WO2015045422A1 - 半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法 - Google Patents

半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法 Download PDF

Info

Publication number
WO2015045422A1
WO2015045422A1 PCT/JP2014/004986 JP2014004986W WO2015045422A1 WO 2015045422 A1 WO2015045422 A1 WO 2015045422A1 JP 2014004986 W JP2014004986 W JP 2014004986W WO 2015045422 A1 WO2015045422 A1 WO 2015045422A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
epoxy resin
mounting structure
mass
resin composition
Prior art date
Application number
PCT/JP2014/004986
Other languages
English (en)
French (fr)
Inventor
偉之 北川
康仁 藤井
克司 菅
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to KR1020167010741A priority Critical patent/KR20160065897A/ko
Priority to SG11201602467TA priority patent/SG11201602467TA/en
Priority to EP14849554.2A priority patent/EP3042932A4/en
Priority to CN201480054018.8A priority patent/CN105593296B/zh
Publication of WO2015045422A1 publication Critical patent/WO2015045422A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1418Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/14181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to an epoxy resin composition, and more particularly to an epoxy resin composition suitable as a chip-on-wafer (CoW) type semiconductor sealing material.
  • CoW chip-on-wafer
  • a package technology called a wafer level chip size package in which a plurality of semiconductor bare chips are mounted and sealed in the state of a semiconductor wafer before being singulated is drawing attention.
  • the laminated body of the semiconductor encapsulant and the semiconductor wafer is then separated into pieces (dicing) to obtain a chip level semiconductor product. Since such a semiconductor product has the same mounting area as that of a semiconductor bare chip, it is characterized in that it is easy to miniaturize compared to a general method of mounting and sealing a semiconductor bare chip after dicing the wafer. .
  • the CoW method uses wafer level chip size package technology.
  • a plurality of semiconductor bare chips are mounted on a semiconductor wafer substrate and sealed with a semiconductor sealing material. Thereafter, the obtained semiconductor mounting structure is diced.
  • the entire semiconductor wafer substrate is sealed with a semiconductor sealing material.
  • the semiconductor sealing material contains a thermosetting resin
  • a heat treatment for promoting a curing reaction is performed in the molding process of the semiconductor sealing material.
  • the semiconductor bare chip, the semiconductor encapsulant, and the semiconductor wafer substrate contract according to their respective thermal expansion coefficients, and therefore the dimensional change varies. As a result, the semiconductor mounting structure is warped.
  • the semiconductor bare chip and the semiconductor wafer substrate are made of a material such as silicon or sapphire, the dimensional change is small.
  • the semiconductor encapsulant exceeds the glass transition point, the coefficient of thermal expansion becomes extremely large and the dimensional change becomes large. Therefore, 60 to 95% or 80 to 95% of an inorganic substance called a filler is blended in the semiconductor sealing material to reduce the coefficient of thermal expansion of the semiconductor sealing material (see Patent Documents 1 and 2).
  • a rubber component such as silicone rubber is blended in the semiconductor sealing material to reduce the internal stress of the cured semiconductor sealing material and reduce the warpage of the semiconductor mounting structure (Patent Document 3). reference).
  • an epoxy resin is generally used, and an alicyclic epoxy resin is used from the viewpoint of easy handling. Since the alicyclic epoxy resin has a low viscosity, a large amount of filler can be blended. By blending a large amount of filler, the warpage of the semiconductor mounting structure is somewhat eliminated, but it is not sufficient. If the semiconductor mounting structure is warped, it is difficult to fix the semiconductor mounting structure to the dicing tape during the dicing process, and dicing cannot be performed. Further, if the individual semiconductor mounting structure itself after dicing is warped, connection failure may occur when the individual semiconductor mounting structure is mounted on an electronic device. In recent years, it has been required to seal a wafer substrate having a larger area against the background of cost reduction. Therefore, further reduction of the warpage of the semiconductor mounting structure is demanded.
  • a semiconductor mounting structure is manufactured by the CoW method, problems are likely to occur during dicing. That is, in order to simultaneously dice a laminated body made of materials having greatly different hardnesses, specifically, a laminated body of a soft semiconductor encapsulant and a hard semiconductor wafer substrate, a semiconductor encapsulant cured from the semiconductor wafer substrate ( Hereinafter, it may be simply referred to as a cured product or an overmold material), or the cured product may be chipped.
  • An object of the present invention is to suppress warpage of a semiconductor mounting structure sealed with an overmold material. Furthermore, it aims at reducing peeling and chipping of the overmold material during dicing. It is another object of the present invention to provide an epoxy resin composition for semiconductor encapsulation that suppresses warping of a semiconductor mounting structure, has less peeling and chipping, and is excellent in handling properties.
  • one aspect of the present invention is that (A) 100 parts by mass of an epoxy resin containing 10 to 45% by mass of a novolac type epoxy resin, (B) 50 to 150 parts by mass of an acid anhydride, and (C) a curing accelerator 2 -12 parts by mass, (D) 5-50 parts by mass of silicone gel or silicone oil, and (E) fused silica having an average particle size of 2-30 ⁇ m, and the content of (E) fused silica is 80-
  • the present invention relates to an epoxy resin composition for semiconductor encapsulation having a viscosity of 92% by mass and a viscosity at a shear rate of 2.5 (1 / s) at 25 ° C. of 1000 Pa ⁇ s or less.
  • Another aspect of the present invention is: (a) a semiconductor wafer substrate having a plurality of element mounting regions; (b) a plurality of semiconductor bare chips mounted on the plurality of element mounting regions; and (c) the plurality of semiconductors.
  • An overmold material that covers a surface of the bare chip and is filled between the semiconductor bare chips, and the overmold material is a cured product of the epoxy resin composition for semiconductor encapsulation. Concerning the structure.
  • Still another aspect of the present invention provides a semiconductor wafer substrate having a plurality of element mounting regions on which a plurality of semiconductor bare chips are respectively mounted, the epoxy resin composition for semiconductor encapsulation, and a surface of the plurality of semiconductor bare chips.
  • the present invention relates to a method for manufacturing a semiconductor mounting structure, comprising a step of overmolding so as to cover and fill between the semiconductor bare chips.
  • the warpage of the semiconductor mounting structure sealed with the semiconductor sealing material, the peeling of the cured semiconductor sealing material during dicing, and the chipping of the cured semiconductor sealing material are reduced. can do. Moreover, this epoxy resin composition is excellent also in handleability.
  • FIG. 1 It is a figure for demonstrating an example of the manufacturing method of a semiconductor mounting structure. It is a top view which shows typically an example of a semiconductor mounting structure. It is a microscope picture (1000 times) of the hardened
  • FIG. It is a microscope picture (1000 times) of the hardened
  • FIG. It is a microscope picture (1000 times) of the interface vicinity of hardened
  • the epoxy resin composition for semiconductor encapsulation of the present invention comprises (A) 100 parts by mass of an epoxy resin containing 10 to 45% by mass of a novolac type epoxy resin, (B) 50 to 150 parts by mass of an acid anhydride, and (C) 2 to 12 parts by mass of a curing accelerator, (D) 5 to 50 parts by mass of silicone gel or silicone oil, and (E) fused silica having an average particle diameter of 2 to 30 ⁇ m.
  • the content of fused silica (E) contained in the epoxy resin composition is 80 to 92% by mass.
  • the viscosity of the epoxy resin composition at a shear rate of 2.5 (1 / s) at 25 ° C. is 1000 Pa ⁇ s or less.
  • the novolac type epoxy resin is a resin obtained from epichlorohydrin and a novolac type resin.
  • the novolak type epoxy resin include phenol novolak type epoxy resin, cresol novolak type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin and the like.
  • a resin comprising an epoxy resin (A) containing a specific amount of a novolac-type epoxy resin, a specific amount of an acid anhydride (B), a curing accelerator (C), a silicone gel or silicone oil (D), and fused silica (E)
  • a resin comprising an epoxy resin (A) containing a specific amount of a novolac-type epoxy resin, a specific amount of an acid anhydride (B), a curing accelerator (C), a silicone gel or silicone oil (D), and fused silica (E)
  • a resin comprising an epoxy resin (A) containing a specific amount of a novolac-type epoxy resin, a specific amount of an acid anhydride (B), a curing accelerator (C), a silicone gel or silicone oil (D), and fused silica (E)
  • a dicyclopentadiene novolak type epoxy resin represented by the following formula (1) and a biphenyl novolak type epoxy resin represented by the following formula (2) are preferable in that the effect
  • R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 15.
  • the position and number of the alkyl group as R are not limited.
  • numerator may be the same and may differ.
  • all R may be hydrogen atoms.
  • R represents a hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, a phenyl group or a halogen atom, and n represents an average value and is 1.01 to 5.
  • the position and number of the alkyl group, phenyl group or halogen atom as R are not limited.
  • a plurality of R in the molecule may be the same or different.
  • all R may be hydrogen atoms.
  • An epoxy resin having a biphenyl novolak structure represented by the formula (2) is commercially available as NC-3000 from Nippon Kayaku Co., Ltd.
  • the novolac type epoxy resin is contained in the epoxy resin (A) in an amount of 10 to 45% by mass.
  • the content of the novolac type epoxy resin in the epoxy resin (A) is less than 10% by mass, the warpage of the semiconductor mounting structure sealed with the semiconductor sealing material is increased, and further, the cured product is peeled off during dicing. Chipping occurs.
  • the content of the novolac type epoxy resin exceeds 45% by mass, the viscosity of the epoxy resin composition becomes high, and the handleability is lowered.
  • the content of the novolac type epoxy resin is preferably 25 to 35% by mass in the epoxy resin (A).
  • a cured product of an epoxy resin composition containing a novolac type epoxy resin is difficult to peel off from a semiconductor wafer substrate by dicing. This is presumed to be because the novolac-type epoxy resin improves the toughness of the cured product.
  • a cured product of an epoxy resin composition containing a novolac-type epoxy resin is difficult to chip during dicing. This is presumed to be because the novolac-type epoxy resin has an aromatic ring to give rigidity to the cured product.
  • the epoxy resin other than the novolac type epoxy resin is not particularly limited.
  • An epoxy resin, a dicyclopentadiene type epoxy resin, a polyether type epoxy resin, a silicone-modified epoxy resin, or the like can be used. These may be used alone or in combination of two or more.
  • naphthalene type epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and biphenyl type epoxy resin are preferable, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, and naphthalene type epoxy resin.
  • Resin is more preferable, and bisphenol A type epoxy resin is more preferable in terms of handleability. Two or more of these may be used in combination.
  • the acid anhydride (B) is a curing agent for the epoxy resin and is not particularly limited.
  • phthalic anhydride hexahydrophthalic anhydride, alkylhexahydrophthalic anhydride, alkyltetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, succinic anhydride, methyl nadic anhydride, trimellitic anhydride, pyrometic anhydride, methyl And norbornane-2,3-dicarboxylic acid.
  • the acid anhydride (B) is blended in an amount of 50 to 150 parts by mass with respect to 100 parts by mass of the epoxy resin (A).
  • the blending amount of the acid anhydride (B) is less than 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A), the curability decreases, and when it exceeds 150 parts by mass, the strength of the cured product decreases.
  • the blending amount of the acid anhydride (B) is preferably 80 to 120 parts by mass.
  • the curing accelerator (C) is not particularly limited. Examples include amine-based curing accelerators, imidazole-based curing accelerators, phosphorus-based curing accelerators, phosphonium salt-based curing accelerators, bicyclic amidines and derivatives thereof, organometallic complexes, and polyamine ureates.
  • the curing accelerator preferably has a potential. Examples of latent curing accelerators include amine-based curing accelerators, imidazole-based curing accelerators, and phosphorus-based curing accelerators.
  • a hardening accelerator (C) as a reaction product (adduct) with resin, such as an epoxy resin.
  • the curing accelerator (C) is blended in an amount of 2 to 12 parts by mass with respect to 100 parts by mass of the epoxy resin (A).
  • the blending amount of the curing accelerator (C) is less than 2 parts by mass with respect to 100 parts by mass of the epoxy resin (A), the effect of blending is not sufficiently observed. Decreases.
  • the blending amount of the curing accelerator (C) is preferably 5 to 9 parts by mass.
  • the compounding quantity of a hardening accelerator means the net quantity of the hardening accelerator except components (epoxy resin etc.) other than a hardening accelerator.
  • Silicone gel or silicone oil (D) plays a role of adjusting the viscosity of the epoxy resin composition, reduces internal stress of the cured product, and reduces warpage of the semiconductor mounting structure sealed with the cured product.
  • Silicone gel has a polysiloxane structure and is produced by a condensation reaction method or an addition reaction method. Silicone oil also has a polysiloxane structure and a linear structure with siloxane bonds of approximately 2000 or less. These production methods are known and can be obtained, for example, by the production methods described in JP-A Nos. 54-48720 and 48-17847.
  • SiH group-containing siloxane is added to vinyl group-containing organopolysiloxane at a ratio of 0.3 to 0.8 SiH groups with respect to one vinyl group. It can be obtained by reacting. Among these, it is preferable to use a silicone gel.
  • the silicone gel or silicone oil (D) is blended in an amount of 5 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A).
  • the blending amount of the silicone gel or silicone oil (D) is less than 5 parts by mass with respect to 100 parts by mass of the epoxy resin (A), warpage of the sealed semiconductor mounting structure is not reduced, and 50 parts by mass When it exceeds, handling property will fall.
  • the blending amount of the silicone gel or silicone oil (D) is preferably 10 to 40 parts by mass.
  • numerator can be mentioned, for example. -[-BABA- (CD) nC-] p- (3)
  • A represents an organopolysiloxane compound residue having 20 to 50 siloxane bonds having active hydrogen-containing groups at both ends.
  • B represents a bifunctional organic compound residue having two functional groups capable of reacting with active hydrogen. Specifically, it represents either a biphenyl or naphthalene skeleton-containing epoxy compound residue, a diisocyanate compound residue, or a dicarboxylic acid compound residue.
  • C represents a bifunctional organic compound residue having two active hydrogen-containing groups. Specifically, it represents either a bisphenol compound residue that reacts with an epoxy compound, a glycol compound residue that reacts with a diisocyanate compound, or a diamino compound residue that reacts with a dicarboxylic acid compound.
  • D represents a bifunctional organic compound residue having two functional groups capable of reacting with active hydrogen.
  • n represents an integer of 1 to 20
  • p represents an integer of 1 to 20.
  • Such an organopolysiloxane derivative contains both an organopolysiloxane chain and an aromatic ring-containing chain or a long aliphatic chain. Therefore, it is suitable as a dispersant for dispersing silicone gel or silicone oil in an epoxy resin.
  • the residue B and the residue D in the formula (3) may be the same compound residue, and in that case, the organopolysiloxane derivative may have a structure represented by the following formula (4). . -[-BABA- (CB) nC-] p- (4)
  • B is a bifunctional aromatic epoxy compound residue represented by the following formula (5).
  • Ar 1 represents a divalent aromatic group derived from biphenyl or naphthalene, and m represents an integer of 1 or 2.
  • C represents a dihydric phenol compound residue represented by —O—Ar 2 —O— (wherein Ar 2 represents a 2,2-bisphenylpropyl group).
  • the manufacturing method of a polysiloxane derivative is well-known, For example, the method of Japanese Patent No. 3855074 can be used. Specific examples of polysiloxane derivatives as preferred dispersants are also disclosed in Example 1 (dispersant B) and Example 5 (dispersant C) of the above publication. Examples of the production method include a method in which a phenol-terminated silicone oil and a naphthalene skeleton-type diglycidyl ether are reacted, and the resulting reaction product is polymerized with bisphenol A diglycidyl ether and bisphenol A. Thereby, the dispersing agent which has a polyether structure and has an epoxy group at the terminal can be obtained.
  • the amount of the dispersing agent may be an amount necessary to disperse the silicone gel or silicone oil (D) in the resin.
  • the amount is preferably 5 to 80 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the silicone oil (D).
  • Fused silica (E) has an average particle size of 2 to 30 ⁇ m. When the average particle size is less than 2 ⁇ m, the viscosity increases and the handleability decreases, and when the average particle size exceeds 30 ⁇ m, the moldability decreases.
  • the average particle size of the fused silica (E) is preferably 5 to 25 ⁇ m. Further, it is more preferable that the fused silica (E) contains 5 to 40% by weight of fused silica having an average particle size of 0.2 to 5 ⁇ m from the viewpoint of improving the handleability.
  • (E) fused silica is spherical with high sphericity. Moreover, you may make a silane coupling agent react with the surface previously.
  • the average particle size is a particle size (D50) at a cumulative volume of 50% of the volume particle size distribution.
  • the average particle diameter D50 is, for example, a value measured by a laser diffraction scattering method using a laser diffraction particle size distribution measuring apparatus.
  • the epoxy resin composition contains 80 to 92% by mass of fused silica (E).
  • the content of fused silica (E) is preferably 83 to 90% by mass.
  • the epoxy resin composition has a viscosity of 1000 Pa ⁇ s or less at 25 ° C. and a shear rate of 2.5 (1 / s).
  • this viscosity is a value measured using an HBT viscometer manufactured by Brookfield. If the viscosity of the epoxy resin composition at 25 ° C. and a shear rate of 2.5 (1 / s) exceeds 1000 Pa ⁇ s, it tends to cause wire sweep or filling failure during compression molding, and the resin is smoothly applied during molding. It becomes difficult to supply to the mold.
  • the viscosity at 25 ° C. and a shear rate of 2.5 (1 / s) is preferably 800 Pa ⁇ s or less.
  • the epoxy resin composition may be used after blending each component in a predetermined ratio, for example, stirring for 60 to 120 minutes, and then defoaming under reduced pressure. Further, it can be cured at 50 to 200 ° C., particularly 100 to 175 ° C. in about 2 to 10 minutes.
  • the glass transition point of the cured product is increased.
  • the cured product has a glass transition point of 120 to 220 ° C. in dynamic viscoelasticity measurement (DMA). Therefore, the thermal shrinkage rate after curing the epoxy resin composition is reduced, and the warpage of the semiconductor mounting structure sealed with the cured product can be reduced. Further, since the cured product has a rigid skeleton, chipping of the cured product during dicing is reduced.
  • DMA dynamic viscoelasticity measurement
  • the cured product of the epoxy resin composition has, for example, a storage elastic modulus at 25 ° C. of 10 to 23 GPa in dynamic viscoelasticity measurement (DMA).
  • DMA dynamic viscoelasticity measurement
  • the epoxy resin composition may contain other additives.
  • the additive include a silane coupling agent and carbon black.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 2- (3,4-epoxy. (Cyclohexyl) ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and the like can be used. These may be used alone or in combination of two or more.
  • the compounding amount of the silane coupling agent is preferably 0.1 to 10 parts by mass and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the blending amount of carbon black is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • an appropriate amount of an antifoaming agent, a leveling agent, a pigment, and the like can be used in the epoxy resin composition of the present invention depending on the purpose.
  • the epoxy resin composition of the present invention is suitable as a semiconductor encapsulant that requires performance such as moldability, heat resistance, warpage resistance, etc. because it has a small dimensional change and moderate elasticity and viscosity. Especially, it is suitable as a semiconductor sealing material used when sealing a wafer level chip size package which is a large area semiconductor package by an overmolding method.
  • overmold molding examples include transfer molding and compression molding. Of these, compression molding is preferred.
  • the overmolding is preferably performed at 50 to 200 ° C., more preferably 100 to 175 ° C. for 1 to 15 minutes. If necessary, post-cure can be performed at 100 to 200 ° C. for 30 minutes to 24 hours.
  • the present invention also relates to a semiconductor mounting structure including an overmold material that is a cured product of an epoxy resin composition.
  • the semiconductor mounting structure 1 includes a semiconductor wafer substrate 2 having a plurality of element mounting regions 24, a plurality of semiconductor bare chips 3 mounted in the plurality of element mounting regions 24, and a surface of the plurality of semiconductor bare chips 3, And an overmold material 4 filled between the semiconductor bare chips 3.
  • the overmold material 4 is a cured product of the epoxy resin composition of the present invention.
  • the semiconductor wafer substrate 2 is a wafer substrate on which a circuit is formed by a normal method before dicing into individual semiconductor chips.
  • the semiconductor wafer substrate 2 may have a thickness of 50 to 1000 ⁇ m and a diameter of 8 inches or more. Even in a semiconductor mounting structure formed by sealing a semiconductor wafer substrate having such a large area, the warpage can be remarkably reduced by using the overmold material 4.
  • Examples of the semiconductor bare chip 3 include an integrated circuit called IC or LSI.
  • the semiconductor mounting structure 1 preferably includes an underfill material 5 that fills a space between the semiconductor wafer substrate 2 and the semiconductor bare chip 3 in terms of improving connection reliability. It does not specifically limit as the underfill material 5,
  • curing agent, a hardening accelerator, an inorganic filler etc. can be mentioned.
  • the epoxy resin used for the underfill material 5 is not particularly limited, and can be arbitrarily selected from the enumerated epoxy resins used for the epoxy resin composition of the present invention.
  • curing agent and a hardening accelerator it can select arbitrarily from the enumeration as a compound used for the epoxy resin composition of this invention, and can use it.
  • the inorganic filler in addition to fused silica, crystalline silica, alumina, magnesium oxide, silicon nitride, or the like can be used.
  • the semiconductor mounting structure 1 is divided into pieces for each element mounting region 24 and used as the individual semiconductor mounting structure 11. Since the cured product of the semiconductor sealing material of the present invention is used as the overmold material 4, even if the semiconductor mounting structure 1 is diced, the overmold material 4 of the singulated semiconductor mounting structure 11 is obtained. Is unlikely to peel or chip.
  • the second surface (opposite side of the first surface 2a, not shown) of the semiconductor wafer substrate 2 is thinly scraped to form a part of the conductor 23. May be exposed to form a through conductor (not shown). Furthermore, a terminal (not shown) such as a solder ball may be formed at the end of the through conductor.
  • the present invention relates to a method for manufacturing a semiconductor mounting structure by a so-called chip-on-wafer method. That is, the present invention covers a semiconductor sealing epoxy resin composition on a semiconductor wafer substrate having a plurality of element mounting regions on which a plurality of semiconductor bare chips are respectively mounted, and covers the surfaces of the plurality of semiconductor bare chips, and A method for manufacturing a semiconductor mounting structure comprising a step of overmolding so as to be filled between semiconductor bare chips.
  • FIGS. 1A to 1C are diagrams for explaining an example of a manufacturing method of the semiconductor mounting structure 1
  • FIGS. 1A to 1D are manufacturing methods of the singulated semiconductor mounting structure 11.
  • FIG. FIG. 2 is an example of the semiconductor mounting structure 1, and is a schematic view seen from the upper surface (first surface 2 a) of the semiconductor wafer substrate 2.
  • FIG. 1A shows a semiconductor wafer substrate 2 on which a plurality of semiconductor bare chips 3 are mounted. Specifically, a plurality of semiconductor bare chips 3 are mounted in a plurality of element mounting regions 24 on the first surface 2 a of the semiconductor wafer substrate 2 so as to be connected to the first terminals 21.
  • the first terminal 21 is a terminal disposed on a conductor 23 in which at least a part is embedded in the semiconductor wafer substrate 2.
  • the first terminal 21 is electrically connected to the element electrode 31 disposed on the semiconductor bare chip 3.
  • the material and shape of the first terminal 21 and the device electrode 31 are not particularly limited. Although it does not specifically limit as the conductor 23, It forms with conductors, such as an electrically conductive paste and a metal particle.
  • the conductor 23 and the first terminal 21 can be formed as follows, for example.
  • the semiconductor wafer substrate 2 is etched to form a plurality of holes in each of the plurality of element mounting regions 24.
  • An insulating film is formed on the inner surface of the hole so that the semiconductor wafer substrate 2 and the formed conductor 23 do not interfere with each other, and the hole is filled with the conductor 23.
  • the conductor 23 finally becomes a through conductor that penetrates the semiconductor wafer substrate 2.
  • the first surface 2a of the semiconductor wafer substrate 2 is thinned to expose the conductors 23.
  • a first terminal 21 such as a pad is formed on the exposed conductor 23 by electrolytic plating or the like.
  • an underfill material 5 is filled between the semiconductor wafer substrate 2 and the semiconductor bare chip 3. This is for the purpose of protecting the first terminal 21 that conducts the semiconductor wafer 2 substrate and the semiconductor bare chip 3 from external stress and improving the connection reliability.
  • the epoxy resin composition of the present invention is applied to the semiconductor wafer substrate on which the plurality of semiconductor bare chips prepared in this manner are mounted, and the surface of the semiconductor bare chip 3 having the plurality of epoxy resin compositions. And overmolding so as to be filled between the semiconductor bare chips 3.
  • compression molding is performed. Specifically, an epoxy resin composition that is a material of the overmold material 4 is put into a lower mold of a compression molding machine, and the semiconductor wafer substrate 2 on which the semiconductor bare chip 3 is mounted is sucked into the upper mold. Next, the lower mold is raised and pressed against the upper mold, and the epoxy resin composition is heated and molded. The epoxy resin composition is cured by heating to become the overmold material 4.
  • the manufactured semiconductor mounting structure 1 may be diced for each element mounting region 24 to be separated into individual pieces. Since the cured product of the epoxy resin composition of the present invention is used as the overmold material 4, the overmold material 4 of the singulated semiconductor mounting structure 11 obtained even if the semiconductor mounting structure 1 is diced is It is difficult to peel off from the semiconductor wafer substrate and chipping is difficult to occur.
  • the second surface of the semiconductor wafer substrate 2 may be thinned to expose a part of the conductor 23 to form a through conductor (not shown). Furthermore, a terminal (not shown) such as a solder ball may be formed at the end of the through conductor.
  • Epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 to 6, cured products thereof, or semiconductor mounting structures sealed with the epoxy resin composition, and individualized semiconductor mounting structures obtained by separating the semiconductor mounting structures were evaluated as follows. The evaluation results are shown in Table 1.
  • the viscosity of the epoxy resin composition was measured using a HBT viscometer (spindle type: # 29) manufactured by Brookfield under the conditions of 25 ° C. and a shear rate of 2.5 (1 / s). Moreover, when the viscosity is 1000 Pa ⁇ s or less, ⁇ is evaluated as being easy to handle, and the case where the viscosity exceeds 1000 Pa ⁇ s is evaluated as x.
  • Glass transition point of cured product (Tg)
  • the epoxy resin composition was compression molded at 110 ° C. for 10 minutes, and then post-cured at 170 ° C. for 120 minutes to obtain a cured product.
  • the glass transition point of the obtained cured product was measured by the DMA method.
  • the peak temperature of tan ⁇ was determined under the measurement conditions of a temperature increase rate of 2 ° C./min and a frequency of 1 Hz.
  • the case where the glass transition point was 120 ° C. to 220 ° C. was marked with ⁇ , and the other cases were marked with ⁇ .
  • Epoxy resin (1) RE-310 (manufactured by Nippon Kayaku Co., Ltd., bisphenol A type epoxy resin, epoxy equivalent 184 g / eq)
  • Epoxy resin (2) Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd., alicyclic epoxy resin, epoxy equivalent 135 g / eq)
  • the handleability of the epoxy resin composition of Comparative Example 1 was good, but the obtained semiconductor mounting structure was highly warped. It is considered that the alicyclic epoxy resin was used instead of the novolac type epoxy resin, and thus the cured product had a high coefficient of thermal expansion and a large dimensional change. Further, it can be seen that the resin chipping after dicing was large and the strength of the cured product was insufficient. Furthermore, peeling of the cured product could be confirmed.
  • the epoxy resin composition of Comparative Example 2 was easy to handle, but the glass transition point of the cured product was low, and the obtained semiconductor mounting structure was highly warped. Further, since the strength of the cured product was insufficient, as shown in FIG. 4, the chipped portion of the cured product was large after dicing, severe irregularities were generated on the surface, and the corners of the cured product were scraped. Furthermore, as shown in FIG. 6, cracks occurred near the interface between the cured product and the semiconductor wafer substrate, and peeling was observed.
  • the epoxy resin composition of Comparative Example 3 was inferior in handleability because of the excessive amount of silicone gel.
  • the epoxy resin composition of Comparative Example 4 was inferior in handleability because it contained a large amount of novolac type epoxy resin.
  • the epoxy resin composition of Comparative Example 6 was inferior in handleability because only a novolac type epoxy resin was used as the epoxy resin. Moreover, chipping of the cured product after dicing was large, and peeling was observed at the interface between the semiconductor wafer and the cured product. This is considered to have occurred because the toughness was lowered by using only the novolac type epoxy resin.
  • the epoxy resin composition of the present invention is particularly useful as an overmold material used when sealing a wafer level chip size package using a large-area semiconductor wafer, for example, by a compression molding method. While this invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 (A)ノボラック型エポキシ樹脂を10~45質量%含むエポキシ樹脂100質量部と、(B)酸無水物50~150質量部と、(C)硬化促進剤2~12質量部と、(D)シリコーンゲルまたはシリコーンオイル5~50質量部と、(E)平均粒径2~30μmの球状溶融シリカと、を有し、前記(E)溶融シリカの含有量が80~92質量%であり、25℃でのせん断速度2.5(1/s)における粘度が1000Pa・s以下である半導体封止用エポキシ樹脂組成物である。

Description

半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法
 本発明は、エポキシ樹脂組成物に関し、特にチップオンウエハ(CoW)型の半導体封止材として適切なエポキシ樹脂組成物に関する。
 近年、電子機器の小型化がすすみ、半導体製品にも薄型化、小型化が求められている。そこで、個片化する前の半導体ウエハの状態で、複数の半導体ベアチップを実装し、封止を行うウエハレベルチップサイズパッケージといわれるパッケージ技術が注目されている。半導体封止材と半導体ウエハとの積層体は、その後、個片化(ダイシング)され、チップレベルの半導体製品が得られる。このような半導体製品は、実装面積が半導体ベアチップと同じ大きさになるため、ウエハをダイシングしてから半導体ベアチップを実装し、封止する一般的な方法に比べて、小型化しやすいという特徴がある。
 さらに、半導体製品には、小型であると同時に高性能であることが求められている。そこで、半導体ベアチップを縦方向に積層した半導体実装構造体が検討されている。半導体ベアチップを積層する方法としては、半導体ベアチップ同士を積み上げていくチップオンチップ(CoC)方式や、半導体ウエハ基板上に良品の半導体ベアチップを実装していくチップオンウエハ(CoW)方式などが挙げられる。
 CoW方式は、ウエハレベルチップサイズパッケージ技術を利用するものである。CoW方式では、半導体ウエハ基板上に複数の半導体ベアチップを実装し、半導体封止材で封止する。その後、得られた半導体実装構造体がダイシングされる。
 CoW方式では、半導体ウエハ基板全体に対して半導体封止材による封止が行われる。そのため、半導体封止材の硬化後、ダイシング前の半導体実装構造体の反りが大きな問題となっている。半導体封止材は熱硬化性の樹脂を含んでいるため、半導体封止材の成型工程では、硬化反応促進のための加熱処理が施される。その後の冷却工程において、半導体ベアチップ、半導体封止材および半導体ウエハ基板は、それぞれの熱膨張率に従って収縮するため、寸法変化にばらつきが生じる。その結果、半導体実装構造体に反りが生じる。
 半導体ベアチップや半導体ウエハ基板は、シリコンやサファイアといった材料からなるため、寸法変化は小さい。一方、半導体封止材は、ガラス転移点を超えると熱膨張率が極端に大きくなり、寸法変化が大きくなる。そこで、半導体封止材にフィラーといわれる無機物を60~95%或いは80~95%配合して、半導体封止材の熱膨張率を低く抑えることが行われている(特許文献1および2参照)。さらに、半導体封止材にシリコーンゴムなどのゴム成分を配合し、硬化後の半導体封止材の内部応力を低下させ、半導体実装構造体の反りを小さくすることが行われている(特許文献3参照)。
特開2012-209453号公報 特開2013-10940号公報 特開2011-195742号公報
 半導体封止材としては、一般的にエポキシ樹脂が使用されており、特に取扱い性の点から脂環式のエポキシ樹脂が使用されている。脂環式エポキシ樹脂は粘度が低いため、多量のフィラーを配合することができる。多量のフィラーを配合することにより、半導体実装構造体の反りは多少解消されるものの、十分ではない。半導体実装構造体に反りがあると、ダイシング工程の際に半導体実装構造体をダイシングテープに固定することが困難となり、ダイシングを行うことができない。また、ダイシング後の個片化半導体実装構造体自体に反りがあると、個片化半導体実装構造体を電子機器に搭載した場合に接続不良を起こすことがある。また、近年では、低コスト化を背景に、より大面積のウエハ基板を封止することが求められている。そのため、半導体実装構造体の反りのさらなる低減が求められている。
 さらに、CoW方式により半導体実装構造体を製造する場合、ダイシングの際にも問題が生じやすいことがわかった。つまり、硬度が大きく異なる材料からなる積層体、具体的には、軟質の半導体封止材と硬質の半導体ウエハ基板との積層体を同時にダイシングするため、半導体ウエハ基板から硬化した半導体封止材(以下、単に硬化物もしくはオーバーモールド材と称する場合がある)が剥離したり、硬化物が欠けたりすることがある。
 本発明は、オーバーモールド材で封止された半導体実装構造体の反りを抑制することを目的とする。さらに、ダイシング時におけるオーバーモールド材の剥離および欠けを低減することを目的とする。また、半導体実装構造体の反りを抑制し、剥離や欠けが少なく、さらには、取扱い性にも優れる半導体封止用のエポキシ樹脂組成物を提供することを目的とする。
 すなわち、本発明の一局面は、(A)ノボラック型エポキシ樹脂を10~45質量%含むエポキシ樹脂100質量部と、(B)酸無水物50~150質量部と、(C)硬化促進剤2~12質量部と、(D)シリコーンゲルまたはシリコーンオイル5~50質量部と、(E)平均粒径2~30μmの溶融シリカと、を含み、前記(E)溶融シリカの含有量が80~92質量%であり、25℃でのせん断速度2.5(1/s)における粘度が1000Pa・s以下である半導体封止用エポキシ樹脂組成物に関する。
 本発明の他の一局面は、(a)複数の素子搭載領域を有する半導体ウエハ基板と、(b)前記複数の素子搭載領域に搭載される複数の半導体ベアチップと、(c)前記複数の半導体ベアチップの表面を覆い、かつ、前記半導体ベアチップ同士の間に充填されるオーバーモールド材と、を具備し、前記オーバーモールド材が、前記半導体封止用エポキシ樹脂組成物の硬化物である、半導体実装構造体に関する。
 本発明のさらに他の一局面は、複数の半導体ベアチップがそれぞれ搭載された複数の素子搭載領域を有する半導体ウエハ基板に、前記半導体封止用エポキシ樹脂組成物を、前記複数の半導体ベアチップの表面を覆い、かつ、前記半導体ベアチップ同士の間に充填されるように、オーバーモールド成型する工程を具備する、半導体実装構造体の製造方法に関する。
 本発明のエポキシ樹脂組成物によれば、半導体封止材で封止された半導体実装構造体の反りや、ダイシング時の硬化した半導体封止材の剥離、硬化した半導体封止材の欠けを低減することができる。また、このエポキシ樹脂組成物は、取扱い性にも優れている。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
半導体実装構造体の製造方法の一例を説明するための図である。 半導体実装構造体の一例を模式的に示す上面図である。 実施例2で得られた半導体実装構造体の断面における、硬化物部分の顕微鏡写真(1000倍)である。 比較例2で得られた半導体実装構造体の断面における、硬化物部分の顕微鏡写真(1000倍)である。 実施例2で得られた半導体実装構造体の断面における、硬化物と半導体ウエハ基板との界面付近の顕微鏡写真(1000倍)である。 比較例2で得られた半導体実装構造体の断面における、硬化物と半導体ウエハ基板との界面付近の顕微鏡写真(1000倍)である。
 本発明の半導体封止用エポキシ樹脂組成物は、(A)ノボラック型エポキシ樹脂を10~45質量%含むエポキシ樹脂100質量部と、(B)酸無水物50~150質量部と、(C)硬化促進剤2~12質量部と、(D)シリコーンゲルまたはシリコーンオイル5~50質量部と、(E)平均粒径2~30μmの溶融シリカとを含む。エポキシ樹脂組成物に含まれる溶融シリカ(E)の含有量は80~92質量%である。エポキシ樹脂組成物の25℃でのせん断速度2.5(1/s)における粘度は1000Pa・s以下である。
 エポキシ樹脂(A)のうち、ノボラック型エポキシ樹脂は、エピクロルヒドリンとノボラック型樹脂とから得られる樹脂である。ノボラック型エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂などが挙げられる。ノボラック型エポキシ樹脂を特定量含むエポキシ樹脂(A)と、特定量の酸無水物(B)、硬化促進剤(C)、シリコーンゲルまたはシリコーンオイル(D)、溶融シリカ(E)とを含む樹脂組成物を半導体封止材として使用した場合、封止された半導体実装構造体の反りや、ダイシング時の硬化した半導体封止材の剥離、硬化した半導体封止材の欠けを低減できる。なかでも、下記式(1)で示すようなジシクロペンタジエンノボラック型エポキシ樹脂および下記式(2)で示すようなビフェニルノボラック型エポキシ樹脂が、上記問題を低減する効果が大きい点で好ましい。
Figure JPOXMLDOC01-appb-C000001
 
 式(1)中、Rは水素原子または炭素数1~6のアルキル基を表し、nは0~15の整数を表す。Rとしてのアルキル基の位置および数は限定されない。また、分子中の複数のRは、同じでもよく、相違してもよい。例えば全てのRが水素原子でもよい。
Figure JPOXMLDOC01-appb-C000002
  
 式(2)中、Rは水素原子または炭素数1~4の低級アルキル基、フェニル基またはハロゲン原子を表し、nは平均値を表し、1.01~5である。Rとしてのアルキル基、フェニル基またはハロゲン原子の位置および数は限定されない。分子中の複数のRは、同じでもよく、相違してもよい。例えば全てのRが水素原子でもよい。
 なお、式(2)で表されるビフェニルノボラック構造を有するエポキシ樹脂は、NC-3000として、日本化薬株式会社から市販されている。
 ノボラック型エポキシ樹脂は、エポキシ樹脂(A)中、10~45質量%含まれている。エポキシ樹脂(A)中のノボラック型エポキシ樹脂の含有量が10質量%より少ないと、半導体封止材で封止された半導体実装構造体の反りが大きくなり、さらに、ダイシング時に硬化物の剥離や欠けが生じる。また、ノボラック型エポキシ樹脂の含有量が45質量%を超えると、エポキシ樹脂組成物の粘度が高くなり、取扱い性が低下する。ノボラック型エポキシ樹脂の含有量は、エポキシ樹脂(A)中、25~35質量%であることが好ましい。
 ノボラック型エポキシ樹脂を含むエポキシ樹脂組成物の硬化物は、ダイシングによって半導体ウエハ基板から剥離し難い。これは、ノボラック型エポキシ樹脂が、硬化物の靭性を向上させるためであると推察される。また、ノボラック型エポキシ樹脂を含むエポキシ樹脂組成物の硬化物は、ダイシング時に欠け難い。これは、ノボラック型エポキシ樹脂が芳香環を有しているため、硬化物に剛直性を与えるためであると推察される。
 ノボラック型エポキシ樹脂以外のエポキシ樹脂としては、特に限定されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリエーテル型エポキシ樹脂、シリコーン変性エポキシ樹脂等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。これらのうちでは、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂がより好ましく、ビスフェノールA型エポキシ樹脂が取り扱い性の点でさらに好ましい。これらを2種以上組み合わせて使用してもよい。
 酸無水物(B)は、エポキシ樹脂の硬化剤であり、特に限定されない。例えば、無水フタル酸、ヘキサヒドロ無水フタル酸、アルキルヘキサヒドロ無水フタル酸、アルキルテトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、無水コハク酸、無水メチルナジック酸、無水トリメリット酸、無水ピロメット酸、メチルノルボルナン-2,3-ジカルボン酸等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。なかでも、メチルテトラヒドロ無水フタル酸またはメチルヘキサヒドロ無水フタル酸が好ましい。
 酸無水物(B)は、エポキシ樹脂(A)100質量部に対して50~150質量部配合される。エポキシ樹脂(A)100質量部に対して、酸無水物(B)の配合量が50質量部より少ないと硬化性が低下し、150質量部を超えると、硬化物の強度が小さくなる。酸無水物(B)の配合量は、80~120質量部であることが好ましい。
 硬化促進剤(C)としては、特に限定されない。例えば、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤、ホスホニウム塩系硬化促進剤、双環式アミジン類とその誘導体、有機金属錯体、ポリアミンの尿素化物等が挙げられる。硬化促進剤は、潜在性を有することが好ましい。潜在性硬化促進剤としては、例えば、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤等が挙げられる。また、硬化促進剤(C)は、エポキシ樹脂等の樹脂との反応生成物(アダクト)として使用することが好ましい。
 硬化促進剤(C)は、エポキシ樹脂(A)100質量部に対して2~12質量部配合される。エポキシ樹脂(A)100質量部に対して、硬化促進剤(C)の配合量が2質量部より少ないと、配合したことの効果が十分に見られず、12質量部を超えると、成型性が低下する。硬化促進剤(C)の配合量は、5~9質量部であることが好ましい。なお、硬化促進剤(C)をアダクトとして使用する場合、硬化促進剤の配合量とは、硬化促進剤以外の成分(エポキシ樹脂等)を除いた硬化促進剤の正味の量を意味する。
 シリコーンゲルまたはシリコーンオイル(D)は、エポキシ樹脂組成物の粘度を調整する役割を担うとともに、硬化物の内部応力を低下させ、硬化物で封止された半導体実装構造体の反りを低減する。シリコーンゲルは、ポリシロキサン構造を持ち、縮合反応方法や付加反応方法により製造される。シリコーンオイルは、やはりポリシロキサン構造を有し、シロキサン結合が概ね2000以下の直鎖構造を有する。これらの製造方法は公知であり、例えば、特開昭54-48720号公報、特開昭48-17847号公報等に記載の製造方法で得ることができる。具体的には、例えば、触媒として白金系化合物の存在下、ビニル基含有オルガノポリシロキサンに、SiH基含有シロキサンをビニル基1個に対して、SiH基0.3~0.8個の割合で反応させることにより、得ることができる。なかでも、シリコーンゲルを使用することが好ましい。
 シリコーンゲルまたはシリコーンオイル(D)は、エポキシ樹脂(A)100質量部に対して5~50質量部配合される。シリコーンゲルまたはシリコーンオイル(D)の配合量が、エポキシ樹脂(A)100質量部に対して5質量部より少ないと、封止された半導体実装構造体の反りが低減されず、50質量部を超えると取扱い性が低下する。シリコーンゲルまたはシリコーンオイル(D)の配合量は、10~40質量部であることが好ましい。
 また、シリコーンゲルまたはシリコーンオイル(D)をエポキシ樹脂に均一に分散させるための分散剤を配合してもよい。分散剤としては、たとえば、分子中に下記式(3)で表される構造を有するオルガノポリシロキサン誘導体を挙げることができる。
     -[-B-A-B-(C-D)n-C-]p- (3)
 式(3)中、Aは、両末端に活性水素含有基を有する、20~50個のシロキサン結合を有するオルガノポリシロキサン化合物残基を表す。Bは、活性水素と反応し得る官能基を2個有する、二官能性有機化合物残基を表す。具体的には、ビフェニルもしくはナフタレン骨格含有エポキシ化合物残基、ジイソシアネート化合物残基またはジカルボン酸化合物残基のいずれかを表す。Cは、活性水素含有基を2個有する、二官能性有機化合物残基を表す。具体的には、エポキシ化合物と反応するビスフェノール化合物残基、ジイソシアネート化合物と反応するグリコール化合物残基またはジカルボン酸化合物と反応するジアミノ化合物残基のいずれかを表す。Dは、活性水素と反応し得る官能基を2個有する、二官能性有機化合物残基を表す。nは1~20の整数を表し、pは1~20の整数を表す。このようなオルガノポリシロキサン誘導体は、オルガノポリシロキサン鎖と芳香環含有鎖または長鎖の脂肪族鎖との両方を含有する。よって、シリコーンゲルまたはシリコーンオイルをエポキシ樹脂に分散させるための分散剤として適切である。
 オルガノポリシロキサン誘導体としては、式(3)における残基Bと残基Dとが同じ化合物残基であってもよく、その場合は、下記式(4)で表される構造を有することができる。
     -[-B-A-B-(C-B)n-C-]p- (4)
 式(4)中、Bは、下記式(5)で表わされる二官能性芳香族エポキシ化合物残基である。
Figure JPOXMLDOC01-appb-C000003
 
(式中、Ar1はビフェニル又はナフタレンから誘導された2価芳香族基を表し、mは1または2の整数を表す。)
 式(4)中、Cは、-O-Ar2-O-(式中、Ar2は2,2-ビスフェニルプロピル基を表す。)で表される二価フェノール化合物残基を表す。
 ポリシロキサン誘導体の製造方法は公知であり、例えば、日本特許第3855074号公報記載の方法を用いることができる。また、好ましい分散剤としてのポリシロキサン誘導体の具体例も上記公報の実施例1(分散剤B)、および、実施例5(分散剤C)に開示されている。その製造方法としては、例えば、フェノール末端シリコーンオイルとナフタレン骨格型ジグリシジルエーテルを反応させ、得られた反応物に、ビスフェノールAジグリシジルエーテルとビスフェノールAとを重合させる方法が挙げられる。これにより、ポリエーテル構造を持ち、末端にエポキシ基を有する分散剤を得ることができる。
 分散剤の配合量としては、シリコーンゲルまたはシリコーンオイル(D)を樹脂中に分散させるために必要な量であればよく、例えば、オルガノポリシロキサン誘導体を分散剤として使用する場合は、シリコーンゲルまたはシリコーンオイル(D)100質量部に対して、5~80質量部であることが好ましく、10~50質量部であることがより好ましい。
 溶融シリカ(E)は、平均粒径2~30μmである。平均粒径が2μmより小さいと、粘度が上昇して取扱い性が低下し、平均粒径が30μmを超えると成型性が低下する。溶融シリカ(E)の平均粒径は、5~25μmであることが好ましい。また、溶融シリカ(E)が、平均粒径0.2~5μmの溶融シリカを5~40重量%含有していることが、取扱い性を向上できる点でより好ましい。なお、(E)溶融シリカは、真球度の高い球状であることが好ましい。また、あらかじめ表面にシランカップリング剤を反応させてもよい。
 平均粒径は、体積粒度分布の累積体積50%における粒径(D50)である。平均粒径D50は、例えば、レーザー回折式の粒度分布測定装置を用いて、レーザー回折散乱法によって測定される値である。
 エポキシ樹脂組成物は、溶融シリカ(E)を80~92質量%含有している。溶融シリカ(E)の含有量が80質量%より少ないと、封止された半導体実装構造体の反りが低減されず、92質量%を超えると、取扱い性が低下する。溶融シリカ(E)の含有量は、83~90質量%であることが好ましい。
 エポキシ樹脂組成物は、25℃、せん断速度2.5(1/s)における粘度が1000Pa・s以下である。この粘度は、測定方法により値が異なる場合は、ブルックフィールド社製、HBT型粘度計を用いて測定される値である。エポキシ樹脂組成物の25℃、せん断速度2.5(1/s)における粘度が1000Pa・sを超えると、圧縮成型時のワイヤースイープや充填不良を起こしやすくなり、また、成型時にスムーズに樹脂を金型に供給することが困難となる。25℃、せん断速度2.5(1/s)における粘度は、800Pa・s以下であることが好ましい。
 エポキシ樹脂組成物は、各成分を所定の比率で配合し、例えば60~120分間攪拌し、その後、減圧下で脱泡してから用いるとよい。また、50~200℃、特には100~175℃で、2~10分程度で硬化させることができる。
 エポキシ樹脂組成物は、芳香環を含むノボラック型エポキシ樹脂を有しているため、硬化物のガラス転移点が高くなる。例えば、硬化物は、動的粘弾性測定(DMA)において、120~220℃のガラス転移点を有している。そのため、エポキシ樹脂組成物を硬化させた後の熱収縮率が小さくなり、硬化物で封止された半導体実装構造体の反りを低減することができる。また、硬化物は剛直な骨格を有するため、ダイシング時の硬化物の欠けが低減される。
 エポキシ樹脂組成物の硬化物は、例えば、動的粘弾性測定(DMA)において、25℃での貯蔵弾性率が10~23GPaとなる。貯蔵弾性率がこの範囲であると、硬化物の内部応力が比較的小さい。よって、硬化物で封止された半導体実装構造体の反りを低減することができる。
 エポキシ樹脂組成物は、他の添加剤を含有していてもよい。添加剤としては、シランカップリング剤やカーボンブラック等が挙げられる。シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。シランカップリング剤の配合量は、エポキシ樹脂100質量部に対して、0.1~10質量部であることが好ましく、1~5質量部であることがより好ましい。カーボンブラックの配合量は、エポキシ樹脂100質量部に対して、0.1~10質量部であることが好ましく、0.5~3質量部であることがより好ましい。
 その他、本発明のエポキシ樹脂組成物には、消泡剤、レベリング剤、顔料などを目的に応じて、適量使用することができる。
 本発明のエポキシ樹脂組成物は、寸法変化が小さく、適度な弾性および粘性を有するため、成型性、耐熱性、耐反り性などの性能が求められる半導体封止材として適している。なかでも、大面積の半導体パッケージであるウエハレベルチップサイズパッケージの封止を、オーバーモールド成型法によって行う際に使用される半導体封止材として好適である。
 オーバーモールド成型としては、例えば、トランスファー成型や圧縮成型などが挙げられる。なかでも、圧縮成型であることが好ましい。オーバーモールド成型は、好ましくは50~200℃、より好ましくは100~175℃で、1~15分間行う。必要に応じて、100~200℃、30分~24時間のポストキュアを行うことができる。
 また、本発明は、エポキシ樹脂組成物の硬化物であるオーバーモールド材を具備する半導体実装構造体に関する。以下、図1(c)、(d)および図2を参照しながら、半導体実装構造体について説明する。半導体実装構造体1は、複数の素子搭載領域24を有する半導体ウエハ基板2と、複数の素子搭載領域24に搭載される複数の半導体ベアチップ3と、複数の半導体ベアチップ3の表面を覆い、かつ、半導体ベアチップ3同士の間に充填されるオーバーモールド材4と、を具備する。ここで、オーバーモールド材4は、本発明のエポキシ樹脂組成物の硬化物である。
 半導体ウエハ基板2は、通常の方法で回路が形成された、個々の半導体チップにダイシングされる前のウエハ基板である。半導体ウエハ基板2は、厚み50~1000μm、直径8インチ以上であってもよい。このような大面積を有する半導体ウエハ基板を封止して形成された半導体実装構造体であっても、オーバーモールド材4を使用することにより、その反りを著しく低減することができる。半導体ベアチップ3としては、ICやLSIといわれる集積回路などが挙げられる。
 半導体実装構造体1は、半導体ウエハ基板2と半導体ベアチップ3との間を充填するアンダーフィル材5を具備していることが、接続信頼性が向上する点で好ましい。アンダーフィル材5としては、特に限定されず、例えば、エポキシ樹脂と硬化剤、硬化促進剤、無機充填剤等を含む組成物を挙げることができる。
 アンダーフィル材5に使用されるエポキシ樹脂としては、特に限定されず、本発明のエポキシ樹脂組成物に使用されるエポキシ樹脂として列挙した中から任意に選択して用いることができる。硬化剤および硬化促進剤としては、本発明のエポキシ樹脂組成物に使用される化合物として列挙した中から任意に選択して用いることができる。無機充填剤としては、溶融シリカの他、結晶シリカ、アルミナ、酸化マグネシウム、窒化珪素等を用いることができる。
 図1(d)に示すように、半導体実装構造体1は、素子搭載領域24ごとに個片化され、個片化半導体実装構造体11として使用される。オーバーモールド材4として、本発明の半導体封止材の硬化物が用いられているため、半導体実装構造体1をダイシングしても、得られる個片化半導体実装構造体11のオーバーモールド材4には、剥離や欠けが生じ難い。
 半導体実装構造体1は、素子搭載領域24ごとに個片化する前に、半導体ウエハ基板2の第二表面(第一表面2aの反対面、図示せず)を薄く削って導体23の一部を露出させ、貫通導体(図示せず)を形成してもよい。さらに、貫通導体の端部に半田ボール等の端子(図示せず)を形成してもよい。
 さらに本発明は、いわゆるチップオンウエハ方式による半導体実装構造体の製造方法に関する。つまり、本発明は、複数の半導体ベアチップがそれぞれ搭載された複数の素子搭載領域を有する半導体ウエハ基板に、半導体封止用エポキシ樹脂組成物を、前記複数の半導体ベアチップの表面を覆い、かつ、前記半導体ベアチップ同士の間に充填されるように、オーバーモールド成型する工程を具備する半導体実装構造体の製造方法である。
 以下、図1および図2を参照しながら、半導体実装構造体1の製造方法および個片化半導体実装構造体11の製造方法について説明する。図1(a)~(c)は半導体実装構造体1の製造方法の一例を説明するための図であり、図1(a)~(d)は個片化半導体実装構造体11の製造方法の一例を説明するための図であり、図2は半導体実装構造体1の一例であって、半導体ウエハ基板2の上面(第一表面2a)から見た模式図である。
 図1(a)は、複数の半導体ベアチップ3を搭載した半導体ウエハ基板2を示している。具体的には、半導体ウエハ基板2における第一表面2aの複数の素子搭載領域24に、第一端子21と接続するように複数の半導体ベアチップ3が搭載されている。第一端子21は、半導体ウエハ基板2にその少なくとも一部が埋め込まれた導体23上に配置された端子である。第一端子21は、半導体ベアチップ3に配置された素子電極31と電気的に接続している。第一端子21および素子電極31の材料や形状は、特に限定されない。導体23としても特に限定されないが、導電性ペーストや金属粒子などの導体により形成される。
 導体23および第一端子21は、例えば、以下のようにして形成することができる。半導体ウエハ基板2をエッチングし、複数の素子搭載領域24のそれぞれに複数の穴を形成する。半導体ウエハ基板2と形成される導体23とが干渉しないように穴の内面に絶縁膜を形成し、その穴に導体23を充填する。この導体23は、例えば、最終的に半導体ウエハ基板2を貫通する貫通導体となる。ついで、半導体ウエハ基板2の第一表面2aを薄く削って、導体23を露出させる。最後に、電解メッキ等により、露出した導体23上にパッドなどの第一端子21を形成する。
 図1(b)に示すように、半導体ウエハ基板2と半導体ベアチップ3との間にアンダーフィル材5が充填されていることが好ましい。半導体ウエハ2基板と半導体ベアチップ3とを導通させている第一端子21を外部の応力から保護し、接続信頼性を向上させるためである。
 このようにして準備された複数の半導体ベアチップを搭載した半導体ウエハ基板に、図1(c)に示すように、本発明のエポキシ樹脂組成物を、エポキシ樹脂組成物が複数の半導体ベアチップ3の表面を覆い、かつ、半導体ベアチップ3同士の間に充填されるように、オーバーモールド成型する。好ましくは、圧縮成型を行う。具体的には、圧縮成型機の下部金型にオーバーモールド材4の材料であるエポキシ樹脂組成物を入れ、半導体ベアチップ3を搭載した半導体ウエハ基板2を上部金型に吸引する。ついで、下部金型を上昇させながら上部金型に押圧するとともに、エポキシ樹脂組成物を加熱して成型する。エポキシ樹脂組成物は加熱により硬化して、オーバーモールド材4となる。
 さらに、図1(d)に示すように、製造された半導体実装構造体1を素子搭載領域24ごとにダイシングして個片化してもよい。オーバーモールド材4として、本発明のエポキシ樹脂組成物の硬化物が用いられているため、半導体実装構造体1をダイシングしても、得られる個片化半導体実装構造体11のオーバーモールド材4は、半導体ウエハ基板から剥離し難く、また、欠けが生じ難い。
 なお、個片化する前に、半導体ウエハ基板2の第二表面を薄く削って、導体23の一部を露出させ、貫通導体(図示せず)を形成してもよい。さらに、貫通導体の端部に半田ボール等の端子(図示せず)を形成してもよい。
 次に、実施例に基づいて、本発明をより具体的に説明する。ただし、以下の実施例は、本発明を限定するものではない。
《実施例1~5、比較例1~6》
 表1に示す各成分を各配合量で配合し、常温(25℃)にてよく撹拌し、均一なエポキシ樹脂組成物を得た。得られた各エポキシ樹脂組成物を、5mm角の半導体チップを複数搭載した直径12インチ、厚み300μmのシリコンウエハ上に圧縮成型し、半導体実装構造体を得た。圧縮成型は、直径12インチ、高さ0.4mmのキャビティを有する下部金型を用いて、110℃、10分間行い、ついで170℃、120分間のポストキュアを施した。
<評価>
 実施例1~5および比較例1~6のエポキシ樹脂組成物、その硬化物、または、エポキシ樹脂組成物によって封止された半導体実装構造体、これを個片化した個片化半導体実装構造体について、以下のように評価を行った。評価結果を、表1に示す。
[粘度・取扱い性]
 エポキシ樹脂組成物の粘度を、25℃、せん断速度2.5(1/s)の条件下、ブルックフィールド社製、HBT型粘度計(スピンドルタイプ:#29)を用いて測定した。また、粘度が1000Pa・s以下である場合を、取扱い性がよいとして○の評価を行い、1000Pa・sを超えた場合を×とした。
[硬化物のガラス転移点(Tg)]
 エポキシ樹脂組成物を110℃、10分で圧縮成型し、ついで170℃、120分間のポストキュアを施して硬化物を得た。得られた硬化物のガラス転移点をDMA法により測定した。昇温速度2℃/分、周波数1Hzの測定条件で、tanδのピーク温度を求めた。ガラス転移点が120℃~220℃である場合を○、それ以外の場合を×とした。
[硬化物の貯蔵弾性率]
 上記と同様にして得られた硬化物について、DMAを用いて、昇温速度2℃/分、周波数1Hzの測定条件で測定し、25℃における貯蔵弾性率を求めた。貯蔵弾性率が10GPaより小さい場合を×、10~23GPaである場合を○、23GPaを超えた場合を×とした。
[半導体実装構造体の反り]
 半導体実装構造体を、半導体ウエハ基板を上にしてレーザー変位計にセットした。中心部と円周上の4点との距離差を測り、その差の平均を反り量とした。反り量が1mmより小さい場合を◎、1~3mmの場合を○、3mmを超えた場合を×とした。
[ダイシング後の断面形状]
 半導体実装構造体をダイシングし、10mm×10mmの個片化された半導体実装構造体を得た。得られた個片化半導体実装構造体の断面を電子顕微鏡撮影(1000倍)し、凹部の大きさを計測した。断面に、10μm以上の凹部がみられない場合を○、10μm以上の凹部がみられる場合を×とした。なお、この凹部は、ダイシング時に切断面の樹脂が欠けることにより生じた、凹みである。
[ダイシング後の剥離]
 半導体実装構造体をダイシングし、10mm×10mmの個片化された半導体実装構造体を得た。得られた個片化半導体実装構造体の断面を電子顕微鏡撮影(1000倍)し、半導体ウエハ基板からオーバーモールド材が剥離しているか否かを、目視により判定した。剥離が認められない場合を○、剥離がある場合を×とした。
Figure JPOXMLDOC01-appb-T000001
 表1中の用語の意味を、以下に示す。
エポキシ樹脂(1):RE-310(日本化薬株式会社製、ビスフェノールA型エポキシ樹脂、エポキシ当量184g/eq)
エポキシ樹脂(2):セロキサイド2021P(ダイセル化学工業株式会社製、脂環式エポキシ樹脂、エポキシ当量135g/eq)
エポキシ樹脂(3):EP4088S(株式会社ADEKA製、ジシクロペンタジエン型エポキシ樹脂、エポキシ当量170g/eq)
エポキシ樹脂(4):HP7200(株式会社DIC製、ジシクロペンタジエンノボラック型エポキシ樹脂、エポキシ当量259g/eq)
エポキシ樹脂(5):NC-3000(日本化薬株式会社製、ビフェニルノボラック型エポキシ樹脂、エポキシ当量278g/eq)
酸無水物:メチルテトラヒドロ無水フタル酸(日立化成株式会社製、酸無水物当量164g/eq)
溶融シリカ:平均粒径20μm
シリコーンオイル:エポキシ基含有シリコーンオイル(エポキシ当量1200、25℃での粘度700Pa・s)
シリコーンゲル:2液型シリコーンゲル(TSE3062、GE東芝シリコーン社製)
シランカップリング剤:3-グリシドキシプロピルトリメトキシシラン
カーボンブラック:#2600(三菱化学株式会社製)
硬化促進剤:アミキュアPN-23(アミンアダクト系潜在性硬化促進剤、味の素株式会社製)
 実施例1~5のエポキシ樹脂組成物は、取扱い性がよく、得られた半導体実装構造体の反りが小さかった。また、ダイシング後の樹脂欠けや剥離は認められなかった。図3および図5に、実施例2で得られた半導体実装構造体の断面における電子顕微鏡写真を示す。
 比較例1のエポキシ樹脂組成物は、取扱い性は良好であったが、得られた半導体実装構造体は反りが大きかった。ノボラック型エポキシ樹脂に換えて脂環式のエポキシ樹脂を使用しているため、硬化物の熱膨張率が高く、寸法変化が大きかったためと考えられる。また、ダイシング後の樹脂欠けが大きく、硬化物の強度が不十分であったことがわかる。さらに、硬化物の剥離も確認できた。
 比較例2のエポキシ樹脂組成物は、取扱い性は良好であったが、硬化物のガラス転移点が低く、得られた半導体実装構造体は反りが大きかった。また、硬化物の強度が不十分であったため、図4に示すように、ダイシング後の硬化物の欠けが大きく、表面に激しい凹凸が生じ、硬化物の角が削られていた。さらに、図6に示すように、硬化物と半導体ウエハ基板との界面付近には亀裂が生じ、剥離が認められた。
 比較例3のエポキシ樹脂組成物は、シリコーンゲルの配合量が過剰であったため、取扱い性に劣っていた。
 比較例4のエポキシ樹脂組成物は、ノボラック型エポキシ樹脂の含有量が多かったため、取扱い性に劣っていた。
 比較例5のエポキシ樹脂組成物は、取扱い性は良好であったが、溶融シリカの配合量が少なかったため、硬化物の弾性率が低くなり、得られた半導体実装構造体は反りが大きかった。また、ダイシング後の硬化物の欠けが大きく、硬化物の強度が不十分であったことがわかる。
 比較例6のエポキシ樹脂組成物は、エポキシ樹脂としてノボラック型エポキシ樹脂のみを使用したため、取扱い性に劣っていた。また、ダイシング後の硬化物の欠けが大きく、さらに半導体ウエハと硬化物との界面で剥離が認められた。これは、ノボラック型エポキシ樹脂のみを使用したことで、靭性が低くなったために発生したと考えられる。
 本発明のエポキシ樹脂組成物は、特に、大面積の半導体ウエハを用いるウエハレベルチップサイズパッケージの封止を、例えば、圧縮成型法によって行う際に使用されるオーバーモールド材として有用である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
1:半導体実装構造体、2:半導体ウエハ基板、2a:第一表面、21:第一端子、23:導体、24:素子搭載領域、3:半導体ベアチップ、31:素子電極、4:オーバーモールド材、5:アンダーフィル材、11:個片化半導体実装構造体

Claims (11)

  1.  (A)ノボラック型エポキシ樹脂を10~45質量%含むエポキシ樹脂100質量部と、
     (B)酸無水物50~150質量部と、
     (C)硬化促進剤2~12質量部と、
     (D)シリコーンゲルまたはシリコーンオイル5~50質量部と、
     (E)平均粒径2~30μmの溶融シリカと、を含み、
     前記(E)溶融シリカの含有量が80~92質量%であり、
     25℃でのせん断速度2.5(1/s)における粘度が1000Pa・s以下である、半導体封止用エポキシ樹脂組成物。
  2.  前記ノボラック型エポキシ樹脂が、ジシクロペンタジエンノボラック型エポキシ樹脂およびビフェニルノボラック型エポキシ樹脂よりなる群から選択される少なくとも1種である請求項1に記載の半導体封止用エポキシ樹脂組成物。
  3.  硬化物において、DMA法で測定したガラス転移温度が120~220℃であり、かつ25℃での貯蔵弾性率が10~23GPaである、請求項1または2に記載の半導体封止用エポキシ樹脂組成物。
  4.  (a)複数の素子搭載領域を有する半導体ウエハ基板と、
     (b)前記複数の素子搭載領域にそれぞれ搭載される複数の半導体ベアチップと、
     (c)前記複数の半導体ベアチップの表面を覆い、かつ、前記半導体ベアチップ同士の間に充填されるオーバーモールド材と、を具備し、
     前記オーバーモールド材が、請求項1~3のいずれか1項に記載の半導体封止用エポキシ樹脂組成物の硬化物である、半導体実装構造体。
  5.  前記半導体ウエハ基板と前記半導体ベアチップとの間に充填されるアンダーフィル材を具備する、請求項4に記載の半導体実装構造体。
  6.  前記半導体ウエハ基板が、厚み50~1000μm、直径8インチ以上である、請求項4または5に記載の半導体実装構造体。
  7.  請求項4~6のいずれか1項に記載の半導体実装構造体を、前記素子搭載領域ごとに個片化して得られる、個片化半導体実装構造体。
  8.  複数の半導体ベアチップがそれぞれ搭載された複数の素子搭載領域を有する半導体ウエハ基板に、請求項1~3のいずれか1項に記載の半導体封止用エポキシ樹脂組成物を、前記複数の半導体ベアチップの表面を覆い、かつ、前記半導体ベアチップ同士の間に充填されるように、オーバーモールド成型する工程を具備する、半導体実装構造体の製造方法。
  9.  前記オーバーモールド成型が、圧縮成型である、請求項8に記載の半導体実装構造体の製造方法。
  10.  前記半導体ウエハ基板と前記半導体ベアチップとの間に充填されたアンダーフィル材を具備する、請求項8または9に記載の半導体実装構造体の製造方法。
  11.  請求項8~10のいずれか1項に記載の製造方法により得られた半導体実装構造体を、前記素子搭載領域ごとにダイシングして個片化する工程を具備する、個片化半導体実装構造体の製造方法。
     
PCT/JP2014/004986 2013-09-30 2014-09-30 半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法 WO2015045422A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167010741A KR20160065897A (ko) 2013-09-30 2014-09-30 반도체 밀봉용 에폭시 수지 조성물, 반도체 실장 구조체, 및 그의 제조방법
SG11201602467TA SG11201602467TA (en) 2013-09-30 2014-09-30 Epoxy resin composition for encapsulation of semiconductors, semiconductor package structure, and method for manufacturing same
EP14849554.2A EP3042932A4 (en) 2013-09-30 2014-09-30 Epoxy resin composition for use in sealing of semiconductors, and semiconductor-packaged structure and method for producing same
CN201480054018.8A CN105593296B (zh) 2013-09-30 2014-09-30 半导体密封用环氧树脂组合物、半导体安装结构体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-205074 2013-09-30
JP2013205074A JP6315170B2 (ja) 2013-09-30 2013-09-30 半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015045422A1 true WO2015045422A1 (ja) 2015-04-02

Family

ID=52742590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004986 WO2015045422A1 (ja) 2013-09-30 2014-09-30 半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法

Country Status (7)

Country Link
EP (1) EP3042932A4 (ja)
JP (1) JP6315170B2 (ja)
KR (1) KR20160065897A (ja)
CN (1) CN105593296B (ja)
SG (1) SG11201602467TA (ja)
TW (1) TWI629296B (ja)
WO (1) WO2015045422A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657566B2 (ja) * 2015-02-24 2020-03-04 三菱ケミカル株式会社 低粘度樹脂組成物
EP3173434B1 (en) * 2014-07-24 2019-11-20 Mitsubishi Chemical Corporation Thermosetting resin composition and molded body thereof
WO2018181813A1 (ja) * 2017-03-31 2018-10-04 日立化成株式会社 エポキシ樹脂組成物及び電子部品装置
JPWO2019004458A1 (ja) * 2017-06-29 2020-04-30 日立化成株式会社 封止用樹脂組成物、再配置ウエハ、半導体パッケージ及び半導体パッケージの製造方法
CN109698137B (zh) * 2017-10-20 2020-09-29 中芯国际集成电路制造(上海)有限公司 芯片封装方法及芯片封装结构
KR102264929B1 (ko) 2018-12-20 2021-06-14 삼성에스디아이 주식회사 정제 상의 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 장치
KR20220019042A (ko) 2019-06-11 2022-02-15 쿨리케 & 소파 네덜란드 비.브이. 광학 시스템 특성의 조정에 의해 개별 콤포넌트의 어셈블레에서의 위치 오차 보상

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448720A (en) 1977-09-21 1979-04-17 Dow Corning Manufacture of silicone gel
JPH1095835A (ja) * 1996-07-30 1998-04-14 Nippon Kayaku Co Ltd 半導体封止用エポキシ樹脂液状組成物
JP3855074B2 (ja) 1995-03-14 2006-12-06 ナガセケムテックス株式会社 オルガノポリシロキサン誘導体
WO2009142065A1 (ja) * 2008-05-21 2009-11-26 ナガセケムテックス株式会社 電子部品封止用エポキシ樹脂組成物
JP2011195742A (ja) 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd 液状樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法
JP2012069879A (ja) * 2010-09-27 2012-04-05 Taiyo Holdings Co Ltd 熱硬化性樹脂充填材
JP2012209453A (ja) 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd 液状樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法
JP2013010940A (ja) 2011-06-01 2013-01-17 Sumitomo Bakelite Co Ltd 液状樹脂組成物およびそれを用いた半導体装置
JP2013253135A (ja) * 2012-06-05 2013-12-19 Sumitomo Bakelite Co Ltd 樹脂組成物、半導体装置、多層回路基板および電子部品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW430685B (en) * 1996-07-30 2001-04-21 Nippon Kayaku Kk Epoxy resin liquid composition for semiconductor encapsulation
CN1178230A (zh) * 1996-07-30 1998-04-08 日本化药株式会社 半导体封装用环氧树脂液体组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448720A (en) 1977-09-21 1979-04-17 Dow Corning Manufacture of silicone gel
JP3855074B2 (ja) 1995-03-14 2006-12-06 ナガセケムテックス株式会社 オルガノポリシロキサン誘導体
JPH1095835A (ja) * 1996-07-30 1998-04-14 Nippon Kayaku Co Ltd 半導体封止用エポキシ樹脂液状組成物
WO2009142065A1 (ja) * 2008-05-21 2009-11-26 ナガセケムテックス株式会社 電子部品封止用エポキシ樹脂組成物
JP2011195742A (ja) 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd 液状樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法
JP2012069879A (ja) * 2010-09-27 2012-04-05 Taiyo Holdings Co Ltd 熱硬化性樹脂充填材
JP2012209453A (ja) 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd 液状樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法
JP2013010940A (ja) 2011-06-01 2013-01-17 Sumitomo Bakelite Co Ltd 液状樹脂組成物およびそれを用いた半導体装置
JP2013253135A (ja) * 2012-06-05 2013-12-19 Sumitomo Bakelite Co Ltd 樹脂組成物、半導体装置、多層回路基板および電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3042932A4

Also Published As

Publication number Publication date
TW201522435A (zh) 2015-06-16
CN105593296B (zh) 2018-01-16
EP3042932A4 (en) 2017-04-26
CN105593296A (zh) 2016-05-18
TWI629296B (zh) 2018-07-11
JP6315170B2 (ja) 2018-04-25
KR20160065897A (ko) 2016-06-09
JP2015067788A (ja) 2015-04-13
SG11201602467TA (en) 2016-05-30
EP3042932A1 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6315170B2 (ja) 半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法
JP4892164B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP6090614B2 (ja) 半導体封止用液状エポキシ樹脂組成物及び樹脂封止半導体装置
JP7375541B2 (ja) エポキシ樹脂組成物、及び電子部品装置
JP6233441B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2015193851A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2024096265A (ja) 樹脂組成物及び電子部品装置
JP7343096B2 (ja) 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法
JP2009057575A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP5708666B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2019001841A (ja) エポキシ樹脂組成物及び該組成物の硬化物を備える半導体装置
JP2018188580A (ja) 熱伝導性エポキシ樹脂封止用組成物
JP2016040393A (ja) 液状エポキシ樹脂組成物及び電子部品装置
TW201806043A (zh) 大面積的搭載有半導體元件的基材的封裝方法
JP2015180760A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2015110803A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP6025043B2 (ja) 半導体封止用エポキシ樹脂組成物および半導体装置
JP5924443B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP5929977B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
KR102659602B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
JP7573358B2 (ja) 樹脂組成物及び電子部品装置
JP5804479B2 (ja) 樹脂封止型半導体装置の製造方法及び樹脂封止型半導体装置
JP2009256475A (ja) 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
KR20170079115A (ko) 반도체 봉지용 에폭시 수지 조성물
JP2023128788A (ja) 封止用樹脂組成物および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014849554

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849554

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167010741

Country of ref document: KR

Kind code of ref document: A