WO2015046323A1 - 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 - Google Patents
重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 Download PDFInfo
- Publication number
- WO2015046323A1 WO2015046323A1 PCT/JP2014/075417 JP2014075417W WO2015046323A1 WO 2015046323 A1 WO2015046323 A1 WO 2015046323A1 JP 2014075417 W JP2014075417 W JP 2014075417W WO 2015046323 A1 WO2015046323 A1 WO 2015046323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- pore diameter
- pores
- mass
- volume
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 243
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 49
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 49
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 49
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 31
- 239000011148 porous material Substances 0.000 claims abstract description 248
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 80
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims description 106
- 239000002184 metal Substances 0.000 claims description 106
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 76
- 239000011787 zinc oxide Substances 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 25
- 150000002739 metals Chemical class 0.000 claims description 24
- 239000011574 phosphorus Substances 0.000 claims description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 15
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 14
- 229910052698 phosphorus Inorganic materials 0.000 claims description 14
- 230000000737 periodic effect Effects 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 abstract description 13
- 239000003921 oil Substances 0.000 description 87
- 238000006477 desulfuration reaction Methods 0.000 description 46
- 230000023556 desulfurization Effects 0.000 description 46
- 230000000694 effects Effects 0.000 description 46
- 239000000499 gel Substances 0.000 description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 32
- 238000006243 chemical reaction Methods 0.000 description 31
- 239000011347 resin Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 20
- 229910052759 nickel Inorganic materials 0.000 description 17
- 239000000047 product Substances 0.000 description 16
- 238000010304 firing Methods 0.000 description 15
- 239000013049 sediment Substances 0.000 description 15
- 229910052717 sulfur Inorganic materials 0.000 description 15
- 239000011593 sulfur Substances 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 13
- 238000001035 drying Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229910052720 vanadium Inorganic materials 0.000 description 12
- 150000002736 metal compounds Chemical class 0.000 description 11
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- -1 alkali metal aluminate Chemical class 0.000 description 9
- 238000004821 distillation Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000032683 aging Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000010779 crude oil Substances 0.000 description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 7
- 238000004898 kneading Methods 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 7
- 229910052753 mercury Inorganic materials 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 150000003464 sulfur compounds Chemical class 0.000 description 7
- 230000008093 supporting effect Effects 0.000 description 7
- 238000005292 vacuum distillation Methods 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 229910001385 heavy metal Chemical class 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 230000003472 neutralizing effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000007324 demetalation reaction Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 4
- 229910001388 sodium aluminate Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 3
- 239000011609 ammonium molybdate Substances 0.000 description 3
- 229940010552 ammonium molybdate Drugs 0.000 description 3
- 235000018660 ammonium molybdate Nutrition 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 2
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 238000005486 sulfidation Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- YDHWWBZFRZWVHO-UHFFFAOYSA-N [hydroxy(phosphonooxy)phosphoryl] phosphono hydrogen phosphate Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(O)=O YDHWWBZFRZWVHO-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- YVBOZGOAVJZITM-UHFFFAOYSA-P ammonium phosphomolybdate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])=O.[O-][Mo]([O-])(=O)=O YVBOZGOAVJZITM-UHFFFAOYSA-P 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- UQPSGBZICXWIAG-UHFFFAOYSA-L nickel(2+);dibromide;trihydrate Chemical compound O.O.O.Br[Ni]Br UQPSGBZICXWIAG-UHFFFAOYSA-L 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8873—Zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
Definitions
- the present invention relates to a hydroprocessing catalyst for heavy hydrocarbon oils, particularly the storage stability of hydrotreated oils obtained by hydrotreating heavy hydrocarbon oils without reducing desulfurization activity or demetalization activity.
- the present invention relates to a catalyst suitable for improvement and a method for hydrotreating heavy hydrocarbon oil.
- Heavy hydrocarbon oils such as atmospheric distillation residue oil obtained by treating crude oil with an atmospheric distillation device and vacuum distillation residue oil obtained by further treating atmospheric distillation residue oil with a vacuum distillation device A large amount of sulfur compounds and heavy metal compounds are contained.
- these heavy hydrocarbon oils are used for general purposes, further reduction of sulfur compounds contained in the heavy hydrocarbon oils is desired as a measure for preventing air pollution by sulfur oxides.
- heavy metal compounds such as nickel and vanadium present in a large amount in the heavy hydrocarbon oil are deposited on the catalyst. This lowers the catalytic activity and greatly shortens the catalyst life due to the heavy metal compound deposited in large quantities, so the conditions for obtaining low sulfur heavy oil are becoming more severe.
- hydrotreated heavy hydrocarbon oil is heated and stored in order to maintain fluidity in consideration of workability at the time of shipment until it is shipped. Moreover, after being shipped as a product, it may be stored for a long time until it is used. For this reason, depending on the thermal history and the atmosphere at the time of storage, sediment may occur during storage, which may cause clogging of the filter, damage to the pump, and the like.
- the present invention uses a hydrotreating catalyst capable of improving the storage stability of a hydrotreated heavy hydrocarbon oil without reducing desulfurization activity or demetalization activity, and the hydrotreating catalyst. It is an object of the present invention to provide a method for hydrotreating heavy hydrocarbon oil.
- the present invention relates to the following heavy hydrocarbon oil hydrotreating catalyst and heavy hydrocarbon oil hydrotreating method.
- a hydrogenation active component is supported on a silica-containing porous alumina carrier containing 0.1 to 1.5% by mass of silica based on the carrier, and the total pore volume is 0.55 to 0.75 mL / g.
- a heavy hydrocarbon oil hydrotreating catalyst characterized by satisfying the following conditions (1) to (5) relating to pore distribution: (1) the total volume of pores having a pore diameter of 5 to 10 nm is 30 to 45% of the total volume of pores having a pore diameter of 3 to 30 nm; (2) the total volume of pores having a pore diameter of 10 to 15 nm is 50 to 65% of the total volume of pores having a pore diameter of 3 to 30 nm; (3) the total volume of pores having a pore diameter of 30 nm or more is 3% or less of the total pore volume; (4) the average pore diameter of the pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm, and (5) The total volume of pores having a mean pore diameter of ⁇ 1 nm is 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm.
- a heavy hydrocarbon oil is subjected to a pre-stage catalyst with a hydrogen partial pressure of 3 to 20 MPa, a hydrogen / oil ratio of 400 to 3000 m 3 / m 3 , a temperature of 300 to 420 ° C., and a liquid space velocity of 0.1 to 3 h ⁇ 1 .
- a method of hydrotreating by sequentially contacting a middle catalyst and a latter catalyst (A) As a pre-stage catalyst, An inorganic oxide carrier containing 1 to 15% by mass of zinc oxide based on the carrier, and 2 to 15% by mass of at least one selected from Group 6 metals of the periodic table on a catalyst basis and in terms of oxides.
- a catalyst in which the ratio of the total volume to the total pore volume is 15 to 50% is used on a volume basis of 10 to 50% with respect to the whole catalyst.
- the hydrotreating catalyst of [1] is used in an amount of 10 to 50% on a volume basis with respect to the whole catalyst
- (C) As a post-stage catalyst, Group 6 of the periodic table on a catalyst basis and on an oxide basis to an inorganic oxide carrier containing 0.1 to 4% by mass of phosphorus on an oxide basis and 0.1 to 4% by mass of zinc oxide on a carrier basis 8-20% by mass of at least one selected from metals and 2-6% by mass of at least one selected from Group 8-10 metals of the periodic table, A specific surface area of 180 to 320 m 2 / g, a total pore volume of 0.45 to 0.8 mL / g, an average pore diameter of 7 to 13 nm, and an average pore diameter of ⁇ 1.5 nm Hydrogenation of heavy hydrocarbon oil, characterized in that a catalyst in which the ratio of the total volume of pores having pores to the total pore volume is 45% or more is used in an amount of 20 to 70% on a
- the hydrotreating catalyst according to the present invention has a hydrogenation active component supported on a silica-containing porous alumina carrier having a specific pore distribution, and is excellent in desulfurization activity of heavy hydrocarbon oil. Furthermore, by performing a hydrotreatment using the hydrotreating catalyst, a heavy hydrocarbon oil that is less susceptible to sedimentation and excellent in storage stability can be obtained.
- a silica-containing porous alumina support containing 0.1 to 1.5% by mass of silica based on the support is used as the support.
- the method for preparing the silica-containing porous alumina carrier is not particularly limited, and can be prepared by a general method. For example, two types of alumina gels having different particle diameters are prepared, and in each step of mixing and aging them, silica can be added. It can also be prepared by adding silica after preparing one kind of alumina gel and then adjusting the pH of the solution.
- the alumina gel can be produced by neutralizing aluminum sulfate or aluminum nitrate, which is a water-soluble compound of aluminum, with a base such as ammonia. It can also be produced by neutralizing an alkali metal aluminate such as sodium aluminate with an acidic aluminum salt or acid.
- the silica contained in the silica-containing porous alumina carrier of the hydrotreating catalyst according to the present invention is 0.1 to 1.5% by mass, preferably 0.1 to 1.2% by mass, based on the carrier. . If the silica content is 0.1% by mass or more, an acid point is appropriately present, and excellent decomposition performance can be obtained. On the other hand, when the silica content is 1.5% by mass or less, excessive decomposition does not occur, and sediment is difficult to be generated.
- Alumina which is a raw material for a hydrogenation catalyst having a specific pore size and pore volume, such as a carrier for a hydrotreating catalyst according to the present invention, can be used, for example, when an alumina gel is formed by adding a precipitating agent or a neutralizing agent. It can be prepared by adjusting the pH, concentration of these agents, reaction time, reaction temperature and the like. Generally, on the acidic side, the pore diameter and the pore volume are small, and on the alkali side, both the pore diameter and the pore volume are large. Further, when the aging time is shortened, the pore diameter can be reduced, and when the aging time is increased, the pore distribution can be sharpened.
- each of the two kinds of alumina gels having different particle diameters is prepared by the above-described method, and then mixed, aged, washed, and watered. Make adjustments. At this time, each alumina gel is mixed according to the target catalyst pore distribution. The mixing ratio is adjusted according to the target catalyst pore structure. Usually, gelation is carried out at a pH of 4 to 9 and a temperature of 40 to 90 ° C. for 1 to 10 hours, whereby the total volume of pores having a pore diameter of 30 nm or more can be suppressed to 3% or less of the total pore volume.
- Impurities present in the alumina gel after aging can be easily removed.
- alumina gel-containing solution having an average pore diameter of 10 to 15 nm after firing is prepared by the above method, and an acidic solution such as nitric acid is added to the alumina gel-containing solution.
- the target catalyst pore structure can be obtained by adjusting the pH, temperature, time, and the like of the alumina gel-containing solution.
- gelation is carried out at a pH of 3 to 7, a reaction temperature of 30 to 90 ° C., and a reaction time of 0.1 to 10 hours.
- the total volume of the pores having a pore diameter of 5 to 10 nm with respect to the total volume of the pores having a pore diameter of 3 to 30 nm by setting the pH to the acidic side, increasing the reaction temperature, and extending the reaction time.
- the percentage of can be increased.
- alumina gels are water-adjusted by drying or adding water after washing impurities.
- the water content after moisture adjustment is preferably 60 to 90% by mass.
- the alumina fine surface structure can be controlled by changing the primary drying temperature and method for moisture adjustment.
- the carrier is molded from the alumina gel after moisture adjustment.
- the molding method is not particularly limited, and general methods such as extrusion molding and tableting molding can be used.
- the pore distribution of alumina can also be controlled by adjusting the pressure and speed during molding.
- the catalyst shape of the hydrotreating catalyst according to the present invention is not particularly limited, and can be various shapes used for ordinary catalyst shapes.
- the shape of the hydrotreating catalyst according to the present invention is preferably a three-leaf type or a four-leaf type.
- a silica-containing porous alumina carrier is obtained by firing the formed alumina gel.
- the formed alumina gel is preferably held at 15 to 150 ° C., more preferably 100 to 120 ° C., preferably 5 hours or more, more preferably 12 to 24 hours, before firing.
- the firing is preferably performed at 350 to 600 ° C., more preferably 400 to 550 ° C., and preferably for 3 hours or more, more preferably 5 to 12 hours.
- the silica-containing porous alumina support prepared as described above may be referred to as a hydrogenation active component, preferably a Group 6 metal (hereinafter referred to as “Group 6 metal”) of the periodic table. And at least one metal selected from Group 8-10 metals of the periodic table (hereinafter sometimes referred to as “Group 8-10 metals”).
- Group 6 metal any metal belonging to Group 6 may be used, but Mo (molybdenum) or W (tungsten) is particularly preferable.
- the group 8-10 metal may be any metal belonging to group 8-10, but Co (cobalt) or Ni (nickel) is particularly preferable.
- the supported metal may be one type of active metal or a combination of two or more types of active metals.
- Group 6 metal of the periodic table means a Group 6 metal in the long-period type periodic table
- Group 8-10 metal of the periodic table means in the long-period type periodic table.
- Catalyst standard, in terms of oxide means that the mass of all elements contained in the catalyst is calculated as each oxide, It means the ratio of the oxide mass of each metal to the total mass.
- the oxide mass of the Group 6 metal and the Group 8 to 10 metal is determined in terms of a hexavalent oxide for the Group 6 metal and a divalent oxide for the Group 8 to 10 metal.
- the method for supporting the hydrogenation active metal is not particularly limited, and various methods such as an ordinary method such as an impregnation method, a coprecipitation method, a kneading method, a deposition method, and an ion exchange method can be employed.
- an ordinary method such as an impregnation method, a coprecipitation method, a kneading method, a deposition method, and an ion exchange method can be employed.
- the Group 6 metal and the Group 8 to 10 metal are supported, whichever may be supported first, both may be supported simultaneously.
- the compound that can be used in the impregnation method as a solution is not particularly limited, and examples of the nickel compound include nickel nitrate, sulfate, fluoride, chloride, bromide, acetate, carbonate, phosphate, and the like.
- the molybdenum compound include ammonium paramolybdate, molybdic acid, ammonium molybdate, phosphomol
- the hydrotreating catalyst according to the present invention is prepared by various methods such as an impregnation method, a coprecipitation method, a kneading method, a deposition method, and an ion exchange method, It can be produced by supporting at least one metal compound selected from Group metals and Group 8 to 10 metals, followed by drying and firing. Drying is preferably carried out by holding at 15 to 150 ° C., more preferably 100 to 120 ° C., preferably 5 hours or more, more preferably 12 to 24 hours. The calcination is preferably carried out by holding at 350 to 600 ° C., more preferably 400 to 550 ° C., preferably 3 hours or more, more preferably 12 to 24 hours.
- the loading amount of these active metal components can be appropriately selected depending on the physical properties of the alumina carrier and the combination state of the active metal species to be supported.
- the supported amount of these active metal components is preferably 3 to 30% by mass, more preferably 5 to 25 in the case of a Group 6 metal in terms of oxide based on the catalyst. % By mass, more preferably 8 to 20% by mass.
- a Group 8 to 10 metal it is preferably 0.5 to 18% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 8% by mass. If the Group 6 metal is 3% by mass or more, the predetermined metal supporting effect can be sufficiently exhibited.
- the Group 6 metal is 30% by mass or less, the active metal hardly aggregates and the pore volume of the catalyst is greatly increased. Can be prevented. If the Group 8-10 metal is 0.5% by mass or more, the metal supporting effect can be sufficiently exerted, and if it is 18% by mass or less, an appropriate supporting effect can be obtained and the economy is excellent. .
- the hydrotreating catalyst according to the present invention is preferably presulfided before being used for hydrotreating heavy hydrocarbon oil.
- the hydrotreating catalyst according to the present invention is preferably presulfided before being used for hydrotreating heavy hydrocarbon oil.
- the total volume of pores having a pore diameter of 5 to 10 nm is 30 to 45% of the total volume of pores having a pore diameter of 3 to 30 nm; (2)
- the total volume of pores having a pore diameter of 10 to 15 nm is 50 to 65% of the total volume of pores having a pore diameter of 3 to 30 nm, and (3) having a pore diameter of 30 nm or more
- the hydrotreating catalyst according to the present invention having a pore distribution that satisfies the condition that the total volume of the pores is 3% or less of the total pore volume can be obtained.
- Sufficient desulfurization activity is obtained when the total volume of pores having a pore diameter of 5 to 10 nm is 30% or more of the total volume of pores having a pore diameter of 3 to 30 nm.
- the life of the catalyst is increased without deteriorating the metal performance.
- the metal life is excellent and the catalyst life is prolonged, and 65% or less. If it is, desulfurization activity will not fall and sufficient catalyst activity can be obtained. Further, if the total volume of pores having a pore diameter of 30 nm or more is 3% or less of the total pore volume, the desulfurization activity does not decrease and sufficient desulfurization activity is obtained.
- the hydrotreating catalyst according to the present invention preferably has a total pore volume of 0.55 to 0.75 mL / g, more preferably 0.60 to 0.70 mL / g, from the viewpoint of metal resistance. It is.
- the total pore volume can be adjusted to the above range by adjusting the pH at the time of preparing an alumina gel by adding a precipitant or a neutralizing agent. In general, the pore volume decreases when the pH of the alumina gel is acidic on the acidic side, and increases on the alkali side.
- the hydrotreating catalyst according to the present invention from the viewpoint of metal resistance performance and desulfurization activity, (4)
- the average pore diameter of pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm, and (5) the total volume of pores having the average pore diameter of ⁇ 1 nm is It has a pore distribution satisfying the condition that it is 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm.
- the average pore diameter of the pores having a pore diameter of 10 to 30 nm is 10.5 nm or more, sufficient metal resistance performance is obtained and the catalyst life is prolonged.
- the total volume of pores having an average pore diameter of ⁇ 1 nm is preferably 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm, more preferably 30 to 65%. Preferably, it is 35 to 50%. Sufficient desulfurization activity can be obtained if the total volume of pores having an average pore diameter of ⁇ 1 nm is 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm.
- the average pore diameter of pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm, and the total volume of pores having the average pore diameter ⁇ 1 nm is 3 to 30 nm.
- the target catalyst pore structure should be 25% or more of the total volume of the pores having the pore diameters of It is possible to mix each alumina gel in accordance with the above.
- hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst according to the present invention sulfur compounds in the heavy hydrocarbon oil can be reduced over a long period of time, and the resulting hydrogen It becomes possible to improve the storage stability of the chlorinated oil.
- the hydrotreating catalyst according to the present invention is used as a middle stage catalyst in a hydrotreating method in which a heavy hydrocarbon oil is brought into contact with three types of catalysts (front stage catalyst, middle stage catalyst, and rear stage catalyst). And a catalyst in which a hydrogenation active metal is supported on an inorganic oxide carrier containing zinc oxide is used as a pre-stage catalyst and a post-stage catalyst.
- the three types of catalysts used in the hydrotreating method according to the present invention differ mainly in required performance.
- the former stage catalyst is required to have a metal removal activity mainly in order to protect the metal resistance and the catalyst after the middle stage.
- the middle stage catalyst is required to have a good balance of metal resistance and demetalization activity, and at the same time desulfurization performance. In the latter stage catalyst, desulfurization performance is mainly required.
- the inorganic oxide carrier of each catalyst used as the pre-stage catalyst and the post-stage catalyst is 1 to 15% by mass, preferably 2 to 12% by mass, based on the zinc oxide as the pre-stage catalyst. Contain.
- the latter catalyst contains 1 to 12% by mass, preferably 2 to 9% by mass of zinc oxide based on the carrier.
- the average particle diameter of the zinc oxide particles contained in the inorganic oxide carrier is preferably 2 to 12 ⁇ m, more preferably 4 to 10 ⁇ m, and further preferably 5 to 9 ⁇ m.
- the particle size of the zinc oxide particles was measured by a laser diffraction scattering method in accordance with JIS R1629, and the volume average particle size distribution was defined as the average particle size.
- the purity of zinc oxide is preferably 99% or more.
- the inorganic oxide carrier of each catalyst used as the pre-stage catalyst and the post-stage catalyst contains an inorganic oxide other than zinc oxide.
- the other inorganic oxide carrier is preferably porous, and examples thereof include alumina, silica, silica-alumina, titania, boria, manganese, zirconia and the like. These may be used alone or in combination of two or more.
- the zinc oxide content in the inorganic oxide support is within the above range, the average pore diameter can be increased while maintaining the catalyst strength in combination with other physical properties, and the metal resistance performance, A catalyst having excellent metal activity can be obtained.
- the zinc oxide content is 1% by mass or more, it is sufficient to improve the sulfidity of the Group 6 metal, and if the zinc oxide content is 15% by mass or less, the pore volume or The specific surface area does not decrease, the dispersion of the Group 6 metal is not hindered, and the sulfidity of the Group 8 to 10 metal does not decrease.
- the average particle diameter of the zinc oxide particles is 12 ⁇ m or less, the effect of sufficiently interacting with alumina and improving storage stability is sufficiently exhibited. Moreover, if the average particle diameter of the zinc oxide particles is 2 ⁇ m or more, zinc oxide and alumina can be easily mixed at the time of production, and the production process becomes simpler.
- the content of zinc oxide in the inorganic oxide carrier is within the above range, a catalyst having excellent desulfurization performance can be obtained due to the effect resulting from the addition of zinc together with other physical property values.
- the mechanism for improving the desulfurization activity is not necessarily clear, but it is presumed that the addition of zinc improves the desulfurization activity for the hardly-desulfurizable sulfur compound to be treated mainly by the latter catalyst.
- the zinc oxide content is 1% by mass or more, it is sufficient to improve the sulfidity of the Group 6 metal, and if the zinc oxide content is 12% by mass or less, the pore volume or The specific surface area does not decrease, the dispersion of the Group 6 metal is not hindered, and the sulfidity of the Group 8 to 10 metal does not decrease.
- the average particle size of the zinc oxide particles is 12 ⁇ m or less, the effect of sufficiently interacting with alumina and improving storage stability is sufficiently exhibited.
- the average particle diameter of the zinc oxide particles is 2 ⁇ m or more, zinc oxide and alumina can be easily mixed at the time of production, and the production process becomes simpler.
- a conventional method can be adopted for the catalyst preparation of the pre-stage catalyst and the post-stage catalyst used in the hydrotreating method according to the present invention.
- alumina can be produced by various methods. Specifically, a water-soluble aluminum compound, for example, aluminum sulfate, nitrate, or chloride is neutralized with a base such as ammonia, or an alkali metal aluminate is neutralized with an acidic aluminum salt or acid. For example, an aluminum hydrogel is obtained.
- a normal alumina carrier can be produced by a general process such as aging, washing, dehydration drying, moisture adjustment, molding, drying, and firing of alumina gel.
- the zinc oxide-containing alumina support of the catalyst used as the pre-stage catalyst or the post-stage catalyst is prepared by adding zinc oxide to the alumina gel to adjust the water content, and adding a kneading step before the molding step. It is preferable to manufacture.
- a method for supporting the hydrogenation active metal on the obtained zinc oxide-containing alumina support an impregnation method is preferable.
- the pre-stage catalyst and the post-stage catalyst used in the hydrotreating method according to the present invention are those in which a predetermined amount of a hydrogenation active metal species is supported on an inorganic oxide support.
- a hydrogenation active metal species at least one metal selected from Group 6 metals and at least one metal selected from Group 8 to 10 metals are supported.
- the Group 6 metal include Mo and W, and Mo is particularly preferable.
- the Group 8 to 10 metal include Ni and Co, and Ni is particularly preferable.
- the supported amount of at least one selected from Group 6 metals is 2 to 15% by mass, preferably 5 to 10% by mass, based on the catalyst and in terms of oxide.
- the supported amount of at least one selected from Group 8 to 10 metals is 0.001 to 5% by mass, preferably 1 to 4% by mass, based on the catalyst and in terms of oxide.
- the supported amount of at least one selected from Group 6 metals is 8 to 20% by mass, preferably 10 to 18% by mass, based on the catalyst and in terms of oxide.
- the supported amount of at least one selected from Group 8 to 10 metals is 2 to 6% by mass, preferably 2.5 to 4.5% by mass, based on the catalyst and in terms of oxide.
- the hydrotreating activity tends to increase. If the loading amount of at least one active metal selected from the Group 6 metals is not less than the lower limit value, the hydrotreating activity tends to increase. If the loading amount is not more than the upper limit value, metal resistance There is a tendency for performance to increase. Further, if the loading amount of at least one active metal selected from Group 8 to 10 metals is set to the lower limit value or more, the effect due to the Group 6 metal tends to increase, and the loading amount is set to the upper limit. If it is less than the value, the metal resistance tends to increase.
- the latter catalyst contains a predetermined amount of phosphorus.
- a method for adding phosphorus various methods such as a loading method in which a phosphorus compound is supported on a carrier by an impregnation method or an adsorption method, and a kneading method in which a phosphorus compound and a carrier are kneaded can be adopted. It is preferable to make it contain in a carrier by the kneading method at the point which can be improved.
- the content of phosphorus in the carrier of the latter catalyst is 0.1 to 4% by mass, preferably 0.5 to 2.5% by mass in terms of oxide on the carrier basis.
- the phosphorus content is preferably 0.08 to 3.6% by mass on the catalyst basis and in terms of oxide.
- Various compounds can be used as a raw material compound of phosphorus to be contained in the support of the latter catalyst.
- the phosphorus compound include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, etc. Among them, orthophosphoric acid is preferable.
- an alkali metal such as lithium is added in an amount of 0.05 to 0.00 on the basis of the catalyst in order to suppress the carbon deposition in the initial stage of operation by changing the acid amount and the acid property.
- About 2% by mass can be contained.
- the specific surface area of the catalyst is in the range of 70 to 150 m 2 / g, preferably in the range of 90 to 140 m 2 / g, in the former stage catalyst. In the latter stage catalyst, it is in the range of 180 to 320 m 2 / g, preferably in the range of 200 to 300 m 2 / g. If the specific surface area is greater than or equal to the above lower limit value, the catalytic activity tends to increase. If the specific surface area is less than or equal to the upper limit value, a sufficient average pore diameter can be obtained, metal resistance performance increases, and metal compounds such as Ni and V The metal removal activity tends to increase due to the increase in the diffusivity in the pores.
- the pore volume of the catalyst is in the range of 0.6 to 1 mL / g, preferably in the range of 0.65 to 1 mL / g for the pre-stage catalyst. In the latter stage catalyst, it is in the range of 0.45 to 0.8 mL / g, preferably in the range of 0.5 to 0.7 mL / g.
- the pore volume is set to the lower limit value or more, the metal resistance performance increases, and the metal removal activity tends to increase due to the increase in diffusivity in the pores of metal compounds such as Ni and V.
- the amount is not more than the above upper limit value, the surface area becomes large and the catalytic activity tends to increase.
- the average pore diameter of the catalyst is in the range of 15 to 35 nm, preferably in the range of 18 to 30 nm, in the former stage catalyst. In the latter stage catalyst, it is in the range of 7 to 13 nm, preferably in the range of 7 to 12 nm.
- the average pore diameter is not less than the above lower limit value, the metal resistance performance is increased, and the metal removal activity tends to increase due to the increase in diffusivity in the pores of metal compounds such as Ni and V.
- the surface area becomes large and the catalytic activity tends to increase.
- the ratio of the total volume of the pores having the average pore diameter of the catalyst ⁇ 2.0 nm to the total pore volume is in the range of 15 to 50%, preferably in the range of 20 to 50%. is there. If the ratio of the total volume of pores having a mean pore diameter of ⁇ 2.0 nm to the total pore volume is greater than or equal to the above lower limit value, pores that are not useful for the hydrogenation reaction of metal compounds such as Ni and V are reduced. However, the metal removal activity tends to increase.
- the ratio of the total volume of pores having an average pore diameter of ⁇ 1.5 nm to the total pore volume is in the range of 45% or more, and preferably in the range of 55% or more.
- the ratio of the total volume of pores having a mean pore diameter of ⁇ 1.5 nm to the total pore volume is not less than the lower limit value, pores that are not useful for hydrogenation reaction of sulfur compounds are reduced, and desulfurization activity is reduced. There is a tendency to increase.
- the filling ratio of the pre-stage catalyst is 10 to 50%, preferably 15 to 40% of the total catalyst volume
- the filling ratio of the middle stage catalyst is 10 to 50%, preferably Is 15 to 40%
- the packing ratio of the latter catalyst is 20 to 70%, preferably 30 to 65% of the total catalyst volume. This range is suitable for maintaining the catalyst life, desulfurization activity and demetallization activity of the entire catalyst system.
- the hydrotreating conditions in the hydrotreating method according to the present invention are as follows: temperature is 300 to 420 ° C., preferably 350 to 410 ° C., liquid space velocity (LHSV) is 0.1 to 3 h ⁇ 1 , preferably 0.15 to 2h -1, hydrogen partial pressure is 3 ⁇ 20 MPa, preferably 8 ⁇ 19 MPa, a hydrogen / oil ratio 400 ⁇ 3000m 3 / m 3 ( NL / L), preferably 500 ⁇ 1800m 3 / m 3.
- LHSV liquid space velocity
- Heavy hydrocarbon oils used in the hydrotreating method according to the present invention include atmospheric distillation residue oil obtained by distillation from crude oil, vacuum distillation residue oil, bisbreaking oil that is pyrolysis oil, other than petroleum Examples thereof include tar sand oil, shale oil, and the like, which are heavy hydrocarbon oils, and mixtures thereof.
- Preferred are atmospheric distillation residue oil, vacuum distillation residue oil, and mixed oil thereof.
- the heavy hydrocarbon oil is subjected to hydrotreatment process according to the present invention, density of 0.91 ⁇ 1.10 g / cm 3, particularly 0.95 ⁇ 1.05 g / cm 3, the sulfur content of 2 to Heavy hydrocarbon oils of 6% by mass, especially 2-5% by mass, metal content of nickel, vanadium, etc. of 1-1500 ppm, particularly 20-400 ppm, asphaltene content of 2-15% by mass, especially 3-10% by mass. preferable.
- the specific catalyst defined in the present invention and heavy hydrocarbon oil are contacted to perform hydrotreating, and the sulfur content in the raw material is reduced. Reduce heavy metal content.
- Example 1 (Preparation of hydrotreating catalyst A) 10 kg of a 5% by mass sodium aluminate aqueous solution was heated to 60 ° C., and a 25% by mass aluminum sulfate aqueous solution was added dropwise while maintaining the temperature to adjust the pH of the final aqueous solution to 4. The produced alumina slurry was filtered, and the filtered alumina gel was adjusted to pH 7 by adding 0.2% by mass of aqueous ammonia solution, and the alumina gel (A) having an average pore diameter of 6 nm after firing was obtained. Obtained.
- This alumina gel (A) and (B) is mixed in a mass ratio of 1: 2, and silica is mixed so that the mass becomes 0.2% by mass, and dehydrated by suction filtration at 25 ° C.
- the water content was adjusted so that the water content after drying was 70% by mass.
- the silica-containing alumina gel after moisture adjustment was extruded with an extruder so as to fit into a four-leaf type having a catalyst diameter of 1.3 mm, dried at 120 ° C. for 20 hours, and then fired at 550 ° C. for 3 hours to obtain silica-containing porous alumina.
- a carrier was obtained.
- the active metal component was supported on 100 g of this silica-containing porous alumina carrier as follows. That is, an aqueous solution prepared by dissolving 26.0 g of ammonium molybdate, 6.33 g of nickel carbonate, and 4.9 g of phosphoric acid in 79.6 g of ion-exchanged water in an eggplant type flask at room temperature and an aqueous solution for impregnation. did. The entire amount of the aqueous solution for impregnation was dropped on a silica-containing porous alumina support in an eggplant-shaped flask and allowed to stand at 25 ° C. for 1 hour.
- the silica-containing porous alumina support was air-dried and calcined at 550 ° C. for 3 hours in an air stream in a muffle furnace to prepare hydrotreating catalyst A.
- the amount of active metal of the hydrotreating catalyst A was 15% by mass for Mo and 3% by mass for Ni in terms of catalyst and oxide.
- Example 2 (Preparation of hydrotreating catalyst B) Hydrotreating catalyst B was prepared in the same manner as in Example 1 except that the addition amount of silica was changed from 0.2% by mass to 1.0% by mass.
- Example 3 (Preparation of hydrotreating catalyst C) 10 kg of a 5 mass% sodium aluminate aqueous solution was heated to 60 ° C., and a 25 mass% aluminum sulfate aqueous solution was added dropwise while maintaining this temperature, so that the pH of the final aqueous solution was adjusted to 10. After adding the alumina gel obtained by filtering off the generated alumina slurry to 5 kg of ion exchange water, an aqueous nitric acid solution is dropped so that the pH concentration does not change locally, so that the final pH becomes 6. Adjusted. During this time, the temperature of the solution was kept constant at 40 ° C., and 0.5 hour was required. Then, hydrotreating catalyst C was prepared in the same manner as in Example 1 except that alumina gel was obtained by stirring for 1 hour, and then silica was mixed to 1.0 mass% based on the carrier.
- the pore volume is the total volume of mercury per gram of catalyst that has entered the pores.
- the average pore diameter is an average value of D calculated as a function of P.
- the pore distribution is a distribution of D calculated as a function of P.
- SA specific surface area (m 2 / g)
- PV the total pore volume (mL / g)
- PV-1 is the ratio (%) of the total volume of pores having a pore diameter of 5 to 10 nm to the total volume of pores having a pore diameter of 3 to 30 nm
- PV-2 is the ratio (%) of the total volume of pores having a pore diameter of 10 to 15 nm to the total volume of pores having a pore diameter of 3 to 30 nm
- PV-3 is the ratio (%) of the total volume of pores having a pore diameter of 30 nm or more to the total volume of pores having a pore diameter of 3 to 30 nm
- PV-4 is the ratio (%) of the average pore diameter of pores having a pore diameter of 10 to 30 nm to the total volume of pores having a pore diameter of 3 to 30 nm of the average pore diameter of ⁇ 1 nm
- MPD indicates the average pore diameter of pores having a pore diameter of 10 to 30
- the hydrotreating catalyst was charged into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
- a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reaction apparatus, and the hydrogenation reaction of the desulfurization reaction and the decomposition reaction proceeds under the following conditions, A gas mixed fluid was allowed to flow out from the lower part of the reaction apparatus, and the produced oil was separated by a gas-liquid separator.
- the measurement method is JIS K 2249-1 “Crude oil and petroleum products-Density test method and density / mass / capacity conversion table (vibration density test method)”, and the sulfur content is JIS K 2541-4 “Crude oil and Petroleum products-Sulfur content test method Part 4: Radiation-type excitation method ", latent sediment content conformed to JPI-5S-60-2000. Specifically, the potential sediment content was analyzed by the following method.
- the contents of nickel and vanadium were in accordance with the Japan Petroleum Institute Standard JPI-5S-62-2000 “Petroleum Products Metal Analysis Test Method (ICP Luminescence Analysis Method)”.
- the asphaltene content was filtered through a cellulose filter after toluene was added to the sample, and the toluene-insoluble content was recovered. This insoluble content was defined as asphaltene content.
- Toluene was added to the sample, and the resin was filtered through a cellulose filter, and the toluene-soluble component as a filtrate was concentrated.
- a heptane solution obtained by adding heptane to this concentrate was passed through an activated alumina packed column and separated into saturated, aromatic and resin components, and the resin component was recovered.
- Catalyst pretreatment conditions The preliminary sulfidation of the catalyst was carried out with a vacuum gas oil at a hydrogen partial pressure of 10.3 MPa and 370 ° C. for 12 hours. Then, it switched to the raw material oil for activity evaluation.
- Reaction condition 1 Reaction temperature: 385 ° C. Pressure (hydrogen partial pressure); 10.3 MPa, Liquid space velocity; 0.4 h ⁇ 1 , Hydrogen / oil ratio: 1690 m 3 / m 3 .
- Oil type atmospheric distillation residue of Middle Eastern crude oil, Density (15 ° C.); 0.9678 g / cm 3 , Sulfur component; 3.14% by mass; Vanadium; 79 ppm, Nickel; 32 ppm, Asphaltene content: 4.0% by mass.
- the catalytic activity was analyzed by the following method.
- the reactor was operated at 385 ° C., and the product oil 25 days after the start of operation was collected and its properties (desulfurization rate (HDS) (%), desulfurization reaction rate constant (Ks), desulfurization specific activity (%), demetalization rate, (HDM)) was analyzed.
- the results are shown in Table 3.
- Desulfurization reaction rate constant (Ks) The desulfurization reaction rate constant (Ks) is a constant in the reaction rate equation for obtaining the second order reaction order with respect to the reduction amount of the sulfur content (Sp) of the product oil. It calculated by the following formula
- Sf sulfur content (mass%) in the raw material oil
- Sp Sulfur content (% by mass) in the product oil
- LHSV Liquid space velocity (h -1 ).
- the desulfurization specific activity and the demetallation rate were almost the same for all the catalysts.
- the resin content and the amount of latent sediment in the product oil the resin content is greater when catalyst A, B, or C is used than when catalyst a, b, or c is used, The amount of potential sediment was clearly small. That is, the product oil obtained by using the catalyst A, B, or C was less likely to generate sediment and was superior in storage stability. From these results, it is possible to perform hydroprocessing without reducing the desulfurization activity of the hydroprocessing catalyst by using a hydroprocessing catalyst using a silica-containing porous alumina support having a silica content within a specific range. It is clear that the content of latent sediment in the heavy hydrocarbon oil can be reduced and the storage stability can be improved.
- An aqueous solution of a metal compound was prepared by adding citric acid to the ion-exchanged water and further adding the citric acid until the added metal compound was completely dissolved.
- the aqueous solution was dropped onto the zinc oxide-containing alumina carrier and allowed to stand, and then dried and fired to obtain catalyst D.
- a solution obtained by dissolving ammonium molybdate in ion-exchanged water so as to have a molybdenum (Mo) content of 12% by mass in terms of catalyst is calculated based on the catalyst. Thereafter, drying and firing were carried out to obtain a molybdenum-supporting phosphorus / zinc oxide-containing alumina carrier.
- a solution in which nickel nitrate is dissolved in ion-exchanged water so as to have a nickel (Ni) content of 4% by mass in terms of an oxide in terms of catalyst is added dropwise to the molybdenum-supporting phosphorus / zinc oxide-containing alumina carrier.
- the catalyst E was then obtained by drying and firing.
- Reaction condition 2 Reaction temperature: 390 ° C. Hydrogen partial pressure; 10.3 MPa, Liquid space velocity; 0.253 h ⁇ 1 , Hydrogen / oil ratio; 876.2m 3 / m 3.
- feedstock oil Feedstock oil; Middle-Earth crude oil vacuum distillation residue oil density (15 ° C.); 1.037 g / cm 3 , Sulfur content: 4.27% by mass, Nickel content: 54 ppm, Vanadium content: 91 ppm, Asphaltene content: 7.8% by mass.
- Example 5 Hydroprocessing reaction of heavy hydrocarbon oil using catalysts D, B, and E Except that the middle catalyst was changed from the catalyst A to the catalyst B, a hydrogenation treatment was performed in the same manner as in Example 4 to obtain a product oil.
- the desulfurization specific activity and the demetallation rate were almost the same for any combination of catalysts.
- the cases of Examples 4 and 5 using the catalyst A or B as the middle stage catalyst are the cases of Comparative Examples 4 and 5 using the catalyst a or b.
- the amount of resin and the amount of latent sediment were clearly lower than the amount of resin. That is, the product oil obtained using the catalyst A or B as the middle stage catalyst was less susceptible to sedimentation and was superior in storage stability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
Abstract
Description
本願は、2013年9月27日に、日本に出願された特願2013-201801号に基づき優先権を主張し、その内容をここに援用する。
また、製品として出荷された後、使用されるまで、長期間貯蔵されることがある。このため、熱履歴や貯蔵時の雰囲気下によっては、貯蔵している間にセジメントが発生し、フィルターの閉塞、ポンプの破損などの原因となることがある。
[1] シリカを担体基準で0.1~1.5質量%含有するシリカ含有多孔性アルミナ担体に水素化活性成分が担持されており、全細孔容積が0.55~0.75mL/gであり、かつ細孔分布に関する下記条件(1)~(5)を充足することを特徴とする、重質炭化水素油の水素化処理触媒;
(1)5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30~45%であること、
(2)10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の50~65%であること、
(3)30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下であること、
(4)10~30nmの細孔径を有する細孔の平均細孔径が、10.5~13nmにあること、及び、
(5)前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であること。
[2] 重質炭化水素油を、水素分圧3~20MPa、水素/油比400~3000m3/m3、温度300~420℃、液空間速度0.1~3h-1で、前段触媒、中段触媒、及び後段触媒と順次接触させて水素化処理する方法であって、
(a)前段触媒として、
酸化亜鉛を担体基準で1~15質量%含有する無機酸化物担体に、触媒基準かつ酸化物換算で、周期表第6族金属から選ばれた少なくとも1種を2~15質量%、周期表第8~10族金属から選ばれた少なくとも1種を0.001~5質量%含有させており、
比表面積が70~150m2/gであり、細孔容積が0.6~1mL/gであり、平均細孔径が15~35nmであり、平均細孔径±2.0nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が15~50%である触媒を、触媒全体に対して、容積基準で10~50%用い、
(b)中段触媒として、
前記[1]の水素化処理触媒を、触媒全体に対して、容積基準で10~50%用い、
(c)後段触媒として、
リンを担体基準、酸化物換算で0.1~4質量%、及び酸化亜鉛を担体基準で1~12質量%含有する無機酸化物担体に、触媒基準かつ酸化物換算で、周期表第6族金属から選ばれた少なくとも1種を8~20質量%、周期表第8~10族金属から選ばれた少なくとも1種を2~6質量%含有させており、
比表面積が180~320m2/gであり、全細孔容積が0.45~0.8mL/gであり、平均細孔径が7~13nmであり、かつ平均細孔径±1.5nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が45%以上である触媒を、触媒全体に対して、容積基準で20~70%用いることを特徴とする重質炭化水素油の水素化処理方法。
[3] 前記前段触媒に用いる酸化亜鉛の平均粒子径が2~12μm、前記後段触媒に用いる酸化亜鉛の平均粒子径が2~12μmである、前記[2]に記載の重質炭化水素油の水素化処理方法。
本発明に係る水素化処理触媒は、担体として、シリカを担体基準で0.1~1.5質量%含有するシリカ含有多孔性アルミナ担体を用いる。
シリカ含有多孔性アルミナ担体の調製方法は特に限定されず、一般的な方法により調製することができる。例えば、2種類の粒子径の異なるアルミナゲルをそれぞれ調製し、これらを混合、熟成する各工程において、シリカを添加することによって調製できる。また、1種のアルミナゲルを調製後、溶液のpHを調製した後にシリカを添加することによっても調製することができる。
前記アルミナゲルは、アルミニウムの水溶性化合物である硫酸アルミニウムや硝酸アルミニウムをアンモニアのような塩基で中和することにより生成することができる。また、アルミン酸ナトリウムのようなアルカリ金属アルミン酸塩を酸性アルミニウム塩または酸で中和することにより、生成することもできる。
一般的に、酸性側では、細孔径及び細孔容積は小さくなり、アルカリ側では、細孔径及び細孔容積は共に大きくなる。また、熟成時間を短くすると細孔径を小さくすることができ、熟成時間を長くすると細孔分布をシャープにすることができる。
例えば、ゲル生成の際のpHを3~7、温度を15~90℃の範囲にすることにより、焼成後のアルミナ担体の平均細孔径が5~10nmのアルミナゲルを得ることができる。また、ゲル生成の際のpHを7~11、温度を30~90℃の範囲にすることにより、焼成後のアルミナ担体の平均細孔径が10~15nmであるアルミナゲルを得ることができる。
一方、1種類のアルミナゲルから調製する場合には、例えば、以下のように調製することができる。まず、前記方法により焼成後のアルミナ担体の平均細孔径が10~15nmとなるアルミナゲル含有溶液を調製し、このアルミナゲル含有溶液に硝酸等の酸性溶液を添加する。このとき、当該アルミナゲル含有溶液のpH、温度、時間等を調整することにより目的の触媒細孔構造を得ることができる。通常、ゲル化を、pH3~7、反応温度30~90℃、反応時間0.1~10時間で行う。この際、pHを酸性側とし、反応温度を高くし、反応時間を長くすることにより、3~30nmの細孔径を有する細孔の全容積に対する5~10nmの細孔径を有する細孔の全容積の割合を増加させることができる。
第6族金属としては、第6族に属する金属であればどのような金属でもよいが、Mo(モリブデン)又はW(タングステン)が特に好ましい。
第8~10族金属についても、第8~10族に属する金属であればどのようなものでもよいが、Co(コバルト)又はNi(ニッケル)が特に好ましい。
また、担持する金属は1種類の活性金属でもよく、2種類以上の活性金属を組み合わせて使用してもよい。
なお、本発明において、「周期表第6族金属」とは、長周期型周期表における第6族金属を意味し、「周期表第8~10族金属」とは、長周期型周期表における第8~10族金属を意味する。
また、第6族金属及び第8~10族金属の含有量に関して、「触媒基準、酸化物換算で」とは、触媒中に含まれる全ての元素の質量をそれぞれの酸化物として算出し、その合計質量に対するそれぞれの金属の酸化物質量の割合を意味する。
第6族金属及び第8~10族金属の酸化物質量は、第6族金属については6価の酸化物、第8~10族金属については2価の酸化物に換算して求める。
(1)5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30~45%であり、
(2)10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の50~65%であり、および
(3)30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下であるという条件を充足する細孔分布を有する本発明に係る水素化処理触媒を得ることができる。
5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30%以上であると十分な脱硫活性が得られ、45%以下であると耐金属性能が低下することなく触媒寿命が長くなる。
また、10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の容積の50%以上であると耐金属性能に優れ触媒寿命が長くなり、65%以下であれば脱硫活性が低下せず十分な触媒活性を得ることができる。
また、30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下であれば、脱硫活性が低下せず、十分な脱硫活性が得られる。
全細孔容積を上記範囲とすることは、沈殿剤や中和剤を添加してアルミナゲルを作る際のpHを調整することにより可能である。一般的に、アルミナゲルを作る際のpHが酸性側では細孔容積は小さくなり、アルカリ側では細孔容積が大きくなる。
(4)10~30nmの細孔径を有する細孔の平均細孔径が、10.5~13nmにあること、及び
(5)前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であることという条件を充足する細孔分布を有する。
前記10~30nmの細孔径を有する細孔の平均細孔径が10.5nm以上であれば、十分な耐金属性能が得られ触媒寿命が長くなる。一方で、当該平均細孔径が13nm以下であれば、脱硫活性が低下せず、十分な脱硫活性が得られる。
前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であることが好ましく、30~65%であることがより好ましく、35~50%であることがさらに好ましい。前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であれば、十分な脱硫活性が得られる。
本発明に係る水素化処理方法では、重質炭化水素油を3種類の触媒(前段触媒、中段触媒、後段触媒)と接触させる水素化処理方法において、中段触媒として本発明に係る水素化処理触媒を用い、前段触媒及び後段触媒として酸化亜鉛を含有する無機酸化物担体に水素化活性金属を担持した触媒を用いる。
酸化亜鉛の含有量が1質量%以上であれば、第6族金属の硫化度を向上させるために十分であり、また、酸化亜鉛の含有量が15質量%以下であれば、細孔容積や比表面積の低下が起こらず、第6族金属の分散を妨げることなく、更には第8~10族金属の硫化度の低下も起こらない。
また、酸化亜鉛の粒子の平均粒子径が12μm以下であれば、アルミナと十分に相互作用し、貯蔵安定性を改善する効果が充分に発揮される。
また、酸化亜鉛の粒子の平均粒子径が2μm以上であれば、製造時に酸化亜鉛とアルミナを混合させやすく、製造過程がより簡易になる。
酸化亜鉛の含有量が1質量%以上であれば、第6族金属の硫化度を向上させるために十分であり、また、酸化亜鉛の含有量が12質量%以下であれば、細孔容積や比表面積の低下が起こらず、第6族金属の分散を妨げることなく、更には第8~10族金属の硫化度が低下することもない。
また、前段触媒と同様に、酸化亜鉛の粒子の平均粒子径が12μm以下であれば、アルミナと十分に相互作用し、貯蔵安定性を改善する効果が充分に発揮される。また、酸化亜鉛の粒子の平均粒子径が2μm以上であれば、製造時に酸化亜鉛とアルミナを混合させやすく、製造過程がより簡易になる。
本発明に係る水素化処理方法において前段触媒又は後段触媒として用いる触媒の酸化亜鉛含有アルミナ担体は、アルミナゲル中に酸化亜鉛を添加して水分調整し、混練工程を前記成形工程の前に付加して製造することが好ましい。得られた酸化亜鉛含有アルミナ担体への、水素化活性金属の担持方法としては、含浸法が好ましい。
第6族金属としてはMo、W等が挙げられ、特にMoが好ましい。
第8~10族金属としてはNi、Co等が挙げられ、特にNiが好ましい。
第8~10族金属から選ばれた少なくとも1種の担持量は、触媒基準かつ酸化物換算で、0.001~5質量%、好ましくは1~4質量%である。
第8~10族金属から選ばれた少なくとも1種の担持量は、触媒基準かつ酸化物換算で、2~6質量%、好ましくは2.5~4.5質量%である。
また、第8~10族金属から選ばれた少なくとも1種の活性金属の担持量を前記下限値以上とすれば、第6族金属に起因する効果が増加する傾向があり、担持量を前記上限値以下とすると、耐金属性能が増加する傾向がある。
担体中のリンの含有量が担体基準、酸化物換算で0.1質量%以上であると、第6族金属の硫化度が十分に高くなり、また、リンの含有量が4質量%以下であれば、細孔容積や比表面積の低下が起こらず、第6族金属が分散するため、充分なリンの添加効果が得られる。
比表面積を前記下限値以上とすれば、触媒活性が増加する傾向にあり、上限値以下とすれば、十分な平均細孔径が得られ、耐金属性能が増加し、Ni、Vなどの金属化合物の細孔内拡散性の増加により脱金属活性が増加する傾向にある。
細孔容積を前記下限値以上とすれば、耐金属性能が増加し、Ni、Vなどの金属化合物の細孔内拡散性の増加により脱金属活性が増加する傾向にある。一方前記上限値以下とすれば表面積が大きくなり、触媒活性が増加する傾向にある。
平均細孔径を前記下限値以上とすると、耐金属性能が増加し、Ni、Vなどの金属化合物の細孔内拡散性の増加により、脱金属活性が増加する傾向にある。また上限値以下とすることにより、表面積が大きくなり、触媒活性が増加する傾向にある。
平均細孔径±2.0nmの細孔径を有する細孔の全容積の全細孔容積に対する割合を前記下限値以上とすると、Ni、Vなどの金属化合物の水素化反応に有用でない細孔が減少し、脱金属活性が増加する傾向がある。
平均細孔径±1.5nmの細孔径を有する細孔の全容積の全細孔容積に対する割合を前記下限値以上とすると、硫黄化合物の水素化反応に有用でない細孔が減少し、脱硫活性が増加する傾向がある。
常圧蒸留残渣油と減圧蒸留残渣油とを混合する場合は、その性状にもよるが、混合割合としては、減圧蒸留残渣油が1~60容量%程度となるように混合することがよく用いられる。
5質量%のアルミン酸ナトリウム水溶液10kgを60℃に加熱し、温度を保持したまま25質量%の硫酸アルミニウム水溶液を滴下し、最終的な水溶液のpHを4に調整した。生成したアルミナスラリーを濾過し、濾別されたアルミナゲルを0.2質量%のアンモニア水溶液を加えてpH7に調整し、焼成後のアルミナ担体の平均細孔径が6nmとなるアルミナゲル(A)を得た。
これとは別に、5質量%のアルミン酸ナトリウム水溶液10kgを70℃に加熱し、温度を保持したまま、25質量%の硫酸アルミニウム水溶液を滴下し、最終的に溶液のpHを8に調整した。生成したアルミナスラリーを濾過し、濾別したアルミナゲルに硝酸水溶液を加えてpH7に調整し、焼成後の平均細孔径が12nmとなるアルミナゲル(B)を得た。
シリカの添加量を0.2質量%から1.0質量%に変更した以外は実施例1と同様にして、水素化処理触媒Bを調製した。
シリカの添加量を0.2質量%から3.0質量%に変更した以外は実施例1と同様にして、水素化処理触媒aを調製した。
シリカの添加量を0.2質量%から0.05質量%に変更した以外は実施例1と同様にして、水素化処理触媒bを調製した。
5質量%のアルミン酸ナトリウム水溶液10kgを60℃に加熱し、この温度を保持したまま25質量%の硫酸アルミニウム水溶液を滴下し、最終的な水溶液のpHが10になるように調整した。生成したアルミナスラリーを濾別することで得たアルミナゲルを5kgのイオン交換水に加えた後、硝酸水溶液をpH濃度が局所的に変化しないように滴下し、最終的なpHが6になるように調整した。この間、溶液の温度は40℃一定にし、0.5時間を要した。その後、1時間攪拌することによってアルミナゲルを得た後にシリカを担体基準で1.0質量%になるように混合した以外は実施例1と同様な方法で、水素化処理触媒Cを調製した。
シリカの添加量を0.2質量%から0.05質量%に変更した以外は実施例3と同様にして、水素化処理触媒cを調製した。
実施例1~3及び比較例1~3で調製した水素化処理触媒A、B、C、a、b、及びcの性状を表1及び2に示す。なお、触媒の物理性状及び化学性状は、次の要領で測定した。
a)測定方法及び使用機器:
・比表面積は、窒素吸着によるBET法により測定した。窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープMini)を使用した。
・細孔容積、平均細孔径、及び細孔分布は、水銀圧入法により測定した。水銀圧入装置は、ポロシメーター(MICROMERITICS AUTO-PORE 9200:島津製作所製)を使用した。
・水銀圧入法は、毛細管現象の法則に基づく。水銀と円筒細孔の場合には、この法則は次式で表される。式中、Dは細孔径、Pは掛けた圧力、γは表面張力、θは接触角である。掛けた圧力Pの関数としての細孔への進入水銀体積を測定する。なお、触媒の細孔水銀の表面張力は484dyne/cmとし、接触角は130度とした。
式: D=-(1/P)4γcosθ
・細孔分布は、Pを関数として算出されたDの分布である。
1)真空加熱脱気装置の電源を入れ、温度400℃、真空度5×10-2Torr以下になることを確認した。
2)サンプルビュレットを空のまま真空加熱脱気装置に掛けた。
3)真空度が5×10-2Torr以下となったなら、サンプルビュレットを、そのコックを閉じて真空加熱脱気装置から取り外し、冷却後、重量を測定した。
4)サンプルビュレットに試料(触媒)を入れた。
5)試料入りサンプルビュレットを真空加熱脱気装置に掛け、真空度が5×10-2Torr以下になってから1時間以上保持した。
6)試料入りサンプルビュレットを真空加熱脱気装置から取り外し、冷却後、重量を測定し、試料重量を求めた。
7)AUTO-PORE 9200用セルに試料を入れた。
8)AUTO-PORE 9200により測定した。
a)分析方法及び使用機器:
・触媒中の金属分析は、誘導結合プラズマ発光分析(ICPS-2000:島津製作所製)を用いて行った。
・金属の定量は、絶対検量線法にて行った。
1)ユニシールに、触媒0.05g、塩酸(50質量%)1mL、フッ酸一滴、及び純水1mLを投入し、加熱して溶解させた。
2)溶解後、得られた溶液をポリプロピレン製メスフラスコ(50mL容)に移し換え、純水を加えて、50mLに秤量した。
3)当該溶液をICPS-2000により測定した。
「PV」は全細孔容積(mL/g)、
「PV-1」は5~10nmの細孔径を有する細孔の全容積の3~30nmの細孔径を有する細孔の全容積に対する割合(%)、
「PV-2」は10~15nmの細孔径を有する細孔の全容積の3~30nmの細孔径を有する細孔の全容積に対する割合(%)、
「PV-3」は30nm以上の細孔径を有する細孔の全容積の3~30nmの細孔径を有する細孔の全容積に対する割合(%)、
「PV-4」は10~30nmの細孔径を有する細孔の平均細孔径±1nmの細孔の全容積が、3~30nmの細孔径を有する細孔の全容積に占める割合(%)、「MPD」は10~30nmの細孔径を有する細孔の平均細孔径(nm)をそれぞれ示す。
以下の要領にて、下記性状の常圧蒸留残渣油(AR)の水素化処理を行った。水素化処理触媒として、実施例1~3及び比較例1~3で製造した触媒A、B、a、及びbをそれぞれ用いた。
1)60℃に加温した試料を三角フラスコに25g採取し、エアーコンデンサーを取り付けて100℃の油浴に挿入し、24時間保持した。
2)当該試料を充分に振とうした後、10.5gをガラスビーカーにサンプリングした。
3)試料の入ったガラスビーカーを、100℃で10分間加温した。
4)乾燥したガラス繊維濾紙(直径47mm、気孔径1.6μm)を3枚重ねでセットし、減圧ポンプで80kPaまで減圧した減圧濾過器に、前記試料を投入し、30秒後に40kPaまで減圧した。
5)濾過が完了し、濾紙表面が乾いた後に、さらに5分間減圧を続けた。
6)減圧ポンプ停止後、濾過器をアスピレータで引きながら25mLの洗浄溶剤(ヘプタン85mL+トルエン15mL)で漏斗とフィルター全域を洗浄した。
7)さらに20mLヘプタンで当該濾紙を洗浄した後、最上部の濾紙(上から1枚目)を取り外して、下部の濾紙を20mLヘプタンで洗浄した。
8)上から1枚目及び2枚目の濾紙を、110℃で20分乾燥後、30分放冷した。
9)濾過前に対する濾過後の1枚目及び2枚目濾紙の各重量増加分を測定し、1枚目濾紙の増加重量から2枚目濾紙の増加重量を差し引いた重量を、試料採取重量に対する百分率としたものを、潜在セジメント(質量%)とした。
なお、濾過が25分間で終了しない場合はサンプル量を5gあるいは2gとして再測定した。
アスファルテン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、トルエン不溶解分を回収した。この不溶性分をアスファルテン分とした。
レジン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、濾液であるトルエン溶解分を濃縮した。この濃縮物にヘプタンを加えたヘプタン溶液を活性アルミナ充填カラムに流通させ、飽和、芳香族、レジン分に分離し、レジン分を回収した。
触媒の予備硫化は、減圧軽油により、水素分圧10.3MPa、370℃において12時間行った。その後、活性評価用の原料油に切り替えた。
反応温度;385℃、
圧力(水素分圧);10.3MPa、
液空間速度 ;0.4h-1、
水素/油比 ;1690m3/m3。
油種;中東系原油の常圧蒸留残渣油、
密度(15℃);0.9678g/cm3、
硫黄成分;3.14質量%、
バナジウム;79ppm、
ニッケル;32ppm、
アスファルテン分;4.0質量%。
〔1〕脱硫率(HDS)(%):原料油中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式(1)により算出した。
〔2〕脱硫反応速度定数(Ks):生成油の硫黄分(Sp)の減少量に対して、2次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。以下の式(2)により算出した。なお、反応速度定数が高い程、触媒活性が優れていることを示している。
〔3〕脱硫比活性(%):表3では、触媒Aの脱硫反応速度定数を100としたときの相対値で示した。以下の式(3)により算出した。
〔4〕脱金属率(HDM)(%):原料油から消失した金属分(ニッケルとバナジウムの合計)の割合を脱金属率と定義し、原料油及び生成油の金属分析値から以下の式(4)により算出した。
脱硫反応速度定数=〔1/Sp-1/Sf〕×(LHSV) ………(2)
式中、Sf:原料油中の硫黄分(質量%)、
Sp:生成油中の硫黄分(質量%)、
LHSV:液空間速度(h-1)。
脱硫比活性(%)=(各触媒の脱硫反応速度定数/触媒Aの脱硫反応速度定数)×100………(3)
脱金属率(%)=〔(Mf-Mp)/Mf〕×100 ………(4)
式中、Mf:原料油中のニッケルとバナジウムの合計(質量ppm)、
Mp:生成油中のニッケルとバナジウムの合計(質量ppm)。
前記の水素化処理反応で得た運転日数25日目の生成油から求めた脱硫比活性、脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量の結果を表3に示す。脱硫比活性は、実施例1で得た生成油における脱硫反応速度定数を100としたときの相対値で示した。
アルミナゲルに、平均粒子径が7.1μmの酸化亜鉛を、担体基準で8質量%となるように(すなわち、亜鉛(Zn)含有量が担体基準、酸化物換算で8質量%となるように)添加して水分調整し、混練、成型した後、乾燥、焼成することで酸化亜鉛含有アルミナ担体を調製した。
一方、三酸化モリブデンと炭酸ニッケルを、モリブデン(Mo)含有量が触媒基準、酸化物換算で9質量%、ニッケル(Ni)含有量が触媒基準、酸化物換算で2質量%となるように、イオン交換水に添加し、更に添加した金属化合物が完全に溶解するまでクエン酸を添加して金属化合物の水溶液を調製した。この水溶液を前記酸化亜鉛含有アルミナ担体に滴下した後に静置し、その後、乾燥、焼成することにより、触媒Dを得た。
アルミナゲルに、平均粒子径が7.1μmの酸化亜鉛を担体基準で4質量%となるように添加し、リン(P)含有量が担体基準、酸化物換算で1質量%となるようにオルトリン酸を添加した後、水分調整した。水分調整後のアルミナゲルを混練、成型した後、乾燥、焼成することにより、リン・酸化亜鉛含有アルミナ担体を調製した。
前記リン・酸化亜鉛含有アルミナ担体に、モリブデン(Mo)含有量が触媒基準、酸化物換算で12質量%となるようにモリブデン酸アンモニウムをイオン交換水に溶かした溶液を滴下した後に静置し、その後、乾燥、焼成することにより、モリブデン担持リン・酸化亜鉛含有アルミナ担体を得た。
次いで、前記モリブデン担持リン・酸化亜鉛含有アルミナ担体に、ニッケル(Ni)含有量が触媒基準、酸化物換算で4質量%となるように硝酸ニッケルをイオン交換水に溶かした溶液を滴下した後に静置し、その後、乾燥、焼成することにより触媒Eを得た。
前段触媒として触媒Dを、中段触媒として触媒Aを、後段触媒として触媒Eを用い、容積比触媒D:触媒A:触媒E=20:30:50で固定床流通式反応装置に充填し、下記性状の原料油を用いて、下記反応条件で水素化処理を行い、生成油を得た。
反応温度;390℃、
水素分圧;10.3MPa、
液空間速度;0.253h-1、
水素/油比; 876.2m3/m3。
原料油;中東系原油の減圧蒸留残渣油
密度(15℃);1.037g/cm3、
硫黄分 ;4.27質量%、
ニッケル分 ;54ppm、
バナジウム分;91ppm、
アスファルテン分;7.8質量%。
中段触媒を触媒Aから触媒Bに変更した以外は、実施例4と同様にして水素化処理を行い、生成油を得た。
中段触媒を触媒Aから触媒aに変更した以外は、実施例4と同様にして水素化処理を行い、生成油を得た。
中段触媒を触媒Aから触媒bに変更した以外は、実施例4と同様にして水素化処理を行い、生成油を得た。
前記の水素化処理反応で得た運転日数25日目の生成油から求めた脱硫比活性、脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量の結果を表6に示す。
脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量は、前記と同様にして求めた。
脱硫比活性は、実施例4で得た生成油における脱硫反応速度定数を100としたときの相対値で示した。
Claims (3)
- シリカを担体基準で0.1~1.5質量%含有するシリカ含有多孔性アルミナ担体に水素化活性成分が担持されており、
全細孔容積が0.55~0.75mL/gであり、かつ
細孔分布に関する下記条件(1)~(5)を充足することを特徴とする重質炭化水素油の水素化処理触媒;
(1)5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30~45%であること、
(2)10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の50~65%であること、
(3)30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下であること、
(4)10~30nmの細孔径を有する細孔の平均細孔径が、10.5~13nmにあること、及び、
(5)前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であること。 - 重質炭化水素油を、水素分圧3~20MPa、水素/油比400~3000m3/m3、温度300~420℃、液空間速度0.1~3h-1で、前段触媒、中段触媒、及び後段触媒と順次接触させて水素化処理する方法であって、
(a)前段触媒として、
酸化亜鉛を担体基準で1~15質量%含有する無機酸化物担体に、触媒基準かつ酸化物換算で、周期表第6族金属から選ばれた少なくとも1種を2~15質量%、および周期表第8~10族金属から選ばれた少なくとも1種を0.001~5質量%含有させており、
比表面積が70~150m2/gであり、細孔容積が0.6~1mL/gであり、平均細孔径が15~35nmであり、平均細孔径±2.0nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が15~50%である触媒を、触媒全体に対して、容積基準で10~50%用い、
(b)中段触媒として、
請求項1に記載の水素化処理触媒を、触媒全体に対して、容積基準で10~50%用い、
(c)後段触媒として、
リンを担体基準、酸化物換算で0.1~4質量%、及び酸化亜鉛を担体基準で1~12質量%含有する無機酸化物担体に、触媒基準かつ酸化物換算で、周期表第6族金属から選ばれた少なくとも1種を8~20質量%、および周期表第8~10族金属から選ばれた少なくとも1種を2~6質量%含有させており、
比表面積が180~320m2/gであり、全細孔容積が0.45~0.8mL/gであり、平均細孔径が7~13nmであり、かつ平均細孔径±1.5nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が45%以上である触媒を、触媒全体に対して、容積基準で20~70%用いることを特徴とする重質炭化水素油の水素化処理方法。 - 前記前段触媒に用いる酸化亜鉛の粒子の平均粒子径が2~12μm、前記後段触媒に用いる酸化亜鉛の粒子の平均粒子径が2~12μmである、請求項2に記載の重質炭化水素油の水素化処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14849796.9A EP3050624B1 (en) | 2013-09-27 | 2014-09-25 | Hydrogenation treatment catalyst for heavy hydrocarbon oil, and method for hydrogenation treatment of heavy hydrocarbon oil |
JP2015539330A JP6413168B2 (ja) | 2013-09-27 | 2014-09-25 | 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 |
KR1020167008187A KR102192541B1 (ko) | 2013-09-27 | 2014-09-25 | 중질 탄화수소유의 수소화 처리 촉매 및 중질 탄화수소유의 수소화 처리 방법 |
US15/022,961 US9908107B2 (en) | 2013-09-27 | 2014-09-25 | Hydrogenation treatment catalyst for heavy hydrocarbon oil, and method for hydrogenation treatment of heavy hydrocarbon oil |
CN201480052604.9A CN105579134B (zh) | 2013-09-27 | 2014-09-25 | 重质烃油的加氢处理催化剂以及重质烃油的加氢处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-201801 | 2013-09-27 | ||
JP2013201801 | 2013-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046323A1 true WO2015046323A1 (ja) | 2015-04-02 |
Family
ID=52743457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075417 WO2015046323A1 (ja) | 2013-09-27 | 2014-09-25 | 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9908107B2 (ja) |
EP (1) | EP3050624B1 (ja) |
JP (1) | JP6413168B2 (ja) |
KR (1) | KR102192541B1 (ja) |
CN (1) | CN105579134B (ja) |
WO (1) | WO2015046323A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016189982A1 (ja) * | 2015-05-27 | 2016-12-01 | 日揮触媒化成株式会社 | 炭化水素油の水素化処理触媒、その製造方法及び水素化処理方法 |
JP2019131688A (ja) * | 2018-01-31 | 2019-08-08 | Jxtgエネルギー株式会社 | 炭化水素油の製造方法 |
WO2022004786A1 (ja) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102188896B1 (ko) * | 2013-09-27 | 2020-12-11 | 코스모세키유 가부시키가이샤 | 중질 탄화수소유의 수소화 처리 촉매, 중질 탄화수소유의 수소화 처리 촉매의 제조 방법 및 중질 탄화수소유의 수소화 처리 방법 |
KR102229870B1 (ko) * | 2013-09-27 | 2021-03-19 | 코스모세키유 가부시키가이샤 | 중질 탄화수소유의 수소화 처리 촉매 및 중질 탄화수소유의 수소화 처리 방법 |
EP3056271B8 (en) * | 2013-10-11 | 2022-02-16 | Cosmo Oil Co., Ltd. | Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and use in a hydroprocessing method for heavy hydrocarbon oil |
US12025435B2 (en) | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US20180230389A1 (en) | 2017-02-12 | 2018-08-16 | Magēmā Technology, LLC | Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
FR3076747B1 (fr) * | 2018-01-15 | 2022-06-10 | Ifp Energies Now | Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage |
TWI716835B (zh) * | 2018-03-23 | 2021-01-21 | 日商三菱化學股份有限公司 | 觸媒 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5049183A (ja) * | 1973-08-31 | 1975-05-01 | ||
JPS60257839A (ja) * | 1984-06-05 | 1985-12-19 | Toa Nenryo Kogyo Kk | 水素化処理用触媒 |
JP2002363575A (ja) * | 2001-06-08 | 2002-12-18 | Nippon Kecchen Kk | 重質炭化水素油の2段階水素化処理方法 |
JP2003103173A (ja) | 2001-09-28 | 2003-04-08 | Petroleum Energy Center | 重質炭化水素油の水素化処理触媒 |
JP2005314657A (ja) * | 2004-03-29 | 2005-11-10 | Cosmo Oil Co Ltd | 重質炭化水素油の水素化処理方法 |
JP2006502858A (ja) * | 2002-10-10 | 2006-01-26 | 中国石油化工股▲分▼有限公司 | 含ケイ素アルミナ担体、その調製法、ならびに、当該アルミナ担体を含む触媒 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051021A (en) * | 1976-05-12 | 1977-09-27 | Exxon Research & Engineering Co. | Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst |
CN100496707C (zh) * | 2006-06-16 | 2009-06-10 | 中国石油化工股份有限公司 | 一种氧化铝载体的制备方法 |
JP5439673B2 (ja) * | 2009-03-23 | 2014-03-12 | 一般財団法人石油エネルギー技術センター | 重質炭化水素油の水素化処理方法 |
CN101844081B (zh) | 2009-03-26 | 2011-11-30 | 中国石油化工股份有限公司 | 选择加氢催化剂及其应用 |
CN101954282A (zh) | 2010-08-31 | 2011-01-26 | 内江天科化工有限责任公司 | 一种加氢脱硫催化剂及其制备方法 |
JP5563491B2 (ja) * | 2011-01-14 | 2014-07-30 | 出光興産株式会社 | 重質炭化水素油の水素化処理方法 |
EP3056271B8 (en) | 2013-10-11 | 2022-02-16 | Cosmo Oil Co., Ltd. | Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and use in a hydroprocessing method for heavy hydrocarbon oil |
-
2014
- 2014-09-25 CN CN201480052604.9A patent/CN105579134B/zh active Active
- 2014-09-25 KR KR1020167008187A patent/KR102192541B1/ko active IP Right Grant
- 2014-09-25 JP JP2015539330A patent/JP6413168B2/ja active Active
- 2014-09-25 US US15/022,961 patent/US9908107B2/en active Active
- 2014-09-25 EP EP14849796.9A patent/EP3050624B1/en active Active
- 2014-09-25 WO PCT/JP2014/075417 patent/WO2015046323A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5049183A (ja) * | 1973-08-31 | 1975-05-01 | ||
JPS60257839A (ja) * | 1984-06-05 | 1985-12-19 | Toa Nenryo Kogyo Kk | 水素化処理用触媒 |
JP2002363575A (ja) * | 2001-06-08 | 2002-12-18 | Nippon Kecchen Kk | 重質炭化水素油の2段階水素化処理方法 |
JP2003103173A (ja) | 2001-09-28 | 2003-04-08 | Petroleum Energy Center | 重質炭化水素油の水素化処理触媒 |
JP2006502858A (ja) * | 2002-10-10 | 2006-01-26 | 中国石油化工股▲分▼有限公司 | 含ケイ素アルミナ担体、その調製法、ならびに、当該アルミナ担体を含む触媒 |
JP2005314657A (ja) * | 2004-03-29 | 2005-11-10 | Cosmo Oil Co Ltd | 重質炭化水素油の水素化処理方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016189982A1 (ja) * | 2015-05-27 | 2016-12-01 | 日揮触媒化成株式会社 | 炭化水素油の水素化処理触媒、その製造方法及び水素化処理方法 |
KR20180012736A (ko) * | 2015-05-27 | 2018-02-06 | 니끼 쇼꾸바이 카세이 가부시키가이샤 | 탄화수소유의 수소화 처리 촉매, 그의 제조 방법 및 수소화 처리 방법 |
JPWO2016189982A1 (ja) * | 2015-05-27 | 2018-03-15 | 日揮触媒化成株式会社 | 炭化水素油の水素化処理触媒、その製造方法及び水素化処理方法 |
US10286386B2 (en) | 2015-05-27 | 2019-05-14 | Jgc Catalysts And Chemicals Ltd. | Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method |
KR102463310B1 (ko) * | 2015-05-27 | 2022-11-04 | 니끼 쇼꾸바이 카세이 가부시키가이샤 | 탄화수소유의 수소화 처리 촉매, 그의 제조 방법 및 수소화 처리 방법 |
JP2019131688A (ja) * | 2018-01-31 | 2019-08-08 | Jxtgエネルギー株式会社 | 炭化水素油の製造方法 |
JP7011479B2 (ja) | 2018-01-31 | 2022-01-26 | Eneos株式会社 | 炭化水素油の製造方法 |
WO2022004786A1 (ja) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3050624A1 (en) | 2016-08-03 |
JP6413168B2 (ja) | 2018-10-31 |
KR102192541B1 (ko) | 2020-12-17 |
CN105579134B (zh) | 2018-12-07 |
JPWO2015046323A1 (ja) | 2017-03-09 |
EP3050624A4 (en) | 2017-06-14 |
CN105579134A (zh) | 2016-05-11 |
US20160228858A1 (en) | 2016-08-11 |
US9908107B2 (en) | 2018-03-06 |
KR20160062021A (ko) | 2016-06-01 |
EP3050624B1 (en) | 2019-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6413168B2 (ja) | 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 | |
JP6773384B2 (ja) | 重質炭化水素油の水素化処理方法 | |
JP6432086B2 (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
TWI641554B (zh) | 含矽石之氧化鋁載體、由其製成之觸媒及使用其之方法 | |
EP3050622B1 (en) | Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil | |
JP2008503611A (ja) | 重質炭化水素油のための触媒組合せおよび二工程水素処理方法 | |
WO2013061913A1 (ja) | 水素化処理触媒及びその製造方法 | |
WO2016189982A1 (ja) | 炭化水素油の水素化処理触媒、その製造方法及び水素化処理方法 | |
JP4519379B2 (ja) | 重質炭化水素油の水素化処理触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480052604.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14849796 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015539330 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014849796 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014849796 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15022961 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167008187 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |