WO2015046992A1 - 고흡수성 수지의 제조 방법 - Google Patents

고흡수성 수지의 제조 방법 Download PDF

Info

Publication number
WO2015046992A1
WO2015046992A1 PCT/KR2014/009115 KR2014009115W WO2015046992A1 WO 2015046992 A1 WO2015046992 A1 WO 2015046992A1 KR 2014009115 W KR2014009115 W KR 2014009115W WO 2015046992 A1 WO2015046992 A1 WO 2015046992A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
water
producing
photopolymerization
superabsorbent polymer
Prior art date
Application number
PCT/KR2014/009115
Other languages
English (en)
French (fr)
Inventor
김기철
이상기
김규팔
박성수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14848361.3A priority Critical patent/EP3006470A4/en
Priority to JP2016545696A priority patent/JP6277282B2/ja
Priority to US14/917,235 priority patent/US9701763B2/en
Priority to CN201480044792.0A priority patent/CN105452306B/zh
Publication of WO2015046992A1 publication Critical patent/WO2015046992A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a method for producing a super absorbent polymer. More specifically, the present invention relates to a method for preparing a super absorbent polymer comprising a two stage polymerization step.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (SAM) and absorbent gel (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological devices, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in food distribution, and It is widely used as a material for steaming.
  • the superabsorbent polymer as described above may be generally prepared as a powdery product by polymerizing the resin monomer and drying and pulverizing it.
  • the polymerization of the monomers in the process of preparing such a super absorbent polymer is an important step in determining the physical properties of the resin.
  • a method by reverse phase suspension polymerization, a method by thermal polymerization, a method by photopolymerization and the like are known.
  • a method by photopolymerization there exists a method of polymerizing a monomer composition by putting a monomer composition for resin on a belt, and irradiating light from the upper part.
  • the irradiation amount is not constant depending on the depth of the monomer composition, the degree of polymerization may be uneven depending on the position.
  • the polymerization composition proceeds excessively due to the large amount of light irradiation on the upper portion of the monomer composition located close to the light source, and the lower portion of the monomer composition located far from the light source is insufficient in polymerization. Components that are not fully made and not polymerized may remain. In this case, the physical properties of the super absorbent polymer may decrease.
  • the amount of light or the light irradiation time may vary depending on the position of the monomer composition solution. In this case, the process may be complicated and the process time may increase, resulting in decreased productivity.
  • an object of the present invention is to provide a method for producing a super absorbent polymer having improved physical properties, including a two-step polymerization step.
  • the present invention comprises the steps of photopolymerization at a silver degree of 30 to 55 ° C for a monomer composition comprising a water-soluble ethylene-based unsaturated monomer, a thermal polymerization initiator and a photopolymerization initiator; Thermal polymerization and photopolymerization at a temperature of 55 to 120 ° C. to form a hydrogel polymer; And it provides a method for producing a super absorbent polymer comprising the step of drying the hydrogel polymer.
  • the manufacturing method of the superabsorbent polymer of the present invention it is possible to produce a superabsorbent polymer having a high water absorption capacity and a low water-soluble component content.
  • Method for producing a super absorbent polymer of the present invention comprises the steps of photopolymerization at a temperature of 30 to 55 ° C for a monomer composition comprising a water-soluble ethylenically unsaturated monomer, a thermal polymerization initiator and a photopolymerization initiator; Step to form a hydrogel polymer by thermal polymerization and photopolymerization at a temperature of 55 to 120 ° C); And drying the hydrogel polymer.
  • the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
  • the water-soluble ethylenically unsaturated monomer may be used without any limitation any monomers commonly used in the production of superabsorbent polymers. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
  • acrylic acid it can be used by neutralizing with a basic compound such as caustic soda (NaOH).
  • the concentration of the water-soluble ethylenically unsaturated monomer in which the subject from about 20 to about 60 weight 0/0, preferably from about 40 to about 50% by weight based on the monomer composition containing a source material and a solvent of the water-absorbent resin, and In consideration of the polymerization time, the reaction conditions and the like, the concentration may be appropriate.
  • the high surface concentration of the monomer is too low, a low yield of the water-absorbent resin may be a problem in economical efficiency, whereas the concentration of "a too high surface grinding during grinding efficiency of the function gel polymer partially precipitated or polymerization of the monomers as low It may cause process problems such as appearing, and the physical properties of the super absorbent polymer may decrease.
  • the polymerization method is largely followed by thermal polymerization and photopolymerization depending on the polymerization energy source.
  • the reaction stage may vary depending on the polymerization method such as progressing in a reaction vessel equipped with a movable conveyor belt.
  • a hydrogel polymer obtained by thermal polymerization and polymerization by supplying hot air or by heating a reactor according to the shape of the stirring shaft provided in the reaction vessel is provided in a reaction vessel such as a kneader having a stirring shaft.
  • the hydrogel polymer discharged to the reaction vessel outlet may be in the form of several centimeters to several millimeters.
  • the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, a water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
  • the form of the hydrous gel polymer generally obtained may be a hydrous gel polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer on the sheet is usually obtained having a thickness of about 0.5 to about 5 cm.
  • the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, the production efficiency is low, which is not preferable.
  • the polymer thickness on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction may not occur evenly over the entire thickness.
  • both thermal polymerization and photopolymerization are performed in a semi-unggi equipped with a conveyor belt.
  • the polymerization reaction for polymerizing the ethylenically unsaturated monomer is exothermic reaction. Therefore, even if the reaction is started by lowering the temperature of the monomer composition initially, as the reaction proceeds, the temperature of the monomer composition gradually rises to a high temperature state. Therefore, in the case of thermal polymerization, a low temperature thermal polymerization initiator capable of initiating reaction at low temperature and a high temperature thermal polymerization initiator which initiates reaction in a high temperature state after the middle of the reaction are mixed in order to start the reaction at an early stage. use.
  • the temperature is difficult to control as the reaction proceeds, so that the decomposition rate of the thermal polymerization initiator in the monomer composition is changed. Not constant and wide distribution. Will appear. This can lead to a decrease in the physical properties of the final super absorbent polymer.
  • thermopolymerization is performed at a temperature of about 30 to about 55 ° C with respect to the monomer composition.
  • the action of the thermal polymerization initiator may be excluded and the photopolymerization reaction may proceed at a constant rate. If too low, than the temperature range, the US and the polymer concerned is caused, it is not preferable because it is too high, thermal polymerization in excess of 55 ° C can occur.
  • the light source that can be used in the photopolymerization step is not particularly limited, and an ultraviolet light source known to cause photopolymerization reaction may be used without particular limitation.
  • an ultraviolet light source known to cause photopolymerization reaction
  • light having a wavelength of about 200 to about 400 nm UV light source such as Xe lamp, mercury lamp or metal halide lamp can be used.
  • the photopolymerization step may be performed for about 5 seconds to about 10 minutes at an intensity of about 0.1 mw / cm 2 to about 1 kw / cm 2 . If the intensity and time of the light applied to the photopolymerization reaction is too small or short, the polymerization reaction may not occur in a large amount, and if the polymerization reaction is too large or long, the quality of the superabsorbent polymer may be degraded.
  • the silver composition of the monomer composition increases, and when the temperature of the monomer composition reaches about 55 ° C., the thermal polymerization proceeds further by the action of the thermal polymerization initiator.
  • the temperature of the second step in which the thermal polymerization and the photopolymerization are performed may be about 55 to about 120 ° C, or about 60 to about 120 ° C. However, at this temperature, thermal polymerization may be superior to photopolymerization.
  • a separate heat source can be further used so that the monomer composition can reach a temperature suitable for thermal polymerization.
  • the heat source may be used without any particular limitation, and for example, a method such as hot air, microwave irradiation, and near infrared irradiation may be used.
  • the polymerization initiator used in the polymerization includes both a thermal polymerization initiator and a photopolymerization initiator.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine (alpha) and one or more selected from the group consisting of alpha -aminoketone can be used.
  • acylphosphine commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used.
  • More photoinitiators are well documented in Reinhold Schwalm's book "UV Coatings: Basics, Recent Developments and New Application (Elsevier 20 (X7)" pi 15). It is not limited.
  • the photopolymerization initiator may be included in a concentration of about 0.002 to about 0.2 0/0 with respect to the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. If the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), and ammonium persulfate (NH 4 ).
  • azo initiators examples include 2, 2-azobis- (2-amidinopropane) dihydrochloride, 2, 2-azobis (2-amidinopropane) dihydrochloride, 2 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride
  • sodium persulfate Na 2 S 2 0 8
  • potassium persulfate K 2 S 2 0 8
  • ammonium persulfate (NH 4 ) 2 S 2 0 8 )
  • Persulfate initiators such as these, can be used.
  • the thermal polymerization initiator is from about 0.01 to about about the monomer composition
  • the monomer composition may further include an internal crosslinking agent as a raw material of the super absorbent polymer.
  • the internal crosslinking agent examples include a crosslinking agent having at least one ethylenically unsaturated group while having at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer; Black can use the crosslinking agent which has 2 or more functional groups which can react with the water-soluble substituent of the said monomer, and / or the water-soluble substituent formed by hydrolysis of the monomer.
  • the internal crosslinking agent examples include bisacrylamide having 8 to 12 carbon atoms, bismethacrylamide, poly (meth) acrylate having 2 to 10 carbon atoms, poly (meth) allyl ether having 2 to 10 carbon atoms, and the like. More specifically, N , N ,-methylenebis (meth) acrylate, ethyleneoxy (meth) acrylate, polyethyleneoxy (meth) acrylate, propyleneoxy (meth) acrylate, glycerin diacrylate , Glycerin triacrylate, trimethy triacrylate, triallylamine, triaryl cyanurate, triallyl isocyanate, polyethylene glycol, diethylene glycol and propylene glycol may be used. Such an internal crosslinking agent may be included in a concentration of about 0.01 wt% to about 0.5 wt% based on the monomer composition to crosslink the polymerized polymer.
  • the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation in the configuration as long as it can dissolve the above-described components, for example, water, ethane, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucanonone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbyl, methyl cellosolve acetate and One or more types selected from ⁇ , ⁇ -dimethylacetamide and the like can be used in combination.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • Typical water content of the hydrogel polymer obtained in this manner may be about 40 to about 80% by weight.
  • the "water content” as used throughout the present specification means the content of the water to account for the total amount of water-containing gel polymer subtracted from the weight of the water-containing gel polymer minus the weight of the dry polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of drying the temperature of the polymer through infrared heating. At this time, the drying conditions are raised to a temperature of about 180 ° C at room temperature and maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of the silver rising step, the water content is measured.
  • the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example.
  • the pulverizing step may be crushed back to about 2 to about 10mm particle diameter of the hydrogel polymer.
  • the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered.
  • the drying silver exceeds 250 ° C., only the polymer surface is dried too much, which is formed later. Fine powder may occur in the grinding step, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease.
  • the drying may be carried out at a temperature of about 150 to about 200 ° C, more preferably at a silver degree of about 160 to about 180 ° C.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.1 to about 10% by weight.
  • the polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850 mm 3.
  • Grinders used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. A jog mill or the like may be used, but the present invention is not limited to the above-described example.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle size may be performed.
  • a polymer having a particle size of about 150 to about 850 may be classified, and only a polymer powder having such a particle size may be produced through a surface crosslinking reaction step.
  • a surface crosslinking reaction is performed by adding a surface crosslinking agent to the pulverized polymer.
  • Surface crosslinking is the step of increasing the crosslink density near the surface of the superabsorbent polymer particles with respect to the crosslink density inside the particles.
  • the surface crosslinking agent is applied to the surface of the super absorbent polymer particles.
  • this reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles.
  • the surface crosslinked superabsorbent resin particles thus have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • the surface crosslinking agent is not limited as long as it is a compound capable of reacting with the functional group of the polymer.
  • the surface crosslinking agent may be a polyhydric alcohol compound; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And it may be used one or more selected from the group consisting of alkylene carbonate compounds.
  • examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl— 1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2 -butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanedi, 1,6- nucleic aciddi And at least one selected from the group consisting of 1,2-cyclonucleic acid dimethane.
  • Ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and polyamine compounds may be ethylene diamine, diethylene triamine, triethylene tetraamine, tetraethylenepentamine, or pentaethylene nucleoamine. , At least one selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
  • epichlorohydrin epichlorohydrin, epibromohydrin and ⁇ -methyl epichlorohydrin
  • a mono-, di-, or a polyoxazolidinone compound 2xoxazolidinone etc. can be used, for example.
  • an alkylene carbonate compound ethylene carbonate etc. can be used. These may be used alone or in combination with each other.
  • it is preferable to use including 1 or more types of polyhydric alcohol compounds among these surface crosslinking agents More preferably, C2-C10 polyhydric alcohol compounds can be used.
  • the amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind or reaction conditions of the additional surface crosslinking agent, but is generally about 0.001 to about 5 parts by weight, preferably about 0.01 to about 100 parts by weight of the polymer. 3 parts by weight, more preferably about 0.05 to about 2 parts by weight may be used.
  • the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and if 100 parts by weight of the polymer is more than 5 parts by weight, the phenomenon of absorption and physical properties may occur due to the progress of the excessive surface crosslinking reaction.
  • the surface crosslinking agent and the polymer powder may be mixed in a semi-permanent mixture, or a method of spraying the surface crosslinking agent on the polymer powder, a method of continuously supplying the polymer and the surface crosslinking agent to the mixer to be operated continuously, and the like may be used.
  • the surface crosslinking agent When the surface crosslinking agent is added, water may be further mixed and added together. When water is added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer. At this time, the amount of water added is about 1 to about 100 parts by weight of the polymer for the purpose of inducing even dispersion of the surface crosslinking agent and preventing aggregation of the polymer powder and optimizing the surface penetration depth of the crosslinking agent.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited thereto, and the silver of the heat medium to be supplied is a means of heating medium, a rate of temperature increase, and a temperature increase. It may be appropriately selected in consideration of the target temperature.
  • the heat source directly supplied may be a heating method through electricity, a gas heating method, the present invention is not limited to the above examples.
  • the super absorbent polymer obtained according to the preparation method of the present invention may exhibit an effect of high water holding capacity and high pressure absorbing capacity and low content of water-soluble components.
  • the super absorbent polymer prepared according to the preparation method of the present invention has a water holding capacity of about 34 g / g to about 37 g / g measured according to the EDANA method WSP 241.2, and measured according to the method of the EDANA method WSP 242.2.
  • One pressure-absorbing capacity is about 24 g / g to about 27 g / g, showing excellent water retention and pressure absorption capacity.
  • the water-soluble ingredient is about 11 to about 13% by weight, indicating a low water-soluble ingredient content.
  • the monomer composition was prepared by adding phosphine oxide O.Olg, 0.18 g of sodium persulfate as a thermal polymerization initiator, and 0.30 g of polyethylene glycol diacrylate as a crosslinking agent.
  • the monomer composition was maintained at 40 ° C using a thermostat, injected into a rotating belt in the form of a biaxial silicon belt, and irradiated with ultraviolet light for 60 seconds at an intensity of 10 mW using a mercury UV lamp light source located on the top of the belt.
  • the reactor was installed with a hot air and a thermal insulation device to maintain the internal temperature at 90 ° C so that the reaction reaction can occur smoothly.
  • the obtained gel-type resin was cut with a cutter to have a volume average particle diameter of 10 mm, dried at 40CTC for 40 minutes in a hot air drier, and then pulverized using a rotary mixer and classified to a particle size of 150 to 850 using a particle size distribution analyzer. Resin was prepared.
  • Example 1 a super absorbent polymer was prepared in the same manner as in Example 1, except that the initial temperature of the monomer composition was maintained at 50 ° C. using an anti-silver bath.
  • Example 3 the initial temperature of the monomer composition was maintained at 50 ° C. using an anti-silver bath.
  • Example 1 a super absorbent polymer was prepared in the same manner as in Example 1, except that the initial temperature of the monomer composition was maintained at 35 ° C. using a thermostat.
  • Example 4 the initial temperature of the monomer composition was maintained at 35 ° C. using a thermostat.
  • Example 1 superabsorbent by the same method as in Example 1, except that 0.005 g of diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide was used. Resin was prepared.
  • Example 5
  • Example 1 a super absorbent polymer was prepared in the same manner as in Example 1, except that lucirin TPO O.Olg was used instead of diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide.
  • lucirin TPO O.Olg was used instead of diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide.
  • Example 1 a super absorbent polymer was prepared in the same manner as in Example 1, except that 0.07 g of sodium persulfate was used. Comparative Example 1
  • Example 1 the initial temperature of the monomer composition was
  • Example 1 the initial temperature of the monomer composition was
  • Example 1 a super absorbent polymer was prepared in the same manner as in Example 1, except that the internal temperature of the reaction vessel was maintained at 50 ° C.
  • the pressure absorption capacity measurement method was in accordance with the EDANA method WSP 242.2. Specifically, 0.9 g of a super absorbent polymer of 850 to 150 / is evenly distributed in a cylinder defined by the EDANA method, pressurized with a piston and a pressure of 21 g / cm 2 , and then absorbed with 0.9% saline solution for 1 hour. The pressure absorbing capacity was calculated as the amount.
  • the measurement of the water-soluble component was based on the EDANA method 270.2. Specifically, the superabsorbent polymer lg was placed in a 250 mL Erlenmeyer flask and eluted for 18 hours in 200 mL of 0.9% saline solution. Filter the eluted solution with a filter paper (No. 4), filter out the gel, and analyze the content by taking only the part dissolved in 9% saline solution. The weight ratio of the eluted superabsorbent resin to the weight of the superabsorbent polymer before elution was determined. The amount of water-soluble ingredient was determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 본 발명에 따른 고흡수성 수지의 제조 방법은 수용성 에틸렌계 불포화 단량체, 열중합 개시제 및 광중합 개시제를 포함하는 모노머 조성물에 대하여 30 내지 55℃의 온도에서 광중합을 진행하는 단계; 55 내지 120℃의 온도에서 열중합 및 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 및 상기 함수겔상 중합체를 건조하는 단계를 포함한다. 본 발명에 따르면, 저온에서의 광중합 후 고온에서의 열중합 또는 광중합하는 2단계의 중합 단계를 포함하여, 향상된 물성을 갖는 고흡수성 수지를 수득할 수 있다.

Description

【명세서】
【발명의 명칭】
고흡수성 수지의 제조 방법
【발명의 상세한 설명】
【기술분야】
본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 보다 상세하게는, 2단계의 중합 단계를 포함하는 고흡수성 수지의 제조방법에 관한 것이다.
본 출원은 2013년 9월 30일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0U6757 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
【배경기술】
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
상기와 같은 고흡수성 수지는 일반적으로 수지용 모노머를 중합하고 이를 건조 및 분쇄하여 분말상의 제품으로 제조될 수 있다.
이러한 고흡수성 수지를 제조하는 공정 중에 모노머를 중합하는 단계는 수지의 물성을 결정하는 중요한 단계이다. 이러한 중합 방법으로는 역상현탁 중합에 의한 방법, 열중합에 의한 방법 및 광중합에 의한 방법 등이 알려져 있다. 이 중 광중합에 의한 방법으로서, 수지용 모노머 조성물을 벨트 (belt)에 놓고 상부에서 광을 조사하여 모노머 조성물을 중합하는 방법이 있다.
그러나 상기와 같이 중합하는 경우, 모노머 조성물의 깊이에 따라 조사량이 일정하지 못하여 위치에 따라 중합 정도가 불균일해질 수 있다. 예컨대 벨트 위에 소정 두께의 모노머 조성물이 놓여 있는 경우, 광원에 가깝게 위치한 모노머 조성물의 상부에는 광 조사량이 많아 상대적으로 과도하게 중합이 진행되고 광원으로부터 멀리 위치한 모노머 조성물의 하부는 광 조사량이 부족하여 중합이 완전히 이루어지지 않고 중합되지 않은 성분들이 그대로 남아있을 수 있다. 이 경우 고흡수성 수지의 물성이 저하될 수 있다. 이를 해결하기 위하여 모노머 조성물 용액의 위치에 따라 광량 또는 광 조사 시간을 달리할 수 있으나, 이 경우 공정이 복잡해지고 공정 시간이 늘아나 생산성이 저하될 수 있다.
【발명의 내용】
【해결하려는 과제】
상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 2단계의 중합 단계를 포함하여 향상된 물성을 갖는 고흡수성 수지의 제조방법을 제공하는 것을 목적으로 한다.
【과제의 해결 수단】
상기의 목적을 달성하기 위하여, 본 발명은 수용성 에틸렌계 블포화 단량체, 열증합 개시제 및 광중합 개시제를 포함하는 모노머 조성물에 대하여 30 내지 55 °C의 은도에서 광중합을 진행하는 단계; 55 내지 120°C의 온도에서 열중합 및 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 및 상기 함수겔상 중합체를 건조하는 단계를 포함하는 고흡수성 수지의 제조방법을 제공한다.
【발명의 효과】
본 발명의 고흡수성 수지의 제조 방법에 따르면, 흡수능이 높으면서 수가용 성분 함량이 낮은 고흡수성 수지를 제조할 수 있다.
【발명을 실시하기 위한 구체적인 내용】
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명의 일 실시예에 따른 고흡수성 수지의 제조 방법에 대해 상세히 설명한다. 본 발명의 고흡수성 수지의 제조 방법은 수용성 에틸렌계 불포화 단량체, 열중합 개시제 및 광중합 개시제를 포함하는 모노머 조성물에 대하여 30 내지 55 °C의 온도에서 광중합을 진행하는 단계; 55 내지 120 °C의 온도에서 열중합 및 광중합을 진행하여 함수겔상 중합체를 형성하는 단겨) ; 및 상기 함수겔상 중합체를 건조하는 단계를 포함한다.
본 발명의 고흡수성 수지의 제조 방법에서, 상기 고흡수성 수지의 원료 물질인 모노머 조성물은 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함한다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상 사용되는 임의의 단량체를 별다른 제한없이 사용할 수 있다. 여기에는 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상의 단량체를 사용할 수 있다.
구체적으로는 (메타)아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2- (메타)아크릴로일프로판술폰산 또는 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N- 치환 (메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 2- 히드록시프로필 (메타)아크릴레이트,
쩨톡시폴리에틸렌글리콜 (메타)아크릴레이트 또는 폴리에틸렌 글리콜 (메타)아크릴레아트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메타) 아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다. 더욱 바람직하게는 아크릴산 또는 그 염, 예를 들어, 아크릴산 또는 그 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다.
상기 수용성 에틸렌계 불포화 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 단량체 조성물에 대해 약 20 내지 약 60 중량0 /0, 바람직하게는 약 40 내지 약 50 중량 %로 될 수 있으며, 중합 시간 및 반응 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 '지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다. 한편, 이와 같은 모노머 조성물을 중합하여 함수겔상 중합체를 형성하는 방법에 있어서, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뒤어진다.
통상 열중합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반웅기에서 진행될 수 있으며., 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행되는 등 중합 방법에 따라 반웅기를 달리할 수 있다.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반웅기에, 열풍을 공급하거나 반응기를 가열하여 열중.합을 하여 얻어진 함수겔상 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.
또한, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다ᅳ
한편, 본 발명의 일 실시예예 따르면, 컨베이어 벨트를 구비한 반웅기에서 열중합 및 광중합을 모두수행한다.
에틸렌계 불포화 단량체를 중합하는 중합 반웅은 발열 반웅이다. 따라서, 초기에는 모노머 조성물의 온도를 낮게 하여 반응을 시작하더라도, 반웅이 진행됨에 따라 모노머 조성물의 온도가 점점 상승하여 고온 상태가 된다. 따라서, 열중합을 진행하는 경우, 초기에 반응을 개시하기 위하여 저온에서도 반웅을 개시할 수 있는 저온용 열중합 개시제와, 반응 중반 이후의 고온 상태에서 반웅을 개시하는 고온용 열중합 개시제를 흔합하여 사용한다. 그러나 이처럼 열중합 개시제만을 2종 이상으로 하여 열중합을 진행하는 경우, 반응이 진행됨에 따라 온도 제어가 어려워 모노머 조성물 내에서 열중합 개시제의 분해 속도가 달라지게 되며, 이에 따라 생성되는 중합체의 분자량이 일정하지 않고 넓은 분포로. 나타나게 된다. 이는 최종 고흡수성 수지의 물성 저하를 초래할 수 있다.
또한, 광중합을 진행하는 경우에도, 상술한 바와 같이 또한 발열 반웅인 증합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함하여 중합을 진행하는 '방법이 알려져 있다. 그러나, 일반적인 광중합 개시 온도인 55 °C에서는 초기부터 열중합도 동시에 일어나므로 광중합 개시의 효율이 떨어져 고분자량의 중합체 생성이 어렵다. 이에, 본 발명의 고흡수성 수지의 제조 방법에서는 먼저, 상기 모노머 조성물에 대하여 약 30 내지 약 55 °C의 온도에서 광중합을 진행한다. 이와 같이 저은에서 광중합을 개시하므로, 열증합 개시제의 작용이 배제되어 일정한 속도로 광중합 반웅이 진행될 수 있다. 상기 온도 범위보다 너무 ,낮으면, 미중합물이 발생할 우려가 있고, 55 °C를 초과하여 너무 높으면 열중합이 일어날 수 있으므로 바람직하지 못하다.
상기 광중합 단계에서 사용할 수 있는 광원은 특별히 한정되는 것은 아니며, 광중합반웅을 일으킬 수 있는 것으로 알려진 자외선 광원은 별 다른 제한 없이 사용할 수 있다. 예를 들어, 약 200 내지 약 400nm 파장의 빛을 사용할 수 있고, Xe램프, 수은램프 또는 메탈할라이드램프 등의 자외선 광원을 사용할 수 있다. 그리고, 상기 광중합 단계는 약 0.1 mw/cm2 내지 약 1 kw/cm2의 세기로 약 5초 내지 약 10분 동안 이루어질 수 있다. 상기 광중합 반웅에 적용되는 빛의 세기 및 시간이 너무 작거나 짧은 경우 중합반웅이 층분히 일어나지 않을 수 있으며, 너무 크거나 긴 경우 고흡수성 수지의 품질이 저하될 수 있다.
상기 광중합이 진행됨에 따라 모노머 조성물의 은도가 상승하며, 모노머 조성물의 온도가 약 55 °C에 도달하면 열중합 개시제의 작용에 의해 열중합이 추가로 진행된다. 상기 열중합 및 광중합이 진행되는 제 2 단계의 온도는 약 55 내지 약 120 °C , 또는 약 60 내지 약 120 °C일 수 있다. 다만, 상기 온도에서는 광중합보다 열중합이 우세하게 일어날 수 있다.
상기 모노머 조성물이 열중합에 적절한 온도에 도달할 수 있도록 별도의 열 공급원을 추가로 사용할 수 있다. 상기 열 공급원은 별 다른 제한 없이 사용할 수 있으며, 예를 들어 열풍, 극초단파 조사, 근적외선 조사 등의 방법을 사용할 수 있다.
상술한 바와 같이, 본 발명의 고흡수성 수지 제조 방법에서는 열중합 및 광중합을 모두 수행하기 때문에, 중합시 사용되는 중합 개시제는 열중합 개시제 및 광중합 개시제를 모두 포함한다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 (α- aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸- 벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 20(X7년)" pi 15에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.002 내지 약 0.2 중량0 /0의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate;(NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2- azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스 -(N, N- 디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N, N- dimethylene)isobutyramidine dihydrochloride), 2-
(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2, 2- 아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2- imidazolin-2-yl)propane] dihydrochloride), 4/ -아조비스 -(4-시아노발레릭 산 )(4,4- azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열증합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. 바람직하게는, 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate;(NH4)2S208) 등과 같은 과황산염계 개시제를 사용할 수 있다. - 상기 열중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약
0.5 중량%의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 블균일해질 수 있다. 본 발명의 일 실시예에 따르면, 상기 모노머 조성물은 고흡수성 수지의 원료 물질로서 내부 가교제를 더 포함할 수 있다. 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 수용성 치환기와 반웅할 수 있는 관능기를 1개 이상 가지면서 , 에틸렌성 블포화기를 1개 이상 갖는 가교제; 흑은 상기 단량체의 수용성 치환기 및 /또는 단량체의 가수분해에 의해 형성된 수용성 치환기와 반응할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다.
상기 내부 가교제의 구체적인 예로는, 탄소수 8 내지 12의 비스아크릴아미드, 비스메타아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리 (메타)아크릴레이트 또는 탄소수 2 내지 10의 폴리을의 폴리 (메타)알릴에테르 등을 들 수 있고, 보다 구체적으로, N,N,- 메틸렌비스 (메타)아크릴레이트, 에틸렌옥시 (메타)아크릴레이트, 폴리에틸렌옥시 (메타)아크릴레이트, 프로필렌옥시 (메타)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 트리메티를 트리아크릴레이트, 트리알릴아민, 트리아릴시아누레이트, 트리알릴이소시아네이트, 폴리에틸렌글리콜, 디에틸렌글리콜 및 프로필렌글리콜로 이루어진 군에서 선택된 하나 이상을 사용할 수 있다. 이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 0.5 중량%의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다.
본 발명의 제조방법에서, 고흡수성 수지의 상기 모노머 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로준비될 수 있다.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄을, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 크실렌, 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.
상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.
이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량 %일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 증량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 을려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 은도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.
다음에, 얻어진 함수겔상 중합체를 건조하는 단계를 수행한다.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단가 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다. 이때 분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 10mm로 되도톡 분쇄할 수 있다.
입경이 2mm 미만으로 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 웅집되는 현상이 나타날 수도 있다. 한편, 입경이 10mm초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미하다. 상기와 같이 분쇄되거나, 흑은 분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250 °C일 수 있다. 건조 온도가 150°C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 은도가 250 °C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200°C의 온도에서, 더욱 바람직하게는 약 160 내지 약 180°C의 은도에서 진행될 수 있다.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약
90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량 %일 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.
분쇄 단계 후 얻어자는 중합체 분말은 입경이 약 150 내지 약 850卿 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다ᅳ
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850 인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반웅 단계를 거쳐 제품화할 수 있다.
다음에, 분쇄된 중합체에 표면 가교제를 첨가하여 표면 가교 반응을 진행한다. 표면 가교는 입자 내부의 가교결합 밀도와 관련하여 고흡수성 고분자 입자 표면 근처의 가교결합 밀도를 증가시키는 단계이다. 일반적으로, 표면 가교 제는 고흡수성 수지 입자의 표면에 도포된다. 따라서, 이 반웅은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다.
이때 상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물이라면 그 구성의 한정이 없다.
바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 상기 표면 가교제로 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌 글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸— 1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세를, 폴리글리세를, 2-부텐 -1,4-디올, 1 ,4-부탄디올, 1 ,3-부탄디올, 1,5-펜탄디을, 1 ,6- 핵산디을, 및 1 ,2-사이클로핵산디메탄을로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에탈렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌핵사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 α-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2ᅳ옥사졸리디논 등을 사용할 수 있다. 그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 다가 알코올 화합물을 포함하여 사용하는 것이 바람직하며, 더욱 바람직하게는 탄소수 2 내지 10의 다가 알코을 화합물류를 사용할 수 있다.
상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반웅 조건에 따라 적절히 선택될 수 있지만, 통상 중합체 100 중량부에 대해, 약 0.001 내지 약 5 중량부, 바람직하게는 약 0.01 내지 약 3 중량부, 더욱 바람직하게는 약 0.05 내지 약 2 중량부를 사용할 수 있다.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반웅이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 중량부를 초과하는 경우, 과도한 표면 가교 반응의 진행으로 인해 흡수능력 및 물성의 저하 현상이 발생할 수 있다,
상기 표면 가교제를 중합체에 첨가하는 방법에 대해서는 그 구성의 한정은 없다. 표면 가교제와 중합체 분말을 반웅조에 넣고 흔합하거나, 중합체 분말에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 중합체와 표면 가교제를 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다.
상기 표면 가교제 첨가시 , 추가로 물을 함께 흔합하여 첨가할 수 있다. 물을 첨가하는 경우, 표면 가교제가 중합체에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물의 함량은 표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 중합체 100 중량부에 대해, 약 1 내지 약
10 중량부의 비을로 첨가되는 것이 바람직하다.
표면 가교제가 첨가된 중합체 입자에 대해 약 140 내지 약 220 V , 바람직하게는 약 160 내지 약 200 °C의 온도에서 약 15 내지 약 90 분, 바람직하게는 약 20 내지 약 80분 동안 가열시킴으로써 표면 가교 결합 반웅 및 건조가 동시에 이루어질 수 있다. 가교 반웅 은도가 140도 미만일 경우 표면 가교 반응이 일어나지 않을 수 있고, 220도를 초과할 경우 탄화로 인한 이물질 및 냄새가 발생하거나, 지나친 반응으로 인하여 물성 저하 및 안정적인 공정 운전 조건을 확보할 수 없는 문제가 발생할 수 있다. 또한 가교 반응 시간이 15분 미만으로 지나치게 짧은 경우, 층분한 가교 반응을 할 수 없고, 가교 반응 시간이 90분을 초과하는 경우, 과도한 표면 가교 반응으로 인해, 중합체 입자의 손상에 따른 물성 저하가 발생할 수 있다. 표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 은도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.
상기와 같이 본 발명의 제조방법에 따라 수득된 고흡수성 수지는 보수능 및 가압흡수능이 높고 수가용 성분의 함량이 낮은 효과를 나타낼 수 있다.
예를 들어, 본 발명의 제조방법에 따라 제조된 고흡수성 수지는 EDANA 법 WSP 241.2에 따라 측정한 보수능이 약 34 g/g 내지 약 37 g/g 이며, EDANA법 WSP 242.2의 방법에서 따라 측정한 가압흡수능이 약 24 g/g 내지 약 27 g/g으로, 우수한 보수능 및 가압 흡수능을 보인다. 또한, 수가용 성분이 약 11 내지 약 13중량%로 낮은 수가용 성분 함량을 나타낸다.
본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 >
실시예 1
아크릴산 단량체 100g, 가성소다 (NaOH) 38.9g 및 물 103.9g을 흔합하고, 상기 흔합물에 광중합 개시제인 디페닐 (2,4,6-트리메틸벤조일) - 포스핀 옥사이드 O.Olg, 열중합 개시제인 소디움 퍼설페이트 0.18g 및 가교제인 폴리에틸렌글리콜디아크릴레이트 0.30g을 첨가하여 모노머 조성물을 준비하였다.
이러한 모노머 조성물은 항온조를 이용하여 40 °C로 유지하였으며, 2축 실리콘 벨트 형태의 회전식 벨트에 주입하고, 밸트 상부에 위치한 수은 UV램프 광원을 이용하여 10mW의 세기로 60초 동안 자외선을 조사하였다. 또한, 반응기는 광중합 이후 열중합이 실시될 때, 내부 온도를 90 °C로 유지하여 열중합 반웅이 원활히 일어날 수 있도록 열풍과 단열 장치를 설치하였다.
얻어진 겔형 수지를 부피 평균 입경이 10mm가 되도록 절단기로 절단하고, 열풍 건조기에서 18CTC , 40분간 건조한 뒤, 회전식 믹서를 이용하여 재분쇄하고 입도 분포 측정기를 이용하여 150 내지 850 의 입자 크기로 분급하여 베이스 수지를 제조하였다.
상기 베이스 수지 lOOg에 대하여, 물 3.2g, 메탄을 4.0g, 1,3-프로판디을 0.18g을 포함하는 표면 처리 용액을 분사하여 입자 표면에 골고루 분산되게 한 후, 190 °C에서 30분간 반응하여 표면 처리된 고흡수성 수지를 수득하였다. 실시예 2
실시예 1에서, 모노머 조성물의 초기 온도를 항은조를 이용하여 50 °C로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 3
실시예 1에서, 모노머 조성물의 초기 온도를 항온조를 이용하여 35 °C로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 4
실시예 1에서, 디페닐 (2,4,6-트리메될벤조일) -포스핀 옥사이드를 0.005g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 5
실시예 1에서, 디페닐 (2,4,6-트리메틸벤조일) -포스핀 옥사이드 대신 lucirin TPO O.Olg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 6
실시예 1에서, 소디움 퍼설페이트를 0.07g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 1
실시예 1에서, 모노머 조성물의 초기 온도를 항은조를 이용하여
80 °C로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 2
실시예 1에서, 모노머 조성물의 초기 온도를 항온조를 이용하여
25 °C로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 3
실시예 1에서, 반웅기의 내부 온도를 50 °C로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.
<실험예 >
보수능. 가압흡수능 및 수가용성분측정
보수능 측정은 EDANA 법 WSP 241.2에 따랐다 · 30~50 메쉬로 분급한 고흡수성 수지 0.2g을 티백에 넣고 30 분간 0.9% 염수 용액에 불린 뒤 250G로 설정된 원심분리기에서 3분 동안 물을 제거하고 무게를 재어 고흡수성 수지가 보유하고 있는 물의 양을 측정하는 방식으로 보수능을 측정하였다.
가압 흡수능 측정 방법은 EDANA 법 WSP 242.2 에 따랐다. 구체적으로, 850 내지 150/ 인 고흡수성 수지 0.9g을 EDANA 법에서 규정하는 실린더에 고르게 분포한 후, 피스톤과 추로 21g/cm2의 압력으로 가압을 한 후, 0.9% 염수 용액을 1시간 흡수한 양으로써 가압흡수능을 계산하였다.
수가용 성분의 측정은, EDANA 법 270.2 에 따랐다. 구체적으로, 고흡수성 수지 lg을 250mL 삼각 플라스크에 넣은 후 0.9% 염수 용액 200mL에서 18시간 동안 용출시켰다. 용출된 용액을 filter paper(No.4)로 겔 부분을 걸러내고, 으9% 염수 용액에 용해된 부분만을 취하여 함량을 분석함으로써, 용출 이전의 고흡수성 수지 무게 대비 용출된 고흡수성 수지의 무게비를 구하여 수가용 성분 함량을 측정하였다.
상기 방법에 따라 측정한 실시예들 및 비교예들의 물성값을 하기 표 1에 나타내었다.
【표 1 ]
Figure imgf000017_0001

Claims

【특허청구범위】
【청구항 1】
수용성 에틸렌계 불포화 단량체, 열중합 개시제 및 광중합 개시제를 포함하는 모노머 조성물에 대하여 30 내지 55 °C의 온도에서 광중합을 진행하는 단계;
55 내지 120°C의 온도에서 열중합 및 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 및
상기 함수겔상 중합체를 건조하는 단계를 포함하는 고흡수성 수지의 제조 방법.
【청구항 2]
제 1항에 있어서,
상기 열중합 개시제는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 고흡수성 수지의 제조 방법.
【청구항 3】
게 1항에 있어서,
상기 광중합 개시제는 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 (α- aminoketone)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 고흡수성 수지의 제조 방법.
【청구항 4】
제 1 항에 있어서,
상기 함수겔상 중합체의 함수율은 40 내지 80 중량%인 고흡수성 수지의 제조 방법.
【청구항 5】
제 1 항에 있어서,
상기 함수겔상 중합체의 건조 단계 전에, 함수겔상 중합체를 입경이 2 내지 10mm으로 분쇄하는 단계를 더 포함하는 고흡수성 수지의 제조 방법.
【청구항 6】
게 1 항에 있어서,
상기 함수겔상 중합체의 건조는 150 내지 250°C의 온도에서 진행되는 고흡수성 수지의 제조 방법.
,
【청구항 7]
제 1항에 있어서,
건조된 중합체를 분쇄하는 단계; 및
분쇄된 중합체에 대하여 표면 가교 반응을 수행하는 단계를 더 포함하는 고흡수성 수지의 제조 방법.
【청구항 8】
제 7 항에 있어서,
상기 건조된 중합체의 분쇄는 분쇄된 중합체의 입경이 150 내지 850卿가 되도록 진행하는 고흡수성 수지의 제조 방법.
【청구항 9】
제 7 항에 있어서,
상기 분쇄된 중합체를 입경이 150 내지 850 m인 중합체로 분급하는 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.
【청구항 10】
제 1 항에 있어서,
상기 고흡수성 수지는 34 내지 37 g/g의 보수능, 및 24 내지 27 g/g의 가압흡수능 및 11 내지 13중량%의 수가용 성분 함량을 갖는. 고흡수성 61
SlT600/M0ZaM/X3d Z669 )/SI0Z OAV
PCT/KR2014/009115 2013-09-30 2014-09-29 고흡수성 수지의 제조 방법 WO2015046992A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14848361.3A EP3006470A4 (en) 2013-09-30 2014-09-29 PROCESS FOR THE PREPARATION OF SUPER ABSORBENT RESIN
JP2016545696A JP6277282B2 (ja) 2013-09-30 2014-09-29 高吸水性樹脂の製造方法
US14/917,235 US9701763B2 (en) 2013-09-30 2014-09-29 Method for preparing super absorbent polymer
CN201480044792.0A CN105452306B (zh) 2013-09-30 2014-09-29 用于制备超吸收性聚合物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130116757A KR101680829B1 (ko) 2013-09-30 2013-09-30 고흡수성 수지의 제조 방법
KR10-2013-0116757 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046992A1 true WO2015046992A1 (ko) 2015-04-02

Family

ID=52743995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009115 WO2015046992A1 (ko) 2013-09-30 2014-09-29 고흡수성 수지의 제조 방법

Country Status (7)

Country Link
US (1) US9701763B2 (ko)
EP (1) EP3006470A4 (ko)
JP (1) JP6277282B2 (ko)
KR (1) KR101680829B1 (ko)
CN (1) CN105452306B (ko)
TW (1) TWI572619B (ko)
WO (1) WO2015046992A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190135992A1 (en) * 2016-12-19 2019-05-09 Lg Chem, Ltd. Method For Producing Super Absorbent Polymer
JP2022540490A (ja) * 2019-10-07 2022-09-15 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495845B1 (ko) * 2013-09-30 2015-02-25 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
US10285866B2 (en) 2015-01-16 2019-05-14 Lg Chem, Ltd. Super absorbent polymer
KR101880218B1 (ko) * 2015-11-06 2018-07-20 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
KR102191462B1 (ko) * 2017-08-22 2020-12-15 주식회사 엘지화학 고흡수성 수지 시트의 제조 방법 및 이로부터 제조된 고흡수성 수지 시트
KR102577709B1 (ko) * 2018-01-16 2023-09-11 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN110358017A (zh) * 2019-07-03 2019-10-22 合肥聚合辐化技术有限公司 一种提高丙烯酸乳液性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060089611A1 (en) * 2003-03-26 2006-04-27 Norbert Herfert Color-stable superabsorbent polymer composition
US20080081848A1 (en) * 2006-10-02 2008-04-03 Formosa Plastics Corporation Method of manufacturing the super-absorbent polymer (SAP) which is powdery, insoluble in water, and able to absorb water, blood and urine and has slight soluble things
KR20120047034A (ko) * 2010-11-03 2012-05-11 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20120049004A (ko) * 2010-11-08 2012-05-16 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20120054836A (ko) * 2010-11-22 2012-05-31 주식회사 엘지화학 고흡수성 수지의 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200106245B (en) * 2000-08-03 2002-02-08 Nippon Catalytic Chem Ind Water-absorbent resin, hydropolymer, process for producing them, and uses of them.
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
JP3674478B2 (ja) * 2000-08-17 2005-07-20 東亞合成株式会社 含水架橋重合体ゲルの製造方法
JP3897686B2 (ja) * 2001-12-06 2007-03-28 株式会社日本触媒 酸型(メタ)アクリル酸系重合体及びその製造方法、並びに、掘削土処理剤又はパップ剤用添加剤
JP4077204B2 (ja) 2002-01-25 2008-04-16 大王製紙株式会社 吸水性複合体の製造方法および吸水性複合体
JP4943214B2 (ja) * 2006-06-07 2012-05-30 株式会社日本触媒 (メタ)アクリル酸(塩)系水溶性重合体の製造方法
CN102245218B (zh) 2008-12-19 2014-10-22 Sca卫生用品公司 包含超吸收聚合物和纤维素纳米纤丝的超吸收聚合物复合物
CN101942065B (zh) 2009-07-07 2014-10-01 台湾塑胶工业股份有限公司 一种超高吸水性树脂制造方法
KR101495779B1 (ko) * 2010-11-30 2015-02-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20140134219A (ko) * 2013-05-13 2014-11-21 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR20150024767A (ko) * 2013-08-27 2015-03-09 주식회사 엘지화학 고흡수성 수지의 제조 방법
EP3018149B1 (en) * 2013-09-30 2018-05-30 LG Chem, Ltd. Method for preparing super absorbent resin
KR20150040476A (ko) * 2013-10-07 2015-04-15 주식회사 엘지화학 고흡수성 수지 및 그 제조 방법
DE202014011225U1 (de) * 2013-12-03 2018-08-31 Lg Chem. Ltd. Superabsorbierendes Polymer
CN105814089B (zh) * 2013-12-11 2018-05-22 株式会社Lg化学 超吸收性聚合物树脂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060089611A1 (en) * 2003-03-26 2006-04-27 Norbert Herfert Color-stable superabsorbent polymer composition
US20080081848A1 (en) * 2006-10-02 2008-04-03 Formosa Plastics Corporation Method of manufacturing the super-absorbent polymer (SAP) which is powdery, insoluble in water, and able to absorb water, blood and urine and has slight soluble things
KR20120047034A (ko) * 2010-11-03 2012-05-11 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20120049004A (ko) * 2010-11-08 2012-05-16 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20120054836A (ko) * 2010-11-22 2012-05-31 주식회사 엘지화학 고흡수성 수지의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
See also references of EP3006470A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190135992A1 (en) * 2016-12-19 2019-05-09 Lg Chem, Ltd. Method For Producing Super Absorbent Polymer
US11225556B2 (en) * 2016-12-19 2022-01-18 Lg Chem, Ltd. Method for producing super absorbent polymer
JP2022540490A (ja) * 2019-10-07 2022-09-15 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
JP7335051B2 (ja) 2019-10-07 2023-08-29 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Also Published As

Publication number Publication date
EP3006470A1 (en) 2016-04-13
KR101680829B1 (ko) 2016-11-29
TW201525009A (zh) 2015-07-01
JP6277282B2 (ja) 2018-02-07
EP3006470A4 (en) 2016-11-09
CN105452306A (zh) 2016-03-30
US20160208022A1 (en) 2016-07-21
US9701763B2 (en) 2017-07-11
KR20150037277A (ko) 2015-04-08
TWI572619B (zh) 2017-03-01
JP2016532001A (ja) 2016-10-13
CN105452306B (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
KR101918647B1 (ko) 고흡수성 수지
US9808787B2 (en) Super absorbent polymer and preparation method thereof
WO2015046992A1 (ko) 고흡수성 수지의 제조 방법
WO2014077612A1 (ko) 고흡수성 수지의 제조 방법 및 이로부터 제조되는 고흡수성 수지
KR20120054836A (ko) 고흡수성 수지의 제조 방법
WO2018004161A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
KR101880218B1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
WO2015047029A1 (ko) 고흡수성 수지의 제조 방법
WO2016111473A1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
WO2015030367A1 (ko) 고흡수성 수지의 제조 방법
KR20140126821A (ko) 고흡수성 수지의 제조 방법
KR101680830B1 (ko) 고흡수성 수지 및 이의 제조방법
WO2014112722A1 (ko) 고흡수성 수지의 제조 방법
WO2018004162A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2016085123A1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
JP6811259B2 (ja) 高吸水性樹脂およびその製造方法
KR102577709B1 (ko) 고흡수성 수지의 제조 방법
WO2017111205A1 (ko) 고흡수성 수지의 제조 방법
KR102624684B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2016093643A2 (ko) 고흡수성 수지의 제조 방법
WO2018135928A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2017155197A1 (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
WO2016085152A1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
WO2017099423A1 (ko) 고흡수성 수지의 제조 방법
WO2016089005A1 (ko) 고흡수성 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044792.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014848361

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016545696

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14917235

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE