RU2216601C1 - Способ производства электротехнической стали с высокой магнитной индукцией - Google Patents

Способ производства электротехнической стали с высокой магнитной индукцией Download PDF

Info

Publication number
RU2216601C1
RU2216601C1 RU2002128982A RU2002128982A RU2216601C1 RU 2216601 C1 RU2216601 C1 RU 2216601C1 RU 2002128982 A RU2002128982 A RU 2002128982A RU 2002128982 A RU2002128982 A RU 2002128982A RU 2216601 C1 RU2216601 C1 RU 2216601C1
Authority
RU
Russia
Prior art keywords
temperature
carbon
steel
eas
hot rolling
Prior art date
Application number
RU2002128982A
Other languages
English (en)
Other versions
RU2002128982A (ru
Inventor
В.С. Лисин
В.Н. Скороходов
А.А. Лапшин
М.Б. Цырлин
В.П. Настич
Г.А. Аглямова
П.П. Чернов
В.М. Кукарцев
Ю.И. Ларин
Г.А. Цейтлин
М.Ю. Поляков
М.Л. Лобанов
В.В. Шевелев
Original Assignee
Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Новолипецкий металлургический комбинат" filed Critical Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority to RU2002128982A priority Critical patent/RU2216601C1/ru
Priority to AU2003211578A priority patent/AU2003211578A1/en
Priority to PCT/RU2003/000023 priority patent/WO2004040025A1/ru
Application granted granted Critical
Publication of RU2216601C1 publication Critical patent/RU2216601C1/ru
Publication of RU2002128982A publication Critical patent/RU2002128982A/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Изобретение относится к черной металлургии и может быть использовано при производстве текстурованных электротехнических сталей с высокой проницаемостью магнитного потока. Способ включает выплавку металла, непрерывную разливку расплава, нагрев сляба, черновую и чистовую горячие прокатки, две холодные прокатки, разделенные рекристаллизационно-обезуглероживающим отжигом, высокотемпературный и выпрямляющий отжиги, причем нагрев сляба производят до температур, гарантирующих получение ферритной структуры, а горячую прокатку проводят в диапазоне температур фазовой перекристаллизации α→γ→α так, что на завершающей стадии чистовой горячей прокатки объемная доля аустенита в стали составляет не более 3%. Кроме того, расплав перед разливкой предпочтительно содержит, мас.%: 0,020...0,028 углерода, 3,03...3,15 кремния, 0,1. . .0,3 марганца, 0,4...0,6 меди, 0,011...0,025 кислоторастворимого алюминия, 0,008. ..0,016 азота, остальное железо, а перед разливкой концентрацию углерода в расплаве корректируют в зависимости от концентрации кремния: при увеличении концентрации кремния на 0,1 мас.% свыше 3,15 мас.% концентрацию углерода увеличивают на 0,003 мас.% сверх 0,028 мас.%. Изобретение позволяет повысить в стали значение магнитной индукции и снизить удельные потери. 2 з.п. ф-лы, 2 табл., 3 ил.

Description

Изобретение относится к металлургии и может быть использовано при производстве полосовой холоднокатаной электротехнической анизотропной стали (ЭАС) с превосходными магнитными свойствами для изготовления магнитопроводов и магнитоактивных частей разнообразных электротехнических устройств.
Высокие магнитные свойства готовой ЭАС обеспечиваются наличием в подповерхностном слое стали совершенной кристаллографической текстуры {110} <001> (текстура Госса), при которой практически все кристаллиты имеют плоскости { 110} , параллельные поверхности полосы, и оси <001> вдоль направления прокатки. Для получения наилучших магнитных характеристик важно, чтобы оси <001>, то есть оси легкого намагничивания, были точно направлены вдоль направления прокатки. Магнитные характеристики также сильно зависят от толщины стали, размеров зерна, удельного электросопротивления, поверхностного покрытия, чистоты стали и т.п.
Текстура Госса в ЭАС формируют в процессе вторичной рекристаллизации (ВР) при высокотемпературном отжиге. Для протекания ВР необходимо, во-первых, создание уже при горячей прокатке (ГП) определенной структурной и текстурной неоднородности и, во-вторых, наличие в металле дисперсных частиц ингибиторной фазы.
Получение необходимой кристаллографической текстуры в ЭАС достигается посредством реализации механизма структурной наследственности. Ингибиторная фаза задерживает нормальный рост зерен, позволяя реализоваться процессу ВР.
Текстурное состояние железокремнистых материалов после высокотемпературной деформации относится к числу важнейших элементов структуры, определяющих особенности развития процесса текстурообразования при последующей холодной прокатке и рекристаллизации. В процессе ГП закладываются основные структурные параметры, влияющие на процессы текстурообразования и в итоге на магнитные свойства готовой ЭАС. Влияние на структуро- и текстурообразование проявляется в наследовании особенностей исходной структуры горячекатаного подката по технологическим переделам сквозного цикла производства ЭАС.
В настоящее время существует несколько основных технологических вариантов производства ЭАС: сульфидный (вариант "Аrmсо"), сульфидно-селеновый (вариант "Kawasaki") сульфонитридный (вариант "Nippon Steel"), нитридный (вариант разработанный в России на Ново-Липецком металлургическом комбинате). Эти варианты отличатся химическими составами и режимами обработки.
Сульфидный вариант (фирма "Аrmсо", США) известен с конца 40-х годов и в настоящее время является самым распространенным (описан М.Ф. Литманом в японском патенте 30-3651). Ингибиторной фазой в данной ЭАС является сульфид марганца - MnS. Основными технологическими операциями при производстве ЭАС по сульфидному варианту являются ограничение концентрации марганца, высокотемпературный нагрев перед ГП, ГП, две холодные прокатки, разделенные рекристаллизационным отжигом, обезуглероживающий отжиг и высокотемпературный отжиг (ВТО). Готовая ЭАС имеет магнитную индукцию в поле 800 А/м - 1,81... 1,84 Тл. Принципиально важным при ГП является формирование в подповерхностном слое области вытянутых полигонизованных кристаллитов с ярко выраженной текстурой деформации - {110}<001>. Наличие данного слоя за счет двух холодных прокаток с деформациями 40-60%, разделенных рекристаллизационным отжигом, обеспечивает получение в структуре ЭАС перед ВТО достаточно большого количества зерен с совершенной ориентировкой {110}<001>. Часть этих кристаллитов является зародышами вторичной рекристаллизации.
Вариант "Kawasaki" (ингибиторные фазы MnS, MnSe и Sb) является развитием сульфидного варианта (описан Иманака и др. в японском патенте 51-13469). При производстве продукта по данному варианту ЭАС проходит те же операции в той же последовательности, что и в технологии "Armco". Однако существует несколько принципиальных отличий: в расплав ЭАС вводят селен и сурьму, понижена температура нагрева слябов перед ГП, более жестко регламентирован режим ГП, повышена величина деформации при второй холодной прокатки (более 60%), высокотемпературный отжиг включает изотермическую выдержку металла в интервале температур ВР. Готовая ЭАС имеет магнитную индукцию в поле 800 А/м - 1,87 Тл и выше, характеризуется высоким качеством электроизоляционного покрытия. Однако из-за очень жестких требований к параметрам технологических операций данный вариант производства ЭАС практически не получил распространения в мировом производстве.
В сульфонитридном варианте производства ЭАС (технология фирмы "Nippon Steel" описана Тагучи и Сакакура в японском патенте 40-15644) в качестве ингибиторных фаз используются нитрид алюминия AlN и сульфид марганца MnS. При выплавке ЭАС характеризуется повышенным содержанием (по сравнению с сульфидным вариантом) углерода и алюминия. Основные операции после ГП - отжиг горячекатаного подката в проходной печи, однократная холодная прокатка, обезуглероживающий и высокотемпературный отжиги. Магнитная индукция в поле 800 А/м - 1,89...1,94 Тл - является самой высокой для готовой ЭАС, что обеспечивается за счет формирования сверхплотной дисперсной ингибиторной фазы в процессе термообработок и мощного силового воздействия на текстуру ЭАС, каковой является однократная прокатка (величина деформации более 80%). Принципиально важным в данной технологии является наличие после ГП высокотемпературного нормализующего отжига (1120. ..1150oС) с жестко регламентированным законом охлаждения. Следует отметить, что производство ЭАС по данному технологическому регламенту не всегда возможно в связи с отсутствием необходимого состава оборудования.
Нитридный вариант производства ЭАС разрабатывался в России в семидесятых-восьмидесятых годах прошлого века в основном специалистами Ново-Липецкого металлургического комбината (способ описан в диссертационной работе В.П. Барятинского, Москва, 1989г.). В дальнейшем эта технология усовершенствована совместно специалистами Магнитогорского металлургического комбината и Верх-Исетского металлургического завода.
ЭАС нитридного варианта по сравнению с сульфидным вариантом имеет повышенное содержание углерода, азота и меди, а по сравнению с сульфонитридным характеризуется более низким содержанием алюминия. Ингибиторной фазой является нитрид алюминия AlN. Основные операции после ГП - первая холодная прокатка, обезуглероживающий отжиг, вторая холодная прокатка и высокотемпературный отжиг. Магнитная индукция в поле 800 А/м - 1,86-1,90 Тл.
Существенным отличием стали нитридного варианта от сульфидного является более низкий нагрев металла перед горячей прокаткой (около 1250oС против 1400oС). Следствием этого, а также более высокого содержания углерода в ЭАС является формирование при ГП в подповерхностном слое текстуры рекристаллизации {110}<uvw>, в которой совершенная компонента {110}<001> очень слабо выражена. По этой причине принципиально важным оказывается проводить нагрев на первичную рекристаллизацию после второй холодной прокатки с замедленной скоростью. Низкотемпературная растянутая во времени первичная рекристаллизация в присутствии сегрегаций примесей и/или дисперсных частиц является своеобразным "фильтром" для зарождения и роста в деформированном металле зерен с ориентировкой {110}<uvw>, позволяющая формироваться преимущественно кристаллитам с текстурой {110}<001>. (Авторское свидетельство СССР 835151 "Способ изготовления текстурованной электротехнической стали", приоритет от 23.08.1981).
Задачей настоящего изобретения является получение высокопроницаемого состояния в ЭАС (B800 более 1,88 Тл) в процессе технологии изготовления ЭАС с двукратной прокаткой.
Техническим результатом изобретения является повышение значения магнитной индукции ЭАС и снижение удельных потерь.
Сущность изобретения состоит в том, что способ производства электротехнической стали с высокой магнитной индукцией включает выплавку металла, непрерывную разливку расплава, нагрев сляба, черновую и чистовую горячие прокатки, две холодные прокатки, разделенные рекристаллизационно-обезуглероживающим отжигом, высокотемпературный и выпрямляющий отжиги, причем нагрев сляба производят до температур, гарантирующих получение ферритной структуры металла, а горячую прокатку проводят в диапазоне температур фазовой перекристаллизации α→γ→α так, что на завершающей стадии чистовой горячей прокатки объемная доля аустенита в стали составляет не более 3%. Кроме того, расплав перед разливкой предпочтительно содержит, мас.%: 0,020...0,028 углерода, 3,03. . . 3,15 кремния, 0,1. ..0,3 марганца, 0,4...0,6 меди, 0,011...0,025 кислоторастворимого алюминия, 0,008...0,016 азота, остальное железо, а перед разливкой концентрацию углерода в расплаве корректируют в зависимости от концентрации кремния: при увеличении концентрации кремния на 0,1 мас.% свыше 3,15 мас.% концентрацию углерода увеличивают на 0,003 мас.% сверх 0,028 мас. %.
В основу настоящего изобретения легли следующие положения.
1. В процессе ГП для получения высоких магнитных свойств ЭАС необходимо решить следующие две важные задачи:
- обеспечить равномерное распределение фазообразующих элементов алюминия и азота, а также углерода для гарантирования успешного развития вторичной рекристаллизации при высокотемпературном отжиге;
- сформировать в подповерхностном зоне горячекатаной полосы ЭАС слоя с совершенной текстуры Госса {110}<001>.
2. Первая задача решается при условии нагрева сляба в однофазную дельта-ферритную область. В случае нагрева сляба в двухфазную область, вследствие различий в растворимости азота и углерода в феррите и аустените невозможно добиться равномерного распределения указанных элементов во всем объеме ЭАС. Вторым условием решения указанной задачи является то, что ГП должна осуществляться в диапазоне температур α→γ→α превращений. Только в этом случае исключается преждевременный распад раствора азота в области высоких температур (более 1100oС) и последующее укрупнение нитридов до "закритических" размеров.
3. Для выполнения второй задачи требуется ограничить объем фазовой перекристаллизации γ→α (не более 3%) на завершающей стадии ГП и после нее. В противном случае, вследствие фазового наклепа в подповерхностной зоне развиваются рекристаллизационные процессы, ведущие к деградации текстуры Госса {110}<001> и замене ее на текстуру с преобладанием ориентировок {110}<112>.. .<113>.
Однофазное ферритное состояние ЭАС при нагреве до начала ГП должно обеспечивается не только температурой (1320...1400oС), но и оптимальным сочетанием аустенито- и ферритообразующих элементов (в основном соответственно углеродом и кремнием). Оптимум химического состава соответствует 0,022...0,028 мас. % углерода и 3,05..3,15 мас.% кремния и может быть скорректирован в зависимости от концентрации кремния: при увеличении концентрации кремния на 0,1 мас.% свыше 3,15 мас.% концентрацию углерода увеличивают на 0,003 мас.% сверх 0,028 мас.%.
Указанные положения подтверждаются примерами реализации предлагаемого изобретения в промышленных условиях.
Пример 1.
В дуговых электропечах выплавляли низкоуглеродистый полупродукт - расплав, который затем подвергали вакуумированию в нераскисленном состоянии, дополнительному нагреву, легированию и модифицированию на агрегате AISA-SKF. Всего были выплавлены две плавки, состав которых приведен в табл. 1 (железо остальное). Разливку расплава ЭАС в слябы производили на машинах непрерывной разливки.
В процессе непрерывной разливки расплава в слябы при стыковке плавок вследствие перемешивания металла в промежуточном ковше был получен усредненный в разной степени химический состав стали (главным образом по концентрации углерода).
Один из полученных таким образом слябов перед ГП подогревали до температуры 1400oС, а другой - до температуры 1250oС. Слябы прокатывали на толщину полосы 2,2 мм. Для высоко нагретого сляба температура завершения черновой ГП составила 1250oС; температура начала чистовой ГП 1160oС; температура конца чистовой ГП - 990oС; смотки полосы 610oС. Те же температуры для низко нагретого сляба составили соответственно 1110oС, 1060oС, 950oС, 580oС. В дальнейшем полосы ЭАС обрабатывали по следующей технологии: травление; первая холодная прокатка на толщину 0,60 мм; рекристализационно-обезуглероживающий отжиг; вторая холодная прокатка на толщину 0,30 мм; нанесение на полосу магнезиального покрытия; высокотемпературный отжиг со скоростью нагрева металла в пределах 15...20oС/ч в интервале температур 400...700oС; выпрямляющий отжиг; определение магнитных свойств ЭАС. Измерения магнитных свойств производились по всей длине полученных рулонов ЭАС. Магнитные свойства ЭАС характеризовали магнитной индукцией, измеренной в поле напряженностью 800 и 2500 А/м - B800 и B2500 и удельными потерями на 1 кг при амплитуде магнитной индукции 1,7 Тл и частоте поля 50 Гц - P1.7/50.
Результаты измерений магнитных свойств полосы ЭАС, а также данные по распределению углерода по ее длине, полученные до обезуглероживающего отжига, приведены на фиг. 1, 2, 3.
На фиг.1 и 2 позиции 1 - нагрев сляба до 1400oС; позиции 2 - нагрев сляба до 1250oС. На фиг.3 позиция 1 - температура 1150oС, позиция 2 - 990oС, позиция 3 - 940oС. Количество аустенита в ЭАС определены с помощью специальных металлографических исследований.
Полученные результаты однозначно свидетельствуют о сильной зависимости магнитных свойств готовой ЭАС и соответственно ее текстуры от количества аустенита в ЭАС при ее горячей прокатке. Так, при малой концентрации углерода (менее 0,02 мас.%), вследствие раннего распада раствора азота в железе, происходит чрезмерное укрупнение нитридов, что не позволяет получить достаточно стабильную матрицу и гарантировать вторичную рекристаллизацию. При высокой концентрации углерода (более 0,03 мас.%) совершенство текстуры ухудшается из-за развития рекристаллизационных процессов на последних этапах и после ГП. Магнитные свойства и совершенство текстуры достигают максимума только при ограничении концентрации углерода в пределах 0,02-0,03 мас.%. Из данных фигур следует также, что нагрев в двухфазную зону (температура нагрева 1250oС) принципиально не позволяет достичь предельно высоких значений магнитных свойств.
Пример 2.
Сталь выплавляли в кислородных конверторах, корректировку химического состава по углероду в зависимости от концентрации кремния производили после легирования расплава. Горячекатаный подкат содержал, мас.%: 0,021 С; 3,10 Si; 0,19 Mn; 0,015 S; 0,020 Al; 0,009 N и 0,45 Сu, железо остальное. Температурные параметры нагрева слябов и горячей прокатки, равно как схема передела горячекатаных рулонов, были аналогичны приведенным в примере 1.
Готовая ЭАС характеризовалась следующим уровнем магнитных свойств: P1,7/50 - 1,03-1,10 Вт/кг; B800 - 1,90-1,92 Тл; B2500 - 1,97-1,98 Тл.
Пример 3.
Сталь выплавляли в кислородных конверторах, корректировку химического состава по углероду производили после легирования расплава. Расплав ЭАС содержал, мас. %: 0,027 С; 3,03 Si; 0,17 Mn; 0,013 Sl; 0,019 Al; 0,01 N и 0,42 Сu, железо остальное. Температура нагрева слябов перед горячей прокаткой составляла 1370oС, температура завершения черновой ГП 1230oС, температура завершения чистовой ГП 970oС, температура смотки 590oС. Холодную прокатку и термообработку проводили по схеме, описанной в примере 1.
Готовая ЭАС характеризовалась следующим уровнем магнитных свойств: P1,7/50 - 1,01-1,11 Вт/кг; B800 - 1,90-1,92 Тл; В2500 - 1,97-1,98 Тл.
Пример 4.
Сталь выплавляли в кислородных конверторах. Расплав содержал, мас.%: 0,033 С; 3,3 Si; 0,21 Mn; 0,009 S; 0,018 Al; 0,011 N и 0,49 Сu, железо остальное. Слябы нагревали до температуры 1350oС (как и в предыдущих примерах - это гарантировало получение однофазной ферритной структуры). Температуру завершения черновой ГП поддерживали в пределах 1100-1170oС, температуру завершения чистовой ГП изменяли в пределах 900-910oС, 930-940oС, 960-980oС и 990-1000oC, температура смотки полос составляла 560-580oС. Холодную прокатку и термообработку проводили по схеме, описанной в примере 1. Магнитные свойства готовой стали приведены в табл. 2.
Из данных табл. 2 следует, что при повышенном содержании углерода, для достижения высоких магнитных свойств температура конца ГП должна быть уменьшена с тем, чтобы завершающие стадии деформации осуществлялись в преимущественно ферритной области.
Таким образом, для получения совершенной текстуры и высоких магнитных свойств ЭАС необходимо такое сочетание состава ЭАС и параметров горячей прокатки, при которых на стадии нагрева слябов обеспечивается однофазное ферритное состояние, на стадии деформации двухфазное (α+γ) и на завершающей стадии деформации преимущественно однофазное ферритное.

Claims (3)

1. Способ производства электротехнической стали с высокой магнитной индукцией, включающий выплавку стали, непрерывную разливку расплава, нагрев сляба до температуры получения ферритной структуры, черновую и чистовую горячие прокатки, две холодные прокатки разделенные рекристаллизационно-обезуглероживающим отжигом, высокотемпературный и выпрямляющий отжиги, отличающийся тем, что горячую прокатку проводят в диапазоне температур фазовой перекристаллизации α→γ→α так, что на завершающей стадии чистовой горячей прокатки объемная доля аустенита в стали составляет не более 3%.
2. Способ по п. 1, отличающийся тем, что выплавляют сталь, содержащую, мас. %: 0,020. . . 0,028 углерода, 3,05. . . 3,15 кремния, 0,1. . . 0,3 марганца, 0,4. . . 0,6 меди, 0,011. . . 0,025 кислоторастворимого алюминия, 0,008. . . 0,016 мас. % азота, остальное железо.
3. Способ по п. 1, отличающийся тем, что при выплавки стали концентрацию углерода в расплаве корректируют в зависимости от концентрации кремния: при увеличении концентрации кремния на 0,1 мас. % свыше 3,15 мас. % концентрацию углерода увеличивают на 0,003 мас. % сверх 0,028 мас. %.
RU2002128982A 2002-10-29 2002-10-29 Способ производства электротехнической стали с высокой магнитной индукцией RU2216601C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2002128982A RU2216601C1 (ru) 2002-10-29 2002-10-29 Способ производства электротехнической стали с высокой магнитной индукцией
AU2003211578A AU2003211578A1 (en) 2002-10-29 2003-01-28 Method for producing electrical steel exhibiting a high magnetic induction
PCT/RU2003/000023 WO2004040025A1 (fr) 2002-10-29 2003-01-28 Procede de fabrication d'un acier electrotechnique a induction magnetique elevee

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002128982A RU2216601C1 (ru) 2002-10-29 2002-10-29 Способ производства электротехнической стали с высокой магнитной индукцией

Publications (2)

Publication Number Publication Date
RU2216601C1 true RU2216601C1 (ru) 2003-11-20
RU2002128982A RU2002128982A (ru) 2004-05-27

Family

ID=32028260

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002128982A RU2216601C1 (ru) 2002-10-29 2002-10-29 Способ производства электротехнической стали с высокой магнитной индукцией

Country Status (3)

Country Link
AU (1) AU2003211578A1 (ru)
RU (1) RU2216601C1 (ru)
WO (1) WO2004040025A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516323C1 (ru) * 2012-11-14 2014-05-20 Михаил Борисович Цырлин Способ производства высокопроницаемой анизотропной электротехнической стали
RU2597446C2 (ru) * 2014-11-20 2016-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ производства сверхтонкой электротехнической анизотропной стали
RU2625350C1 (ru) * 2013-09-26 2017-07-13 ДжФЕ СТИЛ КОРПОРЕЙШН Способ производства текстурированного листа из электротехнической стали

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358977A (zh) * 2019-08-23 2019-10-22 山西太钢不锈钢股份有限公司 硅钢薄带及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135606C1 (ru) * 1998-05-13 1999-08-27 Акционерное общество "Новолипецкий металлургический комбинат" Способ производства холоднокатаной полуобработанной электротехнической стали
RU2142020C1 (ru) * 1999-04-30 1999-11-27 Цырлин Михаил Борисович Способ производства анизотропной электротехнической стали
RU2175985C1 (ru) * 2001-04-19 2001-11-20 Цырлин Михаил Борисович Способ производства электротехнической анизотропной стали

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516323C1 (ru) * 2012-11-14 2014-05-20 Михаил Борисович Цырлин Способ производства высокопроницаемой анизотропной электротехнической стали
RU2625350C1 (ru) * 2013-09-26 2017-07-13 ДжФЕ СТИЛ КОРПОРЕЙШН Способ производства текстурированного листа из электротехнической стали
RU2597446C2 (ru) * 2014-11-20 2016-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ производства сверхтонкой электротехнической анизотропной стали

Also Published As

Publication number Publication date
WO2004040025A1 (fr) 2004-05-13
AU2003211578A1 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
KR100441234B1 (ko) 높은체적저항률을갖는결정립방향성전기강및그제조방법
US8333846B2 (en) Manufacturing method of oriented SI steel with high electric-magnetic property
JP4651755B2 (ja) 高磁気特性を備えた配向粒電気鋼板の製造方法
JPS6245285B2 (ru)
JP7454646B2 (ja) 高磁気誘導方向性ケイ素鋼およびその製造方法
KR101693522B1 (ko) 자기적 성질이 우수한 방향성 전기강판 및 그 제조방법
JP7507157B2 (ja) 方向性電磁鋼板およびその製造方法
JP4697841B2 (ja) 方向性電磁鋼板の製造方法
JP2004526862A5 (ru)
KR950005793B1 (ko) 자속밀도가 높은 일방향성 전기 강스트립의 제조방법
JPH0211728A (ja) 無配向性電気鉄板の超高速焼なまし
JPH01283324A (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
WO2017111433A1 (ko) 방향성 전기강판의 제조방법
JP2005226111A (ja) 磁気特性に優れた一方向性電磁鋼板の製造方法
JP3885432B2 (ja) 一方向性電磁鋼板の製造方法
RU2216601C1 (ru) Способ производства электротехнической стали с высокой магнитной индукцией
JP5005873B2 (ja) 方向性電磁鋼帯を製造する方法
KR960006026B1 (ko) 우수한 자기특성을 갖는 방향성 전기강판의 제조방법
KR101540375B1 (ko) 방향성 전기강판 및 그 제조방법
RU2175985C1 (ru) Способ производства электротехнической анизотропной стали
JPH0733548B2 (ja) 磁束密度の高い二方向性電磁鋼板の製造方法
JP2003201517A (ja) 磁気特性が安定して優れた方向性電磁鋼板の製造方法
KR101263795B1 (ko) 저철손 고자속밀도 방향성 전기강판과 그 제조방법 및 여기에 사용되는 방향성 전기강판 슬라브
RU2180356C1 (ru) Способ производства холоднокатаной электротехнической анизотропной стали
KR100479996B1 (ko) 철손이 낮은 고자속밀도 방향성 전기강판 및 그 제조방법

Legal Events

Date Code Title Description
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20121123