WO2015045584A1 - バーナー、および、石炭改質プラント - Google Patents

バーナー、および、石炭改質プラント Download PDF

Info

Publication number
WO2015045584A1
WO2015045584A1 PCT/JP2014/069112 JP2014069112W WO2015045584A1 WO 2015045584 A1 WO2015045584 A1 WO 2015045584A1 JP 2014069112 W JP2014069112 W JP 2014069112W WO 2015045584 A1 WO2015045584 A1 WO 2015045584A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
outer cylinder
burner
gas nozzle
diffuser
Prior art date
Application number
PCT/JP2014/069112
Other languages
English (en)
French (fr)
Inventor
横濱 克彦
務 濱田
新屋 謙治
章泰 岡元
博輝 内村
武野 計二
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112014004417.2T priority Critical patent/DE112014004417T5/de
Priority to CN201480052370.8A priority patent/CN105579777B/zh
Priority to US15/022,073 priority patent/US20160223194A1/en
Priority to AU2014325697A priority patent/AU2014325697B2/en
Publication of WO2015045584A1 publication Critical patent/WO2015045584A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/30Staged fuel supply
    • F23C2201/301Staged fuel supply with different fuels in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06043Burner staging, i.e. radially stratified flame core burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14481Burner nozzles incorporating flow adjusting means

Definitions

  • the present invention relates to a burner and a coal reforming plant.
  • This application claims priority based on Japanese Patent Application No. 2013-199699 filed in Japan on September 26, 2013, the contents of which are incorporated herein by reference.
  • pyrolysis treatment may be performed to remove impurities such as mercury contained in the low-grade coal.
  • combustible gas is separated from the low-grade coal.
  • This combustible gas is sometimes burned in a combustion furnace and reused as a high-temperature gas.
  • the high-temperature gas is sent to a jacket such as a rotary kiln as a heat source for thermally decomposing low-grade coal, and then discharged to the outside through an exhaust purification device or the like.
  • the combustible gas obtained from low-grade coal is generally a low calorific gas. Therefore, when burning in a combustion furnace, if it cannot be stably burned due to a shortage of heat, a part of the high calorific gas such as natural gas may be put into the combustion furnace and the low calorific gas and the high calorific gas may be burned simultaneously. .
  • a high calorie gas burner as an auxiliary burner is disposed in the vicinity of the low calorie gas burner.
  • An ignition torch is arranged in the vicinity of the high calorific gas burner.
  • each burner such as a low calorific gas burner or a high calorific gas burner
  • the piping becomes complicated.
  • each burner is individually attached to a combustion furnace wall surface or the like via a dedicated nozzle, so that the number of tubes increases and it is difficult to reduce the size of the apparatus.
  • Patent Document 1 describes a combustor including a low calorific gas nozzle and a high calorific gas nozzle.
  • the low fuel gas nozzle supplies a low calorific gas.
  • the high calorific gas nozzle supplies the high calorific gas to the center inside the low calorific gas nozzle.
  • This combustor simultaneously burns a low calorific gas and a high calorific gas.
  • Patent Document 2 describes a co-firing burner that uses an auxiliary burner to burn high calorific fuel such as natural gas and uses the flame to assist combustion of exhaust gas.
  • a high calorific gas is ignited at the time of starting the plant for the purpose of raising the temperature.
  • an inert gas for example, nitrogen
  • an inert gas may be supplied to the vicinity of the high calorific gas nozzle through the low calorific gas nozzle.
  • the flame of the high heat quantity gas nozzle arranged in the vicinity of the low heat quantity gas nozzle may misfire.
  • the present invention provides a burner that can reduce the misfire of a high calorific gas flame caused by an inert gas ejected from a low calorific gas nozzle when a high calorific gas nozzle is disposed in the vicinity of the low calorific gas nozzle. And it aims at providing a coal reforming plant.
  • the burner is a burner that simultaneously burns the first gas and the second gas having a higher calorie than the first gas.
  • the burner has a cylindrical first outer cylinder having an opening for supplying primary air in the first direction, and an inner part which is arranged inside the first outer cylinder and gradually expands in the first direction.
  • a diffuser having a peripheral surface. The burner is disposed on the inner side of the first outer cylinder, and supplies a first gas nozzle that supplies the first gas toward the first direction in a radially outer region of the diffuser, and the first outer cylinder.
  • a second gas nozzle arranged adjacent to the first gas nozzle in the circumferential direction and supplying the second gas toward the first direction in a radially outer region of the diffuser;
  • the burner further includes an ignition torch disposed inside the first outer cylinder and igniting at least one of the second gas and the first gas.
  • the burner may include a contact portion in which the opening end portion of the first gas nozzle in the first direction is in contact with the outermost peripheral portion of the diffuser. Good.
  • the burner includes a plurality of the first gas nozzles, and the total of the angular ranges in the circumferential direction in which the contact portions of the first gas nozzle abut on the diffuser is 90 It may be set to 200 degrees.
  • the burner is configured such that the second gas nozzle in any one of the first aspect to the third aspect is swirled in the second gas at the opening end in the first direction.
  • a flame holding pad that generates
  • the burner is disposed outside the first outer cylinder, and is secondary to the first outer cylinder. You may provide the 2nd outer cylinder which forms the flow path through which air flows.
  • the burner is provided with a swirler disposed between the first outer cylinder and the second outer cylinder, and swirling the secondary air in the circumferential direction. May be.
  • the burner covers at least a part of the outer peripheral surface of the first gas nozzle, and the temperature of the first gas You may provide the temperature fall reduction part which reduces a fall.
  • the coal reforming plant includes the combustion furnace including the burner according to any one of the first to seventh aspects.
  • the burner and the coal reforming plant when the high calorific gas nozzle is arranged in the vicinity of the low calorific gas nozzle, the high calorific gas flame is caused by the inert gas ejected from the low calorific gas nozzle. Misfire can be reduced.
  • FIG. 4 is a sectional view taken along line VI-VI in FIG. 3. It is a perspective view which shows the state which mounted
  • FIG. 1 is a schematic configuration diagram of a coal reforming plant 1 in this embodiment.
  • the coal reforming plant 1 in this embodiment is a plant that attempts to increase the quality of low-grade coal by removing moisture and impurities contained in the low-grade coal and molding the coal.
  • the coal reforming plant 1 mainly includes a crusher 2, a dryer 3, a pyrolyzer 4, a combustion furnace 5, a quencher 6, a finisher 7, a kneader 8, and a briquetting device 9. Yes.
  • the crusher 2 pulverizes the raw coal L, thereby adjusting the size of the raw coal L to a size that can be easily processed in a subsequent process.
  • the raw coal L whose size has been adjusted by the crusher 2 is sent to the dryer 3.
  • the dryer 3 dries the raw coal L adjusted in size by the crusher 2.
  • a steam tube dryer that indirectly heats the raw coal L using steam can be used as the dryer 3.
  • the coal dried by the dryer 3 is sent to the pyrolyzer 4.
  • the pyrolyzer 4 is a device for slightly pyrolyzing the coal dried by the dryer 3. More specifically, the pyrolyzer 4 gasifies and extracts various impurities such as volatile components and mercury contained in coal.
  • the gas separated by the pyrolyzer 4 is sent to the combustion furnace 5 as a low calorific gas (first gas).
  • the reformed coal after being pyrolyzed by the pyrolyzer 4 is sent to the quencher 6.
  • the combustion furnace 5 generates a high-temperature gas by combusting the low calorific gas separated by the pyrolyzer 4 together with primary air and the like. This hot gas is supplied to the jacket 4 a of the pyrolyzer 4 and used as a heat source for the pyrolyzer 4.
  • the high-temperature gas used for heating the raw coal L by the pyrolyzer 4 is purified by, for example, an exhaust clean system (AQCS) Cs and then discharged into the atmosphere.
  • AQCS exhaust clean system
  • F is an air volume adjusting fan
  • B is a blower. Both the air volume adjusting fan F and the blower B installed in the pipe between the jacket 4a and the exhaust clean system Cs send used high-temperature gas into the exhaust clean system Cs.
  • the quencher 6 cools the reformed coal that has been pyrolyzed by the pyrolyzer 4.
  • the quencher 6 cools the temperature of the modified coal, which was about 400 ° C., to around 70 ° C.
  • the reformed coal cooled by the quencher 6 is sent to the finisher 7.
  • the finisher 7 gradually adjusts the temperature of the reformed coal cooled to some extent by the quencher 6 by the atmosphere or the like.
  • the finisher 7 adjusts the temperature of the modified coal so as to be 50 ° C. or less, for example.
  • the reformed coal whose temperature has been adjusted by the finisher 7 is sent to the kneader 8.
  • the kneader 8 pulverizes the modified coal whose temperature has been adjusted by the finisher 7 to make it into finer particles.
  • an additive such as a binder is necessary for forming the modified coal simultaneously with the pulverization
  • the kneader 8 adds the binder to the modified coal and stirs it.
  • the modified coal pulverized and stirred by the kneader 8 is sent to the briquetting device 9.
  • the briquetting device 9 forms the modified coal into a predetermined briquette shape.
  • the briquetting device 9 forms the modified coal into a briquette shape by, for example, compression molding.
  • the briquette Br of reformed coal formed by the briquetting device 9 is transported to a destination by transport means such as a vehicle or a ship.
  • FIG. 2 is a cross-sectional view showing a schematic configuration around the burner 10 of the combustion furnace 5.
  • the combustion furnace 5 includes a container 11 that forms a space K for combustion.
  • a burner 10 is attached to the container 11 via a single nozzle 11a.
  • the burner 10 co-fires two kinds of gases having different heat amounts.
  • the position of the end 10 a on the space K side of the burner 10 is the same position as the inner surface 11 b of the container 11.
  • Connected to the burner 10 are low-calorie fuel, high-calorie fuel, ignition torch fuel, and pipes 12a to 12d for supplying air.
  • Flow rate adjusting valves 13a to 13d are attached to the pipes 12a to 12d, respectively.
  • the burner 10 is supplied with low calorific gas generated in the pyrolyzer 4 as low calorie fuel. Further, the burner 10 in one example of this embodiment is supplied with a high calorie gas (second gas) such as natural gas having a higher calorie than the low calorie gas as a high calorie fuel.
  • the air supplied to the burner 10 is used as primary air and secondary air described later.
  • FIG. 3 is a front view of the burner 10 as viewed from the III direction of FIG. 4 is a cross-sectional view taken along line VI-VI in FIG.
  • the burner 10 includes a first outer cylinder 20, a diffuser 21, a first gas nozzle 22, a second gas nozzle 23, an ignition torch 24, and a second outer cylinder 25.
  • the first outer cylinder 20 forms a flow path for supplying primary air toward the internal space K.
  • the first outer cylinder 20 is formed in a cylindrical shape, more specifically in a cylindrical shape.
  • the first outer cylinder 20 has an opening 27 on the inner space K side in the axis O direction (hereinafter simply referred to as the first direction).
  • the diffuser 21 is disposed inside the first outer cylinder 20 and has an inner peripheral surface 28 that gradually increases in diameter in the first direction.
  • a conical space is formed inside the diffuser 21 in the radial direction.
  • the diffuser 21 is formed in a circular shape concentric with the first outer cylinder 20 when viewed from the inner space K side.
  • the position of the outermost peripheral portion 29 that is an end portion in the first direction is arranged at the same position in the axis O direction as the position of the end portion 30 in the first direction of the first outer cylinder 20.
  • the angle ⁇ 0 between the inner peripheral surface 28 of the diffuser 21 and the axis O is preferably 50 to 70 degrees.
  • the first gas nozzle 22 is disposed on the radially inner side of the first outer cylinder 20.
  • the first gas nozzle 22 supplies a low calorific value gas to the radially outer region of the diffuser 21 in the first direction.
  • the burner 10 in this embodiment is provided with a plurality of, more specifically, two first gas nozzles 22.
  • the openings 31 of the first gas nozzles 22 are arranged at symmetrical positions with the axis O therebetween.
  • the opening end portion 32 of the first gas nozzle 22 in the first direction has a contact portion 33 that contacts the diffuser 21.
  • the contact portion 33 is formed in a circular arc shape along the outermost peripheral portion 29.
  • the contact portion 33 is in contact with the outermost peripheral portion 29 of the diffuser 21 over the entire circumferential direction.
  • primary air flowing inside the first outer cylinder 20 does not flow in the first direction between the contact portion 33 of the first gas nozzle 22 and the outermost peripheral portion 29 of the diffuser 21.
  • the two contact portions 33 are circumferential angle ranges ⁇ 1 and ⁇ 2 in contact with the outermost peripheral portion 29 of the diffuser 21, the total of these angle ranges ⁇ 1 and ⁇ 2 is a range of 90 degrees to 200 degrees.
  • the opening end portion 32 of the first gas nozzle 22 includes two side wall portions 34 extending in parallel toward the first outer cylinder 20 from both circumferential sides of the contact portion 33.
  • the open end portion 32 includes an outer wall portion 34a that connects ends of the parallel side wall portions 34 on the first outer cylinder 20 side.
  • the outer side wall portion 34 a is formed in a circular arc shape that is convex toward the first outer cylinder 20 side along the inner surface of the first outer cylinder 20.
  • the second gas nozzle 23 supplies a high calorific gas toward the first direction in the radially outer region of the diffuser 21.
  • the burner 10 in this embodiment is provided with a plurality of, more specifically, two second gas nozzles 23. These second gas nozzles 23 are arranged adjacent to the first gas nozzle 22 in the circumferential direction of the first outer cylinder 20. The two second gas nozzles 23 are arranged at symmetrical positions with the axis O interposed therebetween.
  • the opening end 35 in the first direction of the second gas nozzle 23 is arranged on the upstream side in the first direction with respect to the outermost peripheral portion 29 of the diffuser 21. That is, the opening end portion 35 of the second gas nozzle 23 is disposed on the rear side of the diffuser 21 when viewed from the internal space K side.
  • the distance d in the direction of the axis O between the outermost peripheral portion 29 of the diffuser 21 and the opening end portion 35 of the second gas nozzle 23 may be 0 to 30 mm. The distance d is more preferably 0 mm.
  • the second gas nozzle 23 includes a flame holding pad 36 at the opening end 35 thereof.
  • the flame holding pad 36 has a function of holding the flame when the high calorific gas supplied from the second gas nozzle 23 is ignited.
  • the flame holding pad 36 has a flat surface 37 extending in a direction orthogonal to the first direction so as to close the opening end portion 35 in the first direction.
  • the flame holding pad 36 has a plurality of through holes 38 having a smaller cross-sectional area than the flow path of the second gas nozzle 23 at the opening end 35. These through holes 38 communicate between the internal space of the second gas nozzle 23 and the radially outer region of the outermost peripheral portion 29 of the diffuser 21.
  • the flame holding pad 36 in this embodiment efficiently holds the flame by setting the width w in the direction from the second gas nozzle 23 toward the diffuser 21 to 5 to 20 mm in order to keep the flame of the second gas nozzle 23. be able to.
  • the width w is more preferably 10 mm. That is, primary air may flow between the flame holding pad 36 and the diffuser 21.
  • the ignition torch 24 forms a fire type that ignites at least one of the above-described high calorific gas and low calorific gas.
  • the ignition torch 24 is supplied with the ignition torch fuel described above.
  • the ignition torch 24 is disposed between the first gas nozzle 22 and the second gas nozzle 23 inside the first outer cylinder 20.
  • the case where two ignition torches 24 are provided is illustrated, but one may be provided.
  • the second outer cylinder 25 forms a flow path through which secondary air flows between the second outer cylinder 25 and the first outer cylinder 20.
  • the second outer cylinder 25 is disposed so as to cover the outer side of the first outer cylinder 20 with a predetermined interval.
  • the second outer cylinder 25 is formed in a cylindrical shape having a larger diameter than the first outer cylinder 20 with the first outer cylinder 20 and the axis O overlapping. That is, the flow path through which the secondary air flows is formed with equal radial dimensions along the entire circumference of the first outer cylinder 20.
  • a plurality of swirlers 39 are arranged between the first outer cylinder 20 and the second outer cylinder 25. These swirlers 39 are arranged at predetermined equal intervals in the circumferential direction.
  • the swirler 39 functions as a deflection plate that turns the secondary air around the axis O. That is, the flow of secondary air flowing out from the flow path between the first outer cylinder 20 and the second outer cylinder 25 into the internal space K becomes a cylindrical and spiral swirl flow. Due to the swirling flow of the secondary air, a region near the opening 27 on the radially inner side becomes negative pressure. Therefore, due to this negative pressure, the secondary air is gradually reduced in diameter as it is separated from the opening 27 in the direction of the axis O.
  • the swirler 39 in this embodiment can effectively reduce misfire by setting the blade angle for swirling the secondary air to 0 to 45 degrees. Furthermore, the blade angle is more preferably 30 degrees.
  • FIG. 5 is a perspective view showing a state in which the temperature drop reduction unit 40 is attached to the first gas nozzle 22.
  • the burner 10 includes a temperature decrease reducing unit 40 that reduces the temperature decrease of the first gas nozzle 22.
  • the temperature decrease reducing unit 40 covers at least a part of the outer peripheral surface 41 of the first gas nozzle 22.
  • the temperature decrease reducing unit 40 includes at least one of a heater capable of heating the first gas nozzle 22 and a heat insulating material capable of heat insulation. By doing in this way, it can reduce that the tar etc. which are contained in the high-temperature low calorific value gas sent from the pyrolyzer 4 become below the condensation temperature and condense.
  • FIG. 6 is a map showing a primary air ratio capable of stable combustion, that is, stable ignition and stable flame holding with respect to the heat input ratio (%) of the second gas nozzle 23.
  • the primary air ratio is defined as a theoretical air amount ratio between the total flow rate of the primary air and the total flow rate of the high calorific gas.
  • the heat input ratio of the second gas nozzle 23 is a value indicating how much high calorific gas is included in the total flow rate of the low calorific gas and the high calorific gas, (Low heat quantity heat input + high heat quantity heat input) ⁇ 100 (%).
  • the burner 10 is adjusted according to the heat input ratio of the second gas nozzle 23 so that the primary air ratio is larger than the lower limit value indicated by the solid line in FIG.
  • “ ⁇ ” indicates the primary air ratio to the heat input ratio of the second gas nozzle 23 in which stable combustion (including stable ignition and stable flame holding) has been confirmed by experiments.
  • “ ⁇ ” indicates the primary air ratio with respect to the heat input ratio of the second gas nozzle 23 in which unstable combustion has been confirmed by experiments.
  • the lower limit value of the primary air ratio is such that the rate of increase increases rapidly as the heat input ratio of the second gas nozzle 23 decreases, and stable combustion can be achieved only by adjusting the flow rate of the primary air. It becomes difficult. For this reason, it is desirable to adjust the flow rate of the high calorific gas so that the heat input ratio is greater than 10%. However, from the viewpoint of energy saving, the flow rate of the high calorific gas is adjusted to be as small as possible.
  • FIG. 7 is a map showing the primary mixed oxygen concentration (vol%) capable of stable combustion, that is, stable ignition and stable flame holding, with respect to the primary air ratio.
  • the primary air mixed oxygen concentration is a value indicating how much oxygen in the primary air is included in the total flow rate of the primary air and an inert gas (for example, nitrogen), and the oxygen concentration in the primary air It is defined by deposition flow rate / (primary air flow rate + inert gas flow rate) ⁇ 100 (%).
  • the burner 10 When the inert gas is purged into the pyrolyzer 4, the inert gas flows out from the first gas nozzle 22.
  • the burner 10 has a primary mixed oxygen concentration larger than the lower limit value shown by the solid line in FIG. 7, so that stable combustion, that is, stable ignition and stable flame holding, is achieved. Is possible.
  • “ ⁇ ” indicates the primary mixed oxygen concentration with respect to the primary air ratio at which stable combustion (including stable ignition and stable flame holding) was confirmed by experiment.
  • “ ⁇ ” indicates the primary mixed oxygen concentration with respect to the primary air ratio in which unstable combustion has been confirmed by experiments.
  • the lower limit value of the primary mixed oxygen concentration is lowest when the primary air ratio is about “2”. Then, from the value at which the primary mixed oxygen concentration becomes the lowest, the lower limit value of the primary mixed oxygen concentration gradually increases as the primary air ratio increases. On the other hand, as the primary air ratio decreases from the value at which the primary mixed oxygen concentration becomes the lowest, the lower limit value of the primary mixed oxygen concentration increases rapidly. For this reason, it is desirable to adjust the flow rate of the primary air so that the primary air ratio is larger than “1”.
  • the above-described adjustment of the primary air ratio and the adjustment of the primary mixed oxygen concentration may be automatically performed by causing a computer to execute a program stored in advance.
  • a computer executes a program stored in advance.
  • an actuator (not shown) that individually drives the flow rate adjusting valves 13a to 13c, a high calorific gas flow rate, a low calorific gas flow rate, and A flow meter (not shown) for measuring the flow rate of primary air is provided.
  • the computer calculates the heat input ratio of the second gas nozzle 23 based on the measurement result of each flow meter, and obtains the primary air ratio and the primary mixed oxygen concentration with which stable combustion is obtained with reference to the map.
  • the computer controls the flow rate of the primary air so that the obtained primary air ratio is obtained.
  • the adjustment of the primary air ratio is not limited to automatic control.
  • the control process by the computer for example, the flow rate measurement result or the map shown in FIGS. 6 and 7 may be displayed on the display so that the operator appropriately controls the flow rate. .
  • the primary air flowing toward the first direction on the outside of the diffuser 21 is drawn so as to vortex around the inner peripheral surface side of the diffuser 21 as shown in FIG. It is. Furthermore, a small fireball can be made in the diffuser 21 by drawing the high calorific gas supplied from the second gas nozzle 23 into the vortex. Therefore, the primary air and the high calorific gas can be reliably mixed, and the influence of the inert gas supplied from the first gas nozzle 22 can be reduced. Further, when the low heat quantity gas is supplied from the first gas nozzle 22, the low heat quantity gas can be drawn into the diffuser 21, and the low heat quantity gas can be reliably burned.
  • the opening end portion 32 of the first gas nozzle 22 has the contact portion 33, the low calorific gas supplied from the first gas nozzle 22 can be smoothly drawn into the diffuser 21 through the contact portion 33. Furthermore, since the total of the angular range in the circumferential direction in which the contact portion 33 contacts the diffuser 21 is set to 90 degrees to 200 degrees, the low calorific gas burns in the range in which the low calorific gas is caught in the diffuser 21. Can be in the optimum range.
  • the low calorific gas cannot be properly supplied into the diffuser 21 and stable combustion may not be possible. There is sex. Moreover, when the sum total of the angular range of the circumferential direction which the contact part 33 and the diffuser 21 contact
  • the inert gas from the first gas nozzle 22. Even when the gas is ejected, the inert gas does not flow toward the opening end 32 of the first gas nozzle 22 arranged on the upstream side of the opening end 32 of the first gas nozzle 22. Therefore, it is possible to reduce the misfire of the flame of the second gas nozzle 23 due to the inert gas.
  • the flame-holding pad 36 it is possible to form a vortex flow due to the high calorific gas around the open end 35 of the second gas nozzle 23. Therefore, the flame generated in the second gas nozzle 23 can be held by igniting the vortex, and the misfire of the flame in the diffuser 21 can be further reduced.
  • the space on the downstream side of the first outer cylinder 20 can be surrounded from the outside by secondary air. Therefore, more primary air, low calorific gas, and high calorific gas can be more reliably guided into the diffuser. Further, since the swirler 39 is provided, the space inside the secondary air becomes negative pressure due to the swirling of the secondary air, so that the primary air, the low calorific gas, and the high calorific gas are more efficiently introduced into the diffuser 21. Can guide well.
  • the flame of the burner 10 can be reduced from being misfired, so that the thermal decomposition process in the coal reforming process can be stably performed.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • the case where two each of the first gas nozzle 22, the second gas nozzle 23, and the ignition torch 24 are provided has been described as an example.
  • the number of the first gas nozzle 22, the second gas nozzle 23, and the ignition torch 24 may be one or more.
  • the diffuser 21 of the above-described embodiment has been described for the case where the internal space is formed in a conical shape.
  • the diffuser 21 may be provided with a mounting through-hole penetrating in the direction of the axis O and a slit extending in the radial direction when viewed from the space K side in order to prevent cracking due to thermal deformation.
  • the burner 10 provided in the combustion furnace 5 of the coal reforming plant 1 has been described as an example.
  • the burner 10 may be applied to combustion furnaces other than the coal reforming plant 1.
  • the present invention relates to a burner in which a nozzle for high calorific gas is arranged in the vicinity of a nozzle for low calorific gas, and a coal reforming plant equipped with a combustion furnace equipped with this burner. According to the burner and the coal reforming plant of the present invention, it is possible to reduce the misfire of the high calorific gas flame due to the inert gas ejected from the low calorific gas nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

 バーナーは、筒状の第一外筒(20)と、第一外筒(20)の内側に配され、第一方向に向かって漸次拡径する内周面を有するディフューザ(21)と、ディフューザ(21)の径方向外側の領域に第一方向に向かって第一のガスを供給する第一ガスノズル(22)と、第一外筒(20)の周方向で第一ガスノズル(22)と隣り合うように配され、ディフューザ(21)の径方向外側の領域に第一方向に向かって第二のガスを供給する第二ガスノズル(23)と、第二のガスと第一のガスとの少なくとも一方に点火する点火トーチ(24)と、を備える。

Description

バーナー、および、石炭改質プラント
 この発明は、バーナー、および、石炭改質プラントに関する。
 本願は、2013年9月26日に、日本に出願された特願2013-199699号に基づき優先権を主張し、その内容をここに援用する。
 低品位炭を高品位化する石炭改質プラントにおいては、低品位炭に含まれる水銀などの不純物を除去するために熱分解処理を行う場合がある。この熱分解処理を行う際に、低品位炭から可燃性のガスが分離される。この可燃性のガスは、燃焼炉で燃焼され高温のガスとして再利用される場合がある。この高温のガスは、例えば、低品位炭を熱分解するための熱源としてロータリーキルンなどのジャケットに送られ、その後、排気浄化装置などを介して外部に排出される。
 低品位炭から得られる可燃性のガスは、一般に低熱量ガスである。そのため、燃焼炉で燃焼させる際に、熱量不足により安定的に燃焼できない場合、天然ガスなど高熱量ガスを一部燃焼炉に入れて、低熱量ガスと高熱量ガスとを同時に燃焼させる場合がある。上記石炭改質プラントにおいては、高熱量ガスから低熱量ガスへの火の移りをよくするために、低熱量ガス用バーナーの近傍に助燃バーナーである高熱量ガス用バーナーを配置している。また、高熱量ガス用バーナーの近傍には、点火トーチが配置されている。
 しかしながら、低熱量ガス用バーナーや高熱量ガス用バーナーなど、各バーナーに空気を個別に供給する必要があるため、配管が複雑化してしまう。また、各バーナーは、専用の管台を介して燃焼炉壁面などに個別に取り付けられているため、管台数が増加して装置の小型化が困難となっていた。
 特許文献1には、低熱量ガス用ノズルと、高熱量ガス用ノズルとを備える燃焼器が記載されている。低燃料ガス用ノズルは、低熱量ガスを供給する。高熱量ガス用ノズルは、低熱量ガス用ノズルの内側中央に高熱量ガスを供給する。この燃焼器は、低熱量ガスと高熱量ガスとを同時に燃焼させる。
 特許文献2には、補助バーナーにより天然ガスなどの高熱量の燃料を燃焼させ、その炎を用いて排気ガスの燃焼を補助する混焼式のバーナーが記載されている。
米国特許第8220272号明細書 米国特許第4154567号明細書
 ところで、石炭改質プラントにおいては、プラント起動時に、昇温の目的で高熱量ガスに点火する。しかし、プラント起動時には、低品位炭を熱分解するキルンに対して不活性ガス(例えば、窒素)をパージする。すると、低熱量ガス用のノズルを介して高熱量ガス用ノズルの近傍に不活性ガスが供給されてしまう場合がある。その結果、低熱量ガス用ノズルの近傍に配された高熱量ガス用ノズルの火炎が失火してしまう場合がある。
 この発明は、低熱量ガス用ノズルの近傍に高熱量ガス用ノズルが配されている場合に低熱量ガス用ノズルから噴出される不活性ガスにより高熱量ガスの火炎が失火することを低減できるバーナー、および、石炭改質プラントを提供することを目的とする。
 この発明の第一態様によれば、バーナーは、第一のガスと、前記第一のガスよりも熱量の高い第二のガスとを同時に燃焼させるバーナーである。このバーナーは、第一方向に一次空気を供給する開口部を有した筒状の第一外筒と、前記第一外筒の内側に配され、前記第一方向に向かって漸次拡径する内周面を有するディフューザと、を備えている。このバーナーは、前記第一外筒の内側に配され、前記ディフューザの径方向外側の領域に前記第一方向に向かって前記第一のガスを供給する第一ガスノズルと、前記第一外筒の周方向で前記第一ガスノズルと隣り合うように配され、前記ディフューザの径方向外側の領域に前記第一方向に向かって前記第二のガスを供給する第二ガスノズルと、を更に備えている。このバーナーは、前記第一外筒の内側に配され、前記第二のガスと前記第一のガスとの少なくとも一方に点火する点火トーチと、を更に備えている。
 この発明の第二態様によれば、バーナーは、第一態様において、前記第一方向における前記第一ガスノズルの開口端部が、前記ディフューザの最外周部に沿って接する接触部を備えていてもよい。
 この発明の第三態様によれば、バーナーは、第二態様において、前記第一ガスノズルを複数備え、前記第一ガスノズルの各接触部が前記ディフューザに当接する周方向の角度範囲の合計は、90度から200度とされていてもよい。
 この発明の第四態様によれば、バーナーは、第一態様から第三態様の何れか一つの態様における前記第二ガスノズルが、その第一方向の開口端部に、前記第二のガスに渦流を発生させる保炎パッドを備えていてもよい。
 この発明の第五態様によれば、バーナーは、第一態様から第四態様の何れか一つの態様において、前記第一外筒の外側に配され、前記第一外筒との間に二次空気が流れる流路を形成する第二外筒を備えていてもよい。
 この発明の第六態様によれば、バーナーは、第五態様において、前記第一外筒と前記第二外筒との間に配され、前記二次空気を周方向に旋回させるスワラーを備えていてもよい。
 この発明の第七態様によれば、バーナーは、第一態様から第六態様の何れか一つの態様において、前記第一ガスノズルの外周面のうち少なくとも一部を覆い、前記第一のガスの温度低下を低減する温度低下低減部を備えていてもよい。
 この発明の第八態様によれば、石炭改質プラントは、第一態様から第七態様の何れか一つの態様のバーナーを具備した燃焼炉を備えている。
 上記バーナーおよび石炭改質プラントによれば、低熱量ガス用ノズルの近傍に高熱量ガス用ノズルが配されている場合に低熱量ガス用ノズルから噴出される不活性ガスにより高熱量ガスの火炎が失火することを低減できる。
この実施形態における石炭改質プラント1の概略構成図である。 この発明の燃焼炉のバーナー周囲の概略構成を示す断面図である。 図2のIII方向から見たバーナー10の正面図である。 図3のVI-VI線に沿う断面図である。 上記バーナーの第一ガスノズルに温度低下低減部を装着した状態を示す斜視図である。 第二ガスノズル23の入熱比(%)に対する安定燃焼可能な1次空気比を示すマップである。 一次空気比に対する安定燃焼可能な一次混合酸素濃度(vol%)を示すマップである。
 以下、この発明の一実施形態に係る石炭改質プラントについて説明する。
 図1は、この実施形態における石炭改質プラント1の概略構成図である。
 この実施形態における石炭改質プラント1は、低品位炭に含まれる水分や不純物などを除去して成形することで低品位炭の高品位化を図るプラントである。
 図1に示すように、石炭改質プラント1は、クラッシャー2、ドライヤー3、パイロライザー4、燃焼炉5、クエンチャー6、フィニッシャー7、ニーダー8、及び、ブリケッティング装置9を主に備えている。
 クラッシャー2は、原炭Lを粉砕することで、後工程で処理し易い大きさに原炭Lの大きさを整える。クラッシャー2で大きさを整えられた原炭Lは、ドライヤー3に送られる。
 ドライヤー3は、クラッシャー2で大きさを整えられた原炭Lを乾燥させる。このドライヤー3としては、例えば、蒸気を用いて原炭Lを間接加熱するスチームチューブドライヤーなどを用いることができる。このドライヤー3により乾燥させた石炭は、パイロライザー4に送られる。
 パイロライザー4は、ドライヤー3で乾燥させた石炭を僅かに熱分解する装置である。より具体的には、パイロライザー4は、石炭に含まれる揮発分や、水銀など種々の不純物をガス化して抽出する。このパイロライザー4により分離されたガスは、低熱量ガス(第一のガス)として燃焼炉5に送られる。パイロライザー4により熱分解された後の改質炭は、クエンチャー6に送られる。
 燃焼炉5は、パイロライザー4により分離された低熱量ガスを、一次空気などと共に燃焼させて高温ガスを生成する。この高温ガスは、パイロライザー4のジャケット4aに供給されて、パイロライザー4の熱源として用いられる。このパイロライザー4により原炭Lの加熱に用いられた高温ガスは、例えば、排気クリーンシステム(AQCS)Csにより浄化された後、大気中に排出される。図1中、符号「F」は風量調整ファン、符号「B」はブロアである。ジャケット4aと排気クリーンシステムCsとの間の配管に設置される風量調整ファンFとブロアBとは共に、使用済みの高温ガスを排気クリーンシステムCsに送り込む。
 クエンチャー6は、パイロライザー4によって熱分解処理を行った改質炭を冷却する。このクエンチャー6により、400℃程度あった改質炭の温度が、70℃前後まで冷却される。クエンチャー6により冷却された改質炭は、フィニッシャー7へ送られる。
 フィニッシャー7は、クエンチャー6によりある程度冷却された改質炭を、更に大気などによって緩やかに温度調整する。フィニッシャー7は、例えば、改質炭を50℃以下となるように温度調整する。このフィニッシャー7により温度調整された改質炭は、ニーダー8へ送られる。
 ニーダー8は、フィニッシャー7で温度調整された改質炭を粉砕し更に細かい粒子状にする。ニーダー8は、粉砕と同時に改質炭を成形するためにバインダ等の添加物が必要な場合には、改質炭にバインダを投入して撹拌する。ニーダー8で粉砕および撹拌された改質炭は、ブリケッティング装置9へ送られる。
 ブリケッティング装置9は、改質炭を所定のブリケット状に成形する。ブリケッティング装置9は、例えば、圧縮成形などにより、改質炭をブリケット状に成形する。このブリケッティング装置9により成形された改質炭のブリケットBrは、車両や船舶などの搬送手段により仕向地へ搬送される。
 次に、上述した燃焼炉5のバーナー10について図面に基づき説明する。
 図2は、燃焼炉5のバーナー10周囲の概略構成を示す断面図である。
 図2に示すように、燃焼炉5は、燃焼用の空間Kを形成する容器11を備えている。この容器11には、一つの管台11aを介してバーナー10が取り付けられている。バーナー10は、熱量の異なる2種類のガスを混焼させる。バーナー10の軸線O方向で、バーナー10の空間K側の端部10aの位置は、容器11の内側面11bと同一位置とされている。バーナー10には、低カロリー燃料、高カロリー燃料、点火トーチ燃料、および、空気を供給するための配管12a~12dが接続されている。これら配管12a~12dには、それぞれ流量調整弁13a~13dが取り付けられている。この実施形態の一例において、バーナー10には、低カロリー燃料として、パイロライザー4で発生する低熱量ガスが供給される。また、この実施形態の一例におけるバーナー10には、高カロリー燃料として、低熱量ガスよりも熱量が高い天然ガスなどの高熱量ガス(第二のガス)が供給される。バーナー10に供給される空気は、後述する一次空気および二次空気として用いられる。
 図3は、図2のIII方向から見たバーナー10の正面図である。図4は、図3のVI-VI線に沿う断面図である。
 図3、図4に示すように、バーナー10は、第一外筒20、ディフューザ21、第一ガスノズル22、第二ガスノズル23、点火トーチ24、および、第二外筒25を備えている。
 第一外筒20は、内部空間Kに向けて一次空気を供給する流路を形成する。第一外筒20は、筒状、より具体的には円筒状に形成されている。第一外筒20は、その軸線O方向における内部空間K側(以下、単に第一方向と称する)に開口部27を有している。
 ディフューザ21は、第一外筒20の内側に配され、第一方向に向かって漸次拡径する内周面28を有している。このディフューザ21の径方向の内側には、円錐状の空間が形成される。ディフューザ21は、内部空間K側から見て、第一外筒20と同心の円形に形成されている。ディフューザ21は、第一方向の端部である最外周部29の位置が、第一外筒20の第一方向の端部30の位置と軸線O方向で同じ位置に配されている。ここで、ディフューザ21の内周面28と軸線Oとの角度θ0は、50~70度とすることが好ましい。
 第一ガスノズル22は、第一外筒20の径方向内側に配されている。この第一ガスノズル22は、ディフューザ21の径方向外側の領域に第一方向に向かって低熱量ガスを供給する。この実施形態におけるバーナー10には、複数、より具体的には2つの第一ガスノズル22が設けられている。これら第一ガスノズル22の開口部31は、それぞれ軸線Oを挟んで対称位置に配されている。
 第一方向における第一ガスノズル22の開口端部32は、ディフューザ21に接触する接触部33を有している。この接触部33は、最外周部29に沿う断面円弧状に形成されている。接触部33は、その周方向の全域に渡って、ディフューザ21の最外周部29に接している。これにより第一ガスノズル22の接触部33とディフューザ21の最外周部29との間には、第一外筒20の内側を流れる一次空気が第一方向に向かって流れないようになっている。2つの接触部33がディフューザ21の最外周部29に当接する周方向の角度範囲θ1,θ2とすると、これら角度範囲θ1,θ2の合計は、90度から200度の範囲とされている。
 第一ガスノズル22の開口端部32は、接触部33の周方向両側から第一外筒20に向かって平行に延びる2つの側壁部34を備えている。開口端部32は、平行な側壁部34の第一外筒20側の端部同士をつなぐ外側壁部34aを備えている。外側壁部34aは、第一外筒20の内側面に沿うように、第一外筒20側に向かって凸となる断面円弧状に形成されている。
 第二ガスノズル23は、ディフューザ21の径方向外側の領域に第一方向に向かって高熱量ガスを供給する。この実施形態におけるバーナー10には、複数、より具体的には2つの第二ガスノズル23が設けられている。これら第二ガスノズル23は、第一外筒20の周方向で第一ガスノズル22と隣り合うように配されている。また、2つの第二ガスノズル23は、軸線Oを挟んで対称位置に配されている。
 第二ガスノズル23は、その第一方向の開口端部35が、ディフューザ21の最外周部29よりも、第一方向で上流側に配されている。つまり、第二ガスノズル23の開口端部35は、内部空間K側から見て、ディフューザ21よりも後側に配されている。ディフューザ21の最外周部29と第二ガスノズル23の開口端部35との軸線O方向における距離dは、0~30mmとしてもよい。また、距離dは、0mmとするのがより好ましい。
 第二ガスノズル23は、その開口端部35に保炎パッド36を備えている。保炎パッド36は、第二ガスノズル23から供給される高熱量ガスが点火された際に、その火炎を保持する機能を有している。具体的には、保炎パッド36は、第一方向の開口端部35を塞ぐように第一方向に直交する方向に延びる平面37を有している。保炎パッド36は、開口端部35における第二ガスノズル23の流路よりも断面積の小さい複数の貫通孔38を有している。これら貫通孔38は、第二ガスノズル23の内部空間と、ディフューザ21の最外周部29の径方向外側の領域との間を連通している。第二ガスノズル23を流れる高熱量ガスは、貫通孔38を通過して第二ガスノズル23の外部に流出する際に、貫通孔38の周囲に小さな渦流(図示せず)を形成する。この小さな渦流により、高熱量ガスの火炎の失火が低減される。
 ここで、この実施形態における保炎パッド36は、第二ガスノズル23の火炎を保つために、第二ガスノズル23からディフューザ21に向かう方向の幅wを5~20mmとすることで効率よく保炎することができる。さらに、幅wは、10mmとするのがより好ましい。つまり、保炎パッド36と、ディフューザ21との間には、一次空気が流れる場合がある。
 点火トーチ24は、上述した高熱量ガスと低熱量ガスとの少なくとも一方に点火する火種を形成する。点火トーチ24には、上述した点火トーチ燃料が供給される。点火トーチ24は、第一外筒20の内側における第一ガスノズル22と第二ガスノズル23との間に配置されている。ここで、この実施形態においては、点火トーチ24を2つ設ける場合を例示しているが、1つであってもよい。
 第二外筒25は、第一外筒20との間に二次空気が流れる流路を形成する。第二外筒25は、所定の間隔を空けて第一外筒20の外側を覆うように配置されている。第二外筒25は、第一外筒20と軸線Oが重なり、第一外筒20よりも大径な円筒状に形成されている。すなわち、二次空気が流れる流路は、第一外筒20の全周において径方向の寸法が等しく形成される。
 第一外筒20と第二外筒25との間には、複数のスワラー39が配されている。これらスワラー39は、周方向に所定の等間隔で配されている。スワラー39は、二次空気を軸線O回りに旋回させる偏向板として機能する。つまり、第一外筒20と第二外筒25との間の流路から内部空間Kに流出する二次空気の流れは、円筒状且つらせん状の旋回流となる。この二次空気の旋回流によって、その径方向内側の開口部27の近傍の領域が負圧となる。そのため、この負圧により、二次空気は、開口部27から軸線O方向で離間するに従い、徐々に縮径される。これにより、二次空気の内側に流出する一次空気、低熱量ガス、高熱量ガスが軸線O側に集まるため、火炎の失火を更に低減することが可能となっている。ここで、この実施形態におけるスワラー39は、二次空気に旋回を与えるための翼角度が0~45度とすることで効果的に失火を低減できる。さらに、翼角度は30度とするのがより好ましい。
 図5は、第一ガスノズル22に温度低下低減部40を装着した状態を示す斜視図である。
 図5に示すように、バーナー10は、第一ガスノズル22の温度低下を低減する温度低下低減部40を備えている。この温度低下低減部40は、第一ガスノズル22の外周面41の少なくとも一部を覆っている。温度低下低減部40は、第一ガスノズル22を加熱可能な加熱器と、断熱可能な断熱材とのうち少なくとも一方を備えている。このようにすることで、パイロライザー4から送られてくる高温の低熱量ガスに含まれるタールなどが凝縮温度以下になり凝結することを低減できる。
 この実施形態におけるバーナー10は、上述した構成を備えている。
 図6は、第二ガスノズル23の入熱比(%)に対して安定燃焼すなわち、安定した着火、および、安定した保炎が可能な1次空気比を示すマップである。ここで、一次空気比とは、一次空気の全流量と、高熱量ガスの全流量との理論上の空気量の比で定義される。また、第二ガスノズル23の入熱比とは、低熱量ガスと高熱量ガスとの全流量のうち高熱量ガスがどれだけ含まれているかを示す値であって、高熱量ガスの入熱/(低熱量ガスの入熱+高熱量ガスの入熱)×100(%)で定義される。
 上記バーナー10は、第二ガスノズル23の入熱比に応じて、図6中の実線で示す下限値よりも大きい一次空気比となるように調整される。図6中、「○」は、実験により安定燃焼(安定着火および安定保炎含む)が確認された第二ガスノズル23の入熱比に対する一次空気比を示している。また図4中、「×」は、実験により不安定燃焼が確認された第二ガスノズル23の入熱比に対する一次空気比を示している。
 この図6に示すように、一次空気比の下限値は、第二ガスノズル23の入熱比が減少するにつれて、その上昇率が急激に増加して一次空気の流量調整だけでは安定燃焼させることが困難となってしまう。そのため、入熱比が10%よりも大きくなるように高熱量ガスの流量を調整することが望ましい。しかし、省エネルギーの観点から、高熱量ガスの流量は、できるだけ少なくなるように調整される。
 図7は、一次空気比に対して、安定燃焼すなわち安定した着火、および、安定した保炎が可能な一次混合酸素濃度(vol%)を示すマップである。ここで、一次空気混合酸素濃度は、一次空気と不活性ガス(例えば、窒素)との全流量のうち、一次空気の酸素がどれだけ含まれているかを示す値であって、一次空気中酸素堆積流量/(一次空気流量+不活性ガス流量)×100(%)で定義される。
 パイロライザー4に不活性ガスがパージされる場合、その不活性ガスが第一ガスノズル22から流出する。この場合、上記バーナー10は、一次空気比に応じて、図7中の実線で示す下限値よりも大きい一次混合酸素濃度とすることで、安定燃焼すなわち、安定した着火、および、安定した保炎が可能となる。図7中、「○」は、実験により安定燃焼(安定着火および安定保炎含む)が確認された一次空気比に対する一次混合酸素濃度を示している。また、図4中、「×」は、実験により不安定燃焼が確認された一次空気比に対する一次混合酸素濃度を示している。
 図7に示すように、一次混合酸素濃度の下限値は、一次空気比が「2」程度の場合に最も低くなる。そして、一次混合酸素濃度が最も低くなる値から、一次空気比が増加するにつれて、緩やかに一次混合酸素濃度の下限値が増加する。一方で、一次混合酸素濃度が最も低くなる値から一次空気比が減少するにつれて、一次混合酸素濃度の下限値は急激に増加してしまう。そのため、一次空気比が「1」よりも大きくなるように一次空気の流量が調整されることが望ましい。
 上述した一次空気比の調整、及び、一次混合酸素濃度の調整は、予め記憶されたプログラムをコンピュータに実行させることで、自動的に行うようにしても良い。
 一次空気比および一次混合酸素濃度を自動的に調整する場合、例えば、流量調整弁13a~13cを個別に駆動するアクチュエータ(図示せず)と、高熱量ガスの流量、低熱量ガスの流量、および、一次空気の流量をそれぞれ計測する流量計(図示せず)とを設ける。コンピュータは、各流量計の計測結果に基づいて、第二ガスノズル23の入熱比を算出するとともに、上記マップを参照して安定燃焼が得られる一次空気比および一次混合酸素濃度を求める。さらに、コンピュータは、求めた一次空気比となるように一次空気の流量を制御する。ここで、一次空気比の調整は、自動的に制御するものに限られない。上記コンピュータによる制御処理に代えて、例えば、流量計の計測結果や、上記図6、図7に示すマップをディスプレイに表示することで、適宜作業者が上記流量の制御を行うようにしてもよい。
 したがって、上述した実施形態のバーナー10によれば、ディフューザ21の外側を第一方向に向かって流れる一次空気が、図4に示すように、ディフューザ21の内周面側に渦を巻くように引き込まれる。さらに、この渦に第二ガスノズル23から供給される高熱量ガスを引き込んで、ディフューザ21内に小さい火の玉を作ることができる。そのため、一次空気と高熱量ガスとを確実に混合して、第一ガスノズル22から供給される不活性ガスの影響を低減することができる。また、第一ガスノズル22から低熱量ガスが供給された場合には、低熱量ガスをディフューザ21に引き込み、低熱量ガスを確実に燃焼させることができる。
 その結果、低熱量ガス用のノズルの近傍に高熱量ガス用のノズルが配されている場合に低熱量ガス用のノズルから噴出される不活性ガスにより高熱量ガスの火炎が失火することを低減できる。
 また、第一ガスノズル22の開口端部32が接触部33を有することで、第一ガスノズル22から供給される低熱量ガスを、接触部33を介して円滑にディフューザ21に引き込ませることができる。
 さらに、接触部33がディフューザ21に当接する周方向の角度範囲の合計が、90度から200度とされることで、低熱量ガスがディフューザ21へ巻き込まれる範囲を、低熱量ガスが燃焼するために最適な範囲にすることができる。
 一方で、接触部33とディフューザ21との当接する周方向の角度範囲の合計が90度を下回る場合には、低熱量ガスをディフューザ21内に適正に供給することができず、安定燃焼できない可能性がある。また、接触部33とディフューザ21との当接する周方向の角度範囲の合計が200度を上回る場合には、ディフューザ21への低熱量ガスの引き込まれる範囲が広すぎて、高熱量ガスや一次空気がディフューザ21へ引き込まれることを阻害する可能性がある。
 さらに、第二ガスノズル23の第一方向の開口端部35が、ディフューザ21の最外周部29よりも、軸線O方向における上流側に配されている場合には、第一ガスノズル22から不活性ガスが噴出されたとしても、第一ガスノズル22の開口端部32よりも上流側に配される第一ガスノズル22の開口端部32に向かって不活性ガスが向かって流れることがない。そのため、不活性ガスにより第二ガスノズル23の火炎が失火することを低減できる。
 また、保炎パッド36を備えていることで、第二ガスノズル23の開口端部35の周囲に高熱量ガスによる渦流を形成することができる。そのため、渦流に点火することによって第二ガスノズル23で発生する火炎を保炎して、ディフューザ21内の火炎が失火することを更に低減できる。
 さらに、第二外筒25を備えていることで、第一外筒20の下流側の空間を二次空気によって外側から囲むことができる。そのため、より多くの一次空気、低熱量ガス、および、高熱量ガスをディフューザ内へより確実に導くことができる。
 また、スワラー39を備えていることで、二次空気の内側の空間が二次空気の旋回により負圧となるため、一次空気、低熱量ガス、および、高熱量ガスをディフューザ21内へより効率よく導くことができる。
 また、上述した実施形態における石炭改質プラント1によれば、バーナー10の火炎が失火することを低減できるため、石炭改質過程における熱分解処理を安定的に行うことができる。
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上述した実施形態においては、第一ガスノズル22と第二ガスノズル23と点火トーチ24とをそれぞれ2つずつ設ける場合を一例に説明した。しかし、第一ガスノズル22と第二ガスノズル23と点火トーチ24との数は、それぞれ1つ以上であれば良い。
 さらに、上述した実施形態のディフューザ21は、その内部空間が円錐状に形成される場合について説明した。しかし、軸線O方向に貫通する取付用の貫通孔や、熱変形による割れを防止するために空間K側から見て径方向に延びるスリットをディフューザ21に設けるようにしても良い。
 また、上述した実施形態においては、石炭改質プラント1の燃焼炉5に設けられたバーナー10を一例にして説明したが、石炭改質プラント1以外の燃焼炉に適用しても良い。
 この発明は、低熱量ガス用ノズルの近傍に高熱量ガス用ノズルが配されるバーナー、および、このバーナーを備える燃焼炉を備えた石炭改質プラントに関する。この発明のバーナー、および、石炭改質プラントによれば、低熱量ガス用ノズルから噴出される不活性ガスにより高熱量ガスの火炎が失火することを低減できる。
 1 石炭改質プラント
 2 クラッシャー
 3 ドライヤー
 4 パイロライザー
 4a ジャケット
 5 燃焼炉
 6 クエンチャー
 7 フィニッシャー
 8 ニーダー
 9 ブリケッティング装置
 10 バーナー
 10a 端部
 11 容器
 11a 管台
 11b 内側面
 12a~12d 配管
 13a~13d 流量調整弁
 20 第一外筒
 21 ディフューザ
 22 第一ガスノズル
 23 第二ガスノズル
 24 点火トーチ
 25 第二外筒
 26 流路
 27 開口部
 28 内周面
 29 最外周部
 30 端部
 31 開口部
 32 開口端部
 33 接触部
 34 壁部
 34a 外側壁部
 35 開口端部
 36 保炎パッド
 37 平面
 38 貫通孔
 39 スワラー
 40 温度低下低減部
 41 外周面
 B ブロア
 Br ブリケット
 Cs 排気クリーンシステム
 F 風量調整ファン
 K 空間
 L 原炭

Claims (8)

  1.  第一のガスと、前記第一のガスよりも熱量の高い第二のガスとを同時に燃焼させるバーナーであって、
     第一方向に一次空気を供給する開口部を有した筒状の第一外筒と、
     前記第一外筒の内側に配され、前記第一方向に向かって漸次拡径する内周面を有するディフューザと、
     前記第一外筒の内側に配され、前記ディフューザの径方向外側の領域に前記第一方向に向かって前記第一のガスを供給する第一ガスノズルと、
     前記第一外筒の周方向で前記第一ガスノズルと隣り合うように配され、前記ディフューザの径方向外側の領域に前記第一方向に向かって前記第二のガスを供給する第二ガスノズルと、
     前記第一外筒の内側に配され、前記第二のガスと前記第一のガスとの少なくとも一方に点火する点火トーチと、
    を備えることを特徴とするバーナー。
  2.  前記第一方向における前記第一ガスノズルの開口端部は、前記ディフューザの最外周部に沿って接する接触部を備える請求項1に記載のバーナー。
  3.  前記第一ガスノズルを複数備え、
     前記第一ガスノズルの各接触部が前記ディフューザに当接する周方向の角度範囲の合計は、90度から200度とされている請求項2に記載のバーナー。
  4.  前記第二ガスノズルは、その第一方向の開口端部に、前記第二のガスに渦流を発生させる保炎パッドを備える請求項1から3の何れか一項に記載のバーナー。
  5.  前記第一外筒の外側に配され、前記第一外筒との間に二次空気が流れる流路を形成する第二外筒を備える請求項1から4の何れか一項に記載のバーナー。
  6.  前記第一外筒と前記第二外筒との間に配され、前記二次空気を周方向に旋回させるスワラーを備える請求項5に記載のバーナー。
  7.  前記第一ガスノズルの外周面のうち少なくとも一部を覆い、前記第一のガスの温度低下を防止する温度低下低減部を備える請求項1から6の何れか一項に記載のバーナー。
  8.  前記請求項1から7の何れか一項に記載のバーナーを具備した燃焼炉を備える石炭改質プラント。
PCT/JP2014/069112 2013-09-26 2014-07-17 バーナー、および、石炭改質プラント WO2015045584A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014004417.2T DE112014004417T5 (de) 2013-09-26 2014-07-17 Brenner und Kohleveredelungsanlage
CN201480052370.8A CN105579777B (zh) 2013-09-26 2014-07-17 喷烧器以及煤改质设备
US15/022,073 US20160223194A1 (en) 2013-09-26 2014-07-17 Burner and coal upgrading plant
AU2014325697A AU2014325697B2 (en) 2013-09-26 2014-07-17 Burner and coal upgrading plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199699A JP5980186B2 (ja) 2013-09-26 2013-09-26 バーナー、および、石炭改質プラント
JP2013-199699 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015045584A1 true WO2015045584A1 (ja) 2015-04-02

Family

ID=52742741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069112 WO2015045584A1 (ja) 2013-09-26 2014-07-17 バーナー、および、石炭改質プラント

Country Status (6)

Country Link
US (1) US20160223194A1 (ja)
JP (1) JP5980186B2 (ja)
CN (1) CN105579777B (ja)
AU (1) AU2014325697B2 (ja)
DE (1) DE112014004417T5 (ja)
WO (1) WO2015045584A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949419A (ja) * 1982-09-14 1984-03-22 Sanree Reinetsu Kk ガスバ−ナ
JPH01129511U (ja) * 1988-02-23 1989-09-04
JPH04225701A (ja) * 1990-12-27 1992-08-14 Mitsubishi Materials Corp 燃焼器
JPH04366306A (ja) * 1991-06-11 1992-12-18 Mitsubishi Heavy Ind Ltd ガス燃料燃焼装置
JP2001090912A (ja) * 1999-09-17 2001-04-03 Babcock Hitachi Kk ガスバーナ
JP2004091922A (ja) * 2002-08-09 2004-03-25 Jfe Steel Kk 鋼材加熱炉

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2499207A (en) * 1945-12-22 1950-02-28 John J Wolfersperger Pressure-type burner and method of burning fuel
US3376098A (en) * 1966-08-29 1968-04-02 Phillips Petroleum Co Two-chamber burner and process
US3578793A (en) * 1968-05-29 1971-05-18 Air Prod & Chem Variable flame oxy-fuel burner
US4298337A (en) * 1979-04-23 1981-11-03 Mechtron International Corporation Fuel burner having flame stabilization by internal recirculation
JPS6030567Y2 (ja) * 1980-06-09 1985-09-13 三菱重工業株式会社 ガス焚燃焼装置
US4431403A (en) * 1981-04-23 1984-02-14 Hauck Manufacturing Company Burner and method
US4565137A (en) * 1983-08-08 1986-01-21 Aqua-Chem, Inc. Bio-mass suspension burner
JP2526236B2 (ja) * 1987-02-27 1996-08-21 バブコツク日立株式会社 超低NOx燃焼装置
US4860695A (en) * 1987-05-01 1989-08-29 Donlee Technologies, Inc. Cyclone combustion apparatus
US5259184A (en) * 1992-03-30 1993-11-09 General Electric Company Dry low NOx single stage dual mode combustor construction for a gas turbine
US5636510A (en) * 1994-05-25 1997-06-10 Westinghouse Electric Corporation Gas turbine topping combustor
EP1009952A4 (en) * 1997-05-13 2001-05-02 Maxon Corp INDUSTRIAL BURNER WITH LOW NOx EMISSIONS
US6176087B1 (en) * 1997-12-15 2001-01-23 United Technologies Corporation Bluff body premixing fuel injector and method for premixing fuel and air
JP2002162007A (ja) * 2000-11-20 2002-06-07 Tokyo Gas Co Ltd バーナ
US6699031B2 (en) * 2001-01-11 2004-03-02 Praxair Technology, Inc. NOx reduction in combustion with concentrated coal streams and oxygen injection
EP1568942A1 (de) * 2004-02-24 2005-08-31 Siemens Aktiengesellschaft Vormischbrenner sowie Verfahren zur Verbrennung eines niederkalorischen Brenngases
US20090029302A1 (en) * 2007-07-27 2009-01-29 Steven Bortz System of close coupled rapid mix burner cells
JP5458834B2 (ja) * 2009-11-30 2014-04-02 株式会社Ihi 多燃料用バーナ装置
CN101985557B (zh) * 2010-08-19 2011-09-14 西峡龙成特种材料有限公司 煤物质单燃烧器分解设备
EP2821699A1 (en) * 2013-07-02 2015-01-07 Haldor Topsøe A/S Mixing of recycle gas with fuel gas to a burner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949419A (ja) * 1982-09-14 1984-03-22 Sanree Reinetsu Kk ガスバ−ナ
JPH01129511U (ja) * 1988-02-23 1989-09-04
JPH04225701A (ja) * 1990-12-27 1992-08-14 Mitsubishi Materials Corp 燃焼器
JPH04366306A (ja) * 1991-06-11 1992-12-18 Mitsubishi Heavy Ind Ltd ガス燃料燃焼装置
JP2001090912A (ja) * 1999-09-17 2001-04-03 Babcock Hitachi Kk ガスバーナ
JP2004091922A (ja) * 2002-08-09 2004-03-25 Jfe Steel Kk 鋼材加熱炉

Also Published As

Publication number Publication date
AU2014325697B2 (en) 2017-03-30
AU2014325697A1 (en) 2016-04-07
JP5980186B2 (ja) 2016-08-31
JP2015064186A (ja) 2015-04-09
DE112014004417T5 (de) 2016-06-16
CN105579777A (zh) 2016-05-11
US20160223194A1 (en) 2016-08-04
CN105579777B (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
US9366435B2 (en) Ignition torch and pressurized gasification furnace including the same
AU2010329886B2 (en) Burner unit for steel making facilities
JP5786516B2 (ja) バーナ
RU2466331C1 (ru) Растопочная угольная горелка
US11242989B2 (en) Combustion apparatus
JP5980186B2 (ja) バーナー、および、石炭改質プラント
US9964302B2 (en) Fuel injection system for use in a catalytic heater and reactor for operating catalytic combustion of liquid fuels
EP2396597B1 (en) Burner comprising a pilot
RU2174649C2 (ru) Растопочная пылеугольная горелка и способ ее работы
JP5245558B2 (ja) 微粉燃料用バーナ
CN103307611A (zh) 用于通过燃烧去除有害气体的装置
KR101048034B1 (ko) 시멘트 소성로용 버너장치
JP5704248B2 (ja) 管状火炎バーナー
JP6167546B2 (ja) 微粉炭バーナ
RU2300053C1 (ru) Вспомогательное горелочное устройство для плазменного воспламенения и стабилизации горения низкореакционного пылеугольного топлива основных горелок теплового агрегата
CN110006038A (zh) 焚化炉配套用燃烧灶
JP7410642B2 (ja) 特殊バーナ
CN203116019U (zh) 燃气短火焰高温工业燃烧器
WO2024082443A1 (zh) 一种氨煤混合燃烧系统
KR101267877B1 (ko) 저열량가스와 유류 혼소장치
JPS6287709A (ja) 低カロリ−ガスを助燃燃料とする粉炭バ−ナ
JP6257422B2 (ja) 加熱炉用燃焼装置
RU2394185C2 (ru) Устройство для сжигания топлива
KR20120114071A (ko) 소둔로의 폐가스 연소장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052370.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15022073

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201601970

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 112014004417

Country of ref document: DE

Ref document number: 1120140044172

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2014325697

Country of ref document: AU

Date of ref document: 20140717

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14849101

Country of ref document: EP

Kind code of ref document: A1