WO2015047040A1 - 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법 - Google Patents

염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법 Download PDF

Info

Publication number
WO2015047040A1
WO2015047040A1 PCT/KR2014/009223 KR2014009223W WO2015047040A1 WO 2015047040 A1 WO2015047040 A1 WO 2015047040A1 KR 2014009223 W KR2014009223 W KR 2014009223W WO 2015047040 A1 WO2015047040 A1 WO 2015047040A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
vinyl chloride
chloride resin
reactor
bulk polymerization
Prior art date
Application number
PCT/KR2014/009223
Other languages
English (en)
French (fr)
Inventor
이동권
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US14/773,678 priority Critical patent/US9403144B2/en
Priority to CN201480024295.4A priority patent/CN105164165B/zh
Publication of WO2015047040A1 publication Critical patent/WO2015047040A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2400/00Characteristics for processes of polymerization

Definitions

  • the present invention relates to a bulk polymerization apparatus of vinyl chloride resin and a bulk polymerization method of vinyl chloride resin, and more particularly, as the polymerization progresses, the average distance between the resin particles is shortened, resulting in excessive aggregation or friction between particles. It solves the problem that microparticles are generated, and it is possible to eliminate abnormal products (fine product, oversize product, lump product due to aggregation) and vinyl chloride resin with poor spherical formation.
  • An apparatus for bulk polymerization of vinyl chloride resin and a method of bulk polymerization of vinyl chloride resin which can suppress and improve the quality and processability of vinyl chloride resin.
  • Vinyl chloride resins are also referred to as polyvinyl chloride or PVC. Since it softens at 150-170 degreeC, it is a thermoplastic resin which is easy to process. It is used for lining of plates, pumps, tanks, plating baths and treatment tanks because of its high water resistance, chemical resistance and oil resistance. Mixing a large amount (40 to 80%) of the plasticizer is soft, so it is used for sheets, cotton, films, tiles and the like.
  • the production method of vinyl chloride resin using mass polymerization unlike suspension polymerization or emulsion polymerization, does not use a heat medium such as water and does not use vinyl chloride monomer (VCM) and There is an advantage that the vinyl chloride resin can be obtained without supplying the initiator and the reaction additive as needed, polymerizing, and drying the reaction after the reaction.
  • the bulk polymerization has an advantage that the apparatus is simple, the reaction is fast, the yield is high, the polymer of high purity can be obtained, and the polymer can be handled as it is.
  • the heat generation of the polymerization system is strong, so that temperature control is difficult, the molecular weight distribution of the polymer is wide, and precipitation thereof is not easy. Therefore, in the bulk polymerization, it is very important to maintain the heat removal stability because there is no heat medium for heat removal.
  • the amount of vinyl chloride monomer decreases, and the amount of vinyl chloride resin increases. Therefore, in the initial stage of the reaction, all of the produced vinyl chloride resin may remain surrounded by the vinyl chloride monomer.
  • the amount of vinyl resin increases and the amount of vinyl chloride monomer decreases so that the solid vinyl chloride resin cannot remain enclosed in liquid, i.e., the liquid vinyl chloride monomer, thereby reducing the fluidity of the vinyl chloride resin, and reducing the vinyl chloride resin particles. Due to the shorter average distance between the particles, there was a problem in that fine particles were generated by excessive aggregation or friction between particles.
  • the technology to date has mainly focused on collecting fine particles by installing a separate particle separator after the reaction in order to reduce the fine particle content.
  • a screening method generally used to remove fine particles has a problem in that a sieve is easily blocked due to the electrostatic properties of the bulk polymerized particles.
  • a dust collecting method using air flow is developed as a supplement to US Patent No. 4,963,634. It became.
  • this technique is not only a costly solution, but also a poor solution because the use of the collected microparticles is not suitable.
  • the fine particles contained in the vinyl chloride resin are suspended in the air during work and irritate the skin and respiratory organs of the worker, and have a detrimental effect.
  • the particles are melted faster than other particles and subjected to continuous heat, they are carbonized. This results in poor appearance and whiteness of the molded surface.
  • the carbonized particles act as defects in the molding and act as a starting point or diffusion point of a crack when impact is transmitted, the fine particle reduction technology is very low. It is important.
  • the present invention is to polymerize by additional supply of monomer into the reaction system during the bulk polymerization, especially when the conversion of the monomer to the polymer within the range of 30 to 70% in order to solve the above conventional problems.
  • the average distance between the resin particles is shortened to solve the problem in which fine particles are generated due to excessive agglomeration or friction between particles. Therefore, abnormal products (microparticle products, large particle products, agglomerated products due to agglomeration), and It aims at suppressing generation
  • the monomer and initiator in the reactor Further during the polymerization of the monomer further comprises an additional feed pipe for supplying the monomer into the reactor.
  • the reactor may further include at least one raw material supply pipe and a condenser.
  • the reactor may further include an exhaust pipe.
  • the exhaust pipe may further include a pressure control valve.
  • the additional supply pipe may be connected to the bottom of the reactor.
  • the apparatus for bulk polymerization of the vinyl chloride resin further includes a prepolymerization reactor, and the reactor is a raw material for fluidly connecting the reactor and the prepolymerization reactor so that the seed polymer generated in the prepolymerization reactor is introduced.
  • the feed pipe and the raw material supply pipe for supplying the monomer and the post-polymerization initiator may be further included.
  • the monomer is additionally supplied into the reactor including the monomer and the initiator, and the conversion rate of the monomer into the polymer is 30 to 70%.
  • the addition is made to include a further monomer supply step of feeding into the reactor.
  • the additionally supplied monomer may be supplied to the bottom of the reactor.
  • Further supply of the monomer in the additional monomer supply step may consist of continuously supplying the monomer into the reactor.
  • the amount of the monomer supplied in the additional monomer supply step may be in the range of 10% to 30% per hour of the amount of conversion of the monomer into the polymer.
  • the monomer discharging step may be further performed simultaneously with or after the monomer additional feeding step.
  • Emission of the monomer in the monomer discharge step may be an amount within the range of 80% to 100% of the supply amount of the monomer in the monomer additional supply step.
  • the discharge of the monomer in the monomer discharge step may be through a condenser or exhaust pipe or both the condenser and the exhaust pipe.
  • the average distance between the resin particles is shortened to solve the problem in which fine particles occur due to excessive agglomeration or interparticle friction between particles.
  • the effect of reducing the occurrence of abnormal products (microparticle products, over-particle products, agglomerated products due to aggregation, etc.) and providing a vinyl chloride resin having a normal particle size distribution within the range of 75 to 200 ⁇ m There is.
  • FIG. 2 is a schematic view showing another specific example of the apparatus for bulk polymerization of vinyl chloride resin according to the present invention.
  • reaction space 13 axis of rotation
  • reaction space 23 rotation axis
  • the apparatus for bulk polymerization of vinyl chloride resin 20 is a reactor for bulk polymerization of vinyl chloride resin including a reaction tank for bulk polymerization, wherein the reactor including a monomer and an initiator. And an additional supply pipe 31 for additionally supplying the monomer into the reactor 21 during the polymerization of the monomer in (21).
  • the additional supply pipe 31 is fluidly connected to a monomer source (not shown), and functions to supply monomer into the reactor 21.
  • the reactor 21 may further include at least one raw material supply pipe 27 and the condenser (C).
  • the raw material supply pipe 27 may be at least one, preferably two to five, more preferably three.
  • Raw materials necessary for the polymerization reaction that is, monomers, initiators and reaction additives may be supplied into the reactor 21 through the raw material supply pipe 27.
  • the condenser (C) functions to liquefy raw materials such as monomers volatilized into the gas phase and return to the reaction tank 21 or recover the liquefied raw materials. In the present invention, by recovering the monomer liquefied in the condenser (C) without returning to the reaction tank 21 to function to control the amount of the monomer additionally introduced into the reaction tank (21).
  • the reactor 21 is a container having an inner space, and the inner space serves as the reaction space 22, and monomers and initiators may be introduced into the reaction space 22 to perform a polymerization reaction.
  • the reactor 21 further includes a stirrer, which can be understood by those skilled in the art as long as the stirrer has a configuration capable of stirring the reactants in the reaction space 22.
  • a stirrer shown by way of example in Figure 1 is a screw stirrer 24, the screw stirrer 24 is fixed to the rotary shaft 23 is rotated at the same time by the rotation of the rotary shaft 23 reactant in the reaction space 22 Stir them.
  • the rotary shaft 23 extends to the outside of the reactor 21, the motor (M) is connected to the outer end (that is, the end located outside the reactor relative to the reactor), the rotation of the motor (M) By rotating simultaneously.
  • a governor and / or a transmission may be connected between the motor M and the rotation shaft 23 as necessary.
  • a scraper 25 may be further connected to an inner end of the rotating shaft 23 to which the screw stirrer 24 is connected (ie, an end located inside the reaction tank based on the reaction tank).
  • the scraper 25 is installed to be in contact with the bottom of the reactor 21 or adjacent to the bottom of the reactor 21 to scrape material deposited or deposited on the bottom of the reactor 21.
  • the reactor 21 may further include an exhaust pipe 28.
  • the exhaust pipe 28 is fluidly connected to the reactor 21 so as to discharge gaseous substances to be discharged from the reactor 21. This causes the air to be discharged when the inside of the reactor 21 is purged with air or nitrogen, or the pressure inside the reactor 21 is supplied when the reactants such as monomers and the initiator are supplied into the reactor 21. It serves to regulate or discharge the gaseous material to be released during or after the reaction.
  • the exhaust pipe 28 may further include a pressure control valve (R).
  • the reaction tank is discharged from the reactor 21 by discharging a part of the gaseous monomer vaporized in the reactor 21 by appropriately opening the pressure regulating valve R provided in the exhaust pipe 28. And (21) to control the amount of monomer added further into.
  • the pressure control valve (R) is configured to interrupt the flow of gaseous material by intermittent the exhaust pipe 28, thereby blocking (stage) the flow of gas through the exhaust pipe 28 to the reaction tank (21) It functions to lower the pressure in the reactor 21 by increasing the pressure inside or continually (continuously) the flow of gas.
  • the exhaust pipe 28 may be further connected to a flow meter or a pressure gauge.
  • a mass flow controller (MFC) may be connected to the exhaust pipe 28, and it is understood that such a flow controller is known to be purchased and used commercially by leading domestic and foreign manufacturers. It can be.
  • the additional supply pipe 31 may be connected to the lower end of the reaction tank 21, and by this configuration, in particular, the additional supply pipe 31 may be added to the lower end of the reaction tank 21 in which a vinyl chloride resin having a relatively high specific gravity may be accumulated. It is possible to supply more monomers of so as to more efficiently reduce the overheating of the vinyl chloride resin mainly located in this portion and the collision between the resin particles.
  • a temperature control jacket 26, such as a water jacket, may be further mounted to the outside of the reactor 21, and the heat regulation jacket may be heated or cooled through the inside thereof. By circulating water or oil, it is possible to adjust the temperature of the reactor 21, in particular the internal temperature of the reactor 21, in accordance with the temperature of the heated or cooled heating medium.
  • a discharge pipe (D) is fluidly connected to the lower end of the reactor 21, through the discharge pipe (D) the reaction products, that is, polymerized resin products, other unreacted monomers and initiators, such as reactants from the reactor 21 It is configured to be discharged and recovered.
  • the apparatus for bulk polymerization of vinyl chloride resin 20 may further include a prepolymerization device 10, and the prepolymerization device 10 further includes a prepolymerization reactor 11.
  • the reactor 21 is a raw material supply pipe 27 for fluidly connecting between the reactor 21 and the prepolymerization reactor 11 so that the seed polymer generated in the prepolymerization reactor 11 is introduced.
  • a raw material supply pipe 27 for supplying the monomer and the post polymerization initiator to the reaction tank 21.
  • the seed polymer is also described as passing through the raw material supply pipe 27, and the monomer and postpolymerization initiator are described as unified through the raw material supply pipe 27, which is a monomer, a seed polymer or other initiators and reaction additives. It is based on the understanding as a raw material for the polymerization reaction, and the raw material supply pipes 27 are to be understood to function to supply these raw materials.
  • the other configuration of the prepolymerization device 10 is the same or similar to the corresponding elements of the apparatus for bulk polymerization of the vinyl chloride resin 20 according to the present invention, except that only the reference numerals are the same or similar. It can be understood.
  • the prepolymerization apparatus 10 includes a prepolymerization reactor 11, an inner space of the prepolymerization reactor 11 functions as a reaction space 12, and a rotation shaft 13 in the prepolymerization reactor 11. And a stirrer installed on the rotary shaft 13, that is, a screw stirrer 14 and a scraper 15.
  • a heat regulating jacket 16 is installed outside the prepolymerization reactor 11, and at least one raw material supply pipe 17 and an exhaust pipe 18 for supplying reaction raw materials into the prepolymerization reactor 11.
  • the rotary shaft 13 is connected to the motor (M) can be rotated by the motor (M), and the prepolymerization reactor (11) further condenser (C) and discharge pipe (D) Is connected, the exhaust pipe 18 may be further connected to the pressure control valve (R).
  • the prepolymerization device 10 is shown as a reaction tank 11 equipped with a screw stirrer 14 and a scraper 15, but the present invention is not limited thereto. It will be appreciated that it is also possible to employ other reactors, such as reactors with turbine-type impellers attached.
  • the prepolymerization reactor 11 of the prepolymerization apparatus 10 may be supplied with monomers, initiators and other reaction additives to perform polymerization under rapid stirring and high pressure to form seed polymers. It is known that the particle size distribution and physical properties of the produced particles are more favorable.
  • the prepolymerization device 10 is not shown to further include an additional supply pipe, an additional supply pipe for additionally supplying monomers to the prepolymerization reactor 11 of the prepolymerization device 10 is It may be further included, preferably the additional supply pipe may be connected to the lower end of the prepolymerization reactor (11).
  • the monomer is additionally supplied into the reactor including the monomer and the initiator, and the conversion rate of the monomer into the polymer is 30 to 70%.
  • the monomer is characterized in that it comprises a monomer additional supply step for supplying further into the reactor.
  • the conversion rate of the monomer into the polymer is determined by calculating the heat of polymerization generated by dividing the heat of polymerization generated by the heat of polyvinyl chloride by using a calorimeter, and the point of time when the conversion becomes 30% (this time point From the current fluctuation (amperage fluctuation) can be seen that the load of the agitator increases directly from the additional supply of monomer, and the conversion rate exceeds 70% (the pressure inside the reactor begins to drop gradually). To stop the further supply of monomers is the heart of the present invention.
  • the monomer is additionally supplied when the conversion rate is less than 30%, there may be a problem that the fine particles increase, which is not preferable because of the increase in the level of the reactant, and the monomer is added after the conversion rate exceeds 70%.
  • the polymerization time is longer and the recovery time of the unreacted monomer is longer.
  • the additional monomer supply step as described above is carried out by additionally introducing monomer into the reactor through an additional feed tube in the apparatus for bulk polymerization of a vinyl chloride resin according to the present invention having the above-described configuration.
  • the additionally supplied monomer may be supplied to the lower end of the reaction tank, whereby further monomer is supplied to the lower end of the reaction tank in which vinyl chloride resin having a higher specific gravity than the vinyl chloride monomer may accumulate. It is characterized in that it is possible to more efficiently reduce the overheating of the vinyl chloride resin mainly located in the part and the collision between the resin particles.
  • the additional supply of the monomer in the additional monomer supply step may be made to continuously supply the monomer into the reactor, but the present invention is not limited thereto, it is to be understood that it is also possible to intermittently supply the monomer as needed. It can be.
  • the amount of the monomer supplied in the additional monomer feed step is in an amount within the range of 10% to 30% per hour of the amount of conversion of the monomer into the polymer, more preferably 15% to 30%, most preferably 22% to 25%. It can be an amount within the range of% (injecting the monomer to about 80% of the reactor size used), preferably the monomer discharge step may be further carried out at the same time or subsequent to the additional monomer feed step, thereby The amount of monomers in the reactor can of course be properly adjusted to the amount of the total reactants.
  • Emission of the monomer in the monomer discharge step may be an amount within the range of 80% to 100% of the supply amount of the monomer in the additional monomer supply step, whereby the additional monomer is supplied to the equilibrium of the entire reaction system
  • the average distance between the resin particles is shortened to solve the problem in which fine particles are generated due to excessive agglomeration or friction between particles. , Excessive particle products, agglomerated products due to aggregation) and the formation of poor vinyl chloride resins.
  • the discharge of the monomer in the monomer discharge step may be through a condenser or exhaust pipe or both the condenser and the exhaust pipe.
  • the condenser functions to liquefy raw materials such as monomers volatilized into the gas phase and return them to the reaction tank or recover the liquefied raw materials.
  • the exhaust pipe can adjust the amount of the monomer additionally introduced into the reactor by discharging a portion of the gaseous monomer vaporized in the reactor from the reactor by appropriately opening the pressure control valve installed in the exhaust pipe. Function.
  • the polymerization reaction in the reactor 21 of the bulk polymerization apparatus 20 of the vinyl chloride resin according to the present invention may be carried out, for example, under a pressure of 8 to 10 K / G, and thus, as described above. Further addition of the monomer may be carried out at a pressure slightly higher than the pressure of the reaction conditions, for example, a pressure of 8.1 to 12 K / G, but the present invention is not limited thereto.
  • the prepolymerization reaction tank 11 of the prepolymerization device 10 is also the same pressure as in the polymerization reaction in the reaction tank 21 of the bulk polymerization apparatus 20 of the vinyl chloride resin, for example, 8 to 8 Can be carried out under a pressure of 10 K / G.
  • the present invention mainly describes the use of vinyl chloride monomers for the production of vinyl chloride resins, it can be understood by those skilled in the art that the present invention can be applied to polymerization of other vinyl monomers. It will be understood that it is not limited to the polymerization of vinyl chloride monomers as will be appreciated.
  • 0.1 part by weight of 1,1,3,3-tetramethylbutylperoxy neodicarbonate (OND) was added as an initiator, polymerized at a pressure of 7.1 K / G for 40 minutes, and then at 8.0 K / G.
  • the mixture was boosted and polymerized for 140 minutes.
  • an additional amount of vinyl chloride monomer was added at 15 parts per hour at a conversion rate of 30% when the internal temperature of the reactor began to decrease, and the addition of such monomers resulted in 70% conversion.
  • the pressure was continued until a pressure drop occurred.
  • the reaction was carried out in the same manner as in Example 1 except that the vinyl chloride monomer was added in an amount of 10 parts by weight instead of 5 parts by weight at a conversion rate of 30% when the internal temperature of the reactor started to decrease.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that no additional vinyl chloride monomer was added at a conversion rate of 30% when the internal temperature of the reactor began to decrease.
  • Example 1 conversion rate: 30-70%) (5% of the initial dose continuously added)
  • Example 2 conversion rate: 30 to 70% (15% continuously input compared to the initial input amount)
  • Example 3 conversion rate: 30 to 70% (10% continuously added to the initial input amount) Comparative example Particle size ( ⁇ m) 168 170 165 160 Below 70 ⁇ m (%) 1.60 1.6 1.8 2.6 Below 20 ⁇ m (%) 0.7 0.7 0.65 1.10 Lump (%) 1.7 1.8 2 3
  • the average distance between the resin particles is shortened to solve the problem in which fine particles are generated due to excessive agglomeration or interparticle friction between particles. Therefore, abnormal products (microparticle products, over-particle products, agglomeration products by agglomeration) Etc.) and it was confirmed that the generation of poor vinyl chloride resin can be suppressed and the quality and processability of the vinyl chloride resin can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 중합이 진행됨에 따라 수지 입자 간 평균거리가 짧아져서 입자 간의 과다 응집 또는 입자 간 마찰에 의하여 미세입자가 발생하는 문제점을 해결하여 비정상제품(미세입자 제품, 과대입자 제품, 응집에 의한 덩어리 제품 등) 및 구 형성이 나쁜 염화비닐 수지의 발생을 억제하고, 염화비닐 수지의 품질 및 가공성을 향상시킬 수 있는 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법에 관한 것으로서, 상기 방법은 단량체 및 개시제를 포함하는 반응조 내로 단량체를 추가 공급하되, 상기 단량체의 중합체로의 전환율이 30 내지 70%인 때에 상기 반응조 내로 추가로 공급하는 단량체추가공급단계를 포함하여 이루어짐을 특징으로 한다.

Description

염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법
본 발명은 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법에 관한 것으로서, 보다 상세하게는 중합이 진행됨에 따라 수지 입자 간 평균거리가 짧아져서 입자 간의 과다 응집 또는 입자 간 마찰에 의하여 미세입자가 발생하는 문제점을 해결하여 비정상제품(미세입자 제품(fine product), 과대입자 제품(oversize product), 응집에 의한 덩어리 제품(lump product) 등) 및 구 형성이 나쁜 염화비닐 수지의 발생을 억제하고, 염화비닐 수지의 품질 및 가공성을 향상시킬 수 있는 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법에 관한 것이다.
염화비닐 수지는 달리 폴리염화비닐 또는 PVC라고도 칭하여진다. 150 내지 170℃에서 연화되기 때문에 가공하기 쉬운 열가소성(熱可塑性)수지이다. 내수성, 내화학약품성, 내석유성이 크고, 단단하기 때문에 판, 펌프, 탱크, 도금수조, 처리수조의 라이닝 등에 사용된다. 가소제를 다량(40 내지 80%) 혼합한 것은 연질이 되므로, 시트, 면, 필름, 타일 등에 사용된다.
괴상중합(mass polymerization)을 이용하는 염화비닐 수지의 제조방법은 현탁중합(suspension polymerization)이나 유화중합(emulsion polymerization)과는 달리 물과 같은 열매체를 사용하지 않고 비닐클로라이드 단량체(VCM ; vinyl chloride monomer) 및 개시제 그리고 필요에 따라 반응첨가제 만을 공급하고, 중합하며, 반응 후 건조공정을 거치지 않고 염화비닐 수지를 얻을 수 있다는 장점이 있다. 또한, 괴상중합은 장치가 간단하고, 반응이 빠르며, 수득률이 높고, 고순도의 중합체를 얻을 수 있으며, 중합체를 그대로 취급할 수 있는 장점이 있다. 그러나 중합계(重合系)의 발열이 강하여 온도조절이 어렵고, 중합체의 분자량 분포가 넓어지며, 그 석출이 쉽지 않은 단점도 있다. 따라서, 괴상중합에서는 제열을 위한 열매체가 존재하지 않기 때문에 제열 안정성을 유지하는 것이 매우 중요하다.
괴상중합을 위한 반응기 내에는 중합반응의 개시에 앞서 비닐클로라이드 단량체 및 개시제 만이 공급되고, 유화중합이나 현탁중합에서와 같이 열매체로서의 물은 공급되지 않는다. 따라서 괴상중합을 이용한 염화비닐 수지의 제조에 있어서는, 중합이 진행될수록 반응계 내에서는 액체상의 비닐클로라이드 단량체의 양이 줄어들고, 고체상의 염화비닐 수지의 양이 늘어나면서, 고체상의 염화비닐 수지가 액체상의 비닐클로라이드 단량체에 분산된 형태를 띄게 되며, 특히 염화비닐 수지의 비중(1.35 내지 1.45)이 비닐클로라이드 단량체의 비중(액 0.97) 보다 더 무겁기 때문에 염화비닐 수지는 주로 반응기의 하부에 위치하여 존재하게 된다. 중합이 진행됨에 따라 비닐클로라이드 단량체의 양이 줄어들게 되고, 염화비닐 수지의 양은 늘어나게 되며, 따라서 반응초기에는 생성된 모든 염화비닐 수지가 비닐클로라이드 단량체에 둘러싸인 상태를 유지할 수 있으나, 중합이 진행됨에 따라 염화비닐 수지의 양은 늘어나고, 비닐클로라이드 단량체의 양은 줄어들어 고체상의 염화비닐 수지가 액체, 즉 액체상의 비닐클로라이드 단량체 내에 둘러싸인 상태를 유지할 수 없게 되며, 그에 따라 염화비닐 수지의 유동성이 감소되고, 염화비닐 수지 입자 간 평균거리가 짧아져서 입자 간의 과다 응집 또는 입자 간 마찰에 의하여 미세입자가 발생하는 문제점이 있었다.
또한, 액체상의 비닐클로라이드 단량체가 충분히 존재하는 경우에는 반응계 내의 기체상의 비닐클로라이드 단량체를 적절히 제거하는 것에 의하여 액체상의 비닐클로라이드 단량체의 기화를 유도하고, 그에 의하여 반응열(즉, 중합열)을 제거하여 적절한 반응온도(즉, 중합온도)를 안정적으로 유지하는 것이 가능하나, 액체상의 비닐클로라이드 단량체가 부족한 경우에는 반응열을 제거하기가 어려워지고, 그에 따라 국부과열 현상이 일어나게 될 가능성이 높아지고, 이는 염화비닐 수지 입자 간 융합(fusion)에 의한 응집현상을 유발시키는 문제점이 있었다.
상기한 바와 같은 문제점들은 비정상제품(미세입자 제품, 과대입자 제품, 응집에 의한 덩어리 제품 등) 및 구 형성이 나쁜 염화비닐 수지의 발생이라는 문제점으로 직결된다.
현재까지의 기술은 미세 입자 함량을 줄이기 위해 주로 반응 후에 별도의 입자분리기를 설치하여 미세입자를 포집하는데 주로 관심이 기울여졌다. 이때 일반적으로 미세 입자를 제거하는데 사용되는 체질(Screening) 방법은 괴상 중합 입자가 갖는 정전기적 특성 때문에 체가 쉽게 막히는 문제점이 있고, 이를 보완하여 미국특허 제4,963,634호와 같이 공기 유동을 이용한 집진 방법이 개발되었다. 하지만 이 기술은 비용이 많이 발생할 뿐만 아니라, 포집된 미세입자의 쓰임새도 적당하지 않기 때문에 근본적인 해결 방법이 되지 못하였다.
한편, 염화 비닐 수지에 포함된 미세 입자는 작업 중 공기 중에 부유하였다가 작업자의 피부와 호흡기 등을 자극하여 해로운 영향을 끼치며, 가공 시에는 다른 입자에 비해 빠르게 용융되었다가 계속적인 열을 받게 되면 탄화되어 성형물 표면의 외관 불량이나 백색도의 저하를 일으킨다. 또한, 탄화된 입자는 성형물의 내부에서 결점(defect)으로 작용하여 충격이 전달될 경우 균열(craze)의 시작점 내지 확산점으로 작용하여 충격강도를 떨어뜨릴 수 있기 때문에 이러한 미세 입자의 저감 기술은 매우 중요하다.
따라서, 본 발명은 상기와 같은 종래의 문제점을 해결하고자 괴상중합 도중에, 특히 단량체의 중합체로의 전환율이 30 내지 70%의 범위 이내일 때 괴상중합이 진행되는 반응계 내로 단량체를 추가공급하는 것에 의하여 중합이 진행됨에 따라 수지 입자 간 평균거리가 짧아져서 입자 간의 과다 응집 또는 입자 간 마찰에 의하여 미세입자가 발생하는 문제점을 해결하여 비정상제품(미세입자 제품, 과대입자 제품, 응집에 의한 덩어리 제품 등) 및 구 형성이 나쁜 염화비닐 수지의 발생을 억제하고, 염화비닐 수지의 품질 및 가공성을 향상시킬 수 있도록 하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명에 따른 염화비닐 수지의 괴상중합용 장치는 괴상중합을 위한 반응조를 포함하는 염화비닐 수지의 괴상중합용 장치에 있어서, 단량체와 개시제를 포함하는 상기 반응조 내에서의 상기 단량체의 중합 도중에 상기 반응조 내로 단량체를 추가로 공급하기 위한 추가공급관을 더 포함한다.
상기 반응조는 적어도 하나 이상의 원료공급관 및 응축기를 더 포함할 수 있다.
상기 반응조는 배기관을 더 포함할 수 있다.
상기 배기관은 압력조절밸브를 더 포함할 수 있다.
상기 추가공급관은 상기 반응조의 하단에 연결될 수 있다.
상기 염화비닐 수지의 괴상중합용 장치는 전중합 반응조를 더 포함하여 이루어지며, 상기 반응조는 상기 전중합 반응조에서 생성되는 시드 폴리머가 유입되도록 상기 반응조와 상기 전중합 반응조 사이를 유체적으로 연결하는 원료공급관 및 단량체와 후중합 개시제를 상기 반응조로 공급하기 위한 원료공급관을 더 포함할 수 있다.
또한, 본 발명에 따른 염화비닐 수지의 괴상중합용 장치를 이용하는 염화비닐 수지의 괴상중합 방법은 단량체 및 개시제를 포함하는 반응조 내로 단량체를 추가 공급하되, 상기 단량체의 중합체로의 전환율이 30 내지 70%인 때에 상기 반응조 내로 추가로 공급하는 단량체추가공급단계를 포함하여 이루어진다.
상기 추가로 공급되는 상기 단량체는 상기 반응조의 하단으로 공급될 수 있다.
상기 단량체추가공급단계에서 상기 단량체의 추가공급은 단량체를 반응조 내로 연속적으로 공급하는 것으로 이루어질 수 있다.
상기 단량체추가공급단계에서의 상기 단량체의 공급량은 상기 단량체의 중합체로의 전환량의 시간당 10% 내지 30% 범위 이내의 양이 될 수 있다.
상기 단량체추가공급단계와 동시에 또는 후속하여 단량체배출단계가 더 수행될 수 있다.
상기 단량체배출단계에서의 단량체의 배출량은 상기 단량체추가공급단계에서의 단량체의 공급량의 80% 내지 100% 범위 이내의 양이 될 수 있다.
상기 단량체배출단계에서의 단량체의 배출은 응축기 또는 배기관 또는 응축기와 배기관 둘 다를 통하여 이루어질 수 있다.
본 발명에 따르면 중합이 진행됨에 따라 수지 입자 간 평균거리가 짧아져서 입자 간의 과다 응집 또는 입자 간 마찰에 의하여 미세입자가 발생하는 문제점을 해결하여 비정상제품(미세입자 제품, 과대입자 제품, 응집에 의한 덩어리 제품 등) 및 구 형성이 나쁜 염화비닐 수지의 발생을 억제하고, 염화비닐 수지의 품질 및 가공성을 향상시킬 수 있는 염화비닐 수지의 괴상중합용 장치를 제공하는 효과가 있다.
또한, 본 발명에 따르면 상기한 염화비닐 수지의 괴상중합용 장치를 이용하는 염화비닐 수지의 괴상중합 방법을 제공하는 효과가 있다.
또한, 본 발명에 따르면 비정상제품(미세입자 제품, 과대입자 제품, 응집에 의한 덩어리 제품 등)의 발생을 감소시키고, 75 내지 200㎛의 범위 이내의 정상적인 입경분포를 갖는 염화비닐 수지를 제공하는 효과가 있다.
도 1은 본 발명에 따른 염화비닐 수지의 괴상중합용 장치의 하나의 구체예를 모식적으로 도시한 구성도이다.
도 2는 본 발명에 따른 염화비닐 수지의 괴상중합용 장치의 다른 하나의 구체예를 모식적으로 도시한 구성도이다.
〔부호의 설명〕
10: 전중합 장치 11: 전중합 반응조
12: 반응공간 13: 회전축
14: 스크류 교반기 15: 스크레이퍼
16: 열조절재킷 17: 원료공급관
18: 배기관 M: 모터
C: 응축기 D: 배출관
20: 괴상중합용 장치 21: 반응조
22: 반응공간 23: 회전축
24: 스크류 교반기 25: 스크레이퍼
26: 열조절재킷 27: 원료공급관
28: 배기관 M: 모터
C: 응축기 D: 배출관
이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.
도 1에 나타낸 바와 같이, 본 발명에 따른 염화비닐 수지의 괴상중합용 장치(20)는 괴상중합을 위한 반응조를 포함하는 염화비닐 수지의 괴상중합용 장치에 있어서, 단량체와 개시제를 포함하는 상기 반응조(21) 내에서의 상기 단량체의 중합 도중에 상기 반응조(21) 내로 단량체를 추가로 공급하기 위한 추가공급관(31)을 더 포함하여 이루어짐을 특징으로 한다.
상기 추가공급관(31)은 단량체공급원(도시하지 않음)에 유체적으로 연결되며, 상기 반응조(21) 내로 단량체를 공급하는 기능을 한다.
상기 반응조(21)는 적어도 하나 이상의 원료공급관(27) 및 응축기(C)를 더 포함할 수 있다. 상기 원료공급관(27)은 적어도 하나 이상, 바람직하게는 2 내지 5개, 보다 바람직하게는 3개가 될 수 있다. 상기 원료공급관(27)을 통하여 중합반응에 필요한 원료들, 즉 단량체, 개시제 및 필요에 따라 반응첨가제들이 상기 반응조(21) 내로 공급될 수 있다. 상기 응축기(C)는 기체상으로 휘발되는 단량체 등의 원료를 액화시켜 다시 반응조(21) 내로 되돌리거나 또는 액화된 원료를 회수하는 기능을 한다. 본 발명에서는 상기 응축기(C)에서 액화된 단량체를 상기 반응조(21) 내로 되돌리지 않고 회수함으로써 상기 반응조(21) 내로 추가로 투입된 단량체의 양을 조절할 수 있도록 기능한다.
상기 반응조(21)는 내부공간을 갖는 용기로서, 상기 내부공간은 반응공간(22)으로 작용하며, 이 반응공간(22)으로 단량체와 개시제들이 투입되어 중합반응이 수행될 수 있다.
상기 반응조(21)에는 교반기가 더 포함되며, 상기 교반기는 상기 반응공간(22) 내의 반응물들을 교반시킬 수 있는 구성을 갖는 것이라면 어느 것이나 가능함은 당업자에게는 이해될 수 있는 것이다. 도 1에 예시적으로 표시된 교반기는 스크류 교반기(24)이며, 상기 스크류 교반기(24)는 회전축(23)에 고정되어 상기 회전축(23)의 회전에 의하여 동시에 회전되어 상기 반응공간(22) 내의 반응물들을 교반시킨다. 상기 회전축(23)은 상기 반응조(21) 외부까지 연장되며, 그 외측단부(즉, 상기 반응조를 기준으로 반응조 외부에 위치되는 단부)에는 모터(M)가 연결되며, 상기 모터(M)의 회전에 의하여 동시적으로 회전된다. 상기 모터(M)와 상기 회전축(23) 사이에는 필요에 따라 조속기 및/또는 변속기가 연결될 수 있다. 상기 스크류 교반기(24)가 연결된 상기 회전축(23)의 내측단부(즉, 상기 반응조를 기준으로 반응조 내부에 위치되는 단부)에는 스크레이퍼(25)가 더 연결될 수 있다. 상기 스크레이퍼(25)는 상기 반응조(21)의 바닥과 접촉되도록 또는 상기 반응조(21)의 바닥에 인접하도록 설치되어 상기 반응조(21)의 바닥에 침적 또는 퇴적되는 물질을 긁어내는 기능을 한다.
상기 반응조(21)는 배기관(28)을 더 포함할 수 있다. 상기 배기관(28)은 상기 반응조(21)에 유체적으로 연결되어 상기 반응조(21)로부터 배출되어야 할 기체상의 물질이 배출되도록 기능한다. 이는 상기 반응조(21) 내부를 공기나 질소 등으로 퍼지(purge)시킬 때 공기가 배출되도록 하거나 또는 상기 반응조(21) 내부로 단량체 및 개시제 등의 반응물을 공급할 때 상기 반응조(21) 내부의 압력을 조절하거나 또는 반응 도중이나 반응 이후에 배출되어야 할 기체상의 물질을 배출하는 기능을 한다.
상기 배기관(28)은 압력조절밸브(R)를 더 포함할 수 있다. 본 발명에서는 상기 배기관(28)에 설치된 상기 압력조절밸브(R)를 적절히 개방시키는 것에 의하여 상기 반응조(21) 내에서 기화된 기체상의 단량체의 일부를 상기 반응조(21)로부터 배출시키는 것에 의하여 상기 반응조(21) 내로 추가로 투입된 단량체의 양을 조절할 수 있도록 기능한다. 상기 압력조절밸브(R)는 상기 배기관(28)을 단속하는 것에 의하여 기체상의 물질의 흐름을 단속하도록 구성되며, 그에 의하여 상기 배기관(28) 내를 통하는 기체의 흐름을 차단(단)시켜 상기 반응조(21) 내부의 압력을 높이거나 반대로 기체의 흐름을 연속(속)시켜 상기 반응조(21) 내부의 압력을 낮추는 기능을 한다. 상기 배기관(28)에는 유량계 또는 압력계가 더 연결될 수 있다. 달리, 상기 배기관(28)에는 유량제어기(MFC; Mass Flow Controller)가 연결될 수 있으며, 이러한 유량제어기는 국내외 유수의 제조업자들에 의하여 상용적으로 제공되는 것을 구입하여 사용할 수 있을 정도로 공지된 것으로 이해될 수 있는 것이다.
상기 추가공급관(31)은 상기 반응조(21)의 하단에 연결될 수 있으며, 이러한 구성에 의하여 특히 비닐클로라이드 단량체에 비하여 상대적으로 비중이 높은 염화비닐 수지가 축적될 수 있는 반응조(21)의 하단에 추가의 단량체를 더 공급하여 이 부분에 주로 위치되는 염화비닐 수지의 과열 및 수지 입자 간의 충돌 등을 더 효율적으로 감소시키도록 할 수 있다.
상기 반응조(21)의 외측에는 워터재킷(water jacket) 등과 같은 열조절재킷(temperature control jacket)(26)이 더 취부될 수 있으며, 상기 열조절재킷은 그 내부를 통하여 열매체, 주로 가열 또는 냉각된 물 또는 오일을 순환시켜 상기 가열 또는 냉각된 열매체의 온도에 따라 상기 반응조(21)의 온도, 특히 상기 반응조(21)의 내부 온도를 조절하도록 할 수 있다.
상기 반응조(21)의 하단에는 배출관(D)이 유체적으로 연결되며, 이 배출관(D)을 통하여 반응생성물, 즉 중합된 수지 생성물, 기타 미반응 단량체 및 개시제 등 반응물들을 상기 반응조(21)로부터 배출시켜 회수할 수 있도록 구성된다.
도 2에 나타낸 바와 같이, 상기 염화비닐 수지의 괴상중합용 장치(20)는 전중합 장치(10)를 더 포함할 수 있으며, 상기 전중합 장치(10)는 전중합 반응조(11)를 더 포함하여 이루어지며, 상기 반응조(21)는 상기 전중합 반응조(11)에서 생성되는 시드 폴리머가 유입되도록 상기 반응조(21)와 상기 전중합 반응조(11) 사이를 유체적으로 연결하는 원료공급관(27) 및 단량체와 후중합 개시제를 상기 반응조(21)로 공급하기 위한 원료공급관(27)을 더 포함할 수 있다. 본 발명에서는 시드 폴리머도 원료공급관(27)을 통하는 것으로 기술하고, 단량체 및 후중합 개시제도 원료공급관(27)을 통하는 것으로 통일하여 기술하였으며, 이는 단량체나, 시드 폴리머나 기타 개시제 및 반응첨가제들 모두 중합반응을 위한 원료로 이해하는 데 기초하고 있는 것이며, 원료공급관(27)들은 이들 원료들을 공급하는 기능을 하는 것으로 이해되도록 하기 위함이다.
상기 전중합 장치(10)의 다른 구성은 본 발명에 따른 상기 염화비닐 수지의 괴상중합용 장치(20)의 대응되는 요소들과 동일 또는 유사한 것으로서, 인용부호 만을 달리하는 것을 제외하고는 동일 또는 유사하게 이해될 수 있는 것이다. 상기 전중합 장치(10)는 전중합 반응조(11)를 포함하며, 상기 전중합 반응조(11)의 내부공간은 반응공간(12)으로 기능하고, 상기 전중합 반응조(11)에는 회전축(13)과 상기 회전축(13)에 설치되는 교반기, 즉 스크류 교반기(14) 및 스크레이퍼(15)를 포함한다. 또한, 상기 전중합 반응조(11)의 외부에는 열조절재킷(16)이 설치되며, 또한, 상기 전중합 반응조(11) 내로 반응원료들을 공급하기 위한 적어도 하나 이상의 원료공급관(17) 및 배기관(18)이 연결되며, 상기 회전축(13)은 모터(M)에 연결되어 상기 모터(M)에 의해 회전될 수 있으며, 또한 상기 전중합 반응조(11)에는 응축기(C)와 배출관(D)이 더 연결되며, 상기 배기관(18)에는 압력조절밸브(R)가 더 연결될 수 있다. 비록, 첨부된 도면 중 도 2에서는 상기 전중합 장치(10)가 스크류 교반기(14)와 스크레이퍼(15)가 장착된 반응조(11)로 도시되어 있기는 하나, 본 발명이 이에 제한되는 것은 아니고, 달리 터빈형 임펠러가 부착된 반응조와 같은 다른 반응조를 채택하는 것도 가능함은 이해될 수 있는 것이다.
상기 전중합 장치(10)의 상기 전중합 반응조(11)에는 단량체, 개시제 및 기타 반응첨가제가 공급되어 빠른 교반과 높은 압력 하에서 중합이 수행되어 시드 폴리머를 형성시킬 수 있으며, 이때의 과정이 빠르고 균일할수록 생성되는 입자의 입도 분포나 물성이 유리하다고 알려져 있다.
도 2에서는 상기 전중합 장치(10)가 추가공급관을 더 포함하지 않는 것으로 도시되어 있기는 하나, 상기 전중합 장치(10)의 상기 전중합 반응조(11)에도 단량체를 추가공급하기 위한 추가공급관이 더 포함될 수 있으며, 바람직하게는 상기 추가공급관은 상기 전중합 반응조(11)의 하단에 연결될 수 있다.
또한, 본 발명에 따른 염화비닐 수지의 괴상중합용 장치를 이용하는 염화비닐 수지의 괴상중합 방법은 단량체 및 개시제를 포함하는 반응조 내로 단량체를 추가 공급하되, 상기 단량체의 중합체로의 전환율이 30 내지 70%인 때에 상기 반응조 내로 추가로 공급하는 단량체추가공급단계를 포함하여 이루어짐을 특징으로 한다. 여기에서 상기 단량체의 상기 중합체로의 전환율은 열량계(calorimeter)를 이용하여 발생 중합열을 폴리염화비닐 중합열로 나누는 것에 의하여 산출하는 것에 의해 결정된 바에 따르며, 상기 전환율이 30%가 되는 시점(이 시점부터 교반기(agitator)의 부하량이 직접적으로 증가함을 전류변동(암페어 변동)으로부터 확인할 수 있음)에서부터 단량체를 추가 공급하며, 상기 전환율이 70%를 초과하는 시점(반응기 내부의 압력이 서서히 떨어지기 시작하는 시점)에서 단량체의 추가 공급을 중단하는 것이 본 발명의 핵심이다. 상기 전환율이 30% 미만인 때에 단량체를 추가 공급하는 경우, 미세 입자가 증가하는 문제점이 있을 수 있고, 반응물의 수위가 높아지는 등의 이유로 바람직하지 않고, 상기 전환율이 70%를 초과한 이후에 단량체를 추가 공급하는 경우, 중합 시간이 길어지고 미반응 모노머의 회수 시간이 길어지는 문제 이 있을 수 있다.
상기한 바와 같은 단량체추가공급단계는 상기한 바의 구성을 갖는 본 발명에 따른 염화비닐 수지의 괴상중합용 장치에서의 추가공급관을 통하여 상기 반응조 내로 단량체를 추가투입하는 것에 의해 수행된다.
상기 추가로 공급되는 상기 단량체는 상기 반응조의 하단으로 공급될 수 있으며, 그에 의하여 비닐클로라이드 단량체에 비하여 상대적으로 비중이 높은 염화비닐 수지가 축적될 수 있는 반응조의 하단에 추가의 단량체를 더 공급하여 이 부분에 주로 위치되는 염화비닐 수지의 과열 및 수지 입자 간의 충돌 등을 더 효율적으로 감소시키도록 할 수 있도록 하는 점에 특징이 있는 것이다.
상기 단량체추가공급단계에서 상기 단량체의 추가공급은 단량체를 반응조 내로 연속적으로 공급하는 것으로 이루어질 수 있으나, 본 발명이 이에 제한되는 것은 아니며, 필요에 따라 상기 단량체를 간헐적으로 추가공급하는 것도 가능함은 이해될 수 있는 것이다.
상기 단량체추가공급단계에서의 상기 단량체의 공급량은 상기 단량체의 중합체로의 전환량의 시간당 10% 내지 30% 범위 이내의 양, 보다 바람직하게는 15% 내지 30%, 가장 바람직하게는 22% 내지 25%의 범위 이내의 양(사용되는 반응기 크기 대비 80% 내외로 단량체를 투입)이 될 수 있으며, 바람직하게는 상기 단량체추가공급단계와 동시에 또는 후속하여 단량체배출단계가 더 수행될 수 있으며, 이렇게 함으로써 상기 반응조 내의 단량체의 양은 물론 전체 반응물들의 양을 적절하게 조절할 수 있게 된다.
상기 단량체배출단계에서의 단량체의 배출량은 상기 단량체추가공급단계에서의 단량체의 공급량의 80% 내지 100%의 범위 이내의 양이 될 수 있으며, 그에 의하여 상기 단량체가 추가공급되는 것이 반응계 전체의 평형을 깨뜨리지 않고, 즉 초기의 적절한 중합조건을 유지하면서도 중합이 진행됨에 따라 수지 입자 간 평균거리가 짧아져서 입자 간의 과다 응집 또는 입자 간 마찰에 의하여 미세입자가 발생하는 문제점을 해결하여 비정상제품(미세입자 제품, 과대입자 제품, 응집에 의한 덩어리 제품 등) 및 구 형성이 나쁜 염화비닐 수지의 발생을 억제하는 데 바람직하다.
상기 단량체배출단계에서의 단량체의 배출은 응축기 또는 배기관 또는 응축기와 배기관 둘 다를 통하여 이루어질 수 있다. 앞서 설명한 바와 같이, 상기 응축기는 기체상으로 휘발되는 단량체 등의 원료를 액화시켜 다시 반응조 내로 되돌리거나 또는 액화된 원료를 회수하는 기능을 한다. 본 발명에서는 상기 응축기에서 액화된 단량체를 상기 반응조 내로 되돌리지 않고 회수함으로써 상기 반응조 내로 추가로 투입된 단량체의 양을 조절할 수 있도록 기능한다. 또한, 상기 배기관은 상기 배기관에 설치된 상기 압력조절밸브를 적절히 개방시키는 것에 의하여 상기 반응조 내에서 기화된 기체상의 단량체의 일부를 상기 반응조로부터 배출시키는 것에 의하여 상기 반응조 내로 추가로 투입된 단량체의 양을 조절할 수 있도록 기능한다.
본 발명에 따른 상기 염화비닐 수지의 괴상중합용 장치(20)의 상기 반응조(21)에서의 중합반응은, 예를 들면, 8 내지 10K/G의 압력하에서 수행될 수 있으며, 따라서 상기한 바와 같은 단량체의 추가 투입은 상기 반응 조건의 압력 보다 약간 더 높은 압력, 예를 들면, 8.1 내지 12K/G의 압력으로 수행될 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
*상기 전중합 장치(10)의 상기 전중합 반응조(11) 역시 상기 염화비닐 수지의 괴상중합용 장치(20)의 상기 반응조(21)에서의 중합반응에서와 같은 압력, 예를 들면, 8 내지 10K/G의 압력하에서 수행될 수 있다.
비록 본 발명에서는 염화비닐 수지의 제조를 위하여 비닐클로라이드 단량체를 사용하는 것을 중심으로 기술하기는 하였으나, 본 발명이 다른 비닐단량체의 중합에도 적용될 수 있음은 당업자에게는 이해될 수 있는 것이며, 본 발명이 상기한 바와 같이 비닐클로라이드 단량체의 중합으로 한정되는 것이 아님은 이해되어야 할 것이다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
*200ℓ 용량의 전중합 장치의 반응조에 비닐클로라이드 단량체 135㎏을 투입하고, 비닐클로라이드 단량체 100중량부에 대해 개시제로서 t-부틸 퍼옥시네오데카노에이트(BND) 0.03중량부를 투입한 후, 12K/G까지 승압하고, 18분 동안 중합하여, 100 내지 140㎛ 크기의 시드 폴리머를 제조하고, 이를 도 2에 나타낸 바와 같이 본 발명에 따라 하부에 원료공급관이 설치된 후중합을 위한 본 발명에 다른 반응조(500ℓ)로 이송하여 투입하되, 상기 본 발명에 따른 반응조 내에 비닐클로라이드 단량체 50중량부를 투입하였다. 이송이 완료된 시점에 추가적으로 개시제로서 1,1,3,3-테트라메틸부틸퍼옥시네오디카보네이트(OND) 0.06중량부를 투입하고, 7.8K/G의 압력으로 180분간 중합시켰으며, 이때 상기 반응조의 내온이 감소하기 시작하는 전환율 30% 시점에서 비닐클로라이드 단량체를 5중량부로 추가로 투입하되, 이러한 단량체의 추가 투입은 상기 전환율이 70%가 되는 시점인 압력 강하 현상이 나타날 때까지 지속시켰다. 이후, 중합 말기에 중합억제제로서 부틸레이티드하이드록시톨루엔 0.01중량부를 투입하고 교반을 해줌과 동시에 진공 하에서 20분간 70℃의 온도로 가열하여 잔류하는 비닐클로라이드 단량체를 제거하여 최종적으로 염화비닐 수지를 수득하였다.
실시예 2
200ℓ 용량의 전중합 장치의 반응조에 비닐클로라이드 단량체 135㎏을 투입하고, 비닐클로라이드 단량체 100중량부에 대해 개시제로서 디-2-에틸 헥실 퍼옥시디카보네이트(OPP) 0.05중량부를 투입한 후, 10K/G까지 승압하고, 16분 동안 중합하여, 110㎛ 크기의 시드 폴리머를 제조하고, 이를 도 2에 나타낸 바와 같이 본 발명에 따라 하부에 원료공급관이 설치된 후중합을 위한 본 발명에 따른 반응조(500ℓ)로 이송하여 투입하되, 상기 본 발명에 따른 반응조 내에 비닐클로라이드 단량체 60중량부를 투입하였다. 이송이 완료된 시점에 추가적으로 개시제로서 1,1,3,3-테트라메틸부틸퍼옥시네오디카보네이트(OND) 0.1중량부를 투입하고, 7.1 K/G의 압력으로 40분간 중합하고, 8.0K/G로 승압해서 140분간 중합시켰으며, 이때, 상기 반응조의 내온이 감소하기 시작하는 전환율 30% 시점에서 비닐클로라이드 단량체를 시간당 15중량부로 추가로 투입하되, 이러한 단량체의 추가 투입은 상기 전환율이 70%가 되는 시점인 압력 강하 현상이 나타날 때까지 지속시켰다. 이후, 중합 말기에 중합억제제로서 부틸레이티드하이드록시톨루엔 0.01중량부를 투입하고 교반을 해줌과 동시에 진공 하에서 20분간 66℃의 온도로 가열하여 잔류하는 비닐클로라이드 단량체를 제거하여 최종적으로 염화비닐 수지를 수득하였다. 수득된 염화비닐 수지의 물성을 시험하여 그 결과를 하기 표 1에 나타내었다.
실시예 3
상기 반응조의 내온이 감소하기 시작하는 전환율 30% 시점에서 비닐클로라이드 단량체를 5중량부 대신 10중량부로 추가로 투입하는 것을 제외하고는 실시예 1과 동일하게 수행하였다.
비교예
상기 반응조의 내온이 감소하기 시작하는 전환율 30% 시점에서 비닐클로라이드 단량체를 추가로 투입하지 않는 것을 제외하고는 실시예 1과 동일하게 수행하였다.
표 1
실시예 1(전환율:30~70%)(초기 투입양 대비 5%를 연속적으로 투입) 실시예 2(전환율:30~70%)(초기 투입양 대비 15%를 연속적으로 투입) 실시예 3(전환율:30~70%)(초기 투입양 대비 10%를 연속적으로 투입) 비교예
입경(㎛) 168 170 165 160
Below 70㎛(%) 1.60 1.6 1.8 2.6
Below 20㎛ (%) 0.7 0.7 0.65 1.10
Lump (%) 1.7 1.8 2 3
따라서, 중합이 진행됨에 따라 수지 입자 간 평균거리가 짧아져서 입자 간의 과다 응집 또는 입자 간 마찰에 의하여 미세입자가 발생하는 문제점을 해결하여 비정상제품(미세입자 제품, 과대입자 제품, 응집에 의한 덩어리 제품 등) 및 구 형성이 나쁜 염화비닐 수지의 발생을 억제하고, 염화비닐 수지의 품질 및 가공성을 향상시킬 수 있음을 확인할 수 있었다.

Claims (13)

  1. 괴상중합을 위한 반응조를 포함하는 염화비닐 수지의 괴상중합용 장치에 있어서,
    단량체와 개시제를 포함하는 상기 반응조 내에서의 상기 단량체의 중합 도중에 상기 반응조 내로 단량체를 추가로 공급하기 위한 추가공급관을 더 포함하여 이루어짐을 특징으로 하는 염화비닐 수지의 괴상중합용 장치.
  2. 제 1 항에 있어서,
    상기 반응조가 적어도 하나 이상의 원료공급관 및 응축기를 더 포함하는 것을 특징으로 하는 상기 염화비닐 수지의 괴상중합용 장치.
  3. 제 1 항에 있어서,
    상기 반응조가 배기관을 더 포함하는 것을 특징으로 하는 상기 염화비닐 수지의 괴상중합용 장치.
  4. 제 3 항에 있어서,
    상기 배기관이 압력조절밸브를 더 포함하는 것을 특징으로 하는 상기 염화비닐 수지의 괴상중합용 장치.
  5. 제 1 항에 있어서,
    상기 추가공급관이 상기 반응조의 하단에 연결되는 것을 특징으로 하는 상기 염화비닐 수지의 괴상중합용 장치.
  6. 제 1 항에 있어서,
    상기 염화비닐 수지의 괴상중합용 장치가 전중합 반응조를 더 포함하여 이루어지며, 상기 반응조가 상기 전중합 반응조에서 생성되는 시드 폴리머가 유입되도록 상기 반응조와 상기 전중합 반응조 사이를 유체적으로 연결하는 원료공급관 및 단량체와 후중합 개시제를 상기 반응조로 공급하기 위한 원료공급관을 더 포함하는 것을 특징으로 하는 상기 염화비닐 수지의 괴상중합용 장치.
  7. 단량체 및 개시제를 포함하는 반응조 내로 단량체를 추가 공급하되, 상기 단량체의 중합체로의 전환율이 30 내지 70%인 때에 상기 반응조 내로 추가로 공급하는 단량체추가공급단계를 포함하여 이루어짐을 특징으로 하는 염화비닐 수지의 괴상중합 방법.
  8. 제 7 항에 있어서,
    상기 추가로 공급되는 상기 단량체가 상기 반응조의 하단으로 공급되는 것을 특징으로 하는 상기 염화비닐 수지의 괴상중합 방법.
  9. 제 7 항에 있어서,
    상기 단량체추가공급단계에서 상기 단량체의 추가공급이 단량체를 반응조 내로 연속적으로 공급하는 것으로 이루어짐을 특징으로 하는 상기 염화비닐 수지의 괴상중합 방법.
  10. 제 7 항에 있어서,
    상기 단량체추가공급단계에서의 상기 단량체의 공급량이 상기 단량체의 중합체로의 전환량의 30 내지 70%의 범위에서 0.1 내지 10배량의 범위 이내의 양임을 특징으로 하는 상기 염화비닐 수지의 괴상중합 방법.
  11. 제 7 항에 있어서,
    상기 단량체추가공급단계와 동시에 또는 후속하여 단량체배출단계가 더 수행되는 것을 특징으로 하는 상기 염화비닐 수지의 괴상중합 방법.
  12. 제 11 항에 있어서,
    상기 단량체배출단계에서의 단량체의 배출량이 상기 단량체추가공급단계에서의 단량체의 공급량의 0.1 내지 10배량의 범위 이내의 양임을 특징으로 하는 상기 염화비닐 수지의 괴상중합 방법.
  13. 제 11 항에 있어서,
    상기 단량체배출단계에서의 단량체의 배출이 응축기 또는 배기관 또는 응축기와 배기관 둘 다를 통하여 이루어짐을 특징으로 하는 상기 염화비닐 수지의 괴상중합 방법.
PCT/KR2014/009223 2013-09-30 2014-09-30 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법 WO2015047040A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/773,678 US9403144B2 (en) 2013-09-30 2014-09-30 Apparatus for mass polymerization of vinyl chloride resin and method for mass polymerization of vinyl chloride resin
CN201480024295.4A CN105164165B (zh) 2013-09-30 2014-09-30 用于氯乙烯树脂本体聚合反应的装置以及氯乙烯树脂本体聚合反应的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0116987 2013-09-30
KR1020130116987A KR101684726B1 (ko) 2013-09-30 2013-09-30 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법

Publications (1)

Publication Number Publication Date
WO2015047040A1 true WO2015047040A1 (ko) 2015-04-02

Family

ID=52744039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009223 WO2015047040A1 (ko) 2013-09-30 2014-09-30 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법

Country Status (4)

Country Link
US (1) US9403144B2 (ko)
KR (1) KR101684726B1 (ko)
CN (1) CN105164165B (ko)
WO (1) WO2015047040A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178879B1 (ko) 2018-09-21 2020-11-16 주식회사 엘지화학 염화비닐계 중합체 및 이의 제조방법
CN111298751B (zh) * 2020-04-08 2021-09-10 哈尔滨强石新材料技术开发股份有限公司 一种聚羧酸减水剂加工系统
KR20220041739A (ko) 2020-09-25 2022-04-01 주식회사 엘지화학 염화비닐계 중합체의 제조방법
US20230022810A1 (en) 2020-09-25 2023-01-26 Lg Chem, Ltd. Method for preparing vinyl chloride-based polymer
US20240253007A1 (en) * 2021-08-12 2024-08-01 Lg Chem, Ltd. Polymerization Reaction Device for High Viscosity Resin
TWI782804B (zh) * 2021-11-30 2022-11-01 臺灣塑膠工業股份有限公司 聚氯乙烯及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090039117A (ko) * 2007-10-17 2009-04-22 주식회사 엘지화학 미세 입자 함량이 낮은 염화비닐 수지의 괴상 중합 제조방법
KR20090075486A (ko) * 2008-01-04 2009-07-08 주식회사 엘지화학 α-메틸스티렌 및 비닐시안 화합물의 공중합 내열성 수지의연속 제조 방법
KR20100023340A (ko) * 2008-08-21 2010-03-04 주식회사 엘지화학 분산성이 향상된 염화비닐계 수지 중합체의 제조방법
KR20110006223A (ko) * 2009-07-13 2011-01-20 주식회사 엘지화학 유용성 염기를 중화제로 사용한 괴상 중합 염화비닐계 중합체 및 염화비닐계 공중합체 제조방법
KR20120049827A (ko) * 2010-11-08 2012-05-17 스미또모 가가꾸 가부시끼가이샤 연속 중합 장치 및 중합체 조성물 제조 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086414A (en) * 1974-08-19 1978-04-25 Ethyl Corporation Steam stripping polyvinyl chloride resins
US4009048A (en) * 1975-07-11 1977-02-22 Air Products And Chemicals, Inc. Solvent cleaning and recovery process
CN2526320Y (zh) * 2002-01-29 2002-12-18 宜宾天原集团有限公司 氯乙烯本体聚合冷凝液喷射回流装置
CN2675673Y (zh) * 2003-09-10 2005-02-02 锦西化工机械(集团)有限责任公司 一种聚氯乙烯聚合釜
US20050136547A1 (en) * 2003-12-22 2005-06-23 Abb Inc. Polymer reaction and quality optimizer
JP4323406B2 (ja) * 2004-10-04 2009-09-02 住友化学株式会社 連続重合装置およびそれを用いた連続重合方法
JP4295196B2 (ja) * 2004-11-09 2009-07-15 住友化学株式会社 連続重合の停止方法
JP5249366B2 (ja) * 2011-01-26 2013-07-31 住友化学株式会社 連続重合装置および重合体組成物の製造方法
JP2012207203A (ja) * 2011-03-17 2012-10-25 Sumitomo Chemical Co Ltd 重合体組成物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090039117A (ko) * 2007-10-17 2009-04-22 주식회사 엘지화학 미세 입자 함량이 낮은 염화비닐 수지의 괴상 중합 제조방법
KR20090075486A (ko) * 2008-01-04 2009-07-08 주식회사 엘지화학 α-메틸스티렌 및 비닐시안 화합물의 공중합 내열성 수지의연속 제조 방법
KR20100023340A (ko) * 2008-08-21 2010-03-04 주식회사 엘지화학 분산성이 향상된 염화비닐계 수지 중합체의 제조방법
KR20110006223A (ko) * 2009-07-13 2011-01-20 주식회사 엘지화학 유용성 염기를 중화제로 사용한 괴상 중합 염화비닐계 중합체 및 염화비닐계 공중합체 제조방법
KR20120049827A (ko) * 2010-11-08 2012-05-17 스미또모 가가꾸 가부시끼가이샤 연속 중합 장치 및 중합체 조성물 제조 방법

Also Published As

Publication number Publication date
US9403144B2 (en) 2016-08-02
US20160038910A1 (en) 2016-02-11
KR20150037420A (ko) 2015-04-08
CN105164165B (zh) 2017-05-03
KR101684726B1 (ko) 2016-12-20
CN105164165A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2015047040A1 (ko) 염화비닐 수지의 괴상중합용 장치 및 염화비닐 수지의 괴상중합 방법
JP3354989B2 (ja) オレフィン類の気相重合法と装置
KR100337049B1 (ko) 알파-올레핀의기상중합방법
WO2014137177A1 (ko) 올레핀의 중합 방법
CN110041450B (zh) 生产丁基橡胶的方法
JPS6411642B2 (ko)
CN110709434B (zh) 乙烯-乙酸乙烯酯共聚物的制备方法
WO2015047021A1 (ko) 괴상 pvc 조성물, 괴상 pvc 중합 방법 및 장치
KR101136341B1 (ko) 미세 입자 함량이 낮은 염화비닐 수지의 괴상 중합 제조방법
JP6705949B2 (ja) マルチゾーン循環反応器の起動方法
JPS6341517A (ja) 熱可塑性共重合体の製造方法
KR101931142B1 (ko) 폴리염화비닐 수지의 괴상중합 방법
WO2014046445A1 (ko) 에너지 저소비 염화비닐계 라텍스 및 이의 제조방법
CN117085606A (zh) 一种高抗冲共聚聚丙烯产品的生产装置及生产方法
WO2015183006A1 (ko) 탈거 장치
WO2021049883A1 (ko) 염화비닐수지 현탁 중합용 회분식 교반기 및 이를 이용한 회분식 현탁 중합반응기
BRPI0413279B1 (pt) processo de polimerização, e, aparelho para a obtenção de um material polimérico
KR101510931B1 (ko) 현탁 중합에 의한 염화비닐 중합체의 반응 중 비상 정지 방법 및 이에 사용되는 장치
JPH09176227A (ja) プロピレン−オレフィンブロック共重合体の製造方法
JP4363940B2 (ja) 塩化ビニル系樹脂スラリーから塩化ビニルモノマーを除去する方法
KR101958174B1 (ko) 괴상 pvc 조성물, 괴상 pvc 중합 방법 및 장치
WO2021256867A1 (ko) 염화비닐계 중합체 복합체의 제조방법
JPH0332561B2 (ko)
KR20210089232A (ko) 중합체 반응 혼합물로부터 휘발성 화합물을 분리하기 위한 분리 디바이스 및 공정
JPS60260605A (ja) スチレン−アクリロニトリル系共重合体の連続的製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024295.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14773678

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847048

Country of ref document: EP

Kind code of ref document: A1