KR102624684B1 - 고흡수성 수지 및 이의 제조 방법 - Google Patents

고흡수성 수지 및 이의 제조 방법 Download PDF

Info

Publication number
KR102624684B1
KR102624684B1 KR1020170164359A KR20170164359A KR102624684B1 KR 102624684 B1 KR102624684 B1 KR 102624684B1 KR 1020170164359 A KR1020170164359 A KR 1020170164359A KR 20170164359 A KR20170164359 A KR 20170164359A KR 102624684 B1 KR102624684 B1 KR 102624684B1
Authority
KR
South Korea
Prior art keywords
polymer
weight
water
superabsorbent polymer
cross
Prior art date
Application number
KR1020170164359A
Other languages
English (en)
Other versions
KR20190064978A (ko
Inventor
이용훈
손정민
이준의
한창훈
신광인
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020170164359A priority Critical patent/KR102624684B1/ko
Publication of KR20190064978A publication Critical patent/KR20190064978A/ko
Application granted granted Critical
Publication of KR102624684B1 publication Critical patent/KR102624684B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 고흡수성 수지 및 이의 제조방법에 관한 것으로, 본 발명에 따르면, 특정한 내부 가교제를 사용함으로써 높은 보수능과 흡수 속도를 가지는 고흡수성 수지를 제조할 수 있다.

Description

고흡수성 수지 및 이의 제조 방법 {SUPER ABSORBENT POLYMER AND PREPARATION METHOD THEREOF}
본 발명은 흡수 속도가 빠른 고흡수성 수지 및 이의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생용품 외에 원예용 토양 보수재, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지재, 및 찜질용 등의 재료로 널리 사용되고 있다.
많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 이러한 위생재 내에서, 상기 고흡수성 수지는 펄프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며, 그 일환으로서 펄프의 함량이 감소되거나, 더 나아가 펄프가 전혀 사용되지 않는 소위 펄프리스(pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다.
이와 같이, 펄프의 함량이 감소되거나, 펄프가 사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되며, 이러한 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능 및 흡수 속도를 나타낼 필요가 있다.
한편, 고흡수성 수지의 중요한 물성 중 하나인 흡수 속도는 기저귀와 같이 피부에 닿는 제품의 표면 dryness와 연관되어 있다. 일반적으로 이러한 흡수 속도는 고흡수성 수지의 표면적을 넓히는 방법으로 향상시킬 수 있다.
일 예로, 발포제를 사용하여 고흡수성 수지의 입자 표면에 다공성 구조를 형성시키는 방법이 적용되고 있다. 하지만, 일반적인 발포제로는 충분한 양의 다공성 구조를 형성시킬 수 없어 흡수 속도의 증가폭이 크지 않은 단점이 있다.
다른 예로, 고흡수성 수지의 제조 과정에서 수득되는 미분을 재조립하여 불규칙한 형태의 다공성 입자를 형성시킴으로써 표면적을 넓히는 방법이 있다. 그러나, 이러한 방법을 통해 고흡수성 수지의 흡수 속도는 향상될 수 있더라도, 수지의 보수능(CRC)과 가압 흡수능(AUP)이 상대적으로 저하되는 한계가 있다. 이처럼 고흡수성 수지의 흡수 속도, 보수능, 가압 흡수능 등의 물성은 트레이드-오프(trade-off)의 관계에 있어, 이들 물성을 동시에 향상시킬 수 있는 제조 방법이 절실히 요구되고 있는 실정이다.
본 발명은 빠른 흡수 속도를 가지는 고흡수성 수지를 제공하기 위한 것이다.
또한, 본 발명은 상기 고흡수성 수지의 제조 방법을 제공하기 위한 것이다.
본 발명은,
A) 중합 개시제 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 가지는 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 함수겔상 중합체를 형성하는 단계;
B) 상기 함수겔상 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
C) 표면 가교제의 존재 하에, 열처리를 통해 상기 베이스 수지 분말을 표면 가교하여, 고흡수성 수지 입자를 형성하는 단계를 포함하고,
상기 내부 가교제는;
a1) 디올디아크릴레이트계 가교제; 및
a2) 탄소수 3 내지 10의 알킬렌 카보네이트 화합물 1종 이상을 포함하는,
고흡수성 수지의 제조 방법을 제공한다.
또한, 본 발명은,
산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 포함하는 단량체 조성물을 중합 및 내부 가교시킨 베이스 수지를 포함하고,
상기 베이스 수지는 표면에 형성된 표면 가교층을 포함하며,
EDANA 법 WSP 241.3에 따라 측정한 원심 분리 보수능(CRC)이 25g/g 이상이고,
1g이 염화나트륨 및 탄소수 12 내지 14의 알코올 에톡실레이트 수용액 20g을 흡수하는 소요 시간이(T-20) 140초 이하인,
고흡수성 수지를 제공한다.
본 발명에 따른 고흡수성 수지는, 중합 시, 특정 조합의 내부 가교제를 사용하여, 내부 가교와 동시에 균일한 발포를 진행할 수 있어, 높은 보수능과 흡수 속도를 나타낼 수 있다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한 본 발명에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에" 또는 "위에" 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지 및 이의 제조 방법에 대해 보다 상세히 설명하기로 한다.
고흡수성 수지는 보수능, 가압 흡수능 및 흡수 속도가 중요한 물성으로 평가되고 있으며, 이를 위하여 종래에는 고흡수성 수지의 내부에 기공을 많이 형성하여 물을 빨리 빨아들이게 하거나 또는 고흡수성 수지의 입자 크기를 작게 하는 방법 등이 알려져 있다.
그러나, 고흡수성 수지의 입자 크기를 줄이는 데에는 한계가 있으며, 내부 기공을 형성하는 경우 겔 강도가 약해지기 때문에 물품의 박막화가 어렵다는 단점이 있다.
이에 저온 발포제와 고온 발포제를 함께 사용하여 고흡수성 수지의 제조 과정에서 내부 기공의 크기 및 분포를 조절하여 흡수 속도를 높이는 방법이 제안되었으나, 기공의 크기 및 분포를 조절하기 위해 중합 온도의 제어가 필요하여 공정이 복잡하고, 높은 수준의 보수능(CRC) 및 빠른 흡수 속도(vortex time)를 가지는 베이스 수지의 제조가 어려워, 보다 향상된 흡수능과 흡수 속도를 가지는 고흡수성 수지의 제조 방법에 대한 필요성이 여전히 존재한다.
본 발명자들은, 중합 및 내부 가교 반응 시, 특정한 조합의 내부 가교제를 사용하여, 내부 가교 반응과 동시에, 보다 안정적이고 고르게 기포를 발생시켜, 결과적으로 높은 보수능과 함께 빠른 흡수 속도를 나타내는 고흡수성 수지를 제조할 수 있음에 착안하여 본 발명을 완성하였다.
이하, 본 발명의 고흡수성 수지 및 이의 제조 방법을 상세히 설명한다.
참고로, 본 발명의 명세서에서 "중합체", 또는 "고분자"는 에틸렌성 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율(수분 함량)이 약 40 중량% 이상의 중합체를 함수겔상 중합체로 지칭할 수 있다.
또한, "베이스 수지" 또는 "베이스 수지 분말"은 상기 중합체를 건조 및 분쇄하여 파우더(powder) 형태로 만든 것을 의미한다.
본 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법에서는, 먼저 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 에틸렌성 불포화 단량체, 중합 개시제, 및 내부 가교제를 포함하는, 단량체 조성물을 중합하여 함수겔상 중합체를 형성한다.
상기 에틸렌성 불포화 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 에틸렌성 불포화 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
바람직하게는, 상기 에틸렌성 불포화 단량체는 하기 화학식 1로 표시되는 화합물이다:
[화학식 1]
R1-COOM1
상기 화학식 1에서,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
바람직하게는, 상기 에틸렌성 불포화 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다.
또한, 상기 단량체 조성물 중 에틸렌성 불포화 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 약 20 내지 약 90 중량%, 또는 약 40 내지 약 70중량%일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반응에서 나타나는 겔 현상을 이용하여 중합 후 미반응 단량체를 제거할 필요가 없도록 하면서도, 후속 공정인 중합체의 분쇄시 분쇄 효율을 조절하는데 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다.
한편, 상기 단량체 조성물에는 함수겔상 중합체의 물성을 향상시키기 위한 내부 가교제가 포함된다. 상기 가교제는 함수겔상 중합체 내부에서, 가교 결합을 형성하기 위한 가교제로, 후속 공정에서 상기 함수겔상 중합체의 표면을 가교시키기 위한 표면 가교제와 구분된다.
본 발명의 일 구현예에 따른, 고흡수성 수지의 제조 방법에서는,
a1) 디올디아크릴레이트계 가교제; 및
a2) 탄소수 3 내지 10의 알킬렌 카보네이트 화합물 1종 이상을 포함하는, 내부 가교제를 사용한다.
상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 중합시 가교 결합의 도입을 가능케 하는 것으로, 보통의 경우, 특별한 제한이 없이 다관능성 관능화 화합물이 사용된다.
그러나, 본 발명에서는, 상기와 같이 특정한 조합의 내부 가교제를 사용한다.
상기 디올디아크릴레이트계 화합물로는, 에틸렌글리콜 디(메타)아크릴레이트, 폴리에틸렌글리콜 디(메타)아크릴레이트, 프로필렌글리콜 디(메타)아크릴레이트, 부탄다이올디(메타)아크릴레이트, 부틸렌글리콜디(메타)아크릴레이트, 디에틸렌글리콜 디(메타)아크릴레이트, 헥산디올디(메타)아크릴레이트, 트리에틸렌글리콜 디(메타)아크릴레이트, 트리프로필렌글리콜 디(메타)아크릴레이트, 테트라에틸렌글리콜 디(메타)아크릴레이트로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으며, 이중, 폴리에틸렌글리콜디아크릴레이트를 사용하는 것이 가장 바람직할 수 있다.
또한, 상기 탄소수 3 내지 10의 알킬렌 카보네이트 화합물로는, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 등, 직쇄 또는 분지쇄의 2가 알킬렌 그룹과, 카보네이트 단위를 포함하는 화합물을 들 수 있고, 이 중, 에틸렌 카보네이트 및/또는 프로필렌 카보네이트가 바람직하게 사용될 수 있으며, 에틸렌 카보네이트 및 프로필렌 카보네이트를 동시에 사용하는 것이 가장 바람직할 수 있다.
특히, 상기 에틸렌 카보네이트 및 프로필렌 카보네이트는, 함수겔상 중합체에 내부 가교 결합을 도입함과 동시에, 이산화탄소를 발생시키게 되는데, 내부 가교 반응 중 기포의 발생을 안정적으로 조절하여, 함수겔상 중합체에서 균일한 발포가 이루어지도록 할 수 있다.
고흡수성 수지 제조 시, 별도의 발포제를 사용하는 경우, 고흡수성 수지의 높은 흡수 속도를 달성하기 위해 충분한 양의 발포제를 사용하여야 하는데, 발포제 사용량으로 인해 발포가 불균일하게 진행되면서, 발포 중합 시트의 체적이 비대칭적으로 커지는 문제점이 발생할 수 있다.
그러나, 본원발명의 경우, 특정한 조합의 내부 가교제를 사용하여, 내부 가교와 동시에 이산화탄소를 발생시킬 수 있기 때문에, 더욱 균일한 발포 중합체를 제조할 수 있게 된다.
또한, 이후의 표면 가교 공정에서 가교 효율이 높아지게 되어, 상대적으로 낮은 온도에서도 표면 가교 반응을 진행시킬 수 있게 된다. 이러한 결과는 내부 가교제로 사용된 알킬렌 카보네이트 중 일부가, 한 쪽만 반응하고, 주 사슬에 매달린 형태로(Dangling) 베이스 수지에 균일하게 분포하여 표면 반응 단계에서도 작용할 수 있는 것으로부터 기인하는 것으로 생각된다.
이러한 내부 가교제는, 상술한 단량체 중량 대비, 약 1000 내지 약 10000ppm으로 사용될 수 있다. 상기 내부 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 내부 가교제의 농도가 지나치게 높을 경우 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다.
그리고, 상기 내부 가교제는, a1) 디올디아크릴레이트계 가교제 100중량부에 대하여,
a2) 탄소수 3 내지 10의 알킬렌 카보네이트 화합물을 약 1 내지 약 50중량부로 사용하는 것이 바람직할 수 있다.
상기 디올디아크릴레이트계 가교제 및 탄소수 3 내지 10의 알킬렌 카보네이트 화합물을 상기 범위로 사용하는 경우, 디올디아크릴레이트계 가교제에 의해 형성되는 가교 결합이 알킬렌 카보네이트의 내부 가교 반응에서 발생하는 이산화탄소의 양을 효과적으로 조절하여, 균일한 발포가 이루어질 수 있으며, 또한 발포 효율을 향상시킬 수 있다.
그리고, 상기 내부 가교제는, 폴리카르복실산계 공중합체와 함께 사용될 수 있다.
폴리카르복실산계 공중합체는, 내부 가교제에 포함된, 탄소수 3 내지 10의 알킬렌 카보네이트 화합물의 분산성을 향상시킬 수 있으며, 이에 따라, 가교 결합에 의해 형성되는 함수겔상 중합체에서 고른 내부 가교 및 발포가 이루어지도록 할 수 있다. 또한, 상기 폴리카르복실산계 공중합체는, 상기 내부 가교제에 의한 내부 가교 반응 속도를 완화시켜, 수가용성 성분이 적은 함수겔상 중합체를 제조할 수 있으며, 이후 분쇄 시, 균일하고, 표면적이 넓은 고흡수성 수지 분체를 제조할 수 있게 된다.
이러한 폴리카르복실산계 공중합체는, 하기 화학식 1a 및 2a로 표시되는 반복단위를 포함하는, 폴리아크릴레이트-폴리알킬렌옥사이드-그라프트 공중합체 등을 들 수 있다.
[화학식 1-a]
[화학식 1-b]
상기 화학식 1-a 및 1-b에서,
R1, R2 및 R3는 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬 그룹이고,
RO는 탄소수 2 내지 4의 옥시알킬렌 그룹이고,
M1은 수소 또는 소듐이고,
X는 -(CO)O-이고,
m은 1 내지 100의 정수이고,
n은 1 내지 1000의 정수이고,
p는 1 내지 150의 정수이고, 상기 p가 2 이상인 경우 둘 이상 반복되는 -RO-는 서로 동일하거나 다를 수 있다.
그리고, 본 발명의 일 실시예에 따르면, 상기 폴리카르복실산계 공중합체는 상기 탄소수 3 내지 10의 알킬렌 카보네이트 화합물 100 중량부에 대하여, 약 1 내지 약 50중량부로 사용되는 것이 바람직할 수 있다. 폴리카르복실산계 공중합체가 적게 사용되는 경우, 알킬렌 카보네이트 화합물의 분산이 제대로 이루어지지 않아, 내부 가교 결합 및 발포 시, 균일하게 진행되지 않을 수 있으며, 너무 많이 사용되는 경우, 제조되는 고흡수성 수지의 흡수 특성이 저하되는 문제점이 발생할 수 있다.
상기 폴리카르복실산계 공중합체는, 중량 평균 분자량이 약 40,000g/mol 이하, 약 25,000 내지 약 40,000g/mol, 또는, 약 30,000 내지 약 35,000g/mol인 것을 사용하는 것이, 알킬렌 카보네이트에 의한 내부 가교 및 발포 특성 조절 측면에서 바람직할 수 있다.
상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 광 중합의 경우에도 열 중합 개시제가 추가로 사용될 수 있다.
상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(benzyl dimethyl ketal), 아실포스핀(acyl phosphine), 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)"의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다.
또한, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등을 예로 들 수 있다.
또한, 아조(Azo)계 개시제로는 2,2-아조비스-(2-아미디노프로판)이염산염(2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다.
상기 중합 개시제는 상기 에틸렌성 불포화 단량체 100중량부에 대하여 약 0.001 내지 약 1중량부의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.
이 밖에도, 상기 단량체 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다.
그리고, 이러한 단량체 조성물은 전술한 단량체, 중합 개시제, 내부 가교제 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 자일렌, 부티로락톤, 카르비톨, 메틸셀로솔브아세테이트, N, N-디메틸아세트아미드, 또는 이들의 혼합물 등 사용될 수 있다.
그리고, 상기 단량체 조성물의 중합을 통한 함수겔상 중합체의 형성은 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반응기에서 진행될 수 있다.
일 예로, 교반축이 구비된 니더와 같은 반응기에 상기 단량체 조성물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반응기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔상 중합체는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 약 2 내지 약 50mm인 함수겔상 중합체가 얻어질 수 있다.
그리고, 다른 일 예로, 이동 가능한 컨베이어 벨트가 구비된 반응기에서 상기 단량체 조성물에 대한 광 중합을 진행하는 경우에는 시트 형태의 함수겔상 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 약 0.5 내지 약 5cm의 두께로 조절되는 것이 바람직하다.
이와 같은 방법으로 형성되는 함수겔상 중합체는 약 40 내지 80중량%의 함수율을 나타낼 수 있다. 여기서, 함수율은 함수겔상 중합체의 전체 중량에서 수분이 차지하는 중량으로서, 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값일 수 있다. 구체적으로, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분 증발에 따른 무게 감소분을 측정하여 계산된 값으로 정의될 수 있다. 이때, 건조 조건은 상온에서 약 180까지 온도를 상승시킨 뒤 약 180에서 유지하는 방식으로, 총 건조 시간은 온도 상승 단계 약 5분을 포함하여 약 20분으로 설정될 수 있다.
한편, 상기 고흡수성 수지의 제조 방법에는 전술한 단계를 통해 형성된 함수겔상 중합체를 건조하는 단계가 포함된다.
여기서, 필요에 따라, 상기 건조 단계의 효율을 높이기 위해, 상기 건조 전에 상기 함수겔상 중합체를 분쇄(조분쇄)하는 단계를 더 거칠 수 있다.
비제한적인 예로, 상기 조분쇄에 이용 가능한 분쇄기로는 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper), 원판식 절단기(Disc cutter) 등을 예로 들 수 있다.
이때, 상기 조분쇄는 상기 함수겔상 중합체의 입경이 약 2 내지 약 10mm가 되도록 수행될 수 있다. 즉, 건조 효율의 증대를 위하여 상기 함수겔상 중합체는 10mm 이하의 입자로 분쇄되는 것이 바람직하다. 하지만, 과도한 분쇄시 입자간 응집 현상이 발생할 수 있으므로, 상기 함수겔상 중합체는 약 2mm이상의 입자로 분쇄되는 것이 바람직하다.
그리고, 이와 같이 함수겔상 중합체의 건조 단계 전에 조분쇄 단계를 거치는 경우, 중합체는 함수율이 높은 상태이기 때문에 분쇄기의 표면에 중합체가 들러붙는 현상이 나타날 수 있다. 이러한 현상을 최소화하기 위하여, 상기 조분쇄 단계에는, 필요에 따라, 스팀, 물, 계면활성제, Clay 나 Silica 등의 미분 응집 방지제; 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산와 같은 열중합 개시제, 에폭시계 가교제, 디올(diol)류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교제, 수산화기를 포함하는 1관능기의 화합물과 같은 가교제가 첨가될 수 있다.
한편, 상기와 같이 조분쇄 혹은 중합 직후의 함수겔상 중합체에 대한 건조는 약 120 내지 약 250, 또는 약 150 내지 약 200, 또는 약 160 내지 약 180의 온도 하에서 수행될 수 있다(이때, 상기 온도는 건조를 위해 공급되는 열 매체의 온도 또는 건조 공정에서 열 매체 및 중합체를 포함하는 건조 반응기 내부의 온도로 정의될 수 있다.). 즉, 건조 온도가 낮아 건조 시간이 길어질 경우 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 120 이상인 것이 바람직하다. 또한, 건조 온도가 필요 이상으로 높을 경우 함수겔상 중합체의 표면만 건조되어 후술할 분쇄 공정에서 미분 발생이 많아질 수 있고, 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 250 이하인 것이 바람직하다.
이때, 상기 건조 단계에서의 건조 시간은 특별히 한정되지 않으나, 공정 효율 등을 고려하여 상기 건조 온도 하에서 20분 내지 90 분으로 조절될 수 있다.
그리고, 상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상적으로 사용될 수 있는 것이라면 그 구성이 한정없이 적용 가능하다. 구체적으로, 상기 건조 단계는 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법이 적용될 수 있다.
이와 같은 방법으로 건조된 중합체는 약 0.1 내지 약 10중량%의 함수율을 나타낼 수 있다. 즉, 중합체의 함수율이 약 0.1중량% 미만인 경우, 과도한 건조로 인한 제조 원가의 상승 및 가교 중합체의 분해(degradation)가 일어날 수 있어 유리하지 않다. 그리고, 중합체의 함수율이 약 10중량%를 초과할 경우 후속 공정에서 불량이 발생할 수 있어 바람직하지 않다.
이후, 건조된 중합체를 분쇄하는 단계가 수행된다. 상기 분쇄 단계는 건조된 중합체의 표면적으로 최적화하기 위한 단계로서, 분쇄된 중합체의 입경이 약 150 내지 약 850㎛가 되도록 수행할 수 있다.
이때 분쇄기로는 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill), 조그 밀(jog mill) 등 통상의 것이 사용될 수 있다. 또한, 최종 제품화되는 고흡수성 수지의 물성을 관리하기 위하여, 상기 분쇄 단계를 통해 얻어지는 중합체 입자에서 약 150 내지 약 850㎛의 입경을 갖는 입자를 선택적으로 분급하는 단계가 더 수행될 수 있다.
전술한 단계를 통해 분쇄된 중합체, 즉, 베이스 수지 분말을 표면 가교제에 의해 표면 가교하는 단계가 수행된다.
상기 표면 가교는 표면 가교제의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반응을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 가교를 통해 상기 분쇄된 중합체 입자의 표면에는 표면 가교층이 형성된다.
상기 표면 개질은 중합체 입자 표면의 가교 결합 밀도를 증가시키는 통상의 방법으로 수행될 수 있으며, 예를 들어, 표면 가교제를 포함하는 용액과 상기 분쇄된 중합체를 혼합하여 가교 반응시키는 방법으로 수행될 수 있다.
여기서 상기 표면 가교제는 상기 중합체가 갖는 관능기와 반응 가능한 화합물로서, 그 구성은 특별히 한정되지 않는다.
다만, 비제한적인 예로, 상기 표면 가교제는 탄소수가 3 내지 10인, 알킬렌 카보네이트 화합물을 사용하는 것이 바람직할 수 있다.
이러한 알킬렌 카보네이트 화합물은, 구체적으로 예를 들어, 1,3-디옥소란-2-온, 4-메틸-1,3-디옥소란-2-온, 4,5-디메틸-1,3-디옥소란-2-온, 4,4-디메틸-1,3-디옥소란-2-온, 4-에틸-1,3-디옥소란-2-온, 4-히드록시메틸-1,3-디옥소란-2-온, 1,3-디옥산-2-온, 4-메틸-1,3-디옥산-2-온, 4,6-디메틸-1,3-디옥산-2-온, 1,3-디옥세스판-2-온 등을 들 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 표면 가교제는, 상술한 알킬렌 카보네이트 화합물 외에, 탄소수 2 내지 10인 다가 알콜, 탄소수 1 내지 10의 아미노 알콜, 탄소수 2 내지 10의 옥세탄 화합물, 탄소수 2 내지 10의 에폭시 화합물, 탄소수 2 내지 10의 다가 아민 화합물, 칼슘 수산화물, 마그네슘 수산화물, 알루미늄 수산화물, 철 수산화물, 칼슘 염화물, 마그네슘 염화물, 알루미늄 염화물, 및 철 염화물 등을 더 포함할 수도 있다.
또한, 본 발명의 다른 일 실시예에 따르면, 상기 표면 가교제는, 메톡시폴리에틸렌글리콜모노메타크릴레이트(MPEGMAA) 등을 포함하는, 알콕시 폴리알킬렌글리콜모노(메타)아크릴레이트 계 단량체; 및 아크릴산 및 (메타)아크릴산을 포함하는, (메트)아크릴레이트 계 단량체와 같은 친수성 단량체들로부터 유래한 랜덤 공중합체인; 폴리카르본산계 화합물을 포함하는 것일 수 있다.
이러한 폴리카르본산계 화합물의 구체적인 예는, 대한민국 공개 특허 제 2015-0143167 호 등에 개시되어 있다.
이때, 상기 표면 가교제의 함량은 가교제의 종류나 반응 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는 상기 분쇄된 중합체 100중량부에 대하여 약 0.001 내지 약 5중량부로 조절될 수 있다. 상기 표면 가교제의 함량이 지나치게 낮아지면, 표면 가교가 제대로 이루어지지 못해, 최종 수지의 물성이 저하될 수 있다. 반대로 과량의 표면 가교제가 사용되는 경우, 과도한 표면 가교 반응으로 인해 수지의 흡수력이 오히려 저하될 수 있어 바람직하지 않다.
또한, 상기 표면 가교제를 첨가할 때 추가적으로 물이 첨가될 수 있다. 이처럼 표면 가교제와 물이 함께 첨가됨으로써 표면 가교제의 고른 분산이 유도될 수 있고, 중합체 입자에 대한 표면 가교제의 침투 깊이가 보다 최적화할 수 있다. 이러한 목적 및 효과를 고려하여, 표면 가교제와 함게 첨가되는 물의 함량은 상기 분쇄된 중합체 100중량부에 대하여 약 0.5 내지 약 10중량부로 조절될 수 있다.
상기 열처리 온도는, 175℃ 내지 200℃일 수 있다. 즉, 본 발명에서 상기 표면 가교는 약 175℃ 내지 약 200℃의 열처리 조건에서 수행될 수 있다. 상기 온도에서 표면 가교를 수행하는 경우, 표면 가교 밀도를 높일 수 있어 바람직하다.
또한, 상기 표면 가교 반응은 약 50분 이상 진행될 수 있다. 즉, 최소 한도의 표면 가교 반응을 유도하면서도 과도한 반응 시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여 전술한 표면 가교 반응의 조건으로 진행될 수 있다. 또한, 상기 반응은 약 120분 이하, 약 100분 이하, 또는 약 60분 이하에서 진행될 수 있다.
본 발명의 다른 일 구현예에 따르면,
산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 포함하는 단량체 조성물을 중합 및 내부 가교시킨 베이스 수지를 포함하고,
상기 베이스 수지는 표면에 형성된 표면 가교층을 포함하며,
EDANA 법 WSP 241.3에 따라 측정한 원심 분리 보수능(CRC)이 25g/g 이상이고,
1g이 염화나트륨 및 탄소수 12 내지 14의 알코올 에톡실레이트 수용액 20g을 흡수하는 소요 시간이(T-20) 140초 이하인,
고흡수성 수지가 제공된다.
특히 본 발명의 고흡수성 수지는, 중합 및 내부 가교 반응 시, 특정한 조합의 내부 가교제를 사용하여, 안정적으로 기포를 발생시킬 수 있어, 높은 보수능과 흡수 속도를 나타낼 수 있다.
상기 에틸렌성 불포화 단량체는, 바람직하게는, 하기 화학식 1로 표시되는 화합물이다:
[화학식 1]
R1-COOM1
상기 화학식 1에서,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
바람직하게는, 상기 에틸렌성 불포화 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다.
여기서, 상기 에틸렌성 불포화 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알킬리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 에틸렌성 불포화 단량체의 중화도는 약 40 내지 약 95 몰%, 또는 약 40 내지 약 80몰%, 또는 약 45 내지 약 75몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
그리고, 상기 가교 중합체는,
a1) 디올디아크릴레이트계 가교제; 및
a2) 탄소수 3 내지 10의 알킬렌 카보네이트 화합물 1종 이상에 의해 내부 가교 결합이 형성된 것일 수 있다.
이러한 내부 가교 결합의 특징에 대해서는, 전술한 바와 같다.
본 발명에서, 상기 가교 중합체는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능(CRC)이 약 30g/g 이상, 약 35g/g 이상일 수 있다. 보수능(CRC)의 상한값은 특별히 제한되지 않으나, 예를 들면 약 50g/g 이하, 또는 약 45g/g 이하, 또는 약 42g/g 이하일 수 있다.
또한, 상기 가교 중합체는 볼텍스 법(Vortex)에 의한 흡수 속도가 42초 이하, 또는 약 41초 이하, 또는 약 40초 이하일 수 있다. 흡수 속도의 하한값은 특별히 제한되지 않으나, 예를 들면 약 15초 이상, 또는 약 20초 이상, 또는 약 30초 이상일 수 있다.
이때, 상기 보수능 및 흡수 속도는 상기 가교 중합체 표면에 표면 가교층을 형성하기 이전으로, 단량체 조성물의 중합 후 건조 및 분쇄하여 파우더(powder) 형태로 만든 상태의 가교 중합체인 베이스 수지(base resin)에 대해 측정한 값이다.
베이스 수지에 대해 표면 가교층을 형성하면, 일반적으로 가압 흡수능(AUP)은 증가하고 흡수 속도(vortex time)도 향상되지만, 보수능(CRC)은 감소하게 된다. 따라서, 이러한 보수능의 감소 경향을 고려할 때 최종 제품의 물성 확보를 위해서는 높은 보수능을 가지는 베이스 수지를 제조하는 것이 매우 중요하다. 보수능이 높은 베이스 수지에 대해 표면 가교층을 형성한 고흡수성 수지는 보수능의 하락에 대한 우려가 적으며 이와 동시에 향상된 가압 흡수능과 흡수 속도를 가질 수 있어 보다 고품질의 수지를 수득할 수 있게 된다.
예를 들어, 상기와 같은 보수능 및 흡수 속도를 가지는 가교 중합체(베이스 수지)에 대해 표면 가교층을 형성한 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능(CRC)이 약 25g/g 이상, 또는 약 28g/g 이상이고, 약 45g/g 이하, 또는 약 40g/g 이하, 또는 약 36g/g 이하일 수 있다.
상기 원심분리 보수능(CRC)은 EDANA 법 WSP 241.3에 따라 측정한 것으로, 하기 수학식 1로 표시될 수 있다:
[수학식 1]
CRC (g/g) = {[W2(g) - W1(g)]/W0(g)} - 1
상기 수학식 1에서,
W0(g)는 수지의 무게(g)이고,
W1(g)는 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게(g)이고,
W2(g)는 상온에 0.9 질량%의 생리식염수에 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 수지를 포함하여 측정한 장치 무게(g)이다.
상기 볼텍스 법에 의한 흡수 속도의 측정은, 100ml 비커에 50ml 식염수를 마그네틱 교반 바와 함께 넣고, 교반기를 사용하여 마그네틱 교반 바의 교반 속도를 600rpm으로 지정한 후 교반되고 있는 식염수에 2.0g의 수지를 넣는 동시에 시간을 측정하여 비커 안에 소용돌이가 없어지는 시점까지 걸린 시간(단위: 초)을 볼텍스 시간으로 하여 측정한다.
그리고, 상기 일 구현예의 고흡수성 수지는 고흡수성 수지 1g이 염화나트륨 및 탄소수 12 내지 14의 알코올 에톡실레이트 수용액 20g을 흡수하는 소요 시간을 나타내는 T-20이 140초 이하, 또는 약 90 내지 약 120초, 바람직하게는 약 95 내지 약 110초로, 매우 빠른 흡수 속도를 나타낼 수 있다.
이러한 T-20은 예를 들어, 증류수 1L에 9g의 염화나트륨 및 1g의 Lorodac(주성분: 선형 탄소수 12 내지 14의 알코올 에톡실레이트, CAS# 68439-50-9)을 용해시킨 수용액을 만들고, 고흡수성 수지 1g이 이러한 수용액 20g을 흡수하는데 소요되는 시간으로서 산출 및 측정될 수 있다. 이러한 T-20의 구체적인 측정 방법은 유럽 공개 특허 제 2535027 호의 p13 내지 p18에 상세히 기술되어 있다.
본 발명의 다른 일 실시예에 따르면, 상기 고흡수성 수지는, 0.7psi에서 가압 흡수능(AAP)이 약 20g/g 이상, 바람직하게는 약 22g/g 이상, 또는 약 25 내지 약 26g/g일 수 있다.
그리고, 상기 고흡수성 수지는, 생리 식염수 흐름 유도성(SFC) 값이 약 50 내지 약 70(×10-7cm3·sec/g)일 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<실시예>
제조예: 폴리카르복실산계 공중합체 제조
교반기, 온도계, 질소 투입구, 순환 콘덴서를 장착한 3L의 4구 플라스크 반응기에 이온교환수 400 중량부를 주입하고 교반 하에 반응 용기 내부를 질소로 치환하여 질소 분위기 하에서 75까지 가열하였다.
상기 반응기에 과황산 암모늄 2 중량부를 첨가하고 완전히 용해시킨 후, 메톡시 폴리에틸렌글리콜 모노메타크릴레이트 (에틸렌옥사이드(EO)의 평균 부가 몰수 약 50몰) 600 중량부, 메타크릴산 99.6 중량부, 물 190 중량부를 혼합한 단량체 수용액과, 3-메르캅토 프로피온산 5 중량부와 물 60 중량부의 혼합용액, 그리고 3 중량% 농도의 과황산 암모늄 수용액 150 중량부를 4시간 동안 균일한 속도로 연속 투입하였다. 투입 종료 후 다시 3 중량% 농도의 과황산 암모늄 수용액 5 중량부를 일시에 투입하였다.
그 후, 반응기의 내부 온도를 85로 승온 후 1시간 동안 계속해서 85로 온도를 유지시켜 중합 반응을 완결시켰다.
상기와 같이 제조된 폴리카르복실산계 공중합체는 GPC(gel permeation chromatography) 법으로 측정한 중량 평균 분자량이 31,000을 나타내었다.
<실시예 1>
아크릴산 단량체 100 중량부에 대하여, 가성소다(NaOH) 42 중량부 및 물 143 중량부를 혼합하고, 상기 혼합물에 열중합 개시제인 소디움 퍼설페이트 0.15 중량부, 광중합 개시제인 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥사이드 0.01 중량부 및 내부 가교제인 폴리에틸렌글리콜 디아크릴레이트 0.5 중량부, 에틸렌 카보네이트 0.0201 중량부, 소듐 바이카보네이트 0.2 중량부, 슈가에스테르 0.01 중량부를 첨가하여 단량체 조성물을 준비하였다.
상기 단량체 조성물을 내부 온도가 40로 유지되며 수은 UV 램프 광원으로 10mW의 세기를 가지는 자외선 조사 장치가 상부에 설치된 연속식 벨트 중합 반응기의 중합벨트 위에서 243kg/hr의 유량으로 흘려주면서 자외선을 1분간 조사하고, 추가로 2분 간 무광원 상태에서 중합 반응을 진행하였다.
중합이 완료되어 나오는 겔 타입 중합 시트는 슈레더 타입 커터를 이용하 1차 커팅한 후 미트 쵸퍼를 통해 조분쇄하였다. 이후 180의 온도에서 40분간 열풍 건조기를 통하여 건조한 뒤, 회전식 믹서를 이용하여 분쇄하고 180㎛ 내지 850㎛로 분급하여 베이스 수지를 제조하였다.
상기 베이스 수지를 80Kg/hr의 속도로 투입하면서, 물 4중량%, 에탄올 1중량%, 에틸렌 카보네이트 1중량%, 대한민국 공개 특허 제 2015-0143167 호의 제조예 1에 개시된 폴리카르본산계 공중합체 0.1중량%가 되도록, 고속 혼합 믹서에 연속으로 투입하였다. 표면 가교 용액과 균일하게 혼합된 수지는 패들형 믹서에서 185, 1시간 동안 표면 처리 반응을 진행하여 고흡수성 수지를 수득하였다.
<실시예 2>
상기 실시예 1에서, 내부 가교 시, 에틸렌 카보네이트 대신에 프로필렌 카보네이트 233 ppm를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다.
<실시예 3>
상기 실시예 1에서, 내부 가교 시, 에틸렌 카보네이트 대신에 에틸렌 카보네이트 101 ppm, 프로필렌 카보네이트 117 ppm를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다.
<실시예 4>
상기 실시예 1에서, 내부 가교 시, 상기 제조예의 폴리카르복실산계 공중합체 0.01 중량부를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다.
<실시예 5>
상기 실시예 2에서, 내부 가교 시, 상기 제조예의 폴리카르복실산계 공중합체 0.01 중량부를 사용한 것을 제외하고, 상기 실시예 2와 동일한 방법으로 고 흡수성 수지를 얻었다.
<실시예 6>
상기 실시예 3에서, 내부 가교 시, 상기 제조예의 폴리카르복실산계 공중합체 0.01 중량부를 사용한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 고 흡수성 수지를 얻었다.
<실시예 7>
상기 실시예 1에서, 내부 가교 시, 폴리에틸렌글리콜 디아크릴레이트 0.25 중량부, 에틸렌 카보네이트 0.1 중량부를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고 흡수성 수지를 얻었다.
<비교예 1>
상기 실시예 1에서. 내부 가교 시, 에틸렌 카보네이트 사용하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고 흡수성 수지를 얻었다.
<비교예 2>
상기 실시예 1에서, 내부 가교 시, 에틸렌 카보네이트 대신에 1,3-프로판디올 174 ppm을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고 흡수성 수지를 얻었다.
<비교예 3>
상기 실시예 1에서, 내부 가교 시, 에틸렌 카보네이트 대신에 알릴 메타크릴레이트 288 ppm을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고 흡수성 수지를 얻었다.
각 실시예 및 비교예의 조성 특징을, 하기 표 1에 정리하였다.
내부 가교제(ppm) 제조예(ppm)
PEGDA 1,3-PDO AMA PC EC
실시예 1 5000 0 0 0 201 0
실시예 2 5000 0 0 233 0 0
실시예 3 5000 0 0 117 101 0
실시예 4 5000 0 0 0 201 100
실시예 5 5000 0 0 233 0 100
실시예 6 5000 0 0 117 101 100
실시예 7 2500 0 0 0 1000 0
비교예 1 5000 0 0 0 0 0
비교예 2 5000 174 0 0 0 0
비교예 3 5000 0 288 0 0 0
* PEGDA: PEGDA 400 (Polyethylene glycol diacrylate)
* 1, 3-PDO: 1,3-Propane diol
* AMA: Ally methacrylate
* EC: Ethylene carbonate
* PC: Propylene carbonate
* 제조예: 제조예의 폴리카르복실산계 공중합체
상기 제조한 베이스 수지 및 고흡수성 수지에 대하여, 하기 방법에 따라, 물성을 측정하여, 하기 표 2 및 3에 정리하였다.
보수능 ( CRC , Centrifugal Retention Capacity)
보수능의 측정은 EDANA 법 WSP 241.3을 기준으로 하였다. 준비된 고흡수성 수지 조성물 시료 0.2 g을 티백에 넣고 0.9 % 염수 용액에 30분간 침전한다. 이후 250G (gravity)의 원심력으로 3분간 탈수한 후 염수 용액이 흡수된 양을 측정하였다.
가압 흡수능 (AAP, Absorption Against Pressure)
가압 흡수능의 측정은 EDANA 법 WSP 241.3을 기준으로 하였다. 준비된 고흡수성 수지 조성물 시료 0.9 g을 EDANA에서 규정하는 실린더에 넣고 피스톤과 추로 0.7psi의 압력을 가한다. 후에 0.9 % 염수 용액을 60분간 흡수한 양을 측정하였다.
생리 식염수 흐름 유도성 ( SFC : Saline Flow Conductivity)
미국특허 공개번호 제2009-0131255호의 column 16의 [0184] 내지 [0189]에 개시된 방법에 따라 측정하였다.
T-20
증류수 1L에 9g의 염화나트륨 및 1g의 Lorodac(주성분: 선형 탄소수 12 내지 14의 알코올 에톡실레이트, CAS# 68439-50-9)을 용해시킨 수용액을 만들고, 고흡수성 수지 1g이 이러한 수용액 20g을 흡수하는데 소요되는 시간으로서 산출 및 측정되었다. 이러한 T-20의 구체적인 측정 방법은 유럽 공개 특허 제 2535027 호의 p13 내지 p18에 상세히 기술되어 있다.
겉보기 밀도 (Bulk density)
표준 유동도 측정장치 오리피스를 통해 상기 고흡수성 수지 100g을 흘려 체적 100ml 용기에 받고, 상기 고흡수성 수지가 수평이 되도록 깎아내어, 상기 고흡수성 수지의 체적을 100ml로 조절한 후, 용기를 제외한 고흡수성 수지만의 무게를 측정하였다. 그리고, 상기 고흡수성 수지만의 무게를 고흡수성 수지의 체적인 100ml로 나누어 단위 체적당 고흡수성 수지의 무게에 해당하는 겉보기 밀도를 구하였다.
표면 장력
고흡수성 수지 조성물 시료 0.5g을 0.9% 생리 식염수 50g에 넣고, 220rpm에서 3분간 교반 후, Kruss사 Force Tensiometer인 K100을 사용하여, 표면 장력을 측정하였다.
수 가용 성분
고흡수성 수지 조성물 시료 1.0g을 250mL의 삼각 플라스크에 넣고, 200mL의 0.9% NaCl 용액에 넣고 250rpm으로 교반하면서 16 시간 동안 자유 팽윤(free swelling)시킨 후, 필터 페이퍼(filter paper)로 수용액을 걸렀다.
걸러진 용액을 0.1N 가성소다 용액으로 pH 10까지 1차 적정한 뒤, 0.1N 염화수소 용액으로 pH 2.7까지 역적정을 실시하여 얻어진 적정량으로부터 EDANA법 WSP 270.3에 따라 고흡수성 수지 내의 수가용 성분의 함량(중량%)을 계산하였다.
(베이스 수지)
CRC(g/g) 수가용 성분(%) Vortex(초)
실시예 1 35 11 40
실시예 2 36 11 40
실시예 3 35 11 40
실시예 4 36 10 38
실시예 5 36 10 38
실시예 6 36 10 38
실시예 7 37 11 38
비교예 1 37 12 45
비교예 2 36 11 44
비교예 3 34 11 44
(고흡수성 수지)
CRC
(g/g)
AAP
(g/g)
SFC
(10-7
cm3sec/g)
T20
(초)
수가용 성분(%) 겉보기 비중(g/ml) 표면 장력
(mN/m)
실시예 1 28.1 25.9 56 104 8 0.58 71
실시예 2 28.3 25.8 53 105 8 0.58 71
실시예 3 28.2 25.7 53 105 8 0.58 71
실시예 4 28.3 25.6 58 101 7 0.58 70
실시예 5 28.4 25.6 52 100 7 0.58 70
실시예 6 28.4 25.5 54 100 7 0.58 70
실시예 7 28.7 25.5 50 102 8 0.58 71
비교예 1 28.8 25.6 42 146 8 0.59 71
비교예 2 28.2 25.6 49 142 8 0.59 71
비교예 3 27.9 25.5 52 147 8 0.59 71
상기 표를 참조하면, 본원 실시예에 따라 제조된 베이스 수지 및 고흡수성 수지는, 높은 CRC 값을 가지는 동시에, 흡수 속도가 매우 빠른 것을 확인할 수 있다.
특히, 본원발명에 따른 고흡수성 수지는, T-20으로 표시되는 흡수 속도가 매우 빠른 것을 알 수 있는데, 이는 내부 가교 시 특정 조합의 내부 가교제를 사용하여, 균일한 발포가 진행되고, 이후, 표면 가교 효율이 높아지는 것으로부터 기인한다.
또한, 일반적으로, 저분자량 분산제나 유화제를 사용하여 분산시키는 경우, 표면 장력이 저하되는 문제점이 발생할 수 있는데, 본원발명의 일 예에 따른 고흡수성 수지의 경우, 특정 내부 가교제의 조합 및 폴리카르복실산계 공중합체를 같이 사용하여, 표면 장력이 저하되지 않은 것을 명확히 확인할 수 있다.

Claims (11)

  1. A) 중합 개시제 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 가지는 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 함수겔상 중합체를 형성하는 단계;
    B) 상기 함수겔상 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
    C) 표면 가교제의 존재 하에, 열처리를 통해 상기 베이스 수지 분말을 표면 가교하여, 고흡수성 수지 입자를 형성하는 단계를 포함하고,
    상기 내부 가교제는;
    a1) 디올디아크릴레이트계 가교제; 및
    a2) 탄소수 3 내지 10의 알킬렌 카보네이트 화합물 1종 이상을 포함하는,
    고흡수성 수지의 제조 방법.
  2. 제1항에 있어서,
    상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물인, 고흡수성 수지의 제조 방법:
    [화학식 1]
    R1-COOM1
    상기 화학식 1에서,
    R1는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
    M1는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
  3. 제1항에 있어서,
    상기 내부 가교제는,
    a1) 디올디아크릴레이트계 가교제 100중량부에 대하여,
    a2) 탄소수 3 내지 10의 알킬렌 카보네이트 화합물을 1 내지 50중량부로 포함하는;
    고흡수성 수지의 제조 방법.
  4. 제1항에 있어서,
    상기 내부 가교제는, 단량체 중량 대비 1,000 내지 10,000ppm으로 사용되는, 고흡수성 수지의 제조 방법.
  5. 제1항에 있어서,
    상기 내부 가교제는, 폴리카르복실산계 공중합체와 함께 사용되는, 고흡수성 수지의 제조 방법.
  6. 제5항에 있어서,
    상기 탄소수 3 내지 10의 알킬렌 카보네이트 화합물 100 중량부에 대하여,
    상기 폴리카르복실산계 공중합체는 1 내지 50중량부로 사용되는, 고흡수성 수지의 제조 방법.
  7. 제1항에 있어서,
    상기 표면 가교제는, 탄소수 3 내지 10의 알킬렌 카보네이트 화합물 1종 이상을 포함하는, 고흡수성 수지의 제조 방법.
  8. 제1항에 있어서,
    상기 열처리 온도는, 175℃내지 200℃인, 고흡수성 수지의 제조 방법.
  9. 삭제
  10. 삭제
  11. 삭제
KR1020170164359A 2017-12-01 2017-12-01 고흡수성 수지 및 이의 제조 방법 KR102624684B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170164359A KR102624684B1 (ko) 2017-12-01 2017-12-01 고흡수성 수지 및 이의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170164359A KR102624684B1 (ko) 2017-12-01 2017-12-01 고흡수성 수지 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
KR20190064978A KR20190064978A (ko) 2019-06-11
KR102624684B1 true KR102624684B1 (ko) 2024-01-11

Family

ID=66847022

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170164359A KR102624684B1 (ko) 2017-12-01 2017-12-01 고흡수성 수지 및 이의 제조 방법

Country Status (1)

Country Link
KR (1) KR102624684B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150095A1 (ko) * 2020-01-20 2021-07-29 주식회사 엘지화학 고흡수성 수지의 제조 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526962A (ja) 2008-07-07 2011-10-20 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による吸収性ポリマー粒子の製造法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187828B1 (en) * 1998-11-24 2001-02-13 Basf Corporation Continuous process for manufacturing superabsorbent polymer
WO2015133440A1 (ja) * 2014-03-03 2015-09-11 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
KR20150132035A (ko) * 2014-05-16 2015-11-25 주식회사 엘지화학 고흡수성 수지, 및 이의 제조 방법
KR101949996B1 (ko) * 2016-01-28 2019-02-19 주식회사 엘지화학 고흡수성 수지의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526962A (ja) 2008-07-07 2011-10-20 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による吸収性ポリマー粒子の製造法

Also Published As

Publication number Publication date
KR20190064978A (ko) 2019-06-11

Similar Documents

Publication Publication Date Title
KR101752384B1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
KR102094453B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102167661B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102162503B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102069312B1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
CN108350188B (zh) 超吸收性聚合物及其制备方法
KR101745679B1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
KR101880218B1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
KR102584203B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102086050B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2015046992A1 (ko) 고흡수성 수지의 제조 방법
KR102625756B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR101595037B1 (ko) 고흡수성 수지의 제조 방법
KR102192638B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102634904B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102087339B1 (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
KR102624684B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102637493B1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
KR102577709B1 (ko) 고흡수성 수지의 제조 방법
KR20200072395A (ko) 고흡수성 수지 및 이의 제조 방법
KR20200071662A (ko) 고흡수성 수지의 제조방법, 및 고흡수성 수지
KR102193459B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR20190072294A (ko) 고흡수성 수지 및 이의 제조 방법
KR101782501B1 (ko) 고흡수성 수지의 제조 방법
KR20220141176A (ko) 고흡수성 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant