WO2015050022A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2015050022A1
WO2015050022A1 PCT/JP2014/075280 JP2014075280W WO2015050022A1 WO 2015050022 A1 WO2015050022 A1 WO 2015050022A1 JP 2014075280 W JP2014075280 W JP 2014075280W WO 2015050022 A1 WO2015050022 A1 WO 2015050022A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
center
shoulder
lateral
main groove
Prior art date
Application number
PCT/JP2014/075280
Other languages
English (en)
French (fr)
Inventor
敦史 前原
佳恵 松田
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013209463A external-priority patent/JP6043265B2/ja
Priority claimed from JP2013259426A external-priority patent/JP6356961B2/ja
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP14850473.1A priority Critical patent/EP3042789B1/en
Priority to CN201480051747.8A priority patent/CN105555549B/zh
Priority to US15/021,347 priority patent/US10195908B2/en
Publication of WO2015050022A1 publication Critical patent/WO2015050022A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C2011/0334Stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0353Circumferential grooves characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/036Narrow grooves, i.e. having a width of less than 3 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a pneumatic tire in which wet performance and wear resistance are improved in a well-balanced manner.
  • a pneumatic tire in which a plurality of blocks are divided into a plurality of main grooves extending in the tire circumferential direction and a plurality of lateral grooves extending in the tire axial direction in the tread portion has been proposed.
  • a center block divided by a center main groove, a middle main groove, and a center lateral groove a middle block divided by a middle main groove, a shoulder main groove, and a middle lateral groove
  • a pneumatic tire including a shoulder block divided by a shoulder main groove, a ground contact end, and a shoulder lateral groove is disclosed.
  • the heavy duty tire described in Patent Documents 1 and 2 has a tread pattern in which the rotation direction is not specified, and the first arrival of one of the pair of center blocks arranged in parallel in the tire axial direction.
  • the tire axial direction length of the side edge is shorter than the tire axial direction length of the first arrival side edge of the other block. For this reason, in the vicinity of the first-side edge of one block, the block rigidity is insufficient and local slip occurs at the time of ground contact, so that uneven wear is likely to occur.
  • the angle between the middle main groove and the center lateral groove is an acute angle at the first side edge of the one block, the water in the center lateral groove is not easily discharged into the middle main groove, and the wet performance is sufficiently enhanced. It may not be possible.
  • the present invention has been devised in view of the above circumstances, and its main object is to provide a pneumatic tire in which wet performance and wear resistance are improved in a balanced manner.
  • the present invention includes a center main groove extending continuously in the tire circumferential direction on the tread portion, a pair of middle main grooves extending continuously in the tire circumferential direction on both sides of the center main groove, and the middle main groove.
  • a pair of shoulder main grooves extending continuously in the tire circumferential direction between the center main groove and the middle main groove, a plurality of center lateral grooves connecting the center main groove and the middle main groove, the middle main groove and the shoulder
  • By providing a plurality of middle lateral grooves connecting between the main grooves and a plurality of shoulder lateral grooves connecting between the shoulder main grooves and the grounding end, the center main groove, the middle main groove, and the A pair of center block rows in which a center block divided by a center lateral groove is spaced in the tire circumferential direction, a middle block divided by the middle main groove, the shoulder main groove, and the middle lateral groove A pair of middle block rows in which the racks are spaced apart in the tire circumferential direction, and a pair of shoulder blocks
  • a ratio WC / WA of the groove width WC of the shoulder lateral groove and the groove width WA of the center lateral groove is 1.6 to 2.0.
  • the groove width WA of the center lateral groove, the groove width WB of the middle lateral groove, and the groove width WC of the shoulder lateral groove are preferably 4 mm or more.
  • a land ratio Lc of a center region which is a region between tire circumferential direction lines passing through both ends of the center block in the tire axial direction, and a tire passing through both ends of the middle block in the tire axial direction.
  • the ratio Lc / Lm to the land ratio Lm of the middle area which is the area between the circumferential lines, is preferably 1.05 to 1.25.
  • the angle of the center lateral groove with respect to the tire axial direction is preferably 10 ° to 30 °.
  • the groove width of the shoulder main groove is larger than the groove width of the center main groove, and the groove width of the middle main groove is larger than the groove width of the shoulder main groove. Is desirable.
  • the middle main groove and the shoulder main groove are formed in a zigzag shape, and the middle main groove, the center lateral groove, and the middle lateral groove are at a zigzag apex of the middle main groove. It is preferable that the shoulder main groove intersects the middle lateral groove and the shoulder lateral groove at the zigzag apex of the shoulder main groove.
  • the tread portion has a directional pattern in which a rotation direction is specified.
  • the center lateral groove is inclined toward the rear arrival side in the rotational direction from the inner end to the outer end in the tire axial direction, and the middle main groove is in the same direction as the center lateral groove.
  • the center lateral groove has an inclined short side portion and a zigzag shape in which the short side portion is inclined in the opposite direction and the long side portion having a tire circumferential length longer than the short side portion is alternately arranged. It is desirable that the short side portion communicates with the middle main groove.
  • the center lateral groove has a tie bar for connecting the adjacent center blocks with the groove bottom surface protruding.
  • the middle lateral groove is inclined in the same direction as the center lateral groove
  • the shoulder main groove is a short side part inclined in the same direction as the middle lateral groove
  • the short side part Preferably has a long side portion that is inclined in the opposite direction and has a tire circumferential length longer than the short side portion, and the middle lateral groove communicates with the shoulder main groove at the short side portion.
  • the center lateral grooves on both sides of the center main groove are displaced in the tire circumferential direction, and the center lateral grooves and the middle lateral grooves on both sides of the middle main groove are in the tire circumferential direction. It is desirable that the middle lateral groove and the shoulder lateral groove on both sides of the shoulder main groove are displaced in the tire circumferential direction.
  • an angle ⁇ 1 with respect to the tire circumferential direction of the center lateral groove is smaller than an angle ⁇ 2 with respect to the tire circumferential direction of the middle lateral groove, and an angle ⁇ 2 with respect to the tire circumferential direction of the middle lateral groove is equal to the shoulder lateral groove. It is desirable that the angle with respect to the tire circumferential direction is smaller than ⁇ 3.
  • the angle ⁇ 1 of the center lateral groove with respect to the tire circumferential direction is preferably 60 ° to 80 °
  • the angle ⁇ 3 of the shoulder lateral groove with respect to the tire circumferential direction is preferably 80 ° to 90 °. .
  • the groove width WA of the center lateral groove and the groove width WB of the middle lateral groove are equal, and the ratio WC / WA between the shoulder lateral groove groove width WC and the central lateral groove groove width WA is 1. 3 to 2.3.
  • the distribution of the groove width WA of the center lateral groove, the groove width WB of the middle lateral groove, and the groove width WC of the shoulder lateral groove becomes appropriate, and both wet performance and wear resistance performance can be achieved.
  • the groove width WC is larger than the groove width WA and the groove width WB, the water on the tread surface is quickly discharged to the outside of the tread ground contact end via the shoulder lateral groove. As a result, it is possible to improve the wet performance while ensuring sufficient wear resistance with a large land ratio.
  • FIG. 2 is a development view of the tread portion of FIG. 1.
  • FIG. 3 is an enlarged development view of the center land portion of FIG. 2.
  • FIG. 3 is an enlarged development view of a middle land portion of FIG. 2.
  • FIG. 3 is an enlarged development view of a shoulder land portion of FIG. 2.
  • FIG. 7 is an enlarged development view of the center land portion of FIG. 6.
  • FIG. 8 is a sectional view taken along line AA in FIG. 7.
  • FIG. 8 is an enlarged development view of the middle land portion of FIG. 7.
  • FIG. 8 is an enlarged development view of the shoulder land portion of FIG. 7.
  • FIG. 1 is a tire meridian cross-sectional view including a tire rotation axis in a normal state of the pneumatic tire 1 according to the first embodiment of the present invention.
  • the normal state is a no-load state in which the tire is assembled on the normal rim RM and filled with the normal internal pressure.
  • the dimensions and the like of each part of the tire are values measured in this normal state.
  • the “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based. For example, in the case of JATMA, “standard rim”, in the case of TRA, “Design Rim”, ETRTO If so, Me “Measuring Rim”.
  • Regular internal pressure is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based.
  • JATMA “maximum air pressure”, for TRA, “TIRE LOAD LIMITS” The maximum value described in AT “VARIOUS” COLD “INFLATION” PRESSURES ”, or“ INFLATION PRESSURE ”in ETRTO.
  • a pneumatic tire 1 As shown in FIG. 1, a pneumatic tire 1 according to the present invention includes a toroidal carcass 6 extending from a tread portion 2 through a sidewall portion 3 to a bead core 5 of a bead portion 4, and the outer side of the carcass 6 in the tire radial direction.
  • a belt layer 7 or the like disposed inside the tread portion 2 is provided.
  • the pneumatic tire 1 is a tubeless tire with which 15 degree taper rim RM is mounted
  • worn is shown.
  • the carcass 6 includes a carcass ply 6A in which carcass cords are arranged at an angle of, for example, 80 to 90 ° with respect to the tire equator C.
  • the carcass ply 6A includes a series of ply folded portions 6b that are folded around the bead core 5 from the inner side to the outer side in the tire axial direction at both ends of the ply main body portion 6a straddling the bead cores 5 and 5.
  • a bead apex rubber 8 having a triangular cross section extending from the bead core 5 to the outer side in the tire radial direction is disposed.
  • the belt layer 7 is disposed radially outside the carcass 6 and inside the tread portion 2.
  • the belt layer 7 is constituted by a plurality of belt plies using steel belt cords.
  • the belt layer 7 of the present embodiment includes an innermost belt ply 7A in which belt cords are arranged at an angle of, for example, about 60 ⁇ 10 ° with respect to the tire equator C, and the belt cord 7 is sequentially arranged on the outer side and the belt cords are connected to the tire equator C 4 layers of belt plies 7B, 7C and 7D arranged at a small angle of about 15 to 35 ° with respect to each other.
  • the belt layer 7 is provided with one or more places where the belt cords cross each other between the plies, thereby increasing belt rigidity and strongly reinforcing almost the entire width of the tread portion 2.
  • the bead core 5 has a flat and oblong cross-sectional hexagonal shape, and its inner surface in the tire radial direction is inclined at an angle of 12 ° to 18 ° with respect to the tire axial direction, thereby providing a wide range of fitting force with the rim RM. It has been increased over time.
  • FIG. 2 is a development view of the tread portion 2 of the pneumatic tire 1 of the present embodiment.
  • the pneumatic tire 1 according to the present embodiment includes a directional pattern in which the rotation direction R of the tire is designated on the tread portion 2.
  • the rotation direction R is displayed by, for example, characters on the sidewall portion 3.
  • the tread portion 2 includes a center main groove 10 extending continuously in the tire circumferential direction on the tire equator C, and a pair of middle main grooves disposed on both sides of the tire equator C and extending continuously in a zigzag shape in the tire circumferential direction. 11 and a pair of shoulder main grooves 12 extending continuously in a zigzag manner in the tire circumferential direction on the outer side in the tire axial direction of the middle main groove 11 and on the inner side of the tread grounding end Te.
  • the tread grounding end Te means the grounding end on the outermost side in the tire axial direction when a normal load is loaded on a normal tire and grounded on a flat surface with a camber angle of 0 °.
  • Regular load is the load that each standard defines for each tire in the standard system including the standard on which the tire is based.
  • “JATMA” is the “maximum load capacity” and TRA is “TIRE” LOAD Maximum value described in LIMITS AT AT VARIOUS COLD INFLATION PRESSURES "", ETRTO "LOAD CAPACITY”.
  • the center main groove 10 extends linearly in the tire circumferential direction.
  • the center main groove 10 disposed on the tire equator C enhances the drainage of the tread portion 2 and improves the wet performance.
  • the groove width W1 of the center main groove 10 is preferably 0.8% or more, more preferably 1.2% or more, preferably 2.4 or less, more preferably 2.0 or less of the tread ground contact width TW. .
  • the groove width W1 of the center main groove 10 When the groove width W1 of the center main groove 10 is less than 0.8% of the tread contact width TW, the groove volume near the tire equator C having a high contact pressure is insufficient, and the drainage performance may not be sufficiently improved. .
  • the groove width W1 of the center main groove 10 exceeds 2.4% of the tread ground contact width TW, the actual ground contact area of the center land portion 13 having a high ground pressure is reduced, so that the load applied per unit area is large. Therefore, the wear resistance may be reduced.
  • the middle main groove 11 has a long side portion 11a that is inclined with respect to the tire circumferential direction, and a short side portion 11b that is inclined in a direction opposite to the long side portion 11a and whose length in the tire circumferential direction is smaller than the long side portion 11a. And have.
  • the short side portion 11b is inclined outward in the tire axial direction from the first arrival side in the rotation direction toward the rear arrival side.
  • the long side portions 11 a and the short side portions 11 b are provided alternately in the tire circumferential direction, and constitute a zigzag middle main groove 11.
  • the angle ⁇ 1 of the long side portion 11a of the middle main groove 11 with respect to the tire circumferential direction is preferably 2 to 10 °, for example. If the angle ⁇ 1 is less than 2 °, the rigidity of the tread portion 2 in the tire axial direction may be reduced. If the angle ⁇ 1 exceeds 10 °, the drainage performance of the tire may not be sufficiently improved.
  • the shoulder main groove 12 has a long side portion 12a that is inclined with respect to the tire circumferential direction, and a short side portion 12b that is inclined in a direction opposite to the long side portion 12a and whose length in the tire circumferential direction is smaller than that of the long side portion 12a. And have.
  • the short side portion 12 b is inclined in the same direction as the short side portion 11 b of the middle main groove 11.
  • the long side portions 12 a and the short side portions 12 b are alternately provided in the tire circumferential direction, and constitute a zigzag shoulder main groove 12.
  • An angle ⁇ 2 of the long side portion 12a of the shoulder main groove 12 with respect to the tire circumferential direction is, for example, the same as the angle ⁇ 1.
  • the zigzag pitch of the middle main groove 11 is equivalent to the zigzag pitch of the shoulder main groove 12.
  • the zigzag of the middle main groove 11 and the zigzag of the shoulder main groove 12 are arranged with the phases shifted in the tire circumferential direction.
  • Such middle main grooves 11 and shoulder main grooves 12 disperse noise generated in the middle main grooves 11 and shoulder main grooves 12, thereby improving noise performance.
  • the groove width W3 of the shoulder main groove 12 is larger than the groove width W1 of the center main groove 10, and the middle main
  • the groove width W2 of the groove 11 is preferably larger than the groove width W3 of the shoulder main groove 12.
  • the depth of the center main groove 10, the middle main groove 11 and the shoulder main groove 12 is, for example, 15 to 25 mm. desirable.
  • the tread portion 2 is divided into a plurality of regions by the center main groove 10, the middle main groove 11, and the shoulder main groove 12.
  • the tread portion 2 includes a pair of center land portions 13 between the center main groove 10 and the middle main groove 11, a pair of middle land portions 14 between the middle main groove 11 and the shoulder main groove 12, and a shoulder main groove. And a pair of shoulder land portions 15 located on the outer side in the tire axial direction. That is, the center land portion 13 and the middle land portion 14 are provided on both sides of the middle main groove 11, and the middle land portion 14 and the shoulder land portion 15 are provided on both sides of the shoulder main groove 12.
  • FIG. 3 shows an enlarged view of the center land 13.
  • the center land portion 13 is provided with a plurality of center lateral grooves 21. In order to obtain sufficient drainage, it is desirable that 50 or more center lateral grooves 21 are arranged.
  • the center lateral groove 21 extends in the tire axial direction and communicates the center main groove 10 and the middle main groove 11 on both sides of the center land portion 13.
  • the center land portion 13 is a block row in which a plurality of center blocks 22 are arranged. Since the center lateral groove 21 is inclined with respect to the tire axial direction, the tread surface portion 22s of the center block 22 of the present embodiment has a substantially parallelogram shape.
  • the middle main groove 11 has a groove edge 11d on the center land portion 13 side and a groove edge 11e on the middle land portion 14 side.
  • the vertex 11f of the groove edge 11d closest to the groove center line 11c is closer to the center land portion 13 than the vertex 11g of the groove edge 11e closest to the groove center line 11c.
  • the tire axial distance WEm between the vertex 11f of the groove edge 11d closest to the groove center line 11c and the vertex 11g of the groove edge 11e closest to the groove center line 11c. Is 0.07 to 0.13 times the maximum width WDc of the center block 22 in the tire axial direction. If the tire axial distance WEm between the apex 11f and the apex 11g is less than 0.07 times the maximum width WDc of the center block 22 in the tire axial direction, the drainage performance may not be sufficiently improved. When the tire axial distance WEm between the apex 11f and the apex 11g exceeds 0.13 times the maximum width WDc of the center block 22 in the tire axial direction, the wear resistance of the center land portion 13 may be deteriorated.
  • the middle main groove 11 has a zigzag vertex 11p on the inner side in the tire axial direction and a zigzag vertex 11r on the outer side in the tire axial direction on the groove center line 11c.
  • the middle main groove 11 and the center lateral groove 21 intersect at the zigzag apex 11r of the middle main groove 11. Thereby, the flow of water in the middle main groove 11 and the center lateral groove 21 is smoothed.
  • “the middle main groove 11 and the center lateral groove 21 intersect at the zigzag apex 11r of the middle main groove 11” means a region where the middle main groove 11 and the center lateral groove 21 shown by hatching in FIG. 3 intersect.
  • 11s means that there is a zigzag apex 11r on the groove center line 11c of the middle main groove 11 (hereinafter, the intersection of the middle main groove 11 and the middle horizontal groove 31, the shoulder main groove 12 and the middle horizontal groove 31) This also applies to the intersection of the shoulder main groove 12 and the shoulder lateral groove 41).
  • the center lateral groove 21 extends incline in the tire axial direction, the first portion 21a, the second portion 21b that is displaced in the tire circumferential direction from the first portion 21a and extends in parallel with the first portion 21a, and the first portion 21a. And a third portion 21c that connects the second portion 21b.
  • the depth of the center lateral groove 21 is preferably equal to or less than the depth of the middle main groove 11.
  • the pitch of the center lateral groove 21 is twice the zigzag pitch of the middle main groove 11.
  • the zigzag pitch of the middle main groove 11 is 1 ⁇ 2 times the pitch of the center lateral groove 21.
  • the center block 22 has a zigzag block apex 22a that faces the middle main groove 11 and protrudes outward in the tire axial direction at the center in the tire circumferential direction of the tread surface 22s.
  • chamfered portions 24a and 24b are formed at block vertices where the center main groove 10 and the center lateral groove 21 intersect.
  • Chamfered portions 25a and 25b are formed at block vertices where the middle main groove 11 and the center lateral groove 21 intersect.
  • Such chamfered portions 24a, 24b, 25a and 25b alleviate stress concentration at the block apexes and suppress damage such as chipping.
  • rounded corner portions may be formed.
  • FIG. 4 shows an enlarged view of the middle land portion 14.
  • the middle land portion 14 is provided with a plurality of middle lateral grooves 31. In order to obtain sufficient drainage, it is desirable that 50 or more middle lateral grooves 31 are arranged.
  • the middle lateral groove 31 extends in the tire axial direction, and one end communicates with the middle main groove 11 and the other end communicates with the shoulder main groove 12.
  • the middle land portion 14 is a block row in which a plurality of middle blocks 32 are arranged.
  • the center block 22 and the middle block 32 located on both sides of the middle main groove 11 are arranged with a 1/2 pitch shift in the tire circumferential direction. Since the middle lateral groove 31 is inclined with respect to the tire axial direction, the tread surface portion 32s of the middle block 32 of the present embodiment has a substantially parallelogram shape.
  • the shoulder main groove 12 has a groove edge 12d on the middle land portion 14 side and a groove edge 12e on the shoulder land portion 15 side.
  • the vertex 12f of the groove edge 12d closest to the groove center line 12c is closer to the middle land portion 14 than the vertex 12g of the groove edge 12e closest to the groove center line 12c.
  • the tire axial distance WEm between the vertex 11f of the groove edge 11d closest to the groove center line 11c and the vertex 11g of the groove edge 11e closest to the groove center line 11c. Is 0.07 to 0.13 times the maximum width WDm of the middle block 32 in the tire axial direction. If the tire axial distance WEm between the vertex 11f and the vertex 11g is less than 0.07 times the maximum width WDm of the middle block 32 in the tire axial direction, the drainage performance may not be sufficiently improved. When the tire axial distance WEm between the vertex 11f and the vertex 11g exceeds 0.13 times the maximum width WDm of the middle block 32 in the tire axial direction, the wear resistance of the middle land portion 14 may be deteriorated.
  • the directional distance WEs is 0.07 to 0.13 times the maximum width WDm of the middle block 32 in the tire axial direction. If the tire axial distance WEs between the apex 12f and the apex 12g is less than 0.07 times the maximum width WDm of the middle block 32 in the tire axial direction, the drainage performance may not be sufficiently improved. When the tire axial distance WEs between the apex 12f and the apex 12g exceeds 0.13 times the maximum width WDm of the middle block 32 in the tire axial direction, the wear resistance of the middle land portion 14 may be deteriorated.
  • the shoulder main groove 12 has a zigzag apex 12p on the inner side in the tire axial direction and a zigzag apex 12r on the outer side in the tire axial direction on the groove center line 12c.
  • the middle main groove 11 and the middle horizontal groove 31 intersect at the zigzag apex 11p of the middle main groove 11. Thereby, the flow of water in the middle main groove 11 and the middle lateral groove 31 is smoothed.
  • the shoulder main groove 12 and the middle lateral groove 31 intersect at the zigzag apex 12p of the shoulder main groove 12. Thereby, the flow of water in the shoulder main groove 12 and the middle lateral groove 31 is smoothed.
  • the middle lateral groove 31 includes a first portion 31a extending in the tire axial direction, a second portion 31b displaced in the tire circumferential direction from the first portion 31a and extending in parallel with the first portion 31a, and a first portion 31a. And a third portion 31c that connects the second portion 31b.
  • the depth of the middle lateral groove 31 is preferably equal to or less than the depth of the middle main groove 11 and the shoulder main groove 12, for example.
  • the pitch of the middle lateral groove 31 is equivalent to the center lateral groove 21 and is twice the zigzag pitch of the middle main groove 11 and the shoulder main groove 12.
  • the zigzag pitch of the middle main groove 11 and the shoulder main groove 12 is 1 ⁇ 2 times the pitch of the middle lateral groove 31.
  • the middle block 32 faces the shoulder main groove 12 and the zigzag block apex 32a projecting inward in the tire axial direction facing the middle main groove 11 at the center in the tire circumferential direction of the tread surface portion 32s.
  • a zigzag block apex 32b protruding outward in the tire axial direction.
  • Chamfered portions 34a and 34b are formed at block vertices where the middle main groove 11 and the middle lateral groove 31 intersect.
  • Chamfered portions 35a and 35b are formed at block vertices where the shoulder main groove 12 and the middle lateral groove 31 intersect.
  • Such chamfers 34a, 34b, 35a and 35b alleviate stress concentration at the block apexes and suppress damage such as chipping.
  • a rounded corner portion may be formed.
  • FIG. 5 shows an enlarged view of the shoulder land portion 15.
  • the shoulder land portion 15 is provided with a plurality of shoulder lateral grooves 41. In order to obtain sufficient drainage, it is desirable that 50 or more shoulder lateral grooves 41 are arranged.
  • the shoulder lateral groove 41 extends in the tire axial direction, and one end communicates with the shoulder main groove 12 and the other end communicates with the tread grounding end Te.
  • the shoulder land portion 15 is a block row in which a plurality of shoulder blocks 42 are arranged.
  • the middle block 32 and the shoulder block 42 located on both sides of the shoulder main groove 12 are arranged with a 1/2 pitch shift in the tire circumferential direction.
  • the tire axial distance WEs between the vertex 12f of the groove edge 12d closest to the groove center line 12c and the vertex 12g of the groove edge 12e closest to the groove center line 12c. Is 0.07 to 0.13 times the maximum width WDs of the shoulder block 42 in the tire axial direction. If the tire axial distance WEs between the apex 12f and the apex 12g is less than 0.07 times the maximum width WDs of the shoulder block 42 in the tire axial direction, the drainage performance may not be sufficiently improved. When the tire axial distance WEs between the apex 12f and the apex 12g exceeds 0.13 times the maximum width WDs of the shoulder block 42 in the tire axial direction, the wear resistance of the shoulder land portion 15 may be deteriorated.
  • the shoulder main groove 12 and the shoulder lateral groove 41 intersect at the zigzag apex 12 r of the shoulder main groove 12. Thereby, the flow of water in the shoulder main groove 12 and the shoulder lateral groove 41 is smoothed.
  • the shoulder lateral groove 41 includes a first portion 41a extending in an inclined manner in the tire axial direction, a second portion 41b that is displaced in the tire circumferential direction from the first portion 41a and extends in parallel with the first portion 41a, and a first portion 41a. And a third portion 41c that connects the second portion 41b.
  • the depth of the shoulder lateral groove 41 is preferably equal to or less than the depth of the middle main groove 11 and the shoulder main groove 12, for example.
  • the pitch of the shoulder lateral groove 41 is equivalent to the middle lateral groove 31 and is twice the zigzag pitch of the shoulder main groove 12.
  • the zigzag pitch of the shoulder main grooves 12 is 1 ⁇ 2 times the pitch of the shoulder lateral grooves 41.
  • the shoulder block 42 has a zigzag block apex 42a that faces the shoulder main groove 12 and protrudes inward in the tire axial direction at the center of the tread surface portion 42s in the tire circumferential direction.
  • Chamfered portions 44a and 44b are formed at the block vertices where the shoulder main groove 12 and the shoulder lateral groove 41 intersect. Such chamfered portions 44a and 44b alleviate stress concentration at the block apexes and suppress damage such as chipping. Instead of the chamfered portions 44a and 44b, a rounded corner portion may be formed.
  • the ratio WC / WA of the groove width WC of the shoulder lateral groove 41 and the groove width WA of the center lateral groove 21 is preferably 1.3 or more, more preferably 1.6 or more, and preferably 2.3 or less. Preferably it is 2.0 or less. Since the groove width WA of the center lateral groove 21, the groove width WB of the middle lateral groove 31, and the groove width WC of the shoulder lateral groove 41 are set according to the above relationship, the distribution of the groove width WA, the groove width WB, and the groove width WC is achieved. It becomes appropriate, and both wet performance and wear resistance performance can be achieved.
  • the groove width WC is larger than the groove width WA and the groove width WB, the water in the tread surface is quickly discharged to the outside of the tread ground contact Te through the shoulder lateral groove 41. As a result, it is possible to improve the wet performance while ensuring sufficient wear resistance with a large land ratio.
  • the groove width WA of the center lateral groove 21, the groove width WB of the middle lateral groove 31, and the groove width WC of the shoulder lateral groove 41 are preferably 4 mm or more. If the groove width WA, the groove width WB, and the groove width WC are less than 4 mm, the drainage of the tread portion 2 may be deteriorated and the wet performance may not be improved.
  • the ratio Lc / Lm between the land ratio Lc of the center region 22A and the land ratio Lm of the middle region 32A is preferably 1.05 or more, more preferably 1.10 or more, Is 1.25 or less, more preferably 1.20 or less.
  • the center region 22A is a region between the tire circumferential direction lines 22c and 22c passing through both ends 22e and 22e of the center block 22 in the tire axial direction.
  • the middle region 32A is a region between tire circumferential direction lines 32c and 32c passing through both ends 32e and 32e of the middle land portion 14 in the tire axial direction.
  • the ratio Lc / Lm between the land ratio Lc of the center region 22A and the land ratio Lm of the middle region 32A is less than 1.05 times, the actual ground contact area of the center land portion 13 having a high contact pressure is reduced. The load applied per area increases, and the wear resistance may be reduced.
  • the ratio Lc / Lm between the land ratio Lc of the center region 22A and the land ratio Lm of the middle region 32A exceeds 1.25 times, the groove volume of the center land portion 13 with high contact pressure is insufficient, and the drainage performance May decrease.
  • the land ratio Lc of the center region 22A is desirably 75 to 85.
  • the land ratio Lc of the center region 22A is less than 75, the actual ground contact area of the center land portion 13 having a high contact pressure is reduced, and thus the wear resistance may be reduced as described above.
  • the land ratio Lc of the center region 22A exceeds 85, the groove volume of the center land portion 13 is insufficient, and the drainage performance may be deteriorated.
  • the land ratio Lm of the middle region 32A is desirably 65 to 75.
  • the land ratio Lm of the middle region 32A is less than 65, the actual ground contact area of the middle land portion 14 becomes small, and therefore the middle land portion 14 may be unevenly worn.
  • the land ratio Lm of the middle region 32A exceeds 75, the groove volume of the middle land portion 14 is insufficient, and the drainage performance may be deteriorated.
  • the angle ⁇ 1 (°) of the center lateral groove 21 shown in FIGS. 3 to 5 with respect to the tire axial direction, the angle ⁇ 2 (°) of the middle lateral groove 31 with respect to the tire axial direction, and the angle ⁇ 3 of the shoulder lateral groove 41 with respect to the tire axial direction. (°) preferably satisfies the following relationship. ⁇ 3 ⁇ 2 ⁇ 1 (1) 10 ⁇ ⁇ 1 ⁇ 30 (2) 0 ⁇ ⁇ 3 ⁇ 10 (3)
  • the angle ⁇ 1 of the center lateral groove 21 is an angle with respect to the tire axial direction of the groove edge of the center lateral groove 21 at the apex 26 of the center block 22 in FIG.
  • the angle ⁇ 2 of the middle lateral groove 31 is an angle with respect to the tire axial direction of the groove edge of the middle lateral groove 31 at the apex 36 of the middle block 32 in FIG.
  • the shoulder lateral groove angle ⁇ 3 is an angle with respect to the tire axial direction of the groove edge of the shoulder lateral groove 41 at the apex 46 of the shoulder block 42 in FIG. 5.
  • FIG. 6 shows a development view of the tread portion 2 of the pneumatic tire of the present embodiment.
  • the center lateral grooves 21 and 21 on both sides of the center main groove 10 are, for example, arranged with a 1/2 pitch shift in the tire circumferential direction.
  • Such center lateral grooves 21, 21 prevent the superposition of pitch sounds generated in the center lateral grooves 21, 21, thereby improving noise performance.
  • the distribution of contact pressure in the center land portions 13 adjacent in the tire axial direction is dispersed, and uneven wear of the center land portions 13 is suppressed.
  • the center lateral groove 21 and the middle lateral groove 31 on both sides of the middle main groove 11 are arranged, for example, shifted by 1/2 pitch in the tire circumferential direction.
  • the center block 22 and the middle block 32 which are located on both sides of the middle main groove 11 are arranged with a 1/2 pitch shift in the tire circumferential direction.
  • Such center lateral grooves 21 and middle lateral grooves 31 prevent the pitch sound generated in the center lateral grooves 21 and middle lateral grooves 31 from being superimposed, thereby improving noise performance. Further, the distribution of the contact pressure in the adjacent center land portion 13 and middle land portion 14 is dispersed, and uneven wear of the center land portion 13 and the middle land portion 14 is suppressed.
  • FIG. 7 shows an enlarged view of the center land 13.
  • the center lateral groove 21 is inclined toward the rear arrival side in the rotational direction R from the inner end to the outer end in the tire axial direction.
  • the center lateral groove 21 is inclined in the same direction as the short side portion 11 b of the middle main groove 11.
  • the center lateral groove 21 communicates with the middle main groove 11 at the short side portion 11b. Thereby, a difference arises in the tire axial direction length of the both end edges of the center lateral groove 21. More specifically, the tire axial direction length WS of the first arrival side edge 22S of the center block 22 is larger than the tire axial direction length WE of the rear arrival side edge 22E. Accordingly, the rigidity in the vicinity of the first arrival side edge 22S of the center block 22 is increased, and uneven wear such as so-called heel & toe wear is suppressed. Such actions and effects are particularly effective in the center land portion 13 having a high ground pressure.
  • the rigidity of the center block 22 in the vicinity of the first arrival side edge 22S is increased, so that the center lateral groove 21 has a sufficient groove volume when the center block 22 is grounded.
  • the center lateral groove 21 and the middle main groove 11 are inclined in the same direction, the water in the center lateral groove 21 is smoothly discharged into the middle main groove 11.
  • the center lateral groove 21 of the present embodiment is provided with a tie bar 23 that connects the center blocks 22 and 22 adjacent to each other in the tire circumferential direction.
  • FIG. 8 shows a cross-sectional view of the center land portion 13 of FIG. 7 taken along line AA, that is, a cross-sectional view of the center land portion 13 including the tie bar 23.
  • the tie bar 23 is formed by raising the groove bottom surface of the center lateral groove 21.
  • the tie bar 23 regulates the movement of the center block 22 in the tire circumferential direction at the time of ground contact, particularly when it is stepped on or kicked out, thereby suppressing uneven wear such as heel and toe wear.
  • the height HT of the tie bar 23 is preferably, for example, 1/3 to 1/2 times the groove depth DA of the center lateral groove 21.
  • the height HT of the tie bar 23 is less than 1/3 times the groove depth DA, the movement of the center block 22 in the tire circumferential direction at the time of contact is increased, and there is a possibility that uneven wear occurs in the center block 22. .
  • the height HT of the tie bar 23 exceeds 1/2 of the groove depth DA, the drainage of the center lateral groove 21 may be deteriorated.
  • the width WT in the tire axial direction of the tie bar 23 is desirably, for example, 1/3 to 1/2 times the width WE in the tire axial direction of the rear-end edge 22E of the center block 22.
  • the width WT of the tie bar 23 is less than 1/3 times the width WE of the rear end edge 22E, the center block 22 moves in the tire circumferential direction at the time of ground contact, and uneven wear occurs in the center block 22. There is a fear.
  • the width WT of the tie bar 23 exceeds 1 ⁇ 2 times the width WE of the rear arrival side edge 22E, the drainage of the center lateral groove 21 may be deteriorated.
  • the center block 22 is provided with a plurality of center lateral shallow grooves 27.
  • the center lateral shallow groove 27 has one end communicating with the center main groove 10 and the other end communicating with the short side portion 11 b of the middle main groove 11. Similar to the center lateral groove 21, the center lateral shallow groove 27 is inclined in the tire axial direction, and the first portion 27a extends in parallel with the first portion 27a and the first portion 27a is displaced in the tire circumferential direction. It is a zigzag groove having a second portion 27b and a third portion 27c that connects the first portion 27a and the second portion 27b.
  • the depth of the center lateral shallow groove 27 is smaller than the depth of the center lateral groove 21.
  • the width of the center lateral shallow groove 27 is smaller than the width of the center lateral groove 21.
  • the center lateral shallow groove 27 enhances drainage of the center land portion 13 and optimizes the rigidity distribution of the center block 22.
  • FIG. 9 shows an enlarged view of the middle land portion 14.
  • the middle lateral groove 31 is inclined toward the rear arrival side in the rotational direction R from the inner end to the outer end in the tire axial direction.
  • the middle lateral groove 31 is inclined in the same direction as the short side portion 11 b of the middle main groove 11. Further, the middle horizontal groove 31 communicates with the middle main groove 11 at the short side portion 11b. Thereby, the water in the middle main groove 11 is smoothly discharged into the middle lateral groove 31.
  • the middle lateral groove 31 is inclined in the same direction as the short side portion 12 b of the shoulder main groove 12. Further, the middle lateral groove 31 communicates with the shoulder main groove 12 at the short side portion 12b. Thereby, the water in the middle lateral groove 31 is smoothly discharged into the shoulder main groove 12. Accordingly, drainage is improved from the center land portion 13 of the tread portion 2 to the middle land portion 14, and the wet performance of the pneumatic tire is improved.
  • the middle block 32 is provided with a plurality of middle lateral shallow grooves 37.
  • the middle lateral shallow groove 37 has one end communicating with the short side portion 11 b of the middle main groove 11 and the other end communicating with the short side portion 12 b of the shoulder main groove 12.
  • the middle lateral shallow groove 37 extends in the tire axial direction, and the first portion 37a extends in parallel with the first portion 37a and the first portion 37a is displaced in the tire circumferential direction. It is a zigzag groove having a second portion 37b and a third portion 37c that connects the first portion 37a and the second portion 37b.
  • the depth of the middle lateral shallow groove 37 is smaller than the depth of the middle lateral groove 31.
  • the width of the middle lateral shallow groove 37 is smaller than the width of the middle lateral groove 31.
  • the middle lateral shallow groove 37 enhances the drainability of the middle land portion 14 and optimizes the rigidity distribution of the middle block 32.
  • FIG. 10 shows an enlarged view of the shoulder land portion 15.
  • the middle lateral groove 31 and the shoulder lateral groove 41 on both sides of the shoulder main groove 12 are arranged with a 1/2 pitch shift in the tire circumferential direction.
  • the middle block 32 and the shoulder block 42 which are located on both sides of the shoulder main groove 12 are arranged with a 1/2 pitch shift in the tire circumferential direction.
  • the shoulder block 42 is provided with a plurality of shoulder lateral shallow grooves 47.
  • One side of the shoulder lateral shallow groove 47 communicates with the short side portion 12b of the shoulder main groove 12, and the other end communicates with the tread grounding end Te.
  • the shoulder lateral shallow groove 47 extends incline in the tire axial direction, and the first portion 47a extends in parallel to the first portion 47a and is displaced from the first portion 47a in the tire circumferential direction.
  • a zigzag groove having a second portion 47b and a third portion 47c that connects the first portion 47a and the second portion 47b.
  • the depth of the shoulder lateral shallow groove 47 is smaller than the depth of the shoulder lateral groove 41.
  • the width of the shoulder lateral shallow groove 47 is smaller than the width of the shoulder lateral groove 41.
  • the shoulder lateral shallow groove 47 enhances the drainage of the shoulder land portion 15 and optimizes the rigidity distribution of the shoulder block 42.
  • the angle ⁇ 1 of the center lateral groove 21 with respect to the tire circumferential direction is smaller than, for example, the angle ⁇ 2 of the middle lateral groove 31 with respect to the tire circumferential direction. It is desirable that the angle with respect to the tire circumferential direction is smaller than ⁇ 3.
  • the above-mentioned angles ⁇ 1, ⁇ 2, and ⁇ 3 of the center lateral groove 21, the middle lateral groove 31, and the shoulder lateral groove 41 are sequentially set larger, so that the ground pressure is high from the vicinity of the tire equator C of the center land portion 13 that contacts the ground first. Water is smoothly discharged to the tread grounding end Te of the shoulder land portion 15 which is low and finally grounded, and excellent drainage is obtained.
  • the angle ⁇ 1 is, for example, preferably 60 ° or more, preferably 80 ° or less, more preferably 75 ° or less.
  • the angle ⁇ 1 is less than 60 °, the block apex 26 of the center block 22 becomes an excessively acute angle, which may be a starting point for uneven wear.
  • the angle ⁇ 1 exceeds 80 °, the drainage performance in the center land portion 13 may be deteriorated.
  • the angle ⁇ 3 is, for example, preferably 80 ° or more, more preferably 85 ° or more, and preferably 90 ° or less.
  • the angle ⁇ 3 is less than 80 °, the block apex 46 of the shoulder block 42 becomes an excessively acute angle, which may be a starting point for uneven wear.
  • the angle ⁇ 3 exceeds 90 °, the inclination of the shoulder lateral groove 41 with respect to the tire axial direction is reversed, and the drainage performance in the shoulder land portion 15 may be deteriorated.
  • the groove width WA of the center lateral groove 21 is, for example, equal to or less than the groove width WB of the middle lateral groove 31, and the groove width WB of the middle lateral groove 31 is, for example, the shoulder lateral groove 41. It is desirable that the groove width is smaller than WC.
  • the center lateral groove 21, the middle lateral groove 31, and the shoulder lateral groove 41 as described above have a high ground pressure and a low ground pressure from the vicinity of the tire equator C of the center land portion 13 that first contacts the ground, and the shoulder land portion 15 that finally contacts the ground. Water is smoothly discharged to the tread ground end Te, and excellent drainage is obtained.
  • the ratio WC / WA of the groove width WC of the shoulder lateral groove 41 and the groove width WA of the center lateral groove 21 is, for example, preferably 1.50 or more, more preferably 1.60 or more, and preferably 2.50 or less. Preferably it is 2.00 or less.
  • the ratio WC / WA is less than 1.50, drainage from the shoulder main groove 12 to the tread ground contact Te may be insufficient.
  • the ratio WC / WA exceeds 2.50, the land ratio of the shoulder land portion 15 is lowered, and the wear resistance performance may be lowered.
  • the ratio WC / WB of the groove width WC of the shoulder lateral groove 41 and the groove width WB of the middle lateral groove 31 is, for example, preferably 1.50 or more, more preferably 1.60 or more, and preferably 2.50 or less. Preferably it is 2.00 or less.
  • the ratio WC / WB is less than 1.50, similarly to the above, drainage from the shoulder main groove 12 to the tread ground contact Te may be insufficient.
  • the ratio WC / WB is more than 2.50, the land ratio of the shoulder land portion 15 is reduced, and the wear resistance performance and the uneven wear resistance performance may be decreased.
  • the ratio WA / LA between the groove width WA of the center lateral groove 21 shown in FIG. 6 and the tire circumferential direction length LA of the center block 22 is preferably 0.08 to 0.10.
  • the ratio WA / LA is less than 0.08, the groove width WA of the center lateral groove 21 is insufficient, and drainage from the vicinity of the tire equator C to the middle main groove 11 may be insufficient.
  • the ratio WA / LA exceeds 0.10, the land ratio of the center land portion 13 is lowered, and the wear resistance performance and the uneven wear resistance performance may be lowered.
  • the ratio WB / LB between the groove width WB of the middle lateral groove 31 shown in FIG. 6 and the tire circumferential direction length LB of the middle block 32 is desirably 0.10 to 0.20.
  • the ratio WB / LB is less than 0.10, the groove width WB of the middle lateral groove 31 is insufficient, and drainage from the vicinity of the middle main groove 11 to the shoulder main groove 12 may be insufficient.
  • the ratio WB / LB exceeds 0.20, the land ratio of the middle land portion 14 is lowered, and the wear resistance performance and the uneven wear resistance performance may be lowered.
  • the ratio WC / LC between the groove width WC of the shoulder lateral groove 41 shown in FIG. 6 and the tire circumferential direction length LC of the shoulder block 42 is 0.20 to 0.30.
  • the ratio WC / LC is less than 0.20, the groove width WC of the shoulder lateral groove 41 is insufficient, and drainage from the vicinity of the shoulder main groove 12 to the tread ground contact Te may be insufficient.
  • the ratio WC / LC exceeds 0.30, the land ratio of the shoulder land portion 15 is lowered, and the wear resistance performance and the uneven wear resistance performance may be lowered.
  • the present invention is not limited to the above-mentioned specific embodiment, and is carried out by changing it to various modes.
  • Pneumatic tires of size 11.00R20 having the basic structure shown in Fig. 1 were prototyped based on the specifications shown in Table 1 and tested for wet brake performance and wear resistance performance.
  • the test method is as follows.
  • ⁇ Abrasion resistance> The groove depth of each tire after running 50000 km with the vehicle was measured. A result is displayed by the index
  • Pneumatic tires of size 11.00R20 having the basic structure shown in Fig. 6 were prototyped based on the specifications shown in Table 2 and tested for wet performance and uneven wear resistance.
  • the test method is as follows.
  • Each sample tire has a rim of 20 ⁇ 8.00 and an internal pressure of 780 kPa.
  • the tire of Example 1 is on one side of the rear wheel of a truck (2-D car) with a maximum loading capacity of 10 tons, and the specification is on the other side. Tires were fitted and run until either tire was worn 50%. The presence or absence of uneven wear was observed with the naked eye in each block row of the center land portion, middle land portion, and shoulder land portion of each tire after running. The results are expressed as an index with Example 1 as 100, and the larger the value, the better the uneven wear resistance.

Abstract

空気入りタイヤ1は、トレッド部2に、センター主溝10とミドル主溝11とセンター横溝21とで区分されたセンターブロック22、ミドル主溝11とショルダー主溝12とミドル横溝31とで区分されたミドルブロック32、及び、ショルダー主溝12と接地端Teとショルダー横溝41とで区分されたショルダーブロック42を備える。センター横溝21の溝幅WAとミドル横溝31の溝幅WBとは等しく、ショルダー横溝41の溝幅WCとセンター横溝21の溝幅WAとの比WC/WAは、1.3~2.3である。

Description

空気入りタイヤ
 本発明は、ウエット性能と耐摩耗性能とをバランス良く向上させた空気入りタイヤに関する。
 近年、高速道路網の拡大により、高速道路を走行する割合が増加している。雨天の高速道路を安全に走行するために、タイヤに高いウエット性能が要求されている。その一方で、経済性の観点からタイヤに高い耐摩耗性能も要求されている。
 ウエット性能を高めるために、トレッド部に、タイヤ周方向にのびる複数の主溝と、タイヤ軸方向にのびる複数の横溝とにより、複数のブロックが区分された空気入りタイヤが提案されている。例えば、下記特許文献1及び特許文献2には、センター主溝とミドル主溝とセンター横溝とで区分されたセンターブロック、ミドル主溝とショルダー主溝とミドル横溝とで区分されたミドルブロック、及び、ショルダー主溝と接地端とショルダー横溝とで区分されたショルダーブロックを備えた空気入りタイヤが開示されている。
特開2011-195045号公報 特開2011-230643号公報
 上記特許文献1及び2に記載された空気入りタイヤにあっては、例えば、トレッド部のランド比を小さく設定し溝容積を増やすことにより、トレッド部の排水性が高められ、ウエット性能が向上する。しかしながら、小さなランド比は、トレッド部の実接地面積及びゴムボリュームの減少を招き、耐摩耗性能が低下するおそれがある。
 一方、上記特許文献1及び2に記載された重荷重用タイヤは、回転方向が指定されていないトレッドパターンを有し、タイヤ軸方向に並設された一対のセンターブロックのうち、一方のブロックの先着側端縁のタイヤ軸方向長さが、他方のブロックの先着側端縁のタイヤ軸方向長さよりも短い。このため、一方のブロックの先着側端縁の近傍で、ブロック剛性が不足し接地時に局所的な滑りが発生するため、偏摩耗が発生しやすい。
 さらに、上記一方のブロックの先着側端縁で、ミドル主溝とセンター横溝とのなす角度が鋭角となるため、センター横溝の水がミドル主溝に排出され難く、ウエット性能を十分に高めることができないおそれがある。
 本発明は、以上のような実状に鑑み案出されたもので、ウエット性能と耐摩耗性能とをバランスよく向上させた空気入りタイヤを提供することを主たる目的としている。
 本発明は、トレッド部に、タイヤ周方向に連続してのびる1本のセンター主溝と、前記センター主溝の両側をタイヤ周方向に連続してのびる一対のミドル主溝と、前記ミドル主溝と接地端との間をタイヤ周方向に連続してのびる一対のショルダー主溝と、前記センター主溝と前記ミドル主溝との間をつなぐ複数本のセンター横溝と、前記ミドル主溝と前記ショルダー主溝との間をつなぐ複数本のミドル横溝と、前記ショルダー主溝と前記接地端との間をつなぐ複数本のショルダー横溝とが設けられることにより、前記センター主溝と前記ミドル主溝と前記センター横溝とで区分されたセンターブロックがタイヤ周方向に隔設された一対のセンターブロック列、前記ミドル主溝と前記ショルダー主溝と前記ミドル横溝とで区分されたミドルブロックがタイヤ周方向に隔設された一対のミドルブロック列、及び、前記ショルダー主溝と前記接地端と前記ショルダー横溝とで区分されたショルダーブロックがタイヤ周方向に隔設された一対のショルダーブロック列を備えた空気入りタイヤであって、前記センター横溝の溝幅WAと前記ミドル横溝の溝幅WBとは等しく、前記ショルダー横溝の溝幅WCと前記センター横溝の溝幅WAとの比WC/WAは、1.3~2.3であることを特徴とする。
 本発明に係る前記空気入りタイヤにおいて、前記ショルダー横溝の溝幅WCと前記センター横溝の溝幅WAとの比WC/WAは、1.6~2.0であることが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センター横溝の溝幅WA、ミドル横溝の溝幅WB及びショルダー横溝の溝幅WCは、4mm以上であることが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センターブロックのタイヤ軸方向の両端を通るタイヤ周方向線間の領域であるセンター領域のランド比Lcと、前記ミドルブロックのタイヤ軸方向の両端を通るタイヤ周方向線間の領域であるミドル領域のランド比Lmとの比Lc/Lmは、1.05~1.25であることが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センター横溝のタイヤ軸方向に対する角度は、10゜~30゜であることが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記ショルダー主溝の溝幅は、前記センター主溝の溝幅よりも大きく、前記ミドル主溝の溝幅は、前記ショルダー主溝の溝幅よりも大きいことが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記ミドル主溝及び前記ショルダー主溝は、ジグザグ状に形成され、前記ミドル主溝と前記センター横溝及び前記ミドル横溝とは、前記ミドル主溝のジグザク頂点において交差し、前記ショルダー主溝と前記ミドル横溝及び前記ショルダー横溝とは、前記ショルダー主溝のジグザク頂点において交差することが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記トレッド部は、回転方向が指定された方向性パターンを具えていることが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センター横溝は、タイヤ軸方向の内端から外端に向かって回転方向の後着側に傾斜し、前記ミドル主溝は、前記センター横溝と同じ向きに傾斜する短辺部と、前記短辺部とは逆向きに傾斜し、かつタイヤ周方向の長さが前記短辺部よりも長い長辺部とが交互に並ぶジグザグ状であり、前記センター横溝は、前記短辺部で前記ミドル主溝と連通することが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センター横溝は、溝底面が隆起して隣り合うセンターブロック同士を連結するタイバーを有することが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記ミドル横溝は、前記センター横溝と同じ向きに傾斜し、前記ショルダー主溝は、前記ミドル横溝と同じ向きに傾斜する短辺部と、前記短辺部とは逆向きに傾斜し、かつタイヤ周方向の長さが前記短辺部よりも長い長辺部とを有し、前記ミドル横溝は、前記短辺部で前記ショルダー主溝と連通することが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センター主溝の両側の前記センター横溝は、タイヤ周方向にずれて配置され、前記ミドル主溝の両側の前記センター横溝及び前記ミドル横溝は、タイヤ周方向にずれて配置され、前記ショルダー主溝の両側の前記ミドル横溝及び前記ショルダー横溝は、タイヤ周方向にずれて配置されていることが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センター横溝のタイヤ周方向に対する角度γ1は、前記ミドル横溝のタイヤ周方向に対する角度γ2より小さく、前記ミドル横溝のタイヤ周方向に対する角度γ2は、前記ショルダー横溝のタイヤ周方向に対する角度γ3より小さいことが望ましい。
 本発明に係る前記空気入りタイヤにおいて、前記センター横溝のタイヤ周方向に対する角度γ1は60゜~80゜であり、前記ショルダー横溝のタイヤ周方向に対する角度γ3は80゜~90゜であることが望ましい。
 本発明の空気入りタイヤによれば、センター横溝の溝幅WAとミドル横溝の溝幅WBとが等しく、ショルダー横溝の溝幅WCとセンター横溝の溝幅WAとの比WC/WAは、1.3~2.3である。これにより、センター横溝の溝幅WA、ミドル横溝の溝幅WB、及びショルダー横溝の溝幅WCの配分が適正となり、ウエット性能と耐摩耗性能の両立を図ることができる。より具体的には、溝幅WCが溝幅WA及び溝幅WBよりも大きいので、トレッド踏面部の水が、ショルダー横溝を介してトレッド接地端の外側に迅速に排出される。これにより、大きいランド比で耐摩耗性を十分に確保しつつ、ウエット性能を高めることが可能となる。
本発明の空気入りタイヤの一実施形態を示す断面図である。 図1のトレッド部の展開図である。 図2のセンター陸部の拡大展開図である。 図2のミドル陸部の拡大展開図である。 図2のショルダー陸部の拡大展開図である。 本発明の空気入りタイヤの別の実施形態を示すトレッド部の展開図である。 図6のセンター陸部の拡大展開図である。 図7のA-A線断面図である。 図7のミドル陸部の拡大展開図である。 図7のショルダー陸部の拡大展開図である。
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本発明の第1実施形態の空気入りタイヤ1の正規状態におけるタイヤ回転軸を含むタイヤ子午線断面図である。ここで、正規状態とは、タイヤを正規リムRMにリム組みし、かつ、正規内圧を充填した無負荷の状態である。以下、特に言及されない場合、タイヤの各部の寸法等はこの正規状態で測定された値である。
 「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim" である。
 「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" である。
 図1に示されるように、本発明の空気入りタイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るトロイド状のカーカス6と、カーカス6のタイヤ半径方向外側かつトレッド部2の内方に配されるベルト層7等を具える。本実施形態では、空気入りタイヤ1が、15°テーパリムRMに装着されるチューブレスタイヤである場合が示されている。
 カーカス6は、カーカスコードをタイヤ赤道Cに対して例えば80~90°の角度で配列したカーカスプライ6Aにより構成されている。カーカスプライ6Aは、ビードコア5、5間を跨るプライ本体部6aの両端に、ビードコア5の廻りをタイヤ軸方向内側から外側に折り返されたプライ折返し部6bを一連に具えている。このプライ本体部6aとプライ折返し部6bとの間には、ビードコア5からタイヤ半径方向外側にのびる断面三角形状のビードエーペックスゴム8が配されている。
 ベルト層7は、カーカス6の半径方向外側かつトレッド部2の内部に配される。ベルト層7は、スチール製のベルトコードを用いた複数枚のベルトプライにより構成される。本実施形態のベルト層7は、ベルトコードをタイヤ赤道Cに対して例えば60±10°程度の角度で配列した最も内側のベルトプライ7Aと、その外側に順次配されかつベルトコードをタイヤ赤道Cに対して15~35°程度の小角度で配列したベルトプライ7B、7C及び7Dとの4層を含んでいる。ベルト層7は、ベルトコードがプライ間で互いに交差する箇所が1箇所以上設けられることにより、ベルト剛性を高め、トレッド部2のほぼ全幅を強固に補強する。
 ビードコア5は、偏平横長の断面六角形状をなし、又そのタイヤ半径方向内面を、タイヤ軸方向に対して12゜~18°の角度で傾斜させることにより、リムRMとの間の嵌合力を広範囲に亘って高めている。
 図2は、本実施形態の空気入りタイヤ1のトレッド部2の展開図である。図2に示されるように、本実施形態の空気入りタイヤ1は、そのトレッド部2に、タイヤの回転方向Rが指定された方向性パターンを具えている。回転方向Rは、例えばサイドウォール部3に文字等で表示される。
 トレッド部2には、タイヤ赤道C上をタイヤ周方向に連続してのびるセンター主溝10と、タイヤ赤道Cの両側に配されかつタイヤ周方向にジグザグ状で連続してのびる一対のミドル主溝11と、このミドル主溝11のタイヤ軸方向外側かつトレッド接地端Teの内側をタイヤ周方向にジグザグ状で連続してのびる一対のショルダー主溝12とが形成されている。
 トレッド接地端Teとは、正規状態のタイヤに、正規荷重を負荷しかつキャンバー角0゜で平面に接地させたときの最もタイヤ軸方向外側の接地端を意味している。「正規荷重」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば"最大負荷能力"、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。
 センター主溝10は、タイヤ周方向に直線状にのびる。タイヤ赤道C上に配されたセンター主溝10によって、トレッド部2の排水性が高められ、ウエット性能が向上する。
 センター主溝10の溝幅W1は、トレッド接地幅TWの好ましくは0.8%以上、より好ましくは1.2%以上であり、好ましくは2.4以下、より好ましくは2.0以下である。
 センター主溝10の溝幅W1が、トレッド接地幅TWの0.8%未満である場合、接地圧の高いタイヤ赤道C近傍の溝容積が不足し、排水性を十分に高められないおそれがある。一方、センター主溝10の溝幅W1が、トレッド接地幅TWの2.4%を超える場合、接地圧の高いセンター陸部13の実接地面積が小さくなるので、単位面積あたりにかかる荷重が大きくなり、耐摩耗性が低下するおそれがある。
 ミドル主溝11は、タイヤ周方向に対して傾斜する長辺部11aと、長辺部11aとは逆向きに傾斜しかつタイヤ周方向の長さが長辺部11aよりも小さい短辺部11bとを有する。短辺部11bは、回転方向の先着側から後着側に向かってタイヤ軸方向の外方に傾斜している。長辺部11a及び短辺部11bは、タイヤ周方向に交互に設けられ、ジグザグ状のミドル主溝11を構成する。
 ミドル主溝11の長辺部11aのタイヤ周方向に対する角度α1は、例えば、2~10゜であるのが望ましい。角度α1が2゜未満である場合、トレッド部2のタイヤ軸方向の剛性が低下するおそれがある。角度α1が10゜を超える場合、タイヤの排水性能が十分に高められないおそれがある。
 ショルダー主溝12は、タイヤ周方向に対して傾斜する長辺部12aと、長辺部12aとは逆向きに傾斜しかつタイヤ周方向の長さが長辺部12aよりも小さい短辺部12bとを有する。短辺部12bは、ミドル主溝11の短辺部11bと同じ方向に傾斜している。長辺部12a及び短辺部12bは、タイヤ周方向に交互に設けられ、ジグザグ状のショルダー主溝12を構成する。ショルダー主溝12の長辺部12aのタイヤ周方向に対する角度α2は、例えば、上記角度α1と同様である。ミドル主溝11のジグザグピッチは、ショルダー主溝12のジグザグピッチと同等である。
 ミドル主溝11のジグザクとショルダー主溝12のジグザグとは、位相がタイヤ周方向にずれて配置されている。このようなミドル主溝11及びショルダー主溝12により、ミドル主溝11及びショルダー主溝12で発生するノイズが分散され、ノイズ性能が向上する。
 トレッド部2の排水性能を高めつつ、トレッド部2の適切な剛性分布を実現するために、例えば、ショルダー主溝12の溝幅W3は、センター主溝10の溝幅W1よりも大きく、ミドル主溝11の溝幅W2は、ショルダー主溝12の溝幅W3よりも大きいのが望ましい。
 トレッド部2の排水性能を高めつつ、トレッド部2の剛性を確保するために、センター主溝10、ミドル主溝11及びショルダー主溝12の溝深さは、例えば、15~25mmであるのが望ましい。
 センター主溝10、ミドル主溝11及びショルダー主溝12によってトレッド部2が複数の領域に区分される。トレッド部2は、センター主溝10とミドル主溝11との間の一対のセンター陸部13、ミドル主溝11とショルダー主溝12との間の一対のミドル陸部14、及び、ショルダー主溝12のタイヤ軸方向外側に位置する一対のショルダー陸部15とを有している。すなわち、ミドル主溝11の両側には、センター陸部13及びミドル陸部14が設けられ、ショルダー主溝12の両側には、ミドル陸部14及びショルダー陸部15が設けられている。
 図3には、センター陸部13の拡大図が示される。センター陸部13には、複数本のセンター横溝21が設けられている。十分な排水性を得るために、センター横溝21は、50本以上配されているのが望ましい。
 センター横溝21は、タイヤ軸方向にのびており、センター陸部13の両側のセンター主溝10とミドル主溝11とを連通している。これにより、センター陸部13は、複数個のセンターブロック22が並ぶブロック列である。センター横溝21は、タイヤ軸方向に対して傾斜しているので、本実施形態のセンターブロック22の踏面部22sは、略平行四辺形状である。
 ミドル主溝11は、センター陸部13側の溝縁11dと、ミドル陸部14側の溝縁11eとを有している。ミドル主溝11において、溝縁11dの最も溝中心線11c側の頂点11fは、溝縁11eの最も溝中心線11c側の頂点11gよりもセンター陸部13側にある。これにより、ジグザク状のミドル主溝11において、周方向に直線的に連通する領域が形成されるので、トレッド部2の排水性能が向上する。
 ミドル主溝11とセンター陸部13との関係において、溝縁11dの最も溝中心線11c側の頂点11fと溝縁11eの最も溝中心線11c側の頂点11gとの間のタイヤ軸方向距離WEmは、センターブロック22のタイヤ軸方向の最大幅WDcの0.07~0.13倍である。頂点11fと頂点11gとの間のタイヤ軸方向距離WEmがセンターブロック22のタイヤ軸方向の最大幅WDcの0.07倍未満の場合、排水性が十分に向上しないおそれがある。頂点11fと頂点11gとの間のタイヤ軸方向距離WEmがセンターブロック22のタイヤ軸方向の最大幅WDcの0.13倍を超える場合、センター陸部13の耐摩耗性能が低下するおそれがある。
 図3に示されるように、ミドル主溝11は、溝中心線11c上に、タイヤ軸方向内側のジグザク頂点11pと、タイヤ軸方向外側のジグザク頂点11rとを有している。
 ミドル主溝11とセンター横溝21とは、ミドル主溝11のジグザク頂点11rにおいて交差する。これにより、ミドル主溝11及びセンター横溝21内の水の流れが円滑化される。ここで、「ミドル主溝11とセンター横溝21とは、ミドル主溝11のジグザク頂点11rにおいて交差する」とは、図3においてハッチングで示されるミドル主溝11とセンター横溝21とが交差する領域11sに、ミドル主溝11の溝中心線11c上のジグザク頂点11rが存在することを意味している(以下、ミドル主溝11とミドル横溝31との交差、ショルダー主溝12とミドル横溝31との交差及びショルダー主溝12とショルダー横溝41との交差に関しても同様である)。
 センター横溝21は、タイヤ軸方向に傾斜してのびる第1部分21aと、第1部分21aとタイヤ周方向に位置ずれしかつ第1部分21aと平行にのびる第2部分21bと、第1部分21aと第2部分21bとを繋ぐ第3部分21cとを有するジグザク状の溝である。センター横溝21の深さは、例えば、ミドル主溝11の深さ以下が望ましい。
 センター横溝21のピッチは、ミドル主溝11のジグザグピッチの2倍である。換言すると、ミドル主溝11のジグザグピッチは、センター横溝21のピッチの1/2倍である。従って、センターブロック22は、その踏面部22sのタイヤ周方向の中央部に、ミドル主溝11に面してタイヤ軸方向の外側に突出するジグザクブロック頂点22aを有する。
 センターブロック22において、センター主溝10とセンター横溝21とが交差するブロック頂点には、面取り部24a及び24bが形成されている。ミドル主溝11とセンター横溝21とが交差するブロック頂点には、面取り部25a及び25bが形成されている。このような面取り部24a、24b、25a及び25bは、ブロック頂点における応力集中を緩和し、チッピング等の損傷を抑制する。面取り部24a、24b、25a及び25bに替えて、角丸め部が形成されていてもよい。
 図4には、ミドル陸部14の拡大図が示される。ミドル陸部14には、複数本のミドル横溝31が設けられている。十分な排水性を得るために、ミドル横溝31は、50本以上配されているのが望ましい。
 ミドル横溝31は、タイヤ軸方向にのび、一端がミドル主溝11に、他端がショルダー主溝12にそれぞれ連通している。これにより、ミドル陸部14は、複数個のミドルブロック32が並ぶブロック列である。図2に示されるように、ミドル主溝11の両側に位置するセンターブロック22とミドルブロック32とは、タイヤ周方向に1/2ピッチずれて配置されている。ミドル横溝31は、タイヤ軸方向に対して傾斜しているので、本実施形態のミドルブロック32の踏面部32sは、略平行四辺形状である。
 図4に示されるように、ショルダー主溝12は、ミドル陸部14側の溝縁12dと、ショルダー陸部15側の溝縁12eとを有している。ショルダー主溝12において、溝縁12dの最も溝中心線12c側の頂点12fは、溝縁12eの最も溝中心線12c側の頂点12gよりもミドル陸部14側にある。これにより、ジグザク状のミドル主溝11において、周方向に直線的に連通する領域が形成されるので、トレッド部2の排水性能が向上する。
 ミドル主溝11とミドル陸部14との関係において、溝縁11dの最も溝中心線11c側の頂点11fと溝縁11eの最も溝中心線11c側の頂点11gとの間のタイヤ軸方向距離WEmは、ミドルブロック32のタイヤ軸方向の最大幅WDmの0.07~0.13倍である。頂点11fと頂点11gとの間のタイヤ軸方向距離WEmがミドルブロック32のタイヤ軸方向の最大幅WDmの0.07倍未満の場合、排水性が十分に向上しないおそれがある。頂点11fと頂点11gとの間のタイヤ軸方向距離WEmがミドルブロック32のタイヤ軸方向の最大幅WDmの0.13倍を超える場合、ミドル陸部14の耐摩耗性能が低下するおそれがある。
 同様に、ショルダー主溝12とミドル陸部14との関係において、溝縁12dの最も溝中心線12c側の頂点12fと溝縁12eの最も溝中心線12c側の頂点12gとの間のタイヤ軸方向距離WEsは、ミドルブロック32のタイヤ軸方向の最大幅WDmの0.07~0.13倍である。頂点12fと頂点12gとの間のタイヤ軸方向距離WEsがミドルブロック32のタイヤ軸方向の最大幅WDmの0.07倍未満の場合、排水性が十分に向上しないおそれがある。頂点12fと頂点12gとの間のタイヤ軸方向距離WEsがミドルブロック32のタイヤ軸方向の最大幅WDmの0.13倍を超える場合、ミドル陸部14の耐摩耗性能が低下するおそれがある。
 図4に示されるように、ショルダー主溝12は、溝中心線12c上に、タイヤ軸方向内側のジグザク頂点12pと、タイヤ軸方向外側のジグザク頂点12rとを有している。
 ミドル主溝11とミドル横溝31とは、ミドル主溝11のジグザク頂点11pにおいて交差する。これにより、ミドル主溝11及びミドル横溝31内の水の流れが円滑化される。一方、ショルダー主溝12とミドル横溝31とは、ショルダー主溝12のジグザク頂点12pにおいて交差する。これにより、ショルダー主溝12及びミドル横溝31内の水の流れが円滑化される。
 ミドル横溝31は、タイヤ軸方向に傾斜してのびる第1部分31aと、第1部分31aとタイヤ周方向に位置ずれしかつ第1部分31aと平行にのびる第2部分31bと、第1部分31aと第2部分31bとをつなぐ第3部分31cとを有するジグザク状の溝である。ミドル横溝31の深さは、例えば、ミドル主溝11及びショルダー主溝12の深さ以下が望ましい。
 ミドル横溝31のピッチは、センター横溝21と同等であり、ミドル主溝11及びショルダー主溝12のジグザグピッチの2倍である。換言すると、ミドル主溝11及びショルダー主溝12のジグザグピッチは、ミドル横溝31のピッチの1/2倍である。従って、ミドルブロック32は、その踏面部32sのタイヤ周方向の中央部に、ミドル主溝11に面してタイヤ軸方向の内側に突出するジグザクブロック頂点32aと、ショルダー主溝12に面してタイヤ軸方向の外側に突出するジグザクブロック頂点32bとを有する。
 ミドル主溝11とミドル横溝31とが交差するブロック頂点には、面取り部34a及び34bが形成されている。ショルダー主溝12とミドル横溝31とが交差するブロック頂点には、面取り部35a及び35bが形成されている。このような面取り部34a、34b、35a及び35bは、ブロック頂点における応力集中を緩和し、チッピング等の損傷を抑制する。面取り部34a、34b、35a及び35bに替えて、角丸め部が形成されていてもよい。
 図5には、ショルダー陸部15の拡大図が示される。ショルダー陸部15には、複数本のショルダー横溝41が設けられている。十分な排水性を得るために、ショルダー横溝41は、50本以上配されているのが望ましい。
 ショルダー横溝41は、タイヤ軸方向にのび一端がショルダー主溝12に、他端がトレッド接地端Teにそれぞれ連通している。これにより、ショルダー陸部15は、複数個のショルダーブロック42が並ぶブロック列である。図2に示されるように、ショルダー主溝12の両側に位置するミドルブロック32とショルダーブロック42とは、タイヤ周方向に1/2ピッチずれて配置されている。
 ショルダー主溝12とショルダー陸部15との関係において、溝縁12dの最も溝中心線12c側の頂点12fと溝縁12eの最も溝中心線12c側の頂点12gとの間のタイヤ軸方向距離WEsは、ショルダーブロック42のタイヤ軸方向の最大幅WDsの0.07~0.13倍である。頂点12fと頂点12gとの間のタイヤ軸方向距離WEsがショルダーブロック42のタイヤ軸方向の最大幅WDsの0.07倍未満の場合、排水性が十分に向上しないおそれがある。頂点12fと頂点12gとの間のタイヤ軸方向距離WEsがショルダーブロック42のタイヤ軸方向の最大幅WDsの0.13倍を超える場合、ショルダー陸部15の耐摩耗性能が低下するおそれがある。
 図5に示されるように、ショルダー主溝12とショルダー横溝41とは、ショルダー主溝12のジグザク頂点12rにおいて交差する。これにより、ショルダー主溝12及びショルダー横溝41内の水の流れが円滑化される。
 ショルダー横溝41は、タイヤ軸方向に傾斜してのびる第1部分41aと、第1部分41aとタイヤ周方向に位置ずれしかつ第1部分41aと平行にのびる第2部分41bと、第1部分41aと第2部分41bとをつなぐ第3部分41cとを有するジグザク状の溝である。ショルダー横溝41の深さは、例えば、ミドル主溝11及びショルダー主溝12の深さ以下が望ましい。
 ショルダー横溝41のピッチは、ミドル横溝31と同等であり、ショルダー主溝12のジグザグピッチの2倍である。換言すると、ショルダー主溝12のジグザグピッチは、ショルダー横溝41のピッチの1/2倍である。従って、ショルダーブロック42は、その踏面部42sのタイヤ周方向の中央部に、ショルダー主溝12に面してタイヤ軸方向の内側に突出するジグザクブロック頂点42aを有する。
 ショルダー主溝12とショルダー横溝41とが交差するブロック頂点には、面取り部44a及び44bが形成されている。このような面取り部44a及び44bは、ブロック頂点における応力集中を緩和し、チッピング等の損傷を抑制する。面取り部44a及び44bに替えて、角丸め部が形成されていてもよい。
 本実施形態において、図2乃至5に示されるセンター横溝21の溝幅WAとミドル横溝31の溝幅WBとは等しいのが望ましい。さらに、ショルダー横溝41の溝幅WCとセンター横溝21の溝幅WAとの比WC/WAは、好ましくは1.3以上、より好ましくは1.6以上であり、好ましくは2.3以下、より好ましくは2.0以下である。センター横溝21の溝幅WA、ミドル横溝31の溝幅WB、及びショルダー横溝41の溝幅WCが上記の関係に従って設定されることより、溝幅WA、溝幅WB、及び溝幅WCの配分が適正となり、ウエット性能と耐摩耗性能の両立を図ることができる。より具体的には、溝幅WCが溝幅WA及び溝幅WBよりも大きいので、トレッド踏面部の水が、ショルダー横溝41を介してトレッド接地端Teの外側に迅速に排出される。これにより、大きいランド比で耐摩耗性を十分に確保しつつ、ウエット性能を高めることが可能となる。
 ショルダー横溝41の溝幅WCとセンター横溝21の溝幅WAとの比WC/WAが1.3未満である場合、トレッド踏面部の水が、ショルダー横溝41を介してトレッド接地端Teの外側に迅速に排出され難くなるおそれがある。一方、ショルダー横溝41の溝幅WCとセンター横溝21の溝幅WAとの比WC/WAが2.3を超える場合、ショルダーブロック42のゴムボリュームが不足し、肩落ち摩耗と称される偏摩耗が生ずるおそれがある。
 センター横溝21の溝幅WA、ミドル横溝31の溝幅WB及びショルダー横溝41の溝幅WCは、4mm以上であるのが望ましい。溝幅WA、溝幅WB及び溝幅WCが4mm未満である場合、トレッド部2の排水性が低下し、ウエット性能を高めることができないおそれがある。
 図2に示されるように、センター領域22Aのランド比Lcと、ミドル領域32Aのランド比Lmとの比Lc/Lmは、好ましくは1.05以上、より好ましくは1.10以上であり、好ましくは1.25以下、より好ましくは1.20以下である。ここで、センター領域22Aとは、センターブロック22のタイヤ軸方向の両端22e、22eを通るタイヤ周方向線22c、22c間の領域である。ミドル領域32Aとは、ミドル陸部14のタイヤ軸方向の両端32e、32eを通るタイヤ周方向線32c、32c間の領域である。
 センター領域22Aのランド比Lcと、ミドル領域32Aのランド比Lmとの比Lc/Lmが1.05倍未満である場合、接地圧の高いセンター陸部13の実接地面積が小さくなるので、単位面積あたりにかかる荷重が大きくなり、耐摩耗性が低下するおそれがある。一方、センター領域22Aのランド比Lcと、ミドル領域32Aのランド比Lmとの比Lc/Lmが1.25倍を超える場合、接地圧の高いセンター陸部13の溝容積が不足し、排水性が低下するおそれがある。
 より具体的には、センター領域22Aのランド比Lcは、75~85であるのが望ましい。センター領域22Aのランド比Lcが75未満である場合、接地圧の高いセンター陸部13の実接地面積が小さくなるので、上記と同様に、耐摩耗性が低下するおそれがある。一方、センター領域22Aのランド比Lcが85を超える場合、センター陸部13の溝容積が不足し、排水性が低下するおそれがある。
 同様に、ミドル領域32Aのランド比Lmは、65~75であるのが望ましい。ミドル領域32Aのランド比Lmが65未満である場合、ミドル陸部14の実接地面積が小さくなるので、ミドル陸部14が偏摩耗するおそれがある。一方、ミドル領域32Aのランド比Lmが75を超える場合、ミドル陸部14の溝容積が不足し、排水性が低下するおそれがある。
 本実施形態において、図3乃至5に示されるセンター横溝21のタイヤ軸方向に対する角度β1(゜)、ミドル横溝31のタイヤ軸方向に対する角度β2(゜)及びショルダー横溝41のタイヤ軸方向に対する角度β3(゜)は、それぞれ以下の関係を満たしているのが望ましい。
 β3<β2<β1       (1)
 10≦β1≦30       (2)
  0≦β3≦10       (3)
 センター横溝21の角度β1は、図3において、センターブロック22の頂点26におけるセンター横溝21の溝縁のタイヤ軸方向に対する角度である。ミドル横溝31の角度β2は、図4において、ミドルブロック32の頂点36におけるミドル横溝31の溝縁のタイヤ軸方向に対する角度である。ショルダー横溝の角度β3は、図5において、ショルダーブロック42の頂点46におけるショルダー横溝41の溝縁のタイヤ軸方向に対する角度である。各ブロックの角が面取り又は丸められている場合は、各主溝の溝縁の延長線と各横溝の溝縁の延長線との交点が頂点である。
 式(1)の関係が満たされていることにより、センター横溝21、ミドル横溝31及びショルダー横溝41を介して、接地圧の高いセンター陸部13から接地圧の低いショルダー陸部15に円滑に水が排出され、タイヤの排水性能が高められる。
 式(2)において、センター横溝21の角度β1が10゜未満である場合、センター陸部13における排水性能が悪化するおそれがある。一方、センター横溝21の角度β1が30゜を超える場合、センターブロック22のブロック頂点26が、過度に鋭角となり、偏摩耗の起点となるおそれがある。
 式(3)において、ショルダー横溝41の角度β3が0゜未満である場合、タイヤ軸方向に対するショルダー横溝41の傾きが逆になり、ショルダー陸部15における排水性能が悪化するおそれがある。一方、ショルダー横溝41の角度β3が10゜を超える場合、ショルダーブロック42のブロック頂点46が、過度に鋭角となり、偏摩耗の起点となるおそれがある。
 以下、本発明の第2実施形態の空気入りタイヤについて、説明する。第2実施形態の空気入りタイヤのうち、以下で説明されてない部分については、上述した第1実施形態の空気入りタイヤ1の構成が採用されうる。
 図6には、本実施形態の空気入りタイヤのトレッド部2の展開図が示されている。センター主溝10の両側のセンター横溝21、21は、例えば、タイヤ周方向に1/2ピッチずれて配置されている。このようなセンター横溝21、21により、センター横溝21、21で発生するピッチ音の重畳が防止され、ノイズ性能が向上する。さらに、タイヤ軸方向で隣り合うセンター陸部13内での接地圧の分布が分散され、センター陸部13の偏摩耗が抑制される。
 ミドル主溝11の両側のセンター横溝21及びミドル横溝31は、例えば、タイヤ周方向に1/2ピッチずれて配置されている。これにより、ミドル主溝11の両側に位置するセンターブロック22とミドルブロック32とは、タイヤ周方向に1/2ピッチずれて配置されている。このようなセンター横溝21及びミドル横溝31により、センター横溝21及びミドル横溝31で発生するピッチ音の重畳が防止され、ノイズ性能が向上する。さらに、隣り合うセンター陸部13及びミドル陸部14内での接地圧の分布が分散され、センター陸部13及びミドル陸部14の偏摩耗が抑制される。
 図7には、センター陸部13の拡大図が示される。センター横溝21は、タイヤ軸方向の内端から外端に向かって回転方向Rの後着側に傾斜している。センター横溝21は、ミドル主溝11の短辺部11bと同じ向きに傾斜している。
 センター横溝21は、短辺部11bでミドル主溝11と連通している。これにより、センター横溝21の両端縁のタイヤ軸方向長さに差が生ずる。より具体的には、センターブロック22の先着側端縁22Sのタイヤ軸方向長さWSが、後着側端縁22Eのタイヤ軸方向長さWEより大きくなる。従って、センターブロック22の先着側端縁22Sの近傍の剛性が高められ、いわゆるヒール&トゥ摩耗等の偏摩耗が抑制される。このような作用・効果は、接地圧の高いセンター陸部13において、特に有効である。
 さらに、上述のごとく、センターブロック22の先着側端縁22Sの近傍の剛性が高められるので、センターブロック22の接地時に、センター横溝21の溝容積が十分に確保される。しかも、センター横溝21とミドル主溝11とが同じ方向に傾斜しているので、センター横溝21内の水がミドル主溝11に円滑に排出される。これらの相乗効果により、トレッド部2の排水性が高められ、空気入りタイヤのウエット性能が向上する。
 本実施形態のセンター横溝21には、タイヤ周方向に隣り合うセンターブロック22、22同士を連結するタイバー23が設けられている。
 図8には、図7のセンター陸部13のA-A線断面図、すなわちタイバー23を含むセンター陸部13の断面図が示されている。タイバー23は、センター横溝21の溝底面が隆起して形成されている。タイバー23は、接地時、特に踏込み時又は蹴り出し時でのセンターブロック22のタイヤ周方向への動きを規制して、ヒール&トゥ摩耗等の偏摩耗を抑制する。
 タイバー23の高さHTは、例えば、センター横溝21の溝深さDAの1/3倍~1/2倍が望ましい。タイバー23の高さHTが上記溝深さDAの1/3倍未満の場合、接地時のセンターブロック22のタイヤ周方向への動きが大きくなり、センターブロック22に偏摩耗が発生するおそれがある。一方、タイバー23の高さHTが上記溝深さDAの1/2倍を超える場合、センター横溝21の排水性が低下するおそれがある。
 タイバー23のタイヤ軸方向の幅WTは、例えば、センターブロック22の後着側端縁22Eのタイヤ軸方向の幅WEの1/3倍~1/2倍が望ましい。タイバー23の幅WTが後着側端縁22Eの幅WEの1/3倍未満の場合、接地時のセンターブロック22のタイヤ周方向への動きが大きくなり、センターブロック22に偏摩耗が発生するおそれがある。一方、タイバー23の幅WTが後着側端縁22Eの幅WEの1/2倍を超える場合、センター横溝21の排水性が低下するおそれがある。
 図7に示されるように、センターブロック22には、複数本のセンター横浅溝27が設けられている。センター横浅溝27は、一端がセンター主溝10に、他端がミドル主溝11の短辺部11bにそれぞれ連通している。センター横浅溝27は、センター横溝21と同様に、タイヤ軸方向に傾斜してのびる第1部分27aと、第1部分27aとタイヤ周方向に位置ずれしかつ第1部分27aと平行にのびる第2部分27bと、第1部分27aと第2部分27bとを繋ぐ第3部分27cとを有するジグザク状の溝である。センター横浅溝27の深さは、センター横溝21の深さよりも小さい。センター横浅溝27の幅は、センター横溝21の幅よりも小さい。センター横浅溝27によって、センター陸部13の排水性が高められると共に、センターブロック22の剛性分布が適正化される。
 図9には、ミドル陸部14の拡大図が示される。ミドル横溝31は、タイヤ軸方向の内端から外端に向かって回転方向Rの後着側に傾斜している。ミドル横溝31は、ミドル主溝11の短辺部11bと同じ向きに傾斜している。さらに、ミドル横溝31は、短辺部11bでミドル主溝11と連通している。これにより、ミドル主溝11内の水がミドル横溝31に円滑に排出される。
 同様に、ミドル横溝31は、ショルダー主溝12の短辺部12bと同じ向きに傾斜している。さらに、ミドル横溝31は、短辺部12bでショルダー主溝12と連通している。これにより、ミドル横溝31内の水がショルダー主溝12に円滑に排出される。従って、トレッド部2のセンター陸部13からミドル陸部14にわたって排水性が高められ、空気入りタイヤのウエット性能が向上する。
 ミドルブロック32には、複数本のミドル横浅溝37が設けられている。ミドル横浅溝37は、一端がミドル主溝11の短辺部11bに、他端がショルダー主溝12の短辺部12bにそれぞれ連通している。ミドル横浅溝37は、ミドル横溝31と同様に、タイヤ軸方向に傾斜してのびる第1部分37aと、第1部分37aとタイヤ周方向に位置ずれしかつ第1部分37aと平行にのびる第2部分37bと、第1部分37aと第2部分37bとを繋ぐ第3部分37cとを有するジグザク状の溝である。ミドル横浅溝37の深さは、ミドル横溝31の深さよりも小さい。ミドル横浅溝37の幅は、ミドル横溝31の幅よりも小さい。ミドル横浅溝37によって、ミドル陸部14の排水性が高められると共に、ミドルブロック32の剛性分布が適正化される。
 図10には、ショルダー陸部15の拡大図が示される。ショルダー主溝12の両側のミドル横溝31及びショルダー横溝41は、タイヤ周方向に1/2ピッチずれて配置されている。これにより、ショルダー主溝12の両側に位置するミドルブロック32とショルダーブロック42とは、タイヤ周方向に1/2ピッチずれて配置されている。このようなミドル横溝31及びショルダー横溝41により、ミドル横溝31及びショルダー横溝41で発生するピッチ音の重畳が防止され、ノイズ性能が向上する。さらに、隣り合うミドル陸部14及びショルダー陸部15内での接地圧の分布が分散され、ミドル陸部14及びショルダー陸部15の偏摩耗が抑制される。
 ショルダーブロック42には、複数本のショルダー横浅溝47が設けられている。ショルダー横浅溝47は、一端がショルダー主溝12の短辺部12bに、他端がトレッド接地端Teにそれぞれ連通している。ショルダー横浅溝47は、ショルダー横溝41と同様に、タイヤ軸方向に傾斜してのびる第1部分47aと、第1部分47aとタイヤ周方向に位置ずれしかつ第1部分47aと平行にのびる第2部分47bと、第1部分47aと第2部分47bとを繋ぐ第3部分47cとを有するジグザク状の溝である。ショルダー横浅溝47の深さは、ショルダー横溝41の深さよりも小さい。ショルダー横浅溝47の幅は、ショルダー横溝41の幅よりも小さい。ショルダー横浅溝47によって、ショルダー陸部15の排水性が高められると共に、ショルダーブロック42の剛性分布が適正化される。
 図7、9及び10に示されるように、センター横溝21のタイヤ周方向に対する角度γ1は、例えば、ミドル横溝31のタイヤ周方向に対する角度γ2より小さく、上記角度γ2は、例えば、ショルダー横溝41のタイヤ周方向に対する角度γ3より小さいのが望ましい。センター横溝21、ミドル横溝31及びショルダー横溝41の上記角度γ1、γ2及びγ3が順次大きく設定されることにより、接地圧が高くかつ最初に接地するセンター陸部13のタイヤ赤道C近傍から接地圧が低くかつ最後に接地するショルダー陸部15のトレッド接地端Teに円滑に水が排出され、優れた排水性が得られる。
 上記角度γ1は、例えば、好ましくは60゜以上であり、好ましくは80゜以下、より好ましくは75゜以下である。角度γ1が60゜未満の場合、センターブロック22のブロック頂点26が、過度に鋭角となり、偏摩耗の起点となるおそれがある。一方、角度γ1が80゜を超える場合、センター陸部13における排水性能が悪化するおそれがある。
 上記角度γ3は、例えば、好ましくは80゜以上、より好ましくは85゜以上であり、好ましくは90゜以下である。上記角度γ3が80゜未満の場合、ショルダーブロック42のブロック頂点46が、過度に鋭角となり、偏摩耗の起点となるおそれがある。一方、上記角度γ3が90゜を超える場合、タイヤ軸方向に対するショルダー横溝41の傾きが逆になり、ショルダー陸部15における排水性能が悪化するおそれがある。
 図6、7、9及び10に示されるように、センター横溝21の溝幅WAは、例えば、ミドル横溝31の溝幅WB以下であり、ミドル横溝31の溝幅WBは、例えば、ショルダー横溝41の溝幅WCより小さいのが望ましい。このような、センター横溝21、ミドル横溝31及びショルダー横溝41によって、接地圧が高くかつ最初に接地するセンター陸部13のタイヤ赤道C近傍から接地圧が低くかつ最後に接地するショルダー陸部15のトレッド接地端Teに円滑に水が排出され、優れた排水性が得られる。
 ショルダー横溝41の溝幅WCとセンター横溝21の溝幅WAとの比WC/WAは、例えば、好ましくは1.50以上、より好ましくは1.60以上であり、好ましくは2.50以下、より好ましくは2.00以下である。上記比WC/WAが1.50未満の場合、ショルダー主溝12からトレッド接地端Teへの排水が不十分となるおそれがある。一方、上記比WC/WAが2.50を超える場合、ショルダー陸部15のランド比が低下し、耐摩耗性能が低下するおそれがある。
 ショルダー横溝41の溝幅WCとミドル横溝31の溝幅WBとの比WC/WBは、例えば、好ましくは1.50以上、より好ましくは1.60以上であり、好ましくは2.50以下、より好ましくは2.00以下である。上記比WC/WBが1.50未満の場合、上記と同様に、ショルダー主溝12からトレッド接地端Teへの排水が不十分となるおそれがある。一方、上記比WC/WBが2.50を超える場合もまた、上記と同様に、ショルダー陸部15のランド比が低下し、耐摩耗性能や耐偏摩耗性能が低下するおそれがある。
 図6に示されるセンター横溝21の溝幅WAとセンターブロック22のタイヤ周方向長さLAとの比WA/LAは、0.08~0.10が望ましい。上記比WA/LAが0.08未満の場合、センター横溝21の溝幅WAが不足し、タイヤ赤道C近傍からミドル主溝11への排水が不十分となるおそれがある。一方、上記比WA/LAが0.10を超える場合、センター陸部13のランド比が低下し、耐摩耗性能や耐偏摩耗性能が低下するおそれがある。
 同様に、図6に示されるミドル横溝31の溝幅WBとミドルブロック32のタイヤ周方向長さLBとの比WB/LBは、0.10~0.20が望ましい。上記比WB/LBが0.10未満の場合、ミドル横溝31の溝幅WBが不足し、ミドル主溝11近傍からショルダー主溝12への排水が不十分となるおそれがある。一方、上記比WB/LBが0.20を超える場合、ミドル陸部14のランド比が低下し、耐摩耗性能や耐偏摩耗性能が低下するおそれがある。
 同様に、図6に示されるショルダー横溝41の溝幅WCとショルダーブロック42のタイヤ周方向長さLCとの比WC/LCは、0.20~0.30が望ましい。上記比WC/LCが0.20未満の場合、ショルダー横溝41の溝幅WCが不足し、ショルダー主溝12近傍からトレッド接地端Teへの排水が不十分となるおそれがある。一方、上記比WC/LCが0.30を超える場合、ショルダー陸部15のランド比が低下し、耐摩耗性能や耐偏摩耗性能が低下するおそれがある。
 以上、本発明の空気入りタイヤが詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。
  図1の基本構造をなすサイズ11.00R20の空気入りタイヤが、表1の仕様に基づき試作され、ウエットブレーキ性能、耐摩耗性能がテストされた。テスト方法は、以下の通りである。
 <ウエットブレーキ性能>
 各試供タイヤが、リム20×8.00、内圧780kPaの条件にて、最大積載量8トン積みのトラック(2-D車)の全輪に装着された。上記車両は、厚さ0.5mm~2.0mmの水膜を有するウエットアスファルト路面に持ち込まれ、時速65km/hで走行中にブレーキをかけ、速度が60km/hから20km/hまで減速するのに要した距離が測定された。結果は、測定値の逆数を用い、実施例1の値を100とする指数で表示され、評価は、数値が大きいほどウエット性能が良好である。
 <耐摩耗性能>
 上記車両によって50000kmを走行後の各タイヤの溝深さが測定された。結果は、実施例1の値を100とする指数で表示され、評価は、数値が大きいほど耐摩耗性能が良好である。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例の空気入りタイヤは、比較例に比べて、ウエット性能、耐摩耗性能が有意に向上していることが確認できた。
  図6の基本構造をなすサイズ11.00R20の空気入りタイヤが、表2の仕様に基づき試作され、ウエット性能及び耐偏摩耗性能がテストされた。テスト方法は、以下の通りである。
 <ウエット性能>
 各試供タイヤが、リム20×8.00、内圧780kPaの条件にて、最大積載量10トン積みのトラック(2-D車)の全輪に装着された。上記車両は、厚さ5mmの水膜を有するウェットアスファルト路面に持ち込まれ、変速ギアを2速、エンジン回転数を1500rpmにそれぞれ固定してクラッチを繋いだ瞬間からの10mの通過時間が測定され、指数化された。結果は、各々の通過時間の逆数であり、実施例1の値を100とする指数で表示されている。評価は、数値が大きいほど排水性能が良好である。
 <耐偏摩耗性能>
 各試供タイヤが、リム20×8.00、内圧780kPaの条件にて、最大積載量10トン積みのトラック(2-D車)の後輪の一方に実施例1のタイヤが他方に各仕様のタイヤが装着され、いずれかのタイヤが50%摩耗するまで走行された。走行後の各タイヤのセンター陸部、ミドル陸部及びショルダー陸部の各ブロック列について、偏摩耗の有無が肉眼により観察された。結果は、実施例1を100とする指数で表示し、数値が大きいほど耐偏摩耗性能が良好である。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例の空気入りタイヤは、比較例に比べて、ウエット性能、耐摩耗性能が有意に向上していることが確認できた。
 1 空気入りタイヤ
 2 トレッド部
 11 ミドル主溝
 11a 長辺部
 11b 短辺部
 12 ショルダー主溝
 13 センター陸部
 14 ミドル陸部
 15 ショルダー陸部
 21 センター横溝
 22 センターブロック
 23 タイバー
 31 ミドル横溝
 32 ミドルブロック
 41 ショルダー横溝
 42 ショルダーブロック

Claims (14)

  1.  トレッド部に、タイヤ周方向に連続してのびる1本のセンター主溝と、前記センター主溝の両側をタイヤ周方向に連続してのびる一対のミドル主溝と、前記ミドル主溝と接地端との間をタイヤ周方向に連続してのびる一対のショルダー主溝と、前記センター主溝と前記ミドル主溝との間をつなぐ複数本のセンター横溝と、前記ミドル主溝と前記ショルダー主溝との間をつなぐ複数本のミドル横溝と、前記ショルダー主溝と前記接地端との間をつなぐ複数本のショルダー横溝とが設けられることにより、
     前記センター主溝と前記ミドル主溝と前記センター横溝とで区分されたセンターブロックがタイヤ周方向に隔設された一対のセンターブロック列、前記ミドル主溝と前記ショルダー主溝と前記ミドル横溝とで区分されたミドルブロックがタイヤ周方向に隔設された一対のミドルブロック列、及び、前記ショルダー主溝と前記接地端と前記ショルダー横溝とで区分されたショルダーブロックがタイヤ周方向に隔設された一対のショルダーブロック列を備えた空気入りタイヤであって、
     前記センター横溝の溝幅WAと前記ミドル横溝の溝幅WBとは等しく、
     前記ショルダー横溝の溝幅WCと前記センター横溝の溝幅WAとの比WC/WAは、1.3~2.3であることを特徴とする空気入りタイヤ。
  2.  前記ショルダー横溝の溝幅WCと前記センター横溝の溝幅WAとの比WC/WAは、1.6~2.0である請求項1記載の空気入りタイヤ。
  3.  前記センター横溝の溝幅WA、ミドル横溝の溝幅WB及びショルダー横溝の溝幅WCは、4mm以上である請求項1又は2に記載の空気入りタイヤ。
  4.  前記センターブロックのタイヤ軸方向の両端を通るタイヤ周方向線間の領域であるセンター領域のランド比Lcと、前記ミドルブロックのタイヤ軸方向の両端を通るタイヤ周方向線間の領域であるミドル領域のランド比Lmとの比Lc/Lmは、1.05~1.25である請求項1乃至3のいずれかに記載の空気入りタイヤ。
  5.  前記センター横溝のタイヤ軸方向に対する角度は、10゜~30゜である請求項1乃至4のいずれかに記載の空気入りタイヤ。
  6.  前記ショルダー主溝の溝幅は、前記センター主溝の溝幅よりも大きく、前記ミドル主溝の溝幅は、前記ショルダー主溝の溝幅よりも大きい請求項1乃至5のいずれかに記載の空気入りタイヤ。
  7.  前記ミドル主溝及び前記ショルダー主溝は、ジグザグ状に形成され、
     前記ミドル主溝と前記センター横溝及び前記ミドル横溝とは、前記ミドル主溝のジグザク頂点において交差し、
     前記ショルダー主溝と前記ミドル横溝及び前記ショルダー横溝とは、前記ショルダー主溝のジグザク頂点において交差する請求項1乃至6のいずれかに記載の空気入りタイヤ。
  8.  前記トレッド部は、回転方向が指定された方向性パターンを具えている請求項1乃至7のいずれかに記載の空気入りタイヤ。
  9.  前記センター横溝は、タイヤ軸方向の内端から外端に向かって回転方向の後着側に傾斜し、
     前記ミドル主溝は、前記センター横溝と同じ向きに傾斜する短辺部と、前記短辺部とは逆向きに傾斜し、かつタイヤ周方向の長さが前記短辺部よりも長い長辺部とが交互に並ぶジグザグ状であり、
     前記センター横溝は、前記短辺部で前記ミドル主溝と連通する請求項8記載の空気入りタイヤ。
  10.  前記センター横溝は、溝底面が隆起して隣り合うセンターブロック同士を連結するタイバーを有する請求項9記載の空気入りタイヤ。
  11.  前記ミドル横溝は、前記センター横溝と同じ向きに傾斜し、
     前記ショルダー主溝は、前記ミドル横溝と同じ向きに傾斜する短辺部と、前記短辺部とは逆向きに傾斜し、かつタイヤ周方向の長さが前記短辺部よりも長い長辺部とを有し、
     前記ミドル横溝は、前記短辺部で前記ショルダー主溝と連通する請求項9又は10に記載の空気入りタイヤ。
  12.  前記センター主溝の両側の前記センター横溝は、タイヤ周方向にずれて配置され、
     前記ミドル主溝の両側の前記センター横溝及び前記ミドル横溝は、タイヤ周方向にずれて配置され、
      前記ショルダー主溝の両側の前記ミドル横溝及び前記ショルダー横溝は、タイヤ周方向にずれて配置されている請求項9乃至11のいずれかに記載の空気入りタイヤ。
  13.  前記センター横溝のタイヤ周方向に対する角度γ1は、前記ミドル横溝のタイヤ周方向に対する角度γ2より小さく、前記ミドル横溝のタイヤ周方向に対する角度γ2は、前記ショルダー横溝のタイヤ周方向に対する角度γ3より小さい請求項9乃至12のいずれかに記載の空気入りタイヤ。
  14.  前記センター横溝のタイヤ周方向に対する角度γ1は60゜~80゜であり、前記ショルダー横溝のタイヤ周方向に対する角度γ3は80゜~90゜である請求項13記載の空気入りタイヤ。
PCT/JP2014/075280 2013-10-04 2014-09-24 空気入りタイヤ WO2015050022A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14850473.1A EP3042789B1 (en) 2013-10-04 2014-09-24 Pneumatic tire
CN201480051747.8A CN105555549B (zh) 2013-10-04 2014-09-24 充气轮胎
US15/021,347 US10195908B2 (en) 2013-10-04 2014-09-24 Pneumatic tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013209463A JP6043265B2 (ja) 2013-10-04 2013-10-04 空気入りタイヤ
JP2013-209463 2013-10-04
JP2013-259426 2013-12-16
JP2013259426A JP6356961B2 (ja) 2013-12-16 2013-12-16 重荷重用タイヤ

Publications (1)

Publication Number Publication Date
WO2015050022A1 true WO2015050022A1 (ja) 2015-04-09

Family

ID=52778613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075280 WO2015050022A1 (ja) 2013-10-04 2014-09-24 空気入りタイヤ

Country Status (4)

Country Link
US (1) US10195908B2 (ja)
EP (1) EP3042789B1 (ja)
CN (1) CN105555549B (ja)
WO (1) WO2015050022A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106394130A (zh) * 2015-07-29 2017-02-15 东洋橡胶工业株式会社 充气轮胎
US20180086152A1 (en) * 2016-09-29 2018-03-29 Sumitomo Rubber Industries, Ltd. Tire
CN109414964A (zh) * 2016-07-18 2019-03-01 倍耐力轮胎股份公司 用于重型车辆车轮的轮胎
JP2020131759A (ja) * 2019-02-13 2020-08-31 住友ゴム工業株式会社 タイヤ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243233B2 (ja) * 2014-01-17 2017-12-06 株式会社ブリヂストン タイヤ
JP6405284B2 (ja) * 2015-04-17 2018-10-17 住友ゴム工業株式会社 空気入りタイヤ
JP6623764B2 (ja) * 2016-01-06 2019-12-25 住友ゴム工業株式会社 空気入りタイヤ
EP3323637B1 (en) * 2016-11-22 2019-09-04 Sumitomo Rubber Industries, Ltd. Tire
JP6332481B1 (ja) * 2017-01-11 2018-05-30 横浜ゴム株式会社 空気入りタイヤ
JP6384568B1 (ja) * 2017-05-16 2018-09-05 横浜ゴム株式会社 空気入りタイヤ
CN111559206B (zh) * 2019-02-13 2023-05-26 住友橡胶工业株式会社 轮胎

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018617A (ja) * 1999-07-12 2001-01-23 Bridgestone Corp 重荷重用空気入りタイヤ
JP2006111091A (ja) * 2004-10-13 2006-04-27 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
JP2011189846A (ja) * 2010-03-15 2011-09-29 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2011195045A (ja) 2010-03-19 2011-10-06 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2011230643A (ja) 2010-04-27 2011-11-17 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2012116245A (ja) * 2010-11-29 2012-06-21 Sumitomo Rubber Ind Ltd レーシングカート用タイヤ
JP2014125109A (ja) * 2012-12-26 2014-07-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9016455U1 (ja) * 1990-12-04 1991-07-25 Uniroyal Englebert Reifen Gmbh, 5100 Aachen, De
JP3970953B2 (ja) * 1996-02-23 2007-09-05 株式会社ブリヂストン 空気入りタイヤ
GB9902449D0 (en) * 1999-02-05 1999-03-24 Sumitomo Rubber Ind Tread for a pneumatic tyre
JP2001121922A (ja) * 1999-10-25 2001-05-08 Bridgestone Corp 空気入りタイヤ
JP4015573B2 (ja) * 2003-02-28 2007-11-28 住友ゴム工業株式会社 空気入りタイヤ
ES2403377T3 (es) * 2003-05-21 2013-05-17 Bridgestone Corporation Cubierta neumática y método de diseñar modelos de banda de rodadura de la misma
JP4422622B2 (ja) * 2005-01-11 2010-02-24 住友ゴム工業株式会社 重荷重用タイヤ
JP4486592B2 (ja) * 2005-12-29 2010-06-23 住友ゴム工業株式会社 重荷重用タイヤ
CN103282217B (zh) * 2011-01-19 2015-12-02 株式会社普利司通 充气轮胎
DE102011051387A1 (de) * 2011-06-28 2013-01-03 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP5685237B2 (ja) * 2012-11-09 2015-03-18 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018617A (ja) * 1999-07-12 2001-01-23 Bridgestone Corp 重荷重用空気入りタイヤ
JP2006111091A (ja) * 2004-10-13 2006-04-27 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
JP2011189846A (ja) * 2010-03-15 2011-09-29 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2011195045A (ja) 2010-03-19 2011-10-06 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2011230643A (ja) 2010-04-27 2011-11-17 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2012116245A (ja) * 2010-11-29 2012-06-21 Sumitomo Rubber Ind Ltd レーシングカート用タイヤ
JP2014125109A (ja) * 2012-12-26 2014-07-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3042789A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106394130A (zh) * 2015-07-29 2017-02-15 东洋橡胶工业株式会社 充气轮胎
CN109414964A (zh) * 2016-07-18 2019-03-01 倍耐力轮胎股份公司 用于重型车辆车轮的轮胎
CN109414964B (zh) * 2016-07-18 2019-11-29 倍耐力轮胎股份公司 用于重型车辆车轮的轮胎
US20180086152A1 (en) * 2016-09-29 2018-03-29 Sumitomo Rubber Industries, Ltd. Tire
CN107878119A (zh) * 2016-09-29 2018-04-06 住友橡胶工业株式会社 轮胎
US10926585B2 (en) * 2016-09-29 2021-02-23 Sumitomo Rubber Industries, Ltd. Tire with tie bars
JP2020131759A (ja) * 2019-02-13 2020-08-31 住友ゴム工業株式会社 タイヤ

Also Published As

Publication number Publication date
CN105555549A (zh) 2016-05-04
EP3042789A1 (en) 2016-07-13
US20160221397A1 (en) 2016-08-04
US10195908B2 (en) 2019-02-05
EP3042789A4 (en) 2017-05-31
CN105555549B (zh) 2017-10-31
EP3042789B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2015050022A1 (ja) 空気入りタイヤ
JP5886816B2 (ja) 重荷重用タイヤ
JP5667614B2 (ja) 空気入りタイヤ
EP3715149B1 (en) Heavy-duty tire
JP5250063B2 (ja) 空気入りタイヤ
EP3213932B1 (en) Tire
WO2015146823A1 (ja) 空気入りタイヤ
JP6014092B2 (ja) 空気入りタイヤ
JP5886798B2 (ja) 重荷重用タイヤ
US9796216B2 (en) Heavy duty tire
US11554612B2 (en) Tyre
JP6946641B2 (ja) 空気入りタイヤ
JP6332481B1 (ja) 空気入りタイヤ
JP5923057B2 (ja) 重荷重用タイヤ
JP6575254B2 (ja) 空気入りタイヤ
JP4180910B2 (ja) 重荷重用ラジアルタイヤ
JP5886800B2 (ja) 重荷重用タイヤ
WO2016017543A1 (ja) 空気入りタイヤ
JP6356961B2 (ja) 重荷重用タイヤ
CN111741856B (zh) 充气轮胎
JP5841580B2 (ja) 重荷重用タイヤ
JP6013759B2 (ja) 空気入りタイヤ
JP2015047981A (ja) 重荷重用タイヤ
JP5521730B2 (ja) 空気入りタイヤ
JP6043265B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051747.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014850473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850473

Country of ref document: EP