WO2015046345A1 - 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 - Google Patents

重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 Download PDF

Info

Publication number
WO2015046345A1
WO2015046345A1 PCT/JP2014/075455 JP2014075455W WO2015046345A1 WO 2015046345 A1 WO2015046345 A1 WO 2015046345A1 JP 2014075455 W JP2014075455 W JP 2014075455W WO 2015046345 A1 WO2015046345 A1 WO 2015046345A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
catalyst
zinc
heavy hydrocarbon
phosphorus
Prior art date
Application number
PCT/JP2014/075455
Other languages
English (en)
French (fr)
Inventor
貴之 大崎
中嶋 伸昌
Original Assignee
コスモ石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスモ石油株式会社 filed Critical コスモ石油株式会社
Priority to KR1020167008981A priority Critical patent/KR102188896B1/ko
Priority to US15/021,790 priority patent/US10239048B2/en
Priority to EP14847234.3A priority patent/EP3050623B1/en
Priority to JP2015539341A priority patent/JP6432086B2/ja
Priority to CN201480052589.8A priority patent/CN105592923B/zh
Publication of WO2015046345A1 publication Critical patent/WO2015046345A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1808Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions

Definitions

  • the present invention is used for hydrodesulfurization of atmospheric distillation residue oil (hereinafter also referred to as “AR”) and vacuum distillation residue oil (hereinafter also referred to as “VR”) using a direct desulfurization apparatus.
  • Heavy hydrocarbon oil hydrotreating catalyst capable of improving the storage stability of the hydrotreated oil obtained by hydrotreating the hydrocarbon oil, method for producing the hydrotreating catalyst, and the hydrogenation
  • the present invention relates to a method for hydrotreating heavy hydrocarbon oil using a treatment catalyst.
  • Heavy hydrocarbon oils such as VR obtained by further processing AR or AR obtained by treating crude oil with an atmospheric distillation device with a vacuum distillation device contain a large amount of sulfur compounds.
  • SOx sulfur oxide
  • hydrotreated heavy hydrocarbon oil is heated and stored in order to maintain fluidity in consideration of workability at the time of shipment until it is shipped. Moreover, after being shipped as a product, it may be stored for a long time until it is used. For this reason, depending on the thermal history and the atmosphere at the time of storage, sediment may occur during storage, which may cause clogging of the filter, damage to the pump, and the like.
  • the present invention is a hydrotreating catalyst capable of improving the storage stability of hydrotreated heavy hydrocarbon oil without reducing desulfurization activity or demetallizing activity, a method for producing the hydrotreating catalyst, Another object of the present invention is to provide a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.
  • the present inventors have found that in a hydrotreatment of heavy hydrocarbon oil, hydrogen is added to a phosphorus / zinc-containing alumina support containing a specific amount of zinc oxide particles of a specific size.
  • the present inventors have found that by using a hydrotreating catalyst that supports a hydrotreating active component, a hydrotreating oil with a reduced amount of latent sediment can be obtained, and the present invention has been completed.
  • the present invention relates to the following heavy hydrocarbon oil hydrotreating catalyst, heavy hydrocarbon oil hydrotreating catalyst production method, and heavy hydrocarbon oil hydrotreating method.
  • Phosphorus and zinc-containing alumina containing phosphorus in an amount of 0.1 to 4% by mass in terms of a carrier and zinc oxide particles in an amount of 1 to 12% by mass in terms of a carrier are used as a carrier.
  • a step of kneading the zinc compound The obtained kneaded product is molded, dried and fired to obtain a phosphorus / zinc-containing alumina carrier, and at least one selected from Group 6 metals of the periodic table is added to the phosphorus / zinc-containing alumina carrier.
  • the manufacturing method of the hydroprocessing catalyst of heavy hydrocarbon oil which has these.
  • a method for hydrotreating heavy hydrocarbon oil characterized by carrying out a catalytic reaction of hydrogen oil.
  • the hydrotreating catalyst according to the present invention has a hydrogenation active component supported on a phosphorus / zinc-containing alumina carrier containing zinc oxide particles of a specific size together with phosphorus, and desulfurization activity of heavy hydrocarbon oil. Is excellent. Furthermore, by performing a hydrotreatment using the hydrotreating catalyst, a heavy hydrocarbon oil that is less susceptible to sedimentation and excellent in storage stability can be obtained.
  • the hydrotreating catalyst according to the present invention contains alumina as a main carrier component.
  • alumina various aluminas such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina can be used, and porous and high specific surface area alumina is preferable, and ⁇ -alumina is particularly preferable. Is suitable.
  • the purity of alumina as a main carrier component is preferably 98% by mass or more, more preferably 99% by mass or more. Examples of the impurities in alumina include SO 4 2 ⁇ , Cl ⁇ , Fe 2 O 3 , Na 2 O and the like.
  • impurities are preferably as small as possible, and the total amount of impurities is preferably 2% by mass or less.
  • the content is preferably 1% by mass or less, and for each component, SO 4 2 ⁇ is preferably 1.5% by mass or less, and C1 ⁇ , Fe 2 O 3 , and Na 2 O are preferably 0.1% by mass or less.
  • the alumina used for the carrier of the hydrotreating catalyst according to the present invention may be a composite alumina support obtained by combining at least one selected from zeolite, boria, silica, and zirconia.
  • alumina is 92 to 99.9% by mass, preferably 95 to 98% by mass, and at least one selected from zeolite, boria, silica, and zirconia is 0 to 8% by mass. Is preferred.
  • the composite component of zeolite, boria, silica, and zirconia those generally used as a carrier component of this type of catalyst can be used.
  • the support used for the hydrotreating catalyst according to the present invention is a phosphorus / zinc-containing alumina support in which zinc and phosphorus are further contained in an alumina support (including a composite alumina support).
  • Zinc and phosphorus are added as components for improving the quality of the active sites in order to improve the desulfurization activity and decarburization activity per active metal amount.
  • Active metals such as highly active NiMoS phase, NiWS phase, etc. It plays a role in precisely creating the sulfur phase.
  • the content of zinc in the phosphorus / zinc-containing alumina carrier is 1 to 12% by mass, preferably 2 to 9% by mass in terms of oxide, based on the carrier. Further, it is preferably 3 to 6% by mass in terms of catalyst and oxide.
  • the zinc content is 1% by mass or more based on the carrier, the sulfidity of the Group 6 metal of the periodic table can be sufficiently improved. If the zinc content is 12% by mass or less, the pore volume and the specific surface area are unlikely to decrease, the group 6 metal of the periodic table is sufficiently dispersed, and the sulfidity of the group 8-10 metal of the periodic table Is difficult to decrease.
  • Group 6 metal of the periodic table (hereinafter also referred to as “Group 6 metal”) means a Group 6 metal in the long-period periodic table.
  • Group 8-10 metal (hereinafter sometimes referred to as “Group 8-10 metal”) means a Group 8-10 metal in the long-period periodic table.
  • the hydrotreating catalyst according to the present invention uses zinc oxide particles having an average particle diameter of 2 to 12 ⁇ m, preferably 4 to 10 ⁇ m, more preferably 5 to 9 ⁇ m, as zinc. If the average particle diameter of the zinc oxide particles contained in the support is 12 ⁇ m or less, sufficient interaction with alumina is obtained, and a heavy hydrocarbon oil after hydrotreatment having sufficient storage stability can be obtained. On the other hand, when the average particle diameter of the zinc oxide particles contained in the carrier is 2 ⁇ m or more, zinc and alumina are easily mixed during the production of the phosphorus / zinc-containing alumina carrier.
  • the particle size of the zinc oxide particle was measured by the laser diffraction scattering method based on JISR1629, and the volume average of particle size distribution was made into the average particle diameter.
  • the zinc oxide particles contained in the phosphorus / zinc-containing alumina support preferably have a purity of 99% or more.
  • the content of phosphorus in the carrier of the hydrotreating catalyst according to the present invention is 0.1 to 4% by mass, preferably 0.5 to 2.5% by mass, based on the carrier and in terms of oxide.
  • the phosphorus content is preferably 0.08 to 3.6% by mass on the catalyst basis and in terms of oxide.
  • the phosphorus raw material compound to be contained in the carrier of the hydrotreating catalyst according to the present invention various compounds can be used.
  • the phosphorus compound include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like, among which orthophosphoric acid is preferable.
  • support standard in terms of oxide means that the mass of all elements contained in the support is calculated as each oxide, and the oxidation of zinc with respect to the total mass It means the amount of substance and the proportion of oxide mass of phosphorus.
  • the oxide mass of zinc is converted to zinc oxide, and the oxide mass of phosphorus is calculated in terms of diphosphorus pentoxide.
  • the addition of zinc and phosphorus to the alumina support alleviates the interaction between the group 6 metal of the periodic table and the group 8-10 metal of the periodic table and the support, and the sulfidation of the group 6 metal and the group 8-10 metal is reduced. Each will be easier. However, on the other hand, if the interaction between the Group 6 metal or the Group 8 to 10 metal and the support becomes too weak, the active metal aggregates, and therefore the addition of zinc or phosphorus requires precise control. is necessary. In the hydrotreating catalyst according to the present invention, by adding zinc and phosphorus in a precisely controlled manner, the active metal-sulfur phase such as NiMoS phase and NiWS phase is maintained in a highly dispersed state, and the number of laminated layers, etc. It is thought that the structural form is also optimized.
  • an alumina gel is prepared by a conventional method.
  • the alumina raw material any material containing aluminum can be used, but aluminum salts such as aluminum sulfate and aluminum nitrate are preferred.
  • These alumina raw materials are usually provided as an aqueous solution, and the concentration thereof is not particularly limited, but is preferably 2 to 50% by mass, more preferably 5 to 40% by mass.
  • a sulfuric acid aqueous solution, sodium aluminate, and aluminum hydroxide are mixed in a stirring vessel to prepare a slurry.
  • the obtained slurry is subjected to water removal and pure water washing by a rotary cylindrical continuous vacuum filter to obtain alumina gel.
  • the obtained alumina gel is washed until SO 4 2 ⁇ and Na + can no longer be detected in the filtrate, and then the alumina gel is made turbid in pure water to make a uniform slurry.
  • the obtained alumina gel slurry is dehydrated until the water content becomes 60 to 90% by mass to obtain a cake.
  • the alumina gel slurry is preferably dehydrated by a pressure filter.
  • a pressure filter By dehydrating with a press filter, the surface state of the alumina carrier can be improved, which is beneficial for improving the level of sulfidity of the catalytically active metal (hydrogenated active metal) described later.
  • the pressure filter is a filter that applies compressed air or pump pressure to the slurry for filtration, and is generally called a pressure filter.
  • a plate frame type and a concave plate type in the press filter.
  • the filter plate and the filter frame are alternately clamped between the end plates, and the slurry is pressed into the filter frame and filtered.
  • the filter plate has a groove serving as a filtrate flow path, and a furnace cloth is stretched on the furnace frame.
  • the concave plate type filter a filter chamber and a concave plate type filter plate are alternately arranged to form a clamping filter chamber between the end plates (reference document: Chemical Engineering Handbook p715).
  • the preparation method of the alumina gel includes a method of neutralizing an aqueous solution containing an alumina raw material with a neutralizing agent such as sodium aluminate, aluminate or ammonia, or a precipitating agent such as hexanemethylenetetramine or calcium carbonate. And the like.
  • the amount of the neutralizing agent used is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the neutralizing agent.
  • the amount of the precipitating agent is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the precipitating agent.
  • an alumina gel is prepared by a conventional method, and the obtained alumina gel is aged, washed, dehydrated and dried, and moisture. After the adjustment, alumina is combined with the composite component by a coprecipitation method, a kneading method or the like. Maturation, washing, dehydration drying, and moisture adjustment are performed on the composite alumina gel. Also in the final dehydration step before forming the composite alumina gel, it is preferable to dehydrate using a pressure filter.
  • a phosphorus compound and zinc oxide particles are added to the obtained alumina gel by kneading. Specifically, by adding an aqueous phosphorus compound solution and zinc oxide particles heated to 15 to 90 ° C. to a moisture adjusted product of alumina gel heated to 50 to 90 ° C., kneading and stirring using a heating kneader or the like. A kneaded product of phosphorus / zinc-containing alumina carrier is obtained.
  • dehydration by a pressure filter may be performed after kneading and stirring the alumina gel, the phosphorus compound, and the zinc compound.
  • the obtained kneaded product is molded, dried and fired to obtain a phosphorus / zinc-containing alumina carrier.
  • the kneaded product can be molded by various molding methods such as extrusion molding and pressure molding.
  • the drying temperature is preferably 15 to 150 ° C., particularly preferably 80 to 120 ° C., and the drying time is preferably 30 minutes or more.
  • the firing temperature can be appropriately set as necessary.
  • firing is preferably performed at 450 ° C. or more, and more preferably at 480 ° C. to 600 ° C. is there.
  • the firing time is preferably 2 hours or more, particularly preferably 3 to 12 hours.
  • the phosphorus / zinc-containing alumina support of the hydrotreating catalyst according to the present invention preferably has the following physical property values.
  • the specific surface area of the phosphorus / zinc-containing alumina support is preferably 200 to 380 m 2 / g, more preferably 220 to 360 m 2 / g, as measured by a nitrogen adsorption method (BET method). If the specific surface area is too small, the dispersibility of the hydrogenation active metal may be deteriorated and the desulfurization activity may be reduced. If the specific surface area is too large, the pore diameter becomes extremely small, and the pore diameter of the catalyst also becomes small. Thus, during the hydrogenation treatment, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity may be reduced. By setting the specific surface area of the phosphorus / zinc-containing alumina support within the above range, a hydrotreating catalyst having good dispersibility of the hydrogenation active metal and having a sufficiently large pore diameter can be obtained.
  • the average pore diameter in the pore distribution measured by the mercury intrusion method of the phosphorus / zinc-containing alumina carrier is preferably 5 to 12 nm, more preferably 6 to 10 nm.
  • the pore volume of the phosphorus / zinc-containing alumina carrier is a value measured by a mercury intrusion method, and is preferably 0.4 to 0.9 mL / g, more preferably 0.6 to 0.8 mL / g.
  • a small amount of solvent enters the pore volume.
  • the solubility of the hydrogenated active metal compound is deteriorated, the dispersibility of the metal is lowered, and there is a possibility that the catalyst becomes a low activity catalyst.
  • Phosphorus / zinc-containing alumina support at least one selected from Group 6 metals as catalyst standard, 8 to 20% by mass in terms of oxide, and at least one selected from Group 8 to 10 metals as catalyst standard, oxidation
  • the hydrotreating catalyst according to the present invention can be produced by loading it so as to contain 2 to 5% by mass in terms of product.
  • Catalyst standard, in terms of oxide means that the mass of all elements contained in the catalyst is calculated as each oxide, The ratio of the oxide mass of each metal with respect to the total mass is meant.
  • the oxide mass of the Group 6 metal and the Group 8 to 10 metal is determined in terms of a hexavalent oxide for the Group 6 metal and a divalent oxide for the Group 8 to 10 metal.
  • Examples of the Group 6 metal include molybdenum (Mo), tungsten (W), chromium (Cr), etc. Among them, Mo having high activity per unit mass is preferable.
  • Examples of the Mo compound supported on the phosphorus / zinc-containing alumina carrier include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and molybdophosphoric acid, molybdenum trioxide, and ammonium molybdate are preferable.
  • the content of the Group 6 metal in the phosphorus / zinc-containing alumina support is 8 to 20% by mass, preferably 10 to 16% by mass in terms of the catalyst and oxide conversion. If the Group 6 metal is 8% by mass or more, the effects attributable to the Group 6 metal can be sufficiently expressed. If the Group 6 metal is 20% by mass or less, the Group 6 metal hardly aggregates and disperses the active metal. Will improve. That is, the catalytic activity can be improved without exceeding the limit of the active metal content to be efficiently dispersed and without greatly reducing the catalyst surface area.
  • Examples of the Group 8 to 10 metal include nickel (Ni), cobalt (Co), etc. Among them, Ni is preferable because of its high hydrogenation ability and low catalyst preparation cost.
  • Examples of the Ni compound supported on the phosphorus / zinc-containing alumina carrier include Ni carbonates, acetates, nitrates, sulfates and chlorides, preferably carbonates and acetates, more preferably carbonates.
  • the content of the Group 8 to 10 metal in the phosphorus / zinc-containing alumina support is 2 to 6% by mass, preferably 2.5 to 4.5% by mass, in terms of oxide, based on the catalyst.
  • the Group 8-10 metal is 2% by mass or more, the active sites belonging to the Group 8-10 metal can be sufficiently obtained.
  • the content is 6% by mass or less, the Group 8-10 metal compound hardly aggregates and the dispersibility of the active metal is improved.
  • NiO species that are inactive precursors present as NiS species after catalytic sulfidation and during hydrogenation treatment
  • Ni spinel species that are incorporated in the lattice of the carrier are not easily generated. Therefore, the catalytic activity is improved.
  • the optimum mass ratio of the Group 6 metal and Group 8 to 10 metal as the hydrogenation active metal is [Group 8 to 10].
  • Metal oxide mass] / ([Group 8 to 10 metal oxide mass] + [Group 6 metal oxide mass]) is preferably 0.14 to 0.3.
  • the active metal-sulfur phase such as NiMoS phase, NiWS phase, etc.
  • the desulfurization activity cannot be improved due to insufficient generation.
  • a method for supporting a Group 6 metal or a Group 8-10 metal on a phosphorus / zinc-containing alumina support a known method such as an impregnation method or a coprecipitation method may be used.
  • a phosphorus / zinc-containing alumina support is treated with a hydrogenation-active metal as in a method of precipitating a hydrogenation-active metal component in a state in which the phosphorus-zinc-containing alumina support is immersed in a solution containing these hydrogenation-active metal components.
  • An impregnation method in which a hydrogenation active metal is supported on a phosphorus / zinc-containing alumina support by contacting with a solution containing the components can be employed.
  • the method for impregnating the phosphorus / zinc-containing alumina carrier with the Group 6 metal and the Group 8 to 10 metal components may be a one-stage impregnation method in which these components are impregnated simultaneously, or a two-stage impregnation method in which the components are impregnated individually. It's okay.
  • Specific methods for supporting the Group 6 metal and the Group 8 to 10 metal on the phosphorus / zinc-containing alumina carrier include the following methods. First, an impregnation solution containing a Group 6 metal compound, a Group 8-10 metal compound, and a phosphorus compound is prepared. In addition, when phosphorus is contained in the metal compound, the phosphorus compound is not added or an appropriate amount of the phosphorus compound is added. During preparation, heating (30-100 ° C) and addition of acids (nitric acid, phosphoric acid, organic acids (citric acid, acetic acid, malic acid, tartaric acid, etc.)) are performed to promote dissolution of these compounds. May be.
  • acids nitric acid, phosphoric acid, organic acids (citric acid, acetic acid, malic acid, tartaric acid, etc.
  • the mass ratio in terms of oxide of phosphorus kneaded in the support for the Group 6 metal is preferably 0.25 or less. If it is 0.25 or less, the surface area and pore volume of the catalyst are not reduced, and not only the decrease in the catalyst activity is suppressed, but also the carbon deposition can be prevented without increasing the acid amount, thereby reducing the activity degradation. It is suppressed.
  • the prepared impregnation solution is gradually added to the phosphorus / zinc-containing alumina support so as to be uniform and impregnated.
  • the impregnation time is preferably 1 minute to 5 hours, more preferably 5 minutes to 3 hours, the temperature is preferably 5 to 100 ° C., more preferably 10 to 80 ° C., and the atmosphere is not particularly limited. Nitrogen and vacuum are suitable.
  • LOI ⁇ Loss on ignition >> is 50% in a nitrogen stream, air stream, or vacuum at room temperature to 80 ° C. And is dried in an air stream at 80 to 150 ° C. for 10 minutes to 10 hours in a drying furnace.
  • firing is performed in a firing furnace in an air stream, preferably at 300 to 700 ° C., more preferably at 500 to 650 ° C., preferably for 10 minutes to 10 hours, more preferably for 3 hours or more.
  • the hydrotreating catalyst according to the present invention has its specific surface area, pore volume, average pore diameter, and pore distribution within the following ranges in order to increase the hydrogenation activity and desulfurization activity for heavy hydrocarbon oils. It is preferable to adjust.
  • the specific surface area of the hydrotreating catalyst according to the present invention is a value measured by the BET method, is preferably 180 ⁇ 320m 2 / g, more preferably 200 ⁇ 300m 2 / g.
  • the specific surface area is too small, the dispersibility of the hydrogenation active metal is deteriorated, and when the specific surface area is too large, the pore diameter becomes extremely small, so that the pore diameter of the catalyst also becomes small.
  • the pore volume of the hydrotreating catalyst according to the present invention is a value measured by a mercury intrusion method, and is preferably 0.45 to 0.8 mL / g, more preferably 0.5 to 0.7 mL / g. If the pore volume is too small, the sulfur compound may not be sufficiently diffused in the catalyst pores during the hydrotreatment, and if the pore volume is too large, the specific surface area will be extremely high. There is a risk of becoming smaller. By setting the pore volume of the hydrotreating catalyst according to the present invention within the above range, both the dispersibility of the hydroactive metal and the diffusibility of the sulfur compound into the catalyst pores during the hydrotreating are further improved. Can be good.
  • the average pore diameter in the pore distribution measured by the mercury intrusion method of the hydrotreating catalyst according to the present invention is preferably 7 to 13 nm, more preferably 7 to 12 nm.
  • the pore distribution of the hydrotreating catalyst according to the present invention includes pores having an average pore diameter of ⁇ 1.5 nm.
  • the ratio of the total volume to the total pore volume is preferably 45% or more, more preferably 55% or more.
  • the distribution state of the hydrogenation active metal in the hydrotreating catalyst according to the present invention is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.
  • the hydrotreatment method according to the present invention comprises a hydrogen partial pressure of 3 to 20 MPa, preferably 8 to 19 MPa, a temperature of 300 to 420 ° C., preferably 350 to 410 ° C., and an LHSV (liquid space velocity) of 0.1 to 3 h ⁇ 1.
  • the hydrotreating treatment is preferably performed by bringing the hydrotreating catalyst according to the present invention into contact with the raw material oil under the condition of 0.15 to 2 h ⁇ 1 to reduce the sulfur content in the raw material oil.
  • the temperature is 300 ° C. or higher, the catalytic activity, particularly the metal removal activity can be sufficiently exhibited.
  • the metal removal activity can be sufficiently exhibited.
  • it is 420 degrees C or less, thermal decomposition of heavy hydrocarbon oil will advance moderately, and catalyst deterioration will not occur easily.
  • the hydrogen partial pressure is 8 MPa or more, the hydrogenation reaction proceeds easily, and if it is 20 MPa or less, an appropriate demetallizing activity can be obtained and the catalyst life is prolonged.
  • Heavy hydrocarbon oils used in the hydrotreating method according to the present invention include atmospheric distillation residue oil obtained by distillation from crude oil, vacuum distillation residue oil, bisbreaking oil that is pyrolysis oil, other than petroleum Examples thereof include tar sand oil, shale oil, and the like, which are heavy hydrocarbon oils, and mixtures thereof.
  • Preferred are atmospheric distillation residue oil, vacuum distillation residue oil, and mixed oil thereof.
  • the heavy hydrocarbon oil is subjected to hydrotreatment process according to the present invention, density of 0.91 ⁇ 1.10 g / cm 3, particularly 0.95 ⁇ 1.05 g / cm 3, the sulfur content of 2 to Heavy hydrocarbon oils of 6% by mass, especially 2-5% by mass, metal content of nickel, vanadium, etc. of 1-1500 ppm, particularly 20-400 ppm, asphaltene content of 2-15% by mass, especially 3-10% by mass. preferable.
  • the hydrogen / oil ratio is preferably 400 to 3,000 m 3 / m 3 , more preferably 500 to 1,800 m 3 / m 3 .
  • the hydrotreating catalyst according to the present invention is generally activated by sulfiding in a reactor before use (that is, prior to performing the hydrotreating method according to the present invention).
  • the sulfurization treatment is generally performed at a temperature of 200 to 400 ° C., preferably 250 to 350 ° C. under a hydrogen atmosphere of normal pressure or higher, and a petroleum distillate containing a sulfur compound, This is performed using hydrogen sulfide or a material added with a sulfiding agent such as fido or carbon disulfide.
  • the catalyst layer of the hydrotreating catalyst according to the present invention is formed in the reactor, the feedstock is introduced into the reactor, and the above conditions are met.
  • the hydrogenation reaction may be carried out at the bottom.
  • the catalyst layer may be a fixed bed, a moving bed, or a fluidized bed type. Most commonly, a fixed bed catalyst layer is formed in the reactor, feedstock is introduced into the top of the reactor, passed through the fixed bed from top to bottom, and product flows out from the bottom of the reactor. On the other hand, feed oil is introduced into the lower part of the reactor, the fixed bed is passed from the bottom to the top, and the product is discharged from the upper part of the reactor.
  • the hydrotreating method according to the present invention may be a one-stage hydrotreating method in which the hydrotreating catalyst according to the present invention is filled in a single reactor, or may be filled in several reactors. It may be a multistage continuous hydrotreating method.
  • Table 1 shows the average particle diameter of the zinc oxide particles used in Examples and Comparative Examples.
  • the particle size of the zinc oxide particles was measured by a laser diffraction scattering method according to JIS R1629, and the volume average particle size distribution was defined as the average particle size.
  • Example 1 Preparation of hydrotreating catalyst A First, a phosphorus / zinc-containing alumina support was prepared. After adding 1.5 L of 12 mass% sulfuric acid aqueous solution to 100 L of pure water stretched in a stirring vessel and heating to 95 ° C., the mixture was vigorously stirred with a stirring blade for 5 minutes, and the stirring vessel was filled with an alumina concentration of 70 g / L. 3.9 L of sodium aluminate was added to prepare aluminum hydroxide, which was stirred with a stirring blade for 24 hours. The obtained slurry was put into a filter and filtered to remove moisture, and then the obtained gel was washed with pure water until SO 4 2 ⁇ and Na + could not be detected in the filtrate. .
  • the gel after washing was made turbid in pure water to make a uniform slurry, and the slurry was put into a squeeze type filter.
  • the slurry was sandwiched in a filter plate through a filter cloth and dehydrated by pressing the filter plate. Filtration was stopped when the amount of water in the obtained cake reached 80%.
  • This cake was put into a warming kneader (set temperature 80 ° C.) and sufficiently kneaded to be uniform, and then zinc oxide 1 was added as phosphoric acid and zinc oxide particles, and further kneaded to be uniform. .
  • the cake obtained by kneading was put into an extruder, and a four-leaf shaped extruded product having a major axis of 1.3 mm and a minor axis of 1.1 mm was obtained.
  • the molded product was dried and then calcined at 600 ° C. for 4 hours to obtain a phosphorus / zinc-containing alumina carrier.
  • the obtained phosphorus / zinc-containing alumina carrier was phosphorous based on the carrier, 1.2% by mass in terms of oxide, zinc was based on the carrier, 4.0% by mass in terms of oxide, and the pore volume was 0.73 mL / g.
  • the specific surface area was 307 m 2 / g, and the average pore diameter was 7.7 nm.
  • Example 2 Preparation of hydrotreating catalyst B A hydrotreating catalyst B was prepared in the same manner as in Example 1 except that zinc oxide 1 was replaced with zinc oxide 2.
  • hydrotreating catalyst b was prepared in the same manner as in Example 1 except that zinc oxide 1 was replaced with zinc oxide 4.
  • Ni / Mo (upper stage) 4/12 (lower stage)” in the column “active metal_active metal amount (mass%)” is 4 masses of Ni in terms of catalyst based on catalyst and oxide conversion. %, 12% by mass of Mo.
  • pore distribution means the ratio of the total volume of pores having average pore diameters of ⁇ 1.5 nm to the total pore volume. The physical properties and chemical properties of the catalyst were measured as follows.
  • the pore volume is the total volume of mercury per gram of catalyst that has entered the pores.
  • the average pore diameter is an average value of D calculated as a function of P.
  • the pore distribution is a distribution of D calculated as a function of P.
  • the hydrotreating catalyst was charged into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
  • a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reaction apparatus, and a desulfurization reaction and a hydrogenation reaction that is a decomposition reaction proceed under the following conditions to generate A mixed fluid of oil and gas was allowed to flow out from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.
  • the measurement method is JIS K 2249-1 “Crude oil and petroleum products-Density test method and density / mass / capacity conversion table (vibration density test method)”, and the sulfur content is JIS K 2541-4 “Crude oil and Petroleum products-Sulfur content test method Part 4: Radiation-type excitation method ", latent sediment content conformed to JPI-5S-60-2000. Specifically, the potential sediment content was analyzed by the following method.
  • the contents of nickel and vanadium were in accordance with the Japan Petroleum Institute Standard JPI-5S-62-2000 “Petroleum Products Metal Analysis Test Method (ICP Luminescence Analysis Method)”.
  • the asphaltene content was filtered through a cellulose filter after toluene was added to the sample, and the toluene-insoluble content was recovered. This insoluble content was defined as asphaltene content.
  • Toluene was added to the sample, and the resin was filtered through a cellulose filter, and the toluene-soluble component as a filtrate was concentrated.
  • a heptane solution obtained by adding heptane to this concentrate was passed through an activated alumina packed column and separated into saturated, aromatic and resin components, and the resin component was recovered.
  • Catalyst pretreatment conditions The preliminary sulfidation of the catalyst was carried out with a vacuum gas oil at a hydrogen partial pressure of 10.3 MPa and 370 ° C. for 12 hours. Then, it switched to the raw material oil for activity evaluation.
  • Reaction conditions Reaction temperature: 385 ° C. Pressure (hydrogen partial pressure); 10.3 MPa, Liquid space velocity; 0.4 h ⁇ 1 , Hydrogen / oil ratio: 1690 m 3 / m 3 .
  • Raw oil properties Oil type: atmospheric distillation residue of Middle Eastern crude oil, Density (15 ° C.); 0.9759 g / cm 3 , Sulfur component: 3.51% by mass, Vanadium; 59 ppm, Nickel; 11 ppm, Asphaltene content: 2.8% by mass.
  • the catalytic activity was analyzed by the following method.
  • the reactor was operated at 385 ° C., and the product oil 25 days after the start of operation was collected and its properties (desulfurization rate (HDS) (%), desulfurization reaction rate constant (Ks), desulfurization specific activity (%), demetalization rate, (HDM)) was analyzed.
  • the results are shown in Table 4.
  • Desulfurization reaction rate constant (Ks) The desulfurization reaction rate constant (Ks) is a constant in the reaction rate equation for obtaining the second order reaction order with respect to the reduction amount of the sulfur content (Sp) of the product oil. It calculated by the following formula
  • Desulfurization specific activity (%) indicated as a relative value when the desulfurization reaction rate constant of the catalyst A is 100. It calculated by the following formula
  • Demetallation rate (%): The ratio of metal components (total of nickel and vanadium) disappeared from the feedstock oil is defined as the demetallation rate, and the following formula is obtained from the metal analysis values of the feedstock oil and product oil. Calculated according to (4).
  • Sf sulfur content (mass%) in the raw material oil
  • Sp Sulfur content (% by mass) in the product oil
  • LHSV Liquid space velocity (h -1 ).
  • the amount of resin is larger when the catalyst A or the catalyst B is used than when the catalyst a or the catalyst b is used. There were obviously few. That is, the product oil obtained by using the catalyst A or the catalyst B was less likely to generate sediment than the oil obtained by using the catalyst a or the catalyst b, and was excellent in storage stability. From these results, by using a hydrotreating catalyst in which the size of the zinc oxide particles contained in the phosphorus / zinc-containing alumina support is within a specific range, the hydrogenation treatment catalyst without desulfurization activity is reduced. It is clear that the content of latent sediment in the heavy hydrocarbon oil subjected to the chemical treatment can be lowered, and the storage stability can be improved.
  • the present invention is a hydrotreating catalyst capable of improving the storage stability of hydrotreated heavy hydrocarbon oil without reducing desulfurization activity or demetallizing activity, a method for producing the hydrotreating catalyst, And a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

 脱硫活性や脱金属活性を低下させることなく、水素化処理された重質炭化水素油の貯蔵安定性を向上させることができる水素化処理触媒、及び当該水素化処理触媒を用いて重質炭化水素油を水素化処理する方法を提供することを目的とし、リンを担体基準、酸化物換算で0.1~4質量%含有し、酸化亜鉛粒子を担体基準で1~12質量%含有するリン・亜鉛含有アルミナを担体とし、前記担体に周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%担持してなり、前記酸化亜鉛粒子の平均粒子径が2~12μmであることを特徴とする重質炭化水素油の水素化処理触媒を提供する。

Description

重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
 本発明は、直接脱硫装置による常圧蒸留残渣油(以下、「AR」ともいう。)や、減圧蒸留残渣油(以下、「VR」ともいう。)の水素化脱硫に用いられ、これらの重質炭化水素油を水素化処理して得られる水素化処理油の貯蔵安定性を向上させることができる重質炭化水素油の水素化処理触媒、該水素化処理触媒の製造方法、及び該水素化処理触媒を用いた重質炭化水素油の水素化処理方法に関する。
 本願は、2013年9月27日に、日本に出願された特願2013-201800号に基づき優先権を主張し、その内容をここに援用する。
 原油を常圧蒸留装置により処理して得られたARやARを更に減圧蒸留装置で処理することにより得られるVR等の重質炭化水素油には、多量の硫黄化合物が含有されている。これらの重質炭化水素油を脱硫処理することなく燃料として用いた場合には、多量の硫黄酸化物(SOx)が大気中に排出され、環境破壊の一因となる。このため、重質炭化水素油中の硫黄化合物を低減する必要がある。
 以上のようなことから、重質炭化水素油中の硫黄化合物の低減を目的として、水素化処理触媒の高活性化、高寿命化に関する研究が盛んに行われている。例えば、アルミナ系の水素化処理触媒において、アルミナ担体に亜鉛及びリンを含有させることにより、活性金属であるモリブデンの分散状態が良好となり、脱硫性能が向上することが開示されている(例えば、特許文献1参照。)。
 その一方で、重質炭化水素油については貯蔵安定性の向上が望まれている。水素化処理された重質炭化水素油は、出荷されるまでの間、出荷時の作業性を考慮して流動性を保持させるために加熱貯蔵されている。また、製品として出荷された後、使用されるまで、長期間貯蔵されることがある。このため、熱履歴や貯蔵時の雰囲気下によっては、貯蔵している間にセジメントが発生し、フィルターの閉塞、ポンプの破損などの原因となることがある。
 セジメントが発生する要因はいくつか挙げられるが、その一つとして、重質炭化水素油に含まれるアスファルテン分の安定性が挙げられる。アスファルテン分は、レジン分に囲まれることで、セジメント化することなく重質炭化水素油中に分散されている。しかし、水素化処理によりレジン分が脱離しアスファルテン分とレジン分のバランスが崩れると、アスファルテン分はセジメントとして現れやすくなる。
特開2008-290043号公報
 本発明は、脱硫活性や脱金属活性を低下させることなく、水素化処理された重質炭化水素油の貯蔵安定性を向上させることができる水素化処理触媒、当該水素化処理触媒の製造方法、及び当該水素化処理触媒を用いて重質炭化水素油を水素化処理する方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討した結果、重質炭化水素油の水素化処理において、特定の大きさの酸化亜鉛粒子を特定量含有するリン・亜鉛含有アルミナ担体に水素化活性成分を担持させた水素化処理触媒を用いることにより、潜在セジメント量が低減された水素化処理油を得られることを見出し、本発明を完成した。
 すなわち、本発明は、下記の重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法に関するものである。
[1] リンを担体基準、酸化物換算で0.1~4質量%含有し、酸化亜鉛粒子を担体基準で1~12質量%含有するリン・亜鉛含有アルミナを担体とし、前記担体に周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%担持してなり、前記酸化亜鉛粒子の平均粒子径が2~12μmであることを特徴とする重質炭化水素油の水素化処理触媒。
[2] アルミナゲルを調製する工程、
 リンを担体基準、酸化物換算で0.1~4質量%、平均粒子径が2~12μmである酸化亜鉛粒子を担体基準で1~12質量%含有させるように、前記アルミナゲルにリン化合物及び亜鉛化合物を混練する工程、
 得られた混練物を成型し、これを乾燥、焼成して、リン・亜鉛含有アルミナ担体を得る工程、及び
 前記リン・亜鉛含有アルミナ担体に、周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%含有するように担持させる工程、
を有する、重質炭化水素油の水素化処理触媒の製造方法。
[3] 前記[1]の重質炭化水素油の水素化処理触媒の存在下、水素分圧3~20MPa、温度300~420℃、液空間速度0.1~3h-1で、重質炭化水素油の接触反応を行うことを特徴とする重質炭化水素油の水素化処理方法。
 本発明に係る水素化処理触媒は、特定の大きさの酸化亜鉛粒子がリンと共に含有されているリン・亜鉛含有アルミナ担体に水素化活性成分が担持されており、重質炭化水素油の脱硫活性に優れている。さらに、当該水素化処理触媒を用いて水素化処理を行うことにより、セジメントが発生し難い、貯蔵安定性に優れた重質炭化水素油を得ることができる。
 <水素化処理触媒>
 本発明に係る水素化処理触媒は、アルミナを担体主成分とする。
 アルミナとしては、α-アルミナ、β-アルミナ、γ-アルミナ、δ-アルミナ等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、なかでもγ-アルミナが適している。
 また、担体主成分とするアルミナの純度は、好ましくは98質量%以上、より好ましくは99質量%以上のものが適している。
 アルミナ中の不純物としては、SO 2-、Cl、Fe、NaO等が挙げられるが、これらの不純物はできるだけ少ないことが好ましく、不純物全量で好ましくは2質量%以下、より好ましくは1質量%以下であり、成分毎ではSO 2-が1.5質量%以下、C1、Fe、NaOが0.1質量%以下であることが好ましい。
 本発明に係る水素化処理触媒の担体に用いるアルミナは、ゼオライト、ボリア、シリカ、及びジルコニアから選ばれる一種以上を複合化させて、複合化されたアルミナ担体としてもよい。
 この複合化されたアルミナ担体においては、アルミナが92~99.9質量%、好ましくは95~98質量%、ゼオライト、ボリア、シリカ、及びジルコニアから選ばれる一種以上が0~8質量%であることが好ましい。この際、上記ゼオライト、ボリア、シリカ、及びジルコニアの複合化成分は、一般に、この種の触媒の担体成分として使用されるものを使用することができる。
 本発明に係る水素化処理触媒に用いる担体は、アルミナ担体(複合化されたアルミナ担体を含む。)に亜鉛及びリンをさらに含有させた、リン・亜鉛含有アルミナ担体である。
 亜鉛及びリンは、活性金属量当たりの脱硫活性及び脱残炭活性を向上させるために活性点の質的向上を図る成分として加えられものであり、高活性なNiMoS相、NiWS相等の活性金属-硫黄相を精密に創製する役割をなす。
 前記リン・亜鉛含有アルミナ担体における亜鉛の含有量は、担体基準、酸化物換算で1~12質量%、好ましくは2~9質量%である。また、触媒基準、酸化物換算で好ましくは3~6質量%である。亜鉛の含有量が担体基準で1質量%以上であれば、周期表第6族金属の硫化度を十分向上させることができる。また、亜鉛の含有量が12質量%以下であれば、細孔容積や比表面積の低下が起こり難く、周期表第6族金属が十分に分散するとともに周期表第8~10族金属の硫化度が低下し難い。
 なお、本発明において、「周期表第6族金属」(以下、「第6族金属」ということがある。)とは、長周期型周期表における第6族金属を意味し、「周期表第8~10族金属」(以下、「第8~10族金属」ということがある。)とは、長周期型周期表における第8~10族金属を意味する。
 本発明に係る水素化処理触媒は、亜鉛として、平均粒子径が2~12μm、好ましくは4~10μm、より好ましくは5~9μmである酸化亜鉛粒子を用いる。担体に含有させる酸化亜鉛粒子の平均粒子径が12μm以下であれば、アルミナとの相互作用が十分得られ、十分な貯蔵安定性がある水素化処理後の重質炭化水素油が得られる。一方で、担体に含有させる酸化亜鉛粒子の平均粒子径が2μm以上であると、リン・亜鉛含有アルミナ担体の製造時において亜鉛とアルミナが混合し易い。
 なお、本発明及び本願明細書において、酸化亜鉛粒子の粒径は、JIS R1629に準拠したレーザー回折散乱法により測定し、粒度分布の体積平均を平均粒子径とした。また、リン・亜鉛含有アルミナ担体に含有させる酸化亜鉛粒子としては、純度が99%以上のものが好ましい。
 本発明に係る水素化処理触媒の担体中のリンの含有量は、担体基準、酸化物換算で、0.1~4質量%、好ましくは0.5~2.5質量%である。また、本発明に係る水素化処理触媒としては、リンの含有量が、触媒基準、酸化物換算で好ましくは0.08~3.6質量%である。担体中のリンの含有量が担体基準、酸化物換算で0.1質量%以上であると、第6族金属の硫化度が十分に高くなる。また、リンの含有量が4質量%以下であれば、細孔容積や比表面積の低下が起こらず、第6族金属が十分分散するため、リンの添加効果が得られる。
 本発明に係る水素化処理触媒の担体に含有させるリンの原料化合物としては、種々の化合物を使用することができる。リン化合物としては、例えばオルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等が挙げられ、なかでもオルトリン酸が好ましい。
 本発明において、亜鉛及びリンの含有量に関して、「担体基準、酸化物換算で」とは、担体中に含まれる全ての元素の質量をそれぞれの酸化物として算出し、その合計質量に対する亜鉛の酸化物質量、及びリンの酸化物質量の割合を意味する。亜鉛の酸化物質量は酸化亜鉛に換算し、リンの酸化物質量は五酸化二リンに換算してそれぞれ求める。
 アルミナ担体への亜鉛及びリンの添加は、周期表第6族金属や周期表第8~10族金属と担体との相互作用を緩和し、第6族金属や第8~10族金属の硫化がそれぞれ容易になると考えられる。しかし、一方で、第6族金属や第8~10族金属と担体との相互作用が弱くなりすぎると、活性金属の凝集が起ってしまうため、亜鉛やリンの添加には精密な制御が必要である。本発明に係る水素化処理触媒では、亜鉛やリンを精密に制御して添加することにより、NiMoS相、NiWS相等の活性金属-硫黄相が高分散である状態を保持しつつ、積層数などの構造形態も最適化されると考えられる。
 本発明に係る水素化処理触媒に用いるリン・亜鉛含有アルミナ担体を得るには、まず、常法によりアルミナゲルを調製する。アルミナの原料は、アルミニウムを含む物質であればどのようなものでも使用できるが、硫酸アルミニウム、硝酸アルミニウム等のアルミニウム塩が好ましい。これらのアルミナ原料は、通常は水溶液として供され、その濃度は特に制限されないが、好ましくは2~50質量%、より好ましくは5~40質量%である。
 アルミナゲルの調製としては、例えば、攪拌釜で硫酸水溶液、アルミン酸ナトリウム、水酸化アルミニウムを混合してスラリーを調製する。得られたスラリーに対して回転円筒型連続真空濾過器による水分除去、純水洗浄を行い、アルミナゲルを得る。次いで、得られたアルミナゲルを、濾液中にSO 2-やNaが検出できなくなるまで洗浄した後、当該アルミナゲルを純水に混濁させて均一なスラリーとする。得られたアルミナゲルスラリーを、水分量が60~90質量%となるまで脱水してケーキを得る。
 本発明に係る水素化処理触媒の製造方法では、このアルミナゲルスラリーの脱水を、圧搾濾過器によって行うことが好ましい。圧搾濾過器によって脱水することにより、アルミナ担体の表面状態を向上させることができ、後述する触媒活性金属(水素化活性金属)の硫化度のレベル向上に有益である。なお、この圧搾濾過器による脱水工程は、アルミナゲルを調製する工程、及び後述するリン化合物及び酸化亜鉛粒子を混練する工程のうち少なくとも一方の工程の後に行うことが好ましく、いずれの工程の後に行ってもよい。より好ましくは、アルミナゲル調製後、リン化合物及び酸化亜鉛粒子の混練前に行う。
 ここで、圧搾濾過器とは、スラリーに圧縮空気又はポンプ圧を作用させ濾過するものであり、一般に圧濾器とも呼ばれる。圧搾濾過器には板枠型と凹板型とがある。板枠型圧濾器は、濾板と濾枠が交互に端板間に締め付けられており、濾枠の中へスラリーを圧入して濾過する。濾板は濾液流路となる溝を持ち、炉枠には炉布が張ってある。一方、凹板型圧濾器は、濾布と凹板型の濾板を交互に並べて端板との間で締め付け濾室を構成している(参考文献:化学工学便覧p715)。
 当該方法の他にも、アルミナゲルの調製方法としては、アルミナ原料を含む水溶液をアルミン酸ナトリウム、アルミン酸、アンモニア等の中和剤で中和する方法、ヘキサンメチレンテトラミン、炭酸カルシウム等の沈殿剤と混合する方法等が挙げられる。
 中和剤の使用量は、特に制限されないが、アルミナ原料を含む水溶液と中和剤の合計量に対して30~70質量%が好ましい。沈殿剤の使用量は、特に制限されないが、アルミナ原料を含む水溶液と沈殿剤の合計量に対して30~70質量%が好ましい。
 アルミナ担体として、ゼオライト等の複合化成分と複合化されたアルミナ担体を用いる場合には、まず、常法によりアルミナゲルを調製し、得られたアルミナゲルに対して熟成、洗浄、脱水乾燥、水分調整を行った後、共沈法、混練法等によりアルミナを複合化成分と複合化する。複合化されたアルミナゲルに対して、熟成、洗浄、脱水乾燥、水分調整を行う。複合化されたアルミナゲルの成形前の最終脱水工程においても、圧搾濾過器を用いて脱水することが好ましい。
 次に、得られたアルミナゲルに、リン化合物と酸化亜鉛粒子とを混練により添加する。具体的には、50~90℃に加熱したアルミナゲルの水分調整物に、15~90℃に加熱したリン化合物水溶液と酸化亜鉛粒子を添加し、加熱ニーダー等を用いて混練、攪拌することにより、リン・亜鉛含有アルミナ担体の混練物を得る。なお、前述したように、圧搾濾過器による脱水を、アルミナゲルとリン化合物及び亜鉛化合物とを混練、攪拌した後に行ってもよい。
 続いて、得られた混練物を成型し、これを乾燥、焼成して、リン・亜鉛含有アルミナ担体を得る。当該混練物の成型に当たっては、押出し成型、加圧成型等の種々の成型方法により行うことができる。
 また、得られた成型物の乾燥に当たっては、乾燥温度は15~150℃が好ましく、特に好ましくは80~120℃であり、乾燥時間は30分間以上が好ましい。得られた乾燥物の焼成に当たっては、焼成温度は必要に応じて適宜設定できるが、例えばγ-アルミナとするためには450℃以上で焼成することが好ましく、更に好ましくは480℃~600℃である。焼成時間は2時間以上が好ましく、特に好ましくは3~12時間である。
 本発明に係る水素化処理触媒のリン・亜鉛含有アルミナ担体は、下記の物性値とすることが好ましい。
 リン・亜鉛含有アルミナ担体の比表面積は、窒素吸着法(BET法)による測定値で、好ましくは200~380m2/g、より好ましくは220~360m2/gである。比表面積が小さすぎると、水素化活性金属の分散性が悪くなり、脱硫活性が低下するおそれがあり、比表面積が大きすぎると、細孔径が極端に小さくなるため、触媒の細孔径も小さくなって、水素化処理の際、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下するおそれがある。リン・亜鉛含有アルミナ担体の比表面積を前記範囲内とすることにより、水素化活性金属の分散性が良好であり、かつ充分な大きさの細孔径を有する水素化処理触媒が得られる。
 リン・亜鉛含有アルミナ担体の水銀圧入法で測定した細孔分布における平均細孔径は、好ましくは5~12nm、より好ましくは6~10nmである。リン・亜鉛含有アルミナ担体の平均細孔径を前記範囲内とすることにより、充分な細孔内表面積を有しつつ、反応物質の細孔内における拡散性も良好であり、脱硫反応が効率的に進行し脱硫活性がより向上する。
 リン・亜鉛含有アルミナ担体の細孔容積は、水銀圧入法による測定値で、好ましくは0.4~0.9mL/g、より好ましくは0.6~0.8mL/gである。細孔容積が小さすぎる場合には、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量となる。溶媒が少量であると、水素化活性金属化合物の溶解性が悪くなり、金属の分散性が低下し、低活性の触媒となるおそれがある。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。一方で、細孔容積が大きすぎる場合には、比表面積が極端に小さくなって、活性金属の分散性が低下するおそれがある。リン・亜鉛含有アルミナ担体の細孔容積を前記範囲内とすることにより、充分な比表面積を有しつつ、細孔容積内に充分量の溶媒が入り込めるため、水素化活性金属化合物の溶解性と分散性が共に良好になり、脱硫活性がより向上する。
 リン・亜鉛含有アルミナ担体に、第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、および第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~5質量%含有するように担持させることによって、本発明に係る水素化処理触媒が製造できる。
 ここで、第6族金属及び第8~10族金属の含有量に関して、「触媒基準、酸化物換算で」とは、触媒中に含まれる全ての元素の質量をそれぞれの酸化物として算出し、その合計質量に対するそれぞれの金属の酸化物質量の割合を意味する。第6族金属及び第8~10族金属の酸化物質量は、第6族金属については6価の酸化物、第8~10族金属については2価の酸化物に換算して求める。
 第6族金属としては、モリブデン(Mo)、タングステン(W)、クロム(Cr)等が挙げられ、なかでも単位質量当たりの活性が高いMoが好ましい。リン・亜鉛含有アルミナ担体に担持させるMo化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくはモリブドリン酸、三酸化モリブデン、モリブデン酸アンモニウムである。
 リン・亜鉛含有アルミナ担体における第6族金属の含有量は、触媒基準、酸化物換算で、8~20質量%、好ましくは10~16質量%である。第6族金属が8質量%以上であれば、第6族金属に起因する効果を十分発現させることができ、20質量%以下であれば、第6族金属が凝集し難く活性金属の分散性が向上する。つまり、効率的に分散する活性金属含有量の限度を超えたり、触媒表面積が大幅に低下することがなく、触媒活性の向上を図ることができる。
 第8~10族金属としては、ニッケル(Ni)、コバルト(Co)等が挙げられ、なかでも水素化能が高く、触媒調製コストが低いNiが好ましい。リン・亜鉛含有アルミナ担体に担持させるNi化合物としては、Niの炭酸塩、酢酸塩、硝酸塩、硫酸塩、塩化物が挙げられ、好ましくは炭酸塩、酢酸塩、より好ましくは炭酸塩である。
 リン・亜鉛含有アルミナ担体における第8~10族金属の含有量は、触媒基準、酸化物換算で、2~6質量%、好ましくは2.5~4.5質量%である。第8~10族金属が2質量%以上であれば、第8~10族金属に帰属する活性点が十分に得られる。一方、6質量%以下であれば、第8~10族金属化合物が凝集し難く活性金属の分散性が向上する。例えばNiを用いた場合に、不活性な前駆体であるNiO種(触媒硫化後や水素化処理中はNiS種として存在する)や、担体の格子内に取り込まれたNiスピネル種が生成され難いため、触媒活性の向上がみられる。
 第6族金属、第8~10族金属の各成分の前記の含有量において、水素化活性金属である第6族金属、第8~10族金属の最適質量比は、〔第8~10族金属酸化物質量〕/(〔第8~10族金属酸化物質量〕+〔第6族金属酸化物質量〕)の値で、0.14~0.3であることが好ましい。
 第6族金属と第8~10族金属との総量に対する第8~10族金属の質量比が小さすぎる場合には、脱硫の活性点と考えられるNiMoS相、NiWS相等の活性金属-硫黄相が十分に生成できず、脱硫活性が向上しないおそれがある。また、当該質量比が大きすぎる場合には、活性に関与しない無駄な金属種(NiS種や、担体の格子内に取り込まれたNiスピネル種)が生成し、触媒活性が低下するおそれがある。前記質量比を前記範囲内とすることにより、活性金属-硫黄相が十分に生成され、かつ活性に関与しない無駄な金属種の生成が抑制され得る。
 リン・亜鉛含有アルミナ担体に、第6族金属や第8~10族金属を担持させる方法としては、含浸法、共沈法等の公知の方法でよい。例えば、リン・亜鉛含有アルミナ担体をこれらの水素化活性金属成分を含有する溶液中に浸漬した状態で水素化活性金属成分を沈澱させる方法のように、リン・亜鉛含有アルミナ担体を水素化活性金属成分を含有する溶液と接触させて、水素化活性金属をリン・亜鉛含有アルミナ担体上に担持させる含浸法が採用できる。なお、リン・亜鉛含有アルミナ担体に、第6族金属および第8~10族金属成分を含浸させる方法としては、これら各成分を同時に含浸させる一段含浸法でもよく、個別に含浸させる二段含浸法でもよい。
 第6族金属、第8~10族金属をリン・亜鉛含有アルミナ担体に担持させる具体的方法としては、以下の方法が挙げられる。まず、第6族金属化合物、第8~10族金属化合物、リン化合物を含む含浸用溶液を調製する。なお、金属化合物にリンが含まれている場合は、リン化合物を加えないか、適当量のリン化合物を添加する。調製時、これらの化合物の溶解を促進するために、加温(30~100℃)や、酸(硝酸、リン酸、有機酸《クエン酸、酢酸、リンゴ酸、酒石酸等》)の添加を行ってもよい。
 ここで、第6族金属に対する担体に混練されているリンの酸化物換算における質量比は、0.25以下であることが好ましい。0.25以下であれば、触媒の表面積及び細孔容積が減少せず、触媒活性の低下が抑制されるのみならず、酸量が増えることなく、炭素析出を防止でき、これにより活性劣化が抑制される。
 続いて、調製した含浸用溶液を、リン・亜鉛含有アルミナ担体に、均一になるよう徐々に添加して含浸する。含浸時間は好ましくは1分間~5時間、より好ましくは5分間~3時間であり、温度は好ましくは5~100℃、より好ましくは10~80℃であり、雰囲気は特に限定しないが、大気中、窒素中、真空中が、それぞれ適している。
 第6族金属および第8~10族金属成分を含浸担持後、一般に、窒素気流中、空気気流中、あるいは真空中、常温~80℃で、水分をある程度(LOI《Loss on ignition》が50%以下となるように)除去し、乾燥炉にて、空気気流中、80~150℃で、10分間~10時間乾燥する。次いで、焼成炉にて、空気気流中、好ましくは300~700℃で、より好ましくは500~650℃で、好ましくは10分~10時間、より好ましくは3時間以上焼成を行う。
 本発明に係る水素化処理触媒は、重質炭化水素油に対する水素化活性、脱硫活性を高めるために、その比表面積、細孔容積、平均細孔径、及び細孔分布を、以下の範囲内に調整することが好ましい。
 本発明に係る水素化処理触媒の比表面積は、BET法による測定値で、好ましくは180~320m2/g、より好ましくは200~300m2/gである。比表面積が小さすぎると、水素化活性金属の分散性が悪くなり、比表面積が大きすぎると、細孔径が極端に小さくなるため、触媒の細孔径も小さくなる。本発明に係る水素化処理触媒の比表面積を前記範囲内とすることにより、水素化活性金属の分散性と水素化処理の際の硫黄化合物の触媒細孔内への拡散性の両方をより良好にすることができる。
 本発明に係る水素化処理触媒の細孔容積は、水銀圧入法による測定値で、好ましくは0.45~0.8mL/g、より好ましくは0.5~0.7mL/gである。細孔容積が小さすぎる場合には、水素化処理の際、硫黄化合物の触媒細孔内での拡散が不十分となるおそれがあり、細孔容積が大きすぎる場合には、比表面積が極端に小さくなるおそれがある。本発明に係る水素化処理触媒の細孔容積を前記範囲内とすることにより、水素化活性金属の分散性と水素化処理の際の硫黄化合物の触媒細孔内への拡散性の両方をより良好にすることができる。
 本発明に係る水素化処理触媒の水銀圧入法で測定した細孔分布での平均細孔径は、好ましくは7~13nm、より好ましくは7~12nmである。本発明に係る水素化処理触媒の平均細孔径を前記範囲内とすることにより、充分な細孔内表面積(すなわち、触媒の有効比表面積)を有しつつ、反応物質の細孔内における拡散性も良好であり、脱硫活性をより向上させることができる。
 また、上記の細孔条件を満たす細孔の有効数を多くするために、本発明に係る水素化処理触媒の細孔分布としては、平均細孔径±1.5nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が、45%以上であることが好ましく、55%以上がより好ましい。
 さらに、本発明に係る水素化処理触媒中の水素化活性金属の分布状態としては、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。
<水素化処理方法>
 本発明に係る水素化処理方法は、水素分圧3~20MPa、好ましくは8~19MPa、温度300~420℃、好ましくは350~410℃、及びLHSV(液空間速度)0.1~3h-1、好ましくは0.15~2h-1の条件で、本発明に係る水素化処理触媒と原料油とを接触させて水素化処理を行い、当該原料油中の硫黄分を低減する方法である。
 温度が300℃以上であれば、触媒活性、特に脱金属活性を十分に発揮できる。一方、420℃以下であれば、重質炭化水素油の熱分解が適度に進行し、触媒劣化が起こり難い。
 水素分圧が8MPa以上であれば、水素化反応が進行し易く、20MPa以下であれば適度な脱金属活性が得られるため触媒寿命が長くなる。
 本発明に係る水素化処理方法に供される重質炭化水素油としては、原油から蒸留により得られる常圧蒸留残渣油、減圧蒸留残渣油、熱分解油であるビスブレーキング油、石油以外の重質炭化水素油であるタールサンド油、シェールオイル等、又はこれらの混合物等が挙げられ、好ましくは、常圧蒸留残渣油、減圧蒸留残渣油、又はこれらの混合油である。
 常圧蒸留残渣油と減圧蒸留残渣油とを混合する場合は、その性状にもよるが、混合割合としては、減圧蒸留残渣油が1~60容量%程度となるように混合することがよく用いられる。
 本発明に係る水素化処理方法に供される重質炭化水素油としては、密度が0.91~1.10g/cm3、特に0.95~1.05g/cm3、硫黄分が2~6質量%、特に2~5質量%、ニッケル、バナジウム等の金属分が1~1500ppm、特に20~400ppm、アスファルテン分が2~15質量%、特に3~10質量%の重質炭化水素油が好ましい。
 本発明に係る水素化処理方法におけるその他の水素化処理条件は、要求される反応程度等により、適宜選定すればよい。例えば、水素/油比は、好ましくは400~3,000m3/m3、より好ましくは500~1,800m3/m3である。
 本発明に係る水素化処理触媒は、一般的には、使用前に(すなわち、本発明に係る水素化処理方法を行うのに先立って)、反応装置中で硫化処理して活性化する。当該硫化処理は、一般に、200~400℃、好ましくは250~350℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、当該石油蒸留物にジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、又は硫化水素を用いて行う。
 本発明に係る水素化処理方法を商業規模で行う場合には、本発明に係る水素化処理触媒の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件下で水素化反応を行えばよい。
 当該触媒層は、固定床、移動床、又は流動床式のいずれであってもよい。最も一般的には、固定床式触媒層を反応装置内に形成し、原料油を反応装置の上部に導入し、固定床を上から下に通過させ、反応装置の下部から生成物を流出させる方法か、反対に原料油を反応装置の下部に導入し、固定床を下から上に通過させ、反応装置の上部から生成物を流出させる方法である。
 本発明に係る水素化処理方法は、本発明に係る水素化処理触媒を、単独の反応装置に充填して行う一段の水素化処理方法であってもよく、幾つかの反応装置に充填して行う多段連続水素化処理方法であってもよい。
 次に、本発明の実施態様及びその効果を実施例等によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 実施例及び比較例に用いた酸化亜鉛粒子の平均粒子径を表1に示す。なお、酸化亜鉛粒子の粒径は、JIS R1629に準拠したレーザー回折散乱法により測定し、粒度分布の体積平均を平均粒子径とした。
Figure JPOXMLDOC01-appb-T000001
[実施例1]水素化処理触媒Aの調製
 先ず、リン・亜鉛含有アルミナ担体の調製を行った。12質量%の硫酸水溶液1.5Lを攪拌釜に張込んだ純水100Lに投入し、95℃に加熱した後、攪拌羽根で5分間激しく攪拌した後、当該攪拌釜にアルミナ濃度70g/Lのアルミン酸ナトリウム3.9Lを投入して、水酸化アルミニウムを調製し、24時間攪拌羽根で攪拌した。得られたスラリーを濾過器に投入して濾過を行い、水分を除去した後、得られたゲルを、純水を用いて、濾液中にSO 2-、Naが検出できなくなるまで洗浄した。次いで、洗浄後のゲルを純水に混濁させて均一なスラリーとし、当該スラリーを圧搾型濾過器へ投入した。当該スラリーは、濾布を介して濾板にはさみこまれ、濾板を圧搾することにより脱水を行った。
 得られたケーキ中の水分量が80%になった時点で濾過を中断した。このケーキを加温型ニーダー(設定温度80℃)に投入し、均一になるように十分に混練した後、リン酸及び酸化亜鉛粒子として酸化亜鉛1を投入し、均一になるように更に混練した。混練して得られたケーキを押し出し成形器に投入し、長径1.3mm、短径1.1mmの四つ葉型形状の押し出し成形物とした。この成形物を、乾燥し、次いで600℃で4時間焼成することにより、リン・亜鉛含有アルミナ担体を得た。得られたリン・亜鉛含有アルミナ担体は、リンを担体基準、酸化物換算で1.2質量%、亜鉛を担体基準、酸化物換算で4.0質量%、細孔容積が0.73mL/gであり、比表面積が307m2/gであり、平均細孔径が7.7nmであった。
 ナス型フラスコ中に、前記リン・亜鉛含有アルミナ担体(γ-Alベース、直径1.33mm×1.10mmの四つ葉型成形物)50.00gを投入した。イオン交換水37.6gにモリブデン酸アンモニウム8.76gを溶解させた溶液を、前記リン・亜鉛含有アルミナ担体に滴下した後に静置し、その後、乾燥させた後、500℃で4時間焼成することにより、モリブデン担持リン・亜鉛含有アルミナ担体を得た。次いで、前記モリブデン担持リン・亜鉛含有アルミナ担体に、イオン交換水31.8gに硝酸ニッケル9.27gを溶解させた溶液を滴下した後に静置し、その後、乾燥させた後、650℃で4時間焼成することにより、触媒Aを得た。
[実施例2]水素化処理触媒Bの調製
 酸化亜鉛1を酸化亜鉛2に置き換えた以外は実施例1と同様にして、水素化処理触媒Bを調製した。
[比較例1]水素化処理触媒aの調製
 酸化亜鉛1を酸化亜鉛3に置き換えた以外は実施例1と同様にして、水素化処理触媒aを調製した。
[比較例2]水素化処理触媒bの調製
 酸化亜鉛1を酸化亜鉛4に置き換えた以外は実施例1と同様にして、水素化処理触媒bを調製した。
<担体及び触媒の物理性状及び化学性状>
 実施例1、2及び比較例1、2で調製した水素化処理触媒A、B、a、及びbの担体の性状[リン及び亜鉛の含有量(担体基準、酸化物換算)、平均細孔径、比表面積、及び細孔容積]を表2に示す。
 実施例1、2及び比較例1、2で調製した水素化処理触媒A、B、a、及びbの性状[Mo及びNiの担持量(触媒基準、酸化物換算)、リン及び亜鉛の担持量(触媒基準、酸化物換算)、平均細孔径、比表面積、細孔容積、及び細孔分布]を表3に示す。
 表3中、「活性金属_活性金属量(質量%)」欄中の「Ni/Mo(上段) 4/12(下段)」は、当該触媒が触媒基準、酸化物換算で、Niを4質量%、Moを12質量%含有していることを意味する。
 また、表3中、「細孔分布」は、平均細孔径±1.5nmの細孔径を有する細孔の全容積の全細孔容積に対する割合を意味する。なお、触媒の物理性状及び化学性状は、次の要領で測定した。
〔1〕物理性状の分析(比表面積、細孔容積、平均細孔径、及び細孔分布)
a)測定方法及び使用機器:
・比表面積は、窒素吸着によるBET法により測定した。窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープMini)を使用した。
・細孔容積、平均細孔径、及び細孔分布は、水銀圧入法により測定した。水銀圧入装置は、ポロシメーター(MICROMERITICS AUTO-PORE 9200:島津製作所製)を使用した。
b)測定原理:
・水銀圧入法は、毛細管現象の法則に基づく。水銀と円筒細孔の場合には、この法則は次式で表される。式中、Dは細孔径、Pは掛けた圧力、γは表面張力、θは接触角である。
 掛けた圧力Pの関数としての細孔への進入水銀体積を測定する。なお、触媒の細孔水銀の表面張力は484dyne/cmとし、接触角は130度とした。
式: D=-(1/P)4γcosθ
・細孔容積は、細孔へ進入した触媒グラム当たりの全水銀体積量である。平均細孔径は、Pの関数として算出されたDの平均値である。
・細孔分布は、Pを関数として算出されたDの分布である。
c)測定手順:
1)真空加熱脱気装置の電源を入れ、温度400℃、真空度5×10-2Torr以下になることを確認した。
2)サンプルビュレットを空のまま真空加熱脱気装置に掛けた。
3)真空度が5×10-2Torr以下となったら、当該サンプルビュレットを、そのコックを閉じて真空加熱脱気装置から取り外し、冷却後、重量を測定した。
4)当該サンプルビュレットに試料(担体又は触媒)を入れた。
5)試料入りサンプルビュレットを真空加熱脱気装置に掛け、真空度が5×10-2Torr以下になってから1時間以上保持した。
6)試料入りサンプルビュレットを真空加熱脱気装置から取り外し、冷却後、重量を測定し、試料重量を求めた。
7)AUTO-PORE 9200用セルに試料を入れた。
8)AUTO-PORE 9200により測定した。
〔2〕化学組成の分析
a)分析方法及び使用機器:
・担体及び触媒の金属分析は、誘導結合プラズマ発光分析(ICPS-2000:島津製作所製)を用いて行った。
・金属の定量は、絶対検量線法にて行った。
b)測定手順:
1)ユニシールに、試料0.05g、塩酸(50質量%)1mL、フッ酸一滴、及び純水1mLを投入し、加熱して溶解させた。
2)溶解後、得られた溶液をポリプロピレン製メスフラスコ(50mL容)に移し換え、純水を加えて、50mLに秤量した。
3)当該溶液をICPS-2000により測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<重質炭化水素油の水素化処理反応>
 以下の要領にて、下記性状の常圧蒸留残渣油(AR)の水素化処理を行った。水素化処理触媒として、実施例1、2、比較例1、2で製造した触媒A、B、a、及びbをそれぞれ用いた。
 先ず、水素化処理触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理した。次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、当該反応装置の上部より導入して、下記の条件で脱硫反応と分解反応である水素化反応とを進行させ、生成油とガスの混合流体を、当該反応装置の下部より流出させ、気液分離器で生成油を分離した。
 測定方法は、密度は、JIS K 2249-1「原油及び石油製品-密度試験方法及び密度・質量・容量換算表(振動式密度試験方法)」、硫黄分は、JIS K 2541-4「原油及び石油製品-硫黄分試験方法 第4部:放射線式励起法」、潜在セジメント分は、JPI-5S-60-2000に準拠した。具体的には、潜在セジメント含量は、以下の方法で分析した。
<潜在セジメント含量の測定手順>
1)60℃に加温した試料を三角フラスコに25g採取し、エアーコンデンサーを取り付けて100℃の油浴に挿入し、24時間保持した。
2)当該試料を充分に振とうした後、10.5gをガラスビーカーにサンプリングした。
3)試料の入ったガラスビーカーを、100℃で10分間加温した。
4)乾燥したガラス繊維濾紙(直径47mm、気孔径1.6μm)を3枚重ねでセットし、減圧ポンプで80kPaまで減圧した減圧濾過器に、前記試料を投入し、30秒後に40kPaまで減圧した。
5)濾過が完了し、濾紙表面が乾いた後に、さらに5分間減圧を続けた。
6)減圧ポンプ停止後、濾過器をアスピレータで引きながら25mLの洗浄溶剤(ヘプタン85mL+トルエン15mL)で漏斗とフィルター全域を洗浄した。
7)さらに20mLヘプタンで当該濾紙を洗浄した後、最上部の濾紙(上から1枚目)を取り外して、下部の濾紙を20mLヘプタンで洗浄した。
8)上から1枚目及び2枚目の濾紙を、110℃で20分乾燥後、30分放冷した。
9)濾過前に対する濾過後の1枚目及び2枚目濾紙の各重量増加分を測定し、1枚目濾紙の増加重量から2枚目濾紙の増加重量を差し引いた重量を、試料採取重量に対する百分率としたものを、潜在セジメント(質量%)とした。
 なお、濾過が25分間で終了しない場合はサンプル量を5gあるいは2gとして再測定した。
 ニッケル及びバナジウムの含有量は、石油学会規格 JPI-5S-62-2000「石油製品金属分析試験法(ICP発光分析法)」に準拠した。
 アスファルテン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、トルエン不溶解分を回収した。この不溶性分をアスファルテン分とした。
 レジン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、濾液であるトルエン溶解分を濃縮した。この濃縮物にヘプタンを加えたヘプタン溶液を活性アルミナ充填カラムに流通させ、飽和、芳香族、レジン分に分離し、レジン分を回収した。
触媒の前処理条件:
 触媒の予備硫化は、減圧軽油により、水素分圧10.3MPa、370℃において12時間行った。その後、活性評価用の原料油に切り替えた。
反応条件: 
反応温度;385℃、
圧力(水素分圧);10.3MPa、
液空間速度 ;0.4h-1
水素/油比 ;1690m3/m3
原料油の性状:
油種;中東系原油の常圧蒸留残渣油、
密度(15℃);0.9759g/cm3
硫黄成分;3.51質量%、
バナジウム;59ppm、
ニッケル;11ppm、
アスファルテン分;2.8質量%。
 触媒活性について、以下の方法で解析した。385℃で反応装置を運転し、運転開始25日後の生成油を採取し、その性状(脱硫率(HDS)(%)、脱硫反応速度定数(Ks)、脱硫比活性(%)、脱金属率(HDM))を分析した。結果を表4に示す。
〔1〕脱硫率(HDS)(%):原料油中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式(1)により算出した。
〔2〕脱硫反応速度定数(Ks):生成油の硫黄分(Sp)の減少量に対して、2次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。以下の式(2)により算出した。なお、反応速度定数が高い程、触媒活性が優れていることを示している。
〔3〕脱硫比活性(%):触媒Aの脱硫反応速度定数を100としたときの相対値で示した。以下の式(3)により算出した。
〔4〕脱金属率(HDM)(%):原料油から消失した金属分(ニッケルとバナジウムの合計)の割合を脱金属率と定義し、原料油及び生成油の金属分析値から以下の式(4)により算出した。
脱硫率(%)=〔(Sf-Sp)/Sf〕×100 ………(1)
脱硫反応速度定数=〔1/Sp-1/Sf〕×(LHSV) ………(2)
式中、Sf:原料油中の硫黄分(質量%)、
Sp:生成油中の硫黄分(質量%)、
LHSV:液空間速度(h-1)。
脱硫比活性(%)=(各触媒の脱硫反応速度定数/触媒Aの脱硫反応速度定数)×100………(3)
脱金属率(%)=〔(Mf-Mp)/Mf〕×100 ………(4)
式中、Mf:原料油中のニッケルとバナジウムの合計(質量ppm)、
Mp:生成油中のニッケルとバナジウムの合計(質量ppm)。
〔生成油の分析〕
 前記の水素化処理反応で得た運転日数25日目の生成油から求めた脱硫比活性、脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 この結果、いずれの触媒も、脱硫比活性と脱金属率はほぼ同程度であった。一方で、生成油中のレジン分と潜在セジメント量とについては、触媒A又は触媒Bを用いた場合の方が、触媒a又は触媒bを用いた場合よりも、レジン分が多く、潜在セジメント量が明らかに少なかった。つまり、触媒A又は触媒Bを用いて得た生成油の方が、触媒a又は触媒bを用いて得たものよりも、セジメントが発生し難く、貯蔵安定性に優れていた。
 これらの結果から、リン・亜鉛含有アルミナ担体に含有させる酸化亜鉛粒子の大きさを特定の範囲内にした水素化処理触媒を用いることにより、水素化処理触媒の脱硫活性を低下させることなく、水素化処理した重質炭化水素油中の潜在セジメントの含有量を低くでき、貯蔵安定性を高められることが明らかである。
 本発明は、脱硫活性や脱金属活性を低下させることなく、水素化処理された重質炭化水素油の貯蔵安定性を向上させることができる水素化処理触媒、当該水素化処理触媒の製造方法、及び当該水素化処理触媒を用いて重質炭化水素油を水素化処理する方法を提供することができる。

Claims (3)

  1.  リンを担体基準、酸化物換算で0.1~4質量%含有し、酸化亜鉛粒子を担体基準で1~12質量%含有するリン・亜鉛含有アルミナを担体とし、前記担体に周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%担持してなり、前記酸化亜鉛粒子の平均粒子径が2~12μmであることを特徴とする重質炭化水素油の水素化処理触媒。
  2.  アルミナゲルを調製する工程、
     リンを担体基準、酸化物換算で0.1~4質量%、平均粒子径が2~12μmである酸化亜鉛粒子を担体基準で1~12質量%含有させるように、前記アルミナゲルにリン化合物及び亜鉛化合物を混練する工程、
     得られた混練物を成型し、これを乾燥、焼成して、リン・亜鉛含有アルミナ担体を得る工程、及び
     前記リン・亜鉛含有アルミナ担体に、周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%含有するように担持させる工程、
    を有する重質炭化水素油の水素化処理触媒の製造方法。
  3.  請求項1に記載の重質炭化水素油の水素化処理触媒の存在下、水素分圧3~20MPa、300~420℃、液空間速度0.1~3h-1で、重質炭化水素油の接触反応を行うことを特徴とする重質炭化水素油の水素化処理方法。
PCT/JP2014/075455 2013-09-27 2014-09-25 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 WO2015046345A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167008981A KR102188896B1 (ko) 2013-09-27 2014-09-25 중질 탄화수소유의 수소화 처리 촉매, 중질 탄화수소유의 수소화 처리 촉매의 제조 방법 및 중질 탄화수소유의 수소화 처리 방법
US15/021,790 US10239048B2 (en) 2013-09-27 2014-09-25 Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
EP14847234.3A EP3050623B1 (en) 2013-09-27 2014-09-25 Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
JP2015539341A JP6432086B2 (ja) 2013-09-27 2014-09-25 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
CN201480052589.8A CN105592923B (zh) 2013-09-27 2014-09-25 重质烃油的加氢处理催化剂、重质烃油的加氢处理催化剂的制造方法以及重质烃油的加氢处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013201800 2013-09-27
JP2013-201800 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046345A1 true WO2015046345A1 (ja) 2015-04-02

Family

ID=52743479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075455 WO2015046345A1 (ja) 2013-09-27 2014-09-25 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法

Country Status (6)

Country Link
US (1) US10239048B2 (ja)
EP (1) EP3050623B1 (ja)
JP (1) JP6432086B2 (ja)
KR (1) KR102188896B1 (ja)
CN (1) CN105592923B (ja)
WO (1) WO2015046345A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532799A (ja) * 2016-09-07 2019-11-14 メキシケム フロー エセ・ア・デ・セ・ヴェ 触媒およびこの触媒を用いるフッ素化炭化水素の製造プロセス
WO2021193617A1 (ja) * 2020-03-26 2021-09-30 コスモ石油株式会社 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
WO2022004786A1 (ja) 2020-07-03 2022-01-06 コスモ石油株式会社 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法
US11406965B2 (en) 2016-09-07 2022-08-09 Mexichem Fluor S.A. De C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229870B1 (ko) * 2013-09-27 2021-03-19 코스모세키유 가부시키가이샤 중질 탄화수소유의 수소화 처리 촉매 및 중질 탄화수소유의 수소화 처리 방법
US12071592B2 (en) 2017-02-12 2024-08-27 Magēmā Technology LLC Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US20180230389A1 (en) 2017-02-12 2018-08-16 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US12025435B2 (en) 2017-02-12 2024-07-02 Magēmã Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
JP6916021B2 (ja) * 2017-03-30 2021-08-11 Eneos株式会社 炭化水素油の水素化脱硫触媒及び水素化脱硫触媒の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248460A (ja) * 1996-03-14 1997-09-22 Japan Energy Corp 重質油の水素化処理用触媒および水素化処理方法
JP2008290043A (ja) 2007-05-28 2008-12-04 Cosmo Oil Co Ltd 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
JP2010248476A (ja) * 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904550A (en) * 1973-10-19 1975-09-09 Exxon Research Engineering Co Hydrocarbon conversion catalyst comprising alumina and aluminum phosphate
US4652546A (en) 1984-08-27 1987-03-24 Phillips Petroleum Company Hydrogel derived catalyst of zinc titanate and alumina promoted with cobalt and molybdenum for hydrodesulfurization or hydrodenitrogenation
JP2992971B2 (ja) * 1994-09-01 1999-12-20 株式会社ジャパンエナジー 水素化処理用触媒
US6013598A (en) * 1996-02-02 2000-01-11 Exxon Research And Engineering Co. Selective hydrodesulfurization catalyst
US6716525B1 (en) * 1998-11-06 2004-04-06 Tapesh Yadav Nano-dispersed catalysts particles
JP4638610B2 (ja) 2001-01-05 2011-02-23 日本ケッチェン株式会社 水素化処理用触媒並びに水素化処理方法
JP4519379B2 (ja) 2001-09-28 2010-08-04 財団法人石油産業活性化センター 重質炭化水素油の水素化処理触媒
JP2005314657A (ja) * 2004-03-29 2005-11-10 Cosmo Oil Co Ltd 重質炭化水素油の水素化処理方法
DE102005004429A1 (de) 2005-01-31 2006-08-10 Süd-Chemie AG Verfahren zur Herstellung eines Katalysators für die Entschwefelung von Kohlenwasserstoffströmen
CN101954282A (zh) 2010-08-31 2011-01-26 内江天科化工有限责任公司 一种加氢脱硫催化剂及其制备方法
CN103320159B (zh) 2013-06-24 2015-08-12 大连理工大学 一种脱除催化裂化汽油中硫醇硫的方法
CN105579134B (zh) * 2013-09-27 2018-12-07 克斯莫石油株式会社 重质烃油的加氢处理催化剂以及重质烃油的加氢处理方法
KR102229870B1 (ko) * 2013-09-27 2021-03-19 코스모세키유 가부시키가이샤 중질 탄화수소유의 수소화 처리 촉매 및 중질 탄화수소유의 수소화 처리 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248460A (ja) * 1996-03-14 1997-09-22 Japan Energy Corp 重質油の水素化処理用触媒および水素化処理方法
JP2008290043A (ja) 2007-05-28 2008-12-04 Cosmo Oil Co Ltd 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
JP2010248476A (ja) * 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3050623A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532799A (ja) * 2016-09-07 2019-11-14 メキシケム フロー エセ・ア・デ・セ・ヴェ 触媒およびこの触媒を用いるフッ素化炭化水素の製造プロセス
US11406965B2 (en) 2016-09-07 2022-08-09 Mexichem Fluor S.A. De C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
US11452990B2 (en) 2016-09-07 2022-09-27 Mexichem Fluor S.A. De C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
WO2021193617A1 (ja) * 2020-03-26 2021-09-30 コスモ石油株式会社 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
WO2022004786A1 (ja) 2020-07-03 2022-01-06 コスモ石油株式会社 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法

Also Published As

Publication number Publication date
US10239048B2 (en) 2019-03-26
KR20160064123A (ko) 2016-06-07
KR102188896B1 (ko) 2020-12-11
CN105592923B (zh) 2018-04-24
CN105592923A (zh) 2016-05-18
EP3050623B1 (en) 2021-01-27
EP3050623A1 (en) 2016-08-03
US20160220986A1 (en) 2016-08-04
EP3050623A4 (en) 2017-06-28
JPWO2015046345A1 (ja) 2017-03-09
JP6432086B2 (ja) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6432086B2 (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
JP6773384B2 (ja) 重質炭化水素油の水素化処理方法
JP6413168B2 (ja) 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
US10137436B2 (en) Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
EP2772308B1 (en) Hydrogenation catalyst and method for producing same
JP2018134635A (ja) チタニアを含有する改良された残油水素化処理触媒
CN110841674A (zh) 挤出的残油脱金属催化剂
JP4805211B2 (ja) 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
JP2019177356A (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
CN115702040A (zh) 烃油的加氢处理催化剂、烃油的加氢处理催化剂的制造方法、以及烃油的加氢处理方法
JP2019177357A (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
JP5337978B2 (ja) 水素化処理触媒及び減圧軽油の水素化処理方法
WO2021193617A1 (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
JP2022023008A (ja) 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法
JP2022150235A (ja) 炭化水素油の水素化処理触媒の製造方法及び炭化水素油の水素化処理方法
JP2023145850A (ja) シリコン捕集剤、シリコンの捕集方法、及び水素化処理方法
JP2022156584A (ja) 炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法
JP2023007720A (ja) 重質炭化水素油の水素化処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539341

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15021790

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014847234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847234

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008981

Country of ref document: KR

Kind code of ref document: A