs S1 and S2 of the drive circuit board assembly 300A are connected. Details of the bus bar molded body 400 will be described later.
  • MOSFETs H1 to H4 as switching elements mounted on the high voltage circuit area of the drive circuit board 300 and MOSFETs S1 and S2 as rectifier elements mounted on the low voltage circuit area of the drive circuit board 300 are thermally conductive. It is fixed in close contact with the metal base 10 by a leaf spring 35 through a good insulating heat radiation sheet 32. The MOSFET is cooled by the refrigerant flowing through the cooling flow path of the cooling unit 800 described above. Each of the MOSFETs H1 to H4 and the MOSFETs S1 and S2 is connected to the drive circuit board 300 by connection leads 37 (see FIG. 10 and the like).
  • the main transformer 250, the choke coil 206, and the filter coil 207 are fixed on the metal base 10 by fastening members.
  • the metal base 10, the drive circuit board assembly 300A, the control circuit board assembly 600A, the main transformer 250, the choke coil 206, and the filter coil 207 are covered with a metal top cover 1.
  • the control circuit board assembly 600A includes a drive signal generation circuit that generates drive signals for driving MOSFETs of the high-voltage side switching circuit 210 and the low-voltage side rectifier circuit 220 described in FIG. It is configured to be mounted on a substrate 600.
  • the control circuit board assembly 600A is connected to the drive circuit of the drive circuit board assembly 300A by a direct connector. In addition to the direct connector, a flexible wiring board or a signal harness may be used for these connections.
  • FIG. 3A is a view of the mounting component of the metal base 10 as viewed from above
  • FIG. 3B is a side view of FIG. 3A viewed from the IIIb side
  • FIG. It is a principal part enlarged view of b).
  • the bus bar molded body 400, the choke coil 206, and the filter coil 207 constituting the low-voltage side rectifier circuit 220 are referred to as mounting parts on the first surface side of the drive circuit board 300.
  • the MOSFETs S1 and S2 which are low voltage side rectifying elements are referred to as mounting components on the second surface side of the drive circuit board 300.
  • the mounted components on the second surface side are arranged in close contact with the metal base 10, and all of them are arranged on the layer on the side of the main transformer 250.
  • the drive circuit board 300 is disposed above the metal base 10 at a predetermined interval, and the rectifying MOSFETs S1 and S2 are arranged in close contact with the metal base 10 in a possible low voltage circuit area of the drive circuit board 300. ing.
  • FIG. 5 is an enlarged view of the bus bar molded body of FIG. 2, and FIG. 6 is an exploded perspective view of the bus bar molded body.
  • 7 is a perspective view of the drive circuit board assembly in which the bus bar molded body is attached to the drive circuit board of FIG. 2, and
  • FIG. 8 is a perspective view of the attached drive circuit board assembly of FIG. is there.
  • the bus bar molded body 400 is made of a resin material having an insulating property by combining a high potential side metal conductor 402A 1 , 402A 2 , a low potential side metal conductor 402B and a ground metal conductor 402C with a resin mold.
  • the base portion 401 is integrally molded.
  • the base 401 is formed of a resin having high heat resistance (for example, PPS).
  • the base 401 does not exist as a single unit, and the base 401 illustrated in FIG. 6 is for easy understanding.
  • the high potential side metal conductors 402A 1 and 402A 2 are formed in line-symmetric shapes, and three protrusions projecting toward the drive circuit board 300 at a predetermined pitch on the lower end surfaces of the high potential side metal conductors 402A 1 and 402A 2.
  • a terminal 402a is formed.
  • One attachment hole 403 is formed on the base 401 side of each of the high potential side metal conductors 402A 1 and 402A 2 .
  • Three projecting terminals 402b 1 projecting toward the drive circuit board 300 at a predetermined pitch are formed on the lower end surfaces of the opposing side surfaces of the low potential side metal conductor 402B, and the projecting on the side surface opposite to the base 401.
  • Terminal 402b 2 is formed.
  • a mounting hole 404 is formed on the base 401 side of the ground metal conductor 402C, and a protruding terminal 402c that protrudes toward the drive circuit board 300 is formed on the opposite side surface of the base 401.
  • Each of the high potential side metal conductors 402A 1 and 402A 2 has terminal portions 412a and 412b in which the periphery of the mounting hole 403 is exposed on the upper surface side of the base portion 401.
  • the portion where the three protruding terminals 402a of the high potential side metal conductors 402A 1 and 402A 2 are formed protrudes outward from the side surface of the base 401.
  • Three protruding terminals 402b 1 and one protruding terminal 402b 2 of the low potential side metal conductor 402B protrude from the base 401.
  • the ground metal conductor 402C is disposed below the high potential side metal conductors 402A 1 and 402A 2 , and is a terminal portion (exposed portion) exposed from the mounting hole 401a formed in the base 401 around the mounting hole 403. 413.
  • FIG. 11 is an enlarged view of the vicinity of the main transformer 250 in FIG. 3A
  • FIG. 12 is a view in which the low-potential side metal conductor 402B is removed from FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 11, and
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • the low-voltage side rectifier circuit 220 includes three pairs of MOSFETs S1 and S2, for a total of six.
  • the drive circuit board 300 includes drive signal wirings for transmitting drive signals for driving the MOSFETs S1 and S2, which are low-voltage rectifying elements, that is, the first wiring pattern 301 and the MOSFET S1.
  • a second wiring pattern 302 and a third wiring pattern 303 for transmitting a main current to S2, and a ground pattern 302a are provided.
  • the first wiring pattern 301 is connected to the gate terminals of the MOSFETs S1 and S2.
  • the second wiring pattern 302 is connected to the source terminals of the MOSFETs S1 and S2, and the third wiring pattern 303 is connected to the drain terminals of the MOSFETs S1 and S2.
  • the protruding terminals 402a, 402b 1 , 402b 2 , and 402c of the bus bar molded body 400 are inserted into the through holes of the drive circuit board 300, and a solder jet bath or the like is used for a land (not shown) formed on the back surface of the drive circuit board 300. And soldered.
  • the predetermined pitch of the through-hole of the drive circuit board 300 and the projecting terminals 402a, 402b 1 , 402b 2 of the bus bar molded body 400 is the same value as the arrangement pitch of the MOSFETs that are rectifying elements.
  • the bus bar molded body 400 is fixed to the driving circuit board 300 by tapping a tapping screw 118 in the through hole 421 formed in the base 401 and the through hole of the driving circuit board 300 as shown in FIGS. Yes. It should be noted that fastening using bolts and nuts may be used instead of tapping.
  • the end portion of the first wiring pattern 301 connected to the control circuit 240 is connected to the gate terminals of the MOSFETs S1 and S2.
  • the high potential side metal conductor 402A 1 is connected to the drain terminal of the MOSFET S1 through the third wiring pattern 303.
  • the high potential side metal conductor 402A 1 of the terminal portion 412a which is connected to the drain terminal of the MOSFET S1 is fastened to the low potential side coil terminal 251 of the secondary side of the main transformer 250 by bolts 112.
  • the high potential side metal conductor 402A 2 is connected to the drain terminal of the MOSFET S2 through the third wiring pattern 303.
  • the high potential side metal conductor 402A 2 of the terminal portion 412b connected to the drain terminal of the MOSFET S2 is fastened to the high-potential-side coil terminals 252 of the secondary side of the main transformer 250 by bolts 113.
  • the control circuit board 300 is provided with the MOSFET S1, S2 of the plurality of pairs of the high potential side metal conductor 402A 1 and the high-potential side metal conductor 402A 2, respectively, the drains of the other pair MOSFET S1 or MOSFET S1 Connect the sides together.
  • the main transformer 250 is fixed to the protruding terminal 10c of the metal base 10 with bolts 117, as shown in FIG.
  • a center tap terminal 253 of the main transformer 250 and a bus bar 450 that connects the center tap terminal 253 to the choke coil 206 are fastened together with bolts 114.
  • Bus bar 450 extends across the surface of drive circuit board 300 at a predetermined distance and across choke coil 206. The other end of the bus bar 450 is connected to the input terminal of the choke coil 206.
  • the output terminal of the choke coil 206 is connected to the filter coil 207 by a bus bar 451.
  • the low-potential-side metal conductor 402B is connected to the second wiring pattern 302 connected to the source terminals of the MOSFETs S1 and S2 through the protruding terminals 402b 1 and 402b 2 through the through holes of the drive circuit board 300.
  • a shunt resistor 230 is disposed between the second wiring pattern 302 and the ground pattern 302a.
  • it is set as embodiment at the time of using shunt resistance 230, it is good also as a circuit structure which is not provided with shunt resistance 230.
  • the protruding terminal 402c of the ground metal conductor 402C penetrates the through hole of the drive circuit board 300 and is soldered to the land on the back surface.
  • the drive circuit board 300 has a semicircular cutout 311 formed on the side surface to which the bus bar molded body 400 is attached, and the GND protrusion terminal 10a of the metal base 10 It arrange
  • substrate 300 (refer FIG. 13). As shown in FIG.
  • the grounding metal conductor 402C is placed on the top surface 10a 1 of the GND protrusion pin 10a, which is formed with a bolt 115 through the mounting hole 401a of the base portion 401 to the GND protrusion pin 10a It is screwed into the female screw part and fixed to the metal base 10. As a result, the ground pattern 302 a of the drive circuit board 300 is grounded via the metal base 10. As described above, the bus bar molded body 400 is fixed to the surface of the drive circuit board 300, that is, the first surface by the tapping screw 118, and the ground metal conductor 402 exposed on the second surface side is placed on the GND protruding terminal 10a. The bolt 115 is fixed to the drive circuit board 300 by screwing the bolt 115 into the female screw portion.
  • the first wiring pattern 301 that transmits the drive signal is transmitted to the low voltage side rectifier circuit 220 side of the drive circuit board 300, and the main current is transmitted to the rectifier element.
  • a second wiring pattern 302, a third wiring pattern 303, and a ground pattern 302a are formed.
  • the two coil terminals 251 and 252 of the main transformer 250 and the drain terminals of the MOSFETs S1 and S2 which are rectifying elements are the second and third wiring patterns 302 and 303 for main current on the drive circuit board 300 and the bus bar molded body 400.
  • the high potential side metal conductors 402A 1 and 402A 2 are connected to each other.
  • the source terminals of the MOSFETs S1 and S2 are connected to each other by the low potential side second wiring pattern 302 on the drive circuit substrate 300 and the low potential side metal conductor 402B of the bus bar molded body 400.
  • ground pattern 302a of the drive circuit board 300 is grounded via the metal base 10 by the ground metal conductor 402C of the bus bar molded body 400.
  • the ground pattern 302a and the grounding metal conductor 402C are connected by screwing a bolt 115 to the GND protrusion terminal 10a of the metal base 10.
  • the drive circuit board 300 includes a drive signal wiring pattern for transmitting drive signals for driving the MOSFETs H1 to H4, which are high voltage switching elements, and MOSFETs H1 to H1.
  • a high-potential side wiring pattern and a low-potential side wiring pattern for main current that transmit the main current to H4 are also formed.
  • the three terminals of each of the MOSFETs H1 to H4 penetrate the drive circuit board 300 and are electrically connected to the circuit pattern of the drive circuit board 300 by solder as described above. ing.
  • the DC-DC converter device 100 has the following operational effects.
  • the second wiring pattern 302, the third wiring pattern 303, and the ground pattern 302a that supply the main current to each of the rectifying elements S1 and S2 are provided on the low-voltage side rectifying circuit unit 220 side of the drive circuit board 300.
  • the metal base with a ground metal conductors 402C which is connected to the ground pattern 302a is placed on the top surface 10a 1 of the GND protrusion pin 10a of the metal base 10 is grounded through the metal base 10 and fastened by bolts 115 10 was fixed.
  • the grounding metal conductor 402C is disposed outside the notch 311 of the drive circuit board 300, so that the tightening force by the bolt 115 is not applied to the drive circuit board 300. For this reason, the crack and pattern peeling of the drive circuit board 300 can be prevented.
  • the third wiring pattern 303 to which the drain terminals of the plurality of pairs of rectifying elements S1 and S2 are connected is connected to the coil terminals 251 and 252 of the main transformer 250 by the high potential side metal conductors 402A 1 and 402A 2.
  • the high potential side metal conductors 402A 1 and 402A 2 were integrally formed on the insulating base 401 by resin molding together with the ground metal conductor 402C.
  • the protruding terminals 402a of the high potential side metal conductors 402A 1 and 402A 2 and the protruding terminals 402c of the grounding metal conductor 402C can be simultaneously inserted into the through holes of the drive circuit board 300, and the assembly is performed. Good workability.
  • the second wiring patterns 302 to which the source terminals of the plural pairs of rectifying elements S1 and S2 are connected are connected by the low potential side metal conductor 402B.
  • the low-potential side metal conductor 402B was integrally formed on the resin base 401 together with the ground metal conductor 402C by resin molding. Therefore, the protruding terminals 402a of the high potential side metal conductors 402A 1 and 402A 2 , the protruding terminals 402c of the grounding metal conductor 402C, and the protruding terminals 402b 1 of the low potential side metal conductor 402B to the through hole of the drive circuit board 300 are provided. , 402b 2 can be performed at the same time, and the assembly workability is better.
  • the bus bar molded body 400 was fixed to the drive circuit board 300 by tapping or a fastening member. For this reason, the drive circuit board 300 can be reinforced by the bus bar molded body 400. Thereby, the vibration resistance of the drive circuit board 300 can be improved.
  • the bus bar molded body 400 has a structure in which the terminal portions 412a and 412b of the high potential side metal conductors 402A 1 and 402A 2 are exposed from the base 401 made of resin. Therefore, the terminal portions 412a and 412b can be conductively fixed to the secondary coil terminals 251 and 252 of the main transformer 250 by the bolts 112 and 113, and the assembly structure is simplified. Therefore, the number of bus bars can be reduced, which contributes to cost reduction.
  • the high voltage side switching circuit 210 and the low voltage side rectifier circuit 220 are mounted on the drive circuit board 300, and the drive circuit board 300 is disposed above the metal base 10. At least the pair of rectifying elements S ⁇ b> 1 and S ⁇ b> 2 are disposed in close contact with the metal base 10 below the drive circuit substrate 300. According to the DC-DC converter device 100 of such an embodiment, the installation area can be reduced, and the cost can be reduced by reducing the number of components. Further, the assembly workability can be improved by integrating the substrates.
  • the main transformer 250 is installed on the metal base 10, and the drive circuit board 300 is arranged at a position lower than the maximum height of the main transformer 250. Therefore, the overall height of the DC-DC converter device 100 can be limited by the height of tall components such as the main transformer 250, and the volume of the DC-DC converter device 100 can be reduced in combination with the effect of reducing the installation area. .
  • the drain terminals on the main current high potential side of at least the pair of rectifying elements S1 and S2 are connected to at least a pair of high potential side metal conductors 402A from at least a pair of third wiring patterns 303 for the high potential side main current.
  • 1 and 402A 2 are connected to two coil terminals 251 and 252 on the secondary side of the transformer. Therefore, the number of bus bars can be reduced.
  • One ends of the high potential side metal conductors 402A 1 and 402A 2 are integrated with the insulating base 401 at the base 401 by a resin mold.
  • On the first surface side of the drive circuit board 300 on which the bus bar molded body 400 is arranged there are dotted mounting components that require a certain insulation distance.
  • the bus bars it is necessary to maintain a spatial distance from these mounted components, which may increase the board mounting area.
  • insulation by resin becomes possible, the requirement to consider the insulation distance from the board mounting component is reduced, the degree of freedom in layout of the mounting component is created, the board mounting area is reduced, and the board is mounted. It can be downsized.
  • the metal conductors 402A 1 , 402A 2 , 402B, and 402C are disposed on the first surface, that is, the front surface of the drive circuit board, and the rectifying element is disposed on the second surface side opposite to the first surface, that is, the back surface side.
  • the component parts have a hierarchical arrangement structure, so that it is possible to fit within the position height of the transformer with a large mounting height in the electronic component, the overall height of the device is suppressed, and the size is reduced A DC-DC converter device can be provided.
  • the drive signal transmitted on the metal substrate transmits the main current to the first wiring pattern 301 for transmitting the drive signal using the pattern on the wiring board and the rectifying element.
  • the rectifier elements S1 and S2 are arranged in close contact with the metal base 10 on the side of the region where the main transformer 250 of the metal base 10 is installed, and the rectifier elements S1 and S2 are arranged on the drive circuit board 300 above the rectifier elements S1 and S2.
  • the three-wire pattern 303 is connected to the high potential side metal conductors 402A 1 and 402A 2 .
  • the high-potential side metal conductors 402A 1 and 402A 2 connected to the main transformer 250 are connected to the drive circuit board 300 by soldering in the same manner as the rectifying elements S1 and S2, and extend across the side of the drive circuit board 300. 250.
  • the drive circuit board 300 is connected to a third wiring pattern 303 to which the high potential side terminals of the rectifying elements S1 and S2 are connected. Therefore, since the wiring pattern and the bus bar on the substrate can be made the shortest length, the volume of the apparatus can be effectively utilized.
  • the DC-DC converter device of the embodiment can be modified and implemented as follows.
  • the ground metal conductor 402C for grounding the ground pattern 302a to the metal base 10 is exemplified as a structure in which the bus bar molded body 400 is integrated with a base 401 formed of an insulating material.
  • the grounding metal conductor 402 ⁇ / b> C may be fabricated as a single unit and attached to the GND protruding terminal 10 a of the metal base 10.
  • Each of the metal conductors 402A 1 , 402A 2 , 402B may be produced as a single body.
  • the high potential side metal conductors 402A 1 and 402A 2 integrated by the resin mold and the low potential side metal conductor 402B integrated by the resin mold may be separately mounted on the drive circuit board 300. .
  • the low potential side metal conductor 402B and the ground metal conductor 402C may be integrated by a resin mold.
  • the metal conductors 402A 1 , 402A 2 , 402B, 402C and the base 401 are illustrated as being integrally formed by a resin mold. However, the metal conductors 402A 1 , 402A 2 , 402B, 402C and the base 401 may be manufactured separately and assembled with a fastening member or the like.
  • the GND protruding terminal 10a may be a stepped protruding terminal having a narrow upper portion, and the stepped portion may be a mounting surface of the grounding metal conductor 402C.
  • the narrow upper portion is disposed outside the side portion of the drive circuit board 300 or is disposed at a position where it is inserted into a through hole provided in the drive circuit board 300.
  • the grounding metal conductor 402 ⁇ / b> C was grounded on the upper surface 10 a 1 of the GND protruding terminal 10 a of the metal base 10 and fixed to the metal base 10 with the bolt 115.
  • the grounding metal conductor 402C directly, without fastening by bolts, other components, for example, so as to fix in pressure contact with the upper surface 10a 1 of the GND protrusion pin 10a by a boss provided on the top cover 1 Also good.
  • the bus bar molded body 400 is fixed to the drive circuit board 300 with the screws 118, the fixing method is arbitrary as long as mechanical fixing is possible.
  • a protrusion shape may be provided on the resin portion of the bus bar molded body 400, and it may be fixed to the substrate by heat welding.
  • a form in which the bus bar molded body 400 is connected by welding or soldering may be employed.
  • the resin used for the bus bar molded body 400 of the present embodiment is a resin having high heat resistance (for example, PPS). However, when the temperature of the bus bar does not become high, the heat resistance is low and the price is low. A resin may be used.
  • the drive circuit board 300 can be applied to a light and inexpensive resin substrate such as a glass epoxy resin to reduce cost and weight, but can also be applied to a metal circuit board. Is possible.
  • the drive circuit board 300 includes the high-voltage side switching circuit 210 and the low-voltage side rectification circuit 220.
  • the low-voltage side rectification circuit 220 is different from the high-voltage side switching circuit 210. It may be a body.
  • the DC-DC converter device is exemplified as the power conversion device.
  • the present invention can be applied to other power conversion devices such as an AC-DC converter device and a DC-AC converter device.
  • the above description is an example, and the present invention is not limited to the above embodiment.
  • the present invention provides a grounding metal conductor for grounding a ground pattern to a metal base, wherein a drive circuit board attached to the metal base is provided with first and second wirings and a ground pattern for supplying a main current to each of the rectifying elements.
  • the present invention can be applied to various types of power conversion devices including 402C.
  • Top cover 10 Metal base 10a GND protrusion terminal 10a 1 Upper surface (grounding mounting surface) S1, S2, H1 ⁇ H4 MOS-FET 32 Insulating heat dissipation sheet 35
  • Leaf spring 100 DC-DC converter device 203 Resonant coil 206 Choke coil 210 High voltage side switching circuit 220 Low voltage side rectifier circuit 240 Control circuit 250 Main transformer 251 Low potential side coil terminal 252 High potential side coil terminal 253 Center tap terminal 300 Drive circuit board 300A Drive circuit board assembly 301 First wiring pattern 302 Second wiring pattern (first and second wirings) 302a Ground pattern 303

Abstract

 金属ベースに接地する際、基板クラックやパターン剥離が生じることが無い電力変換装置を提供する。 金属ベース10にGND突起端子10aが一体成形されている。駆動回路基板300には、整流素子S1、S2と、第1~第3の配線パターン301~303と、グラウンパターン302aとが設けられている。グラウンドパターン302aと金属ベースとを接続する接地用金属導体402Cは、GND突起端子10aの上面10a1上に載置され、GND突起端子10aの雌ねじ部に螺合されている。

Description

電力変換装置
 本発明は、電力変換装置に関し、より詳細には、駆動回路基板のグランドパターンを金属ベースに接続する構造を備える電力変換装置に関する。
 ハイブリッド車やプラグインハイブリッド車、電気自動車などの車両には、動力駆動用の高電圧蓄電池と、高電圧蓄電池の直流高電圧出力を交流高電圧出力に電力変換してモータを駆動するためのインバータ装置と、高電圧蓄電池の直流高電圧出力を直流低電圧出力に変換して車両のライトやラジオなどの低電圧負荷へ電力供給を行うDC-DCコンバータ装置と、低電圧負荷の補助電源としての低電圧蓄電池とが搭載されている。
 一般的にDC-DCコンバータ装置は、高電圧の直流電圧を交流電圧に変換する高電圧スイッチング回路、交流高電圧を絶縁して交流低電圧に変換するトランス、低電圧交流電圧を直流電圧変換する低電圧整流回路、電圧変換された電圧を出力する出力端子を備えている。高電圧スイッチング回路を構成する複数のスイッチング素子および定電圧整流回路を構成する複数の整流素子が発生する熱を放熱するために、金属製のケースを採用したDC-DCコンバータ装置がある。
 このようなDC-DCコンバータ装置は、金属製のケースの内面に、トランスと、降圧回路部と、昇圧回路部と、制御回路部とを装着した構造とされており、降圧回路部および昇圧回路部は、金属製の回路基板で形成されている(例えば、特許文献1の段落[0018]参照)。
特開2013-99057号公報
 降圧回路部および昇圧回路部のグラウンドパターンは金属製ケースに接続される。上記特許文献1には記載されていないが、降圧回路基板や昇圧回路基板は、ねじなどの締結部材により金属製ケースに固定され、グラウンドパターンと金属製ケースとが電気的に接続される。降圧回路基板や昇圧回路基板は、耐振動性の向上、大面積の放電経路および電流流路の確保等のため、頭部外径の大きな締結部材が用いられる。このため、DC-DCコンバータ装置の軽量化およびコスト低減を図り、降圧回路基板や昇圧回路基板としてガラス繊維入りエポキシ樹脂等の樹脂基板を用いると、締結部材により締結する際の締結力により、基板クラックやパターン剥離が生じる。
 本発明の電力変換装置は、接地用取付面を有する突起部が設けられた金属ベースと、金属ベースに装着され、入力側と出力側との電力変換を行うトランスと、トランスの電流の入出力を制御する少なくとも一対の整流素子と、金属ベースに取り付けられ、整流素子のおのおのに主電流を供給する第1、第2の配線およびグラウンドパターンが設けられた駆動回路基板と、突起部の接地用取付面上に設置され、グラウンドパターンに接続された接地用金属導体とを備える。
 本発明によれば、接地用金属導体が突起部の接地用取付面に設置された状態でグラウンドパターンと金属ベースとが接続される。このため、駆動回路基板のクラックやパターン剥離を防止することができる。
電力変換装置の一実施の形態としてのDC-DCコンバータ装置の主回路を示す図。 図1に図示されたDC-DCコンバータ装置の外観分解斜視図。 (a)は図2のDC-DCコンバータ装置の実施例の平面図、(b)は、(a)をIIIb側から観た側面図。 図3(b)の要部拡大側面図。 図2のバスバー成型体の拡大図。 バスバー成型体の分解斜視図。 図2の駆動回路基板にバスバー成型体を取り付けた駆動回路基板アセンブリの斜視図。 図7の駆動回路基板アセンブリを裏面から観た斜視図。 図2の金属ベースの拡大図。 図9の金属ベースにスイッチング素子および整流素子を取り付けた斜視図。 図3(a)の要部拡大図。 図11において低電位側金属導体を取り除いた図。 図11のXIII-XIII線断面図。 図11のXIV-XIV線断面図。
 本発明の電力変換装置の一実施の形態として示すDC-DCコンバータ装置は電気自動車やプラグインハイブリッド車等に使用される。このような車両には、走行用モータの電源として高電圧蓄電池が搭載され、ライトやラジオなどの補機を作動させるための低電圧蓄電池が搭載されている。DC-DCコンバータ装置は、高電圧スイッチング回路と、低電圧整流回路と、これら両回路を接続するトランスを備え、高電圧蓄電池の高電圧を低電圧に電力変換したり、低電圧蓄電池の低電圧を高電圧に電力変換を行ったりする。
 本発明のDC-DCコンバータ装置は、特に、駆動回路基板に設けたグラウンドパターンを金属ベースに接続する接地用金属導体を備え、接地用金属導体は、金属ベースに設けられた接地用取付面上に設置されて金属ベースに取り付けられる構成を有している。これにより、駆動回路基板に対する締付力などに起因する、基板クラックやパターン剥離の防止を図ったものである。
 以下、図面を参照して、本発明のDC-DCコンバータ装置の一実施の形態について説明する。
[DC-DCコンバータ装置の回路構成]
 図1は本発明のDC-DCコンバータ装置100の回路図である。このDC-DCコンバータ装置100は、高電圧の直流電圧を交流電圧に変換する高電圧側スイッチング回路210、交流高電圧を交流低電圧に変換する主トランス250、および低電圧の交流電圧を直流電圧に変換する低電圧側整流回路220を備えている。高電圧側スイッチング回路210および低電圧側整流回路220は、制御回路240によりスイッチング制御が行われる。
 高電圧側スイッチング回路210と主トランス250との間には、共振コイル203(Lr)が接続されており、この共振コイル203のインダクタンスと主トランス250の漏れインダクタンスの合成インダクタンスを用いて、高電圧側スイッチング回路210を構成するMOSFETのゼロ電圧スイッチングを可能としている。
 低電圧側整流回路220の出力側には、出力電圧に重畳するノイズを除去するために、フィルタコイル207(L1)とフィルタコンデンサ205(C1)とが設けられている。
 なお、共振コイル203、フィルタコイル207およびフィルタコンデンサ205は省略することができる。
(高電圧側スイッチング回路の回路構成)
 高電圧側スイッチング回路210は、Hブリッジ型として接続された4つのMOSFET H1~H4と平滑用入力コンデンサ202(Cin)とから構成されている。各MOSFET H1~H4には、スナバコンデンサが並列に設けられている。高電圧側スイッチング回路210の4つのMOSFET H1~H4を位相シフトPWM制御することで、主トランス250の一次側に交流電圧が発生する。
(低電圧側整流回路の回路構成)
 低電圧側整流回路220は、MOSFET S1、S2で構成される二つの整流相と、チョークコイル206(Lout)および平滑用コンデンサ208(Cout)から構成される平滑回路とを有している。それぞれの整流相の高電位側配線、すなわちMOSFET S1、S2のドレイン側配線は主トランス250の二次側のコイル端子(出力端子)251、252(図11等参照)へ接続されている。トランス250の二次側センタタップ端子253(図11等参照)は、チョークコイル206(Lout)に接続され、チョークコイル206(Lout)の出力側に平滑用コンデンサ208(Cout)が接続されている。また、低電圧側整流回路220には、フィルタコイル207(L1)とフィルタコンデンサ205(C1)から成る平滑回路も設けられている。
 なお、図1では、便宜上、整流素子は2つのMOSFET S1、S2で示されている。後述する図2~図4、図10~図14においては、整流素子は、3対、合計6つのMOSFETで示されている。MOSFETの個数は設計上適宜定められる。
 図1において、MOSFET S1、S2のゲートには、駆動信号伝達用の第1配線パターン301(図12等参照)を介して制御回路240から駆動信号が供給される。MOSFET S1のドレイン端子は、主電流伝達用の第3配線パターン303を介して主トランス250の二次側の高電位側コイル端子252(図11等参照)に接続され、MOSFET S2のドレイン端子は、主電流伝達用の第3配線パターン303を介して主トランス250の二次側の低電位側コイル端子251(図12等参照)に接続されている。MOSFET S1、S2のソース端子は、主電流伝達用の第2配線パターン302に接続され、電流を検出するためのシャント抵抗230(Ri)を介して接地されている。
 なお、DC-DCコンバータ装置100は、低電圧側整流回路220のMOSFETS1、S2にかかるサージ電圧を抑制するためのアクティブクランプ回路を備えることもできる。アクティブクランプ回路は、アクティブクランプ用MOSFETおよびアクティブクランプ用コンデンサを備えている。
[DC-DCコンバータ装置100の全体構造]
 図2と図3を参照してDC-DCコンバータ装置100の全体構造を説明する。図2は、図1に図示されたDC-DCコンバータ装置100の分解斜視図、図3は、図2に図示されたDC-DCコンバータ装置100の構成部品の配置を示す図である。
 DC-DCコンバータ装置100は、矩形形状の金属製、例えば、アルミダイカスト製の金属ベース10を備え、この金属ベース10上に図1で説明したDC-DC-コンバータ回路を構成する部材が取り付けられる。これらの部材はトップカバー1で覆われている。金属ベース10には、高電圧/低電圧回路部を備える駆動回路基板アセンブリ300Aと、主トランス250(T)と、共振コイル203(Lr)と、チョークコイル206(Lout)と、制御回路基板アセンブリ600Aとが取り付けられる。
(金属ベース)
 図9は、金属ベース10の拡大斜視図を示す。
 金属ベース10には、低電圧出力のGND側端子を接続するGND突起端子10bが一体成形されている。また、金属ベース10には、後述するグラウンドパターン302a(図12参照)を接地するためのGND突起端子10a(突起部)および主トランス250を取り付けるための突出端子10c等が一体成形されている。さらに、金属ベース10の外観には、高電圧を入力する高電圧コネクタ(図示せず)、外部電装品と信号などを接続する信号コネクタ(図示せず)、低電圧出力を出力する出力端子(図示せず)が取付けられている。
 図2に図示されるように、金属ベース10の底面には不図示のOリングなどのシール部材を介して冷却ユニット800が取り付けられる。冷却ユニット800には冷却流路が設けられ、この冷却流路を流れる冷媒により、DC-DCコンバータ装置100内の発熱部品が冷却される。冷媒としては不凍液と水を1:1で混合したものが一般的に適しているが、それ以外の冷媒を用いることもできる。
 上記DC-DCコンバータ装置100を冷却する冷却装置は、一実施の形態として示したものであり、他に、空気等の冷却気体を用いた冷却装置等を用いても差し支えはない。
(駆動回路基板アセンブリ)
 図10は、金属ベースにスイッチング素子および整流素子を取り付けた斜視図である。以下の説明では、図2、図3と共に図10を参照する。
 駆動回路基板アセンブリ300Aは、図1で説明した高電圧側スイッチング回路210の構成部品と、低電圧側整流回路220の構成部品とを1枚のガラスエポキシ基板から成る駆動回路基板300に実装して構成されている。すなわち、高電圧側スイッチング回路210を構成するMOSFET H1~H4、平滑用入力コンデンサ202(Cin)、および不図示のゲート抵抗等の電子部品と、低電圧側整流回路220を構成するMOSFET S1、S2、チョークコイル206(Lout)、平滑用コンデンサ208(Cout)、平滑回路を構成するフィルタコイル207(L1)とフィルタコンデンサ205(C1)、電流検出のためのシャント抵抗230(Ri)および不図示のゲート抵抗等の電子部品が実装されて構成されている。MOSFET H1~H4およびS1、S2の各端子は、駆動回路基板300の回路パターンと半田で電気的に接続される。回路パターンについては図11、12を参照して後述する。
(DC-DCコンバータ装置100の実装構造)
 駆動回路基板アセンブリ300AのMOSFET S1、S2が接続される領域には、金属導体402A1、402A2等を有するバスバー成型体400が装着される。バスバー成型体400の詳細については後述する。
 駆動回路基板300の高電圧回路領域に実装されたスイッチング素子としてのMOSFET H1~H4、および駆動回路基板300の低電圧回路領域に実装された整流素子としてのMOSFET S1、S2は、熱伝導性の良い絶縁放熱シート32を介し、板ばね35で金属ベース10に密着して固定される。MOSFETは、上述した冷却ユニット800の冷却流路を流れる冷媒により冷却される。MOSFET H1~H4およびMOSFET S1、S2のそれぞれは、接続リード37(図10等参照)により駆動回路基板300に接続されている。
 主トランス250、チョークコイル206、およびフィルタコイル207は、金属ベース10上に締結部材により固定して配置される。金属ベース10、駆動回路基板アセンブリ300A、制御回路基板アセンブリ600Aと、主トランス250、チョークコイル206およびフィルタコイル207は金属製のトップカバー1で覆われている。
 制御回路基板アセンブリ600Aは、図1で説明した高電圧側スイッチング回路210と低電圧側整流回路220のMOSFETを駆動する駆動信号を生成する駆動信号生成回路を1枚のガラスエポキシ基板から成る制御回路基板600上に実装して構成されている。制御回路基板アセンブリ600Aは、駆動回路基板アセンブリ300Aの駆動回路とダイレクトコネクタで接続されている。これらの接続にはダイレクトコネクタ以外にも、フレキシブル配線板や、信号ハーネスを用いても良い。
 図3(a)は、金属ベース10の実装部品を上方から見た図、図3(b)は、図3(a)をIIIb側から観た側面図であり、図4は、図3(b)の要部拡大図である。この明細書では、特に、低電圧側整流回路220を構成するバスバー成型体400と、チョークコイル206と、フィルタコイル207を、駆動回路基板300の第1面側の実装部品と呼ぶ。また、低電圧側整流素子であるMOSFET S1、S2を、駆動回路基板300の第2面側の実装部品と呼ぶ。第2面側の実装部品は金属ベース10に密着して配置されており、それら全てが主トランス250の側方において、階層上に配置されている。換言すると、金属ベース10の上方に所定間隔をあけて駆動回路基板300を配設し、駆動回路基板300の低電圧回路領域の可能において、金属ベース10上に整流用MOSFETS1、S2を密着配置している。
(バスバー成型体の構造)
 図5は、図2のバスバー成型体の拡大図であり、図6は、バスバー成型体の分解斜視図である。また、図7は、図2の駆動回路基板にバスバー成型体を取り付けた駆動回路基板アセンブリの斜視図であり、図8は、図7の取り付けた駆動回路基板アセンブリを裏面から観た斜視図である。
 図5に図示されるように、バスバー成型体400は、高電位側金属導体402A1、402A2、低電位側金属導体402Bおよび接地用金属導体402Cを、樹脂モールドにより、絶縁性を有する樹脂製の基部401に一体成形して形成されている。基部401は、耐熱性の高い樹脂(例えば、PPS等)により形成されている。基部401は単体としては存在せず、図6に図示された基部401は、理解を容易にするためのものである。
 高電位側金属導体402A1、402A2は、線対称の形状に形成され、高電位側金属導体402A1、402A2の下端面には所定ピッチで駆動回路基板300に向かって突出する3つの突起端子402aが形成されている。また、高電位側金属導体402A1、402A2おのおのの基部401側には1つの取付孔403が形成されている。低電位側金属導体402Bの相対向する側面のそれぞれの下端面には所定ピッチで駆動回路基板300に向かって突出する3つの突起端子402b1が形成され、基部401の反対側の側面には突起端子402b2が形成されている。接地用金属導体402Cの基部401側には取付孔404が形成され、基部401の反対側の側面には、駆動回路基板300に向かって突出する突起端子402cが形成されている。
 高電位側金属導体402A1、402A2は、それぞれ、取付孔403の周囲が基部401の上面側に露出する端子部412a、412bを有する。また、高電位側金属導体402A1、402A2それぞれの3つの突起端子402aが形成された部分は基部401の側面から外側に突出している。低電位側金属導体402Bの3つの突起端子402b1および1つの突起端子402b2は、基部401から突出している。接地用金属導体402Cは、高電位側金属導体402A1、402A2の間の下方に配置され、取付孔403の周囲に基部401に形成された取付用孔401aから露出する端子部(表出部)413を有する。
(バスバー成型体の実装構造)
 図11は、図3(a)の主トランス250附近の拡大図であり、図12は、図11において低電位側金属導体402Bを取り除いた図である。また、図13は、図11のXIII-XIII線断面図であり、図14は、図11のXIV-XIV線断面図である。
 上述した通り、図11~図14においては、低電圧側整流回路220は、MOSFETS1、S2を3対、合計6個備えている。
 図11、図12に示すように、駆動回路基板300には、低電圧整流素子であるMOSFET S1、S2を駆動する駆動信号を伝達する駆動信号用配線、すなわち第1配線パターン301と、MOSFET S1、S2に主電流を伝達する主電流用の第2配線パターン302および第3配線パターン303と、グラウンドパターン302a(図12参照)とが設けられている。第1配線パターン301はMOSFET S1、S2のゲート端子に接続される。第2配線パターン302はMOSFET S1、S2のソース端子に、第3配線パターン303はMOSFET S1、S2のドレイン端子に接続される。
 バスバー成型体400の突起端子402a、402b1、402b2、402cは駆動回路基板300の貫通孔に差し込まれ、駆動回路基板300の裏面に形成された不図示のランドに、半田噴流槽等を用いて半田付けされる。駆動回路基板300の貫通孔とバスバー成型体400の突起端子402a、402b1、402b2の所定ピッチは、整流素子であるMOSFETの配設ピッチと同じ値である。
 バスバー成型体400は、図7、図8に示すように、基部401に形成された貫通孔421および駆動回路基板300の貫通孔にタッピングねじ118をタッピングすることにより駆動回路基板300に固定されている。なお、タッピングによらず、ボルトとナットを用いた締結でもよい。
 制御回路240に接続された第1配線パターン301の端部は、MOSFET S1、S2のゲート端子に接続されている。高電位側金属導体402A1は、第3配線パターン303を介してMOSFET S1のドレイン端子に接続されている。MOSFET S1のドレイン端子に接続された高電位側金属導体402A1の端子部412aは、主トランス250の二次側の低電位側コイル端子251にボルト112で締結されている。高電位側金属導体402A2は、第3配線パターン303を介してMOSFET S2のドレイン端子に接続されている。MOSFET S2のドレイン端子に接続された高電位側金属導体402A2の端子部412bは、主トランス250の二次側の高電位側コイル端子252にボルト113で締結されている。制御回路基板300が複数対のMOSFET S1、S2を備えている場合には、高電位側金属導体402A1および高電位側金属導体402A2は、それぞれ、他の対のMOSFET S1またはMOSFET S1のドレイン側同士を接続する。
 なお、主トランス250は、図14に図示されるように、ボルト117により金属ベース10の突出端子10cに固定されている。
 図2と図3も参照して説明する。
 主トランス250のセンタタップ端子253と、センタタップ端子253をチョークコイル206に接続するバスバー450とがボルト114で共締めされている。
 バスバー450は駆動回路基板300の表面上を所定距離離れてチョークコイル206に向かって横切って延在している。バスバー450の他端はチョークコイル206の入力端子に接続されている。チョークコイル206の出力端子は、バスバー451によりフィルタコイル207に接続されている。
 低電位側金属導体402Bは、駆動回路基板300の貫通孔に突起端子402b1、402b2を挿通して、MOSFET S1、S2のソース端子に接続された第2配線パターン302に接続している。第2配線パターン302とグラウンドパターン302aとの間には、シャント抵抗230が配置されている。
 なお、シャント抵抗230を用いた場合の実施形態としているが、シャント抵抗230を備えていない回路構成としてもよい。
 接地用金属導体402Cの突起端子402cは、駆動回路基板300の貫通孔を貫通して、裏面のランドに半田付けされている。図7に図示されるように、駆動回路基板300には、バスバー成型体400が取り付けられる側面に半円状の切欠き311が形成されており、金属ベース10のGND突起端子10aは、駆動回路基板300の切欠き311の外側に配置されている(図13参照)。図13に示されるように、接地用金属導体402Cは、GND突起端子10aの上面10a1上に載置され、基部401の取付け用孔401aを介してボルト115をGND突起端子10aに形成された雌ねじ部に螺合して、金属ベース10に固定される。これにより、駆動回路基板300のグラウンドパターン302aが金属ベース10を介して接地される。
 このように、バスバー成型体400は、駆動回路基板300の表面、すなわち第1面にタッピングねじ118により固定され、第2面側に露出する接地用金属導体402をGND突起端子10aに載置し、ボルト115をその雌ねじ部に螺合させることにより、駆動回路基板300に固定される。
 以上のように、実施形態のDC-DCコンバータ装置100では、駆動回路基板300の低電圧側整流回路220側には、駆動信号を伝達する第1配線パターン301、整流素子に主電流を伝達する第2配線パターン302、第3配線パターン303およびグラウンドパターン302aが形成されている。主トランス250の2つのコイル端子251、252と整流素子であるMOSFET S1、S2のドレイン端子は、駆動回路基板300上の主電流用の第2、第3配線パターン302、303とバスバー成型体400の高電位側金属導体402A1、402A2により互いに接続される。MOSFET S1、S2のソース端子は、駆動回路基板300上の低電位側の第2配線パターン302とバスバー成型体400の低電位側金属導体402Bにより互いに接続される。
 また、駆動回路基板300のグラウンドパターン302aは、バスバー成型体400の接地用金属導体402Cにより金属ベース10を介して接地される。グラウンドパターン302aと接地用金属導体402Cとは、金属ベース10のGND突起端子10aにボルト115を螺合すること接続される。
 なお、図11、図12には図示されていないが、駆動回路基板300には、高電圧スイッチング素子であるMOSFET H1~H4を駆動する駆動信号を伝達する駆動信号用配線パターンと、MOSFET H1~H4に主電流を伝達する主電流用の高電位側配線パターンおよび低電位側配線パターンも形成されている。そして、低電圧側整流素子と同様、MOSFET H1~H4の各々が有する3つの端子は、上述したように駆動回路基板300を貫通して駆動回路基板300の回路パターンと半田で電気的に接続されている。
 以上説明したように、実施形態のDC-DCコンバータ装置100によれば次のような作用効果を奏する。
(1)駆動回路基板300の低電圧側整流回路部220側に、整流素子S1、S2の各々に主電流を供給する第2配線パターン302、第3配線パターン303およびグラウンドパターン302aを設けた。そして、グラウンドパターン302aに接続される接地用金属導体402Cを金属ベース10のGND突起端子10aの上面10a1上に載置し、ボルト115により締結して金属ベース10を介して接地するとともに金属ベース10に固定した。この構造では、接地用金属導体402Cは駆動回路基板300の切欠き311の外側に配置されているので、ボルト115による締付力が駆動回路基板300に加わることがない。
 このため、駆動回路基板300のクラックやパターン剥離を防止することができる。
(2)複数対の整流素子S1、S2のドレイン端子が接続される第3配線パターン303を、高電位側金属導体402A1、402A2により主トランス250のコイル端子251、252に接続するようにした。また、高電位側金属導体402A1、402A2は、接地用金属導体402Cと共に、樹脂モールドにより、絶縁性の基部401に一体成形した。このため、駆動回路基板300の貫通孔への高電位側金属導体402A1、402A2の突起端子402aと、接地用金属導体402Cの突起端子402cとの挿入を、同時に行うことができ、組付作業性が良い。
(3)上記に加えて、複数対の整流素子S1、S2のソース端子が接続される第2配線パターン302同士を、低電位側金属導体402Bにより接続するようにした。低電位側金属導体402Bは、接地用金属導体402Cと共に、樹脂モールドにより、樹脂製の基部401に一体成形した。このため、駆動回路基板300の貫通孔への高電位側金属導体402A1、402A2の突起端子402aと、接地用金属導体402Cの突起端子402cと、低電位側金属導体402Bの突起端子402b1、402b2との挿入を、同時に行うことができ、より組付作業性が良い。
(4)複数の金属導体402A1、402A2、402B、402Cが別部品の場合、それぞれの金属導体を基板に搭載する必要がある。しかし、実施形態のように、基部401で樹脂にて一体化された金属導体402A1,402A2、402B、402Cを駆動回路基板300にねじで固着し、半田のみでの固定とすることにより、サブアセンブリ部品とすることができ、基板製造工程を簡略化することができる。更に基板のサブアセンブリ時にバスバー配線まで半田付けすることができるため、最終組立て工程での生産効率を向上させることができる。
(5)バスバー成型体400を、駆動回路基板300にタッピングあるいは締結部材により固定した。このため、駆動回路基板300をバスバー成型体400により補強することができる。これにより、駆動回路基板300の耐振動性を向上することができる。
(6)バスバー成型体400を、高電位側金属導体402A1、402A2の端子部412a、412bが樹脂製の基部401から露出する構造とした。このため、端子部412a、412bを主トランス250の二次側のコイル端子251、252にボルト112、113により導通して固定することができ、組付け構造が簡素となる。したがって、バスバーの点数を低減でき、コスト低減に寄与する。
(7)DC-DCコンバータ装置100は、駆動回路基板300に高電圧側スイッチング回路210と低電圧側整流回路220を実装し、駆動回路基板300を金属ベース10の上方に配設した。そして、少なくとも一対の整流素子S1、S2は駆動回路基板300の下方において金属ベース10に密着して配置される。
 このような実施形態のDC-DCコンバータ装置100によれば、設置面積を小さくすることができ、部品点数低減によるコストダウンを図ることができる。また、基板一体化による組立作業性の改善を図ることできる。
 低電圧回路基板と高電圧回路基板をそれぞれ分割し、低電圧回路基板には金属基板を使用し、トランスの二次側の電流を整流する整流素子に金属基板上のバスバーを用いて駆動信号を伝達させる構造をとる場合には、高価な金属基板の使用と、バスバーの点数増によるコスト増が課題となる。
(8)主トランス250は金属ベース10に設置され、駆動回路基板300は主トランス250の最大高さより低い位置に配置されている。したがって、DC-DCコンバータ装置100の全高を主トランス250など背の高い部品の高さで制限することができ、設置面積の低減効果と相まってDC-DCコンバータ装置100の容積を小さくすることができる。
(9)少なくとも一対の整流素子S1、S2の主電流高電位側のドレイン端子の各々は、高電位側主電流用の少なくとも一対の第3配線パターン303から、少なくとも一対の高電位側金属導体402A1、402A2を介してトランスの二次側の2つのコイル端子251、252に接続される。したがって、バスバーの点数を少なくすることができる。
(10)高電位側金属導体402A1、402A2の一端は、樹脂モールドにて基部401で絶縁性の基部401に一体化されている。バスバー成型体400が配置されている駆動回路基板300の第1面側には一定の絶縁距離を必要とする実装部品が点在している。通常、バスバーを配置する場合においては、それら実装部品との空間距離を保つ必要があり、基板実装面積が大きくなってしまうことがあった。この実施形態によれば、樹脂による絶縁が可能になるため、基板実装部品との絶縁距離を考慮する要請が低下し、実装部品のレイアウトに自由度が生まれ、基板実装面積を小さくし、基板を小型化することができる。
(11)高電位側金属導体402A1、402A2、低電位側金属導体402Bの突起端子402a、402b1、402b2のピッチを整流素子の配置ピッチと一致させている。これにより、基板パターンを最短とする構成をとることが可能になり、基板の小型化を図ることができ、容積を有効活用できるため、製品の小型化が可能になる。
(12)駆動回路基板の第一面、すなわち表面に金属導体402A1、402A2、402B、402Cを配置するとともに、第一面とは反対側の第二面側、すなわち裏面側に整流素子を配置することにより、構成部品を階層配置構造とし、もって、電子部品内において実装高さの大きいトランスの位置高さ内に収めることが可能となり、装置全体の高さが抑えられ、小型化されたDC-DCコンバータ装置を提供することができる。
(13)さらに駆動回路基板300を用いることで、金属基板上を伝達させていた駆動信号は配線基板上パターンを用いて駆動信号を伝達する第1配線パターン301、整流素子に主電流を伝達する第2配線パターン302および第3配線パターン303に接続される。これにより金属基板上のバスバーを廃止することが可能になり、さらに低電圧側整流回路220を高電圧側スイッチング回路210とともに駆動回路基板300に一体化させることができ、製造原価の低減が可能となる。
(14)整流素子S1、S2は、金属ベース10の主トランス250が設置される領域の側方で金属ベース10と密着して配置され、整流素子S1、S2の上方の駆動回路基板300の第3線パターン303で高電位側金属導体402A1、402A2と接続されている。主トランス250に接続する高電位側金属導体402A1、402A2は、駆動回路基板300に整流素子S1、S2同様半田付けにて接続されるとともに、駆動回路基板300の側部を跨って主トランス250と接続されている。また、整流素子S1、S2の高電位側端子が接続される第3配線パターン303に駆動回路基板300上で接続されている。したがって、基板上の配線パターンとバスバーを最短の長さにできるので、装置の容積を有効活用できる。
 実施形態のDC-DCコンバータ装置を次のように変形して実施することができる。
(1)グラウンドパターン302aを金属ベース10に接地する接地用金属導体402Cをバスバー成型体400として絶縁性材料で形成された基部401に一体化する構造として例示した。しかし、接地用金属導体402Cを単体として作製し、金属ベース10のGND突起端子10aに取り付けるようにしてもよい。
(2)金属導体402A1、402A2、402Bについても、それぞれ、単体として作製してもよい。
(3)樹脂モールドで一体化した高電位側金属導体402A1、402A2と、樹脂モールドで一体化した低電位側金属導体402Bとを、それぞれ別体として駆動回路基板300に実装してもよい。上記において、低電位側金属導体402Bと接地用金属導体402Cとを樹脂モールドで一体化してもよい。
(4)金属導体402A1、402A2、402B、402Cと基部401とは、樹脂モールドにより一体成形するとして例示した。しかし、金属導体402A1、402A2、402B、402Cと基部401とは、別体として作製し、締結部材などにより組み付けるようにしてもよい。
(5)接地用金属導体402Cの端子部413を、金属ベース10のGND突起端子10aの上面10a1上に固定した。しかし、GND突起端子10aを上部が幅狭の段付き突起端子とし、段部を接地用金属導体402Cの取付面としてもよい。幅狭の上部は、駆動回路基板300の側部の外側に配置したり、または駆動回路基板300に設けた貫通孔内に挿通される位置に配置したりする。
(6)接地用金属導体402Cを、金属ベース10のGND突起端子10aの上面10a1上に接地してボルト115により金属ベース10に固定した。しかし、接地用金属導体402Cを、直接、ボルトにより締結せず、他の構成部材、例えば、トップカバー1に設けたボスによりGND突起端子10aの上面10a1上に圧接して固定するようにしてもよい。
(7)バスバー成型体400を駆動回路基板300にねじ118で固定しているが、機械的固定が可能であれば、固定方法は任意である。例えば、バスバー成型体400の樹脂部に突起形状を設け、熱溶着による基板との固着としてもよい。あるいは、バスバー成型体400と主トランス250を電気的に接続可能であれば、例えば溶接、半田にて接続する形態を取っても構わない。
(8)本実施形態のバスバー成型体400に用いている樹脂は耐熱性の高い樹脂(例えばPPS等)を用いているが、バスバーの温度が高温にならない様な場合は耐熱性の低い安価な樹脂を使用してもよい。
(9)駆動回路基板300は、ガラスエポキシ樹脂等の軽量で安価な樹脂基板に適用してコスト低減および重量の軽減化を図ることが可能であるが、金属製の回路基板に適用することも可能である。
(10)上記実施形態では、駆動回路基板300は、高電圧側スイッチング回路210と低電圧側整流回路220とを備えているが、低電圧側整流回路220を高電圧側スイッチング回路210とは別体としてもよい。
(10)上記実施形態では、電力変換装置として、DC-DCコンバータ装置により例示した。しかし、本発明はAC-DCコンバータ装置やDC-ACコンバータ装置等、他の電力変換装置に適用することができる。
 以上の説明は一例であり、本発明は上記実施形態に限定されない。本発明は、金属ベースに取り付けられる駆動回路基板に、整流素子のおのおのに主電流を供給する第1、第2の配線およびグラウンドパターンが設けられ、グラウンドパターンを金属ベースに接地する接地用金属導体402Cを備える、種々の形態の電力変換装置に適用することができる。
1    トップカバー
10   金属ベース
10a  GND突起端子
10a1  上面(接地用取付面)
S1、S2、H1~H4  MOS-FET
32   絶縁放熱シート
35   板ばね
100  DC-DCコンバータ装置
203   共振コイル
206  チョークコイル
210  高電圧側スイッチング回路
220  低電圧側整流回路
240  制御回路
250  主トランス(トランス)
251  低電位側コイル端子
252  高電位側コイル端子
253  センタタップ端子
300  駆動回路基板
300A 駆動回路基板アセンブリ
301  第1配線パターン
302  第2配線パターン(第1、第2の配線)
302a  グラウンドパターン
303  第3配線パターン(第1、第2の配線)
400  バスバー成型体
401  基部
402a、402b1、402b2、402c  突起端子
402A1、402A2  高電位側金属導体
402B  低電位側金属導体
402C  接地用金属導体
412a、412b、413  端子部
600  制御回路基板
600A  制御回路基板アセンブリ
S1、S2   整流素子
 

Claims (9)

  1.  接地用取付面を有する突起部が設けられた金属ベースと、
     前記金属ベースに装着され、入力側と出力側との電力変換を行うトランスと、
     前記トランスの電流の入出力を制御する少なくとも一対の整流素子と、
     前記金属ベースに取り付けられ、前記整流素子のおのおのに主電流を供給する第1、第2の配線およびグラウンドパターンが設けられた駆動回路基板と、
     前記突起部の前記接地用取付面上に設置され、前記グラウンドパターンに接続された接地用金属導体とを備える、電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     さらに、前記接地用金属導体が保持される絶縁性材料で形成された基部を備える、電力変換装置。
  3.  請求項2に記載の電力変換装置において、
     前記接地用金属導体は樹脂モールドにより前記基部に一体成形されている、電力変換装置。
  4.  請求項1に記載の電力変換装置において、
     さらに、前記トランスの一方の出力端子と前記第1の配線とを接続する第1の金属導体と、前記トランスの他方の出力端子と前記第2の配線とを接続する第2の金属導体と、前記第1、第2の金属導体を保持する絶縁性材料で形成された基部401とを備える、電力変換装置。
  5.  請求項4に記載の電力変換装置において、
     前記接地用金属導体と、前記第1および第2の金属導体とは、樹脂モールドにより前記基部に一体成形されたバスバー成型体として構成されている、電力変換装置。
  6.  請求項5に記載の電力変換装置において、
     前記バスバー成型体は、前記駆動回路基板に固定されている、電力変換装置。
  7.  請求項5に記載の電力変換装置において、
     前記接地用金属導体は前記基部から外部に表出する端子部を有し、前記端子部が前記突起部の前記接地用取付面上に設置されて前記突起部に固定されている、電力変換装置。
  8.  請求項5に記載の電力変換装置おいて、
     さらに、前記第1の配線の低電位側と前記第2の配線の低電位側とを接続する低電位側金属導体とを備え、前記低電位側金属導体は、前記バスバー成型体の基部に一体成形されている、電力変換装置。
  9.  請求項1~8のいずれか1項に記載の電力変換装置において、
     前記駆動回路基板は、さらに、前記一対の整流素子を駆動する駆動信号が供給される第3の配線を備える、電力変換装置。
     
     
PCT/JP2014/076234 2013-10-07 2014-10-01 電力変換装置 WO2015053139A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14852207.1A EP3057217A4 (en) 2013-10-07 2014-10-01 Power conversion device
US15/026,041 US9814154B2 (en) 2013-10-07 2014-10-01 Power converter
JP2015541535A JPWO2015053139A1 (ja) 2013-10-07 2014-10-01 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-210129 2013-10-07
JP2013210129 2013-10-07

Publications (1)

Publication Number Publication Date
WO2015053139A1 true WO2015053139A1 (ja) 2015-04-16

Family

ID=52812956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076234 WO2015053139A1 (ja) 2013-10-07 2014-10-01 電力変換装置

Country Status (4)

Country Link
US (1) US9814154B2 (ja)
EP (1) EP3057217A4 (ja)
JP (1) JPWO2015053139A1 (ja)
WO (1) WO2015053139A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107926A (ja) * 2016-12-27 2018-07-05 コーセル株式会社 スイッチング電源装置
JP2021083227A (ja) * 2019-11-19 2021-05-27 日立Astemo株式会社 電力変換装置
JP2021139318A (ja) * 2020-03-04 2021-09-16 株式会社アイシン エンジン点火装置
JP6962498B1 (ja) * 2020-09-25 2021-11-05 住友電気工業株式会社 コンバータ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018936A (ja) * 2013-07-11 2015-01-29 パナソニックIpマネジメント株式会社 電子機器と、それを搭載した自動車
EP3026758B1 (en) * 2014-11-25 2018-01-31 ABB Schweiz AG Modular high voltage supply system
WO2018078734A1 (ja) * 2016-10-26 2018-05-03 三菱電機株式会社 電力変換装置
DE102016014530B4 (de) * 2016-12-01 2024-04-25 Mtconnectivity Power2Pcb Gmbh Elektrische Leistungsverteilung
CN206370781U (zh) * 2017-01-13 2017-08-01 泰达电子股份有限公司 电源转换装置
JP2018182860A (ja) * 2017-04-10 2018-11-15 ファナック株式会社 モータ駆動装置
JP7152160B2 (ja) * 2018-01-26 2022-10-12 矢崎総業株式会社 バスバー及びバスバー固定構造
CN109861556A (zh) * 2018-02-06 2019-06-07 台达电子企业管理(上海)有限公司 电源转换装置
TWI656825B (zh) * 2018-03-08 2019-04-11 和碩聯合科技股份有限公司 電子裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041410A (ja) * 2004-07-30 2006-02-09 Sanyo Electric Co Ltd 回路モジュールおよび電子機器
JP2013034273A (ja) * 2011-08-01 2013-02-14 Denso Corp 電源装置
JP2013099057A (ja) 2011-10-31 2013-05-20 Hitachi Automotive Systems Ltd 電子装置
JP2013176218A (ja) * 2012-02-24 2013-09-05 Nissan Motor Co Ltd 電源制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558531A (en) * 1994-02-09 1996-09-24 Yazaki Corporation Combination terminal
JP3167106B2 (ja) * 1996-04-22 2001-05-21 住友電装株式会社 端子金具の組付け構造
EP0813268A1 (en) * 1996-06-10 1997-12-17 UNITED TECHNOLOGIES AUTOMOTIVE, Inc. Interlocking terminal connection
JP4218193B2 (ja) * 2000-08-24 2009-02-04 三菱電機株式会社 パワーモジュール
JP3923395B2 (ja) * 2001-09-26 2007-05-30 矢崎総業株式会社 端子金具
US6648698B1 (en) * 2002-10-31 2003-11-18 Illinois Tool Works Inc. Grounding tab for a welding apparatus
US7354283B2 (en) * 2005-09-29 2008-04-08 Yazaki Corporation Wire-connecting device
JP5003387B2 (ja) * 2006-10-31 2012-08-15 アイシン精機株式会社 車両のシート用乗員荷重センサのノイズシールド構造
JP5308008B2 (ja) * 2007-11-06 2013-10-09 三菱重工業株式会社 車載空調装置用電動圧縮機
JP5065992B2 (ja) * 2008-05-22 2012-11-07 矢崎総業株式会社 電子機器モジュール
US8169780B2 (en) * 2009-06-18 2012-05-01 Honda Motor Co., Ltd. Power conversion device
JP5422468B2 (ja) * 2010-04-01 2014-02-19 日立オートモティブシステムズ株式会社 電力変換装置
JP5601259B2 (ja) * 2011-03-24 2014-10-08 住友電装株式会社 端子金具
JP5516999B2 (ja) * 2011-10-21 2014-06-11 株式会社デンソー 電源装置
EP2790216B1 (en) 2011-12-08 2020-01-22 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP6101484B2 (ja) * 2012-12-28 2017-03-22 日立オートモティブシステムズ株式会社 Dc−dcコンバータ
WO2014189054A1 (ja) * 2013-05-21 2014-11-27 矢崎総業株式会社 端子金具の接続構造
WO2015163143A1 (ja) * 2014-04-25 2015-10-29 日立オートモティブシステムズ株式会社 コンバータ及び電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041410A (ja) * 2004-07-30 2006-02-09 Sanyo Electric Co Ltd 回路モジュールおよび電子機器
JP2013034273A (ja) * 2011-08-01 2013-02-14 Denso Corp 電源装置
JP2013099057A (ja) 2011-10-31 2013-05-20 Hitachi Automotive Systems Ltd 電子装置
JP2013176218A (ja) * 2012-02-24 2013-09-05 Nissan Motor Co Ltd 電源制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3057217A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107926A (ja) * 2016-12-27 2018-07-05 コーセル株式会社 スイッチング電源装置
JP2021083227A (ja) * 2019-11-19 2021-05-27 日立Astemo株式会社 電力変換装置
JP7395329B2 (ja) 2019-11-19 2023-12-11 日立Astemo株式会社 電力変換装置
JP2021139318A (ja) * 2020-03-04 2021-09-16 株式会社アイシン エンジン点火装置
JP6962498B1 (ja) * 2020-09-25 2021-11-05 住友電気工業株式会社 コンバータ
WO2022064661A1 (ja) * 2020-09-25 2022-03-31 住友電気工業株式会社 コンバータ

Also Published As

Publication number Publication date
US9814154B2 (en) 2017-11-07
EP3057217A4 (en) 2017-07-12
EP3057217A1 (en) 2016-08-17
JPWO2015053139A1 (ja) 2017-03-09
US20160242308A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2015053139A1 (ja) 電力変換装置
JP6169181B2 (ja) Dc−dcコンバータ装置
US10128770B2 (en) Converter and electric power conversion apparatus
US9776514B2 (en) DC-DC converter
WO2010047366A1 (ja) 電力変換装置及び車載用電機システム
CN111357182A (zh) 电子电路装置
US11296613B2 (en) Power conversion device
WO2014027536A1 (ja) Dc-dcコンバータ装置
JP2012231616A (ja) 車載用電力変換装置
JP6158051B2 (ja) 電力変換装置
JP4538474B2 (ja) インバータ装置
JP2018143010A (ja) 電子回路装置
JP2013188010A (ja) 絶縁型スイッチング電源装置
JP6186439B2 (ja) Dc−dcコンバータ装置
JP2014217244A (ja) 絶縁型スイッチング電源装置および絶縁型スイッチング電源装置の製造方法
WO2022264864A1 (ja) バスバー放熱構造及びインバータ装置
JP7134305B1 (ja) 電力変換装置
WO2023053873A1 (ja) パワーモジュール
KR101826727B1 (ko) 방열 장치 및 그 제조 방법
JP5606027B2 (ja) ブロック型電力モジュール及び電力変換装置
JP2017212774A (ja) 電力変換器
JP2003060143A (ja) 半導体モジュール
JP2017204917A (ja) 電力変換装置
JP2015171309A (ja) 回路構成体及び電気接続箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026041

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014852207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015541535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE