WO2015049721A1 - 部品装着装置及び部品装着方法 - Google Patents

部品装着装置及び部品装着方法 Download PDF

Info

Publication number
WO2015049721A1
WO2015049721A1 PCT/JP2013/076712 JP2013076712W WO2015049721A1 WO 2015049721 A1 WO2015049721 A1 WO 2015049721A1 JP 2013076712 W JP2013076712 W JP 2013076712W WO 2015049721 A1 WO2015049721 A1 WO 2015049721A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
calibration data
holding
component mounting
cpu
Prior art date
Application number
PCT/JP2013/076712
Other languages
English (en)
French (fr)
Inventor
龍平 神尾
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to US15/026,525 priority Critical patent/US10412869B2/en
Priority to PCT/JP2013/076712 priority patent/WO2015049721A1/ja
Priority to EP13895044.9A priority patent/EP3054756B1/en
Priority to JP2015540286A priority patent/JP6312155B2/ja
Priority to CN201380079784.5A priority patent/CN105580509B/zh
Publication of WO2015049721A1 publication Critical patent/WO2015049721A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/089Calibration, teaching or correction of mechanical systems, e.g. of the mounting head
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0411Pick-and-place heads or apparatus, e.g. with jaws having multiple mounting heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate

Definitions

  • the present invention relates to a component mounting apparatus and a component mounting method.
  • a component mounting apparatus that sucks a component to the tip of a nozzle provided in a head and mounts the sucked component at a predetermined position on a substrate.
  • a component mounting device there is known a device capable of exchanging the head and preparing for using the head when a new head is mounted (Patent Document 1).
  • the component mounting apparatus recognizes the newly mounted head, determines whether or not the head is suitable for use, and if it is determined to be appropriate, selects a driver suitable for the head, and then Perform calibration.
  • the calibration is a process for adjusting and confirming the position of the head in the operation operation in order to deal with a head mounting error or the like. In executing the calibration, the position of the head or a member attached to the head is measured, and the rotating member measures the center of rotation.
  • the present invention has been made to solve such a problem, and has as its main object to shorten the time required for calibration in the component mounting apparatus.
  • the component mounting apparatus of the present invention is A head holding means for holding a head including a component holder capable of holding and releasing the component; Control means for controlling the operation of the head holding means; Storage means for storing data; With The control means includes Determining whether it is necessary to create calibration data for the head when the head holding means holds a predetermined head; When it is necessary to create the calibration data of the head, the position of the reference portion of the head and the calibration of the head are measured, the calibration data of the head is stored in the storage means, and the head Based on the calibration data and the position of the reference portion, the operation of the head holding means holding the head is controlled, When it is not necessary to create the calibration data of the head, the position of the reference portion is measured, and based on the measured position of the reference portion and the calibration data of the head stored in the storage means, Controlling the operation of the head holding means holding the head; Is.
  • the control means when it is necessary to create the calibration data of a predetermined head, measures the position of the reference portion of the head and the calibration data of the head, and then calibrates the head. Data is stored in the storage means. The control means controls the operation of the head holding means holding the head based on the calibration data of the head and the position of the reference portion. On the other hand, when it is not necessary to create the calibration data of the predetermined head, the control means measures the position of the reference portion, and the measured position of the reference portion and the calibration data of the head stored in the storage means Based on the above, the operation of the head holding means holding the head is controlled. That is, when it is not necessary to create the calibration data for a predetermined head, it is sufficient to measure the position of the reference portion. For this reason, the time for measuring the calibration data of the head is reduced, and consequently the time required for calibration of the component mounting apparatus is shortened. Therefore, production efficiency is improved.
  • “Carib data” is an abbreviation for calibration data. Moreover, as the calibration data of the head, for example, data on the rotation center of the component holder provided in the head can be cited.
  • the control means when it is necessary to create the calibration data of the head, performs measurement of the position of the reference portion of the head and measurement of the calibration data of the head.
  • the position of the reference portion and the calibration data of the head are stored in the storage means, and the operation of the head holding means that holds the head is controlled based on the calibration data of the head and the position of the reference portion.
  • the position of the reference portion is measured, the measured position of the reference portion, the position of the reference portion stored in the storage means, and the storage means
  • the head holding means holding the head may be controlled based on the head calibration data stored in the head.
  • the target position where the component is to be mounted and the actual component are There may be a deviation from the installed position.
  • Such a correction value has a correlation with the position of the reference portion when the correction value is measured.
  • the correlation between the position of the reference portion when the correction value is measured and the correction value is used.
  • a correction value corresponding to the position of the reference portion of the head can be obtained.
  • the control means creates the calibra data of the head holding means in advance and stores it in the storage means before determining whether it is necessary to create the calibra data of the head.
  • the operation of the head holding means holding the head may be controlled using the calibration data of the head holding means stored in the storage means. Since the calibration data of the head holding means can be used regardless of the type of the head held by the head holding means, it is not necessary to create the calibration data every time the head calibration data is created.
  • the calibration data of the head holding means is stored in the storage means, and when the head holding means is controlled, it is read out from the storage means and used. Therefore, even when the head holding means is deviated from the design value, the component mounting apparatus can be calibrated in consideration of the deviation.
  • the calibration data of the head holding means includes data relating to the position of the head holding means itself, and data relating to the rotation center of the rotation axis when the head holding means is provided with a rotation axis for rotating the head. It is done.
  • the control unit determines whether or not the head calib data needs to be created by determining whether or not the head calib data is stored in the storage unit. You may judge. In this way, it is relatively easy to determine whether or not it is necessary to create head calibration data.
  • the control unit associates the identification data given to the head, the calibration data of the head, and the reference portion of the reference portion when associating the calibration data of the head with the position of the reference portion. You may make it match
  • the identification code may be stored using, for example, a bar code or a two-dimensional code attached to a predetermined head, or may be stored in an IC tag or the like.
  • the component mounting apparatus of the present invention may have a function of automatically replacing the head held by the head holding means with the predetermined head. In this way, not only the production efficiency is improved by shortening the time required for calibration, but also the production efficiency is improved by automation of head replacement.
  • the component mounting method of the present invention includes: Holding a predetermined head on the head holding means; Measuring the position of the reference portion of the head and measuring the calibration data of the head to create the calibration data of the head, and storing the calibration data of the head in the storage unit; Temporarily removing the head from the head holding means and holding it again on the head holding means; Measuring the position of the reference portion again after holding the head again on the head holding means; Controlling the operation of the head holding means holding the head based on the position of the reference portion measured again and the calibration data of the head stored in the storage means; Is included.
  • this component mounting method when a predetermined head is once removed from the head holding means and then held on the head holding means again, the position of the reference portion of the head is measured again, and the position of the reference portion measured again is measured. And the operation of the head holding means holding the head based on the calibration data of the head stored in the storage means. That is, when the predetermined head is once removed from the head holding means and then held by the head holding means, it is sufficient to measure the position of the reference portion of the head. For this reason, the time for measuring the calibration data of the head is reduced, and consequently the time required for calibration of the component mounting apparatus is shortened. Therefore, production efficiency is improved.
  • FIG. 1 is an explanatory diagram showing the overall configuration of a component mounting system 1.
  • FIG. FIG. 3 is a perspective view of a head unit 110. The perspective view when the head holding body 21 is seen diagonally upward from below.
  • FIG. 3 is a perspective view when the first head 120 is viewed obliquely downward from above. Sectional drawing of the peripheral part of the 1st and 2nd lever clamping parts 51 and 71.
  • FIG. The perspective view of the 2nd head 220.
  • FIG. FIG. 6 is a perspective view of a third head 320.
  • the flowchart of a head holding body calib data creation process. Explanatory drawing of the periphery of the parts camera 132 at the time of position correction of the mark camera 130.
  • FIG. 3 is an explanatory diagram of a bottom surface 120a of the first head 120. Explanatory drawing of the data used for a calibration. The flowchart of a component mounting process routine. The flowchart of another calibration. Explanatory drawing of 1st-3rd head unit HU1-HU3.
  • FIG. 1 is an explanatory diagram showing the overall configuration of the component mounting system 1.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
  • the component mounting system 1 includes a component mounting apparatus 100 and a management computer 200.
  • the component mounting apparatus 100 includes a substrate transfer device 104 mounted on a base 102, a head unit 110 that can move on an XY plane, and a first head that is detachably attached to the head unit 110.
  • a mark camera 130 for photographing the substrate 101 from above a parts camera 132 for photographing the component sucked by the suction nozzle 13 from below
  • a head storage area 140 for storing various heads a substrate 101
  • a component supply device 150 that supplies components to be performed and a controller 160 that executes various controls are provided.
  • the substrate transport device 104 transports the substrate 101 from left to right by conveyor belts 108 and 108 (only one is shown in FIG. 1) attached to a pair of front and rear support plates 106 and 106, respectively.
  • the head unit 110 is attached to the X-axis slider 112, and moves in the left-right direction as the X-axis slider 112 moves in the left-right direction along the guide rails 114, 114, and the Y-axis slider 116 moves in the guide rail 118, It moves in the front-rear direction as it moves in the front-rear direction along 118. For this reason, the head unit 110 is movable on the XY plane.
  • Each slider 112, 116 is driven by a servo motor (not shown).
  • the first head 120 is detachably attached to the head unit 110.
  • the suction nozzle 13 uses pressure to suck the component at the nozzle tip or release the component sucked at the nozzle tip. Twelve suction nozzles 13 are attached to the first head 120, but four are attached to the second head 220 and one is attached to the third head 320.
  • the mark camera 130 is attached to the lower surface of the X-axis slider 112.
  • the mark camera 130 is a camera that reads a mark attached to the substrate 101 at a lower part of the imaging region. This mark indicates the reference position on the substrate 101. This reference position is used when the component sucked by the suction nozzle 13 is mounted at a desired position on the substrate 101.
  • the mark camera 130 also has a barcode reader function for reading a two-dimensional barcode attached to various heads.
  • the parts camera 132 is disposed on the front side of the substrate transfer apparatus 104.
  • the suction nozzle 13 that sucks a part passes above the parts camera 132, the parts camera 132 captures the state of the part sucked by the suction nozzle 13.
  • the image photographed by the parts camera 132 is used to determine whether or not the part is normally sucked by the suction nozzle 13.
  • the head storage area 140 is provided on the right side of the upper surface of the base 102 and has a plurality of storage locations 142 for storing the first to third heads 120, 220, and 320.
  • the front three storage locations 142 store the second head 220, the third head 320, and the first head 120, respectively, but the rearmost storage location 142 is empty.
  • the component supply device 150 is attached in front of the component mounting device 100.
  • the component supply device 150 has a plurality of slots, and a feeder 152 can be inserted into each slot.
  • a reel 154 around which a tape is wound is attached to the feeder 152.
  • On the surface of the tape parts are held in a state of being aligned along the longitudinal direction of the tape. These parts are protected by a film covering the surface of the tape.
  • Such a tape is fed backward by a sprocket mechanism (not shown), and is disposed at a predetermined position in a state where the film is peeled off and the parts are exposed.
  • the predetermined position is a position where the suction nozzle 13 can suck the component.
  • the suction nozzle 13 that sucks a component at the predetermined position can mount the component at a predetermined position on the substrate 101.
  • the component mounting apparatus 100 includes a nozzle stocker 134 and the like.
  • the nozzle stocker 134 is a box that stocks a plurality of types of suction nozzles 13, and is arranged next to the parts camera 132.
  • the suction nozzle 13 is replaced with one suitable for the type of substrate on which the component is mounted and the type of component.
  • the controller 160 includes a CPU 162 that executes various controls, a ROM 164 that stores control programs, a RAM 166 that is used as a work area, and an HDD 168 that stores a large amount of data, which are connected by a bus (not shown).
  • the controller 160 is connected to the substrate transfer apparatus 104, the X-axis slider 112, the Y-axis slider 116, and the head unit 110 so as to exchange signals.
  • the management computer 200 is a computer that manages a production job of the substrate 101, and stores production job data created by an operator. In the production job data, in the component mounting apparatus 100, what components are mounted from which slot position feeders in what order on which substrate board 101, how many substrates 101 are mounted in that order, etc. Is stipulated.
  • the management computer 200 is connected to the controller 160 of the component mounting apparatus 100 so as to be capable of bidirectional communication.
  • FIG. 2 is a perspective view of the head unit 110 with the cover removed. Specifically, FIG. 2 is a perspective view of the state in which the first head 120 is lowered with respect to the R axis 22 of the head holder 21.
  • FIG. 3 is a perspective view when the head holding body 21 is seen obliquely upward from below, and FIG. 4 is a perspective view when the first head 120 is seen obliquely downward from above.
  • the head unit 110 includes a head holder 21 and a first head 120.
  • the head holder 21 is attached to the X-axis slider 112 (see FIG. 1) so as to be lifted and lowered by a lifting mechanism (not shown).
  • the head holder 21 has two ring-shaped gears, an R-axis gear 24 and a Q-axis gear 27 in the upper part, and a cylindrical R-axis 22 in the lower part.
  • the R-axis gear 24 and the Q-axis gear 27 are attached so as to rotate independently of each other.
  • the R-axis gear 24 is rotationally driven by the R-axis motor 25 and rotates integrally with the R-axis 22.
  • the Q-axis gear 27 is rotationally driven by the Q-axis motor 28 and rotates integrally with the ring-shaped clutch member 61 (see FIG. 3).
  • the R shaft 22 has a plurality (four in this case) of engaging members 31 having hooks at the lower end.
  • the directions of the hooks are aligned so as to be the same as the direction in which the R axis 22 rotates forward.
  • These engaging members 31 are arranged at equal intervals on the same circumference of the lower surface of the R shaft 22 (the center of this circle coincides with the central axis of the R shaft 22).
  • Each engagement member 31 can be moved up and down by an air cylinder (not shown).
  • the head holding body 21 further includes first and second lever clamping portions 51 and 71 shown in FIG. 5, which will be described later.
  • the first head 120 is a member having a substantially columnar appearance, and has a plurality (here, 12) of suction nozzles 13 below.
  • the suction nozzle 13 is integrated with a nozzle holder 12 extending in the vertical direction.
  • the nozzle holder 12 has a nozzle operation lever 39 in the vicinity of the upper end, and is urged upward by a spring 40 to be positioned at a predetermined fixed position (upper position).
  • the nozzle operation lever 39 exists from the first nozzle operation lever 39 (A) to the last (12th) nozzle operation lever 39 (L) in the order in which the suction nozzle 13 is operated. This order is counted from the first to the last counterclockwise when viewed from above in FIG.
  • a two-dimensional barcode 42 is attached to the first nozzle operation lever 39 (A).
  • This two-dimensional bar code 42 includes an identification code, and this identification code is set to be different for each head. For example, when there are a plurality of first heads 120 having twelve suction nozzles 13, different identification codes are assigned to them.
  • the nozzle operation lever 39 is pressed, the nozzle holder 12 and the suction nozzle 13 descend against the elastic force of the spring 40, and when the nozzle operation lever 39 is released, the nozzle holder 12 and the suction nozzle 13 are The spring 40 returns to a fixed position by the elastic force.
  • the nozzle holder 12 is meshed with a small gear 34 disposed so as to be coaxial with the nozzle holder 12.
  • the small gears 34 are arranged at equal intervals on the same circumference (the center of this circle coincides with the central axis of the R axis 22).
  • the cylindrical gear 33 is disposed on the inner side of the circumference where the small gears 34 are arranged, has a gear on a side surface, and meshes with the small gears 34. Further, the cylindrical gear 33 is designed to have such a dimension that the R shaft 22 can be inserted.
  • a clutch member 62 that fits with the clutch member 61 (see FIG. 3) of the head holder 21 is provided.
  • the first head 120 has a pressure operation lever 35 that switches between supplying a negative pressure to the nozzle tip and supplying an atmospheric pressure for each suction nozzle 13.
  • the pressure operation lever 35 is a switch that does not have a return function, and supplies a negative pressure to the nozzle tip when positioned upward, and supplies an atmospheric pressure to the nozzle tip when positioned downward.
  • the pressure operation lever 35 also exists from the first pressure operation lever 35 (A) to the last pressure operation lever 35 (L) in the order in which the suction nozzle 13 is operated.
  • the first head 120 has a disk-shaped base 36 (see FIG. 4) inside the cylindrical gear 33.
  • the base 36 is integrated with a support member that supports the nozzle holder 12 and the small gear 34, but is not integrated with the cylindrical gear 33. For this reason, the cylindrical gear 33 is rotatable independently of the base 36.
  • An arcuate engagement hole 37 is formed in the base 36 so as to be engageable with the hook of the engagement member 31 of the R shaft 22.
  • the first head 120 is held by the head holder 21 in the following procedure.
  • the engagement member 31 is lowered from the R shaft 22 by an air cylinder (not shown) and inserted into the engagement hole 37 of the base 36.
  • the R shaft 22 is forwardly rotated by the R shaft motor 25 so that the hook of the engagement member 31 is engaged with the periphery of the engagement hole 37.
  • the engaging member 31 is raised by an air cylinder (not shown) so that the clutch member 62 of the cylindrical gear 33 is fitted into the clutch member 61 of the head holding body 21.
  • the first head 120 is held by the head holder 21.
  • FIG. 5 is a cross-sectional view of the peripheral portion of the first and second lever holding portions 51 and 71.
  • the lever holding portion 51 of the head holder 21 is attached to a first Z-axis slider 56 that can move in the vertical direction along a first Z-axis guide rail 55 provided on the head holder 21. ing.
  • the first Z-axis slider 56 is driven by a servo motor (not shown).
  • the first lever sandwiching portion 51 sandwiches the nozzle operation lever 39 from above and below by a horizontal portion 52 of the L-shaped member and a roller 54 attached to the upper side of the horizontal portion 52.
  • the roller 54 is rotatably supported on the horizontal shaft 53.
  • the gap between the first and last nozzle operating levers 39 (A) and 39 (L) is large enough to allow the first lever clamping portion 51 to pass in the vertical direction.
  • the clearance of the operation lever 39 is sized so that the first lever clamping portion 51 cannot pass in the vertical direction (see FIG. 4). Therefore, when the first head 120 is raised relative to the R-axis 22 from the state shown in FIG. 2 to hold the first head 120 on the head holding body 21, the first lever holding portion 51 is connected to the nozzle. In order not to collide with the operation lever 39, the first lever holding portion 51 of the head holding body 21 needs to be disposed immediately above the gap between the first and last nozzle operation levers 39 (A) and 39 (L).
  • the head holding body 21 has a second lever clamping portion 71.
  • the second lever sandwiching portion 71 is located radially outside the first lever sandwiching portion 51 because the pressure operation lever 35 is located radially outside the nozzle operation lever 39. Similar to the first lever clamping portion 51, the second lever clamping portion 71 is attached to a second Z-axis slider 76 that can move in the vertical direction along the second Z-axis guide rail 75 provided on the head holder 21. .
  • the second Z-axis slider 76 is driven by a servo motor (not shown).
  • the second lever clamping portion 71 sandwiches the pressure operation lever 35 from above and below by a horizontal portion 72 of the L-shaped member and a roller 74 attached to the upper side of the horizontal portion 72.
  • the gap between adjacent pressure operation levers 35 is large enough to allow the second lever clamping portion 71 to pass in the vertical direction.
  • the first lever of the head holding body 21 is clamped as described above. If the portion 51 is disposed immediately above the gap between the first and last nozzle operation levers 39 (A) and 39 (L), the second lever clamping portion 71 also has the first and last pressure operation levers 35 (A). , (L).
  • FIG. 6 is a perspective view of the second head 220
  • FIG. 7 is a perspective view of the third head 320.
  • the second head 220 shown in FIG. 6 is stored in the head storage area 140 (see FIG. 1).
  • the second head 220 includes four suction nozzles 13, and the heights of the nozzle operation lever 39, the pressure operation lever 35, and the base 36 when stored in the head storage area 140 are different from those of the first head 120.
  • the configuration is the same as that of the first head 120 except that the interval between the adjacent nozzle operation levers 39 is wide.
  • a two-dimensional barcode 42 is attached to the first nozzle operation lever 39 (A).
  • FIG. 1 is a perspective view of the second head 220
  • FIG. 7 is a perspective view of the third head 320.
  • the second head 220 shown in FIG. 6 is stored in the head storage area 140 (see FIG. 1).
  • the second head 220 includes four suction nozzles 13, and the heights of the nozzle operation lever 39, the pressure operation
  • the third head 320 is also stored in the head storage area 140 (see FIG. 1).
  • the third head 320 includes only one suction nozzle 13 and does not have the nozzle operation lever 39 or the pressure operation lever 35. For this reason, the two-dimensional barcode 42 is attached to the upper surface of the base 36.
  • the third head 320 differs from the other first heads 120 and 220 in the height position of the base 36 when stored in the storage place 142.
  • FIG. 8 is a flowchart of the head holder calib data creation process.
  • This processing program is stored in the ROM 164 of the controller 160.
  • the CPU 162 of the controller 160 executes this processing program when the operator gives an instruction to create the calib data of the head holder 21.
  • the operator deforms the head holding body 21 over time due to heat or the like when the calibration data of the head holding body 21 has never been created or compared with the previous time when the calibration data of the head holding body 21 was created.
  • a command for creating the calibration data of the head holder 21 is instructed.
  • This processing program is executed in a state where the head holder 21 does not hold any head.
  • FIG. 9 is an explanatory diagram of the periphery of the parts camera 132 when the position of the mark camera 130 is corrected.
  • a reference mark 138 is provided at a predetermined position of the glass plate 136 that covers the lens of the parts camera 132.
  • the HDD 168 also has a number of pulses output from linear encoders attached to the X-axis and Y-axis sliders 112 and 116 when the mark camera 130 manufactured as designed stops at a predetermined fixed position ( Design value) is stored. The number of pulses is counted starting from an unillustrated origin defined on the component mounting apparatus 100.
  • the CPU 162 stops the actual mark camera 130 after moving it by the number of pulses of the design value, and causes the mark camera 130 to photograph the reference mark 138 at that position.
  • the mark camera 130 normally stops at a position deviated from the fixed position due to manufacturing errors or deformation due to heat. Therefore, the position of the reference mark 138 in the image photographed by the mark camera 130 is shifted from the initial position (the position of the reference mark 138 in the image photographed by the fixed position mark camera 130).
  • the CPU 162 moves the head unit 110 including the mark camera 130 by the X-axis and Y-axis sliders 112 and 116 until the position of the reference mark 138 in the image captured by the mark camera 130 coincides with the initial position.
  • the number of pulses (measured value) at that time is measured.
  • the CPU 162 corrects the position of the mark camera 130 based on the actually measured value and the design value of the number of pulses obtained in this way.
  • FIG. 10 is an explanatory diagram of the periphery of the parts camera 132 when the position of the head holder 21 is corrected.
  • the head holder 21 is positioned so that the center of rotation of the R-axis 22 of the head holder 21 coincides with the center of the parts camera 132.
  • the number of pulses (design value) output from the linear encoder attached to the X-axis and Y-axis sliders 112, 116 at this time is stored in the HDD 168.
  • the CPU 162 stops the actual head holder 21 after moving it by the number of pulses of the design value, and obtains the rotation center of the R axis 22 of the head holder 21 at that position.
  • a reference point 23 (see FIG. 3) is provided on the bottom surface of the R axis 22 of the head holder 21. Then, the position of the reference point 23 when the R axis 22 is not rotated, that is, when the rotation angle is 0 °, and the position of the reference point 23 when the R axis 22 is rotated 180 ° are obtained from the images taken by the parts camera 132, The midpoint of the line segment connecting the two positions is the center of rotation.
  • the center of rotation of the head holder 21 is usually shifted from the center of the parts camera 132 due to manufacturing errors or deformation due to heat. Stop.
  • the CPU 162 moves the head holding body 21 with the X-axis and Y-axis sliders 112 and 116 until the rotation center of the R-axis 22 coincides with the center of the parts camera 132 using the image taken by the parts camera 132.
  • the number of pulses (measured value) at that time is measured.
  • the CPU 162 corrects the rotational center position of the R axis 22 of the head holder 21 based on the actually measured value and the design value of the number of pulses obtained in this way.
  • the CPU 162 creates calib data of the head holder 21 and stores it in the HDD 168 (step S130), and ends this routine. That is, the CPU 21 obtains the rotation center position (XY coordinate) of the R axis 22 with respect to the optical axis of the mark camera 130 from the number of pulses of the linear encoder, and stores it in the HDD 168 as one of the calibration data of the head holder 21. . Also, the position of the R axis 22 (XY coordinates), that is, the part camera image capture position when the rotation center of the R axis 22 coincides with the optical axis of the parts camera 132 is obtained from the number of pulses of the linear encoder, and this is held by the head. The data is stored in the HDD 168 as one of the calib data of the body 21. An example of the calib data of the head holder 21 stored in the HDD 168 is shown in Table 1.
  • FIG. 11 is a flowchart of an automatic head replacement routine.
  • the program for the automatic head replacement routine is stored in the ROM 164 of the controller 160.
  • the CPU 162 of the controller 160 determines whether it is time to automatically replace the head based on the production job data received from the management computer 200. If it is time to automatically replace the head, the head automatic replacement routine is started. . Note that the above-described calibration data of the head holder 21 is stored in the HDD 168 before the timing for automatic head replacement.
  • the CPU 162 recognizes the head stored in the head storage area 140 (step S210). Specifically, the CPU 162 reads the two-dimensional barcode of the head stored in each storage location 142 of the head storage area 140, and which head is stored in which storage location based on the identification code represented by the two-dimensional barcode. Recognize When a plurality of heads of the same type are stored, different identification codes are assigned to the heads even if they are of the same type.
  • the HDD 168 stores the correspondence between the identification code and the head type in a table.
  • the identification code “001” is associated with the first head 120 having 12 suction nozzles
  • the identification code “002” is associated with another first head 120
  • the identification code Two heads 220 having four suction nozzles are associated with “003”.
  • the CPU 162 recognizes the head by referring to the obtained head identification code.
  • the CPU 162 releases the currently held head (step S220). For example, if the currently held head is the first head 120 with the identification code “001”, the CPU 162 first controls the X-axis slider 112 and the Y-axis slider 116 to remove the head unit 110 from the head storage area 140. It moves right above the storage location 142. Subsequently, the CPU 162 rotates the first head 120 so that the first lever clamping portion 51 is positioned in the gap between the first and last nozzle operation levers 39 (A) and 39 (L). Subsequently, the CPU 162 lowers the head holding body 21 and stores the first head 120 in the storage location 142.
  • the CPU 162 lowers the hook of the engaging member 31 below the engaging hole 37 and then rotates the R shaft 22 to remove the hook of the engaging member 31 from the engaging hole 37 of the first head 120. . Further, the CPU 162 ends the release of the first head 120 by raising the engagement member 31.
  • the CPU 162 holds the replacement target head (step S230).
  • the head to be exchanged is the first head 120 having an identification code “002” different from the first head 120 held so far.
  • the direction of the first head 120 stored in the storage place 142 is such that the first lever holding portion 51 is positioned between the first and last nozzle operation levers 39 (A) and 39 (L). Is predetermined.
  • the CPU 162 controls the X-axis slider 112 and the Y-axis slider 116 to move the head unit 110 directly above the storage location 142 in which the first head 120 is stored.
  • the CPU 162 lowers the head holding body 21 and lowers each engaging member 31 while inserting the R shaft 22 into the cylindrical gear 33, thereby hooking each engaging member 31 to the base of the first head 120. It is inserted into an engagement hole 37 provided in 36. Thereafter, the CPU 162 rotates the R shaft 22 to engage the hook of the engagement member 31 with the peripheral edge of the engagement hole 37. Subsequently, the CPU 162 raises the engaging member 31, holds the base 36 between the hook of the engaging member 31 and the back surface of the R shaft 22, and moves the clutch member 62 of the first head 120 to the head holding body. 21 and the clutch member 61.
  • the CPU 162 controls the first and second Z-axis sliders 56 and 76 to lower the first lever holding portion 51 to the height of the nozzle operating lever 39 of the first head 120 and to move the second lever holding portion 71 to the second position. 1
  • the head 120 is lowered to the height of the pressure control lever 35.
  • the first lever clamping portion 51 is positioned in the gap between the first and final nozzle operation levers 39 (A) and (L)
  • the second lever clamping portion 71 is the first and final pressure operation lever 35. It is located in the gap between (A) and (L).
  • the CPU 162 rotates the first head 120 by rotating the R-axis 22 forward, the first lever holding portion 51 pinches the first nozzle operating levers 39 (A) and (L), and the second The lever clamping portion 71 is configured to sandwich the first pressure operation lever 35.
  • Step S240 the CPU 162 executes calibration (step S240) and ends this routine.
  • Calibration is a process of creating calibration data.
  • a component mounting program for mounting a component at a target position is created after assuming that each member is manufactured or mounted in advance according to a design value.
  • each member is rarely manufactured or attached according to the design value, and actually deviates from the design value. Therefore, the component mounting apparatus 100 is calibrated to calibrate the deviation.
  • the CPU 162 reflects the result of the current calibration.
  • step S310 the CPU 162 first determines whether or not it is necessary to measure the calibration data of the replaced head. For example, if the replaced head is the first head 120 with the identification code “002” as described above, the CPU 162 determines whether or not the calibration data associated with the identification code “002” is stored in the HDD 168. If it is not stored, it is determined that the calibration data of the first head 120 needs to be measured. If the calibration data associated with the identification code “002” is stored in the HDD 168, the calibration data can be used, so the CPU 162 determines that the calibration of the calibration data of the first head 120 is unnecessary. .
  • step S320 the CPU 162 measures the reference point of the replaced head and stores the measurement result in the HDD 168 (step S320). For example, if the replaced head is the first head 120 with the identification code [002], the CPU 162 uses the calibration data of the head holding body 21 so that the rotation center of the R axis 22 coincides with the center of the parts camera 132. Position the unit 110.
  • FIG. 13 is an explanatory diagram of the bottom surface 120 a of the first head 120.
  • a reference point 123 is provided at a predetermined position (here, the center position) of the bottom surface 120 a of the first head 120.
  • the CPU 162 causes the parts camera 132 to photograph the bottom surface of the first head 120 held by the head holder 21.
  • the CPU 162 measures the position (XY coordinate) of the reference point 123 of the first head 120 with respect to the R-axis rotation center, and associates the position with the identification code “002” of the first head 120 as the reference point position.
  • the position of the reference point 123 is measured when the rotation angle of the first head 120 is 0 °, that is, when the first head 120 is not rotated.
  • the CPU 162 measures the calibration data of the replaced head, stores the measurement results in the HDD 168 (step S330), and ends this routine.
  • the replaced head is the first head 120 with the identification code [002]
  • the CPU 162 positions the respective rotation centers (XY coordinates) of the nozzle holder 12 of the 12 suction nozzles 13 provided in the first head 120. Measure.
  • the position of each rotation center is a position with respect to the reference point 123. In a state where the rotation center of the R axis 22 is positioned so as to coincide with the center of the parts camera 132, all the suction nozzles 13 provided in the first head 120 are within the field of view of the parts camera 132.
  • the CPU 162 causes the parts camera 132 to take the image, and then drives the Q-axis motor 28 to rotate all the nozzle holders 12 by 180 ° via the cylindrical gear 33 and the small gear 34. Let the camera shoot.
  • the CPU 162 does not rotate the nozzle holder 12, that is, the position of the hole of the suction nozzle 13 when the rotation angle is 0 °, and the position of the hole of the suction nozzle 13 when the nozzle holder 12 is rotated 180 °, that is, when the rotation angle is 180 °.
  • the position is obtained from the image captured by the parts camera 132, and the midpoint of the line segment connecting the two positions is set as the rotation center of each nozzle holder 12.
  • the rotation angle of the 1st head 120 shall be 0 degree.
  • the CPU 162 obtains the position of the rotation center of each nozzle holder 12 with respect to the reference point 123 (see FIG. 14), and uses it as the nozzle holder rotation center position, which is one of the calibration data of the head, to identify the identification code “002” of the first head 120. And stored in the HDD 168. It takes a relatively long time to measure the calibration data of the replaced head.
  • Table 2 shows an example of a table in which the identification code “002” of the first head 120, the calibration data of the head, and the reference point position (here, (xa, ya)) are associated with each other.
  • step S310 the CPU 162 measures the reference point position of the replaced head with respect to the rotation center of the R axis 22 (see FIG. 14, XY coordinates), and uses the measurement result as the reference point position.
  • Step S360 For example, if the replaced head is the first head 120 with the identification code [002], the current reference point position (here, (xb, yb)) is stored in the HDD 168 in association with the identification code “002”.
  • the negative determination in step S310 means that the calibrated data associated with the identification code “002” as shown in Table 2 has already been stored in the HDD 168.
  • the calibration data of the first head 120 with the identification code “002” may be read from the HDD 168 and need not be measured again.
  • the first head 120 with the identification code “002” is held by the head holder 21 not the first time but the second time, that is, once removed and then held again.
  • the head holding body 21 holds the first head 120
  • the base 36 of the first head 120 is sandwiched between the hook of the engaging member 31 and the bottom surface of the R shaft 22.
  • the positional relationship between 120 and the head holder 21 is slightly different. Therefore, the reference point position is measured again.
  • the reference point position (xb, yb) after re-holding is a value different from the initial reference point position (xa, ya).
  • the CPU 162 ends this routine after step S350.
  • the replaced head is the first head 120 with the identification code [002]
  • the calibration data associated with the identification code “002” as shown in Table 2 is already stored in the HDD 168.
  • FIG. 14 schematically shows the R-axis rotation center position of the head holder 21, the reference point position of the first head 120, and the rotation center position of the nozzle holder 12 of the first head 120.
  • FIG. 15 is a flowchart of the component mounting process routine.
  • a program for the component mounting process routine is stored in the ROM 164 of the controller 160.
  • the CPU 162 of the controller 160 starts this component placement processing routine as appropriate.
  • the CPU 162 causes the suction nozzle 13 to suck the component (step S410). For example, when the first head 120 is held by the head holder 21, the CPU 162 sequentially sucks the components supplied from the feeder 152 to the plurality of suction nozzles 13 of the head unit 110.
  • the first lever holding portion 51 is previously positioned in the gap between the first and last nozzle operation levers 39 (A) and 39 (L) and the height thereof coincides with the nozzle operation lever 39. It is assumed that the two-lever clamping portion 71 is located in the gap between the first and last pressure operation levers 35 and 35 and the height thereof coincides with the pressure operation lever 35.
  • the CPU 162 rotates the first head 120 by the R-axis motor 25 so that the first nozzle operation lever 39 (A) is held by the first lever holding portion 51 and the second lever holding portion 71
  • the pressure operation lever 35 of the first suction nozzle 13 is clamped.
  • the cylindrical gear 33 is rotated so as to be in phase with the first head 120.
  • the suction nozzle 13 does not rotate when the first head 120 rotates.
  • the cylindrical gear 33 is rotated independently of the first head 120.
  • the CPU 162 controls the X-axis slider 112 and the Y-axis slider 116 to place the first suction nozzle 13 directly above the desired component. Thereafter, the CPU 162 controls the first Z-axis slider 56 and lowers the first suction nozzle 13 by the first lever holding part 51, and controls the second Z-axis slider 76 and 1 by the second lever holding part 71.
  • the pressure operation lever 35 is switched so that a negative pressure is supplied to the second suction nozzle 13. As a result, a desired part is sucked by the first suction nozzle 13.
  • the CPU 162 rotates the first head 120 by a predetermined angle by the R-axis motor 25.
  • the CPU 162 controls the first Z-axis slider 56 to raise the first lever clamping portion 51 so that the first suction nozzle 13 returns to the fixed position, and further the second The nozzle operation lever 39 is held by the first lever holding portion 51.
  • the CPU 162 waits for the first pressure operating lever 35 to pass through the second lever holding portion 71 and controls the second Z-axis slider 76 to return the second lever holding portion 71 to the original position.
  • the second pressure operation lever 35 is held by the second lever holding portion 71. For this reason, the first suction nozzle 13 remains supplied with negative pressure and continues to suck the components.
  • the CPU 162 controls the X-axis slider 112 and the Y-axis slider 116 to place the second suction nozzle 13 directly above the desired component. Thereafter, the CPU 162 controls the first Z-axis slider 56 and lowers the second suction nozzle 13 by the first lever holding unit 51, and controls the second Z-axis slider 76 and controls the second Z-axis slider 76 to 2 by the second lever holding unit 71.
  • the pressure operation lever 35 is switched so that a negative pressure is supplied to the second suction nozzle 13. As a result, the desired part is sucked by the second suction nozzle 13.
  • the same operation is repeated for the third and subsequent suction nozzles 13. As a result, the components can be adsorbed by all of the first to final suction nozzles 13.
  • the CPU 162 controls the sliders 112 and 114 and the head unit 110 so that the component is mounted at the target position of the substrate 101 (step S420), and this routine is finished.
  • the CPU 162 determines the latest reference point position corresponding to the identification code “002” of the first head 120 currently held and the first head.
  • the 120 calib data and the calib data of the head holder 21 are read out.
  • the CPU 162 controls the X-axis slider 112, the Y-axis slider 114, and the head holding body 21 so that each component is mounted at the target position while performing position correction based on them.
  • the CPU 162 controls the X-axis slider 112 and the Y-axis slider 116 to move the head unit 110 so that the first suction nozzle 13 is directly above the target position of the first component.
  • the head holder 21 is retracted upward so that the components sucked by the suction nozzles 13 do not interfere with the structure on the component mounting apparatus 100 or the components already mounted on the substrate 101.
  • the first head 120 is rotated so that the first nozzle operation lever 39 (A) is disposed between the first lever holding portions 51.
  • the CPU 162 controls the first Z-axis slider 56 to lower the first suction nozzle 13 by the first lever clamping portion 51, and then controls the second Z-axis slider 76.
  • the pressure control lever 35 is switched so that the atmospheric pressure is supplied to the first suction nozzle 13 by the second lever clamping portion 71.
  • the part sucked by the first suction nozzle 13 is mounted at the target position of the first part.
  • Components that have been sucked by the second and subsequent suction nozzles 13 are also mounted on the substrate 101 in the same manner.
  • a component mounting program for mounting a component at a target position is created after assuming that each member is manufactured or mounted according to a design value in advance.
  • each member is rarely manufactured or attached according to the design value, and actually deviates from the design value. Therefore, as described above, the CPU 162 performs position correction based on the reference point position of the head currently held by the head holding body 21, the calibration data of the head, and the calibration data of the head holding body 21. The component is mounted at the target position.
  • the suction nozzle 13 of this embodiment corresponds to a component holder of the present invention
  • the head holder 21 corresponds to a head holding unit
  • the CPU 162 corresponds to a control unit
  • the HDD 168 corresponds to a storage unit.
  • an example of the component mounting method of the present invention is also clarified by describing the operation of the component mounting apparatus 100.
  • the calibration data of the head holder 21 is stored in the HDD 168 in advance, and when the head holder 21 is controlled to perform a component mounting operation, it is read from the HDD 168 and used. Therefore, even when the head holder 21 is deviated from the design value, the component mounting apparatus 100 can be calibrated in consideration of the deviation.
  • the CPU 162 determines whether or not it is necessary to create the calibrated data of the replaced head by determining whether or not the calibrated data of the replaced head is stored in the HDD 168. It can be determined relatively easily whether or not it is necessary to create the calibration data.
  • the component mounting apparatus 100 has an automatic head replacement function, not only the production efficiency is improved by reducing the time required for calibration, but also the production efficiency is improved by automating the head replacement.
  • step S240 flowchart of FIG. 12
  • step S240 flowchart of FIG. 12
  • the same calibration is performed when the head is manually replaced. May be executed. Also in this case, the time required for calibration can be shortened.
  • the CPU 162 performs the calibration of FIG. 12, but instead, the calibration of FIG. 16 may be performed.
  • the processing in the case where the determination in step S310 is affirmative is different from that in FIG.
  • the CPU 162 after the above-described steps S320 and S330, the calibration data of the head holding body 21, the reference point position of the currently held head, and the calibration of the head.
  • processing similar to the above-described component mounting processing routine is executed, and at the same time, feedback (F / B) control of the component mounting position is executed (step S340).
  • feedback (F / B) control of the component mounting position is executed (step S340).
  • the target position where the component is to be mounted and the position where the component is actually mounted may deviate.
  • the deviation amount between the target position and the actual mounting position is measured, and the F / B control is executed.
  • the CPU 162 stores the obtained F / B correction value in the HDD 168 in association with the reference point position of the head when the F / B control is executed as one of the currently held head calibration data. (Step S350).
  • the F / B correction value has a correlation with the reference point position when the F / B control is executed.
  • the F / B correction value is used as one of the calibration data of the head in step S420 of the component mounting process routine to be executed thereafter.
  • the accuracy of position correction is further improved compared to the above-described embodiment.
  • the CPU 162 uses the F / B correction value in step S420, it is currently held from the correlation between the F / B correction value stored in the HDD 168 and the reference point position when the F / B control is executed. The F / B correction value corresponding to the reference point position of the head being found is obtained.
  • the head holding body 21 corresponds to the head holding means of the present invention
  • the first to third heads 120, 220, and 320 correspond to the head of the present invention
  • the X-axis slider 112 may correspond to the head holding means of the present invention
  • the first to third head units HU1 to HU3 that are detachably attached to the X-axis slider 112 may correspond to the head of the present invention.
  • the first head unit HU1 is a head unit including the head holding body 21 and the first head 120
  • the second head unit HU2 is a head unit including the head holding body 21 and the second head 220.
  • the head unit HU3 is a head unit including the head holding body 21 and the third head 320.
  • the X-axis slider 112 is a head holding means that does not have a rotating shaft, and the first to third head units HU 1 to HU 3 are automatically exchanged for the X-axis slider 112.
  • the inclination of the R axis 22 and the inclination of the nozzle holder 12 may be taken into consideration. In this way, the accuracy of control is further increased.
  • the reference point 23 is provided on the bottom surface of the R axis 22, but it is not necessary to actively provide the reference point 23, for example, a member that already exists on the bottom surface of the R axis 22 (for example, a screw). May be used instead of the reference point 23. The same applies to the reference point 123 on the back surface 120a of the first head 120.
  • the midpoint of the line segment connecting the position of the reference point when the rotation angle is 0 ° and the position of the reference point when the rotation angle is 180 ° is the R-axis rotation center.
  • the present invention is not particularly limited to this.
  • the R-axis rotation center may be obtained based on the positions of four reference points at rotation angles of 0 °, 90 °, 180 °, and 270 °. The same applies to the center of rotation of the nozzle holder.
  • the reference point position is the position with respect to the R-axis rotation center position
  • the nozzle holder rotation center position is the position with respect to the reference point position.
  • both the reference point position and the nozzle holder rotation center position are the light of the mark camera 132. It is good also as a position to an axis.
  • the component supply device 150 supplies reel components, but may supply tray components or bulk components.
  • the suction nozzle of the head held by the head holder 21 may be automatically exchanged with the suction nozzle stored in the nozzle stocker 134.
  • the present invention can be used for a control device using a board on which a component is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

 部品装着装置100のCPU162は、所定のヘッドのキャリブデータを作成する必要がある場合には、そのヘッドの基準部の位置の測定及びそのヘッドのキャリブデータの測定を行い、そのヘッドのキャリブデータと基準部の位置とを対応づけてHDD168に記憶する。そして、CPU162は、そのヘッドのキャリブデータと基準部の位置とに基づいて、ヘッドが保持されたヘッド保持体の動作を制御する。一方、CPU162は、所定のヘッドのキャリブデータを作成する必要がない場合には、基準部の位置を測定し、該測定した基準部の位置とHDD168に記憶された基準部の位置とそのヘッドのキャリブデータとに基づいて、そのヘッドが保持されたヘッド保持体の動作を制御する。

Description

部品装着装置及び部品装着方法
 本発明は、部品装着装置及び部品装着方法に関する。
 従来より、ヘッドに設けられたノズルの先端に部品を吸着し、該吸着した部品を基板上の所定位置に装着する部品装着装置が知られている。こうした部品装着装置として、ヘッドの交換が可能であり、新たにヘッドが装着された場合にそのヘッドを使用するための準備を行うものが知られている(特許文献1)。具体的には、部品装着装置は、新たに装着されたヘッドを認識し、そのヘッドの使用の適否を判定し、適当であると判定した場合にはそのヘッドに適合したドライバを選択し、その後キャリブレーション(較正)を実行する。キャリブレーションとは、ヘッドの装着誤差等に対処すべく、そのヘッドの作業動作における位置を調整して確定するための処理である。キャリブレーションを実行するにあたっては、ヘッドやヘッドに取り付けられた部材の位置を測定したり、回転する部材は自転中心を測定したりする。
特開2004-221518号公報
 しかしながら、上述した部品装着装置では、ヘッドが装着されるごとにそのヘッドのキャリブレーションデータの作成に必要な測定が実行されるため、ヘッドを交換してからキャリブレーションが終了するまでの間は部品を基板上に装着する作業を停止せざるを得ず、生産効率がよくないという問題があった。特に、一つの基板に対して複数のヘッドを用いて部品を装着する場合にヘッドを自動交換する部品装着装置では、ヘッド交換の自動化によって生産効率の向上が図られているものの、ヘッド交換後のキャリブレーションに時間がかかるため生産効率が十分向上しなかった。
 本発明はこのような課題を解決するためになされたものであり、部品装着装置においてキャリブレーションに要する時間を短縮化することをことを主目的とする。
 本発明の部品装着装置は、
 部品の保持及び保持解除が可能な部品保持具を備えたヘッドを保持するヘッド保持手段と、
 前記ヘッド保持手段の動作を制御する制御手段と、
 データを記憶する記憶手段と、
 を備え、
 前記制御手段は、
 前記ヘッド保持手段が所定のヘッドを保持したときに前記ヘッドのキャリブデータを作成する必要があるか否かを判定し、
 前記ヘッドのキャリブデータを作成する必要がある場合には、前記ヘッドの基準部の位置の測定及び前記ヘッドのキャリブデータの測定を行い、前記ヘッドのキャリブデータを前記記憶手段に記憶し、前記ヘッドのキャリブデータと前記基準部の位置とに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御し、
 前記ヘッドのキャリブデータを作成する必要がない場合には、前記基準部の位置を測定し、該測定した前記基準部の位置と前記記憶手段に記憶された前記ヘッドのキャリブデータとに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御する、
 ものである。
 この部品装着装置では、制御手段は、所定のヘッドのキャリブデータを作成する必要がある場合には、そのヘッドの基準部の位置の測定及びそのヘッドのキャリブデータの測定を行い、そのヘッドのキャリブデータを記憶手段に記憶する。そして、制御手段は、そのヘッドのキャリブデータと基準部の位置とに基づいて、ヘッドが保持されたヘッド保持手段の動作を制御する。一方、制御手段は、所定のヘッドのキャリブデータを作成する必要がない場合には、基準部の位置を測定し、該測定した基準部の位置と記憶手段に記憶されたそのヘッドのキャリブデータとに基づいて、そのヘッドが保持されたヘッド保持手段の動作を制御する。つまり、所定のヘッドのキャリブデータを作成する必要がない場合には、基準部の位置の測定を行えば足りる。そのため、ヘッドのキャリブデータの測定を行う時間が削減され、ひいては部品装着装置のキャリブレーションに要する時間が短縮化される。したがって、生産効率が向上する。
 なお、「キャリブデータ」は、キャリブレーションデータの略である。また、ヘッドのキャリブデータとしては、例えばヘッドに備えられた部品保持具の回転中心に関するデータなどが挙げられる。
 本発明の部品装着装置において、前記制御手段は、前記ヘッドのキャリブデータを作成する必要がある場合には、前記ヘッドの基準部の位置の測定及び前記ヘッドのキャリブデータの測定を行い、前記ヘッドの基準部の位置及び前記ヘッドのキャリブデータを前記記憶手段に記憶し、前記ヘッドのキャリブデータと前記基準部の位置とに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御し、前記ヘッドのキャリブデータを作成する必要がない場合には、前記基準部の位置を測定し、該測定した前記基準部の位置と前記記憶手段に記憶された前記基準部の位置と前記記憶手段に記憶された前記ヘッドのキャリブデータとに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御してもよい。例えば、基準部の位置とヘッドの位置に関するキャリブデータとを用いてヘッド保持手段の動作を制御して部品装着を行ったとしても、何らかの理由により、部品を装着すべき目標位置と実際に部品が装着された位置とがずれることがある。その場合、そのずれを解消するためのフィードバック補正値を求め、その補正値をヘッドのキャリブデータの一つとして加えることが好ましい。こうすれば、部品装着の位置精度が一層向上する。こうした補正値は、その補正値を測定したときの基準部の位置と相関関係がある。このような相関関係がある場合、現在保持されているヘッドに適した補正値を求めるには、補正値を測定したときの基準部の位置とその補正値との相関関係から、現在保持されているヘッドの基準部の位置に対応する補正値を求めることができる。
 本発明の部品装着装置において、前記制御手段は、前記ヘッドのキャリブデータを作成する必要があるか否かを判定する前に予め前記ヘッド保持手段のキャリブデータを作成して前記記憶手段に記憶しておき、前記ヘッドが保持された前記ヘッド保持手段の動作を制御するにあたっては前記記憶手段に記憶された前記ヘッド保持手段のキャリブデータも利用して制御するようにしてもよい。ヘッド保持手段のキャリブデータは、ヘッド保持手段に保持されるヘッドの種類にかかわらず利用可能なため、ヘッドのキャリブデータを作成するごとに作成する必要はない。ここでは、ヘッド保持手段のキャリブデータを記憶手段に記憶しておき、ヘッド保持手段を制御する際にはそれを記憶手段から読み出して利用する。そのため、ヘッド保持手段が設計値からずれている場合でも、そのずれを考慮して部品装着装置のキャリブレーションを実施することができる。なお、ヘッド保持手段のキャリブデータとしては、ヘッド保持手段自身の位置に関するデータや、ヘッド保持手段にヘッドを回転させる回転軸が設けられている場合にはその回転軸の回転中心に関するデータなどが挙げられる。
 本発明の部品装着装置において、前記制御手段は、前記ヘッドのキャリブデータが前記記憶手段に記憶されているか否かを判定することによって、前記ヘッドのキャリブデータを作成する必要があるか否かを判定してもよい。こうすれば、ヘッドのキャリブデータを作成する必要があるか否かを比較的容易に判定することができる。
 本発明の部品装着装置において、前記制御手段は、前記ヘッドのキャリブデータと前記基準部の位置とを対応づけるにあたっては、前記ヘッドに付された識別符号と前記ヘッドのキャリブデータと前記基準部の位置とを対応づけるようにしてもよい。なお、識別符号は、例えば、所定のヘッドに付されるバーコードや2次元コードを利用して記憶してもよいし、ICタグなどに格納してもよい。
 本発明の部品装着装置は、前記ヘッド保持手段に保持されているヘッドを前記所定のヘッドに自動交換する機能を備えていてもよい。こうすれば、キャリブレーションに要する時間の短縮化によって生産効率が向上するのみならず、ヘッド交換の自動化によっても生産効率が向上する。
 本発明の部品装着方法は、
 ヘッド保持手段に所定のヘッドを保持する工程と、
 前記ヘッドの基準部の位置の測定及び前記ヘッドのキャリブデータの測定を行って前記ヘッドのキャリブデータを作成し、前記ヘッドのキャリブデータを前記記憶手段に記憶する工程と、
 前記ヘッドを前記ヘッド保持手段から一旦取り外し、再度前記ヘッド保持手段に保持する工程と、
 前記ヘッドを再度前記ヘッド保持手段に保持した後、前記基準部の位置を再度測定する工程と、
 前記再度測定した前記基準部の位置と前記記憶手段に記憶された前記ヘッドのキャリブデータとに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御する工程と、
 を含むものである。
 この部品装着方法では、所定のヘッドがヘッド保持手段から一旦取り外されたあと再度ヘッド保持手段に保持された場合には、そのヘッドの基準部の位置を再度測定し、再度測定した基準部の位置と記憶手段に記憶されたそのヘッドのキャリブデータとに基づいて、そのヘッドが保持されたヘッド保持手段の動作を制御する。つまり、所定のヘッドがヘッド保持手段から一旦取り外されたあと再度ヘッド保持手段に保持された場合には、そのヘッドの基準部の位置の測定を行えば足りる。そのため、ヘッドのキャリブデータの測定を行う時間が削減され、ひいては部品装着装置のキャリブレーションに要する時間が短縮化される。したがって、生産効率が向上する。
部品装着システム1の全体構成を示す説明図。 ヘッドユニット110の斜視図。 ヘッド保持体21を下から斜め上向きに見たときの斜視図。 第1ヘッド120を上から斜め下向きに見たときの斜視図。 第1及び第2レバー挟持部51,71の周辺部分の断面図。 第2ヘッド220の斜視図。 第3ヘッド320の斜視図。 ヘッド保持体キャリブデータ作成処理のフローチャート。 マークカメラ130の位置補正時のパーツカメラ132の周辺の説明図。 ヘッド保持体21の位置補正時のパーツカメラ132の周辺の説明図。 ヘッド自動交換ルーチンのフローチャート。 キャリブレーションのフローチャート。 第1ヘッド120の底面120aの説明図。 キャリブレーションに用いるデータの説明図。 部品装着処理ルーチンのフローチャート。 他のキャリブレーションのフローチャート。 第1~第3ヘッドユニットHU1~HU3の説明図。
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は部品装着システム1の全体構成を示す説明図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1に示した通りとする。
[部品装着システム1の構成]
 部品装着システム1は、部品装着装置100と、管理コンピュータ200とを備えている。
 部品装着装置100は、図1に示すように、基台102に搭載された基板搬送装置104と、XY平面を移動可能なヘッドユニット110と、ヘッドユニット110に着脱可能に取り付けられた第1ヘッド120と、基板101を上方から撮影するマークカメラ130と、吸着ノズル13に吸着された部品を下方から撮影するパーツカメラ132と、各種ヘッドを収納するためのヘッド収納エリア140と、基板101へ装着する部品を供給する部品供給装置150と、各種制御を実行するコントローラ160とを備えている。
 基板搬送装置104は、前後一対の支持板106,106にそれぞれ取り付けられたコンベアベルト108,108(図1では片方のみ図示)により基板101を左から右へと搬送する。
 ヘッドユニット110は、X軸スライダ112に取り付けられ、X軸スライダ112がガイドレール114,114に沿って左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ116がガイドレール118,118に沿って前後方向に移動するのに伴って前後方向に移動する。このため、ヘッドユニット110は、XY平面を移動可能である。各スライダ112,116は、それぞれ図示しないサーボモータによって駆動される。
 第1ヘッド120は、ヘッドユニット110に着脱可能に取り付けられている。吸着ノズル13は、圧力を利用して、ノズル先端に部品を吸着したり、ノズル先端に吸着している部品を放したりするものである。吸着ノズル13は、第1ヘッド120には12本取り付けられているが、第2ヘッド220には4本、第3ヘッド320には1本取り付けられている。
 マークカメラ130は、X軸スライダ112の下面に取り付けられている。マークカメラ130は、下方が撮影領域であり、基板101に付されたマークを読み取るカメラである。このマークは、基板101上の基準位置を示すものである。この基準位置は、吸着ノズル13に吸着した部品を基板101上の所望の位置に装着する際に利用される。マークカメラ130は、各種ヘッドに付された2次元バーコードを読み取るバーコードリーダの機能も有している。
 パーツカメラ132は、基板搬送装置104の前側に配置されている。部品を吸着した吸着ノズル13がパーツカメラ132の上方を通過する際、パーツカメラ132は吸着ノズル13に吸着された部品の状態を撮影する。パーツカメラ132によって撮影された画像は、部品が正常に吸着ノズル13に吸着されているか否かを判定するのに用いられる。
 ヘッド収納エリア140は、基台102の上面右側に設けられ、第1~第3ヘッド120,220,320を収納するための収納場所142を複数有している。前3つの収納場所142には、それぞれ第2ヘッド220と第3ヘッド320と第1ヘッド120が収納されているが、最後部の収納場所142は空いた状態である。
 部品供給装置150は、部品装着装置100の前方に取り付けられている。この部品供給装置150は、複数のスロットを有しており、各スロットにはフィーダ152が差し込み可能となっている。フィーダ152には、テープが巻き付けられたリール154が取り付けられている。テープの表面には、部品がテープの長手方向に沿って並んだ状態で保持されている。これらの部品は、テープの表面を覆うフィルムによって保護されている。こうしたテープは、図示しないスプロケット機構によって後方へ送り出され、フィルムが剥がされて部品が露出した状態で所定位置に配置される。所定位置とは、吸着ノズル13がその部品を吸着可能な位置である。この所定位置で部品を吸着した吸着ノズル13は、基板101上の定められた位置にその部品を実装することができる。
 その他に、部品装着装置100は、ノズルストッカー134などを備えている。ノズルストッカー134は、複数種類の吸着ノズル13をストックするボックスであり、パーツカメラ132の隣に配置されている。吸着ノズル13は、部品を装着する基板の種類や部品の種類に適したものに交換される。
 コントローラ160は、各種制御を実行するCPU162、制御プログラム等を記憶するROM164、作業領域として利用されるRAM166及び大容量のデータを記憶するHDD168を備え、これらは図示しないバスによって接続されている。コントローラ160は、基板搬送装置104、X軸スライダ112、Y軸スライダ116及びヘッドユニット110と信号のやり取りが可能なように接続されている。
 管理コンピュータ200は、基板101の生産ジョブを管理するコンピュータであり、オペレータが作成した生産ジョブデータを記憶している。生産ジョブデータには、部品装着装置100においてどのスロット位置のフィーダからどの部品をどういう順番でどの基板種の基板101へ実装するか、また、そのように実装した基板101を何枚作製するかなどが定められている。管理コンピュータ200は、部品装着装置100のコントローラ160と双方向通信可能に接続されている。
 ここで、ヘッドユニット110について、詳細に説明する。図2は、カバーを外した状態のヘッドユニット110の斜視図であり、詳しくは、ヘッド保持体21のR軸22に対して第1ヘッド120を下げた状態の斜視図である。図3は、ヘッド保持体21を下から斜め上向きに見たときの斜視図、図4は、第1ヘッド120を上から斜め下向きに見たときの斜視図である。
 ヘッドユニット110は、ヘッド保持体21と第1ヘッド120とを備えている。
 ヘッド保持体21は、X軸スライダ112(図1参照)に、図示しない昇降機構によって昇降可能に取り付けられている。このヘッド保持体21は、上部にリング状の2つのギア、R軸ギア24及びQ軸ギア27を有し、下部に円柱状のR軸22を有している。R軸ギア24及びQ軸ギア27は、互いに独立して回転するように取り付けられている。R軸ギア24は、R軸モータ25によって回転駆動され、R軸22と一体的に回転する。Q軸ギア27は、Q軸モータ28によって回転駆動され、リング状のクラッチ部材61(図3参照)と一体的に回転する。R軸22は、下端にフックを有する係合部材31を複数個(ここでは4つ)有している。フックの向きは、R軸22が正回転する方向と同じになるように揃えられている。これらの係合部材31は、R軸22の下面の同一円周上(この円の中心はR軸22の中心軸と一致する)に等間隔に配置されている。また、各係合部材31は、図示しないエアシリンダによって上下動可能となっている。ヘッド保持体21は、更に、図5に示す第1及び第2レバー挟持部51,71を有しているが、これらについては後述する。
 第1ヘッド120は、外観が略円柱状の部材であり、下方に複数(ここでは12本)の吸着ノズル13を有している。吸着ノズル13は、上下方向に延びるノズルホルダ12と一体化されている。ノズルホルダ12は、上端付近にノズル操作レバー39を有し、スプリング40によって上方へ付勢されて所定の定位置(上方位置)に位置決めされている。ノズル操作レバー39は、吸着ノズル13を操作する順番にしたがって1番目のノズル操作レバー39(A)から最終番目(12番目)のノズル操作レバー39(L)まで存在する。この順番は、図2の上方から見たとき、1番目から反時計回りに最終番目まで数えるものとする。1番目のノズル操作レバー39(A)には、2次元バーコード42が付されている。この2次元バーコード42には、識別符号が含まれており、この識別符号はヘッドごとに異なる符号となるように設定されている。例えば、12本の吸着ノズル13を備えた第1ヘッド120が複数存在した場合、個々に異なる識別符号が付されている。ノズル操作レバー39が押下されると、スプリング40の弾性力に抗してノズルホルダ12及び吸着ノズル13が下降し、ノズル操作レバー39の押下が解除されると、ノズルホルダ12及び吸着ノズル13はスプリング40の弾性力によって定位置に戻る。ノズルホルダ12は、ノズルホルダ12と同軸となるように配置された小ギア34と噛み合わされている。各小ギア34は、同一円周上(この円の中心はR軸22の中心軸と一致する)に等間隔となるように配置されている。円筒ギア33は、小ギア34の並んだ円周よりも内側に配置され、側面にギアを有し、各小ギア34と噛み合わされている。また、円筒ギア33は、R軸22を挿入できるような寸法に設計されている。この円筒ギア33の上端には、ヘッド保持体21のクラッチ部材61(図3参照)と嵌まり合うクラッチ部材62が設けられている。
 また、第1ヘッド120は、吸着ノズル13ごとに、ノズル先端に負圧を供給するか大気圧を供給するかを切り替える圧力操作レバー35を有している。圧力操作レバー35は、復帰機能を有さないスイッチであり、上方に位置決めされるとノズル先端に負圧を供給し、下方に位置決めされるとノズル先端に大気圧を供給する。圧力操作レバー35も、吸着ノズル13を操作する順番にしたがって1番目の圧力操作レバー35(A)から最終番目の圧力操作レバー35(L)まで存在する。
 更に、第1ヘッド120は、円筒ギア33の内側に円盤状のベース36(図4参照)を有している。ベース36は、ノズルホルダ12や小ギア34を支持するサポート部材と一体化されているが、円筒ギア33とは一体化されていない。このため、円筒ギア33は、ベース36とは独立して回転可能となっている。ベース36には、円弧状の係合孔37がR軸22の係合部材31のフックと係合可能なように形成されている。
 こうした第1ヘッド120は、以下の手順でヘッド保持体21に保持される。まず、ヘッド保持体21を下降させてR軸22を円筒ギア33に挿入しつつ、図示しないエアシリンダにより係合部材31をR軸22から下降させてベース36の係合孔37に差し込む。その後、R軸モータ25によりR軸22を正回転させることにより、係合部材31のフックを係合孔37の周縁に係合させる。そして、図示しないエアシリンダにより係合部材31を上昇させて、円筒ギア33のクラッチ部材62がヘッド保持体21のクラッチ部材61に嵌まり込むようにする。その結果、第1ヘッド120はヘッド保持体21に保持される。この状態でヘッド保持体21のQ軸ギア27を回転させると、それに伴ってクラッチ部材61、クラッチ部材62、小ギア34及びノズルホルダ12が回転するため、吸着ノズル13が軸回転する。これにより、吸着ノズル13に吸着された部品の向き(角度)を修正することが可能になる。
 ここで、再びヘッド保持体21の説明に戻る。図5は、第1及び第2レバー挟持部51,71の周辺部分の断面図である。図5に示すように、ヘッド保持体21が有するレバー挟持部51は、ヘッド保持体21に設けられた第1Z軸ガイドレール55に沿って上下方向に移動可能な第1Z軸スライダ56に取り付けられている。なお、第1Z軸スライダ56は、図示しないサーボモータによって駆動される。第1レバー挟持部51は、L字部材の水平部分52とその水平部分52の上側に取り付けられたローラ54とによってノズル操作レバー39を上下から挟み込むものである。ローラ54は、水平軸53に回転可能に支持されている。また、1番目と最終番目のノズル操作レバー39(A),39(L)の隙間は、第1レバー挟持部51が上下方向に通過可能な大きさになっているが、そのほかの隣り合うノズル操作レバー39の隙間は、第1レバー挟持部51が上下方向に通過できない大きさになっている(図4参照)。このため、図2の状態から、R軸22に対して第1ヘッド120を相対的に上昇させてヘッド保持体21に第1ヘッド120を保持する際には、第1レバー挟持部51がノズル操作レバー39とぶつからないように、ヘッド保持体21の第1レバー挟持部51を1番目と最終番目のノズル操作レバー39(A),39(L)の隙間の直上に配置する必要がある。
 ヘッド保持体21は、第2レバー挟持部71を有している。第2レバー挟持部71は、圧力操作レバー35がノズル操作レバー39よりも半径方向外側に位置している関係上、第1レバー挟持部51よりも半径方向外側に位置している。第2レバー挟持部71は、第1レバー挟持部51と同様、ヘッド保持体21に設けられた第2Z軸ガイドレール75に沿って上下方向に移動可能な第2Z軸スライダ76に取り付けられている。なお、第2Z軸スライダ76は、図示しないサーボモータによって駆動される。第2レバー挟持部71は、L字部材の水平部分72とその水平部分72の上側に取り付けられたローラ74とによって圧力操作レバー35を上下から挟み込むものである。隣り合う圧力操作レバー35の隙間は、第2レバー挟持部71が上下方向に通過可能な大きさになっている。図2の状態から、R軸に対して第1ヘッド120を相対的に上昇させてヘッド保持体21に第1ヘッド120を保持する際に、上述したようにヘッド保持体21の第1レバー挟持部51を1番目と最終番目のノズル操作レバー39(A),39(L)の隙間の直上に配置すれば、第2レバー挟持部71も1番目と最終番目の圧力操作レバー35(A),(L)の隙間の直上に配置される。
 次に、第1ヘッド120とは異なる種類の第2ヘッド220,第3ヘッド320について説明する。図6は第2ヘッド220の斜視図、図7は第3ヘッド320の斜視図である。図6に示す第2ヘッド220は、ヘッド収納エリア140に収納されている(図1参照)。第2ヘッド220は、吸着ノズル13を4本備えている点、ヘッド収納エリア140に収納されたときのノズル操作レバー39や圧力操作レバー35、ベース36の高さが第1ヘッド120と異なる点、隣り合うノズル操作レバー39の間隔が広い点を除いては、第1ヘッド120と同じ構成である。例えば、1番目のノズル操作レバー39(A)には、2次元バーコード42が付されている。図7は、第3ヘッド320の斜視図である。第3ヘッド320も、ヘッド収納エリア140に収納されている(図1参照)。第3ヘッド320は、吸着ノズル13を1本だけ備えており、ノズル操作レバー39や圧力操作レバー35を有していない。このため、2次元バーコード42はベース36の上面に付されている。また、第3ヘッド320は、収納場所142に収納されたときのベース36の高さ位置が他の第1ヘッド120,第2ヘッド220とは異なる。
[部品装着装置100の動作-ヘッド保持体21のキャリブデータの作成]
 次に、部品装着装置100のコントローラ160のCPU162が、ヘッド保持体21のキャリブデータを作成する処理について説明する。図8は、ヘッド保持体キャリブデータ作成処理のフローチャートである。この処理プログラムは、コントローラ160のROM164に記憶されている。コントローラ160のCPU162は、オペレータによってヘッド保持体21のキャリブデータの作成指令が指示されたとき、この処理プログラムを実行する。オペレータは、ヘッド保持体21のキャリブデータが今までに一度も作成されていない場合や、前回ヘッド保持体21のキャリブデータを作成したときと比べてヘッド保持体21が熱などにより経時的に変形したと推定される場合に、ヘッド保持体21のキャリブデータの作成指令を指示する。なお、この処理プログラムは、ヘッド保持体21がいずれのヘッドも保持していない状態で実行される。
 まず、CPU162は、マークカメラ130の位置補正を行う(ステップS110)。図9は、マークカメラ130の位置補正時のパーツカメラ132の周辺の説明図である。パーツカメラ132のレンズを覆うガラス板136の所定位置に基準マーク138が設けられている。また、HDD168には、設計通りに製造されたマークカメラ130が予め定められた定位置に停止したときの、X軸及びY軸スライダ112,116に取り付けられたリニアエンコーダから出力されるパルス数(設計値)が記憶されている。なお、パルス数は、部品装着装置100上に定められた図示しない原点を始点としてカウントされる。CPU162は、実際のマークカメラ130をその設計値のパルス数で移動させたあと停止させ、その位置でマークカメラ130に基準マーク138を撮影させる。実際のマークカメラ130を設計値のパルス数で移動させた場合、通常は製造上の誤差や熱による変形などのためにマークカメラ130は定位置からずれた位置で停止する。そのため、マークカメラ130で撮影した画像に写った基準マーク138の位置は、当初の位置(定位置のマークカメラ130で撮影した画像に写った基準マーク138の位置)からずれている。そこで、CPU162は、マークカメラ130で撮影した画像に写った基準マーク138の位置が当初の位置と一致するまでX軸及びY軸スライダ112,116によってマークカメラ130を含むヘッドユニット110を移動させ、そのときのパルス数(実測値)を測定する。CPU162は、こうして得られたパルス数の実測値と設計値とに基づいて、マークカメラ130の位置補正を行う。
 次に、CPU162は、ヘッド保持体21のR軸22の位置補正を行う(ステップS120)。図10は、ヘッド保持体21の位置補正時のパーツカメラ132の周辺の説明図である。設計通りに製造されたヘッド保持体21がいずれのヘッドも保持していない状態で、パーツカメラ132の中心にヘッド保持体21のR軸22の回転中心が一致するようにヘッド保持体21を位置決めしたときの、X軸及びY軸スライダ112,116に取り付けられたリニアエンコーダから出力されるパルス数(設計値)がHDD168に記憶されている。CPU162は、実際のヘッド保持体21をその設計値のパルス数で移動させたあと停止させ、その位置でヘッド保持体21のR軸22の回転中心を求める。具体的には、ヘッド保持体21のR軸22の底面に基準点23(図3参照)を設けておく。そして、R軸22を回転させない状態つまり回転角度0°のときの基準点23の位置とR軸22を180°回転させたときの基準点23の位置をパーツカメラ132が撮影した画像から求め、その2つの位置を結んだ線分の中点を回転中心とする。実際のヘッド保持体21を設計値のパルス数で移動させた場合、通常は製造上の誤差や熱による変形などのためにヘッド保持体21の回転中心はパーツカメラ132の中心からずれた位置で停止する。その場合、CPU162は、パーツカメラ132が撮影した画像を用いてR軸22の回転中心がパーツカメラ132の中心と一致するまでX軸及びY軸スライダ112,116によってヘッド保持体21を移動させ、そのときのパルス数(実測値)を測定する。CPU162は、こうして得られたパルス数の実測値と設計値とに基づいて、ヘッド保持体21のR軸22の回転中心位置を補正する。
 CPU162は、ヘッド保持体21のキャリブデータを作成しHDD168に記憶し(ステップS130)、本ルーチンを終了する。すなわち、CPU21は、マークカメラ130の光軸に対するR軸22の回転中心の位置(XY座標)をリニアエンコーダのパルス数から求め、それをヘッド保持体21のキャリブデータの一つとしてHDD168に記憶する。また、R軸22の回転中心をパーツカメラ132の光軸と一致させたときのR軸22の位置(XY座標)すなわちパーツカメラ画像取込位置をリニアエンコーダのパルス数から求め、それをヘッド保持体21のキャリブデータの一つとしてHDD168に記憶する。HDD168に記憶されたヘッド保持体21のキャリブデータの一例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[部品装着装置100の動作-ヘッド自動交換]
 次に、部品装着装置100のコントローラ160のCPU162が、管理コンピュータ200から受信した生産ジョブデータに基づいてヘッドを自動的に交換する動作について説明する。図11は、ヘッド自動交換ルーチンのフローチャートである。ヘッド自動交換ルーチンのプログラムは、コントローラ160のROM164に記憶されている。コントローラ160のCPU162は、管理コンピュータ200から受信した生産ジョブデータに基づいて、ヘッドを自動交換するタイミングか否かを判定し、ヘッドを自動交換するタイミングだったならば、ヘッド自動交換ルーチンを開始する。なお、ヘッドを自動交換するタイミングになる前に、上述したヘッド保持体21のキャリブデータがHDD168に記憶されている。
 まず、ヘッド自動交換ルーチンが開始されると、CPU162は、ヘッド収納エリア140に収納されたヘッドを認識する(ステップS210)。具体的には、CPU162は、ヘッド収納エリア140の各収納場所142に収納されたヘッドの2次元バーコードを読み取り、2次元バーコードが表す識別符号に基づいてどの収納場所にどのヘッドが収納されているかを認識する。同じ種類のヘッドが複数収納されている場合には、同じ種類であってもヘッドごとに別々の識別符号が付されている。HDD168には、識別符号とヘッドの種類との対応関係がテーブル化されて記憶されている。そのテーブルには、例えば、識別符号「001」には12本の吸着ノズルを持つ第1ヘッド120が対応づけられ、識別符号「002」には別の第1ヘッド120が対応づけられ、識別符号「003」には4本の吸着ノズルを持つ2ヘッド220が対応づけられている。CPU162は、取得したヘッドの識別符号をこのテーブルに照らしてヘッドを認識する。
 続いて、CPU162は、現在保持しているヘッドを解除する(ステップS220)。例えば、現在保持しているヘッドが識別符号「001」の第1ヘッド120だとすると、CPU162は、まず、X軸スライダ112及びY軸スライダ116を制御して、ヘッドユニット110をヘッド収納エリア140の空いている収納場所142の直上に移動する。続いて、CPU162は、第1ヘッド120を回転させて、第1レバー挟持部51が1番目と最終番目のノズル操作レバー39(A),39(L)の隙間に位置するようにする。続いて、CPU162は、ヘッド保持体21を下降させて第1ヘッド120をその収納場所142に収納する。その後、CPU162は、係合部材31のフックを係合孔37よりも下方へ下げたあとR軸22を回転させることにより、係合部材31のフックを第1ヘッド120の係合孔37から外す。更に、CPU162は、係合部材31を上昇させることにより、第1ヘッド120の解除を終了する。
 次に、CPU162は、交換対象のヘッドを保持する(ステップS230)。例えば、交換対象のヘッドが今まで保持していた第1ヘッド120とは異なる識別符号「002」の第1ヘッド120だとする。このとき、収納場所142に収納されている第1ヘッド120の向きは、1番目と最終番目のノズル操作レバー39(A),39(L)の間に第1レバー挟持部51が位置するように予め決められている。まず、CPU162は、X軸スライダ112及びY軸スライダ116を制御して、ヘッドユニット110を第1ヘッド120が収納されている収納場所142の直上に移動する。続いて、CPU162は、ヘッド保持体21を下降させてR軸22を円筒ギア33に挿入しつつ各係合部材31を下降させることにより、各係合部材31のフックを第1ヘッド120のベース36に設けた係合孔37に挿入する。その後、CPU162は、R軸22を回転させて、係合部材31のフックを係合孔37の周縁に係合させる。続いて、CPU162は、係合部材31を上昇させて、係合部材31のフックとR軸22の裏面との間にベース36を挟持すると共に、第1ヘッド120のクラッチ部材62をヘッド保持体21のクラッチ部材61と嵌め合わせる。その後、CPU162は、第1及び第2Z軸スライダ56,76を制御して、第1レバー挟持部51を第1ヘッド120のノズル操作レバー39の高さまで下降させると共に第2レバー挟持部71を第1ヘッド120の圧力操作レバー35の高さまで下降させる。これにより、第1レバー挟持部51は1番目と最終番目のノズル操作レバー39(A),(L)の隙間に位置し、第2レバー挟持部71は1番目と最終番目の圧力操作レバー35(A),(L)の隙間に位置する。その後、CPU162は、R軸22を正回転させることにより第1ヘッド120を回転させ、第1レバー挟持部51が1番目のノズル操作レバー39(A),(L)を挟み込み、且つ、第2レバー挟持部71が1番目の圧力操作レバー35を挟み込むようにする。
 最後に、CPU162は、キャリブレーションを実行し(ステップS240)、本ルーチンを終了する。キャリブレーションとは、キャリブデータを作成する処理である。部品装着装置100では、予め設計値通りに各部材が製造されたり取り付けられたりしているとした上で、目標位置へ部品を装着する部品装着プログラムが作成されている。しかし、実際には、設計値通りに各部材が製造されたり取り付けられたりしていることは希で、実際には設計値からずれている。そのため、そのずれを較正するために部品装着装置100のキャリブレーションを実行するのである。CPU162は、その後の部品装着動作を実行する際には、今回のキャリブレーションの結果を反映させて実行する。
 ここで、ヘッド自動交換ルーチンのステップS240で実行されるキャリブレーションについて、図12を参照して以下に説明する。図12は、キャリブレーションのフローチャートである。CPU162は、キャリブレーションのプログラムを開始すると、まず、交換したヘッドのキャリブデータの測定が必要か否かを判定する(ステップS310)。例えば、上述したように交換したヘッドが識別符号「002」の第1ヘッド120だったとすると、CPU162は、識別符号「002」に対応づけられたキャリブデータがHDD168に記憶されているか否かを判定し、記憶されていないならば、その第1ヘッド120のキャリブデータの測定が必要と判定する。識別符号「002」に対応づけられたキャリブデータがHDD168に記憶されていたならば、そのキャリブデータを利用することができるため、CPU162はその第1ヘッド120のキャリブデータの測定は不要と判定する。
 ステップS310で肯定判定だったならば、CPU162は、交換したヘッドの基準点の測定を行い、測定結果をHDD168に記憶する(ステップS320)。例えば、交換したヘッドが識別符号[002」の第1ヘッド120だとすると、CPU162は、ヘッド保持体21のキャリブデータを用いて、R軸22の回転中心がパーツカメラ132の中心と一致するようにヘッドユニット110を位置決めする。図13は第1ヘッド120の底面120aの説明図である。第1ヘッド120の底面120aの所定位置(ここでは中心位置)には、基準点123が設けられている。CPU162は、ヘッド保持体21に保持された第1ヘッド120の底面をパーツカメラ132に撮影させる。その後、CPU162は、R軸回転中心に対する第1ヘッド120の基準点123の位置(XY座標)を測定し、その位置を基準点位置として第1ヘッド120の識別符号「002」に対応づけてHDD168に記憶する。ここでは、第1ヘッド120の回転角度が0°のときつまり第1ヘッド120を回転させない状態のときの基準点123の位置を測定する。
 続いて、CPU162は、交換したヘッドのキャリブデータの測定を行い、それらの測定結果をHDD168に記憶し(ステップS330)、本ルーチンを終了する。例えば、交換したヘッドが識別符号[002」の第1ヘッド120だとすると、CPU162は、第1ヘッド120に備えられた12本の吸着ノズル13のノズルホルダ12のそれぞれの回転中心の位置(XY座標)を測定する。各回転中心の位置は、基準点123に対する位置とする。R軸22の回転中心がパーツカメラ132の中心と一致するように位置決めした状態では、第1ヘッド120に備えられた全吸着ノズル13がパーツカメラ132の視野に収まっている。CPU162は、その画像をパーツカメラ132に撮影させ、その後、Q軸モータ28を駆動して円筒ギア33及び小ギア34を介して全ノズルホルダ12を180°回転させ、その状態の画像を再びパーツカメラに撮影させる。CPU162は、ノズルホルダ12を回転させない状態つまり回転角度0°のときの吸着ノズル13の穴の位置とノズルホルダ12を180°回転させた状態つまり回転角度180°のときの吸着ノズル13の穴の位置をパーツカメラ132が撮影した画像から求め、その2つの位置を結んだ線分の中点を各ノズルホルダ12の回転中心とする。このようにしてノズルホルダ12の回転中心を求める場合、第1ヘッド120の回転角度は0°とする。CPU162は、基準点123に対する各ノズルホルダ12の回転中心の位置(図14参照)を求め、それをヘッドのキャリブデータの一つであるノズルホルダ回転中心位置として第1ヘッド120の識別符号「002」と対応づけてHDD168に記憶する。交換したヘッドのキャリブデータを測定するには比較的長時間を要する。表2に、第1ヘッド120の識別符号「002」とヘッドのキャリブデータと基準点位置(ここでは(xa,ya)とする)とを対応づけたテーブルの一例を示す。
Figure JPOXMLDOC01-appb-T000002
 一方、ステップS310で否定判定だったならば、CPU162は、R軸22の回転中心に対する、交換したヘッドの基準点位置(図14参照、XY座標)を測定し、測定結果を基準点位置としてHDD168に記憶する(ステップS360)。例えば、交換したヘッドが識別符号[002」の第1ヘッド120だとすると、今回の基準点位置(ここでは(xb,yb)とする)を識別符号「002」に対応づけてHDD168に記憶する。ステップS310で否定判定だったということは、既に表2のような識別符号「002」に対応づけられたキャリブデータがHDD168に記憶されているということである。そのため、識別符号「002」の第1ヘッド120のキャリブデータは、HDD168から読み出せばよく、再び測定する必要はない。また、識別符号「002」の第1ヘッド120がヘッド保持体21に保持されるのは、今回が初めてではなく2回目以降、つまり一旦取り外されたあと再度保持されたということになる。しかし、第1ヘッド120をヘッド保持体21が保持する場合、係合部材31のフックとR軸22の底面との間に第1ヘッド120のベース36を挟み込むため、保持するたびに第1ヘッド120とヘッド保持体21との位置関係が微妙に異なるものとなる。そのため、基準点位置を再度測定する。通常、再保持後の基準点位置(xb,yb)は初回の基準点位置(xa,ya)とは異なる値となる。
 CPU162は、ステップS350のあと、本ルーチンを終了する。例えば、交換したヘッドが識別符号[002」の第1ヘッド120だとすると、既に表2のような識別符号「002」に対応づけられたキャリブデータがHDD168に記憶されているため、CPU162は、部品を基板101へ装着する際にはそれを読み出せばよく、再度キャリブデータを測定する必要はない。そのため、識別符号「002」の第1ヘッド120のキャリブデータを測定する時間が削減される。図14に、ヘッド保持体21のR軸回転中心位置、第1ヘッド120の基準点位置、第1ヘッド120のノズルホルダ12の回転中心位置を模式的に示した。
[部品装着装置100の動作-部品装着動作]
 次に、部品装着装置100のコントローラ160のCPU162が、管理コンピュータ200から受信した生産ジョブデータに基づいてヘッドユニット110を利用して基板101へ部品を装着する動作について説明する。図15は、部品装着処理ルーチンのフローチャートである。部品装着処理ルーチンのプログラムは、コントローラ160のROM164に記憶されている。コントローラ160のCPU162は、管理コンピュータ200から受信した生産ジョブデータに基づいて、適時この部品装着処理ルーチンを開始する。
 まず、CPU162は、吸着ノズル13へ部品を吸着させる(ステップS410)。例えば、第1ヘッド120がヘッド保持体21に保持されている場合、CPU162は、ヘッドユニット110の複数の吸着ノズル13にフィーダ152から供給される部品を順次吸着させる。なお、予め、第1レバー挟持部51が1番目と最終番目のノズル操作レバー39(A),39(L)の隙間に位置し且つその高さがノズル操作レバー39と一致しており、第2レバー挟持部71が1番目と最終番目の圧力操作レバー35,35の隙間に位置し且つその高さが圧力操作レバー35と一致しているものとする。
 具体的には、CPU162は、R軸モータ25により第1ヘッド120を回転させて、第1レバー挟持部51に1番目のノズル操作レバー39(A)が挟持され、第2レバー挟持部71に1番目の吸着ノズル13の圧力操作レバー35が挟持されるようにする。なお、第1ヘッド120を回転させる際には、原則として、円筒ギア33を第1ヘッド120と同位相となるように回転させる。これにより、第1ヘッド120が回転するときに吸着ノズル13が軸回転することはない。但し、吸着ノズル13に吸着された部品の向き(角度)を修正する際には、円筒ギア33を第1ヘッド120とは独立して回転させる。次に、CPU162は、X軸スライダ112及びY軸スライダ116を制御して1番目の吸着ノズル13を所望の部品の真上に配置する。その後、CPU162は、第1Z軸スライダ56を制御して第1レバー挟持部51により1番目の吸着ノズル13を下降させ、それと共に第2Z軸スライダ76を制御して第2レバー挟持部71により1番目の吸着ノズル13へ負圧が供給されるように圧力操作レバー35を切り替える。これにより、1番目の吸着ノズル13に所望の部品が吸着される。次に、CPU162は、R軸モータ25により第1ヘッド120を所定角度だけ回転させる。第1ヘッド120が回転している間に、CPU162は、第1Z軸スライダ56を制御して1番目の吸着ノズル13が定位置に戻るように第1レバー挟持部51を上昇させ、更に2番目のノズル操作レバー39が第1レバー挟持部51に挟持されるようにする。それと共に、CPU162は、1番目の圧力操作レバー35が第2レバー挟持部71を通り抜けるのを待って、第2Z軸スライダ76を制御して第2レバー挟持部71を元の位置に戻し、2番目の圧力操作レバー35が第2レバー挟持部71に挟持されるようにする。このため、1番目の吸着ノズル13は、負圧が供給されたままとなり、部品を吸着し続ける。次に、CPU162は、X軸スライダ112及びY軸スライダ116を制御して2番目の吸着ノズル13を所望の部品の真上に配置する。その後、CPU162は、第1Z軸スライダ56を制御して第1レバー挟持部51により2番目の吸着ノズル13を下降させ、それと共に第2Z軸スライダ76を制御して第2レバー挟持部71により2番目の吸着ノズル13へ負圧が供給されるように圧力操作レバー35を切り替える。これにより、2番目の吸着ノズル13に所望の部品が吸着される。3番目以降の吸着ノズル13についても、これと同様の動作を繰り返す。これにより、1番目から最終番目の吸着ノズル13のすべてに部品を吸着させることができる。
 その後、CPU162は、部品が基板101の目標位置へ装着されるよう各スライダ112,114やヘッドユニット110を制御し(ステップS420)、本ルーチンを終了する。例えば、第1ヘッド120がヘッド保持体21に保持されている場合、CPU162は、現在保持している第1ヘッド120の識別符号「002」に対応する最新の基準点位置と、その第1ヘッド120のキャリブデータと、ヘッド保持体21のキャリブデータとを読み出す。CPU162は、それらに基づいて位置補正を行いながら、目標位置に各部品が装着されるようX軸スライダ112,Y軸スライダ114及びヘッド保持体21を制御する。具体的には、CPU162は、X軸スライダ112及びY軸スライダ116を制御して、1番目の吸着ノズル13が1番目の部品の目標位置の直上に来るようにヘッドユニット110を移動させる。その移動中、各吸着ノズル13に吸着された部品が部品装着装置100上の構造物や基板101に既に装着された部品と干渉しないように、ヘッド保持体21を上方へ退避しておく。また、移動中、第1ヘッド120を回転させて1番目のノズル操作レバー39(A)を第1レバー挟持部51の間に配置させる。そして、1番目の部品の目標位置で、CPU162は、第1Z軸スライダ56を制御して第1レバー挟持部51により1番目の吸着ノズル13を下降させ、その後、第2Z軸スライダ76を制御して第2レバー挟持部71により1番目の吸着ノズル13へ大気圧が供給されるように圧力操作レバー35を切り替える。これにより、1番目の吸着ノズル13に吸着されていた部品が1番目の部品の目標位置に装着される。2番目以降の吸着ノズル13に吸着されていた部品についても、同様にして基板101上に装着していく。
 部品装着装置100では、予め設計値通りに各部材が製造されたり取り付けられたりしているとした上で、目標位置へ部品を装着する部品装着プログラムが作成されている。しかし、実際には、設計値通りに各部材が製造されたり取り付けられたりしていることは希で、実際には設計値からずれている。そのため、CPU162は、上述したように、現在ヘッド保持体21に保持されているヘッドの基準点位置と、そのヘッドのキャリブデータと、ヘッド保持体21のキャリブデータとに基づいて位置補正を行いながら、目標位置へ部品を装着するのである。
[本実施形態と本発明との対応関係]
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の吸着ノズル13が本発明の部品保持具に相当し、ヘッド保持体21がヘッド保持手段に相当し、CPU162が制御手段に相当し、HDD168が記憶手段に相当する。なお、本実施形態では、部品装着装置100の動作を説明することにより本発明の部品装着方法の一例も明らかにしている。
[本実施形態の効果]
 以上説明した本実施形態の部品装着装置100によれば、交換したヘッドのキャリブデータを作成する必要がない場合には、交換したヘッドの基準点の位置の測定を行えば足りる。そのため、交換したヘッドのキャリブデータの測定を行う時間が削減され、ひいては部品装着装置100のキャリブレーションに要する時間が短縮化される。したがって、生産効率が向上する。
 また、予めヘッド保持体21のキャリブデータをHDD168に記憶しておき、ヘッド保持体21を制御して部品装着動作を行う際にはそれをHDD168から読み出して利用する。そのため、ヘッド保持体21が設計値からずれている場合でも、そのずれを考慮して部品装着装置100のキャリブレーションを実施することができる。
 更に、CPU162は、交換したヘッドのキャリブデータがHDD168に記憶されているか否かを判定することによって、交換したヘッドのキャリブデータを作成する必要があるか否かを判定するため、交換したヘッドのキャリブデータを作成する必要があるか否かを比較的容易に判定することができる。
 更にまた、部品装着装置100はヘッド自動交換機能を備えているため、キャリブレーションに要する時間の短縮化によって生産効率が向上するのみならず、ヘッド交換の自動化によっても生産効率が向上する。
[他の実施形態]
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、ヘッド自動交換ルーチン中の一ステップとして、キャリブレーション(ステップS240、図12のフローチャート)を実行するものとしたが、ヘッドを手動で交換する場合においても同様のキャリブレーションを実行してもよい。この場合も、キャリブレーションに要する時間の短縮化を図ることができる。
 上述した実施形態では、CPU162は図12のキャリブレーションを実行したが、その代わりに図16のキャリブレーションを実行してもよい。このキャリブレーションでは、上述のステップS310で肯定判定だった場合の処理が図12と異なる。すなわち、CPU162は、上述のステップS310で肯定判定だった場合、上述のステップS320,S330のあと、ヘッド保持体21のキャリブデータと、現在保持されているヘッドの基準点位置と、そのヘッドのキャリブデータとに基づいて、上述した部品装着処理ルーチンと同様の処理を実行し、それと共に、部品装着位置のフィードバック(F/B)制御を実行する(ステップS340)。上述した部品装着処理ルーチンでは位置補正を行いながら部品を装着していくが、それでも何らかの理由により、部品を装着すべき目標位置と実際に部品が装着された位置とがずれることがある。そのずれを解消するために、目標位置と実際の装着位置とのずれ量を測定し、F/B制御を実行する。そして、CPU162は、得られたF/B補正値を、現在保持されているヘッドのキャリブデータの一つとして、F/B制御を実行したときのヘッドの基準点位置と対応づけてHDD168に記憶する(ステップS350)。F/B補正値は、F/B制御を実行したときの基準点位置と相関関係がある。F/B補正値は、その後に実行される部品装着処理ルーチンのステップS420において、ヘッドのキャリブデータの一つとして利用される。そのため、位置補正の精度が上述した実施形態に比べて一層向上する。CPU162がステップS420でF/B補正値を利用する際には、HDD168に記憶されているF/B補正値とF/B制御を実行したときの基準点位置との相関関係から、現在保持されているヘッドの基準点位置に対応するF/B補正値を求める。
 上述した実施形態では、ヘッド保持体21が本発明のヘッド保持手段に相当し、第1~第3ヘッド120,220,320が本発明のヘッドに相当するとしたが、図17に示すように、X軸スライダ112が本発明のヘッド保持手段に相当し、X軸スライダ112に着脱可能に取り付けられる第1~第3ヘッドユニットHU1~HU3が本発明のヘッドに相当するとしてもよい。第1ヘッドユニットHU1は、ヘッド保持体21及び第1ヘッド120を備えたヘッドユニットであり、第2ヘッドユニットHU2は、ヘッド保持体21及び第2ヘッド220を備えたヘッドユニットであり、第3ヘッドユニットHU3は、ヘッド保持体21及び第3ヘッド320を備えたヘッドユニットである。この場合、X軸スライダ112は回転軸を備えていないヘッド保持手段であり、このX軸スライダ112に対して第1~第3ヘッドユニットHU1~HU3が自動交換される。
 上述した実施形態において、部品装着装置100のキャリブレーションを行うにあたり、R軸22の傾きやノズルホルダ12の傾きなどを考慮してもよい。こうすれば、制御の精度が一層高くなる。
 上述した実施形態では、R軸22の底面に基準点23を設けたが、基準点23を積極的に設ける必要はなく、例えばR軸22の底面に既に存在している部材(例えばネジなど)を基準点23の代わりに用いてもよい。この点は、第1ヘッド120の裏面120aの基準点123についても同様である。
 上述した実施形態において、R軸回転中心を求めるにあたり、回転角度0°のときの基準点の位置と回転角度180°のときの基準点の位置を結んだ線分の中点をR軸回転中心としたが、特にこれに限定されるものではなく、例えば回転角度0°、90°、180°、270°の4つの基準点の位置に基づいてR軸回転中心を求めてもよい。ノズルホルダ回転中心についても同様である。
 上述した実施形態では、基準点位置を、R軸回転中心位置に対する位置、ノズルホルダ回転中心位置を、基準点位置に対する位置としたが、基準点位置もノズルホルダ回転中心位置もマークカメラ132の光軸に対する位置としてもよい。
 上述した実施形態では、部品供給装置150はリール部品を供給するものであったが、トレイ部品やバルク部品を供給するものであってもよい。
 上述した実施形態では、ヘッド保持体21に保持されたヘッドの吸着ノズルをノズルストッカー134に収納された吸着ノズルと自動交換できるようにしてもよい。
 本発明は、部品を実装した基板を利用する制御機器などに利用可能である。
1 部品装着システム、12 ノズルホルダ、13 吸着ノズル、21 ヘッド保持体、22 R軸、23 基準点、24 R軸ギア、25 R軸モータ、27 Q軸ギア、28 Q軸モータ、31 係合部材、33 円筒ギア、34 小ギア、35 圧力操作レバー、36 ベース、37 係合孔、39 ノズル操作レバー、40 スプリング、42 2次元バーコード、51 第1レバー挟持部、52 水平部分、53 水平軸、54 ローラ、55 第1Z軸ガイドレール、56 第1Z軸スライダ、61 クラッチ部材、62 クラッチ部材、71 第2レバー挟持部、72 水平部分、74 ローラ、75 第2Z軸ガイドレール、76 第2Z軸スライダ、100 部品装着装置、101 基板、102 基台、104 基板搬送装置、106 支持板、108 コンベアベルト、110 ヘッドユニット、112 X軸スライダ、114 ガイドレール、116 Y軸スライダ、118 ガイドレール、120 第1ヘッド、123 基準点、130 マークカメラ、132 パーツカメラ、134 ノズルストッカー、136 ガラス板、138 基準マーク、140 ヘッド収納エリア、142 収納場所、150 リールユニット、152 フィーダ、154 リール、160 コントローラ、162 CPU、164 ROM、166 RAM、168 HDD、200 管理コンピュータ、220 第2ヘッド、320 第3ヘッド。

Claims (6)

  1.  部品の保持及び保持解除が可能な部品保持具を備えたヘッドを保持するヘッド保持手段と、
     前記ヘッド保持手段の動作を制御する制御手段と、
     データを記憶する記憶手段と、
     を備え、
     前記制御手段は、
     前記ヘッド保持手段が所定のヘッドを保持したときに前記ヘッドのキャリブデータを作成する必要があるか否かを判定し、
     前記ヘッドのキャリブデータを作成する必要がある場合には、前記ヘッドの基準部の位置の測定及び前記ヘッドのキャリブデータの測定を行い、前記ヘッドのキャリブデータを前記記憶手段に記憶し、前記ヘッドのキャリブデータと前記基準部の位置とに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御し、
     前記ヘッドのキャリブデータを作成する必要がない場合には、前記基準部の位置を測定し、該測定した前記基準部の位置と前記記憶手段に記憶された前記ヘッドのキャリブデータとに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御する、
     部品装着装置。
  2.  前記制御手段は、
     前記ヘッドのキャリブデータを作成する必要がある場合には、前記ヘッドの基準部の位置の測定及び前記ヘッドのキャリブデータの測定を行い、前記ヘッドの基準部の位置及び前記ヘッドのキャリブデータを前記記憶手段に記憶し、前記ヘッドのキャリブデータと前記基準部の位置とに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御し、
     前記ヘッドのキャリブデータを作成する必要がない場合には、前記基準部の位置を測定し、該測定した前記基準部の位置と前記記憶手段に記憶された前記基準部の位置と前記記憶手段に記憶された前記ヘッドのキャリブデータとに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御する、
     請求項1に記載の部品装着装置。
  3.  前記制御手段は、前記ヘッドのキャリブデータを作成する必要があるか否かを判定する前に予め前記ヘッド保持手段のキャリブデータを作成して前記記憶手段に記憶しておき、前記ヘッドが保持された前記ヘッド保持手段の動作を制御するにあたっては前記記憶手段に記憶された前記ヘッド保持手段のキャリブデータも利用して制御する、
     請求項1又は2に記載の部品装着装置。
  4.  前記制御手段は、前記ヘッドのキャリブデータが前記記憶手段に記憶されているか否かを判定することによって、前記ヘッドのキャリブデータを作成する必要があるか否かを判定する、
     請求項1~3のいずれか1項に記載の部品装着装置。
  5.  前記部品装着装置は、前記ヘッド保持手段に保持されているヘッドを前記所定のヘッドに自動交換する機能を備えている、
     請求項1~4のいずれか1項に記載の部品装着装置。
  6.  ヘッド保持手段に所定のヘッドを保持する工程と、
     前記ヘッドの基準部の位置の測定及び前記ヘッドのキャリブデータの測定を行って前記ヘッドのキャリブデータを作成し、前記ヘッドのキャリブデータを前記記憶手段に記憶する工程と、
     前記ヘッドを前記ヘッド保持手段から一旦取り外し、再度前記ヘッド保持手段に保持する工程と、
     前記ヘッドを再度前記ヘッド保持手段に保持した後、前記基準部の位置を再度測定する工程と、
     前記再度測定した前記基準部の位置と前記記憶手段に記憶された前記ヘッドのキャリブデータとに基づいて、前記ヘッドが保持された前記ヘッド保持手段の動作を制御する工程と、
     を含む部品装着方法。
PCT/JP2013/076712 2013-10-01 2013-10-01 部品装着装置及び部品装着方法 WO2015049721A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/026,525 US10412869B2 (en) 2013-10-01 2013-10-01 Component mounting device and component mounting method
PCT/JP2013/076712 WO2015049721A1 (ja) 2013-10-01 2013-10-01 部品装着装置及び部品装着方法
EP13895044.9A EP3054756B1 (en) 2013-10-01 2013-10-01 Component mounting device and component mounting method
JP2015540286A JP6312155B2 (ja) 2013-10-01 2013-10-01 部品装着装置及び部品装着方法
CN201380079784.5A CN105580509B (zh) 2013-10-01 2013-10-01 元件装配装置及元件装配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076712 WO2015049721A1 (ja) 2013-10-01 2013-10-01 部品装着装置及び部品装着方法

Publications (1)

Publication Number Publication Date
WO2015049721A1 true WO2015049721A1 (ja) 2015-04-09

Family

ID=52778336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076712 WO2015049721A1 (ja) 2013-10-01 2013-10-01 部品装着装置及び部品装着方法

Country Status (5)

Country Link
US (1) US10412869B2 (ja)
EP (1) EP3054756B1 (ja)
JP (1) JP6312155B2 (ja)
CN (1) CN105580509B (ja)
WO (1) WO2015049721A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006439A1 (ja) * 2015-07-07 2017-01-12 富士機械製造株式会社 部品実装装置
JP2017017243A (ja) * 2015-07-03 2017-01-19 富士機械製造株式会社 部品実装機
JPWO2016208026A1 (ja) * 2015-06-25 2018-04-05 富士機械製造株式会社 部品実装装置
WO2021117319A1 (ja) * 2019-12-11 2021-06-17 パナソニックIpマネジメント株式会社 部品撮像装置および部品実装装置
WO2022269771A1 (ja) * 2021-06-22 2022-12-29 株式会社Fuji 部品実装機及び校正処理の制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097937B2 (ja) * 2014-01-27 2017-03-22 パナソニックIpマネジメント株式会社 部品照合方法および部品照合システム
WO2019175968A1 (ja) * 2018-03-13 2019-09-19 株式会社Fuji 実装装置及び実装方法
DE102021105594B3 (de) * 2021-03-09 2022-06-09 Asm Assembly Systems Gmbh & Co. Kg Verfahren zur Positionskorrektur von Bauteilen mit einer Aufnahmevorrichtung, Aufnahmevorrichtung, Computerprogrammprodukt und computerlesbares Medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270020A (ja) * 1993-03-24 1994-09-27 Nissan Motor Co Ltd 位置測定装置
JP2004221518A (ja) 2002-11-21 2004-08-05 Fuji Mach Mfg Co Ltd 対基板作業機、対基板作業機用作業ヘッド、対基板作業システムおよび対基板作業機用作業ヘッド使用準備処理プログラム
WO2010038473A1 (ja) * 2008-10-03 2010-04-08 パナソニック株式会社 電子部品実装用装置および電子部品実装用装置における操作指示方法
JP4503686B2 (ja) * 2009-08-18 2010-07-14 パナソニック株式会社 ロータリー型部品実装装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919924A1 (de) * 1999-04-30 2000-11-16 Siemens Ag Verfahren zum Betrieb eines Bestückautomaten, Bestückautomat, auswechselbare Komponente für einen Bestückautomaten und System aus einem Bestückautomaten und einer auswechselbaren Komponente
FR2843204B1 (fr) * 2002-08-05 2004-09-17 Saint Gobain Structure de filtrage optique et de blindage electromagnetique
CN100448341C (zh) * 2002-11-21 2008-12-31 富士机械制造株式会社 基板相关操作执行设备、用于基板相关操作执行设备的操作执行头、基板相关操作执行系统以及操作执行头使用准备方法
JP4391290B2 (ja) * 2004-03-30 2009-12-24 パナソニック株式会社 ロータリー型部品実装装置
JP2007150267A (ja) * 2005-10-31 2007-06-14 Juki Corp 部品実装装置のヘッド位置の補正方法及びダミーノズル
JP4851361B2 (ja) * 2007-02-19 2012-01-11 富士機械製造株式会社 電子回路部品装着装置
WO2009047214A2 (en) * 2007-10-09 2009-04-16 Oerlikon Assembly Equipment Ag, Steinhausen Method for picking up semiconductor chips from a wafer table and mounting the removed semiconductor chips on a substrate
JP2012129434A (ja) * 2010-12-17 2012-07-05 Fuji Mach Mfg Co Ltd 対基板作業機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270020A (ja) * 1993-03-24 1994-09-27 Nissan Motor Co Ltd 位置測定装置
JP2004221518A (ja) 2002-11-21 2004-08-05 Fuji Mach Mfg Co Ltd 対基板作業機、対基板作業機用作業ヘッド、対基板作業システムおよび対基板作業機用作業ヘッド使用準備処理プログラム
WO2010038473A1 (ja) * 2008-10-03 2010-04-08 パナソニック株式会社 電子部品実装用装置および電子部品実装用装置における操作指示方法
JP4503686B2 (ja) * 2009-08-18 2010-07-14 パナソニック株式会社 ロータリー型部品実装装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208026A1 (ja) * 2015-06-25 2018-04-05 富士機械製造株式会社 部品実装装置
JP2017017243A (ja) * 2015-07-03 2017-01-19 富士機械製造株式会社 部品実装機
WO2017006439A1 (ja) * 2015-07-07 2017-01-12 富士機械製造株式会社 部品実装装置
CN107710906A (zh) * 2015-07-07 2018-02-16 富士机械制造株式会社 元件安装装置
JPWO2017006439A1 (ja) * 2015-07-07 2018-04-19 富士機械製造株式会社 部品実装装置
US10729049B2 (en) 2015-07-07 2020-07-28 Fuji Corporation Component mounting device
WO2021117319A1 (ja) * 2019-12-11 2021-06-17 パナソニックIpマネジメント株式会社 部品撮像装置および部品実装装置
WO2022269771A1 (ja) * 2021-06-22 2022-12-29 株式会社Fuji 部品実装機及び校正処理の制御方法

Also Published As

Publication number Publication date
US20160227684A1 (en) 2016-08-04
JPWO2015049721A1 (ja) 2017-03-09
JP6312155B2 (ja) 2018-04-18
CN105580509B (zh) 2019-04-09
US10412869B2 (en) 2019-09-10
EP3054756A4 (en) 2016-12-21
EP3054756B1 (en) 2019-11-20
CN105580509A (zh) 2016-05-11
EP3054756A1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP6312155B2 (ja) 部品装着装置及び部品装着方法
JP5721469B2 (ja) 部品実装方法および部品実装装置
WO2013005480A1 (ja) レーザー高さ測定装置および部品実装機
JP5779386B2 (ja) 電気部品装着機
WO2017187527A1 (ja) 対基板作業機
JP2004111797A (ja) 供給位置検出機能を有する電子回路部品供給装置および電子回路部品供給・取出装置
JP2009212251A (ja) 部品移載装置
JP6262243B2 (ja) 部品装着装置
JP2003347794A (ja) 電子回路部品取出し方法および取出し装置
JP6932238B2 (ja) 実装装置及び実装方法
JP2009164276A (ja) 部品実装装置における吸着位置補正方法
JP6132512B2 (ja) 部品装着装置
JP2017073431A (ja) 画像認識装置
JP2009212373A (ja) 部品装着装置
JP6603318B2 (ja) 部品実装装置
CN111788878B (zh) 元件安装装置
JP6368215B2 (ja) 部品実装装置、表面実装機、及び部品の実装方法
JP7177928B2 (ja) 転写装置及び部品作業機並びに転写量補正方法
JP6600570B2 (ja) 部品実装装置
WO2018096574A1 (ja) 装着機
JP2023177968A (ja) 部品実装装置および部品実装装置の位置補正方法
WO2018158904A1 (ja) 部品実装装置および画像処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079784.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540286

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013895044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013895044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15026525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE