WO2015046345A1 - 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 - Google Patents
重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 Download PDFInfo
- Publication number
- WO2015046345A1 WO2015046345A1 PCT/JP2014/075455 JP2014075455W WO2015046345A1 WO 2015046345 A1 WO2015046345 A1 WO 2015046345A1 JP 2014075455 W JP2014075455 W JP 2014075455W WO 2015046345 A1 WO2015046345 A1 WO 2015046345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- catalyst
- zinc
- heavy hydrocarbon
- phosphorus
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 44
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 44
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005984 hydrogenation reaction Methods 0.000 title abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 98
- 239000002184 metal Substances 0.000 claims abstract description 98
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 96
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 59
- 239000011701 zinc Substances 0.000 claims abstract description 59
- 239000002245 particle Substances 0.000 claims abstract description 38
- 239000011787 zinc oxide Substances 0.000 claims abstract description 31
- 230000000737 periodic effect Effects 0.000 claims abstract description 16
- 150000002739 metals Chemical class 0.000 claims abstract description 11
- 239000003921 oil Substances 0.000 claims description 81
- 229910052698 phosphorus Inorganic materials 0.000 claims description 76
- 239000011574 phosphorus Substances 0.000 claims description 76
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 63
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 58
- -1 Phosphorus compound Chemical class 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 238000004898 kneading Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 6
- 150000003752 zinc compounds Chemical class 0.000 claims description 3
- 238000006555 catalytic reaction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 36
- 238000006477 desulfuration reaction Methods 0.000 abstract description 35
- 230000023556 desulfurization Effects 0.000 abstract description 35
- 238000003860 storage Methods 0.000 abstract description 11
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 description 70
- 238000006243 chemical reaction Methods 0.000 description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 24
- 239000000047 product Substances 0.000 description 20
- 229910052717 sulfur Inorganic materials 0.000 description 15
- 239000011593 sulfur Substances 0.000 description 15
- 238000009826 distribution Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 11
- 229910052753 mercury Inorganic materials 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000002002 slurry Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 239000013049 sediment Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 238000004821 distillation Methods 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 150000003464 sulfur compounds Chemical class 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 6
- 238000005292 vacuum distillation Methods 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000010779 crude oil Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 235000011007 phosphoric acid Nutrition 0.000 description 4
- 230000001376 precipitating effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000004438 BET method Methods 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 3
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 3
- 239000011609 ammonium molybdate Substances 0.000 description 3
- 229940010552 ammonium molybdate Drugs 0.000 description 3
- 235000018660 ammonium molybdate Nutrition 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910001388 sodium aluminate Inorganic materials 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000005486 sulfidation Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000007324 demetalation reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- JMTIXSZQYHAMLY-UHFFFAOYSA-N [P].[Zn] Chemical compound [P].[Zn] JMTIXSZQYHAMLY-UHFFFAOYSA-N 0.000 description 1
- YDHWWBZFRZWVHO-UHFFFAOYSA-N [hydroxy(phosphonooxy)phosphoryl] phosphono hydrogen phosphate Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(O)=O YDHWWBZFRZWVHO-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/16—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
- B01J27/18—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
- B01J27/1802—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
- B01J27/1808—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
Definitions
- the present invention is used for hydrodesulfurization of atmospheric distillation residue oil (hereinafter also referred to as “AR”) and vacuum distillation residue oil (hereinafter also referred to as “VR”) using a direct desulfurization apparatus.
- Heavy hydrocarbon oil hydrotreating catalyst capable of improving the storage stability of the hydrotreated oil obtained by hydrotreating the hydrocarbon oil, method for producing the hydrotreating catalyst, and the hydrogenation
- the present invention relates to a method for hydrotreating heavy hydrocarbon oil using a treatment catalyst.
- Heavy hydrocarbon oils such as VR obtained by further processing AR or AR obtained by treating crude oil with an atmospheric distillation device with a vacuum distillation device contain a large amount of sulfur compounds.
- SOx sulfur oxide
- hydrotreated heavy hydrocarbon oil is heated and stored in order to maintain fluidity in consideration of workability at the time of shipment until it is shipped. Moreover, after being shipped as a product, it may be stored for a long time until it is used. For this reason, depending on the thermal history and the atmosphere at the time of storage, sediment may occur during storage, which may cause clogging of the filter, damage to the pump, and the like.
- the present invention is a hydrotreating catalyst capable of improving the storage stability of hydrotreated heavy hydrocarbon oil without reducing desulfurization activity or demetallizing activity, a method for producing the hydrotreating catalyst, Another object of the present invention is to provide a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.
- the present inventors have found that in a hydrotreatment of heavy hydrocarbon oil, hydrogen is added to a phosphorus / zinc-containing alumina support containing a specific amount of zinc oxide particles of a specific size.
- the present inventors have found that by using a hydrotreating catalyst that supports a hydrotreating active component, a hydrotreating oil with a reduced amount of latent sediment can be obtained, and the present invention has been completed.
- the present invention relates to the following heavy hydrocarbon oil hydrotreating catalyst, heavy hydrocarbon oil hydrotreating catalyst production method, and heavy hydrocarbon oil hydrotreating method.
- Phosphorus and zinc-containing alumina containing phosphorus in an amount of 0.1 to 4% by mass in terms of a carrier and zinc oxide particles in an amount of 1 to 12% by mass in terms of a carrier are used as a carrier.
- a step of kneading the zinc compound The obtained kneaded product is molded, dried and fired to obtain a phosphorus / zinc-containing alumina carrier, and at least one selected from Group 6 metals of the periodic table is added to the phosphorus / zinc-containing alumina carrier.
- the manufacturing method of the hydroprocessing catalyst of heavy hydrocarbon oil which has these.
- a method for hydrotreating heavy hydrocarbon oil characterized by carrying out a catalytic reaction of hydrogen oil.
- the hydrotreating catalyst according to the present invention has a hydrogenation active component supported on a phosphorus / zinc-containing alumina carrier containing zinc oxide particles of a specific size together with phosphorus, and desulfurization activity of heavy hydrocarbon oil. Is excellent. Furthermore, by performing a hydrotreatment using the hydrotreating catalyst, a heavy hydrocarbon oil that is less susceptible to sedimentation and excellent in storage stability can be obtained.
- the hydrotreating catalyst according to the present invention contains alumina as a main carrier component.
- alumina various aluminas such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina can be used, and porous and high specific surface area alumina is preferable, and ⁇ -alumina is particularly preferable. Is suitable.
- the purity of alumina as a main carrier component is preferably 98% by mass or more, more preferably 99% by mass or more. Examples of the impurities in alumina include SO 4 2 ⁇ , Cl ⁇ , Fe 2 O 3 , Na 2 O and the like.
- impurities are preferably as small as possible, and the total amount of impurities is preferably 2% by mass or less.
- the content is preferably 1% by mass or less, and for each component, SO 4 2 ⁇ is preferably 1.5% by mass or less, and C1 ⁇ , Fe 2 O 3 , and Na 2 O are preferably 0.1% by mass or less.
- the alumina used for the carrier of the hydrotreating catalyst according to the present invention may be a composite alumina support obtained by combining at least one selected from zeolite, boria, silica, and zirconia.
- alumina is 92 to 99.9% by mass, preferably 95 to 98% by mass, and at least one selected from zeolite, boria, silica, and zirconia is 0 to 8% by mass. Is preferred.
- the composite component of zeolite, boria, silica, and zirconia those generally used as a carrier component of this type of catalyst can be used.
- the support used for the hydrotreating catalyst according to the present invention is a phosphorus / zinc-containing alumina support in which zinc and phosphorus are further contained in an alumina support (including a composite alumina support).
- Zinc and phosphorus are added as components for improving the quality of the active sites in order to improve the desulfurization activity and decarburization activity per active metal amount.
- Active metals such as highly active NiMoS phase, NiWS phase, etc. It plays a role in precisely creating the sulfur phase.
- the content of zinc in the phosphorus / zinc-containing alumina carrier is 1 to 12% by mass, preferably 2 to 9% by mass in terms of oxide, based on the carrier. Further, it is preferably 3 to 6% by mass in terms of catalyst and oxide.
- the zinc content is 1% by mass or more based on the carrier, the sulfidity of the Group 6 metal of the periodic table can be sufficiently improved. If the zinc content is 12% by mass or less, the pore volume and the specific surface area are unlikely to decrease, the group 6 metal of the periodic table is sufficiently dispersed, and the sulfidity of the group 8-10 metal of the periodic table Is difficult to decrease.
- Group 6 metal of the periodic table (hereinafter also referred to as “Group 6 metal”) means a Group 6 metal in the long-period periodic table.
- Group 8-10 metal (hereinafter sometimes referred to as “Group 8-10 metal”) means a Group 8-10 metal in the long-period periodic table.
- the hydrotreating catalyst according to the present invention uses zinc oxide particles having an average particle diameter of 2 to 12 ⁇ m, preferably 4 to 10 ⁇ m, more preferably 5 to 9 ⁇ m, as zinc. If the average particle diameter of the zinc oxide particles contained in the support is 12 ⁇ m or less, sufficient interaction with alumina is obtained, and a heavy hydrocarbon oil after hydrotreatment having sufficient storage stability can be obtained. On the other hand, when the average particle diameter of the zinc oxide particles contained in the carrier is 2 ⁇ m or more, zinc and alumina are easily mixed during the production of the phosphorus / zinc-containing alumina carrier.
- the particle size of the zinc oxide particle was measured by the laser diffraction scattering method based on JISR1629, and the volume average of particle size distribution was made into the average particle diameter.
- the zinc oxide particles contained in the phosphorus / zinc-containing alumina support preferably have a purity of 99% or more.
- the content of phosphorus in the carrier of the hydrotreating catalyst according to the present invention is 0.1 to 4% by mass, preferably 0.5 to 2.5% by mass, based on the carrier and in terms of oxide.
- the phosphorus content is preferably 0.08 to 3.6% by mass on the catalyst basis and in terms of oxide.
- the phosphorus raw material compound to be contained in the carrier of the hydrotreating catalyst according to the present invention various compounds can be used.
- the phosphorus compound include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like, among which orthophosphoric acid is preferable.
- support standard in terms of oxide means that the mass of all elements contained in the support is calculated as each oxide, and the oxidation of zinc with respect to the total mass It means the amount of substance and the proportion of oxide mass of phosphorus.
- the oxide mass of zinc is converted to zinc oxide, and the oxide mass of phosphorus is calculated in terms of diphosphorus pentoxide.
- the addition of zinc and phosphorus to the alumina support alleviates the interaction between the group 6 metal of the periodic table and the group 8-10 metal of the periodic table and the support, and the sulfidation of the group 6 metal and the group 8-10 metal is reduced. Each will be easier. However, on the other hand, if the interaction between the Group 6 metal or the Group 8 to 10 metal and the support becomes too weak, the active metal aggregates, and therefore the addition of zinc or phosphorus requires precise control. is necessary. In the hydrotreating catalyst according to the present invention, by adding zinc and phosphorus in a precisely controlled manner, the active metal-sulfur phase such as NiMoS phase and NiWS phase is maintained in a highly dispersed state, and the number of laminated layers, etc. It is thought that the structural form is also optimized.
- an alumina gel is prepared by a conventional method.
- the alumina raw material any material containing aluminum can be used, but aluminum salts such as aluminum sulfate and aluminum nitrate are preferred.
- These alumina raw materials are usually provided as an aqueous solution, and the concentration thereof is not particularly limited, but is preferably 2 to 50% by mass, more preferably 5 to 40% by mass.
- a sulfuric acid aqueous solution, sodium aluminate, and aluminum hydroxide are mixed in a stirring vessel to prepare a slurry.
- the obtained slurry is subjected to water removal and pure water washing by a rotary cylindrical continuous vacuum filter to obtain alumina gel.
- the obtained alumina gel is washed until SO 4 2 ⁇ and Na + can no longer be detected in the filtrate, and then the alumina gel is made turbid in pure water to make a uniform slurry.
- the obtained alumina gel slurry is dehydrated until the water content becomes 60 to 90% by mass to obtain a cake.
- the alumina gel slurry is preferably dehydrated by a pressure filter.
- a pressure filter By dehydrating with a press filter, the surface state of the alumina carrier can be improved, which is beneficial for improving the level of sulfidity of the catalytically active metal (hydrogenated active metal) described later.
- the pressure filter is a filter that applies compressed air or pump pressure to the slurry for filtration, and is generally called a pressure filter.
- a plate frame type and a concave plate type in the press filter.
- the filter plate and the filter frame are alternately clamped between the end plates, and the slurry is pressed into the filter frame and filtered.
- the filter plate has a groove serving as a filtrate flow path, and a furnace cloth is stretched on the furnace frame.
- the concave plate type filter a filter chamber and a concave plate type filter plate are alternately arranged to form a clamping filter chamber between the end plates (reference document: Chemical Engineering Handbook p715).
- the preparation method of the alumina gel includes a method of neutralizing an aqueous solution containing an alumina raw material with a neutralizing agent such as sodium aluminate, aluminate or ammonia, or a precipitating agent such as hexanemethylenetetramine or calcium carbonate. And the like.
- the amount of the neutralizing agent used is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the neutralizing agent.
- the amount of the precipitating agent is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the precipitating agent.
- an alumina gel is prepared by a conventional method, and the obtained alumina gel is aged, washed, dehydrated and dried, and moisture. After the adjustment, alumina is combined with the composite component by a coprecipitation method, a kneading method or the like. Maturation, washing, dehydration drying, and moisture adjustment are performed on the composite alumina gel. Also in the final dehydration step before forming the composite alumina gel, it is preferable to dehydrate using a pressure filter.
- a phosphorus compound and zinc oxide particles are added to the obtained alumina gel by kneading. Specifically, by adding an aqueous phosphorus compound solution and zinc oxide particles heated to 15 to 90 ° C. to a moisture adjusted product of alumina gel heated to 50 to 90 ° C., kneading and stirring using a heating kneader or the like. A kneaded product of phosphorus / zinc-containing alumina carrier is obtained.
- dehydration by a pressure filter may be performed after kneading and stirring the alumina gel, the phosphorus compound, and the zinc compound.
- the obtained kneaded product is molded, dried and fired to obtain a phosphorus / zinc-containing alumina carrier.
- the kneaded product can be molded by various molding methods such as extrusion molding and pressure molding.
- the drying temperature is preferably 15 to 150 ° C., particularly preferably 80 to 120 ° C., and the drying time is preferably 30 minutes or more.
- the firing temperature can be appropriately set as necessary.
- firing is preferably performed at 450 ° C. or more, and more preferably at 480 ° C. to 600 ° C. is there.
- the firing time is preferably 2 hours or more, particularly preferably 3 to 12 hours.
- the phosphorus / zinc-containing alumina support of the hydrotreating catalyst according to the present invention preferably has the following physical property values.
- the specific surface area of the phosphorus / zinc-containing alumina support is preferably 200 to 380 m 2 / g, more preferably 220 to 360 m 2 / g, as measured by a nitrogen adsorption method (BET method). If the specific surface area is too small, the dispersibility of the hydrogenation active metal may be deteriorated and the desulfurization activity may be reduced. If the specific surface area is too large, the pore diameter becomes extremely small, and the pore diameter of the catalyst also becomes small. Thus, during the hydrogenation treatment, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity may be reduced. By setting the specific surface area of the phosphorus / zinc-containing alumina support within the above range, a hydrotreating catalyst having good dispersibility of the hydrogenation active metal and having a sufficiently large pore diameter can be obtained.
- the average pore diameter in the pore distribution measured by the mercury intrusion method of the phosphorus / zinc-containing alumina carrier is preferably 5 to 12 nm, more preferably 6 to 10 nm.
- the pore volume of the phosphorus / zinc-containing alumina carrier is a value measured by a mercury intrusion method, and is preferably 0.4 to 0.9 mL / g, more preferably 0.6 to 0.8 mL / g.
- a small amount of solvent enters the pore volume.
- the solubility of the hydrogenated active metal compound is deteriorated, the dispersibility of the metal is lowered, and there is a possibility that the catalyst becomes a low activity catalyst.
- Phosphorus / zinc-containing alumina support at least one selected from Group 6 metals as catalyst standard, 8 to 20% by mass in terms of oxide, and at least one selected from Group 8 to 10 metals as catalyst standard, oxidation
- the hydrotreating catalyst according to the present invention can be produced by loading it so as to contain 2 to 5% by mass in terms of product.
- Catalyst standard, in terms of oxide means that the mass of all elements contained in the catalyst is calculated as each oxide, The ratio of the oxide mass of each metal with respect to the total mass is meant.
- the oxide mass of the Group 6 metal and the Group 8 to 10 metal is determined in terms of a hexavalent oxide for the Group 6 metal and a divalent oxide for the Group 8 to 10 metal.
- Examples of the Group 6 metal include molybdenum (Mo), tungsten (W), chromium (Cr), etc. Among them, Mo having high activity per unit mass is preferable.
- Examples of the Mo compound supported on the phosphorus / zinc-containing alumina carrier include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and molybdophosphoric acid, molybdenum trioxide, and ammonium molybdate are preferable.
- the content of the Group 6 metal in the phosphorus / zinc-containing alumina support is 8 to 20% by mass, preferably 10 to 16% by mass in terms of the catalyst and oxide conversion. If the Group 6 metal is 8% by mass or more, the effects attributable to the Group 6 metal can be sufficiently expressed. If the Group 6 metal is 20% by mass or less, the Group 6 metal hardly aggregates and disperses the active metal. Will improve. That is, the catalytic activity can be improved without exceeding the limit of the active metal content to be efficiently dispersed and without greatly reducing the catalyst surface area.
- Examples of the Group 8 to 10 metal include nickel (Ni), cobalt (Co), etc. Among them, Ni is preferable because of its high hydrogenation ability and low catalyst preparation cost.
- Examples of the Ni compound supported on the phosphorus / zinc-containing alumina carrier include Ni carbonates, acetates, nitrates, sulfates and chlorides, preferably carbonates and acetates, more preferably carbonates.
- the content of the Group 8 to 10 metal in the phosphorus / zinc-containing alumina support is 2 to 6% by mass, preferably 2.5 to 4.5% by mass, in terms of oxide, based on the catalyst.
- the Group 8-10 metal is 2% by mass or more, the active sites belonging to the Group 8-10 metal can be sufficiently obtained.
- the content is 6% by mass or less, the Group 8-10 metal compound hardly aggregates and the dispersibility of the active metal is improved.
- NiO species that are inactive precursors present as NiS species after catalytic sulfidation and during hydrogenation treatment
- Ni spinel species that are incorporated in the lattice of the carrier are not easily generated. Therefore, the catalytic activity is improved.
- the optimum mass ratio of the Group 6 metal and Group 8 to 10 metal as the hydrogenation active metal is [Group 8 to 10].
- Metal oxide mass] / ([Group 8 to 10 metal oxide mass] + [Group 6 metal oxide mass]) is preferably 0.14 to 0.3.
- the active metal-sulfur phase such as NiMoS phase, NiWS phase, etc.
- the desulfurization activity cannot be improved due to insufficient generation.
- a method for supporting a Group 6 metal or a Group 8-10 metal on a phosphorus / zinc-containing alumina support a known method such as an impregnation method or a coprecipitation method may be used.
- a phosphorus / zinc-containing alumina support is treated with a hydrogenation-active metal as in a method of precipitating a hydrogenation-active metal component in a state in which the phosphorus-zinc-containing alumina support is immersed in a solution containing these hydrogenation-active metal components.
- An impregnation method in which a hydrogenation active metal is supported on a phosphorus / zinc-containing alumina support by contacting with a solution containing the components can be employed.
- the method for impregnating the phosphorus / zinc-containing alumina carrier with the Group 6 metal and the Group 8 to 10 metal components may be a one-stage impregnation method in which these components are impregnated simultaneously, or a two-stage impregnation method in which the components are impregnated individually. It's okay.
- Specific methods for supporting the Group 6 metal and the Group 8 to 10 metal on the phosphorus / zinc-containing alumina carrier include the following methods. First, an impregnation solution containing a Group 6 metal compound, a Group 8-10 metal compound, and a phosphorus compound is prepared. In addition, when phosphorus is contained in the metal compound, the phosphorus compound is not added or an appropriate amount of the phosphorus compound is added. During preparation, heating (30-100 ° C) and addition of acids (nitric acid, phosphoric acid, organic acids (citric acid, acetic acid, malic acid, tartaric acid, etc.)) are performed to promote dissolution of these compounds. May be.
- acids nitric acid, phosphoric acid, organic acids (citric acid, acetic acid, malic acid, tartaric acid, etc.
- the mass ratio in terms of oxide of phosphorus kneaded in the support for the Group 6 metal is preferably 0.25 or less. If it is 0.25 or less, the surface area and pore volume of the catalyst are not reduced, and not only the decrease in the catalyst activity is suppressed, but also the carbon deposition can be prevented without increasing the acid amount, thereby reducing the activity degradation. It is suppressed.
- the prepared impregnation solution is gradually added to the phosphorus / zinc-containing alumina support so as to be uniform and impregnated.
- the impregnation time is preferably 1 minute to 5 hours, more preferably 5 minutes to 3 hours, the temperature is preferably 5 to 100 ° C., more preferably 10 to 80 ° C., and the atmosphere is not particularly limited. Nitrogen and vacuum are suitable.
- LOI ⁇ Loss on ignition >> is 50% in a nitrogen stream, air stream, or vacuum at room temperature to 80 ° C. And is dried in an air stream at 80 to 150 ° C. for 10 minutes to 10 hours in a drying furnace.
- firing is performed in a firing furnace in an air stream, preferably at 300 to 700 ° C., more preferably at 500 to 650 ° C., preferably for 10 minutes to 10 hours, more preferably for 3 hours or more.
- the hydrotreating catalyst according to the present invention has its specific surface area, pore volume, average pore diameter, and pore distribution within the following ranges in order to increase the hydrogenation activity and desulfurization activity for heavy hydrocarbon oils. It is preferable to adjust.
- the specific surface area of the hydrotreating catalyst according to the present invention is a value measured by the BET method, is preferably 180 ⁇ 320m 2 / g, more preferably 200 ⁇ 300m 2 / g.
- the specific surface area is too small, the dispersibility of the hydrogenation active metal is deteriorated, and when the specific surface area is too large, the pore diameter becomes extremely small, so that the pore diameter of the catalyst also becomes small.
- the pore volume of the hydrotreating catalyst according to the present invention is a value measured by a mercury intrusion method, and is preferably 0.45 to 0.8 mL / g, more preferably 0.5 to 0.7 mL / g. If the pore volume is too small, the sulfur compound may not be sufficiently diffused in the catalyst pores during the hydrotreatment, and if the pore volume is too large, the specific surface area will be extremely high. There is a risk of becoming smaller. By setting the pore volume of the hydrotreating catalyst according to the present invention within the above range, both the dispersibility of the hydroactive metal and the diffusibility of the sulfur compound into the catalyst pores during the hydrotreating are further improved. Can be good.
- the average pore diameter in the pore distribution measured by the mercury intrusion method of the hydrotreating catalyst according to the present invention is preferably 7 to 13 nm, more preferably 7 to 12 nm.
- the pore distribution of the hydrotreating catalyst according to the present invention includes pores having an average pore diameter of ⁇ 1.5 nm.
- the ratio of the total volume to the total pore volume is preferably 45% or more, more preferably 55% or more.
- the distribution state of the hydrogenation active metal in the hydrotreating catalyst according to the present invention is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.
- the hydrotreatment method according to the present invention comprises a hydrogen partial pressure of 3 to 20 MPa, preferably 8 to 19 MPa, a temperature of 300 to 420 ° C., preferably 350 to 410 ° C., and an LHSV (liquid space velocity) of 0.1 to 3 h ⁇ 1.
- the hydrotreating treatment is preferably performed by bringing the hydrotreating catalyst according to the present invention into contact with the raw material oil under the condition of 0.15 to 2 h ⁇ 1 to reduce the sulfur content in the raw material oil.
- the temperature is 300 ° C. or higher, the catalytic activity, particularly the metal removal activity can be sufficiently exhibited.
- the metal removal activity can be sufficiently exhibited.
- it is 420 degrees C or less, thermal decomposition of heavy hydrocarbon oil will advance moderately, and catalyst deterioration will not occur easily.
- the hydrogen partial pressure is 8 MPa or more, the hydrogenation reaction proceeds easily, and if it is 20 MPa or less, an appropriate demetallizing activity can be obtained and the catalyst life is prolonged.
- Heavy hydrocarbon oils used in the hydrotreating method according to the present invention include atmospheric distillation residue oil obtained by distillation from crude oil, vacuum distillation residue oil, bisbreaking oil that is pyrolysis oil, other than petroleum Examples thereof include tar sand oil, shale oil, and the like, which are heavy hydrocarbon oils, and mixtures thereof.
- Preferred are atmospheric distillation residue oil, vacuum distillation residue oil, and mixed oil thereof.
- the heavy hydrocarbon oil is subjected to hydrotreatment process according to the present invention, density of 0.91 ⁇ 1.10 g / cm 3, particularly 0.95 ⁇ 1.05 g / cm 3, the sulfur content of 2 to Heavy hydrocarbon oils of 6% by mass, especially 2-5% by mass, metal content of nickel, vanadium, etc. of 1-1500 ppm, particularly 20-400 ppm, asphaltene content of 2-15% by mass, especially 3-10% by mass. preferable.
- the hydrogen / oil ratio is preferably 400 to 3,000 m 3 / m 3 , more preferably 500 to 1,800 m 3 / m 3 .
- the hydrotreating catalyst according to the present invention is generally activated by sulfiding in a reactor before use (that is, prior to performing the hydrotreating method according to the present invention).
- the sulfurization treatment is generally performed at a temperature of 200 to 400 ° C., preferably 250 to 350 ° C. under a hydrogen atmosphere of normal pressure or higher, and a petroleum distillate containing a sulfur compound, This is performed using hydrogen sulfide or a material added with a sulfiding agent such as fido or carbon disulfide.
- the catalyst layer of the hydrotreating catalyst according to the present invention is formed in the reactor, the feedstock is introduced into the reactor, and the above conditions are met.
- the hydrogenation reaction may be carried out at the bottom.
- the catalyst layer may be a fixed bed, a moving bed, or a fluidized bed type. Most commonly, a fixed bed catalyst layer is formed in the reactor, feedstock is introduced into the top of the reactor, passed through the fixed bed from top to bottom, and product flows out from the bottom of the reactor. On the other hand, feed oil is introduced into the lower part of the reactor, the fixed bed is passed from the bottom to the top, and the product is discharged from the upper part of the reactor.
- the hydrotreating method according to the present invention may be a one-stage hydrotreating method in which the hydrotreating catalyst according to the present invention is filled in a single reactor, or may be filled in several reactors. It may be a multistage continuous hydrotreating method.
- Table 1 shows the average particle diameter of the zinc oxide particles used in Examples and Comparative Examples.
- the particle size of the zinc oxide particles was measured by a laser diffraction scattering method according to JIS R1629, and the volume average particle size distribution was defined as the average particle size.
- Example 1 Preparation of hydrotreating catalyst A First, a phosphorus / zinc-containing alumina support was prepared. After adding 1.5 L of 12 mass% sulfuric acid aqueous solution to 100 L of pure water stretched in a stirring vessel and heating to 95 ° C., the mixture was vigorously stirred with a stirring blade for 5 minutes, and the stirring vessel was filled with an alumina concentration of 70 g / L. 3.9 L of sodium aluminate was added to prepare aluminum hydroxide, which was stirred with a stirring blade for 24 hours. The obtained slurry was put into a filter and filtered to remove moisture, and then the obtained gel was washed with pure water until SO 4 2 ⁇ and Na + could not be detected in the filtrate. .
- the gel after washing was made turbid in pure water to make a uniform slurry, and the slurry was put into a squeeze type filter.
- the slurry was sandwiched in a filter plate through a filter cloth and dehydrated by pressing the filter plate. Filtration was stopped when the amount of water in the obtained cake reached 80%.
- This cake was put into a warming kneader (set temperature 80 ° C.) and sufficiently kneaded to be uniform, and then zinc oxide 1 was added as phosphoric acid and zinc oxide particles, and further kneaded to be uniform. .
- the cake obtained by kneading was put into an extruder, and a four-leaf shaped extruded product having a major axis of 1.3 mm and a minor axis of 1.1 mm was obtained.
- the molded product was dried and then calcined at 600 ° C. for 4 hours to obtain a phosphorus / zinc-containing alumina carrier.
- the obtained phosphorus / zinc-containing alumina carrier was phosphorous based on the carrier, 1.2% by mass in terms of oxide, zinc was based on the carrier, 4.0% by mass in terms of oxide, and the pore volume was 0.73 mL / g.
- the specific surface area was 307 m 2 / g, and the average pore diameter was 7.7 nm.
- Example 2 Preparation of hydrotreating catalyst B A hydrotreating catalyst B was prepared in the same manner as in Example 1 except that zinc oxide 1 was replaced with zinc oxide 2.
- hydrotreating catalyst b was prepared in the same manner as in Example 1 except that zinc oxide 1 was replaced with zinc oxide 4.
- Ni / Mo (upper stage) 4/12 (lower stage)” in the column “active metal_active metal amount (mass%)” is 4 masses of Ni in terms of catalyst based on catalyst and oxide conversion. %, 12% by mass of Mo.
- pore distribution means the ratio of the total volume of pores having average pore diameters of ⁇ 1.5 nm to the total pore volume. The physical properties and chemical properties of the catalyst were measured as follows.
- the pore volume is the total volume of mercury per gram of catalyst that has entered the pores.
- the average pore diameter is an average value of D calculated as a function of P.
- the pore distribution is a distribution of D calculated as a function of P.
- the hydrotreating catalyst was charged into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
- a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reaction apparatus, and a desulfurization reaction and a hydrogenation reaction that is a decomposition reaction proceed under the following conditions to generate A mixed fluid of oil and gas was allowed to flow out from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.
- the measurement method is JIS K 2249-1 “Crude oil and petroleum products-Density test method and density / mass / capacity conversion table (vibration density test method)”, and the sulfur content is JIS K 2541-4 “Crude oil and Petroleum products-Sulfur content test method Part 4: Radiation-type excitation method ", latent sediment content conformed to JPI-5S-60-2000. Specifically, the potential sediment content was analyzed by the following method.
- the contents of nickel and vanadium were in accordance with the Japan Petroleum Institute Standard JPI-5S-62-2000 “Petroleum Products Metal Analysis Test Method (ICP Luminescence Analysis Method)”.
- the asphaltene content was filtered through a cellulose filter after toluene was added to the sample, and the toluene-insoluble content was recovered. This insoluble content was defined as asphaltene content.
- Toluene was added to the sample, and the resin was filtered through a cellulose filter, and the toluene-soluble component as a filtrate was concentrated.
- a heptane solution obtained by adding heptane to this concentrate was passed through an activated alumina packed column and separated into saturated, aromatic and resin components, and the resin component was recovered.
- Catalyst pretreatment conditions The preliminary sulfidation of the catalyst was carried out with a vacuum gas oil at a hydrogen partial pressure of 10.3 MPa and 370 ° C. for 12 hours. Then, it switched to the raw material oil for activity evaluation.
- Reaction conditions Reaction temperature: 385 ° C. Pressure (hydrogen partial pressure); 10.3 MPa, Liquid space velocity; 0.4 h ⁇ 1 , Hydrogen / oil ratio: 1690 m 3 / m 3 .
- Raw oil properties Oil type: atmospheric distillation residue of Middle Eastern crude oil, Density (15 ° C.); 0.9759 g / cm 3 , Sulfur component: 3.51% by mass, Vanadium; 59 ppm, Nickel; 11 ppm, Asphaltene content: 2.8% by mass.
- the catalytic activity was analyzed by the following method.
- the reactor was operated at 385 ° C., and the product oil 25 days after the start of operation was collected and its properties (desulfurization rate (HDS) (%), desulfurization reaction rate constant (Ks), desulfurization specific activity (%), demetalization rate, (HDM)) was analyzed.
- the results are shown in Table 4.
- Desulfurization reaction rate constant (Ks) The desulfurization reaction rate constant (Ks) is a constant in the reaction rate equation for obtaining the second order reaction order with respect to the reduction amount of the sulfur content (Sp) of the product oil. It calculated by the following formula
- Desulfurization specific activity (%) indicated as a relative value when the desulfurization reaction rate constant of the catalyst A is 100. It calculated by the following formula
- Demetallation rate (%): The ratio of metal components (total of nickel and vanadium) disappeared from the feedstock oil is defined as the demetallation rate, and the following formula is obtained from the metal analysis values of the feedstock oil and product oil. Calculated according to (4).
- Sf sulfur content (mass%) in the raw material oil
- Sp Sulfur content (% by mass) in the product oil
- LHSV Liquid space velocity (h -1 ).
- the amount of resin is larger when the catalyst A or the catalyst B is used than when the catalyst a or the catalyst b is used. There were obviously few. That is, the product oil obtained by using the catalyst A or the catalyst B was less likely to generate sediment than the oil obtained by using the catalyst a or the catalyst b, and was excellent in storage stability. From these results, by using a hydrotreating catalyst in which the size of the zinc oxide particles contained in the phosphorus / zinc-containing alumina support is within a specific range, the hydrogenation treatment catalyst without desulfurization activity is reduced. It is clear that the content of latent sediment in the heavy hydrocarbon oil subjected to the chemical treatment can be lowered, and the storage stability can be improved.
- the present invention is a hydrotreating catalyst capable of improving the storage stability of hydrotreated heavy hydrocarbon oil without reducing desulfurization activity or demetallizing activity, a method for producing the hydrotreating catalyst, And a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Description
本願は、2013年9月27日に、日本に出願された特願2013-201800号に基づき優先権を主張し、その内容をここに援用する。
[1] リンを担体基準、酸化物換算で0.1~4質量%含有し、酸化亜鉛粒子を担体基準で1~12質量%含有するリン・亜鉛含有アルミナを担体とし、前記担体に周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%担持してなり、前記酸化亜鉛粒子の平均粒子径が2~12μmであることを特徴とする重質炭化水素油の水素化処理触媒。
[2] アルミナゲルを調製する工程、
リンを担体基準、酸化物換算で0.1~4質量%、平均粒子径が2~12μmである酸化亜鉛粒子を担体基準で1~12質量%含有させるように、前記アルミナゲルにリン化合物及び亜鉛化合物を混練する工程、
得られた混練物を成型し、これを乾燥、焼成して、リン・亜鉛含有アルミナ担体を得る工程、及び
前記リン・亜鉛含有アルミナ担体に、周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%含有するように担持させる工程、
を有する、重質炭化水素油の水素化処理触媒の製造方法。
[3] 前記[1]の重質炭化水素油の水素化処理触媒の存在下、水素分圧3~20MPa、温度300~420℃、液空間速度0.1~3h-1で、重質炭化水素油の接触反応を行うことを特徴とする重質炭化水素油の水素化処理方法。
本発明に係る水素化処理触媒は、アルミナを担体主成分とする。
アルミナとしては、α-アルミナ、β-アルミナ、γ-アルミナ、δ-アルミナ等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、なかでもγ-アルミナが適している。
また、担体主成分とするアルミナの純度は、好ましくは98質量%以上、より好ましくは99質量%以上のものが適している。
アルミナ中の不純物としては、SO4 2-、Cl-、Fe2O3、Na2O等が挙げられるが、これらの不純物はできるだけ少ないことが好ましく、不純物全量で好ましくは2質量%以下、より好ましくは1質量%以下であり、成分毎ではSO4 2-が1.5質量%以下、C1-、Fe2O3、Na2Oが0.1質量%以下であることが好ましい。
この複合化されたアルミナ担体においては、アルミナが92~99.9質量%、好ましくは95~98質量%、ゼオライト、ボリア、シリカ、及びジルコニアから選ばれる一種以上が0~8質量%であることが好ましい。この際、上記ゼオライト、ボリア、シリカ、及びジルコニアの複合化成分は、一般に、この種の触媒の担体成分として使用されるものを使用することができる。
亜鉛及びリンは、活性金属量当たりの脱硫活性及び脱残炭活性を向上させるために活性点の質的向上を図る成分として加えられものであり、高活性なNiMoS相、NiWS相等の活性金属-硫黄相を精密に創製する役割をなす。
なお、本発明において、「周期表第6族金属」(以下、「第6族金属」ということがある。)とは、長周期型周期表における第6族金属を意味し、「周期表第8~10族金属」(以下、「第8~10族金属」ということがある。)とは、長周期型周期表における第8~10族金属を意味する。
中和剤の使用量は、特に制限されないが、アルミナ原料を含む水溶液と中和剤の合計量に対して30~70質量%が好ましい。沈殿剤の使用量は、特に制限されないが、アルミナ原料を含む水溶液と沈殿剤の合計量に対して30~70質量%が好ましい。
また、得られた成型物の乾燥に当たっては、乾燥温度は15~150℃が好ましく、特に好ましくは80~120℃であり、乾燥時間は30分間以上が好ましい。得られた乾燥物の焼成に当たっては、焼成温度は必要に応じて適宜設定できるが、例えばγ-アルミナとするためには450℃以上で焼成することが好ましく、更に好ましくは480℃~600℃である。焼成時間は2時間以上が好ましく、特に好ましくは3~12時間である。
第6族金属と第8~10族金属との総量に対する第8~10族金属の質量比が小さすぎる場合には、脱硫の活性点と考えられるNiMoS相、NiWS相等の活性金属-硫黄相が十分に生成できず、脱硫活性が向上しないおそれがある。また、当該質量比が大きすぎる場合には、活性に関与しない無駄な金属種(NiS種や、担体の格子内に取り込まれたNiスピネル種)が生成し、触媒活性が低下するおそれがある。前記質量比を前記範囲内とすることにより、活性金属-硫黄相が十分に生成され、かつ活性に関与しない無駄な金属種の生成が抑制され得る。
本発明に係る水素化処理方法は、水素分圧3~20MPa、好ましくは8~19MPa、温度300~420℃、好ましくは350~410℃、及びLHSV(液空間速度)0.1~3h-1、好ましくは0.15~2h-1の条件で、本発明に係る水素化処理触媒と原料油とを接触させて水素化処理を行い、当該原料油中の硫黄分を低減する方法である。
水素分圧が8MPa以上であれば、水素化反応が進行し易く、20MPa以下であれば適度な脱金属活性が得られるため触媒寿命が長くなる。
常圧蒸留残渣油と減圧蒸留残渣油とを混合する場合は、その性状にもよるが、混合割合としては、減圧蒸留残渣油が1~60容量%程度となるように混合することがよく用いられる。
当該触媒層は、固定床、移動床、又は流動床式のいずれであってもよい。最も一般的には、固定床式触媒層を反応装置内に形成し、原料油を反応装置の上部に導入し、固定床を上から下に通過させ、反応装置の下部から生成物を流出させる方法か、反対に原料油を反応装置の下部に導入し、固定床を下から上に通過させ、反応装置の上部から生成物を流出させる方法である。
先ず、リン・亜鉛含有アルミナ担体の調製を行った。12質量%の硫酸水溶液1.5Lを攪拌釜に張込んだ純水100Lに投入し、95℃に加熱した後、攪拌羽根で5分間激しく攪拌した後、当該攪拌釜にアルミナ濃度70g/Lのアルミン酸ナトリウム3.9Lを投入して、水酸化アルミニウムを調製し、24時間攪拌羽根で攪拌した。得られたスラリーを濾過器に投入して濾過を行い、水分を除去した後、得られたゲルを、純水を用いて、濾液中にSO4 2-、Na+が検出できなくなるまで洗浄した。次いで、洗浄後のゲルを純水に混濁させて均一なスラリーとし、当該スラリーを圧搾型濾過器へ投入した。当該スラリーは、濾布を介して濾板にはさみこまれ、濾板を圧搾することにより脱水を行った。
得られたケーキ中の水分量が80%になった時点で濾過を中断した。このケーキを加温型ニーダー(設定温度80℃)に投入し、均一になるように十分に混練した後、リン酸及び酸化亜鉛粒子として酸化亜鉛1を投入し、均一になるように更に混練した。混練して得られたケーキを押し出し成形器に投入し、長径1.3mm、短径1.1mmの四つ葉型形状の押し出し成形物とした。この成形物を、乾燥し、次いで600℃で4時間焼成することにより、リン・亜鉛含有アルミナ担体を得た。得られたリン・亜鉛含有アルミナ担体は、リンを担体基準、酸化物換算で1.2質量%、亜鉛を担体基準、酸化物換算で4.0質量%、細孔容積が0.73mL/gであり、比表面積が307m2/gであり、平均細孔径が7.7nmであった。
酸化亜鉛1を酸化亜鉛2に置き換えた以外は実施例1と同様にして、水素化処理触媒Bを調製した。
酸化亜鉛1を酸化亜鉛3に置き換えた以外は実施例1と同様にして、水素化処理触媒aを調製した。
酸化亜鉛1を酸化亜鉛4に置き換えた以外は実施例1と同様にして、水素化処理触媒bを調製した。
実施例1、2及び比較例1、2で調製した水素化処理触媒A、B、a、及びbの担体の性状[リン及び亜鉛の含有量(担体基準、酸化物換算)、平均細孔径、比表面積、及び細孔容積]を表2に示す。
実施例1、2及び比較例1、2で調製した水素化処理触媒A、B、a、及びbの性状[Mo及びNiの担持量(触媒基準、酸化物換算)、リン及び亜鉛の担持量(触媒基準、酸化物換算)、平均細孔径、比表面積、細孔容積、及び細孔分布]を表3に示す。
表3中、「活性金属_活性金属量(質量%)」欄中の「Ni/Mo(上段) 4/12(下段)」は、当該触媒が触媒基準、酸化物換算で、Niを4質量%、Moを12質量%含有していることを意味する。
また、表3中、「細孔分布」は、平均細孔径±1.5nmの細孔径を有する細孔の全容積の全細孔容積に対する割合を意味する。なお、触媒の物理性状及び化学性状は、次の要領で測定した。
a)測定方法及び使用機器:
・比表面積は、窒素吸着によるBET法により測定した。窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープMini)を使用した。
・細孔容積、平均細孔径、及び細孔分布は、水銀圧入法により測定した。水銀圧入装置は、ポロシメーター(MICROMERITICS AUTO-PORE 9200:島津製作所製)を使用した。
・水銀圧入法は、毛細管現象の法則に基づく。水銀と円筒細孔の場合には、この法則は次式で表される。式中、Dは細孔径、Pは掛けた圧力、γは表面張力、θは接触角である。
掛けた圧力Pの関数としての細孔への進入水銀体積を測定する。なお、触媒の細孔水銀の表面張力は484dyne/cmとし、接触角は130度とした。
式: D=-(1/P)4γcosθ
・細孔分布は、Pを関数として算出されたDの分布である。
1)真空加熱脱気装置の電源を入れ、温度400℃、真空度5×10-2Torr以下になることを確認した。
2)サンプルビュレットを空のまま真空加熱脱気装置に掛けた。
3)真空度が5×10-2Torr以下となったら、当該サンプルビュレットを、そのコックを閉じて真空加熱脱気装置から取り外し、冷却後、重量を測定した。
4)当該サンプルビュレットに試料(担体又は触媒)を入れた。
5)試料入りサンプルビュレットを真空加熱脱気装置に掛け、真空度が5×10-2Torr以下になってから1時間以上保持した。
6)試料入りサンプルビュレットを真空加熱脱気装置から取り外し、冷却後、重量を測定し、試料重量を求めた。
7)AUTO-PORE 9200用セルに試料を入れた。
8)AUTO-PORE 9200により測定した。
a)分析方法及び使用機器:
・担体及び触媒の金属分析は、誘導結合プラズマ発光分析(ICPS-2000:島津製作所製)を用いて行った。
・金属の定量は、絶対検量線法にて行った。
1)ユニシールに、試料0.05g、塩酸(50質量%)1mL、フッ酸一滴、及び純水1mLを投入し、加熱して溶解させた。
2)溶解後、得られた溶液をポリプロピレン製メスフラスコ(50mL容)に移し換え、純水を加えて、50mLに秤量した。
3)当該溶液をICPS-2000により測定した。
以下の要領にて、下記性状の常圧蒸留残渣油(AR)の水素化処理を行った。水素化処理触媒として、実施例1、2、比較例1、2で製造した触媒A、B、a、及びbをそれぞれ用いた。
1)60℃に加温した試料を三角フラスコに25g採取し、エアーコンデンサーを取り付けて100℃の油浴に挿入し、24時間保持した。
2)当該試料を充分に振とうした後、10.5gをガラスビーカーにサンプリングした。
3)試料の入ったガラスビーカーを、100℃で10分間加温した。
4)乾燥したガラス繊維濾紙(直径47mm、気孔径1.6μm)を3枚重ねでセットし、減圧ポンプで80kPaまで減圧した減圧濾過器に、前記試料を投入し、30秒後に40kPaまで減圧した。
5)濾過が完了し、濾紙表面が乾いた後に、さらに5分間減圧を続けた。
6)減圧ポンプ停止後、濾過器をアスピレータで引きながら25mLの洗浄溶剤(ヘプタン85mL+トルエン15mL)で漏斗とフィルター全域を洗浄した。
7)さらに20mLヘプタンで当該濾紙を洗浄した後、最上部の濾紙(上から1枚目)を取り外して、下部の濾紙を20mLヘプタンで洗浄した。
8)上から1枚目及び2枚目の濾紙を、110℃で20分乾燥後、30分放冷した。
9)濾過前に対する濾過後の1枚目及び2枚目濾紙の各重量増加分を測定し、1枚目濾紙の増加重量から2枚目濾紙の増加重量を差し引いた重量を、試料採取重量に対する百分率としたものを、潜在セジメント(質量%)とした。
なお、濾過が25分間で終了しない場合はサンプル量を5gあるいは2gとして再測定した。
アスファルテン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、トルエン不溶解分を回収した。この不溶性分をアスファルテン分とした。
レジン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、濾液であるトルエン溶解分を濃縮した。この濃縮物にヘプタンを加えたヘプタン溶液を活性アルミナ充填カラムに流通させ、飽和、芳香族、レジン分に分離し、レジン分を回収した。
触媒の予備硫化は、減圧軽油により、水素分圧10.3MPa、370℃において12時間行った。その後、活性評価用の原料油に切り替えた。
反応温度;385℃、
圧力(水素分圧);10.3MPa、
液空間速度 ;0.4h-1、
水素/油比 ;1690m3/m3。
油種;中東系原油の常圧蒸留残渣油、
密度(15℃);0.9759g/cm3、
硫黄成分;3.51質量%、
バナジウム;59ppm、
ニッケル;11ppm、
アスファルテン分;2.8質量%。
〔1〕脱硫率(HDS)(%):原料油中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式(1)により算出した。
〔2〕脱硫反応速度定数(Ks):生成油の硫黄分(Sp)の減少量に対して、2次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。以下の式(2)により算出した。なお、反応速度定数が高い程、触媒活性が優れていることを示している。
〔3〕脱硫比活性(%):触媒Aの脱硫反応速度定数を100としたときの相対値で示した。以下の式(3)により算出した。
〔4〕脱金属率(HDM)(%):原料油から消失した金属分(ニッケルとバナジウムの合計)の割合を脱金属率と定義し、原料油及び生成油の金属分析値から以下の式(4)により算出した。
脱硫反応速度定数=〔1/Sp-1/Sf〕×(LHSV) ………(2)
式中、Sf:原料油中の硫黄分(質量%)、
Sp:生成油中の硫黄分(質量%)、
LHSV:液空間速度(h-1)。
脱硫比活性(%)=(各触媒の脱硫反応速度定数/触媒Aの脱硫反応速度定数)×100………(3)
脱金属率(%)=〔(Mf-Mp)/Mf〕×100 ………(4)
式中、Mf:原料油中のニッケルとバナジウムの合計(質量ppm)、
Mp:生成油中のニッケルとバナジウムの合計(質量ppm)。
前記の水素化処理反応で得た運転日数25日目の生成油から求めた脱硫比活性、脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量の結果を表4に示す。
これらの結果から、リン・亜鉛含有アルミナ担体に含有させる酸化亜鉛粒子の大きさを特定の範囲内にした水素化処理触媒を用いることにより、水素化処理触媒の脱硫活性を低下させることなく、水素化処理した重質炭化水素油中の潜在セジメントの含有量を低くでき、貯蔵安定性を高められることが明らかである。
Claims (3)
- リンを担体基準、酸化物換算で0.1~4質量%含有し、酸化亜鉛粒子を担体基準で1~12質量%含有するリン・亜鉛含有アルミナを担体とし、前記担体に周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%担持してなり、前記酸化亜鉛粒子の平均粒子径が2~12μmであることを特徴とする重質炭化水素油の水素化処理触媒。
- アルミナゲルを調製する工程、
リンを担体基準、酸化物換算で0.1~4質量%、平均粒子径が2~12μmである酸化亜鉛粒子を担体基準で1~12質量%含有させるように、前記アルミナゲルにリン化合物及び亜鉛化合物を混練する工程、
得られた混練物を成型し、これを乾燥、焼成して、リン・亜鉛含有アルミナ担体を得る工程、及び
前記リン・亜鉛含有アルミナ担体に、周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%含有するように担持させる工程、
を有する重質炭化水素油の水素化処理触媒の製造方法。 - 請求項1に記載の重質炭化水素油の水素化処理触媒の存在下、水素分圧3~20MPa、300~420℃、液空間速度0.1~3h-1で、重質炭化水素油の接触反応を行うことを特徴とする重質炭化水素油の水素化処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167008981A KR102188896B1 (ko) | 2013-09-27 | 2014-09-25 | 중질 탄화수소유의 수소화 처리 촉매, 중질 탄화수소유의 수소화 처리 촉매의 제조 방법 및 중질 탄화수소유의 수소화 처리 방법 |
US15/021,790 US10239048B2 (en) | 2013-09-27 | 2014-09-25 | Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil |
EP14847234.3A EP3050623B1 (en) | 2013-09-27 | 2014-09-25 | Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil |
JP2015539341A JP6432086B2 (ja) | 2013-09-27 | 2014-09-25 | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 |
CN201480052589.8A CN105592923B (zh) | 2013-09-27 | 2014-09-25 | 重质烃油的加氢处理催化剂、重质烃油的加氢处理催化剂的制造方法以及重质烃油的加氢处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013201800 | 2013-09-27 | ||
JP2013-201800 | 2013-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046345A1 true WO2015046345A1 (ja) | 2015-04-02 |
Family
ID=52743479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075455 WO2015046345A1 (ja) | 2013-09-27 | 2014-09-25 | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10239048B2 (ja) |
EP (1) | EP3050623B1 (ja) |
JP (1) | JP6432086B2 (ja) |
KR (1) | KR102188896B1 (ja) |
CN (1) | CN105592923B (ja) |
WO (1) | WO2015046345A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019532799A (ja) * | 2016-09-07 | 2019-11-14 | メキシケム フロー エセ・ア・デ・セ・ヴェ | 触媒およびこの触媒を用いるフッ素化炭化水素の製造プロセス |
WO2021193617A1 (ja) * | 2020-03-26 | 2021-09-30 | コスモ石油株式会社 | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 |
WO2022004786A1 (ja) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 |
US11406965B2 (en) | 2016-09-07 | 2022-08-09 | Mexichem Fluor S.A. De C.V. | Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102229870B1 (ko) * | 2013-09-27 | 2021-03-19 | 코스모세키유 가부시키가이샤 | 중질 탄화수소유의 수소화 처리 촉매 및 중질 탄화수소유의 수소화 처리 방법 |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
US20180230389A1 (en) | 2017-02-12 | 2018-08-16 | Magēmā Technology, LLC | Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US12025435B2 (en) | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
JP6916021B2 (ja) * | 2017-03-30 | 2021-08-11 | Eneos株式会社 | 炭化水素油の水素化脱硫触媒及び水素化脱硫触媒の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09248460A (ja) * | 1996-03-14 | 1997-09-22 | Japan Energy Corp | 重質油の水素化処理用触媒および水素化処理方法 |
JP2008290043A (ja) | 2007-05-28 | 2008-12-04 | Cosmo Oil Co Ltd | 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法 |
JP2010248476A (ja) * | 2009-03-23 | 2010-11-04 | Petroleum Energy Center | 重質炭化水素油の水素化処理方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904550A (en) * | 1973-10-19 | 1975-09-09 | Exxon Research Engineering Co | Hydrocarbon conversion catalyst comprising alumina and aluminum phosphate |
US4652546A (en) | 1984-08-27 | 1987-03-24 | Phillips Petroleum Company | Hydrogel derived catalyst of zinc titanate and alumina promoted with cobalt and molybdenum for hydrodesulfurization or hydrodenitrogenation |
JP2992971B2 (ja) * | 1994-09-01 | 1999-12-20 | 株式会社ジャパンエナジー | 水素化処理用触媒 |
US6013598A (en) * | 1996-02-02 | 2000-01-11 | Exxon Research And Engineering Co. | Selective hydrodesulfurization catalyst |
US6716525B1 (en) * | 1998-11-06 | 2004-04-06 | Tapesh Yadav | Nano-dispersed catalysts particles |
JP4638610B2 (ja) | 2001-01-05 | 2011-02-23 | 日本ケッチェン株式会社 | 水素化処理用触媒並びに水素化処理方法 |
JP4519379B2 (ja) | 2001-09-28 | 2010-08-04 | 財団法人石油産業活性化センター | 重質炭化水素油の水素化処理触媒 |
JP2005314657A (ja) * | 2004-03-29 | 2005-11-10 | Cosmo Oil Co Ltd | 重質炭化水素油の水素化処理方法 |
DE102005004429A1 (de) | 2005-01-31 | 2006-08-10 | Süd-Chemie AG | Verfahren zur Herstellung eines Katalysators für die Entschwefelung von Kohlenwasserstoffströmen |
CN101954282A (zh) | 2010-08-31 | 2011-01-26 | 内江天科化工有限责任公司 | 一种加氢脱硫催化剂及其制备方法 |
CN103320159B (zh) | 2013-06-24 | 2015-08-12 | 大连理工大学 | 一种脱除催化裂化汽油中硫醇硫的方法 |
CN105579134B (zh) * | 2013-09-27 | 2018-12-07 | 克斯莫石油株式会社 | 重质烃油的加氢处理催化剂以及重质烃油的加氢处理方法 |
KR102229870B1 (ko) * | 2013-09-27 | 2021-03-19 | 코스모세키유 가부시키가이샤 | 중질 탄화수소유의 수소화 처리 촉매 및 중질 탄화수소유의 수소화 처리 방법 |
-
2014
- 2014-09-25 KR KR1020167008981A patent/KR102188896B1/ko active IP Right Grant
- 2014-09-25 US US15/021,790 patent/US10239048B2/en active Active
- 2014-09-25 JP JP2015539341A patent/JP6432086B2/ja active Active
- 2014-09-25 CN CN201480052589.8A patent/CN105592923B/zh active Active
- 2014-09-25 EP EP14847234.3A patent/EP3050623B1/en active Active
- 2014-09-25 WO PCT/JP2014/075455 patent/WO2015046345A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09248460A (ja) * | 1996-03-14 | 1997-09-22 | Japan Energy Corp | 重質油の水素化処理用触媒および水素化処理方法 |
JP2008290043A (ja) | 2007-05-28 | 2008-12-04 | Cosmo Oil Co Ltd | 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法 |
JP2010248476A (ja) * | 2009-03-23 | 2010-11-04 | Petroleum Energy Center | 重質炭化水素油の水素化処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3050623A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019532799A (ja) * | 2016-09-07 | 2019-11-14 | メキシケム フロー エセ・ア・デ・セ・ヴェ | 触媒およびこの触媒を用いるフッ素化炭化水素の製造プロセス |
US11406965B2 (en) | 2016-09-07 | 2022-08-09 | Mexichem Fluor S.A. De C.V. | Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons |
US11452990B2 (en) | 2016-09-07 | 2022-09-27 | Mexichem Fluor S.A. De C.V. | Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons |
WO2021193617A1 (ja) * | 2020-03-26 | 2021-09-30 | コスモ石油株式会社 | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 |
WO2022004786A1 (ja) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 |
Also Published As
Publication number | Publication date |
---|---|
US10239048B2 (en) | 2019-03-26 |
KR20160064123A (ko) | 2016-06-07 |
KR102188896B1 (ko) | 2020-12-11 |
CN105592923B (zh) | 2018-04-24 |
CN105592923A (zh) | 2016-05-18 |
EP3050623B1 (en) | 2021-01-27 |
EP3050623A1 (en) | 2016-08-03 |
US20160220986A1 (en) | 2016-08-04 |
EP3050623A4 (en) | 2017-06-28 |
JPWO2015046345A1 (ja) | 2017-03-09 |
JP6432086B2 (ja) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6432086B2 (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
JP6773384B2 (ja) | 重質炭化水素油の水素化処理方法 | |
JP6413168B2 (ja) | 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 | |
US10137436B2 (en) | Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil | |
EP2772308B1 (en) | Hydrogenation catalyst and method for producing same | |
JP2018134635A (ja) | チタニアを含有する改良された残油水素化処理触媒 | |
CN110841674A (zh) | 挤出的残油脱金属催化剂 | |
JP4805211B2 (ja) | 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法 | |
JP2019177356A (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
CN115702040A (zh) | 烃油的加氢处理催化剂、烃油的加氢处理催化剂的制造方法、以及烃油的加氢处理方法 | |
JP2019177357A (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
JP5337978B2 (ja) | 水素化処理触媒及び減圧軽油の水素化処理方法 | |
WO2021193617A1 (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
JP2022023008A (ja) | 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 | |
JP2022150235A (ja) | 炭化水素油の水素化処理触媒の製造方法及び炭化水素油の水素化処理方法 | |
JP2023145850A (ja) | シリコン捕集剤、シリコンの捕集方法、及び水素化処理方法 | |
JP2022156584A (ja) | 炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 | |
JP2023007720A (ja) | 重質炭化水素油の水素化処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847234 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015539341 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15021790 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014847234 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014847234 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167008981 Country of ref document: KR Kind code of ref document: A |