WO2004040025A1 - Procede de fabrication d'un acier electrotechnique a induction magnetique elevee - Google Patents

Procede de fabrication d'un acier electrotechnique a induction magnetique elevee Download PDF

Info

Publication number
WO2004040025A1
WO2004040025A1 PCT/RU2003/000023 RU0300023W WO2004040025A1 WO 2004040025 A1 WO2004040025 A1 WO 2004040025A1 RU 0300023 W RU0300023 W RU 0300023W WO 2004040025 A1 WO2004040025 A1 WO 2004040025A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
carbon
slab
concentration
silicium
Prior art date
Application number
PCT/RU2003/000023
Other languages
English (en)
Russian (ru)
Inventor
Vladimir Sergeevich Lisin
Vladimir Nikolaivich Skorokhodov
Vladimir Petrovich Nastich
Mikhail Borisovich Tsyrlin
Pavel Pavlovich Chernov
Vladimir Mikhailovich Kukartsev
Yuri Ivanovich Larin
Genrikh Avramovich Tseytlin
Mikhail Livovich Lobanov
Valery Valentinovich Shevelev
Igor Mikhailovich Shatokhin
Mikhail Yurievich Polyakov
Original Assignee
Otkrytoe Aktsionernoe Obschestvo 'novolipetsky Metallurgichesky Kombinat'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otkrytoe Aktsionernoe Obschestvo 'novolipetsky Metallurgichesky Kombinat' filed Critical Otkrytoe Aktsionernoe Obschestvo 'novolipetsky Metallurgichesky Kombinat'
Priority to AU2003211578A priority Critical patent/AU2003211578A1/en
Publication of WO2004040025A1 publication Critical patent/WO2004040025A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Definitions

  • Iz ⁇ b ⁇ e ⁇ enie ⁇ n ⁇ si ⁇ sya ⁇ me ⁇ allu ⁇ gii and m ⁇ zhe ⁇ by ⁇ is ⁇ lz ⁇ van ⁇ ⁇ i ⁇ izv ⁇ ds ⁇ ve ⁇ l ⁇ s ⁇ v ⁇ y ⁇ l ⁇ dn ⁇ a ⁇ an ⁇ y ele ⁇ e ⁇ niches ⁇ y aniz ⁇ n ⁇ y s ⁇ ali (E ⁇ S) with ⁇ ev ⁇ s ⁇ dnymi magni ⁇ nymi sv ⁇ ys ⁇ vami for izg ⁇ vleniya magni ⁇ v ⁇ d ⁇ v and magni ⁇ a ⁇ ivny ⁇ chas ⁇ ey ⁇ azn ⁇ b ⁇ azny ⁇ ele ⁇ e ⁇ niches ⁇ i ⁇ us ⁇ ys ⁇ v.
  • Magnetic characteristics also strongly depend on the thickness of the steel, the size of the grain, the specific electrical power, and the acceleration of the process.
  • the Gossa Facility in the ESF is modeled in the process of the Direct Reinstallation ( ⁇ ) process and the high-temperature combustion.
  • SIGNIFICANT FOX (DR. 26) 2 Ingestion, inadvertent, inadequate, even with a hot inactivity (GP), a malfunctioning and non-communicable disease. Obtaining the required crystalline process in
  • the ES is achieved through the implementation of the mechanism of structural inheritance.
  • the inhibitory phase prevents the normal growth of grains, causing the realization of the process ⁇ .
  • the sulfide variant (“ ⁇ réelle ⁇ graft Les”, USA) was known from the end of the 40s and at the present time is the most common ( ⁇ . ⁇ . is written in Japan for about 30). Inhibitory phase in this ECS is manganese sulfide - ⁇ 8.
  • the finished ESU has magnetic induction at a field of 800 ⁇ / m - 1.81-1.84 ⁇ l.
  • the most important aspect of the GP is the formation in a convenient area of extended extended operations with a 110% process.
  • ⁇ alichie ⁇ g ⁇ sl ⁇ ya, on account dvu ⁇ ⁇ l ⁇ dny ⁇ ⁇ a ⁇ de ⁇ matsiyami with 40-60% ⁇ azdelenny ⁇ ⁇ e ⁇ is ⁇ allizatsi ⁇ nnym ⁇ zhig ⁇ m, ⁇ bes ⁇ echivae ⁇ ⁇ luchenie in s ⁇ u ⁇ u ⁇ e E ⁇ S ⁇ e ⁇ ed ⁇ d ⁇ s ⁇ a ⁇ chn ⁇ b ⁇ lsh ⁇ g ⁇ ⁇ ⁇ liches ⁇ va ze ⁇ en s ⁇ ve ⁇ shenn ⁇ y ⁇ ien ⁇ i ⁇ v ⁇ y with ⁇ 110 ⁇ ⁇ 001>.
  • SIGNIFICANT FOX (DR. 26) 4 GP, more difficult to regulate the regime of GP, increased the value of deferment and the second cold switch (more than 60%), it switches off the battery
  • the finished ESU has a magnetic induction in the field of 800 ⁇ / m 1.87 L and above, it is characterized by a high-quality electroprocessor. However, due to the very hard workings of the processors, this option for the use of electronic components of the device did not receive any damage to the process.
  • ⁇ sulphite-nitric variant of the product of ENS (the technology of the “ ⁇ ⁇ Caesar ⁇ ” form, is described in the report on aluminum sulphate which is inactive).
  • the content is higher (compared with the sulfide version) of carbon and aluminum.
  • the main operation after the GP is the burning of the hot product in the oven, the free-standing, high-temperature, non-charcoal burner ⁇ agni ⁇ naya indu ⁇ tsiya in ⁇ le 800 ⁇ / m - 1,89-1,94 ⁇ l - yavlyae ⁇ sya sam ⁇ y vys ⁇ y for g ⁇ v ⁇ y E ⁇ S, ch ⁇ ⁇ bes ⁇ echivae ⁇ sya on account ⁇ mi ⁇ vaniya sve ⁇ l ⁇ n ⁇ y dis ⁇ e ⁇ sn ⁇ y ingibi ⁇ n ⁇ y ⁇ azy in ⁇ tsesse ⁇ e ⁇ m ⁇ b ⁇ ab ⁇ and m ⁇ schn ⁇ g ⁇ sil ⁇ v ⁇ g ⁇ v ⁇ zdeys ⁇ viya on ⁇ e ⁇ s ⁇ u ⁇ u E ⁇ S, ⁇ a ⁇ v
  • the EU version of nitride compared with the sulfide version has an increased content of carbon, nitrogen and copper, and is comparable with sulfide in the reduction of aluminum.
  • Inhibitory phase is aluminum nitride ⁇ .
  • the main operation after the GP is the first cold process, the non-carbon burner, the second cold process and high temperature.
  • the magnetic induction in the field of 800 ⁇ / m is 1.86-1.90 ⁇ l.
  • a significant difference has become a nitride option; it has become a sulfide option which is a lower low heat of the metal before hot (near 1250 ° C). The consequence of this, and also the higher the content of carbon in the EU, is the formation of gas and gas in the presence of 110% of the waste For this reason
  • SIGNIFICANT FOX (DR. 26) It is fundamentally important that it is necessary to heat up the furnace after a quick start with a slower speed. Short-circuiting, extended initial separation in the presence of impurity and / or dispersion segregations is a matter of disintegration. The user is required to have access to the text ⁇ 110 ⁇ ⁇ 001>. (The original certificate of the CCC ⁇ ° 835151 "Method for the production of processed steel", on August 23, 1981).
  • the objective of the present invention is to obtain a high incidence of electricity in the ES (more than 1.88 ⁇ l) in the process of manufacturing the electric power from the EC.
  • a technical result of the invention is an increase in the magnitude of the magnetic induction of the electric power system and a decrease in the specific loss.
  • SIGNIFICANT FOX (DR. 26) 7 nag ⁇ ev slab ⁇ izv ⁇ dya ⁇ d ⁇ ⁇ em ⁇ e ⁇ a ⁇ u ⁇ , ga ⁇ an ⁇ i ⁇ uyuschi ⁇ ⁇ luchenie ⁇ e ⁇ i ⁇ n ⁇ y s ⁇ u ⁇ u ⁇ y me ⁇ alla and g ⁇ yachuyu ⁇ a ⁇ u ⁇ v ⁇ dya ⁇ in dia ⁇ az ⁇ ne ⁇ em ⁇ e ⁇ a ⁇ u ⁇ ⁇ az ⁇ v ⁇ y ⁇ e ⁇ e ⁇ is ⁇ allizatsii ⁇ - » ⁇ -» ⁇ ⁇ a ⁇ , ch ⁇ on zave ⁇ shayuschey s ⁇ adii chis ⁇ v ⁇ y g ⁇ yachey ⁇ a ⁇ i ⁇ bemnaya d ⁇ lya aus ⁇ eni ⁇ a in s ⁇ ali s ⁇ s ⁇ avlyae ⁇ not b ⁇ lee 3%.
  • the first task is solved under the condition of heating the slab in a single delta-solid area.
  • the other condition for solving the indicated problem is that the GP must be carried out in the range of the temperature ⁇ ⁇ ⁇ ⁇ rotation.
  • a premature loss of nitrogen in the region of high temperature (over 1100 ° C) and a subsequent increase in temperature are excluded.
  • the optimum chemical composition corresponds to 0.022–0.028 wt.% Carbon and 3.05–3.15 wt.% Red, and may be more dependent on the increase in the percentage: .% carbon concentration increase by 0.003 wt.% over 0.028 wt.%.
  • One of the resulting slabs before the GP was heated to a temperature of 1400 ° C, and the other to a temperature
  • SIGNIFICANT FOX 10 high-temperature slabs of the completion of the black GP were 1250 ° ⁇ ; the temperature of the beginning of the total GP - 1160 ° ⁇ ; the terminal of the final GP - 990 ° ⁇ ; offshore area - 610 ° ⁇ .
  • the same temperatures for low heated slabs were 1110 ° ⁇ , 1060 ° ⁇ , 950 ° ⁇ , 580 ° ⁇ .
  • the further areas of the ESA processed the following technology: regulation; the first is cold to a thickness of 0.60 mm; commercialized non-carbonized burning; the second is cold loading to a thickness of 0.30 mm; application of magnesia to the area; high temperature firing with a speed of heating of the metal in the range of 15-20 ° C / hour in the temperature range of 400-700 ° C; direct burning; The separation of the magnetic properties of the ESE. Measurements of the magnetic properties were made over the entire length of the radiated energy systems. The ESA's magnetic properties were charac- terized by magnetic induction, which was measured in a field of 800 and 2500 ⁇ / m - ⁇ 80 ⁇ and ⁇ 25 ⁇ ? and specific losses per 1 kg at an amplitude of magnetic induction of 1.7 V and a frequency of 50 Hz - V. 7 5 ⁇ -
  • the processed product consisted of, wt%: 0.021 C; 3.10 ⁇ ; 0.19 ⁇ ; 0.015 8; 0.020 ⁇ 1; 0.009 ⁇ and 0.45 C, iron other.
  • wt% 0.021 C; 3.10 ⁇ ; 0.19 ⁇ ; 0.015 8; 0.020 ⁇ 1; 0.009 ⁇ and 0.45 C, iron other.
  • the finished ESE was characterized by the following level of magnetic properties: .7 ⁇ .7 / 50 - 1.03-1.10 ⁇ / kg, ⁇ 80 ⁇ - 1.90-1.92 ⁇ l, ⁇ 250 ⁇ - 1.97-1.98 ⁇ l .
  • Example 3 The finished ESE was characterized by the following level of magnetic properties: .7 ⁇ .7 / 50 - 1.03-1.10 ⁇ / kg, ⁇ 80 ⁇ - 1.90-1.92 ⁇ l, ⁇ 250 ⁇ - 1.97-1.98 ⁇ l .
  • Example 3 Example 3.
  • the finished ESA was characterized by the following level of magnetic properties: ⁇ . 7/50 - 1.01-1.11 ⁇ / kg, ⁇ 80 ⁇ - 1.90-1.92 ⁇ l,
  • EXAMPLE 4 Steel was smelted in acid inverted steel.
  • the alloy consisted, wt.%: 0,033 C; 3.12 Z ⁇ ; 0.21 ⁇ ; 0.009 8; 0.018 ⁇ 1; 0.011
  • SIGNIFICANT FOX (DR. 26) 13
  • the temperature of completion of the number of GPs was changed in the range of 900–910 ° ⁇ , 930–940 ° ⁇ , 960–980 ° ⁇ and 990–1000 ° ⁇ ; the temperature of the receiver was 560–580 ° ⁇ .
  • Handling and processing has been done as described in Example 1.
  • the finished steel properties are shown in Table 2.
  • SIGNIFICANT FOX 14 stages of the deformation are two-dimensional ( ⁇ + ⁇ ) and at the end of the stage of deformation, it is essentially the same, other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

L'invention se rapporte à l'industrie sidérurgique et peut s'utiliser dans la fabrication d'aciers électrotechniques texturés présentant une perméabilité élevée de flux magnétique. Le procédé consiste à effectuer la fusion du métal, la distribution en continu du métal en fusion, le chauffage de l'ébauche, le laminage à chaud grossier et de finition, deux laminages à froid séparés par un recuit de recristallisation et de décarburation, un recuit haute température et de redressement, le chauffage de l'ébauche s'effectuant jusqu'à des températures assurant la formation d'une structure de ferrite du métal, et le laminage à chaud de finition s'effectuant dans une gamme de températures de recristallisation de phases α->η->α de manière à ce qu'au stade final du laminage à chaud de finition la partie en masse d'austhénite dans l'acier soit inférieure ou égale à 3 %. En outre, avant la distribution en continu du métal en fusion il comprend, en % en masse, 0,020-0,028 de carbone, 3,05-3,15 de silicium, 0,1 0,3 de manganèse, 0,4-0,6 de cuivre, 0,011-0,025 d'aluminium soluble dans un acide, 0,008- 0,016 d'azote, le reste étant constitué de fer. Avant la distribution, la teneur du métal en fusion en carbone est ajustée en fonction de la teneur en silicium; lorsque la teneur en silicium augmente de 0,1 % en masse en dessus de 3,15 % en masse, on augmente la teneur en carbone de 0,003 % en masse en dessus de 0,028 % en masse.
PCT/RU2003/000023 2002-10-29 2003-01-28 Procede de fabrication d'un acier electrotechnique a induction magnetique elevee WO2004040025A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003211578A AU2003211578A1 (en) 2002-10-29 2003-01-28 Method for producing electrical steel exhibiting a high magnetic induction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2002128982A RU2216601C1 (ru) 2002-10-29 2002-10-29 Способ производства электротехнической стали с высокой магнитной индукцией
RU2002128982 2002-10-29

Publications (1)

Publication Number Publication Date
WO2004040025A1 true WO2004040025A1 (fr) 2004-05-13

Family

ID=32028260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2003/000023 WO2004040025A1 (fr) 2002-10-29 2003-01-28 Procede de fabrication d'un acier electrotechnique a induction magnetique elevee

Country Status (3)

Country Link
AU (1) AU2003211578A1 (fr)
RU (1) RU2216601C1 (fr)
WO (1) WO2004040025A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358977A (zh) * 2019-08-23 2019-10-22 山西太钢不锈钢股份有限公司 硅钢薄带及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516323C1 (ru) * 2012-11-14 2014-05-20 Михаил Борисович Цырлин Способ производства высокопроницаемой анизотропной электротехнической стали
KR101756606B1 (ko) * 2013-09-26 2017-07-10 제이에프이 스틸 가부시키가이샤 방향성 전기 강판의 제조 방법
RU2597446C2 (ru) * 2014-11-20 2016-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ производства сверхтонкой электротехнической анизотропной стали

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135606C1 (ru) * 1998-05-13 1999-08-27 Акционерное общество "Новолипецкий металлургический комбинат" Способ производства холоднокатаной полуобработанной электротехнической стали
RU2142020C1 (ru) * 1999-04-30 1999-11-27 Цырлин Михаил Борисович Способ производства анизотропной электротехнической стали
RU2175985C1 (ru) * 2001-04-19 2001-11-20 Цырлин Михаил Борисович Способ производства электротехнической анизотропной стали

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135606C1 (ru) * 1998-05-13 1999-08-27 Акционерное общество "Новолипецкий металлургический комбинат" Способ производства холоднокатаной полуобработанной электротехнической стали
RU2142020C1 (ru) * 1999-04-30 1999-11-27 Цырлин Михаил Борисович Способ производства анизотропной электротехнической стали
RU2175985C1 (ru) * 2001-04-19 2001-11-20 Цырлин Михаил Борисович Способ производства электротехнической анизотропной стали

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358977A (zh) * 2019-08-23 2019-10-22 山西太钢不锈钢股份有限公司 硅钢薄带及其制造方法

Also Published As

Publication number Publication date
RU2216601C1 (ru) 2003-11-20
AU2003211578A1 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
JP7066782B2 (ja) スズ含有無方向性ケイ素鋼板の製造方法、得られた鋼板および当該鋼板の使用
KR101694875B1 (ko) 고강도 열간 압연 q&p 강 및 이의 제조 방법
CN101139681B (zh) 中高牌号冷轧无取向硅钢及其制造方法
RU2590741C2 (ru) Нетекстурированная кремнистая сталь и способ ее изготовления
JP7454646B2 (ja) 高磁気誘導方向性ケイ素鋼およびその製造方法
SE445650B (sv) Sett att framstella icke-kornorienterad kiselstalplat
CN103451533A (zh) 屈服强度≥800MPa的热轧磁轭钢及其生产方法
EP4001450A1 (fr) Tôle magnétique en acier non orientée de qualité 600 mpa et son procédé de fabrication
CN103451532A (zh) 屈服强度≥750MPa的热轧磁轭钢及其生产方法
CN113789467B (zh) 一种含磷无铝高效无取向硅钢生产方法
WO2004040025A1 (fr) Procede de fabrication d'un acier electrotechnique a induction magnetique elevee
JPH029647B2 (fr)
CN101906581B (zh) 高磁感低铁损含钒含钛无取向电工钢的制备方法
CN100436630C (zh) 一种采用薄板坯工艺制造低碳高锰取向电工钢板的方法
KR960006026B1 (ko) 우수한 자기특성을 갖는 방향성 전기강판의 제조방법
JP4259269B2 (ja) 方向性電磁鋼板の製造方法
JP2005002401A (ja) 無方向性電磁鋼板の製造方法
CN101906580A (zh) 含钒含钛无取向电工钢及其制备方法
CN115896597B (zh) 一种消防设备电枢铁心用低成本、高性能薄规格无取向硅钢的制备方法
CN114616353B (zh) 无方向性电磁钢板
JP3934904B2 (ja) 加工性の優れた低鉄損無方向性電磁鋼板及びその製造方法
JP4626046B2 (ja) セミプロセス無方向性電磁鋼板の製造方法
SU968085A1 (ru) Способ получени электротехнической стали
JP2002129234A (ja) 高磁束密度薄手一方向性電磁鋼板の製造方法
KR100521572B1 (ko) 전기장 열처리를 이용한 극저탄소강 판재의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HR IN KR PL SK YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase