WO2015045397A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2015045397A1
WO2015045397A1 PCT/JP2014/004921 JP2014004921W WO2015045397A1 WO 2015045397 A1 WO2015045397 A1 WO 2015045397A1 JP 2014004921 W JP2014004921 W JP 2014004921W WO 2015045397 A1 WO2015045397 A1 WO 2015045397A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
annealing
grain
oriented electrical
recrystallization annealing
Prior art date
Application number
PCT/JP2014/004921
Other languages
English (en)
French (fr)
Other versions
WO2015045397A8 (ja
Inventor
雅紀 竹中
今村 猛
早川 康之
之啓 新垣
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020167009329A priority Critical patent/KR101756606B1/ko
Priority to US14/915,708 priority patent/US9978489B2/en
Priority to CN201480052914.0A priority patent/CN105579596B/zh
Priority to EP14848446.2A priority patent/EP3050979B1/en
Priority to JP2015507278A priority patent/JP5780378B1/ja
Priority to RU2016116192A priority patent/RU2625350C1/ru
Publication of WO2015045397A1 publication Critical patent/WO2015045397A1/ja
Publication of WO2015045397A8 publication Critical patent/WO2015045397A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for producing a so-called grain-oriented electrical steel sheet in which crystal grains are Miller indices and ⁇ 110 ⁇ planes are accumulated on the plate surface and ⁇ 001> orientation is accumulated in the rolling direction.
  • the grain-oriented electrical steel sheet is a soft magnetic material and is mainly used as an iron core of electrical equipment such as a transformer.
  • grain oriented electrical steel sheets exhibit excellent magnetic properties by accumulating crystal grains in ⁇ 110 ⁇ ⁇ 001> orientation (hereinafter referred to as Goth orientation) by secondary recrystallization annealing (for example, , See Patent Document 1).
  • Goth orientation crystal grains in ⁇ 110 ⁇ ⁇ 001> orientation
  • secondary recrystallization annealing for example, , See Patent Document 1.
  • the main component is iron loss W 17/50 per kg of steel plate when magnetized up to 1.7T with magnetic field strength: magnetic flux density B 8 at 800A / m and excitation frequency: 50Hz AC magnetic field. It is used for.
  • One means for reducing iron loss in grain-oriented electrical steel sheets is to highly accumulate crystal grains after secondary recrystallization annealing in the Goss orientation.
  • Patent Document 1 discloses a method using AlN and MnS
  • Patent Document 3 discloses a method using MnS and MnSe, both of which are industrially put into practical use.
  • uniform fine dispersion of the inhibitor is an ideal state, but in order to achieve this, slab heating before hot rolling must be performed at a high temperature of 1300 ° C. or higher.
  • slab heating before hot rolling must be performed at a high temperature of 1300 ° C. or higher.
  • excessive coarsening of the slab crystal structure occurs with high-temperature slab heating.
  • the slab structure is the ⁇ 100 ⁇ ⁇ 011> direction, which is mainly a hot-rolling stable direction, and such coarsening of the slab structure results in significant inhibition of secondary recrystallization and greatly deteriorates magnetic properties.
  • high-temperature slab heating type grain-oriented electrical steel sheets using inhibitors contain about 0.03 to 0.08% of C in the material for the purpose of destroying the coarse slab structure using ⁇ - ⁇ transformation during hot rolling. It is essential. However, if C remains in the product plate, the magnetic properties of the product plate are significantly deteriorated. For this reason, it is also essential to perform decarburization annealing in any step after hot rolling to reduce the C content in the product plate to about 0.003% or less.
  • Patent Document 4 discloses that the heating temperature of the slab is set to a low temperature of 1200 ° C. or less, and in the slab heating stage, an inhibitor-forming element such as Al, N, Mn, S or the like is introduced into the steel. Do not completely dissolve.
  • an inhibitor-forming element such as Al, N, Mn, S or the like is introduced into the steel. Do not completely dissolve.
  • the inhibitor After decarburization annealing, in a strong reducing atmosphere, by annealing in a state under which travel steel, for example, by NH 3 and in a mixed atmosphere of H 2, the inhibitor as a main composition of (Al, Si) N
  • a so-called nitriding treatment technique is disclosed in which, by forming, a magnetic property equivalent to that of high-temperature slab heating is exhibited even in low-temperature slab heating.
  • Patent Document 5 discloses that for a silicon steel slab containing C ⁇ 0.02%, the rough hot rolling start temperature is set to 1250 ° C. or lower, the cumulative rolling reduction at 900 ° C. or higher is 80% or higher, and at least one pass is 35%.
  • a method of breaking the slab structure even in low-C materials by performing strain accumulation rolling in which the cumulative reduction at 900 ° C. or lower is 40% or higher after recrystallization hot rolling that applies a reduction of higher than or equal to 50%. Has been.
  • this method does not cause high-temperature slab heating even though it contains an inhibitor element such as Al or N, so that fine precipitation of the inhibitor does not occur, and nitriding as described above is also performed.
  • Patent Document 6 discloses that, for a silicon steel slab containing C: 0.0005 to 0.004%, rough hot rolling is started in a temperature range of 1000 ° C. to 1200 ° C., and if necessary, in a temperature range of 700 ° C. to 1100 ° C. After annealing for a short time, cold rolling at least once with one or intermediate annealing in between, and heating the steel plate in the temperature range of 850 °C to 1050 °C for more than 1 second and less than 200 seconds. A method for performing nitriding is disclosed. However, even in this method, although it contains an inhibitor element such as Al, N, etc., since high-temperature slab heating is not performed, fine precipitation of the inhibitor is insufficient.
  • an inhibitor element such as Al, N, etc.
  • Japanese Patent Publication No. 40-15644 JP 2001-60505 A Japanese Patent Publication No.51-13469 Japanese Patent Laid-Open No. 5-1112827 JP 57-114614 A JP-A-6-346147
  • the conventional primary recrystallization texture control technique as in Patent Document 2 is a high-temperature slab heating type (heating temperature: 1200 ° C. or higher) manufacturing technique using an inhibitor. For this reason, there is a restriction that it is essential to contain about 0.03 to 0.08% of C in the material for the purpose of destroying the structure of the coarse slab using the ⁇ - ⁇ transformation during hot rolling. It was only a technique for defining a good range.
  • the present invention solves the above-mentioned problem, without restricting the inclusion of a relatively large amount of C, it is possible to effectively grow goth-oriented grains to obtain good magnetic properties, and high yield, It aims at proposing the manufacturing method of the grain-oriented electrical steel sheet which has low cost and high productivity.
  • the inventors have made extensive studies by paying attention to the solute C amount of the steel sheet before the final cold rolling.
  • the magnetic properties of the product plate are remarkably improved by reducing the solute C amount of the steel plate before the final cold rolling to the limit.
  • the amount of C in the slab is limited to the range of 0.0005% to 0.005% by mass%
  • the amount of Si is limited to the range of 2.0% to 4.5% by mass%, and after the heating step immediately before the final cold rolling.
  • the aging index AI Aging Index
  • ⁇ 554 ⁇ ⁇ 225 with respect to the random strength of the texture of the central layer of the thickness of the primary recrystallization annealing plate.
  • the strength ratio is 12 or more, and the ratio of ⁇ 554 ⁇ ⁇ 225> strength to ⁇ 111 ⁇ ⁇ 110> strength can be 7 or more, which makes it clear that the magnetic properties are further improved. It was.
  • the present invention is based on the above findings, and the gist of the present invention is as follows. 1. By mass%, C: 0.0005 to 0.005%, Si: 2.0 to 4.5%, Mn: 0.005 to 0.3%, S and / or Se (total): 0.05% or less, sol.Al: 0.010 to 0.04%, N: 0.005 %, With the balance being Fe and an inevitable impurity composition, the steel slab is heated and then hot-rolled and subjected to hot-rolled sheet annealing as necessary, and then sandwiches once or intermediate annealing 2 It is a method for producing a grain-oriented electrical steel sheet that produces a grain-oriented electrical steel sheet by a series of steps in which a final thickness is obtained by cold rolling more than once, then subjected to primary recrystallization annealing, and further subjected to secondary recrystallization annealing, Using the solid solution C amount parameter X calculated from the following equation (1), the average cooling rate R (° C./s) between 800 and 200
  • the steel slab is further in terms of mass%: Ni: 0.005-1.5%, Sn: 0.005-0.50%, Sb: 0.005-0.50%, Cu: 0.005-1.5%, Cr: 0.005-0.10%, P: 0.005-0.50 % And Mo: The method for producing a grain-oriented electrical steel sheet according to 1 or 2 above, containing one or more selected from 0.005 to 0.50%.
  • one or more selected from sulfides, sulfates, selenides, and selenates are added to the annealing separator applied to the steel plate before the secondary recrystallization annealing.
  • the primary recrystallized plate texture can be controlled so as to be strongly accumulated in the Goss direction in the product plate. Therefore, after the secondary recrystallization annealing, it has superior magnetic properties as compared with the conventional case. It becomes possible to manufacture a grain-oriented electrical steel sheet. In particular, even with a thin steel plate with a thickness of 0.23 mm for which it is difficult to achieve a high magnetic flux density, excellent magnetic properties such that the magnetic flux density B 8 after secondary recrystallization annealing is 1.92 T or more can be obtained. it can.
  • the low cost by lowering the slab heating temperature, possibly eliminating decarburization annealing, and improving the product yield by uniform organization in the longitudinal direction, width direction and thickness direction of the coil. Can be achieved.
  • % display regarding a steel plate component shall mean the mass%.
  • the balance is three types of steel consisting of Fe and inevitable impurities, Steel A (C: 0.0037%, Si: 2.81%, Mn: 0.07%, S: 0.006%, Se: 0.006%, sol.Al: 0.014%, N : 0.0044%), Steel B (C: 0.0019%, Si: 3.59%, Mn: 0.08%, S: 0.003%, Se: 0.009%, sol.Al: 0.028%, N: 0.0026%) and Steel C (C : 0.0043%, Si: 3.85%, Mn: 0.05%, S: 0.002%, Se: 0.016%, sol.Al: 0.022%, N: 0.0030%) After heating to 1200 ° C, 2.4mm thickness Until hot rolled.
  • FIG. 1 shows the results of examining the effect of the cooling rate after hot-rolled sheet annealing on the aging index AI (Aging Index) of a hot-rolled sheet annealed sheet (steel sheet after hot-rolled sheet annealing and before final cold rolling).
  • AI Aging Index
  • the aging index AI a No. 5 tensile test piece was cut out from the full thickness sample of the steel sheet before the final cold rolling according to JIS Z 2241, and the initial strain rate was 1 ⁇ 10 -3 and the nominal strain was 7.5%.
  • X shown in the following formula (1) is set as a solute C content parameter, and using this X, the upper limit R of the average cooling rate between 800 and 200 ° C. after hot-rolled sheet annealing of each steel sheet. H was set as shown in the following equation (2).
  • the upper limit average cooling rates R H of the present invention between 800 to 200 ° C. after the hot-rolled sheet annealing calculated from the steel compositions of the steels A, B, and C are 76 ° C./s, 70 ° C./s, respectively. 58 ° C / s.
  • X [% Si] /28.09+100 [% C] /12.01 (1)
  • R H 10 / X (2) As shown in FIG.
  • the aging index AI decreased as the solute C content parameter X decreased.
  • the average cooling rate R between 800 to 200 ° C. after the hot-rolled sheet annealing satisfies R ⁇ R H
  • the aging index AI is 70 MPa or less.
  • FIG. 2 shows ⁇ ⁇ 225> strength and ⁇ 554 ⁇ ⁇ 225> strength of the center thickness layer of the primary recrystallization annealed plate (the steel plate after the primary recrystallization annealing).
  • 111 ⁇ ⁇ ratio to ⁇ 110> strength shows the results of examining the influence of the aging index AI of the hot-rolled sheet annealed sheet.
  • the crystal orientation of the primary recrystallized annealed plate the thinned sample polished to the thickness center layer was etched with 10% nitric acid for 30 seconds and X-ray Schulz method (110), (200), (211) The surface was measured, ODF (Orientation Distribution Function) analysis was performed from the data, and the intensity of each crystal orientation was calculated.
  • ODF Orientation Distribution Function
  • FIG. 3 shows the results of examining the influence of the aging index AI of the hot-rolled sheet annealing plate on the magnetic flux density B 8 of the product plate.
  • the magnetic flux density improved as the aging index AI of the hot-rolled sheet annealed plate decreased.
  • the magnetic flux density B 8 ⁇ 1.93T.
  • the upper limit average cooling rate R H 800 to 200 ° C.
  • 10 / X 70 ° C./s.
  • primary recrystallization annealing was performed at 800 ° C. for 20 s. The heating rate between 500 and 700 ° C. during the primary recrystallization annealing was varied in the range of 10 to 300 ° C./s.
  • FIG. 4 shows the primary effects on the ratio of the center thickness of the primary recrystallized annealing plate to the random strength ( ⁇ 554 ⁇ ⁇ 225> strength and the ratio of ⁇ 554 ⁇ ⁇ 225> strength to ⁇ 111 ⁇ ⁇ 110> strength).
  • the results of investigating the influence of the heating rate between 500 and 700 ° C during recrystallization annealing are shown below.
  • the ⁇ 554 ⁇ ⁇ 225> strength of the central thickness layer of the primary recrystallization annealed plate increases as the rate of temperature increase between 500 and 700 ° C. during the primary recrystallization anneal decreases.
  • ⁇ 554 ⁇ ⁇ 225> strength to ⁇ 111 ⁇ ⁇ 110> strength also increased.
  • the ⁇ 554 ⁇ ⁇ 225> strength ratio is 12 or more, and the ⁇ 554 ⁇ ⁇ 225> strength with respect to the ⁇ 111 ⁇ ⁇ 110> strength. The ratio could be 7 or more.
  • FIG. 5 shows the ⁇ 111 ⁇ strength ratio ( ⁇ 554 ⁇ ⁇ 225> strength and ⁇ 554 ⁇ ⁇ 225> strength) of the thickness center layer of the primary recrystallization annealed plate on the magnetic flux density (B 8 ) of the product plate.
  • ⁇ ⁇ Ratio to ⁇ 110> strength The results of the investigation are shown.
  • the ⁇ 554 ⁇ ⁇ 225> strength ratio is 12 or more and the ratio of ⁇ 554 ⁇ ⁇ 225> strength to ⁇ 111 ⁇ ⁇ 110> strength is 7 in the thickness center layer of the primary recrystallization annealed plate. with more became magnetic flux density (B 8) ⁇ 1.93T.
  • the cooling rate between 800 and 200 ° C after hot-rolled sheet annealing is controlled below the upper limit average cooling rate RH calculated from the material C content and Si content.
  • RH the upper limit average cooling rate
  • the average temperature increase rate between 500 to 700 ° C. of primary recrystallization annealing is adjusted to 100 ° C./s or less, and the ⁇ 554 ⁇ ⁇ 225> strength ratio is set to 12 in the thickness center layer of the primary recrystallization annealing plate.
  • the magnetic flux density can be further increased by setting the ratio of ⁇ 554 ⁇ ⁇ 225> strength to ⁇ 111 ⁇ ⁇ 110> strength to 7 or more.
  • the aging index of the steel sheet decreases before the final cold rolling, that is, the amount of dissolved C decreases, the ⁇ 554 ⁇ ⁇ 225> strength and ⁇ 554 ⁇ ⁇ 225> strength ⁇ 111 ⁇ ⁇
  • the reason why the ratio of 110> intensity has increased is not necessarily clear, but the inventors consider as follows.
  • the amount of the material C is reduced, the amount of solid solution C in the grains is reduced, and the amount of carbides precipitated at the grain boundaries is reduced, so that the grain boundary restraining force is reduced.
  • the local deformation region due to the shear band during cold rolling is reduced, and a sharp cold rolling texture is formed.
  • the aging index of the steel sheet before the final cold rolling is controlled by controlling the cooling rate between 800 ° C and 200 ° C after hot-rolled sheet annealing to the upper limit average cooling rate RH calculated from the amount of material C and Si. AI can be effectively reduced. As a result, it is considered that ⁇ 554 ⁇ ⁇ 225> which is the main orientation in the primary recrystallization annealing is sharpened.
  • the rate of temperature rise is preferably on the low speed side.
  • the rate of temperature rise is preferably a rate at which primary recrystallization is completed in a short time assuming continuous annealing, and is 10 ° C./s from this viewpoint.
  • the secondary recrystallized annealed plate (steel plate after secondary recrystallized anneal)
  • a grain boundary having a misorientation angle of 25 ° to 40 ° has a high mobility.
  • the azimuth difference angle with respect to the Goth azimuth is 29.5 ° for ⁇ 554 ⁇ ⁇ 225> and 46.0 ° for ⁇ 111 ⁇ ⁇ 110>.
  • the azimuth difference angle with respect to an azimuth rotated by 20 ° from the Goss azimuth about ND // ⁇ 110> is 35.5 ° for ⁇ 554 ⁇ ⁇ 225> and 36.6 ° for ⁇ 111 ⁇ ⁇ 110>.
  • the presence of ⁇ 111 ⁇ ⁇ 110> primary recrystallized grains facilitates selection of orientation grains that deviate from the Goss orientation with respect to ND // ⁇ 110> as the axis when selecting secondary recrystallization nuclei. Cause deterioration of magnetic properties. Therefore, it is considered essential to increase ⁇ 554 ⁇ ⁇ 225> primary recrystallized grains and decrease ⁇ 111 ⁇ ⁇ 110> in order to achieve high magnetic flux density of the secondary recrystallization annealed plate. It is done.
  • C 0.0005% or more and 0.005% or less C is one of the characteristics in the present invention.
  • the lower the amount of C the better. Therefore, the amount is limited to 0.005% or less.
  • the practical content was set to 0.0005% as the lower limit.
  • the amount of solute C is reduced by performing precipitation treatment before the final cold rolling, specifically annealing at 100 to 500 ° C for a long time and then gradually cooling to the furnace. If possible, the same effect as the present invention can be exhibited.
  • Si 2.0% or more and 4.5% or less Si is an element that is extremely effective in increasing the electrical resistance of steel and reducing eddy current loss that constitutes a part of iron loss.
  • the electrical resistance increases monotonously up to a content of 11%, but the workability is significantly reduced when the content exceeds 4.5%.
  • the Si content is set to 2.0% to 4.5%.
  • Mn 0.005% or more and 0.3% or less
  • Mn combines with S and Se to form MnS and MnSe, and these MnS and MnSe act as an inhibitor that suppresses normal grain growth during the temperature rising process of secondary recrystallization annealing.
  • the amount of Mn is less than 0.005%, the absolute amount of the inhibitor is insufficient, so that the ability to suppress normal grain growth is insufficient.
  • the amount of Mn exceeds 0.3%, in order to completely dissolve Mn in the slab heating process before hot rolling, not only high temperature slab heating is required, but also the inhibitor precipitates coarsely. In addition, the ability to suppress normal grain growth is reduced. Therefore, the Mn content is set to 0.005% or more and 0.3% or less.
  • sol.Al 0.01% or more and 0.04% or less sol.Al acts as an inhibitor in suppressing the growth of normal grains in the temperature increase process of secondary recrystallization annealing. It is an important element. However, if the content of sol.Al is less than 0.01%, the absolute amount of the inhibitor is insufficient, so that the ability to suppress normal grain growth is insufficient. On the other hand, when the content of sol.Al exceeds 0.04%, AlN is coarsely precipitated, so that the ability to suppress normal grain growth is still insufficient. Therefore, sol.Al is made 0.01% or more and 0.04% or less.
  • N 0.005% or less N combines with Al to form an inhibitor, but it is important to increase the amount of dissolved Al by reducing it as much as possible in the slab stage. By doing so, the inhibitor inhibitory power reinforcement
  • Ni 0.005% or more and 1.5% or less Since Ni is an austenite generating element, it is an element useful for improving the hot rolled sheet structure and improving magnetic properties by utilizing the austenite transformation. However, if the content is less than 0.005%, the effect of improving the magnetic properties is small. On the other hand, if the content is more than 1.5%, the workability deteriorates and the plateability deteriorates, and the secondary recrystallization becomes unstable and magnetic. Since the characteristics deteriorate, Ni is set in the range of 0.005 to 1.5%.
  • Sn 0.005% to 0.50%
  • Sb 0.005% to 0.50%
  • Cu 0.005% to 1.5%
  • Cr 0.005% to 0.10%
  • P 0.005% to 0.50%
  • Mo 0.005% or more 0.50% or less
  • Sn, Sb, Cu, Cr, P and Mo are all useful elements for improving magnetic properties.
  • Sn is 0.005% to 0.50%
  • Sb is 0.005% to 0.50%
  • Cu is 0.005% to 1.5%
  • Cr is 0.005% to 0.10%
  • P is 0.005% to 0.50%
  • Mo is 0.005. % To 0.50% or less, respectively.
  • Ti 0.001% or more and 0.1% or less
  • Nb 0.001% or more and 0.1% or less
  • V 0.001% or more and 0.1% or less All Ti, Nb and V precipitate as carbides and nitrides, and reduce solid solution C and N Is an effective element.
  • each content is less than the lower limit of the above range, the effect of improving the magnetic properties is poor.
  • each content exceeds the upper limit of the above range, a precipitate composed of the element remaining on the product plate. causess deterioration of iron loss. Accordingly, Ti is contained in the range of 0.001% to 0.1%, Nb is contained in the range of 0.001% to 0.1%, and V is contained in the range of 0.001% to 0.1%.
  • the steel slab having the above component composition is hot-rolled after slab heating.
  • Slab heating temperature shall be 1250 °C or less. This is because as the slab heating temperature is lowered, the slab particle size is refined and the amount of accumulated strain during hot rolling increases, which is effective for refinement of the hot-rolled sheet structure.
  • the hot rolled sheet structure is improved by annealing the rolled sheet.
  • the hot-rolled sheet annealing at this time is preferably performed under conditions of a soaking temperature: 800 ° C. or more and 1200 ° C. or less, and a soaking time: 2 seconds or more and 300 seconds or less. If the soaking temperature of hot-rolled sheet annealing is less than 800 ° C., the improvement of the hot-rolled sheet structure is not complete, and an unrecrystallized portion remains, so that a desired structure may not be obtained.
  • the soaking temperature of the hot-rolled sheet annealing is 800 ° C. or more and 1200 ° C. or less. Further, if the soaking time is less than 2 s, the high temperature holding time is short, and thus there is a possibility that an unrecrystallized portion remains and a desired structure cannot be obtained.
  • the soaking time for hot-rolled sheet annealing is preferably 2 s or more and 300 s or less.
  • the cooling process after hot-rolled sheet annealing is one of the features of the present invention.
  • the aging index AI of the steel sheet can be reduced to 70 MPa or less, whereby good magnetic properties can be obtained.
  • the temperature range where the average cooling rate during cooling should be controlled between 800-200 ° C is because this temperature range is carbide (Fe 3 C, ⁇ -carbide, etc.) or nitride (AlN, Si 3 N 4). This is because of the precipitation temperature range.
  • the average cooling rate in this temperature range the solid solution of C and N can be effectively reduced.
  • the average cooling rate R (° C./s) between 800 and 200 ° C. after hot rolling may be controlled to be equal to or lower than the upper limit average cooling rate RH calculated from the material C amount and the Si amount.
  • the steel sheet may be rolled to the final sheet thickness by two or more cold rollings after the intermediate annealing without performing the hot rolling sheet annealing or the hot rolling sheet annealing.
  • the intermediate annealing is preferably performed at a soaking temperature of 800 ° C. or more and 1200 ° C. or less and a soaking time of 2 s or more and 300 s or less based on the same idea as hot-rolled sheet annealing.
  • the aging of the steel sheet before the final cold rolling is achieved by setting the cooling rate between 800 ° C. and 200 ° C. after the intermediate annealing to the upper limit average cooling rate R H calculated from the material C amount and the Si amount.
  • the index AI can be reduced to 70 MPa or less, and good magnetic properties can be obtained.
  • the cooling rate between 800 to 200 ° C. after the intermediate annealing is set, and when performing the hot rolled sheet annealing without performing the intermediate annealing, the 800 after the hot rolled sheet annealing is performed.
  • the average cooling rate between 800 and 200 ° C after hot rolling is the upper limit average calculated from the material C amount and Si amount
  • the cooling rate is RH or less. That is, it is important to control the average cooling rate between 800 ° C. and 200 ° C. after the heating step immediately before the final cold rolling.
  • a better primary recrystallized annealed plate texture can be obtained by setting the rolling reduction in the final cold rolling to 80% or more and 95% or less.
  • primary recrystallization annealing is preferably performed at a soaking temperature of 700 ° C. or higher and 1000 ° C. or lower. Moreover, if this primary recrystallization annealing is performed, for example in a wet hydrogen atmosphere, it can also serve as the decarburization of a steel plate.
  • the soaking temperature in the primary recrystallization annealing is less than 700 ° C., there is a possibility that unrecrystallized portions remain and a desired structure cannot be obtained.
  • the soaking temperature exceeds 1000 ° C., secondary recrystallization of goth-oriented grains may occur. Therefore, the soaking temperature in the primary recrystallization annealing is preferably 700 ° C. or higher and 1000 ° C. or lower.
  • the rate of temperature increase in the primary recrystallization annealing better magnetic properties can be obtained by setting the temperature between 500 to 700 ° C. to 10 ° C./s to 100 ° C./s as described above.
  • the temperature range where the temperature increase rate should be adjusted is set to 500 to 700 ° C. because this temperature range is a temperature range in which recrystallized grains are nucleated.
  • a nitriding treatment can be applied as an additional inhibitor treatment at any stage from the primary recrystallization annealing to the secondary recrystallization annealing.
  • This nitriding treatment includes gas nitriding in which heat treatment is performed in an ammonia atmosphere after primary recrystallization annealing, salt bath nitriding in which heat treatment is performed in a salt bath, plasma nitriding, and nitride containing an annealing separator.
  • Well-known techniques such as making the secondary recrystallization annealing atmosphere a nitriding atmosphere can be applied.
  • secondary recrystallization annealing is performed.
  • an additional inhibitor treatment one or more selected from sulfides, sulfates, selenides, and selenates can be added to the annealing separator.
  • the additive decomposes during the secondary recrystallization annealing and then sulphides and selenium in the steel, resulting in an inhibition effect.
  • annealing conditions of secondary recrystallization annealing What is necessary is just to perform on conventionally well-known annealing conditions.
  • the annealing atmosphere at this time is a hydrogen atmosphere, it can also serve as a purification annealing. Then, a desired grain-oriented electrical steel sheet is obtained through an insulating coating application process and a planarization annealing process. There are no special rules for the manufacturing conditions of the insulating coating application step and the planarization annealing step at this time, and it is sufficient to follow a conventional method.
  • the grain-oriented electrical steel sheet produced by satisfying the above conditions has a very high magnetic flux density after secondary recrystallization, and also has low iron loss characteristics.
  • having a high magnetic flux density indicates that only the orientation in the vicinity of Justgoth preferentially grew in the secondary recrystallization process. Since it is known that the growth rate of secondary recrystallized grains increases near the Justgos, increasing the magnetic flux density indicates that the secondary recrystallized grain size is potentially coarsened. This is advantageous from the viewpoint of reducing hysteresis loss, but disadvantageous from the viewpoint of reducing eddy current loss.
  • the magnetic domain refinement treatment all known heat-resistant or non-heat-resistant magnetic domain refinement treatments can be applied, but if a method of irradiating the surface of the steel sheet after secondary recrystallization annealing with an electron beam or a laser is used, the steel sheet Since the magnetic domain refinement effect can be penetrated to the inside of the plate thickness, iron loss characteristics that are extremely lower than those of other magnetic domain refinement processes such as an etching method can be obtained.
  • Example 1 A steel slab having the composition shown in Table 1 was heated to 1180 ° C. and then hot-rolled to a thickness of 2.3 mm. Next, after hot-rolled sheet annealing at 1020 ° C for 60s, after cooling at 800-200 ° C at an average cooling rate of 40 ° C / s, cold-rolled to 0.23mm thickness, and then in a wet hydrogen-nitrogen mixed atmosphere At 820 ° C. for 120 s. The temperature rising rate between 500 and 700 ° C. during the primary recrystallization annealing was 20 ° C./s.
  • the aging index AI of the steel sheet before the final cold rolling is set to 70 MPa or less, and the texture of the thickness center layer of the primary recrystallized annealed sheet is expressed as a random strength ratio.
  • the magnetic flux density B 8 ⁇ 1.92T of the secondary recrystallization annealed plate is achieved. We were able to.
  • Example 2 In Table 1, No. 3 and No. 4 steel slabs were heated to 1220 ° C. and then hot-rolled to various thicknesses shown in Table 2. Next, after annealing at 1050 ° C for 30s, after cooling between 800 and 200 ° C at an average cooling rate of 20 ° C / s, cold rolling to 0.20mm thickness, and then in a wet hydrogen-nitrogen mixed atmosphere At 820 ° C. for 120 s. The temperature rising rate between 500 and 700 ° C. during the primary recrystallization annealing was 30 ° C./s.
  • the AI value of the steel sheet before the final cold rolling is set to 70 MPa or less, and the texture of the center thickness layer of the primary recrystallized annealed sheet is expressed as a random strength ratio ⁇ 554 ⁇ ⁇ 225> strength ⁇ 12 and ⁇ 554 ⁇ ⁇ 225> strength / ⁇ 111 ⁇ ⁇ 110> strength ⁇ 7 can achieve the magnetic flux density B 8 ⁇ 1.95T of the secondary recrystallization annealed plate. did it.
  • Example 3 Steel slabs having various component compositions shown in Table 3 were heated to 1220 ° C. and then hot-rolled to a thickness of 2.7 mm.
  • primary recrystallization annealing was performed at 840 ° C. for 10 s.
  • the temperature rising rate between 500 and 700 ° C. during the primary recrystallization annealing was 40 ° C./s.
  • nitriding treatment was performed in a cyanate bath at 600 ° C.
  • the AI value of the steel sheet before the final cold rolling that is, the hot-rolled sheet annealed sheet is set to 70 MPa or less, and the texture of the center thickness layer of the primary recrystallized annealed sheet is expressed as a random strength ratio ⁇ 554 ⁇ ⁇ 225> strength ⁇ 12 and ⁇ 554 ⁇ ⁇ 225> strength / ⁇ 111 ⁇ ⁇ 110> strength ⁇ 7, the magnetic flux density B 8 ⁇ 1.95T of the secondary recrystallization annealed plate was achieved.
  • Example 4 For the samples No. 3 and 12 shown in Tables 3 and 4, an experiment was conducted to confirm the effect of the magnetic domain fragmentation treatment shown in Table 5. Etching was performed by forming grooves with a width of 80 ⁇ m, a depth of 15 ⁇ m, and a rolling direction interval of 5 mm on one side of the cold-rolled steel sheet in the direction perpendicular to the rolling. Next, primary recrystallization annealing was performed at 840 ° C. for 20 s. The temperature increase rate between 500 and 700 ° C. during the primary recrystallization annealing was set to 30 ° C./s. Subsequently, a gas nitriding treatment was performed at 750 ° C.
  • the continuous laser was continuously irradiated in the direction perpendicular to the rolling direction on one side of the steel sheet after the flattening annealing under the conditions of beam diameter: 0.3 mm, output: 200 W, scanning speed: 100 m / s, and irradiation interval: 4 mm.
  • the results of examining the magnetic properties of the products thus obtained are also shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 質量%で、C:0.0005~0.005%、Si:2.0~4.5%、Mn:0.005~0.3%、Sおよび/またはSe(合計):0.05%以下、sol.Al:0.010~0.04%、N:0.005%以下を含有し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、ついで一次再結晶焼鈍を施し、さらに二次再結晶焼鈍を施す一連の工程によって方向性電磁鋼板を製造するにあたり、最終冷間圧延前の鋼板の時効指数AIを70MPa以下とすることにより、比較的多量のCを含有させるという制約なしに、ゴス方位粒を効果的に成長させて良好な磁気特性を有する方向性電磁鋼板を得ることができる。

Description

方向性電磁鋼板の製造方法
 本発明は、結晶粒がミラー指数で板面に{110}面、圧延方向に<001>方位が集積したいわゆる方向性電磁鋼板の製造方法に関するものである。方向性電磁鋼板は、軟磁性材料であり、主に変圧器等の電気機器の鉄芯として用いられる。
 方向性電磁鋼板は、二次再結晶焼鈍により、結晶粒を{110}<001>方位(以降、ゴス方位という)に集積させることで、優れた磁気特性を示すことが知られている(例えば、特許文献1参照)。
 そして、磁気特性の指標としては、磁場の強さ:800A/mにおける磁束密度B8および励磁周波数:50Hzの交流磁場で1.7Tまで磁化したときの鋼板1kgあたりの鉄損W17/50が主に用いられている。
 方向性電磁鋼板における低鉄損化手段の一つとして、二次再結晶焼鈍後の結晶粒をゴス方位に高度に集積させることが挙げられる。二次再結晶焼鈍後に、ゴス方位の集積度を高めるためには、先鋭なゴス方位粒のみが優先的に成長するように粒界易動度差をつけることが重要である。つまり、一次再結晶板の集合組織を所定の組織に形成すること、およびインヒビターと呼ばれる析出物を利用してゴス方位以外の再結晶粒の成長を抑制することが重要である。
 ここに、先鋭なゴス方位粒のみが優先成長できる所定の一次再結晶組織としては、{554}<225>方位粒、{12 4 1]<014>方位粒が知られている。これらの方位粒を、一次再結晶板のマトリックス中にバランス良くかつ高度に集積させることによって、二次再結晶焼鈍後にゴス方位粒を高度に集積させることができる。
 例えば、特許文献2には、一次再結晶焼鈍板において、鋼板の表層近傍の集合組織が、Bungeのオイラー角表示で、φ1=0°、Φ=15°、φ2=0°の方位から10°以内、またはφ1=5°、Φ=20°、φ2=70°の方位から10°以内に極大方位を有し、かつ鋼板の中心層の集合組織が、同じくBungeのオイラー角表示で、φ1=90°、Φ=60°、φ2=45°の方位から5°以内に極大方位を有する場合に、安定して優れた磁気特性を示す二次再結晶焼鈍板が得られることが開示されている。
 インヒビター利用技術としては、例えば特許文献1に、AlN、MnSを利用する方法が、また特許文献3に、MnS、MnSeを利用する方法が開示されており、いずれも工業的に実用化されている。
 これらのインヒビターを用いる方法は、インヒビターの均一微細分散が理想状態であるが、その達成のためには熱延前のスラブ加熱を1300℃以上の高温で行わなければならない。しかしながら、高温スラブ加熱に伴い、スラブ結晶組織の過度な粗大化が起こる。スラブ組織は、主に熱延安定方位である{100}<011>方位であり、このようなスラブ組織の粗大化は、結果的に二次再結晶を大きく阻害し、磁気特性を大きく劣化させる原因となる。このため、インヒビターを用いた高温スラブ加熱型の方向性電磁鋼板では、熱延時のα-γ変態を利用して粗大スラブ組織を破壊する目的で、素材中にCを0.03~0.08%程度含有させることが必須である。とはいえ、製品板中にCが残存すると製品板の磁気特性を著しく劣化させる。このため、熱延後のいずれかの工程において脱炭焼鈍を行い、製品板中のC量を0.003%以下程度に低減させることも必須となる。
 このように、従来のインヒビターを用いた方向性電磁鋼板の製造方法においては、高温スラブ加熱に多大なエネルギーを要すること、また脱炭焼鈍工程を必要とすることなどから、製造コストが高くなるという問題があった。
 上記の問題を解決すべく、例えば特許文献4には、スラブの加熱温度を1200℃以下の低い温度として、スラブ加熱段階では、インヒビター形成元素、例えばAl,N,Mn,S等の鋼中への固溶を完全には行わないようにする。そして、脱炭焼鈍後、強還元性雰囲気中、例えばNH3とH2の混合雰囲気中にて鋼板を走行させる状態下で焼鈍することにより、(Al,Si)Nを主組成とするインヒビターを形成することによって、低温スラブ加熱においても高温スラブ加熱並みの磁気特性を発現させる、いわゆる窒化処理技術が開示されている。
 また、特許文献5には、C≦0.02%を含む珪素鋼スラブについて、粗熱延開始温度を1250℃以下とし、900℃以上での累積圧下率が80%以上で、かつ少なくとも1パスは35%以上の圧下率を加えるような再結晶熱延後、900℃以下での累積圧下率が40%以上となる歪蓄積圧延を行うことにより、低C素材においてもスラブ組織を破壊する方法が開示されている。
 しかしながら、この方法では、Al,N等のインヒビター元素を含有しているにもかかわらず、高温スラブ加熱を行っていないため、インヒビターの微細析出が起こらず、また上述したような窒化処理も施していないため、一次再結晶粒成長抑制力が不足し、磁気特性が劣化する問題があった。加えて、最終冷間圧延前の焼鈍後の冷却条件に規定がなく、固溶元素(C、N等)量の制御が不十分であった。
 さらに、特許文献6には、C:0.0005~0.004%を含む珪素鋼スラブについて、1000℃から1200℃の温度域で粗熱延を開始し、必要に応じて700℃から1100℃の温度域で短時間焼鈍を行ったのち、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、850℃から1050℃の温度域で1秒以上200秒以内の加熱後、鋼板を走行せしめる状態で窒化処理を行う方法が開示されている。
 しかしながら、この方法でも、やはりAl,N等のインヒビター元素を含有しているにもかかわらず、高温スラブ加熱を行っていないため、インヒビターの微細析出が不十分であることから、一次再結晶粒成長抑制力が不足し、磁気特性が劣化する問題があった。加えて、最終冷間圧延前の焼鈍後の冷却条件に規定がなく、固溶元素(C、N等)量の制御が不十分であった。
特公昭40-15644号公報 特開2001-60505号公報 特公昭51-13469号公報 特開平5-112827号公報 特開昭57-114614号公報 特開平6-346147号公報
Materials Transactions, Vol.54 No.01 (2013) pp.14-21
 上述したとおり、例えば特許文献2のような従来の一次再結晶集合組織制御技術は、インヒビターを用いた高温スラブ加熱型(加熱温度:1200℃以上)の製造技術である。このため、熱延時のα-γ変態を利用して粗大スラブの組織を破壊する目的で、素材中にCを0.03~0.08%程度含有させることが必須であるという制約があり、その制約の中での良好な範囲を規定する技術にすぎなかった。
 本発明は、上記の問題を解決するもので、比較的多量のCを含有させるという制約なしに、ゴス方位粒を効果的に成長させて良好な磁気特性を得ることができ、かつ高歩留り、低コスト、高生産性を有する方向性電磁鋼板の製造方法を提案することを目的とする。
 さて、発明者らは、上記の課題を解決すべく、最終冷間圧延前の鋼板の固溶C量に着目して、鋭意検討を重ねた。
 その結果、最終冷間圧延前の鋼板の固溶C量を極限まで低減することによって製品板の磁気特性が格段に向上することを見出した。
 具体的には、スラブ中のC量を質量%で0.0005%以上0.005%以下、Si量を質量%で2.0 以上4.5%以下の範囲に制限するとともに、最終冷間圧延の直前の加熱工程後の800~200℃間の平均冷却速度を、スラブ中の固溶C量およびSi量との関係で適正範囲に制御することで、最終冷間圧延前の鋼板の時効指数AI(Aging Index)を70MPa以下とすることができ、これにより、磁気特性が向上することが明らかとなった。
 さらに、一次再結晶焼鈍の昇温速度を10℃/s以上100℃/s以下に調整することにより、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度に対する{554}<225>強度比が12以上で、かつ{554}<225>強度の{111}<110>強度に対する比が7以上とすることができ、これにより、より一層磁気特性が向上することが明らかとなった。
 本発明は、上記の知見に立脚するもので、その要旨構成は次のとおりである。
1.質量%で、C:0.0005~0.005%、Si:2.0~4.5%、Mn:0.005~0.3%、Sおよび/またはSe(合計):0.05%以下、sol.Al:0.010~0.04%、N:0.005%以下を含有し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、ついで一次再結晶焼鈍を施し、さらに二次再結晶焼鈍を施す一連の工程によって方向性電磁鋼板を製造する方向性電磁鋼板の製造方法であって、
 下記(1)式から算出される固溶C量パラメーターXを用い、最終冷間圧延の直前の加熱工程後の800~200℃間の平均冷却速度R(℃/s)を、下記(2)式から算出される上限平均冷却速度RH以下とすることで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下とする方向性電磁鋼板の製造方法。
                 記
  X=[%Si]/28.09+100[%C]/12.01 ・・・ (1)
  RH =10/X ・・・ (2)
  但し、(1)式中、[%M]はM元素の含有量を示す(質量%)
2.前記一次再結晶焼鈍の500~700℃間の平均昇温速度を10℃/s以上100℃/s以下に調整することにより、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度に対する{554}<225>強度の比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とする前記1に記載の方向性電磁鋼板の製造方法。
3.前記鋼スラブが、質量%でさらに、Ni:0.005~1.5%、Sn:0.005~0.50%、Sb:0.005~0.50%、Cu:0.005~1.5%、Cr:0.005~0.10%、P:0.005~0.50%およびMo:0.005~0.50%のうちから選んだ1種または2種以上を含有する前記1または2に記載の方向性電磁鋼板の製造方法。
4.前記鋼スラブが、質量%でさらに、Ti:0.001~0.1%、Nb:0.001~0.1%およびV:0.001~0.1%のうちから選んだ1種または2種以上を含有する前記1~3のいずれか一項に記載の方向性電磁鋼板の製造方法。
5.前記一次再結晶焼鈍から前記二次再結晶焼鈍までのいずれかの段階で追加インヒビター処理を施す前記1~4のいずれか一項に記載の方向性電磁鋼板の製造方法。
6.前記追加インヒビター処理として、窒化処理を施す前記5に記載の方向性電磁鋼板の製造方法。
7.前記追加インヒビター処理として、二次再結晶焼鈍前に鋼板に塗布する焼鈍分離剤中に硫化物、硫酸塩、セレン化物およびセレン酸塩のうちから選んだ一種または二種以上を添加する前記5に記載の方向性電磁鋼板の製造方法。
8.前記最終冷間圧延以降のいずれかの段階で、磁区細分化処理を施す前記1~7のいずれか一項に記載の方向性電磁鋼板の製造方法。
9.前記磁区細分化処理が、二次再結晶焼鈍後の鋼板への電子ビーム照射によるものである前記8に記載の方向性電磁鋼板の製造方法。
10.前記磁区細分化処理が、二次再結晶焼鈍後の鋼板へのレーザー照射によるものである前記8に記載の方向性電磁鋼板の製造方法。
 本発明によれば、製品板においてゴス方位に強く集積するように一次再結晶板集合組織を制御することができ、そのため、二次再結晶焼鈍後に、従来にも増して優れた磁気特性を有する方向性電磁鋼板を製造することが可能となる。特に、高磁束密度化が困難とされる板厚:0.23mmのような薄い鋼板であっても、二次再結晶焼鈍後の磁束密度B8が1.92T以上という優れた磁気特性を得ることができる。
 また、一次再結晶焼鈍の500~700℃間の平均昇温速度を10℃/s以上100℃/s以下に調整することで、磁束密度B8が1.93T以上という優れた磁気特性を得ることができる。
 さらに、追加インヒビター処理を施した場合には、磁束密度B8がそれぞれ1.94T以上、さらには1.95T以上という極めて優れた磁気特性を得ることができる。
 しかも、いずれの場合も磁区細分化処理後の鉄損W17/50が0.70W/kg 以下という優れた鉄損特性を達成することができる。
 さらに特筆すべきは、スラブ加熱温度の低温化、また場合によっては脱炭焼鈍の省略化、さらにコイルの長手方向、幅方向および板厚方向での均一組織化による製品歩留りの向上により、低コスト化を達成できる。
 加えて、低C化による圧延荷重低減により極薄材の製造が可能となり、コストの増加なしに更なる低鉄損化が可能となる。
熱延板焼鈍板の時効指数AIに及ぼす熱延板焼鈍後の冷却速度の影響を示したグラフである。 一次再結晶焼鈍板の板厚中心層の対ランダム強度比に及ぼす熱延板焼鈍板の時効指数AIの影響を示したグラフである。 製品板の磁束密度B8に及ぼす熱延板焼鈍板の時効指数AIの影響を示したグラフである。 一次再結晶焼鈍板の板厚中心層の対ランダム強度比に及ぼす一次再結晶焼鈍時における500~700℃間の昇温速度の影響を示したグラフである。 製品板の磁束密度B8に及ぼす一次再結晶焼鈍板の板厚中心層の対ランダム強度比の影響を示したグラフである。
 以下、本発明を具体的に説明する。
 まず、本発明に至った実験について説明する。なお、鋼板成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
 残部はFe および不可避的不純物からなる3種類の鋼、鋼A(C:0.0037%、Si:2.81%、Mn:0.07%、S:0.006%、Se:0.006%、sol.Al:0.014%、N:0.0044%)、鋼B(C:0.0019%、Si:3.59%、Mn:0.08%、S:0.003%、Se:0.009%、sol.Al:0.028%、N:0.0026%)および鋼C(C:0.0043%、Si:3.85%、Mn:0.05%、S:0.002%、Se:0.016%、sol.Al:0.022%、N:0.0030%)のスラブを、1200℃に加熱したのち、2.4mm厚まで熱間圧延した。ついで、1050℃で60sの熱延板焼鈍後、800~200℃間を平均冷却速度:20~100℃/sで冷却したのち、0.23mm厚まで冷間圧延してから、800℃で60sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時の500~700℃間の昇温速度は40℃/sとした。
 ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行った。引き続き、リン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とし、それぞれの条件下での試験片を得た。
 図1に、熱延板焼鈍板(熱延板焼鈍後、最終冷間圧延前の鋼板)の時効指数AI(Aging Index)に及ぼす熱延板焼鈍後の冷却速度の影響について調べた結果を示す。
 なお、時効指数AIについては、最終冷延前の鋼板の板厚全厚サンプルからJIS Z 2241 に準拠して5号引張試験片を切り出し、初期ひずみ速度1×10-3で公称ひずみ7.5%まで予ひずみを付与した後、100℃で30分の時効処理を施し、再度初期ひずみ速度1×10-3で引張試験を行い、時効後試験時の降伏応力(降伏点現象が起こる場合は下降伏点)から7.5%予ひずみ付与時の引張応力を減じた値とした。
 ここで、固溶C量パラメーターとして次式(1)に示したXを設定し、このXを用いて、各鋼板の熱延板焼鈍後の800~200℃間における平均冷却速度の上限値RHを次式(2)に示すように設定した。このとき、鋼A、B、Cの鋼組成から算出される熱延板焼鈍後の800~200℃間の本発明の上限平均冷却速度RHはそれぞれ、76℃/s、70℃/s、58℃/sとなる。
  X=[%Si]/28.09+100[%C]/12.01 ・・・ (1)
  RH =10/X ・・・ (2)
 図1に示したとおり、固溶C量パラメーターXが減少するにつれて時効指数AIは低減した。そして、熱延板焼鈍後の800~200℃間の平均冷却速度RがR≦RHを満足する場合には、時効指数AIは70MPa以下となった。
 次に、図2に、一次再結晶焼鈍板(一次再結晶焼鈍後の鋼板)の板厚中心層の対ランダム強度比({554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比)に及ぼす熱延板焼鈍板の時効指数AIの影響について調べた結果を示す。
 一次再結晶焼鈍板の結晶方位については、板厚中心層まで研磨して減厚したサンプルを10%硝酸で30秒間エッチングし、X線シュルツ法にて(110)、(200)、(211)面を測定し、そのデータからODF(Orientation Distribution Function)解析を行い、各結晶方位の強度を算出した。解析にはResMat 社のソフトウェアTextoolsを用い、ADC(Arbitrarily Defined Cell)法で算出した。ランダム強度に対する{554}<225>方位の強度比については、Bungeのオイラー角表示で(φ1、Φ、φ2)=(90、60、45)、また{111}<110>方位の強度比については(φ1、Φ、φ2)=(60、55、45)とした。
 図2に示したとおり、熱延板焼鈍板の時効指数AIの低減に伴い、一次再結晶焼鈍板の板厚中心層の{554}<225>強度が増加し、{554}<225>強度の{111}<110>強度に対する比も増加した。
 次に、図3に、製品板の磁束密度B8に及ぼす熱延板焼鈍板の時効指数AIの影響について調べた結果を示す。
 図3に示したとおり、熱延板焼鈍板の時効指数AIの低減に伴い、磁束密度は向上した。特に、AI≦70MPaに制御することで磁束密度B8≧1.93Tとなった。
 さらに、一次再結晶焼鈍時の昇温速度の影響について詳細に検討した。
 C:0.0035%、Si:3.18%、Mn:0.06%、sol.Al:0.025%、N:0.0022%、S:0.003%およびSe:0.015%を含有し、残部はFe および不可避的不純物からなる種々のスラブを、1240℃に加熱したのち、2.5mmの厚みまで熱間圧延した。ついで、1000℃で60sの熱延板焼鈍後、800~200℃間を、平均冷却速度:30℃/sで冷却した。ここで、X=[%Si]/28.09+100[%C]/12.01 とすると、鋼組成から算出される熱延板焼鈍後の800~200℃間の本発明の上限平均冷却速度RH(=10/X)は70℃/sとなる。ついで、0.23mm 厚まで冷間圧延してから、800℃で20sの一次再結晶焼鈍を施した。一次再結晶焼鈍時における500~700℃間の昇温速度を、10~300℃/sの範囲で種々変化させた。
 ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行った。引き続き、リン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とし、それぞれの条件下での試験片を得た。
 図4に、一次再結晶焼鈍板の板厚中心層の対ランダム強度比({554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比)に及ぼす一次再結晶焼鈍時における500~700℃間の昇温速度の影響について調べた結果を示す。
 図4に示したとおり、一次再結晶焼鈍時における500~700℃間の昇温速度が低下するに伴って、一次再結晶焼鈍板の板厚中心層の{554}<225>強度が増加し、{554}<225>強度の{111}<110>強度に対する比も増加した。また、一次再結晶焼鈍の昇温速度を100℃/s以下にすることで{554}<225>強度比を12以上、かつ、{554}<225>強度の{111}<110>強度に対する比を7以上とすることができた。
 図5に、製品板の磁束密度(B8)に及ぼす一次再結晶焼鈍板の板厚中心層の対ランダム強度比({554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比)の影響ついて調べた結果を示す。
 同図に示されるとおり、一次再結晶焼鈍板の板厚中心層において{554}<225>強度比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とすることで、磁束密度(B8)≧1.93Tとなった。
 以上の結果より、製品板の高磁束密度化には、熱延板焼鈍後の800~200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下に制御することで、最終冷延前における鋼板の時効指数AIを低減できること、つまり固溶C量を低減させることが重要であることが明らかとなった。
 加えて、一次再結晶焼鈍の500~700℃間の平均昇温速度を100℃/s以下に調整し、一次再結晶焼鈍板の板厚中心層において、{554}<225>強度比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とすることで、さらに高磁束密度化できることが明らかとなった。
 最終冷間圧延前における鋼板の時効指数の低減、すなわち固溶C量の減少に伴い、一次再結晶焼鈍板の{554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比が増加した理由については必ずしも明確ではないが、発明者らは以下のように考えている。
 素材C量が低減すると、粒内の固溶C量が減少すると共に、粒界への炭化物の析出量が減少するため、粒界拘束力が低減する。その結果、冷間圧延時のせん断帯による局所変形領域が減少し、先鋭な冷間圧延集合組織が形成される。また、熱延板焼鈍後の800~200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下に制御することで、最終冷延前における鋼板の時効指数AIを効果的に低減させることができる。その結果、一次再結晶焼鈍において主方位である{554}<225>が先鋭化したものと考えられる。
 一次再結晶焼鈍の昇温速度を100℃/s以下に調整することにより、一次再結晶焼鈍板の{554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比が増加した理由については必ずしも明確ではないが、発明者らは以下のように考えている。
 一次再結晶焼鈍時には、圧延で蓄積されたエネルギーが各結晶方位で異なることから、蓄積エネルギーの高い方位から再結晶が開始することが知られている。一次再結晶焼鈍の昇温速度を増加させることはこの蓄積エネルギー差をなくす方向に作用し、一次再結晶集合組織はランダム化する方向であるため、本発明の技術思想とは逆の効果をもたらすことになる。よって、昇温速度は低速側が好ましく、本発明では、500~700℃間における昇温速度が100℃/s以下であれば、良好な一次再結晶集合組織が形成されたものと考えられる。一方、昇温速度の下限については、連続焼鈍を想定して、短時間で一次再結晶が完了する速度が好ましく、この観点から10℃/sとした。
 また、一次再結晶焼鈍板の{554}<225>強度および{554}<225>/{111}<110>強度比の増加に伴い二次再結晶焼鈍板(二次再結晶焼鈍後の鋼板)の磁束密度が向上した理由については必ずしも明確ではないが、発明者らは以下のように考えている。
 非特許文献1にあるように、高エネルギー粒界説による二次再結晶理論に立脚すれば、方位差角が25°~40°の粒界が高易動度である。つまり、ゴス方位に対して25°~40°を有する一次再結晶集合組織を形成することで二次再結晶時に先鋭なゴス方位が選択されることになる。ゴス方位に対する方位差角は、{554}<225>については29.5°、{111}<110>については46.0°である。一方、ゴス方位からND//<110>を軸として20°回転した方位に対する方位差角は、{554}<225>については35.5°、{111}<110>については36.6°である。つまり、{111}<110>一次再結晶粒の存在は、二次再結晶核選択時にゴス方位からND//<110>を軸としてずれた方位粒の選択を促進することになり、製品板の磁気特性の劣化を引き起こす。よって、二次再結晶焼鈍板の高磁束密度化を達成するには、{554}<225>一次再結晶粒を増加させると共に、{111}<110>を減少させることが本質であると考えられる。
 以下、素材である鋼スラブの成分組成について説明する。
C:0.0005%以上0.005%以下
 Cは、本発明における特徴の1つである。前述したとおり、特性の向上および脱炭焼鈍の省略等の観点からからは、C量は低ければ低いほど好ましいので、0.005%以下に限定した。一方、成分調整時の脱炭負荷増大によるコストアップおよび現代における精錬技術を考慮し、現実的な含有量として0.0005%を下限とした。ただし、0.005%を超える場合も、最終冷間圧延前に析出処理、具体的には100~500℃で長時間焼鈍したのち、炉冷程度の徐冷を施すことで固溶C量を低減することができれば、本発明と同等の効果を発揮することができる。
Si:2.0%以上4.5%以下
 Siは、鋼の電気抵抗を増大させ、鉄損の一部を構成する渦電流損を低減するのに極めて有効な元素である。鋼板に、Siを添加していった場合、含有量が11%までは、電気抵抗が単調に増加するものの、含有量が4.5%を超えたところで、加工性が著しく低下する。一方、含有量が2.0%未満では、電気抵抗が小さくなり良好な鉄損特性を得ることができない。そのため、Si量は2.0%以上4.5%以下とした。
Mn:0.005%以上0.3%以下
 Mnは、SやSeと結合してMnSやMnSeを形成し、これらのMnSやMnSeが二次再結晶焼鈍の昇温過程において正常粒成長を抑制するインヒビターとして作用する。しかしながら、Mn 量が0.005%に満たないと、インヒビターの絶対量が不足するために、正常粒成長の抑制力不足となる。一方、Mn 量が0.3%を超えると、熱延前のスラブ加熱過程において、Mn を完全固溶させるためには高温でのスラブ加熱が必要となるだけでなく、インヒビターが粗大析出してしまうために、正常粒成長の抑制力が低下する。そのため、Mn量は0.005%以上0.3%以下とした。
Sおよび/またはSe(合計):0.05%以下
 SおよびSeは、Mnと結合してインヒビターを形成するが、1種または2種の合計含有量が0.001%未満では、微量インヒビターとしての絶対量が不足し、正常粒成長の抑制力不足となるので、SやSeは0.001%以上含有させることが好ましい。一方、含有量が0.05%を超えると、二次再結晶焼鈍において、脱S、脱Seが不完全となるため、鉄損劣化を引き起こす。そのため、SおよびSeのうちから選んだ1種または2種は、合計量で0.05%以下とした。なお、SやSeの添加効果をより効果的に発揮させるためには0.01%以上とすることが好ましい。
sol.Al:0.01%以上0.04%以下
 sol.Alは、二次再結晶焼鈍の昇温過程において、AlNが正常粒成長を抑制する上でのインヒビターの働きをするため、方向性電磁鋼板においては重要な元素である。しかし、sol.Alの含有量が0.01%に満たないと、インヒビターの絶対量が不足するために、正常粒成長の抑制力不足となる。一方、sol.Alの含有量が0.04%を超えるとAlNが粗大析出してしまうために、やはり正常粒成長の抑制力が不足する。そのため、sol.Alは0.01%以上0.04%以下とした。
N:0.005%以下
 Nは、Alと結合してインヒビターを形成するが、スラブ段階では極力低減することで固溶Al量を増加させることが重要である。そうすることで、追加インヒビター処理の窒化処理によるインヒビター抑制力強化を効果的に発揮することができる。よって、Nは0.005%以下とした。
 以上、本発明の基本成分について説明したが、本発明では、その他にも必要に応じて、以下に示す元素を適宜含有させることができる。
Ni:0.005%以上1.5%以下
 Niは、オーステナイト生成元素であるため、オーステナイト変態を利用することで熱延板組織を改善し、磁気特性を向上させる上で有用な元素である。しかしながら、含有量が0.005%未満では、磁気特性の向上効果が小さく、一方含有量が1.5%超では、加工性が低下するため通板性が悪くなるほか、二次再結晶が不安定となり磁気特性が劣化するので、Niは0.005~1.5%の範囲とした。
Sn:0.005%以上0.50%以下、Sb:0.005%以上0.50%以下、Cu:0.005%以上1.5%以下、Cr:0.005%以上0.10%以下、P:0.005%以上0.50%以下およびMo:0.005%以上0.50%以下
 Sn、Sb、Cu、Cr、PおよびMoはいずれも、磁気特性向上に有用な元素である。しかしながら、それぞれの含有量が上記範囲の下限値に満たないと、磁気特性の改善効果が乏しく、一方それぞれの含有量が上記範囲の上限値を超えると、二次再結晶が不安定になり磁気特性の劣化を招く。従って、Snは0.005%以上0.50%以下、Sb は0.005%以上0.50%以下、Cu は0.005%以上1.5%以下、Crは0.005%以上0.10%以下、Pは0.005%以上0.50%以下およびMoは0.005%以上0.50%以下の範囲でそれぞれ含有させることにした。
Ti:0.001%以上0.1%以下、Nb:0.001%以上0.1%以下およびV:0.001%以上0.1%以下
 Ti、NbおよびVはいずれも、炭化物および窒化物として析出し、固溶CおよびNの低減に有効な元素である。しかしながら、それぞれの含有量が上記範囲の下限値に満たないと、磁気特性改善効果が乏しく、一方それぞれの含有量が上記範囲の上限値を超えると、製品板に残存した当該元素から成る析出物が鉄損の劣化を引き起こす。従って、Tiは0.001%以上0.1%以下、Nbは0.001%以上0.1%以下およびVは0.001%以上0.1%以下の範囲でそれぞれ含有させることにした。
 次に、本発明の製造方法について説明する。
 上記の成分組成を有する鋼スラブを、スラブ加熱後、熱間圧延を行う。スラブ加熱温度は1250℃以下とする。スラブ加熱温度の低温化に伴い、スラブ粒径の微細化および熱間圧延時の蓄積ひずみ量が増大するため、熱延板組織の微細化に有効となるためである。
 熱間圧延後、必要であれば、熱延板焼鈍することで熱延板組織の改善を行う。この時の熱延板焼鈍は、均熱温度:800℃以上1200℃以下、均熱時間:2s以上300s以下の条件で行うことが好ましい。
 熱延板焼鈍の均熱温度が800℃未満では、熱延板組織の改善が完全ではなく、未再結晶部が残存するため、所望の組織を得ることができないおそれがある。一方、均熱温度が1200℃超では、AlN、MnSeおよびMnSの溶解が進行し、二次再結晶過程でインヒビターの抑制力が不足して、二次再結晶しなくなる結果、磁気特性の劣化を引き起こすこととなる。従って、熱延板焼鈍の均熱温度は800℃以上1200℃以下とすることが好ましい。
 また、均熱時間を2sに満たないと、高温保持時間が短いために、未再結晶部が残存し、所望の組織を得ることができなくなるおそれがある。一方、均熱時間が300sを超えると、AlN、MnSeおよびMnSの溶解が進行し、微量インヒビターの効果が弱まり、窒化処理前組織の不均質化が進行する結果、二次再結晶焼鈍板の磁気特性が劣化する。従って、熱延板焼鈍の均熱時間は2s以上300s以下とすることが好ましい。
 後述の中間焼鈍を行わない場合、熱延板焼鈍後の冷却処理は、本発明の特徴の一つである。前述した実験のとおり、熱延板焼鈍後の800~200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下に制御することで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下まで低減することができ、これにより良好な磁気特性を得ることができる。
 なお、冷却時における平均冷却速度を制御すべき温度域を800~200℃間としたのは、この温度域が炭化物(Fe3C,ε-カーバイド等)や窒化物(AlN,Si3N4等)の析出温度域だからである。この温度域における平均冷却速度を調整することによって、CやNの固溶を効果的に低減できる。
 本発明では、最終冷間圧延前の固溶C量を低減することが重要であるので、熱延板焼鈍を施さず、かつ1回の冷間圧延によって最終板厚まで圧延する(すなわち中間焼鈍を行わない)場合には、熱延板の固溶C量の低減が重要となる。すなわち、この場合、熱間圧延後の800~200℃間の平均冷却速度R(℃/s)を素材C量およびSi量より算出される上限平均冷却速度RH以下に制御すればよい。
 本発明では、熱延板焼鈍後または熱延板焼鈍を行わず、鋼板を、中間焼鈍を挟む2回以上の冷間圧延によって最終板厚まで圧延してもよい。この場合、中間焼鈍は、熱延板焼鈍と同じ思想で、均熱温度:800℃以上1200℃以下、均熱時間:2s以上300s以下とすることが好ましい。この場合には、中間焼鈍後の800~200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下とすることで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下まで低減することができ、これにより良好な磁気特性を得ることができる。
 このように本発明では、中間焼鈍を行う場合には中間焼鈍後の800~200℃間の冷却速度を、中間焼鈍後を行わず熱延板焼鈍を行う場合には熱延板焼鈍後の800~200℃間の冷却速度を、中間焼鈍も熱延板焼鈍も行わない場合には熱間圧延後の800~200℃間の平均冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下とする。すなわち、最終冷間圧延の直前の加熱工程後の800~200℃間の平均冷却速度を制御することが肝要である。
 冷間圧延については、最終冷間圧延における圧下率を80%以上95%以下とすることで、より良好な一次再結晶焼鈍板集合組織を得ることができる。
 上記の冷間圧延後、好ましくは均熱温度:700℃以上1000℃以下で一次再結晶焼鈍を施す。また、この一次再結晶焼鈍は、例えば湿水素雰囲気中で行えば、鋼板の脱炭も兼ねさせることができる。ここに、一次再結晶焼鈍における均熱温度が700℃未満では、未再結晶部が残存し、所望の組織を得ることができないおそれがある。一方、均熱温度が1000℃超では、ゴス方位粒の二次再結晶が起こってしまう可能性がある。従って、一次再結晶焼鈍における均熱温度は700℃以上1000℃以下とすることが好ましい。
 そして、一次再結晶焼鈍の昇温速度については、前述した実験のとおり、500~700℃間を10℃/s以上100℃/s以下とすることで、より良好な磁気特性を得ることができる。ここに、昇温速度調整を行うべき温度域を500~700℃間としたのは、この温度域が再結晶粒が核発生する温度域だからである。
 さらに、本発明では、一次再結晶焼鈍から二次再結晶焼鈍までのいずれかの段階で追加インヒビター処理として窒化処理を適用することができる。この窒化処理は、一次再結晶焼鈍後、アンモニア雰囲気中で熱処理を行うガス窒化や、塩浴中で熱処理を行う塩浴窒化、さらにはプラズマ窒化や、窒化物を焼鈍分離剤中に含有させたり、二次再結晶焼鈍雰囲気を窒化雰囲気とするなどの公知の技術が適用できる。
 その後、必要であれば鋼板表面にMgOを主成分とする焼鈍分離剤を塗布したのち、二次再結晶焼鈍を行う。本発明においては、追加インヒビター処理として、焼鈍分離剤中に硫化物、硫酸塩、セレン化物およびセレン酸塩のうちから選んだ一種または二種以上を添加することができる。当該添加物は二次再結晶焼鈍中に分解したのち、鋼中に浸硫、浸セレンし、インヒビション効果をもたらす。二次再結晶焼鈍の焼鈍条件についても、特に制限はなく、従来公知の焼鈍条件で行えば良い。なお、この時の焼鈍雰囲気を水素雰囲気とすると、純化焼鈍も兼ねることができる。その後、絶縁被膜塗布工程および平坦化焼鈍工程を経て、所望の方向性電磁鋼板を得る。この時の絶縁被膜塗布工程および平坦化焼鈍工程の製造条件についても、特段の規定はなく、常法に従えば良い。
 上記の条件を満たして製造された方向性電磁鋼板は、二次再結晶後に極めて高い磁束密度を有し、併せて低い鉄損特性を有する。ここに、高い磁束密度を有するということは二次再結晶過程においてジャストゴス近傍の方位のみが優先成長したことを示している。ジャストゴス近傍になるほど、二次再結晶粒の成長速度は増大することが知られていることから、高磁束密度化するということは潜在的に二次再結晶粒径が粗大化することを示しており、ヒステリシス損低減の観点からは有利であるが、渦電流損低減の観点からは不利となる。
 従って、このような本技術における鉄損低減という最終目標に対しての相反する事象を解決するために、磁区細分化処理を施すことが好ましい。本技術に適切な磁区細分化処理を施すことで、二次再結晶粒径粗大化により不利となっていた渦電流損が低減し、ヒステリシス損の低減と併せて、極めて低い鉄損特性を得ることができる。
 磁区細分化処理としては、公知の全ての耐熱型または非耐熱型の磁区細分化処理が適用できるが、二次再結晶焼鈍後の鋼板表面に電子ビームまたはレーザーを照射する方法を用いれば、鋼板板厚内部まで磁区細分化効果を浸透させることができるので、エッチング法などの他の磁区細分化処理よりも極めて低い鉄損特性を得ることができる。
(実施例1)
 表1に示す成分組成からなる鋼スラブを、1180℃に加熱したのち、2.3mm厚まで熱間圧延した。ついで、1020℃で60sの熱延板焼鈍後、800~200℃間を平均冷却速度:40℃/sで冷却したのち、0.23mm厚まで冷間圧延してから、湿水素-窒素混合雰囲気中にて820℃で120sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時における500~700℃間の昇温速度は20℃/sとした。
 ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
 かくして得られた製品の磁気特性について調べた結果を、表1に併記する。また、表1には、最終冷間圧延前鋼板、すなわち熱延板焼鈍板の時効指数AIおよび一次再結晶焼鈍後の板厚中心層の集合組織について調べた結果も併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、最終冷間圧延前の鋼板、すなわち熱延板焼鈍板の時効指数AIを70MPa以下とし、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度比で{554}<225>強度≧12で、かつ{554}<225>強度/{111}<110>強度≧7とすることで、二次再結晶焼鈍板の磁束密度B8≧1.92Tを達成することができた。
(実施例2)
 表1中、No.3および、No.4の鋼スラブを、1220℃に加熱したのち、表2に示す種々の厚みまで熱間圧延した。ついで、1050℃で30sの熱延板焼鈍後、800~200℃間を平均冷却速度:20℃/sで冷却したのち、0.20mm厚まで冷間圧延してから、湿水素-窒素混合雰囲気中にて820℃で120sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時における500~700℃間の昇温速度は30℃/sとした。
 ついで、鋼板表面にMgOおよびMgO:100質量部に対して10質量部のMgSO4を添加した焼鈍分離剤を塗布してから、1180℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
 かくして得られた製品の磁気特性について調べた結果を、表2に併記する。また、表2には、熱延板焼鈍板の時効指数AIおよび一次再結晶焼鈍後の板厚中心層の集合組織について調べた結果も併せて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、最終冷間圧延前の鋼板すなわち熱延板焼鈍板のAI値を70MPa以下とし、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度比で{554}<225>強度≧12、かつ{554}<225>強度/{111}<110>強度≧7とすることで、二次再結晶焼鈍板の磁束密度B8≧1.95Tを達成することができた。さらに、最終冷延圧下率の増加に伴い、一次再結晶焼鈍板の板厚中心層の{554}<225>強度のみならず、{554}<225>強度/{111}<110>強度の比が顕著に増加し、二次再結晶焼鈍板の磁束密度B8も比較材に対して顕著に増加した。
(実施例3)
 表3に示す種々の成分組成からなる鋼スラブを、1220℃に加熱したのち、2.7mm厚まで熱間圧延した。ついで、1回目の冷間圧延により2.2mmの中間厚まで圧延したのち、950℃で60sの中間焼鈍後、800~200℃間を平均冷却速度:40℃/sで冷却し、ついで2回目の冷間圧延により0.23mmの最終厚みとしたのち、840℃で10sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時における500~700℃間の昇温速度は40℃/sとした。
 その後、シアン酸塩浴中で600℃で3分の窒化処理を施した。ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
 かくして得られた製品の磁気特性について調べた結果を、表4に示す。また、表4には、熱延板焼鈍板の時効指数AIおよび一次再結晶焼鈍後の板厚中心層の集合組織について調べた結果も併せて示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4に示したように、最終冷間圧延前鋼板、つまり熱延板焼鈍板のAI値を70MPa以下とし、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度比で{554}<225>強度≧12、かつ{554}<225>強度/{111}<110>強度≧7とすることで、二次再結晶焼鈍板の磁束密度B8≧1.95Tを達成した。
(実施例4)
 表3,4に示したNo.3および12のサンプルについて、表5に示す磁区細分化処理の効果を確認する実験を行った。
 なお、エッチングは、冷延鋼板の片面について、幅:80μm、深さ:15μm、圧延方向間隔:5mmの溝を圧延直角方向に形成した。ついで、840℃で20sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時の500~700℃間の昇温速度は30℃/sとした。ついで、アンモニアと窒素と水素の混合雰囲気中にて750℃で30sのガス窒化処理を施した。その後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、続いてリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
 また、電子ビームは、平坦化焼鈍後の鋼板の片面について、加速電圧:80kV、照射間隔:4mm、ビーム電流:3mAの条件で圧延直角方向に連続照射した。
 さらに、連続レーザーは、平坦化焼鈍後の鋼板の片面について、ビーム径:0.3mm、出力:200W、走査速度:100m/s、照射間隔:4mmの条件で圧延直角方向に連続照射した。
 かくして得られた製品の磁気特性について調べた結果を、表5に併記する。
Figure JPOXMLDOC01-appb-T000005
 表5に示したように、磁区細分化処理を施すことで、さらに良好な鉄損特性が得られることが分かる。

Claims (10)

  1.  質量%で、C:0.0005~0.005%、Si:2.0~4.5%、Mn:0.005~0.3%、Sおよび/またはSe(合計):0.05%以下、sol.Al:0.010~0.04%、N:0.005%以下を含有し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、ついで一次再結晶焼鈍を施し、さらに二次再結晶焼鈍を施す一連の工程によって方向性電磁鋼板を製造する方向性電磁鋼板の製造方法であって、
     下記(1)式から算出される固溶C量パラメーターXを用い、最終冷間圧延の直前の加熱工程後の800~200℃間の平均冷却速度R(℃/s)を、下記(2)式から算出される上限平均冷却速度RH以下とすることで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下とする方向性電磁鋼板の製造方法。
                     記
      X=[%Si]/28.09+100[%C]/12.01 ・・・ (1)
      RH =10/X ・・・ (2)
      但し、(1)式中、[%M]はM元素の含有量を示す(質量%)
  2.  前記一次再結晶焼鈍の500~700℃間の平均昇温速度を10℃/s以上100℃/s以下に調整することにより、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度に対する{554}<225>強度の比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とする請求項1に記載の方向性電磁鋼板の製造方法。
  3.  前記鋼スラブが、質量%でさらに、Ni:0.005~1.5%、Sn:0.005~0.50%、Sb:0.005~0.50%、Cu:0.005~1.5%、Cr:0.005~0.10%、P:0.005~0.50%およびMo:0.005~0.50%のうちから選んだ1種または2種以上を含有する請求項1または2に記載の方向性電磁鋼板の製造方法。
  4.  前記鋼スラブが、質量%でさらに、Ti:0.001~0.1%、Nb:0.001~0.1%およびV:0.001~0.1%のうちから選んだ1種または2種以上を含有する請求項1~3のいずれか一項に記載の方向性電磁鋼板の製造方法。
  5.  前記一次再結晶焼鈍から前記二次再結晶焼鈍までのいずれかの段階で追加インヒビター処理を施す請求項1~4のいずれか一項に記載の方向性電磁鋼板の製造方法。
  6.  前記追加インヒビター処理として、窒化処理を施す請求項5に記載の方向性電磁鋼板の製造方法。
  7.  前記追加インヒビター処理として、二次再結晶焼鈍前に鋼板に塗布する焼鈍分離剤中に、硫化物、硫酸塩、セレン化物およびセレン酸塩のうちから選んだ一種または二種以上を添加する請求項5に記載の方向性電磁鋼板の製造方法。
  8.  前記最終冷間圧延以降のいずれかの段階で、磁区細分化処理を施す請求項1~7のいずれか一項に記載の方向性電磁鋼板の製造方法。
  9.  前記磁区細分化処理が、二次再結晶焼鈍後の鋼板への電子ビーム照射によるものである請求項8に記載の方向性電磁鋼板の製造方法。
  10.  前記磁区細分化処理が、二次再結晶焼鈍後の鋼板へのレーザー照射によるものである請求項8に記載の方向性電磁鋼板の製造方法。
PCT/JP2014/004921 2013-09-26 2014-09-25 方向性電磁鋼板の製造方法 WO2015045397A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167009329A KR101756606B1 (ko) 2013-09-26 2014-09-25 방향성 전기 강판의 제조 방법
US14/915,708 US9978489B2 (en) 2013-09-26 2014-09-25 Method of producing grain oriented electrical steel sheet
CN201480052914.0A CN105579596B (zh) 2013-09-26 2014-09-25 取向性电磁钢板的制造方法
EP14848446.2A EP3050979B1 (en) 2013-09-26 2014-09-25 Method for producing grain-oriented electromagnetic steel sheet
JP2015507278A JP5780378B1 (ja) 2013-09-26 2014-09-25 方向性電磁鋼板の製造方法
RU2016116192A RU2625350C1 (ru) 2013-09-26 2014-09-25 Способ производства текстурированного листа из электротехнической стали

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199683 2013-09-26
JP2013-199683 2013-09-26

Publications (2)

Publication Number Publication Date
WO2015045397A1 true WO2015045397A1 (ja) 2015-04-02
WO2015045397A8 WO2015045397A8 (ja) 2016-03-17

Family

ID=52742566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004921 WO2015045397A1 (ja) 2013-09-26 2014-09-25 方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US9978489B2 (ja)
EP (1) EP3050979B1 (ja)
JP (1) JP5780378B1 (ja)
KR (1) KR101756606B1 (ja)
CN (1) CN105579596B (ja)
RU (1) RU2625350C1 (ja)
WO (1) WO2015045397A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101311A (ja) * 2015-12-04 2017-06-08 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3385397A4 (en) * 2015-12-04 2018-11-07 JFE Steel Corporation Method for manufacturing grain-oriented electromagnetic steel sheet

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014116929B3 (de) * 2014-11-19 2015-11-05 Thyssenkrupp Ag Verfahren zur Herstellung eines aufgestickten Verpackungsstahls, kaltgewalztes Stahlflachprodukt und Vorrichtung zum rekristallisierenden Glühen und Aufsticken eines Stahlflachprodukts
KR101707451B1 (ko) * 2015-12-22 2017-02-16 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101966370B1 (ko) * 2016-12-21 2019-04-05 주식회사 포스코 방향성 전기강판의 제조방법
CN107058867B (zh) * 2017-03-28 2018-11-20 邢台钢铁有限责任公司 一种节能型变压器铁芯用高Si纯铁及其生产方法
KR102099866B1 (ko) * 2017-12-26 2020-04-10 주식회사 포스코 방향성 전기강판 및 그의 제조방법
US11459633B2 (en) * 2017-12-28 2022-10-04 Jfe Steel Corporation Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP7006772B2 (ja) * 2018-03-20 2022-01-24 日本製鉄株式会社 方向性電磁鋼板の製造方法および方向性電磁鋼板
WO2020012665A1 (ja) * 2018-07-13 2020-01-16 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
KR102142511B1 (ko) * 2018-11-30 2020-08-07 주식회사 포스코 방향성 전기강판 및 그의 제조방법
CN113195753B (zh) * 2019-01-08 2024-04-30 日本制铁株式会社 方向性电磁钢板的制造方法及方向性电磁钢板
CN113646449B (zh) * 2019-04-03 2023-06-20 日本制铁株式会社 电磁钢板及其制造方法
CN112391512B (zh) * 2019-08-13 2022-03-18 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
EP4174194A1 (en) * 2020-06-24 2023-05-03 Nippon Steel Corporation Production method for grain-oriented electrical steel sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPS57114614A (en) 1981-01-06 1982-07-16 Nippon Steel Corp Production of al-containing unidirectional silicon steel plate
JPH02196403A (ja) * 1989-01-25 1990-08-03 Kawasaki Steel Corp 鉄損特性の優れた高磁束密度方向性けい素鋼板およびその製造方法
JPH05112827A (ja) 1988-04-25 1993-05-07 Nippon Steel Corp 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JPH05186831A (ja) * 1991-07-29 1993-07-27 Kenichi Arai Goss方位に集積した結晶方位を有する方向性珪素鋼板の製造方法
JPH06346147A (ja) 1993-06-03 1994-12-20 Nippon Steel Corp 方向性珪素鋼板の製造方法
JPH11350032A (ja) * 1998-06-12 1999-12-21 Sumitomo Metal Ind Ltd 電磁鋼板の製造方法
JP2001060505A (ja) 1999-08-20 2001-03-06 Kawasaki Steel Corp 一方向性電磁鋼板用の一次再結晶焼鈍板
JP2001303214A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2002363646A (ja) * 2001-06-08 2002-12-18 Nippon Steel Corp 脱炭焼鈍を必要としない鏡面を有する一方向性電磁鋼板の製造方法
JP2003171718A (ja) * 2001-12-04 2003-06-20 Kawasaki Steel Corp 圧延面内での平均磁気特性に優れた電磁鋼板の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202024A (ja) 1986-02-14 1987-09-05 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
US5244511A (en) 1990-07-27 1993-09-14 Kawasaki Steel Corporation Method of manufacturing an oriented silicon steel sheet having improved magnetic flux density
US5354389A (en) 1991-07-29 1994-10-11 Nkk Corporation Method of manufacturing silicon steel sheet having grains precisely arranged in Goss orientation
IT1285153B1 (it) 1996-09-05 1998-06-03 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, a partire da bramma sottile.
RU2216601C1 (ru) * 2002-10-29 2003-11-20 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства электротехнической стали с высокой магнитной индукцией
KR101070064B1 (ko) * 2006-05-24 2011-10-04 신닛뽄세이테쯔 카부시키카이샤 자속 밀도가 높은 방향성 전자기 강판의 제조 방법
ITRM20070218A1 (it) * 2007-04-18 2008-10-19 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato
IT1396714B1 (it) 2008-11-18 2012-12-14 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato a partire da bramma sottile.
US8920581B2 (en) 2008-12-16 2014-12-30 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
CN102471818B (zh) 2009-07-13 2013-10-09 新日铁住金株式会社 方向性电磁钢板的制造方法
MX2013002627A (es) 2010-09-10 2013-04-24 Jfe Steel Corp Lamina de acero magnetica de grano orientado y proceso para producir la misma.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPS57114614A (en) 1981-01-06 1982-07-16 Nippon Steel Corp Production of al-containing unidirectional silicon steel plate
JPH05112827A (ja) 1988-04-25 1993-05-07 Nippon Steel Corp 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JPH02196403A (ja) * 1989-01-25 1990-08-03 Kawasaki Steel Corp 鉄損特性の優れた高磁束密度方向性けい素鋼板およびその製造方法
JPH05186831A (ja) * 1991-07-29 1993-07-27 Kenichi Arai Goss方位に集積した結晶方位を有する方向性珪素鋼板の製造方法
JPH06346147A (ja) 1993-06-03 1994-12-20 Nippon Steel Corp 方向性珪素鋼板の製造方法
JPH11350032A (ja) * 1998-06-12 1999-12-21 Sumitomo Metal Ind Ltd 電磁鋼板の製造方法
JP2001060505A (ja) 1999-08-20 2001-03-06 Kawasaki Steel Corp 一方向性電磁鋼板用の一次再結晶焼鈍板
JP2001303214A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2002363646A (ja) * 2001-06-08 2002-12-18 Nippon Steel Corp 脱炭焼鈍を必要としない鏡面を有する一方向性電磁鋼板の製造方法
JP2003171718A (ja) * 2001-12-04 2003-06-20 Kawasaki Steel Corp 圧延面内での平均磁気特性に優れた電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATERIALS TRANSACTIONS, vol. 54, no. 01, 2013, pages 14 - 21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101311A (ja) * 2015-12-04 2017-06-08 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3385397A4 (en) * 2015-12-04 2018-11-07 JFE Steel Corporation Method for manufacturing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
EP3050979A1 (en) 2016-08-03
JPWO2015045397A1 (ja) 2017-03-09
KR20160055211A (ko) 2016-05-17
EP3050979A4 (en) 2016-09-21
US9978489B2 (en) 2018-05-22
CN105579596B (zh) 2018-01-09
US20160196909A1 (en) 2016-07-07
KR101756606B1 (ko) 2017-07-10
WO2015045397A8 (ja) 2016-03-17
JP5780378B1 (ja) 2015-09-16
CN105579596A (zh) 2016-05-11
EP3050979B1 (en) 2020-01-15
RU2625350C1 (ru) 2017-07-13

Similar Documents

Publication Publication Date Title
JP5780378B1 (ja) 方向性電磁鋼板の製造方法
JP5842400B2 (ja) 方向性電磁鋼板の製造方法
JP6319605B2 (ja) 低鉄損方向性電磁鋼板の製造方法
JP5668893B2 (ja) 方向性電磁鋼板の製造方法
WO2012086534A1 (ja) 無方向性電磁鋼板の製造方法
CN110114478B (zh) 取向电工钢板的制造方法
US20130306202A1 (en) Method for Manufacturing Grain-Oriented Electrical Steel Sheets Having Excellent Magnetic Properties
JP2013064178A (ja) 鉄損特性に優れる方向性電磁鋼板の製造方法
JP6160649B2 (ja) 方向性電磁鋼板の製造方法
JP2004169179A (ja) ベンド特性に優れる方向性電磁鋼板の製造方法
KR101707451B1 (ko) 방향성 전기강판 및 그 제조방법
KR102249920B1 (ko) 방향성 전기강판 및 그의 제조방법
KR101351956B1 (ko) 자성이 우수한 방향성 전기강판 및 그 제조방법
JPH1143746A (ja) 極めて鉄損の低い方向性電磁鋼板及びその製造方法
JPH10324959A (ja) 極めて鉄損の低い方向性電磁鋼板とその製造方法
JP5712652B2 (ja) 方向性電磁鋼板の製造方法
JP3928275B2 (ja) 電磁鋼板
JP5741308B2 (ja) 方向性電磁鋼板の製造方法およびその素材鋼板
JP2003201517A (ja) 磁気特性が安定して優れた方向性電磁鋼板の製造方法
WO2019132357A1 (ko) 방향성 전기강판 및 그 제조방법
JP2017110263A (ja) 一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法
JP2024503245A (ja) 方向性電磁鋼板およびその製造方法
KR20120072927A (ko) 저철손 고자속밀도 방향성 전기강판의 제조방법
JPH11124627A (ja) 磁気特性に優れた方向性電磁鋼板の製造方法
KR20180074077A (ko) 방향성 전기강판의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052914.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015507278

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14915708

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014848446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848446

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009329

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016116192

Country of ref document: RU

Kind code of ref document: A