WO2015046250A1 - 濾過膜、濾過ユニット並びに濾過システム及び濾過方法 - Google Patents

濾過膜、濾過ユニット並びに濾過システム及び濾過方法 Download PDF

Info

Publication number
WO2015046250A1
WO2015046250A1 PCT/JP2014/075291 JP2014075291W WO2015046250A1 WO 2015046250 A1 WO2015046250 A1 WO 2015046250A1 JP 2014075291 W JP2014075291 W JP 2014075291W WO 2015046250 A1 WO2015046250 A1 WO 2015046250A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
polyester
water
hydrophilic
membrane
Prior art date
Application number
PCT/JP2014/075291
Other languages
English (en)
French (fr)
Inventor
植野 慎也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201480052451.8A priority Critical patent/CN105579120A/zh
Priority to EP14848620.2A priority patent/EP3050613A4/en
Priority to KR1020167010590A priority patent/KR20160058935A/ko
Priority to US15/023,871 priority patent/US20160228829A1/en
Publication of WO2015046250A1 publication Critical patent/WO2015046250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/27Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of alkylpolyalkylene glycol esters of unsaturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0421Rendering the filter material hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the present invention relates to a filtration membrane used for filtration treatment of seawater, river water, etc., a filtration unit using the filtration membrane, a filtration system (filtrated water production apparatus) for producing filtrate using the filtration unit, and
  • the present invention relates to a filtration method.
  • Patent Document 1 Various water treatment systems have been proposed for detoxifying and draining seawater and river water contaminated by drainage and the like (for example, Patent Document 1). Also, ballast water, which is seawater, may be loaded for safe navigation of ships, and various water treatment systems for preventing environmental pollution due to the drainage of the ballast have been proposed (for example, Patent Document 1, Patents). Document 2, Patent Document 4, Patent Document 5).
  • membrane filtration is widely performed for removing turbid components, which are solid substances contained in the water to be treated, and for removing microorganisms such as plankton and bacterial cells.
  • filtration membranes used for membrane filtration porous filtration membranes made of various materials have been proposed.
  • a porous layer made of a material selected from polypropylene fiber, cellulose fiber and melamine resin, cellulose fiber and phenol resin, cellulose fiber and melamine resin and phenol resin, cellulose fiber and acrylic fiber and phenol resin is used.
  • a filter device provided as a filter is disclosed, and further, a filter device including a porous membrane made of polytetrafluoroethylene (PTFE, fluororesin) is provided downstream of the filter device.
  • PTFE polytetrafluoroethylene
  • Patent Document 3 also efficiently removes sticky substances (jelly-like turbid components) called TEP (transparent exopolymer particles) that are secreted out of cells by plankton and microorganisms from seawater.
  • TEP transparent exopolymer particles
  • a PTFE stretched membrane is disclosed.
  • polyesters such as polyethylene terephthalate are widely used as materials for filtration membranes because they are durable and easy to produce a filtration membrane that can withstand the filtration pressure associated with high flow rates.
  • the material of the filtration membrane “for example, stretched porous material made of polyester, nylon, polyethylene, polypropylene, polyurethane, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), etc.
  • Porous structures such as a solid body, a phase-separated porous body, and a nonwoven fabric are used, but for the purpose of performing a high flow rate treatment, a nonwoven fabric made of polyester such as polyethylene terephthalate is particularly preferably used.
  • Patent Document 5 paragraph 0010, lines 5 to 7) describes a comparison of polyester and the like as a filter for removing turbidity from seawater and removing microorganisms in a marine ballast water treatment apparatus. It is described that a robust filter can be used.
  • a conventional polyester filtration membrane has a problem that the use time until the recovery of the filtration flow rate becomes difficult, that is, the life of the membrane is short.
  • the present invention is a filtration membrane made of a porous material and can be used in a treatment system for seawater, river water, etc., and a large filtration flow rate is obtained, and recovery of the filtration flow rate by backwashing and chemical washing is sufficient. It is another object of the present invention to provide a filtration membrane, a filtration system, and a filtration method that can perform a treatment of seawater, river water, and the like with a filtration membrane that has a long lifetime and seawater.
  • the first aspect of the present invention is a filtration membrane using a nonwoven fabric formed from a synthetic fiber having hydrophilicity.
  • the second aspect of the present invention is a filtration unit in which the filtration membrane of the first aspect is used.
  • a third aspect of the present invention is a seawater and / or fresh water filtration system, wherein the filtration unit of the second aspect, a water flow device for passing water to be treated to the filtration unit, and the filtration unit are washed. It is a filtration system provided with the washing
  • a fourth aspect of the present invention is a seawater and / or fresh water filtration method using the filtration device of the third aspect.
  • the present invention is a filtration membrane that can be used in a treatment system for seawater, river water, etc., and can obtain a large filtration flow rate (treatment rate), and the filtration flow rate can be recovered by backwashing and chemical washing.
  • a filtration membrane that is sufficient and has a long life is provided. If the filtration unit of the present invention is used, and the filtration system and filtration method of the present invention using the filtration unit, it is possible to perform treatment of seawater, river water, etc., and ballast water at a high filtration flow rate. Further, recovery of the filtration flow rate by backwashing and chemical washing is sufficient, and the replacement frequency of the filtration membrane used in these can be reduced. That is, efficient filtration and water treatment can be performed.
  • the present inventor has improved the filtration flow rate (flow rate that can be filtered per unit time) by using a nonwoven fabric made of hydrophilic synthetic fibers, especially hydrophilic polyester fibers, as a filtration membrane (filter material).
  • the present invention has been completed by finding that a filter membrane that can be easily clogged, can easily recover the filtration flow rate by backwashing, and has a long life that can withstand long-term use can be obtained.
  • the first aspect of the present invention is a filtration membrane using a nonwoven fabric formed from a synthetic fiber having hydrophilicity.
  • the synthetic fiber means a chemical fiber made from a polymer made by polymerizing a low molecular weight organic material.
  • the synthetic fibers having hydrophilicity include those obtained by chemically treating hydrophobic synthetic fibers to impart hydrophilicity (hydrophilization treatment). For example, the thing which hydrophilized the polyester fiber, the polypropylene fiber, etc. can be mentioned.
  • Hydrophobic synthetic fibers are formed from non-hydrophilic polyester fibers (polyethylene terephthalate fibers that have not been hydrophilized) when the nonwoven fabric is formed from the fibers and the water absorption rate when immersed in water (one end) is hydrophobic.
  • a non-woven fabric made of a synthetic fiber having hydrophilicity especially a polyester fiber having hydrophilicity
  • the water to be treated easily penetrates into the non-woven fabric, and bubbles held in the non-woven fabric are smoothly released. For this reason, a sufficient flow path is ensured and the filtration flow rate can be increased.
  • the filtration membrane such as backwashing or chemical washing is washed, the washing effect is improved, the deposits are more sufficiently removed, and the filtration flow rate is sufficiently recovered. For this reason, it is difficult to cause clogging.
  • Non-woven fabric is a fabric in which fibers are bonded or entangled by thermal, mechanical or chemical action to form a cloth, and is a porous body having voids (holes) between the fibers.
  • the non-woven fabric used in the present invention is selected or processed so as to have a porosity and a pore size suitable for the purpose of filtration.
  • non-woven fabrics made of polyester fibers having hydrophilicity include fibers made hydrophilic by applying a hydrophilicity-imparting substance (hereinafter referred to as “hydrophilizing agent”) to the surface of hydrophobic polyester fibers. Further, a fiber obtained by modifying a polyester fiber with a raw material having a hydrophilic functional group such as a sulfone group, a carboxyl group or a hydroxyl group, or a fiber obtained by copolymerizing a hydrophilic monomer with a polyester is also a hydrophilic polyester fiber. included.
  • hydrophilic fibers examples include cellulose and rayon.
  • the filtration membrane is required to have physical properties that can withstand high flow rates of water pressure.
  • hydrophilic materials such as cellulose and rayon are used for high flow rates of water pressure, etc.
  • the physical properties to withstand are insufficient.
  • filtration membranes obtained by hydrophilizing the surface of synthetic fibers, especially polyester fibers, which are engineering plastics have excellent physical properties that can withstand high water pressure. Therefore, it is suitably used as a filtration membrane for use in filtration of high flow rate water in membrane filtration.
  • Hydrophobic synthetic fibers in particular polyester, a method of copolymerizing a compound having a hydrophilic group, or a method of modifying a hydrophobic fiber polyester with a compound having a hydrophilic group also has hydrophilicity.
  • a fiber having excellent physical properties that can withstand a high flow rate of water pressure or the like can be produced.
  • the form which is the copolymer made by copolymerization can be mentioned.
  • Polyester fibers are preferred because they are durable and easy to produce a filtration membrane that can withstand the filtration pressure associated with high flow rates.
  • a condensate of diol and aromatic dicarboxylic acid such as polyethylene terephthalate and polybutylene terephthalate is particularly preferable.
  • hydrophilizing agent applied to the surface of the hydrophobic polyester fiber examples include polyethylene glycol di (meth) acrylate, a block polymer of polyester and an acrylic polymer having a hydrophilic group, and the like.
  • fibers obtained by applying these hydrophilizing agents to the surfaces of polyester resin fibers are preferable because they are superior in water resistance and chemical resistance.
  • the synthetic fiber having hydrophilicity is a form in which a hydrophilic agent is applied to the surface of the polyester resin fiber, and the hydrophilic agent is polyethylene glycol di (The form which is a block polymer of the acrylic polymer which has a meth) acrylate and / or saturated polyester and a hydrophilic group can be mentioned.
  • the polyethylene glycol di (meth) acrylate preferably has a polymerization degree of 30 or less, more preferably a polymerization degree of 2 to 23, and still more preferably a polymerization degree of 2 to 10.
  • saturated polyester constituting the block polymer of a saturated polyester and an acrylic polymer having a hydrophilic group
  • examples of the saturated polyester constituting the block polymer of a saturated polyester and an acrylic polymer having a hydrophilic group include those obtained from dibasic acids such as adipic acid and sebacic acid and glycols such as diethylene glycol and triethylene glycol. .
  • the application of the hydrophilizing agent may be performed before the fiber is made into a non-woven fabric or after the non-woven fabric is produced.
  • the application amount of the hydrophilizing agent is preferably 0.5 to 5% by mass in the mass ratio of the nonwoven fabric after application, because a nonwoven fabric suitable as a filtration membrane can be obtained.
  • the coating amount of the hydrophilizing agent is less than 0.5% by mass, the filtration flow rate improvement and clogging prevention effect is not sufficient, while when it exceeds 5% by mass, the voids of the nonwoven fabric are filled with the hydrophilizing agent, Generally, it is not preferable because the filtration performance may deteriorate.
  • a copolymer obtained by copolymerizing a compound having a hydrophilic group with polyester is also preferable because it has mechanical strength derived from polyester and a filtration membrane having better mechanical strength can be obtained.
  • the polyester is preferably a saturated polyester, particularly a condensate of a diol such as polyethylene terephthalate or polybutylene terephthalate and an aromatic dicarboxylic acid.
  • a polyester is synthesized by dehydration condensation of a diol and a dicarboxylic acid, or when a polyester is synthesized by dehydration condensation of a compound having a hydroxyl group and a carboxyl group in the molecule, a compound having a hydrophilic group such as a sulfonic acid metal base is used.
  • a hydrophilic group By performing a condensation reaction in the presence of a hydrophilic group, a hydrophilic group can be introduced into the resulting polymer, and the copolymer can be obtained.
  • a compound having one or more hydrophilic functional groups selected from a sulfone group, a carboxyl group, and a hydroxyl group is preferably used.
  • a sulfonic acid metal base (sulfone group) into a polyester dibasic acids having a sulfonic acid metal base (which may be a condensable derivative thereof) or polyhydric alcohols having a sulfonic acid metal base may be used.
  • dibasic acids having a sulfonic acid metal base which may be a condensable derivative thereof
  • polyhydric alcohols having a sulfonic acid metal base may be used as a raw material for introducing a sulfonic acid metal base (sulfone group) into a polyester.
  • dibasic acids having a sulfonic acid metal base which may be a condensable derivative thereof
  • polyhydric alcohols having a sulfonic acid metal base may be used as a raw material for introducing a s
  • the copolymerization ratio of the compound having the sulfonic acid metal base is preferably 0.1 to 20% by mass, more preferably 0.5% by weight to 5%, based on the entire copolymer. % By mass. If it exceeds 20 mol%, it is difficult to produce polyester, while if it is less than 0.1 mass%, sufficient hydrophilicity may not be obtained.
  • the nonwoven fabric can be obtained by forming the fiber obtained as described above into a nonwoven fabric by a known method, for example, melt spinning. Moreover, you may hydrophilize the well-known nonwoven fabric which consists of a hydrophobic polyester fiber as mentioned above.
  • the produced nonwoven fabric is processed into a size and shape suitable for filtration to produce a filtration membrane. Specifically, it is processed into an appropriate size and shape, for example, a flat membrane, a cylindrical shape, etc. according to the use of the filtration device, etc., and is processed into a pleated filter as necessary.
  • the second aspect of the present invention is a filtration unit in which the filtration membrane of the first aspect is used.
  • the filtration unit since the said filtration membrane is used, the filtration unit with a large filtration flow rate can be provided.
  • the filter unit efficiently filters water because clogging is unlikely to occur and the filtration membrane needs to be washed less frequently.
  • the filtration membrane of the first aspect is attached to, for example, a housing for passing water to be treated, and as necessary so that the filtration membrane is not deformed or damaged by water passage. A reinforcing material is provided, and the filtration unit of the second aspect is produced.
  • An example of the filtration unit is a cartridge type filtration unit (filter cartridge).
  • a third aspect of the present invention is a seawater and / or fresh water filtration system, wherein the filtration unit of the second aspect, a water flow device for passing water to be treated to the filtration unit, and the filtration unit are washed. It is a filtration system provided with the washing
  • the filtration system preferably further includes a control device that controls the operation of the water passing means and the cleaning means. As a result, the water to be treated is filtered under a predetermined filtration flow rate and differential pressure (treated water pressure), and the filtration unit is appropriately washed. Therefore, efficient and stable filtration is possible.
  • a fourth aspect of the present invention is a seawater and / or fresh water filtration method using the filtration device of the third aspect.
  • the filtration device since a filtration device having a high filtration flow rate and hardly clogging is used, the filtration device is large in quantity such as seawater such as ballast water, fresh water such as river water and lake water, and is detected by TEP or the like. It is possible to provide a filtration method that is suitable for purification of either seawater or fresh water, such as water that tends to be clogged, industrial wastewater, and domestic wastewater.
  • a hydrophilic nonwoven fabric 1 using a polyester fiber having hydrophilicity itself, and a hydrophilic nonwoven fabric 2 made of a polyester fiber that has been subjected to a hydrophilic treatment by applying a hydrophilic resin to the hydrophobic polyester fiber are prepared. Then, the hydrophilicity and the filtration performance by the natural filtration method were evaluated.
  • Example 1 Preparation of filtration membrane (hydrophilic nonwoven fabric) (Example 1) (1) Synthesis of hydrophilic polyester resin (fiber obtained by copolymerizing polyester with a hydrophilic monomer) In a flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser, 166 masses of terephthalic acid A mixture of 54 parts by mass of 5-sodium sulfoisophthalic acid and 135 parts by mass of ethylene glycol was charged, and dehydration condensation was carried out at 220 ° C. until the acid value became 1 or less to obtain a transesterification product (oligomer). .
  • hydrophilic polyester resin fiber obtained by copolymerizing polyester with a hydrophilic monomer
  • Example 2 (1) Preparation of hydrophilizing agent (resin) 625 parts by mass of polyester / acrylic block copolymer (manufactured by Takamatsu Yushi Co., Ltd., trade name: Pesresin A-647GEX), 4340 parts by mass of water, carbodiimide crosslinking agent (manufactured by Nisshinbo Chemical Co., Ltd., 35 parts by mass of a trade name: Carbodilite SV-02) was placed in a water tank to prepare a hydrophilizing agent.
  • hydrophilizing agent resin 625 parts by mass of polyester / acrylic block copolymer (manufactured by Takamatsu Yushi Co., Ltd., trade name: Pesresin A-647GEX), 4340 parts by mass of water, carbodiimide crosslinking agent (manufactured by Nisshinbo Chemical Co., Ltd., 35 parts by mass of a trade name: Carbodilite SV-02) was placed in a water tank to prepare
  • hydrophilizing agent hydrophilization
  • basis weight 260 g / m 2 in the water tub a thickness of 0.6mm spunbonded polyester nonwoven fabric (manufactured by Toray Industries, Inc., trade name: Axtar G2260-1S BKO) was immersed, it dried 3 minutes at 100 ° C., By carrying out heat treatment at 170 ° C. for 1 minute, the polyester / acrylic block copolymer was heat-cured to obtain a hydrophilic nonwoven fabric 2.
  • the mass ratio of the polyester / acryl block copolymer to the nonwoven fabric after hydrophilization was 5% by mass.
  • hydrophilic non-woven fabric (non-woven fabric made of hydrophilic fibers) 1 and 2 are not subjected to hydrophilization treatment and have no hydrophilicity.
  • Non-hydrophilic polyester non-woven fabric (non-woven fabric made of hydrophobic fibers) Axter G2260-1S BKO It was found that water penetration was much faster. Also, from Table 2, the water retention amount of the nonwoven fabric Axter G2260-1S BKO is very small and only a small amount of bubbles are released, whereas the water retention amount of the hydrophilic nonwoven fabrics 1 and 2 is the nonwoven fabric Axter G2260, respectively. It was found to be 13 times and 14 times larger than -1S BKO, and it was found that air bubbles were sufficiently released by water penetration.
  • the following nonwoven fabrics 3 to 6 were prepared, and the filtration performance was evaluated by a flat membrane filtration test.
  • non-woven fabric (Examples 3 and 4)
  • the mixing ratio of the polyester / acrylic block copolymer (Pesresin A-647GEX), water, and carbodiimide crosslinking agent was changed, and the acrylic block copolymer (Pesresin A-
  • the non-woven fabrics 3 and 4 were obtained in the same manner as in Example 2 except that the ratio of 647GEX was 2.5% by mass (Example 3) and 1.25% by mass (Example 4), respectively.
  • Example 5 Into a solution consisting of 5 parts by mass of polyethylene glycol diacrylate (trade name: NK Ester A-600, manufactured by Shin-Nakamura Chemical Co., Ltd.), 40 parts by mass of diethylene glycol and 55 parts by mass of water, a polymerization initiator (V- 50) 0.3 part was dissolved. A polyester non-woven fabric (trade name: ACSTER G2260-1S BKO, manufactured by Toray Industries, Inc.) is immersed in the obtained solution, dried at 120 ° C. for 30 minutes, washed with water at 60 ° C. for 20 minutes, and dried at 120 ° C. By doing so, the hydrophilic nonwoven fabric 5 was obtained. The mass ratio of the acrylic polymer (NK ester A-600) to the nonwoven fabric after hydrophilization was 5 mass%.
  • Example 6 The same as Example 5 except that the ratio of polyethylene glycol diaclelate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK Ester A-600) was adjusted to 1.25% by mass when adjusting the solution for immersing the polyester nonwoven fabric.
  • the hydrophilic nonwoven fabric 6 was obtained by the method.
  • FIG. 1 is a graph showing the relationship between the differential pressure (treated water pressure) and the filtration time when the nonwoven fabrics 2 to 6 and Actor G2260-1S BKO are used as filtration membranes.
  • the increase in the differential pressure is slower than the filtration unit using the Axter G2260-1S BKO (existing membrane), and the time until filtration becomes difficult. Even when backwashing is performed, the time until the filtration flow rate does not recover is long, and filtration can be performed for a long time. From this result, it was confirmed that the filtration life was improved by using a filtration unit using a nonwoven fabric made of hydrophilic fibers as a filtration membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

 海水、河川水等の処理システムに用いることができ、濾過流速が大きく、又逆洗、薬洗による濾過流速の回復が充分であり、寿命が長い濾過膜として、親水性を有する合成繊維から形成される不織布が用いられている濾過膜、特に、疎水性樹脂繊維の表面に親水性樹脂が塗布されている繊維を塗布する又は親水性成分を共重合させる等の方法により、疎水性の繊維を親水性官能基を有する原料を用いて親水化した繊維からなる不織布を用いて作製された濾過膜を提供し、さらに、この濾過膜が用いられている濾過ユニットおよび濾過装置、ならびにこの濾過装置を用いて海水および/または淡水を濾過する濾過方法を提供する。

Description

濾過膜、濾過ユニット並びに濾過システム及び濾過方法
 本発明は、海水、河川水等の濾過処理に用いられる濾過膜、その濾過膜を用いた濾過ユニット、並びにその濾過ユニットを使用し濾過水を製造するための濾過システム(濾過水製造装置)及び濾過方法に関するものである。
 排水等により汚染された海水や河川水等を無害化して排水するための水処理システムが種々提案されている(例えば、特許文献1)。又、船舶の安全航行のため海水であるバラスト水が積載されることがあるが、そのバラストの排水による環境汚染を防ぐための水処理システムも種々提案されている(例えば、特許文献1、特許文献2、特許文献4、特許文献5)。
 このような処理システムでは、被処理水中に含まれる固形物である濁質成分の除去、プランクトン、菌体等の微生物の除去等のため、膜濾過が広く行われている。そして膜濾過に使用する濾過膜として、種々の材質からなる多孔質体の濾過膜が提案されている。例えば、特許文献1では、ポリプロピレン繊維、セルロース繊維とメラミン樹脂、セルロース繊維とフェノール樹脂、セルロース繊維とメラミン樹脂およびフェノール樹脂、セルロース繊維とアクリル繊維およびフェノール樹脂から選択される材質からなる多孔質層をフィルター(濾過膜)として備えた濾過装置が開示されており、さらにその濾過装置の下流にポリテトラフルオロエチレン(PTFE、フッ素樹脂)製の多孔質膜を備えた濾過装置を設けることも記載されている。又特許文献3では、プランクトンや微生物が細胞外に分泌するTEP(transparent exopolymer particles:透明細胞外高分子粒子)と呼ばれる粘着性物質(ゼリー状の濁質成分)を、海水中から効率よく除去するための濾過膜として、PTFEの延伸膜(多孔質膜)が開示されている。
 河川水、海水、バラスト水等の処理システムでは、高速の処理が求められる場合が多い。従って、高流量の処理を可能とする濾過膜が望まれる。前記のような材質の中でもポリエチレンテレフタレート等のポリエステルは、丈夫であり高流量に伴う濾過圧に耐える濾過膜の作製が容易であるので濾過膜の材質として広く用いられている。例えば、特許文献4(段落0022)には、濾過膜の材質について、「例えば、ポリエステル、ナイロン、ポリエチレン、ポリプロピレン、ポリウレタン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等からなる延伸多孔質体、相分離多孔体、不織布等の多孔質構造物が利用されるが、高流量処理を行う目的においては、ポリエチレンテレフタレートなどのポリエステルからなる不織布が特に好適に用いられる。」と記載されている。又、特許文献5(段落0010、第5~7行)には、船舶用バラスト水の処理装置において、海水中からの濁質除去と共に微生物の除去を目的とするフィルタとして、ポリエステル製等の比較的丈夫なフィルタを用いることができると記載されている。
特開2010-119999号公報 特開2011-251284号公報 特開2012-196618号公報 特開2012-245428号公報 特許第4835785号公報
 しかしながら、ポリエチレンテレフタレート等のポリエステルを濾過膜として用いた場合、濾過膜の孔内では、被処理水が通過するための充分な流路が確保出来ず、濾過流速が妨げられるとの問題があった。濾過流速を増すためには処理水圧を増大する必要があるが、そのため膜の機械的寿命が短くなる問題もあった。この点は、特許文献1、3等に記載された前記例示の膜でも同様である。
 又、濾過膜を用いた水処理の場合、水中のプランクトン等の微生物、浮遊物や、固形物等を原因とする膜の詰まりが生じ、濾過流速が経時的に低下し、ついには濾過が困難になる。そこで、逆洗、薬洗を行い濾過流速の回復が図られているが、ポリエステル製の濾過膜等の従来の濾過膜では、逆洗、薬洗による濾過流速の回復が不十分であるとの問題があった。一方、逆洗、薬洗による濾過流速の回復を向上させるために噴流を大きくすると、膜の機械的寿命を短くする。又、濾過流速の回復が不十分な逆洗を繰り返すと、ついには目詰まりにより逆洗しても濾過流速の回復が困難となる。従来のポリエステル製の濾過膜は、この濾過流速の回復が困難となるまでの使用時間、すなわち膜の寿命が短いとの問題があった。
 本発明は、多孔質体からなり海水、河川水等の処理システムに用いることができる濾過膜であって、大きな濾過流速が得られ、又逆洗、薬洗による濾過流速の回復が充分であり、かつ寿命が長い濾過膜、並びに、効率よく海水、河川水等の処理を行うことができる濾過ユニット、濾過システム及び濾過方法を提供することを課題とする。
 本発明の第一の態様は、親水性を有する合成繊維から形成される不織布を用いる濾過膜である。
 本発明の第2の態様は、第一の態様の濾過膜が用いられている濾過ユニットである。
 本発明の第3の態様は、海水および/または淡水の濾過システムであって、第2の態様の濾過ユニット、前記濾過ユニットに被処理水を通水する通水装置、および前記濾過ユニットを洗浄する洗浄装置を備える濾過システムである。
 本発明の第4の態様は、海水および/または淡水の濾過方法であって、第3の態様の濾過装置を使用する濾過方法である。
 本発明によれば、海水、河川水等の処理システムに用いることができる濾過膜であって、大きな濾過流速(処理速度)を得ることができ、又逆洗、薬洗による濾過流速の回復が充分であり、かつ寿命が長い濾過膜が提供される。本発明の濾過ユニットを使用すれば、又その濾過ユニットを用いる本発明の濾過システム及び濾過方法によれば、海水、河川水等の処理、バラスト水の処理を、大きな濾過流速で行うことができ、逆洗、薬洗による濾過流速の回復も充分であり、かつこれらで使用する濾過膜の交換頻度も小さくすることができる。すなわち、効率のよい濾過、水処理を行うことができる。
本発明の実施例および比較例の濾過膜を用いて濾過したときの差圧(処理水圧)と濾過時間の関係を示す図である。
 本発明者は鋭意検討の結果、親水性を有する合成繊維、中でも親水性を有するポリエステル繊維からなる不織布を濾過膜(濾材)として用いることにより、濾過流量(単位時間に濾過処理出来る流量)を向上させることができるとともに、目詰まりを起こし難く、逆洗による濾過流量の回復も容易であり、かつ長時間使用に耐え得る寿命の長い濾過膜が得られることを見出し、本発明を完成した。
 本発明の第一の態様は、親水性を有する合成繊維から形成される不織布を用いる濾過膜である。ここで合成繊維とは、有機低分子を重合させてつくった高分子を原料とする化学繊維を意味する。親水性を有する合成繊維には、疎水性の合成繊維に化学処理を行って親水性を付与(親水化処理)したものも含まれる。例えば、ポリエステル繊維、ポリプロピレン繊維等を親水化処理したものを挙げることができる。
 親水性を有する合成繊維とは、その繊維により不織布を形成し、水に(その一端を)浸漬したときの吸水速度が、疎水性のポリエステル繊維(親水化処理を行っていないポリエチレンテレフタレート繊維)により不織布を形成し、水に(その一端を)浸漬したときの吸水速度の6倍以上であるものを言う。親水性を有する合成繊維、中でも親水性を有するポリエステル繊維からなる不織布を用いた場合、不織布中に被処理水が浸透しやすく、不織布に保持されている気泡がスムースに放出される。このため、充分な流路が確保され、濾過流速を増大させることができる。また、逆洗や薬洗等の濾過膜の洗浄に際して、洗浄効果が向上して付着物がより充分に除去され、濾過流速が充分回復する。このため、目詰まりを起こし難い。
 不織布とは、繊維を熱・機械的または化学的な作用によって接着または絡み合わせて布にしたものであり、繊維間に空隙(孔)を有する多孔質体である。本発明で用いられる不織布は、濾過の用途に合わせた空隙率、孔径を有するように、選択され、又は加工されたものである。
 親水性を有するポリエステル繊維からなる不織布の例としては、疎水性のポリエステル繊維の表面に、親水性付与物質(以下「親水化剤」と言う。)を塗布して親水化した繊維が挙げられる。又、ポリエステル繊維をスルホン基、カルボキシル基、水酸基等の親水性官能基を有する原料で変性してなる繊維、ポリエステルに親水性単量体を共重合させてなる繊維も親水性を有するポリエステル繊維に含まれる。
 親水性を有する繊維としてはセルロース、レーヨン等も挙げられる。しかし、膜濾過において濾過流速を向上させるためには、高流量の水圧等に耐える物性が濾過膜に求められるが、一般的にセルロース、レーヨン等の親水性を有する素材は、高流量の水圧等に耐える物性については不十分である。これに対して、合成繊維、特にエンジニアリングプラスチックであるポリエステル繊維の表面に親水性樹脂を塗布することにより表面を親水化して得られた濾過膜は、高流量の水圧等に耐える優れた物性を有しており、膜濾過において高流量の水の濾過に使用するための濾過膜として好適に用いられる。又、疎水性を有する合成繊維、特にポリエステルに親水性基を有する化合物を共重合させる方法や、疎水性繊維であるポリエステルを、親水性基を有する化合物により変性する方法によっても、親水性を有しながらも、高流量の水圧等に耐える優れた物性を有している繊維を作製することができる。
 そこで、本発明第一の態様の好ましい形態として、
 親水性を有する合成繊維が、疎水性のポリエステル繊維の表面に、親水化剤を塗布して親水化した繊維である形態、及び
 親水性を有する合成繊維が、ポリエステルに親水性基を有する化合物を共重合させた共重合体である形態、を挙げることができる。
 ポリエステル繊維は、丈夫であり高流量に伴う濾過圧に耐える濾過膜の作製が容易であるので好ましい。ポリエステル繊維の中でも、特にポリエチレンテレフタレート、ポリブチレンテレフタレート等のジオールと芳香族ジカルボン酸の縮合体が好ましい。
 疎水性のポリエステル繊維の表面に塗布される親水化剤としては、例えばポリエチレングリコールジ(メタ)アクリレート、ポリエステルと親水基を持つアクリルポリマーのブロック重合体等を挙げることができる。特に、ポリエステル樹脂の繊維の表面にこれらの親水化剤を塗布してなる繊維は、耐水性や耐薬品性により優れているため好ましい。
 そこで、第一の態様のさらに好ましい形態として、親水性を有する合成繊維が、ポリエステル樹脂の繊維の表面に親水化剤が塗布されている形態であって、その親水化剤が、ポリエチレングリコールジ(メタ)アクリレートおよび/または飽和ポリエステルと親水基を持つアクリルポリマーのブロック重合体である形態を挙げることができる。ポリエチレングリコールジ(メタ)アクリレートとしては、重合度が30以下のものが好ましく、より好ましくは重合度が2~23のもの、さらに好ましくは重合度が2~10のものである。飽和ポリエステルと親水基を持つアクリルポリマーのブロック重合体を構成する、飽和ポリエステルとしては、アジピン酸やセバシン酸等の2塩基酸とジエチレングリコール、トリエチレングリコール等のグリコールから得られるものを挙げることができる。
 親水化剤の塗布は、繊維を不織布化する前にしてもよく、不織布作製後に行ってもよい。又、親水化剤の塗布量は、塗布後の不織布に占める質量比率で0.5~5質量%とした場合が、濾過膜として好適な不織布が得られるため好ましい。親水化剤の塗布量が0.5質量%未満の場合は、濾過流量の向上や目詰まり防止効果が充分ではなく、一方5質量%を超えると、親水化剤により不織布の空隙が埋められ、濾過性能が低下する場合があるので一般に好ましくない。
 ポリエステルに親水性基を有する化合物を共重合させた共重合体も、ポリエステル由来の機械的強度を備えており、より優れた機械的強度を有する濾過膜が得られるため好ましい。
 ポリエステルとしては、前記のように、飽和ポリエステル、特にポリエチレンテレフタレート、ポリブチレンテレフタレート等のジオールと芳香族ジカルボン酸の縮合体が好ましい。ジオールとジカルボン酸の脱水縮合によりポリエステルを合成する際に、又は分子内に水酸基及びカルボキシル基を有する化合物の脱水縮合によりポリエステルを合成する際に、スルホン酸金属塩基等の親水性基を有する化合物を共存させて縮合反応を行うことにより、生成する重合体中に親水性基を導入することができ、前記共重合体を得ることができる。
 親水性基を有する化合物としては、スルホン基、カルボキシル基、水酸基から選ばれる1種類以上の親水性官能基を有する化合物が好ましく用いられる。例えば、ポリエステルにスルホン酸金属塩基(スルホン基)を導入するための原料としては、スルホン酸金属塩基を有する二塩基酸類(その縮合可能誘導体でもよい)またはスルホン酸金属塩基を有する多価アルコール類が挙げられる。具体的には、スルホイソフタル酸、スルホテレフタル酸、スルホフタル酸、4-スルホナフタレン-2,7-ジカルボン酸(またはこれらの誘導体)の塩及び下記構造式(化1、化2)で表される化合物:
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002

等が挙げられる。
 ポリエステルにスルホン酸金属塩基を導入させる場合、スルホン酸金属塩基を有する化合物の共重合比は、共重合体全体に対し0.1~20質量%が好ましく、より好ましくは0.5重量%~5質量%である。20モル%を越えるとポリエステルの製造が困難となり、一方、0.1質量%より少ないと充分な親水性を得ることができない場合がある。
 不織布は、上記のようにして得られた繊維を、公知の方法、例えば溶融紡糸により不織布化して得ることができる。又、疎水性のポリエステル繊維からなる公知の不織布を、前記のようにして親水化してもよい。作製された不織布は、濾過に適したサイズ、形状に加工され、濾過膜が作製される。具体的には、濾過装置の用途等に応じて、適切なサイズ、形状、例えば、平膜、円筒状等の形状に加工され、また、必要に応じてプリーツフィルターに加工される。
 本発明の第2の態様は、第一の態様の濾過膜が用いられている濾過ユニットである。この第2の態様では、上記濾過膜を用いているため、濾過流速が大きい濾過ユニットを提供することができる。また、目詰まりが起きにくく、濾過膜の洗浄頻度が少なくて済むため、効率良く水を濾過する濾過ユニットである。第一の態様の濾過膜は、例えば、被処理水を通水するためのハウジングに取り付けられ、また、通水により濾過膜が変形したり破損したりすることがないように、必要に応じて補強材が設けられ、第2の態様の濾過ユニットが作製される。この濾過ユニットとしては、例えばカートリッジ式の濾過ユニット(フィルターカートリッジ)を挙げることができる。
 本発明の第3の態様は、海水および/または淡水の濾過システムであって、第2の態様の濾過ユニット、前記濾過ユニットに被処理水を通水する通水装置、および前記濾過ユニットを洗浄する洗浄装置を備える濾過システムである。第3の態様によれば、大きな濾過流速を得ることができ、効率良く水を濾過できる濾過システムを提供することができる。また、濾過膜の寿命が向上するため、システムの維持費を低減することができる。この濾過システムは、さらに、通水手段や洗浄手段の作動を制御する制御装置を備えていることが好ましい。これにより、所定の濾過流速、差圧(処理水圧)の下で被処理水が濾過され、濾過ユニットの洗浄が適切に行われるため、効率良く安定的に濾過することが可能となる。
 本発明の第4の態様は、海水および/または淡水の濾過方法であって、第3の態様の濾過装置を使用する濾過方法である。
 第4の態様によれば、濾過流速が大きく、かつ目詰まりが起き難い濾過装置を用いるため、バラスト水などの海水、河川水や湖沼水などの淡水のように大量でありかつTEP等によって目詰まりが起き易い水、工場排水、家庭排水等、海水と淡水のいずれの水の浄化にも好適な濾過方法を提供することができる。
 それ自身が親水性を有するポリエステル繊維を用いてなる親水性不織布1と、疎水性のポリエステル繊維に親水性樹脂を塗布することによって親水化処理を行ったポリエステル繊維からなる親水性不織布2とを作製し、親水性および自然濾過方式による濾過性能を評価した。
1.濾過膜(親水性不織布)の作製
(実施例1)
(1)親水性ポリエステル樹脂(ポリエステルに親水性単量体を共重合させてなる繊維)の合成
 温度計、攪拌機、不活性ガス導入口、及び還流冷却器を備えたフラスコに、テレフタル酸166質量部、5-ナトリウムスルホイソフタル酸54質量部、エチレングリコール135質量部の混合物を仕込み、脱水縮合を、220℃で酸価が1以下になるまで行い、エステル交換反応生成物(オリゴマー)を得た。
 次に、該エステル交換反応生成物に0.02質量部のリン酸85%水溶液を添加した後重縮合反応釜に移行した。さらに、加熱昇温しながら反応系を徐々に減圧して1hPaの減圧下、290℃で定法により重縮合反応を行い、固有粘度0.65のスルホン酸ナトリウム骨格を含むポリエチレンテレフタレート樹脂を得た。
(2)不織布の作製
 この樹脂を定法で溶融紡糸し、目付260g/m、厚さ0.6mmのスパンボンド型親水性不織布1を得た。
(実施例2)
(1)親水化剤(樹脂)の調整
 ポリエステル/アクリルブロック共重合体(高松油脂社製、商品名:ペスレジンA-647GEX)625質量部、水4340質量部、カルボジイミド架橋剤(日清紡ケミカル社製、商品名:カルボジライトSV-02)35質量部を水槽に仕込み、親水化剤を調整した。
2.親水化剤の塗布(親水化)
 次に、前記水槽に目付260g/m、厚さ0.6mmのスパンボンド型ポリエステル不織布(東レ社製、商品名:アクスターG2260-1S BKO)を浸漬し、100℃で3分間乾燥した後、170℃で1分間加熱処理を行うことで、ポリエステル/アクリルブロック共重合体を加熱硬化させ、親水性不織布2を得た。親水化後の不織布に対するポリエステル/アクリルブロック共重合体の質量比率は5質量%であった。
2.各不織布の評価
(1)水の浸透速さの評価
 得られた親水性不織布1、2および親水化処理を行っていないポリエステル不織布(アクスターG2260-1S BKO)それぞれに、スポイトで脱イオン水1滴(約20mg)を滴下し、水滴が完全に不織布に浸透するまでの時間を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 (2)保水性評価
 また、親水性不織布1、2と、親水化処理を行っていないポリエステル不織布(アクスターG2260-1S BKO)のそれぞれを水に30秒間浸漬し、浸漬前後の重量を測定することにより、不織布単位面積当たりの保水量を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表1より、親水性不織布(親水性繊維からなる不織布)1、2は、親水化処理を行わず親水性を有しないポリエステル不織布(疎水性の繊維からなる不織布)アクスターG2260-1S BKOに比べて水の浸透が格段に速いことが分った。また、表2より、不織布アクスターG2260-1S BKOの場合は保水量が非常に小さく、気泡がわずかしか放出されていないのに対して、親水性不織布1、2の保水量は、それぞれ不織布アクスターG2260-1S BKOの13倍、14倍と大きく、水の浸透によって気泡が充分に放出されていることが分った。
(3)濾過性能評価
 各不織布を1時間蒸留水中に浸漬し、水に馴染ませた後、自然濾過方式で1回につき2Lの伊万里海水の繰り返し濾過実験を行い、濾過流量(m)を濾過面積(m)と濾過に要した時間(s)で除すことにより、濾過流速(平均流速)の確認を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3より、親水性不織布1、2では、それぞれアクスターG2260-1S BKOの約2.2倍、約2.8倍の大きな濾過流速で濾過できることが確認された。親水性不織布1、2でこのように大きな濾過流速が得られたのは、前記のように不織布中の気泡が充分に放出されることから考えられるように、流路が充分に確保されるためと考えられる。
 次に、前記不織布に加えて下記の不織布3~6を作製し、平膜濾過試験により濾過性能を評価した。
1.不織布の作製
(実施例3、4)
 親水性樹脂の調整に際して、ポリエステル/アクリルブロック共重合体(ぺスレジンA-647GEX)、水、カルボジイミド架橋剤の混合比率を変更して、親水化後の不織布に対するアクリルブロック共重合体(ペスレジンA-647GEX)の比率をそれぞれ2.5質量%(実施例3)、1.25質量%(実施例4)にしたこと以外は実施例2と同じ方法で親水性不織布3、4を得た。
(実施例5)
 ポリエチレングリコールジアクルレート(新中村化学工業社製、商品名:NKエステルA-600)5質量部、ジエチレングリコール40質量部、水55質量部からなる溶液に、重合開始剤(和光純薬製V-50)0.3部を溶解した。得られた溶液に、ポリエステル不織布(東レ社製、商品名:アクスターG2260-1S BKO)を浸漬した後、120℃で30分乾燥し、60℃の水で20分洗浄を行い、120℃で乾燥することにより親水性不織布5を得た。親水化後の不織布に対するアクリル重合体(NKエステルA-600)の質量比率は5質量%であった。
(実施例6)
 ポリエステル不織布を浸漬する溶液の調整に際して、ポリエチレングリコールジアクルレート(新中村化学工業社製、商品名:NKエステルA-600)の比率を1.25質量%にしたこと以外は実施例5と同じ方法で親水性不織布6を得た。
2.平膜濾過試験
 前記不織布2~6を濾過膜として平膜タイプの濾過ユニットを作製した。また、ブランクとして親水化処理を行っていないポリエステル不織布であるアクスターG2260-1S BKOを用いたこと以外は、同じ構成の濾過ユニットを作製した。
 作製した各濾過ユニットを用いて伊万里市の海水を65ml/分の流速(有効膜面積11.34cm)で濾過した。差圧が2kPaに上昇するまで連続して濾過行い、差圧が2kPaに達した時点で逆洗を行った。 
 濾過と逆洗を繰り返し行い、連続して濾過できる時間をもって濾過性能を評価した。評価結果を図1に示す。
 図1は、前記不織布2~6及びアクスターG2260-1S BKOを濾過膜として用いて濾過したときの差圧(処理水圧)と濾過時間の関係を示す図である。図1において、不織布2~6を用いた濾過ユニットでは、アクスターG2260-1S BKO(既存膜)を用いた濾過ユニットに比べて差圧の上昇が遅く、又、濾過が困難になるまでの時間すなわち逆洗しても濾過流量が回復しなくなるまでの時間が長く、長時間濾過することができる。この結果から、親水性の繊維からなる不織布を濾過膜に用いた濾過ユニットを用いることにより、濾過寿命が向上していることが確認された。
 以上、本発明を実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。

Claims (7)

  1.  親水性を有する合成繊維から形成される不織布を用いる濾過膜。
  2.  親水性を有する合成繊維が、疎水性のポリエステル繊維の表面に、親水化剤を塗布して親水化した繊維である請求項1に記載の濾過膜。
  3.  親水性を有する合成繊維が、ポリエステル樹脂の繊維の表面に、ポリエチレングリコールジ(メタ)アクリレートおよび/または飽和ポリエステルと親水基を持つアクリルポリマーのブロック重合体が塗布されている繊維である請求項2に記載の濾過膜。
  4.  親水性を有する合成繊維が、ポリエステルに親水性基を有する化合物を共重合させた共重合体である請求項1に記載の濾過膜。
  5.  請求項1ないし請求項4のいずれか1項に記載の濾過膜が用いられている濾過ユニット。
  6.  海水および/または淡水の濾過システムであって、請求項5に記載の濾過ユニット、前記濾過ユニットに被処理水を通水する通水装置、及び前記濾過ユニットを洗浄する洗浄装置を備える濾過システム。
  7.  海水および/または淡水の濾過方法であって、請求項6に記載の濾過装置を使用する濾過方法。
PCT/JP2014/075291 2013-09-25 2014-09-24 濾過膜、濾過ユニット並びに濾過システム及び濾過方法 WO2015046250A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480052451.8A CN105579120A (zh) 2013-09-25 2014-09-24 过滤膜、过滤单元、过滤系统以及过滤方法
EP14848620.2A EP3050613A4 (en) 2013-09-25 2014-09-24 Filter membrane, filter unit, filter system, and filtration method
KR1020167010590A KR20160058935A (ko) 2013-09-25 2014-09-24 여과막, 여과 유닛 그리고 여과 시스템 및 여과 방법
US15/023,871 US20160228829A1 (en) 2013-09-25 2014-09-24 Filtration membrane, filtration unit, filtration system, and filtration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198667A JP2015062870A (ja) 2013-09-25 2013-09-25 濾過膜、濾過ユニット並びに濾過システム及び濾過方法
JP2013-198667 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046250A1 true WO2015046250A1 (ja) 2015-04-02

Family

ID=52743385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075291 WO2015046250A1 (ja) 2013-09-25 2014-09-24 濾過膜、濾過ユニット並びに濾過システム及び濾過方法

Country Status (6)

Country Link
US (1) US20160228829A1 (ja)
EP (1) EP3050613A4 (ja)
JP (1) JP2015062870A (ja)
KR (1) KR20160058935A (ja)
CN (1) CN105579120A (ja)
WO (1) WO2015046250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210148880A (ko) 2020-06-01 2021-12-08 도레이첨단소재 주식회사 유기용매 가용성 공중합 폴리에스테르, 이를 포함하는 한외여과막 형성용 조성물 및 이로부터 제조된 고수투과도 역삼투막

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107549901A (zh) * 2017-10-19 2018-01-09 陕西科技大学 一种防雾化防雾霾强吸湿口罩制备方法及产品
CN109701322B (zh) * 2019-02-28 2021-05-04 青岛中恒能环境科学工程研究院有限公司 一种用于畜禽粪污固液分离的滤布的制备方法及板框压滤机
CN110252031B (zh) * 2019-06-26 2020-09-22 南京玻璃纤维研究设计院有限公司 核级水过滤器滤芯滤材及其制备方法
CN113637561A (zh) * 2021-07-29 2021-11-12 中国食品药品检定研究院 一种多杂质大样本量液体的微生物富集装置及检测方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158494A (ja) * 1992-09-24 1994-06-07 Kuraray Co Ltd 花粉捕捉用繊維構造物
JPH07726A (ja) * 1993-06-18 1995-01-06 Nissho Corp 親水性フイルター材料の製造方法
JPH0910564A (ja) * 1995-07-03 1997-01-14 Fuji Photo Film Co Ltd 精密ろ過膜及びその製法
JP2004208932A (ja) * 2002-12-27 2004-07-29 Asahi Medical Co Ltd 白血球除去フィルター材の製造方法及びフィルター材
JP3108727U (ja) * 2004-11-12 2005-04-28 帝人ネステックス株式会社 集塵濾過装置用前置フィルターおよび集塵濾過装置
JP2007203142A (ja) * 2006-01-31 2007-08-16 Iib:Kk 水処理材
JP2010018927A (ja) * 2008-07-14 2010-01-28 Teijin Fibers Ltd ポリエステルナノファイバー
JP2010119999A (ja) 2008-11-21 2010-06-03 Sumitomo Electric Ind Ltd 水処理装置
JP4835785B2 (ja) 2010-02-25 2011-12-14 住友電気工業株式会社 船舶用バラスト水の処理装置
JP2011251284A (ja) 2010-02-25 2011-12-15 Sumitomo Electric Ind Ltd 船舶用バラスト水の処理装置および船舶用バラスト水の処理方法
WO2012029710A1 (ja) * 2010-08-30 2012-03-08 国立大学法人岡山大学 生分解性と生体親和性に優れたナノ繊維およびその製造方法
JP2012183237A (ja) * 2011-03-07 2012-09-27 Kaneka Corp 新規白血球除去フィルター
JP2012196618A (ja) 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd 濾過膜、膜濾過方法及び膜濾過装置
JP2012245428A (ja) 2011-05-25 2012-12-13 Sumitomo Electric Ind Ltd プリーツフィルター、それを用いたバラスト水処理装置、およびプリーツフィルターの製造方法
JP2013534464A (ja) * 2010-06-01 2013-09-05 スリーエム イノベイティブ プロパティズ カンパニー 被覆された多孔質材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424987B2 (ja) * 1972-04-01 1979-08-24
US4184953A (en) * 1977-03-22 1980-01-22 The British Petroleum Company Limited Physical process
JPS644212A (en) * 1987-02-26 1989-01-09 Fuji Photo Film Co Ltd Micro-cellular membrane cartridge filter for filteration
JPH04227827A (ja) * 1987-07-20 1992-08-17 Mitsubishi Rayon Co Ltd 多孔質中空繊維状膜の製造方法及び多孔質中空繊維状膜
JPH0544110A (ja) * 1991-07-31 1993-02-23 Kuraray Co Ltd 水棲生物付着防止効果を有する繊維および繊維製品
US5582907A (en) * 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
JPH091703A (ja) * 1995-06-23 1997-01-07 Shimadzu Corp 繊維と膜の複合体の製造方法
JPH0852471A (ja) * 1995-06-26 1996-02-27 Toray Ind Inc 浄水器およびその製造法
JP2002030125A (ja) * 2000-04-17 2002-01-31 Asahi Medical Co Ltd 新規親水化芳香族高分子
US6720070B2 (en) * 2000-04-28 2004-04-13 Toyo Boseki Kabushiki Kaisha Hydrophilic polyester fiber and hydrophilic nonwoven fabric using the same and their production
ITTO20020736A1 (it) * 2002-08-21 2004-02-22 Fresenius Hemocare Italia Srl Filtro per leucociti e suo impiego per l'impoverimento di prodotti del sangue da leucociti.
ITTO20030039A1 (it) * 2003-01-24 2004-07-25 Fresenius Hemocare Italia Srl Filtro per separare leucociti da sangue intero e/o da preparati derivati dal sangue, procedimento per la fabbricazione del filtro, dispositivo e utilizzazione.
JP2010194478A (ja) * 2009-02-26 2010-09-09 Teijin Fibers Ltd 分離膜用湿式不織布および分離膜支持体
EP2692405B1 (en) * 2011-03-30 2019-03-13 Kuraray Co., Ltd. Filtering medium for filter, and water filtering apparatus provided with filtering medium
JP6146303B2 (ja) * 2012-01-16 2017-06-14 東レ株式会社 複合半透膜およびその製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158494A (ja) * 1992-09-24 1994-06-07 Kuraray Co Ltd 花粉捕捉用繊維構造物
JPH07726A (ja) * 1993-06-18 1995-01-06 Nissho Corp 親水性フイルター材料の製造方法
JPH0910564A (ja) * 1995-07-03 1997-01-14 Fuji Photo Film Co Ltd 精密ろ過膜及びその製法
JP2004208932A (ja) * 2002-12-27 2004-07-29 Asahi Medical Co Ltd 白血球除去フィルター材の製造方法及びフィルター材
JP3108727U (ja) * 2004-11-12 2005-04-28 帝人ネステックス株式会社 集塵濾過装置用前置フィルターおよび集塵濾過装置
JP2007203142A (ja) * 2006-01-31 2007-08-16 Iib:Kk 水処理材
JP2010018927A (ja) * 2008-07-14 2010-01-28 Teijin Fibers Ltd ポリエステルナノファイバー
JP2010119999A (ja) 2008-11-21 2010-06-03 Sumitomo Electric Ind Ltd 水処理装置
JP4835785B2 (ja) 2010-02-25 2011-12-14 住友電気工業株式会社 船舶用バラスト水の処理装置
JP2011251284A (ja) 2010-02-25 2011-12-15 Sumitomo Electric Ind Ltd 船舶用バラスト水の処理装置および船舶用バラスト水の処理方法
JP2013534464A (ja) * 2010-06-01 2013-09-05 スリーエム イノベイティブ プロパティズ カンパニー 被覆された多孔質材料
WO2012029710A1 (ja) * 2010-08-30 2012-03-08 国立大学法人岡山大学 生分解性と生体親和性に優れたナノ繊維およびその製造方法
JP2012183237A (ja) * 2011-03-07 2012-09-27 Kaneka Corp 新規白血球除去フィルター
JP2012196618A (ja) 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd 濾過膜、膜濾過方法及び膜濾過装置
JP2012245428A (ja) 2011-05-25 2012-12-13 Sumitomo Electric Ind Ltd プリーツフィルター、それを用いたバラスト水処理装置、およびプリーツフィルターの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210148880A (ko) 2020-06-01 2021-12-08 도레이첨단소재 주식회사 유기용매 가용성 공중합 폴리에스테르, 이를 포함하는 한외여과막 형성용 조성물 및 이로부터 제조된 고수투과도 역삼투막
WO2021246629A1 (ko) 2020-06-01 2021-12-09 도레이첨단소재 주식회사 유기용매 가용성 공중합 폴리에스테르, 이를 포함하는 한외여과막 형성용 조성물 및 이로부터 제조된 고수투과도 역삼투막

Also Published As

Publication number Publication date
CN105579120A (zh) 2016-05-11
EP3050613A4 (en) 2017-05-03
JP2015062870A (ja) 2015-04-09
EP3050613A1 (en) 2016-08-03
KR20160058935A (ko) 2016-05-25
US20160228829A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
Otitoju et al. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review
JP5954476B2 (ja) 分離膜エレメント
WO2015046250A1 (ja) 濾過膜、濾過ユニット並びに濾過システム及び濾過方法
JP6140689B2 (ja) ポリドーパミン被覆を有する改良された膜
JP4626319B2 (ja) 多孔質膜およびその製造方法、固液分離装置
Khulbe et al. Art to use electrospun nanofbers/nanofber based membrane in waste water treatment, chiral separation and desalination
Khamforoush et al. The evaluation of thin film composite membrane composed of an electrospun polyacrylonitrile nanofibrous mid-layer for separating oil–water mixture
WO2017111140A1 (ja) 複合半透膜
Matsuyama et al. 1.7 PVDF hollow fibers membranes
Lee et al. Review on oil/water separation membrane technology
JP2016215147A (ja) 膜ファウリング原因物質吸着材
CN205340595U (zh) 一种用于水处理的复合层式工业膜
CN114887486A (zh) 一种基于甘露醇的聚酯疏松复合纳滤膜及其制备方法与应用
KR101139145B1 (ko) 은나노입자를 포함하는 친수성 비대칭 한외여과막 및정밀여과막의 제조방법
KR101286521B1 (ko) Ro/nf 공정에 적용 가능한 복합막 및 이의 제조방법
JP2003200026A (ja) 複合半透膜およびその製造方法
JP2002224546A (ja) 下水処理用複合半透膜およびその製造方法
JP2013223861A (ja) 複合半透膜
CN113230902B (zh) 具有多尺度表面结构的纳滤膜材料及其制备方法与应用
JP3975933B2 (ja) 複合半透膜および下水処理方法
JP2006224051A (ja) 多孔質膜、多孔質膜エレメント、および膜ろ過装置
Jahan Development of Multifunctional Nanofibrous Membrane Material for Biological Wastewater Treatment
Abed et al. Preparation and Characterization of PES Flat Sheet Membrane Embedded with PEG for Dye Filtration Application
Ullah et al. The synthesis and characterization of demulsifying poly vinylidene Fluoride (PVDF) Disc
KR0129703B1 (ko) 역삼투 복합 반투막의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052451.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848620

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014848620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15023871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167010590

Country of ref document: KR

Kind code of ref document: A