WO2015041218A1 - 新規抗体精製方法及びそれから得られる抗体(Novel Antibody Purification Method and Antibody obtained therefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(Novel Antibody Purification method using Cation Exchanger and Antibody obtained therefrom) - Google Patents

新規抗体精製方法及びそれから得られる抗体(Novel Antibody Purification Method and Antibody obtained therefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(Novel Antibody Purification method using Cation Exchanger and Antibody obtained therefrom) Download PDF

Info

Publication number
WO2015041218A1
WO2015041218A1 PCT/JP2014/074452 JP2014074452W WO2015041218A1 WO 2015041218 A1 WO2015041218 A1 WO 2015041218A1 JP 2014074452 W JP2014074452 W JP 2014074452W WO 2015041218 A1 WO2015041218 A1 WO 2015041218A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
carrier
column
cation exchange
derived substance
Prior art date
Application number
PCT/JP2014/074452
Other languages
English (en)
French (fr)
Inventor
和信 水口
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to SG11201602061YA priority Critical patent/SG11201602061YA/en
Priority to JP2015537927A priority patent/JPWO2015041218A1/ja
Priority to EP14846521.4A priority patent/EP3048109A4/en
Priority to CN201480051360.2A priority patent/CN105555795A/zh
Priority to US15/022,890 priority patent/US10519195B2/en
Priority to KR1020167009648A priority patent/KR20160054597A/ko
Publication of WO2015041218A1 publication Critical patent/WO2015041218A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1271Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Micrococcaceae (F), e.g. Staphylococcus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody

Definitions

  • the present invention includes a carrier having an affinity ligand for specifically purifying a target molecule (for example, an antibody or an antibody-derived substance, which may be collectively referred to as an antibody or the like hereinafter), and a positive molecule.
  • the present invention is a novel method for purifying an antibody or the like (antibody or antibody-derived substance) using a cation exchange group (hereinafter also referred to as a carrier having a cation exchange group or a cation exchange carrier).
  • a purification method such as an antibody at pH 4.0 or lower, which is not usually selected as a pH for use of a cation exchange carrier having a carboxyl group as a ligand, and an antibody obtained therefrom.
  • Monoclonal antibodies which are the main components of antibody drugs with antibodies as the main drug, are expressed in the culture medium as recombinant proteins mainly using cultured mammalian cells, etc., and purified to high purity by several stages of chromatography and membrane processes. And then formulated.
  • Antibody drugs are immunoglobulin G and its related substances, and are formed by fusing an Fc region, which is a constant region of an immunoglobulin molecule, with other functional proteins or peptides in addition to a molecule generally called an antibody. Fc fusion proteins (Fc-containing molecules) are included.
  • Fc fusion proteins Fc-containing molecules
  • low molecular weight antibodies such as Fab, scFv, and diabody are included.
  • these antibody pharmaceuticals include those that are secreted and expressed in the culture supernatant of microorganisms as hosts, and those that are accumulated and expressed in cells or between the outer wall of the cells and the cell membrane, purified and formulated. included.
  • the monomer is a 4 quantity consisting of two heavy chain (H chain) molecules consisting of a constant region Fc region and a variable region, and two light chain (L chain) molecules consisting of a variable region.
  • H chain heavy chain
  • L chain light chain
  • An antibody having a body structure is defined as one molecular unit. Multimers of this unit molecule are aggregates, which are the main cause of side effects of antibody drugs.
  • the patterning (platforming) of the purification technique has progressed by combining specific unit operations, and in the initial purification process (recovery process), protein A is immobilized as a ligand on a water-insoluble carrier.
  • Antibody affinity separation matrices protein A carriers
  • a technique is generally used in which antibody is adsorbed on a protein A carrier under neutral conditions and antibody is eluted under acidic conditions. Impurities such as aggregates are removed by a combination of ion exchange chromatography, hydrophobic interaction chromatography and the like after the A chromatography step (Non-patent Document 1, Non-patent Document 2, Non-patent Document 3, Patent Reference 5).
  • An affinity ligand has a function of specifically binding to a specific molecule, and an affinity separation matrix (also referred to as an affinity chromatography carrier or affinity carrier) obtained by immobilizing the ligand on a water-insoluble carrier is a biological component or It is used for efficient separation and purification of useful substances from microorganisms including recombinants and cultured mammalian cells.
  • an affinity separation matrix also referred to as an affinity chromatography carrier or affinity carrier
  • Peptide properties consisting of functional variants (analogous substances) derived from microorganisms such as protein A, protein G, and protein L, or functionally obtained by recombinant expression thereof as antibody affinity ligands that are actually used in industry
  • proteinaceous ligands, recombinant proteinaceous ligands such as camel single-chain antibodies and antibody Fc receptors, and chemically synthesized ligands such as thiazole derivatives, are used for purification of antibody drugs and the like.
  • Antibody drugs are increasing in demand as ideal drugs because they are less toxic to chemicals and show higher specificity.
  • Affinity chromatography typified by protein A chromatography is eluted at an acidic pH, but ion exchange chromatography and hydrophobic interaction chromatography in the latter stage are usually treated at a pH of 5 or higher. It was necessary to adjust pH and ionic strength.
  • the cation exchange carrier is usually used at a pH higher than the pKa of its ligand. Further, adsorption / desorption at a pH lower than the isoelectric point (pI) of the protein is performed on the target protein purified by the cation exchange carrier.
  • a cation exchange carrier having a sulfo group having a pKa of about 2 or a carboxyl group having a pKa of about 3 to 5 as a ligand is adsorbed and desorbed using a pH 5 to 6 buffer. And purified.
  • the pH of the buffer is set between the pKa of the ligand and the pI of the target protein, but the lower the pH used, the greater the positive charge of the protein and the higher the elution ionic strength, The recovery tends to be low.
  • the ionic strength of the eluate is high, there is a limitation that the ionic strength must be reduced in the subsequent process construction.
  • the pH used is close to or lower than the pKa of the cation exchange ligand, the negative charge of the ligand is protonated and the binding capacity is lowered, and it has not been usually selected. Therefore, for the purification of antibodies using a cation exchange carrier, a buffer solution having a pH of 5 to 6 has been used for a cation exchange carrier having a pKa of 2 to 5.
  • Patent Document 8 When an anion exchange chromatography step or a hydrophobic interaction chromatography step is used after the affinity chromatography step (Patent Document 8), when an anion exchange chromatography step is performed after the cation exchange chromatography step (Patent Document 7) Alternatively, when a plurality of target substances are recovered in the cation exchange chromatography step (Patent Document 6), it is necessary to adjust pH and ionic strength.
  • the antibody affinity separation matrix shows high specificity to the antibody and can be highly purified, but even if the usage method is strictly set, the separation ability of the monomer (monomer) and aggregates is low, There was a limit to the process for removing aggregates and the like.
  • the object of the present invention (first aspect) is an antibody that is the main purpose of affinity purification in the first chromatography step of the purification step of antibody-derived substances such as antibodies or Fc-containing molecules or low-molecular-weight antibodies such as Fab and scFv It is an object of the present invention to provide a novel antibody purification method capable of improving the selective separation characteristics of monomers together with increasing the purity of itself and reducing or omitting the burden on the subsequent impurity removal step with respect to the removal of aggregates and the like.
  • the purpose of the present invention (second aspect) is to adjust the pH of an acidic pH eluate, which has been required in the purification of antibodies and the like, with affinity chromatography purification as a recovery chromatography step and highly purified in a subsequent process. It is another object of the present invention to provide an efficient antibody purification method that does not require ionic strength adjustment.
  • the present inventor has packed both a carrier having an affinity ligand for an antibody or an antibody-derived substance and a carrier having a cation exchange group in the same column or a linked column.
  • a novel separation method having both specific adsorption ability and excellent ability to remove aggregates, etc. was found, and the present invention (first aspect) was completed.
  • the present inventor adsorbs and desorbs antibodies and the like on a cation exchange carrier at an acidic pH at which the antibody affinity carrier is eluted, thereby reducing impurities such as antibody aggregates.
  • the inventors have found a novel method for separating a cation exchange carrier for obtaining the fraction obtained, and have completed the present invention (second embodiment).
  • the gist of the present invention (first aspect) is as follows: [1] A structure in which a carrier 1 having an affinity ligand for an antibody or an antibody-derived substance and a carrier 2 having a cation exchange group are used as a linked or mixed column, and the antibody or antibody-derived substance is adsorbed and eluted as a whole. To purify antibodies or antibody-derived substances.
  • a method for purifying an antibody or antibody-derived substance using the carrier 1 having an affinity ligand for the antibody or antibody-derived substance and the carrier 2 having a cation exchange group An antibody or an antibody-derived substance is contained in an integrated column in which a column packed with the carrier 2 is directly connected to the downstream side of the column packed with the carrier 1 or a mixed column packed with a mixture of both the carrier 1 and the carrier 2 Flow the solution and load the antibody or antibody-derived substance onto the column, Next, the antibody or antibody-derived substance purification method, wherein the loaded antibody or antibody-derived substance is eluted by passing the eluate through.
  • the purification method according to any one of [2] to [4], wherein a washing solution having a lower ionic strength and a higher pH than the eluate is passed.
  • the integrated column or mixed column is equilibrated with an equilibration solution, the antibody or antibody-derived substance-containing solution is loaded, and after the loading, the equilibration solution and the antibody or antibody-derived substance-containing solution are A wash solution having the same or higher ionic strength and a pH higher than that of the eluate is passed, and then a wash solution having a lower ionic strength than the equilibration solution and the antibody or antibody-derived substance-containing solution and a pH higher than that of the eluate.
  • the carrier 1 having an affinity ligand is a carrier having protein A or a similar substance as a ligand.
  • the antibody or antibody-derived substance is an immunoglobulin G, an immunoglobulin G derivative, or an Fc-containing molecule.
  • the carrier 2 having a cation exchange group is a carrier having a carboxyl group as a ligand.
  • An integrated column is produced by connecting a column packed with carrier 1 having an affinity ligand before a column packed with carrier 2 having a cation exchange group, and an antibody or an antibody-derived substance under neutral pH conditions
  • a mixed column having the carrier 2 having a cation exchange group and a carrier 1 having an affinity ligand in a mixed state is prepared, and an antibody or an antibody-derived substance-containing solution is loaded under a neutral pH condition to have a pH of 4.0.
  • the purification method according to any one of [2] to [18], wherein the antibody or antibody-derived substance is eluted using the following acidic buffer.
  • the ratio of the carrier 1 and the carrier 2 constituting the mixed column is 1/20 or more and 20/1 or less on a volume basis, according to any one of [2] to [18], [21] Purification method.
  • 10% DBC at a retention time of 6 minutes with respect to IgG of carrier 2 is 1/10 times or more and 10 times or less with respect to 10% DBC at a retention time of 6 minutes with respect to IgG of carrier 1 under adsorption conditions
  • the gist of the present invention (second embodiment) is as follows: [1] An antibody or antibody-derived substance-containing solution is loaded on the carrier 2 having a cation exchange group having a carboxyl group-containing ligand having a pKa of 4.0 or more, and then an antibody is used using an acidic buffer having a pH of 4.0 or less Alternatively, a method of using a carrier having a cation exchange group for eluting antibody-derived substances. [2] The method according to [1], wherein the carboxyl group-containing ligand is derived from an acidic amino acid.
  • An integrated column is prepared by linking a column packed with carrier 1 having an affinity ligand before a column packed with carrier 2 having a cation exchange group, and antibody or antibody-derived substance under neutral pH conditions The method according to any one of [1] to [5], wherein after loading the solution on the integrated column, the antibody or the antibody-derived substance is eluted using an acidic buffer having a pH of 4.0 or lower.
  • a mixed column having the carrier 2 having a cation exchange group and a carrier 1 having an affinity ligand in a mixed state is prepared, and an antibody or an antibody-derived substance-containing solution is loaded under a neutral pH condition to have a pH of 4.0.
  • the integrated column or mixed column is equilibrated with an equilibration solution, and the antibody or antibody-derived substance-containing solution is loaded, and after this loading, the equilibration solution and the antibody or antibody-derived substance-containing solution are A wash solution having the same or higher ionic strength and a pH higher than that of the eluate is passed, and then a wash solution having a lower ionic strength than the equilibration solution and the antibody or antibody-derived substance-containing solution and a pH higher than that of the eluate.
  • the antibody or antibody-derived substance is an immunoglobulin G, an immunoglobulin G derivative, an Fc-containing molecule, or a Fab, scFv, diabody or antigen-binding site-containing molecule according to any one of [1] to [9] how to use.
  • An antibody or antibody-derived substance purified by the method according to any one of [1] to [12].
  • the affinity chromatography step which is the first step in the purification step of an antibody or an antibody-derived substance such as an Fc-containing molecule or a low-molecular-weight antibody such as Fab or scFv
  • main affinity purification is performed.
  • the selective separation characteristics of the monomer can be improved, and the load on the subsequent impurity removal step can be reduced.
  • the eluate can be directly processed by cation exchange chromatography after the affinity chromatography step, which is the first step of the purification step for antibodies and the like. Since adsorption and desorption of antibodies, etc., to the cation exchange carrier can be performed at the same pH as the elution pH, affinity chromatography purification and cation exchange chromatography purification can be integrated and efficient process construction is possible. .
  • a purified monomer antibody can be obtained in a high content (purity).
  • FIG. 1 is a diagram showing a conventional flow in which a protein A affinity chromatography step, a virus inactivation step, and a cation exchange chromatography step are performed in this order.
  • FIG. 2 is a flowchart showing an example of the present invention, and shows a flow of performing a virus inactivation step after simultaneously performing a protein A affinity chromatography step and a cation exchange chromatography step.
  • FIG. 3 is a diagram showing 10% leakage DBC of a carrier having each cation exchange group at pH 3.7, pH 4.2, and pH 4.7.
  • FIG. 4 is a diagram showing elution of a monomer antibody (white) and an aggregate antibody (hatched line) when a column packed with a carrier having a cation exchange group (cation exchange carrier A) is used (horizontal axis). Is the elution volume (mL), the left vertical axis is the peak area ratio (%), and the right vertical axis is the ionic strength (mM)).
  • FIG. 5 is a diagram showing elution of a monomer antibody (outlined) and an aggregate antibody (hatched line) when a column packed with a carrier having a cation exchange group (cation exchange carrier B) is used (horizontal axis).
  • FIG. 6 is a diagram showing elution of a monomer antibody (white) and an aggregate antibody (hatched line) when a column packed with a carrier having a cation exchange group (cation exchange carrier C) is used (horizontal axis). Is the elution volume (mL), the left vertical axis is the peak area ratio (%), and the right vertical axis is the ionic strength (mM)).
  • FIG. 6 is a diagram showing elution of a monomer antibody (white) and an aggregate antibody (hatched line) when a column packed with a carrier having a cation exchange group (cation exchange carrier C) is used (horizontal axis).
  • cation exchange carrier C carrier having a cation exchange group
  • FIG. 7 is a diagram showing elution of a monomer antibody (white) and an aggregate antibody (hatched line) when a column packed with a carrier having a cation exchange group (cation exchange carrier D) is used (horizontal axis). Is the elution volume (mL), the left vertical axis is the peak area ratio (%), and the right vertical axis is the ionic strength (mM)).
  • FIG. 8 is a diagram showing elution of a monomer antibody (white) and an aggregate antibody (shaded line) when a column packed with a carrier having protein A affinity ligand (protein A carrier) is used and the antibody loading is 10 mg.
  • FIG. 9 is a diagram showing elution of a monomer antibody (white) and an aggregate antibody (shaded line) when a column packed with a carrier having protein A affinity ligand (protein A carrier) is used and the antibody loading is 30 mg.
  • the horizontal axis represents the elution volume (mL), the left vertical axis represents the peak area value, and the right vertical axis represents the ionic strength (mM)).
  • FIG. 10 is a diagram showing elution of a monomer antibody (white) and an aggregate antibody (shaded line) when a column packed with a carrier having protein A affinity ligand (protein A carrier) is used and the antibody loading is 40 mg.
  • the horizontal axis represents the elution volume (mL), the left vertical axis represents the peak area value, and the right vertical axis represents the ionic strength (mM)).
  • FIG. 11 shows a column packed with a carrier having a cation exchange group (SP-Sepharose Fast Flow, cation exchange carrier A) just below a column packed with a carrier having protein A affinity ligand (protein A carrier).
  • SP-Sepharose Fast Flow, cation exchange carrier A just below a column packed with a carrier having protein A affinity ligand (protein A carrier).
  • FIG. 12 shows a monomer antibody when a column packed with a carrier having a cation exchange group (cation exchange carrier A) is connected directly below a column packed with a carrier having protein A affinity ligand (protein A carrier).
  • cation exchange carrier A carrier having a cation exchange group
  • FIG. 13 shows a monomer antibody when a column packed with a carrier having a cation exchange group (cation exchange carrier B) is connected directly below a column packed with a carrier having protein A affinity ligand (protein A carrier).
  • cation exchange carrier B carrier having protein A affinity ligand
  • FIG. 14 shows a monomer antibody when a column packed with a carrier having a cation exchange group (cation exchange carrier C) is connected directly below a column packed with a carrier having protein A affinity ligand (protein A carrier).
  • cation exchange carrier C carrier having protein A affinity ligand
  • FIG. 15 shows a monomer antibody when a column packed with a carrier having a cation exchange group (cation exchange carrier D) is connected directly below a column packed with a carrier having protein A affinity ligand (protein A carrier).
  • cation exchange carrier D carrier having protein A affinity ligand
  • FIG. 16 shows a monomer antibody (outlined) and an aggregate when a carrier having a protein A affinity ligand (protein A carrier) and a carrier having a cation exchange group (cation exchange carrier D) are mixed in the same column.
  • the novel purification method of an antibody or the like (antibody or antibody-derived substance) of the present invention is a method in which a carrier having an affinity ligand for an antibody or the like and a carrier having a cation exchange group are connected or mixed to form an integrated antibody or the like.
  • the connection column and the mixing column may be referred to as an integral column and a mixing column, respectively, and “adsorption” means “load”) ”In some cases.
  • the purification method of the present invention is a method for purifying an antibody or the like using the carrier 1 having an affinity ligand for the antibody or the like and the carrier 2 having a cation exchange group, and the carrier 1 is filled.
  • an antibody or the like is passed through a liquid containing an antibody or the like through an integrated column in which the column filled with the carrier 2 is directly connected to the downstream side of the column or a mixed column in which a mixture of both the carrier 1 and the carrier 2 is filled.
  • the loaded antibody and the like are eluted by loading the column and then passing the eluate.
  • the carrier 1 having an affinity ligand preferably does not contain a cation exchange group
  • the carrier 2 having a cation exchange group preferably does not contain an affinity ligand.
  • the separation of the antibody from the cation exchange carrier at an acidic elution pH for elution of the target molecule (antibody etc.) from the affinity carrier, or the affinity carrier and the cation exchange carrier It is characterized in that it is a connected or mixed column and integrally adsorbs and elutes an antibody or the like (in the present invention, the connected column and the mixed column may be referred to as an integrated column and a mixed column, respectively). "May mean" load ").
  • the method of using the carrier having a cation exchange group of the present invention is the method of using an antibody or antibody-derived substance-containing solution on a carrier having a cation exchange group having a carboxyl group-containing ligand of pKa 4.0 or higher. After loading, the antibody or antibody-derived substance is eluted using an acidic buffer having a pH of 4.0 or less.
  • the carrier 1 having an affinity ligand preferably does not contain a cation exchange group
  • the carrier 2 having a cation exchange group preferably does not contain an affinity ligand.
  • the present invention (first embodiment, second embodiment) can be carried out by operating a column in which antibody affinity chromatography purification and cation exchange chromatography purification are integrated. That is, since two chromatography steps (see FIG. 1, conventional flow) can be performed in one chromatography step (see FIG. 2, purification flow of the present invention (first embodiment, second embodiment)), the number of steps can be omitted. Production efficiency can be increased without using the solution required in each step. In addition, a high content (high purity) of the antibody monomer can be realized.
  • Carrier having affinity ligand refers to the binding of an antigen and an antibody.
  • carrier 1, affinity carrier or affinity carrier 1 having affinity ligand refers to the binding of an antigen and an antibody.
  • the affinity ligand that can be used in the present invention is not particularly limited as long as it has a feature capable of specifically binding to an antibody or the like as a target molecule.
  • a ligand or a chemically synthesized ligand (synthetic compound) is preferred.
  • Peptide or protein ligands are more preferable from the viewpoint of specificity to the target molecule.
  • affinity ligands for antibodies and the like are protein A, protein G, protein L, protein H, protein D, protein Arp, protein Fc ⁇ R, and antibody binding. It is particularly preferred to be a synthetic peptide ligand and related substances.
  • the affinity ligand is more preferably protein A, protein G, protein L, or an analog thereof, and most preferably protein A or an analog thereof.
  • the affinity ligand is not particularly limited as long as it has a target molecule binding domain (monomer peptide or protein, single domain), but a large amount in which two or more domains are linked.
  • Peptide or protein (multi-domain) is preferable, 2 to 10 is more preferable, and 2 to 8, more preferably 2 to 6 domains are connected to each other, and a multimeric protein is preferable.
  • These multimeric proteins may be homopolymers such as homodimers and homotrimers that are linked bodies of a single target molecule-binding domain. If the target molecules are the same, a plurality of types of target molecule-binding domains may be used. It may be a heteropolymer such as a heterodimer or heterotrimer which is a linked body.
  • a method for linking the target molecule-binding domains of the affinity ligand of the present invention (first aspect, second aspect)
  • a method that does not destabilize the three-dimensional structure of the multimeric protein is preferable. Examples include, but are not limited to, a linkage method via amino acids, a linkage method without involving amino acid residues of a domain sequence, or a linkage method using amino acid residues other than one or more domain sequences. .
  • fusion protein obtained by fusing a multimeric protein with another protein having different functions can be preferably used.
  • fusion proteins include proteins fused with albumin and GST (glutathione S-transferase), nucleic acids such as DNA aptamers, drugs such as antibiotics, proteins fused with polymers such as PEG (polyethylene glycol), etc.
  • PEG polyethylene glycol
  • 10% DBC at a residence time of 6 minutes for IgG of affinity carrier 1 is usually preferably 1 mg / mL or more and 100 mg / mL or less, more preferably 10 mg / mL or more, and further preferably 15 mg / mL. mL or more, even more preferably 20 mg / mL or more, particularly preferably 30 mg / mL or more.
  • Such 10% DBC can be obtained by the following equation, for example.
  • DBC 10% (V 10% ⁇ V d ) C 0 / V c (where V 10% is the volume of solution when IgG leaks 10%, V d is the volume in the pipe (for example, from the injection to the column inlet) And the internal volume of the pipe from the column outlet to the detector), C 0 is the antibody concentration (mg / mL) of the load solution, and V c is the column volume).
  • a predetermined flow rate that is, a predetermined residence time (for example, 1 to 10 minutes, preferably 3 to 6 minutes).
  • the volume average particle size of the affinity carrier is, for example, 1 ⁇ m or more and 1000 ⁇ m or less, preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 150 ⁇ m or less. Is more preferable, 120 ⁇ m or less is even more preferable, and 100 ⁇ m or less is particularly preferable.
  • Carrier having cation exchange group in the present invention (first aspect, second aspect) (hereinafter sometimes referred to as carrier 2, cation exchange carrier or cation exchange carrier 2 having cation exchange group) Functions as a cation exchange group under conditions where the target molecule antibody or the like is eluted (desorbed) from the affinity ligand and captures the target molecule, and counter ions such as sodium ion and potassium ion Any cation exchange group that can be eluted (desorbed) depending on the ionic strength in the order of the monomer and the aggregate is immobilized on the water-insoluble carrier.
  • the target molecule is recovered with a recovery rate of 80% or more, so that the cation exchange group uses a weakly acidic carboxyl group as a ligand as a cation exchange group.
  • a group carboxyl group-containing ligand
  • the carboxyl group-containing ligand can be derived from an acidic amino acid, and more preferably is derived from glutamic acid. Since an acidic pH of 4.0 or lower is usually used for elution from the affinity carrier, the cation exchange ligand of the present invention (first embodiment, second embodiment) can be used to obtain a high recovery rate at the pH.
  • the pKa of a certain carboxyl group-containing ligand is 4.0 or more.
  • the pKa of the carboxyl group-containing ligand is preferably 4.05 or more and 6.5 or less, more preferably 4.10 or more and 6.45 or less. If the pKa is low, the antibody yield may decrease.
  • the cation exchange group is a carboxyl group, a sulfone group or the like.
  • a carboxyl group is preferable, and a carboxyl group having a pKa of 4.0 or more is more preferable.
  • the carboxyl group can be derived from an acidic amino acid, and more preferably is derived from glutamic acid.
  • a weak acidic group is preferable.
  • a carrier having protein A as an affinity ligand it is preferable to use a cation exchange group having a carboxyl group as a ligand as a cation exchange group.
  • the pKa of the cation exchange group is preferably 3.5 or more and 6.5 or less, more preferably 4.0 or more and 6.0 or less, and still more preferably 4.1 or more and 5 or less. .5 or less. If the pKa is low, the antibody yield may decrease.
  • the pKa and elution pH of the cation exchange group are determined by cation exchange. It is preferable to satisfy the relationship of the group pKa ⁇ elution pH, more preferably the relationship of the cation exchange group pKa> elution pH.
  • a carrier having a cation exchange group is used alone, it has been carried out under the condition of cation exchange group pKa ⁇ elution pH, which is suitable for using a carrier having a cation exchange group and an affinity carrier in combination.
  • the charge of the target protein is greatly charged on the positive side during elution, whereas the conversion of the cation exchange group ligand from the negative to the positive side is relatively suppressed. Aggregated antibodies and the like having a further positive charge can be recovered, and the antibody monomer is considered to be easily purified.
  • the cation exchange carrier has a volume average particle diameter of, for example, 1 ⁇ m or more and 1000 ⁇ m or less, preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, More preferably, it is 150 micrometers or less, More preferably, it is 120 micrometers or less, Most preferably, it is 100 micrometers or less.
  • the ion exchange capacity of the cation exchange carrier is preferably 0.001 mmol / mL or more and 0.5 mmol / mL or less.
  • 10% DBC at a residence time of 6 minutes with respect to IgG of the carrier having a cation exchange group having the carboxyl group-containing ligand is 1 mg / mL or more and 200 mg. / ML or less, more preferably 10 mg / mL or more, further preferably 15 mg / mL or more, even more preferably 20 mg / mL or more, and particularly preferably 30 mg / mL or more.
  • such 10% DBC can be calculated
  • DBC 10% (V 10% ⁇ V d ) C 0 / V c (where V 10% is the volume of solution when IgG leaks 10%, V d is the volume in the pipe (for example, from the injection to the column inlet) And the internal volume of the pipe from the column outlet to the detector), C 0 is the antibody concentration (mg / mL) of the load solution, and V c is the column volume).
  • a predetermined flow rate that is, a predetermined residence time (for example, 1 to 10 minutes, preferably 3 to 6 minutes) and a predetermined pH (for example, 3 to 5, particularly 4). Is preferred.
  • Water-insoluble carrier (carrier)
  • the “water-insoluble carrier” that can be used in the present invention is a substrate that is insoluble in water and is not particularly limited as long as the antibody affinity ligand and the cation exchange group can be immobilized.
  • it consists of inorganic carriers such as glass beads and silica gel, synthetic polymers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide, and crosslinked polystyrene, and polysaccharides such as crystalline cellulose, crosslinked cellulose, crosslinked agarose, and crosslinked dextran.
  • Organic carriers, and organic-organic, organic-inorganic, etc. composite carriers obtained by a combination thereof may be mentioned.
  • GCL2000 a porous cellulose gel
  • Sephacryl S-1000 obtained by covalently crosslinking allyldextran and methylenebisacrylamide
  • TOYOPEARL an acrylate-based carrier
  • Sepharose CL4B Rapid Run
  • an agarose-based crosslinked carrier examples thereof include Agarose Beads and Cellufine, which is a cellulosic crosslinking carrier.
  • the water-insoluble carrier used in the present invention is desirably a large surface area from the viewpoint of the processing capacity per unit time, and is a porous substance having a large number of pores of appropriate sizes.
  • the form of the carrier can be any of beads, monoliths, fibers, membranes (including hollow fibers), and any form can be selected.
  • the antibody affinity ligand and cation exchange group located on the water-insoluble carrier function in concert, so that their physical distances are close and a certain residence time is obtained, which effectively functions the separation matrix. Therefore, porous beads are preferable.
  • a carrier made of a polysaccharide or modified with a monosaccharide or a polysaccharide is preferable in terms of ease of introduction of an antibody affinity ligand. .
  • agarose and cellulose carrier are preferable, but not particularly limited thereto.
  • a general method can be used as a method for immobilizing an affinity ligand on a water-insoluble carrier or separation matrix.
  • the amino group of the antibody affinity ligand may be bound to the carrier via a formyl group introduced on the carrier, and the amino group of the antibody affinity ligand is bound to the carrier via an activated carboxyl group on the carrier. May be.
  • these water-insoluble carriers are activated so that the ligand can be covalently bound to the carrier before introducing the antibody affinity ligand, but a commercially available activated carrier may be used or may be activated by itself. good.
  • the functional group introduced into the water-insoluble carrier by activation is not particularly limited as long as it is a functional group capable of forming a covalent bond with the affinity ligand.
  • an epoxy group epichlorohydrin
  • an odor Hydroxy groups aldehyde groups or activated carboxylic acid groups activated with cyanide, N, N-disuccinimidyl carbonate (DSC), etc.
  • DSC N-disuccinimidyl carbonate
  • NHS N-hydroxysuccinimide
  • CDI carbonyldiimidazole
  • the protein ligand can be immobilized on the carrier by a method in which a part of the functional group of the protein and a part of the functional group of the carrier are reacted.
  • the main functional groups (active groups) on the protein side that can be used for the N-terminal amino acid and lysine (Lys) side chain amino group, the cysteine (Cys) side chain thiol group, or the C-terminal amino acid and glutamic acid ( Glu) side chain and aspartic acid (Asp) side chain carboxyl groups, and the like, but are not limited thereto.
  • a method using protein A having a cysteine at the C-terminus has been proposed as a method for controlling the orientation of the ligand and immobilizing the protein antibody affinity ligand on a water-insoluble carrier (US Patent). 6,399,750, Ljungquist C. et al., “Eur. J. Biochem.”, 1989, 186, 557-561).
  • a functional group for example, charged amine is added to the linker or spacer. And a method of forming them.
  • a method for immobilizing or introducing a cation exchange group into a water-insoluble carrier a method usually used for producing a cation exchange group can be used.
  • a method for introducing a carboxymethyl group into a sugar skeleton there are a method for reacting monochloroacetic acid under alkaline conditions, and a method for introducing a sulfuric acid group includes reacting sulfuric acid under alkaline conditions. Is not to be done.
  • a carboxyl group can also be introduced by immobilizing the amino acid via the amino group of the amino acid.
  • sodium periodate is reacted with diol groups present or introduced on a water-insoluble carrier to activate the carrier, introduce aldehyde groups, and add molecules having amino groups and cation exchange groups in the same molecule
  • the cation exchange group that can introduce a cation exchange group by covalently bonding an aldehyde group and an amino group on the support by a reductive amination method by carrying out a reduction treatment after imine formation is directly a water-insoluble carrier. It may be immobilized on the substrate, or may be immobilized via a spacer, a linker or the like.
  • the cation exchange group, the spacer or the linker may contain a functional group having other functions
  • Their molecular shape is not particularly limited.
  • the method of introducing a carboxyl group of an amino acid is preferable as a material for a separation matrix for antibody purification from the viewpoint of toxicity when a ligand is eliminated.
  • separation of antibodies and the like from a cation exchange carrier is carried out at an acidic elution pH at which a target molecule is eluted from an affinity carrier, or an affinity carrier and a cation exchange carrier are separated. It is characterized in that it is used as a concatenation or mixing column to adsorb and elute antibodies and the like as a whole.
  • a representative example of the first chromatography and the second chromatography used in the purification platform process of the antibody drug for example, a combination of protein A chromatography and cation chromatography is used.
  • the protein A chromatography of the first chromatography usually has a low ability to separate monomers and aggregates and is poor in stability of separation. Elution conditions are selected so that a high recovery rate can be obtained while minimizing denaturation and aggregation of Fc-containing molecules, and removal of aggregates and the like is performed by a subsequent process.
  • cation exchange chromatography when cation exchange chromatography is selected as the second chromatography, generally, aggregates and other contaminants are removed in the adsorption / desorption mode. It is necessary to adjust pH and ionic strength of the eluate from the carrier (hereinafter also referred to as protein A carrier) having a pH suitable for adsorption by cation exchange chromatography. Therefore, after setting the conditions for the protein A chromatography step, it is necessary to set the conditions for the cation exchange chromatography step, and while there are various limiting factors, it is said that efficient separation of aggregates and the like is possible. can not cut.
  • the affinity carrier and the cation exchange carrier are used to form a linked or mixed column, and adsorption and elution of antibodies and the like are performed as a whole by
  • the chromatographic operation of the process can be shortened to one process, and the type and amount of the buffer solution to be used and the working time can be expected to be shortened.
  • the novel antibody purification method of the present invention (first aspect, second aspect) is an elution fraction having a high monomer content in a narrow pH range where target molecules are eluted from affinity ligands by setting ionic strength and the like. It is possible to obtain Particularly in the purification of monoclonal antibodies, the elution pH is far away from the isoelectric point of the target molecule, so there is no significant difference in the elution ionic strength range for each antibody, and the conditions for using various target molecules can be set within a narrow range. Can be expected to be possible.
  • the elution pH range can be set narrower, and effective washing can be performed by using alkaline CIP (cleaning in place).
  • alkaline CIP cleaning in place
  • the affinity carrier and cation exchange carrier linked or mixed column can exhibit high specificity by the antibody affinity ligand during adsorption, and the ionic strength can be set within the range of affinity ligand elution conditions. This is superior to other carrier combinations that do not use the affinity carrier 1 in that the use conditions can be easily set.
  • the present invention (second embodiment) is used by using a pH higher than the elution pH from the affinity carrier as the elution pH from the cation exchange carrier. ). Further, the present invention (first aspect, second aspect) can be used as an integrated column in which an affinity carrier and a cation exchange carrier are connected or mixed, and can be used as a single column in the process of elution by a single elution operation.
  • the present invention (first embodiment, second embodiment) relates to a method for linking an affinity carrier and a cation exchange carrier or using a mixed column.
  • a target molecule such as an antibody
  • a counter ion of an ion exchange group at a certain concentration or more, and the cation exchange group function does not work under the conditions, and even if it acts, the cation exchange group can be washed with a higher ionic strength.
  • Non-specific adsorbate derived from can be removed by washing.
  • the ionic strength does not inhibit the adsorption of affinity ligands and can adsorb target substances with high specificity, and by using a washing solution with high ionic strength, it is non-specific to the substrate, linker, spacer, ligand and target molecule.
  • the adsorbed molecules can be effectively washed away.
  • the culture supernatant in which the recombinant monoclonal antibody is expressed has an ionic strength close to that of body fluids such as humans. Therefore, even if it is directly applied to the linked or mixed column of the present invention (first embodiment, second embodiment), it has high specificity. In addition to being able to maintain the properties, contaminants can be further reduced by a cleaning solution having a higher ionic strength.
  • a cleaning solution having a higher ionic strength.
  • cation exchange in conjunction with low pH elution from the affinity ligand It is preferred to perform ionic strength-dependent elution of groups.
  • the connecting portion is preferably connected by a straight pipe without providing a branch valve in the middle, but a branch valve may be inserted in the middle as long as it can be directly connected as a flow path.
  • the function of the coupling or mixing column of the affinity carrier and cation exchange carrier of the present invention can be adjusted by the ratio of the affinity carrier and cation exchange carrier. If the binding capacity of the target substance under neutral conditions of the affinity carrier is greater than the binding capacity of the cation exchange carrier at the acidic elution pH from the affinity carrier, the target substance is eluted from the column even at low ionic strength during acidic elution. When the binding capacity of the affinity carrier is the same or lower than that of the cation exchange carrier, the antibody eluted from the affinity carrier is completely transferred to the cation exchange carrier at low ionic strength. In order to obtain a higher recovery rate, it is necessary to set the elution ionic strength higher. In any case, the recovery rate and the monomer ratio can be controlled by adjusting the ionic strength and / or pH.
  • the binding capacity of the cation exchange carrier for IgG with a residence time of 6 minutes is preferably 10 times or less, and more preferably 5 times or less, of the binding capacity of IgG with a residence time of 6 minutes.
  • the lower limit is preferably 1/10 or more, and more preferably 1/5 or more.
  • the ratio of the binding capacity may be, for example, a ratio obtained from 10% DBC values of the affinity carrier and the cation exchange carrier.
  • the ratio of the affinity carrier and the cation exchange carrier (affinity carrier / cation exchange carrier) constituting the integrated column or the mixed column is 1/20 or more and 20 on a volume basis. / 1 or less, more preferably 1/5 or more and 5/1 or less.
  • the target molecule to be purified by linking or mixing the affinity carrier and cation exchange carrier of the present invention is an antibody or the like (immunoglobulin G and its related substances).
  • Fc fusion protein Fc-containing molecule obtained by fusing the Fc region, which is the constant region of an immunoglobulin molecule, with another functional protein or peptide, and a low molecular weight antibody Used as a raw material for pharmaceuticals.
  • the antibody or the like preferably includes immunoglobulin G, an immunoglobulin G derivative, an Fc-containing molecule, and further a low molecular weight antibody such as Fab, scFv, and diabody.
  • an integrated column is prepared by connecting a column packed with an affinity carrier before a column packed with the cation exchange carrier.
  • a neutral pH condition for example, pH 6 to 9
  • the affinity molecule and cation exchange carrier are linked or the target molecule (antibody) is purified using a mixed column.
  • it may include a subsequent regeneration process and / or a reuse process such as a CIP process and a re-equilibration process.
  • a general affinity column chromatography purification method can be used in the adsorption step. That is, in one example, after adjusting the pH of a protein solution containing an antibody or the like (for example, immunoglobulin G) to be near neutral, the solution is used in the affinity carrier of the present invention (first embodiment, second embodiment). And a cation exchange group (cation exchange carrier) linked or mixed, and the antibody or the like (eg, immunoglobulin G) is specifically adsorbed on the column or affinity carrier packed with the affinity carrier.
  • the loading pH is preferably 6 or more, more preferably 6.3 or more and 9 or less, and further preferably 6.5 or more and 8.5 or less.
  • an antibody or antibody-derived substance-containing solution having a predetermined concentration is adsorbed on a carrier.
  • PBS about 10 mM phosphoric acid, about 150 mM NaCl, etc.
  • an equilibration step may be performed before the adsorption step.
  • PBS about 10 mM phosphoric acid, about 150 mM NaCl, etc.
  • the washing step an appropriate amount of a buffer solution in a condition range in which the affinity ligand functions is passed through to wash the inside of the column.
  • the preferable range of pH may be the same range (pH near neutrality) as that of the load, for example, 6 or more is preferable.
  • the target molecule such as an antibody (for example, immunoglobulin G) is adsorbed to the affinity carrier.
  • impurities may be effectively removed by ionic strength or composition optimization at a pH near neutral.
  • Conditions under which the cation exchange carrier does not function during loading and washing are preferred, i.e., use of a washing solution having a pH close to neutral and a high ionic strength above a certain level, and in this process both separation matrices and / or Impurities remaining on the column non-specifically through the immunoglobulin G can be washed.
  • the washing step is performed before loading the antibody-containing solution and starting the following elution.
  • the number of washing steps is, for example, at least once, preferably two times or more. is there.
  • the following examples can mention the suitable example of a washing
  • (1) The integrated column or the mixed column is equilibrated with an equilibration solution, and the antibody or antibody-derived substance-containing solution is loaded. After the loading, before the elution start, the equilibration solution and the antibody or antibody-derived substance-containing solution are used. It is preferable to pass a washing solution (second washing solution) having a lower ionic strength and a higher pH than the eluate.
  • the washing method used in normal protein A chromatography is also applied to an integral column or a mixed column, and nonspecifically adsorbed on a protein A carrier.
  • the impurities adsorbed on the cation exchange carrier can be washed away.
  • the above (1) is preferably performed on, for example, an antibody with high purification purity
  • the above (2) is preferably performed on, for example, a culture supernatant.
  • the second cleaning solution used in the above (1) and (2) is, for example, a solution such as 10 mM Tris / HCl pH 7, and the first cleaning solution used in (2) is, for example, 10 mM Tris 1M NaCl pH 7 It is a solution such as 10 mM Tris pH 7.
  • pre-washing may be performed with a solution (for example, PBS) having the same ionic strength and pH as the equilibration solution.
  • the column in the ionic strength adjustment step, is replaced with a buffer solution having a low ionic strength in the vicinity of neutrality to prepare for the expression of an ionic strength-dependent elution function by the cation exchange carrier at the time of elution. More preferably, the ionic strength is lower than the ionic strength of the eluate.
  • a combination of acidic pH and ionic strength allows the cation exchange separation mode to function at the time of elution from the affinity carrier, and the fraction with a high monomer content is eluted with a low ionic strength. Can be collected in fractions.
  • the pH of the eluate the elution pH of an antibody or the like (for example, immunoglobulin G) from an affinity carrier can be applied. Since the pH is determined mainly by the separation conditions determined by the type of affinity carrier and antibody or the like (eg, immunoglobulin G), it does not require special conditions, but it suppresses the formation of aggregates and the like.
  • the elution pH of the antibody or the like is 4.0 or less, preferably 3.95 or less, more preferably 3.9 or less, and even more preferably 3.8 or less.
  • the elution pH may be, for example, 3.0 or more, preferably 3.2 or more, more preferably 3.5 or more.
  • the elution pH of the antibody or the like is preferably less than 5.0, more preferably 4.5 or less, and even more preferably 4.0 or less.
  • the elution pH may be, for example, 3.0 or more, preferably 3.2 or more, more preferably 3.5 or more.
  • the pH of the eluate is set, for example, between 2 and 4 below 4.0 and below 4.0. However, in order to avoid acid modification of the target molecule, pH 3.0 or more is more preferable, and pH 3.5 or more is particularly preferable.
  • the upper limit of the eluate pH is preferably the same as described above.
  • the elution pH is generally set between 3.5 and 4.0. It is not limited.
  • the elution ionic strength depends on the ratio of the affinity carrier and the cation exchange carrier, but also on the loading amount of the antibody or the like per unit volume (for example, immunoglobulin G). This makes it possible to easily set optimization points.
  • the elution conditions of the cation exchange carrier of the present invention (second aspect) or the elution conditions of the present invention (first aspect) can be applied to both salt concentration gradient elution and stepwise elution. Is preferable to set conditions that can achieve antibody recovery and high monomer content by stepwise elution, but gradient elution is easier to set conditions.
  • the elution of the antibody or the like may be performed at an acidic pH and an ionic strength gradient, and the elution of the antibody or the like may be performed at an acidic pH and stepwise with an ionic strength.
  • the ionic strength adjustment step can be omitted if aggregates and the like remain in the column and do not enter the elution fraction even when the ionic strength and acidic elution pH are combined in the washing step.
  • the pH of the eluate is made constant so that the ionic strength of the eluate increases continuously or stepwise.
  • the eluate may be any commonly used one such as acetic acid and citric acid.
  • the pH of the eluate is preferably 3 or more and 4.0 or less, more preferably 3.1 or more and 3.95 or less, and still more preferably 3.2 or more and 3.90 or less.
  • the pH of the eluate is preferably 3 or more and 5 or less, more preferably 3.1 to 4.5, and further preferably 3.2 to 4.0.
  • the ionic strength is preferably 0.1 mM or more and 2000 mM or less, more preferably 0.5 mM or more and 1000 mM or less, and further preferably 1 mM or more and 500 mM or less, continuously or stepwise.
  • An antibody or the like for example, immunoglobulin G
  • purified using a coupled column or mixed column of the affinity carrier and cation exchange carrier of the present invention is antibody affinity separation based on a single separation mode.
  • the monomer selectivity is higher than that of the matrix, and the monomer content in the eluate is high.
  • CM-Sepharose Fast Flow GE Healthcare; cation exchange carrier A), TOYOPEARL CM-650M (Tosoh; cation exchange carrier B), FRACTOGEL COO (M) (Merck; cation) Exchange carrier C) and Glyoxal-COOH (Preparation Example 1; cation exchange carrier D) were replaced with 1 M KCl (pH 2), and titrated with 0.1 M NaOH to determine pKa and ion exchange capacity. The results are shown in Table 1.
  • CM-Sepharose Fast Flow GE Healthcare
  • TOYOPEARL CM-650M Tosoh
  • Fractogel COO M
  • Glyoxal-COOH Preparation Example 1 as a carboxyl group-introduced cation exchange carrier manufactured by Omnifit
  • the binding capacity was measured under the following chromatographic conditions using a human polyclonal antibody (Gamma globulin / Nichiyaku: Nippon Pharmaceutical) packed in a column (ID 0.66 cm x Height 7 cm) and prepared to 0.5 mg / mL. did.
  • the pH of the load solution was 3.7, 4.2, or 4.7, and the respective binding capacities were measured as 10% leakage dynamic binding capacity (10% DBC).
  • the binding capacity (10% DBC) of each carrier is shown in FIG.
  • the binding capacity of various cation exchange carriers having a carboxyl group as a ligand was shown in FIG.
  • no significant difference was found in the binding capacities of various cation exchange carriers having a carboxyl group as a ligand.
  • Protein A chromatography condition column ID 0.66 cm x Height 7 cm, 2.4 mL volume (manufactured by Omnifit) Flow rate: 0.4 mL / min (residence time: 6 minutes), except for CIP, 0.8 mL / min polyclonal antibody (IgG): Gamma globulin Nichiyaku (Nippon Pharmaceutical) Loading solution: 2.5 mg-IgG / mL (PBS, pH 7.4) Equilibration (5 column volumes): PBS, pH 7.4 Load (10mg, 30mg or 40mg) Wash (5 column volumes): PBS, pH 7.4 Wash 2 (4 column volumes): 10 mM Tris / HCl, pH 7 Elution gradient (40 column volumes): A ⁇ B linear gradient A solution: 1 mM citric acid, pH 3.7 B liquid: 250 mM citric acid, pH 3.7 Regeneration (4 column volumes): 50 mM citric acid, 250 mM sodium chloride, pH 3.7 CIP (4 column
  • the monomer and aggregate area values of each fraction up to the CIP fraction are shown in FIGS.
  • the loaded antibody was recovered in the elution fraction, but the peak top of the aggregate was eluted at the initial stage together with the monomer peak, and separation of the aggregate could not be confirmed at any loading amount.
  • the binding capacity (10% DBC) of the protein A carrier was about 50.3 mg / mL.
  • Example 1 Separation of antibodies using an integrated column in which a column packed with a protein A carrier and a column packed with a cation exchange carrier B (TOYOPEARL CM-650M) having a carboxyl group as a ligand are connected MabSelect SuRe (GE Healthcare) as a cation exchange carrier B with TOYOPEARL CM-650M (Tosoh) packed in Omnifit columns (ID 0.66 cm x Height 7 cm), and two columns packed with protein A carrier Then, the columns packed with the cation exchange carrier B were connected in this order, and the chromatography operation was carried out as a single column.
  • TOYOPEARL CM-650M cation exchange carrier B having a carboxyl group as a ligand
  • the monomer recovered by the CIP fraction up to the regenerated fraction of Comparative Example 2 was 99.9%, and the monomer content was 93.5%. Even when the monomer recovery rate was 80%, the monomer content of Comparative Example 2 was 93.4%, whereas the monomer content of Example 1 was 97.1%, and the monomer content was improved. .
  • Example 2 Separation of antibodies using an integrated column in which a column packed with a protein A carrier and a column packed with a cation exchange carrier C (Fractogel COO (M)) having a carboxyl group as a ligand are connected.
  • a column packed with a protein A carrier and a column packed with a cation exchange carrier C Fractogel COO (M) (Merck) as cation exchange carrier C into Omnifit columns (ID 0.66 cm x Height 7 cm), and two columns are filled with protein A carrier And the column packed with the cation exchange carrier C were connected in this order, and the chromatography operation was carried out as a single column.
  • the monomer recovered by the CIP fraction up to the regenerated fraction of Comparative Example 2 was 99.9%, and the monomer content was 93.5%. Even when the monomer recovery rate was 80%, the monomer content of Comparative Example 2 was 93.4%, whereas the monomer content of Example 2 was 99.2%, and the monomer content was improved. .
  • Example 3 Separation of antibodies using a column in which a column packed with a protein A carrier and a column packed with a cation exchange carrier D (Glyoxal-COOH) having a carboxyl group as a ligand are connected.
  • MabSelect SuRe GE Healthcare
  • a protein A carrier Is packed in a column manufactured by Omnifit (ID 0.66 cm x Height 7 cm) as cation exchange carrier D, and two columns packed with protein A carrier, and cation exchange carrier D as cation exchange carrier D.
  • the columns were connected in the order of packed columns, and chromatography operation was carried out as one column.
  • FIG. 15 shows the area values of monomers and aggregates of each fraction up to the CIP fraction.
  • the monomer recovery rate up to the regeneration fraction, the monomer content in the mixture up to the regeneration fraction, the monomer content in the eluate mixture up to 80% monomer recovery rate are comparative examples It is shown in comparison with 2.
  • the monomer recovered by the CIP fraction up to the regenerated fraction of Comparative Example 2 was 99.9%, and the monomer content was 93.5%. Even when the monomer recovery rate is 80%, the monomer content of Comparative Example 2 is 93.4%, whereas the monomer content of Example 3 is 99.1%, which improves the monomer content. .
  • Example 4 Separation of antibodies using a mixed column in which a protein A carrier and a cation exchange carrier D (Glyoxal-COOH) having a carboxyl group as a ligand are mixed and packed in one column.
  • MabSelect SuRe GE Healthcare
  • Glyoxal-COOH a cation exchange carrier D having a carboxyl group as a ligand
  • MabSelect SuRe GE Healthcare
  • Glyoxal-COOH a cation exchange carrier D in a ratio of 4: 1 (volume ratio) and packed into an Omnifit column (ID 0.66 cm ⁇ Height 7 cm) to prepare 2.5 mg / mL. Separation was performed under the chromatographic conditions of Comparative Example 2 using human polyclonal antibody (gamma globulin / Nichiyaku: Nippon Pharmaceutical) as a loading solution.
  • the antibody loading was 10 mg.
  • the monomer recovery rate up to the regeneration fraction, the monomer content in the mixture up to the regeneration fraction, and the monomer content in the eluate mixture up to 80% monomer recovery rate are comparative examples It is shown in comparison with 2.
  • the monomer recovered by the CIP fraction up to the regenerated fraction of Comparative Example 2 was 99.9%, and the monomer content was 96.5%. Even when the monomer recovery rate was 80%, the monomer content of Comparative Example 2 was 97.1%, whereas the monomer content of Example 4 was 99.1%, and the monomer content was improved. .
  • the recovery rate is as high as 80% or more. Or, even if the recovery rate is not 80% or more, a new separation mode and method of use that can improve the monomer content can be provided, which can contribute to the improvement in productivity and purification of antibody drug manufacturing processes. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明(第一態様)は、抗体または抗体由来物質に対するアフィニティリガンドを有する担体1と陽イオン交換基を有する担体2を用いて連結または混合カラムとし、一体として抗体または抗体由来物質の吸着および溶出を行うことを特徴とする抗体または抗体由来物質の精製方法であり、本発明(第二態様)は、pKaが4.0以上であるカルボキシル基含有リガンドを有する陽イオン交換基を有する担体に抗体または抗体由来物質含有溶液を負荷した後、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する陽イオン交換基を有する担体の使用方法である。

Description

新規抗体精製方法及びそれから得られる抗体(Novel Antibody Purification Method and Antibody obtained therefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(Novel Antibody Purification method using Cation Exchanger and Antibody obtained therefrom)
 本発明(第一態様)は、標的分子(例えば抗体または抗体由来物質。以下、これらをまとめて抗体等と称する場合がある)を特異的に精製するためのアフィニティリガンドを有する担体、および、陽イオン交換基を有する担体を一体として使用して抗体等を精製する方法であって、アフィニティクロマトグラフィー精製と陽イオン交換クロマトグラフィー精製を1クロマトグラフィーステップで実施する新規抗体精製方法およびそれから得られる抗体に関する。
 また、本発明(第二態様)は、陽イオン交換基(以下、陽イオン交換基を有する担体、陽イオン交換担体ともいう)を用いた抗体等(抗体または抗体由来物質)の新規精製法であって、通常カルボキシル基をリガンドとする陽イオン交換担体の使用pHとして選択されないpH4.0以下での抗体等の精製方法及びそれから得られる抗体にも関する。
 抗体を主薬とする抗体医薬品の主成分であるモノクローナル抗体は、主に哺乳類培養細胞等を用いて組換え蛋白質として培養液中に発現し、数段のクロマトグラフィーや膜工程により高純度に精製された後に製剤化される。抗体医薬品には、免疫グロブリンGおよびその類縁物質であり、一般的に抗体と称される分子の他、免疫グロブリン分子の定常領域であるFc領域と他の機能性蛋白質またはペプチドを融合してなるFc融合蛋白質(Fc含有分子)が含まれる。更には、Fab、scFv、および、diabody等の低分子化抗体が含まれる。また、これら抗体医薬品には、微生物を宿主とし、その培養上清に分泌発現されるもの、菌体内または菌体外壁と菌体細胞膜の間に蓄積発現され、精製され、製剤化されるものも含まれる。
 この培養、精製、製剤化の工程で形成または残留する凝集体(2量体以上の多量体)が副作用の主要原因となるため、その低減が抗体医薬品生産の重要課題となっている。ここで単量体とは、たとえば抗体の場合、定常領域であるFc領域と可変領域からなる重鎖(H鎖)2分子と、可変領域からなる軽鎖(L鎖)2分子からなる4量体構造の抗体を1分子単位として定義される。この単位分子の多量体が凝集体とされ、抗体医薬品の副作用の主要因とされている。
 凝集体の生成抑制やその除去は、培養、精製、製剤化の工程で、複雑な管理手法や添加剤の使用により制御する試みがなされてきた。特に精製工程では、凝集体の生成を抑制する他にその除去が重要である。よって、精製工程では、簡便で効率的な凝集体除去技術の開発が求められてきている。
 抗体医薬品の精製工程は、特定の単位操作の組み合わせによる精製手法のパターン化(プラットフォーム化)が進み、その初期精製工程(回収工程)では、リガンドとしてプロテインAが水不溶性担体に固定化された、抗体アフィニティ分離マトリックス(プロテインA担体)が広く利用されている。中性条件下で抗体をプロテインA担体に吸着させ、酸性条件下で抗体を溶出させる手法が一般的に用いられているが、一般的には、3ステップのクロマト精製により高純度化され、プロテインAクロマトグラフィー工程の後段でイオン交換クロマトグラフィーや疎水性相互作用クロマトグラフィー等の組み合わせにより、凝集体等の不純物が除去されている(非特許文献1、非特許文献2、非特許文献3、特許文献5)。
 アフィニティリガンドは、特定の分子に特異的に結合する機能を有しており、該リガンドを水不溶性担体に固定化してなるアフィニティ分離マトリックス(アフィニティクロマトグラフィー担体、アフィニティ担体ともいう)は、生体成分や組換え体を含む微生物および哺乳類培養細胞から、有用物質の効率的な分離精製に利用されている。実際に産業的に利用されている抗体アフィニティリガンドとして、例えばプロテインAやプロテインG、プロテインL等の微生物由来または、それらを組換え発現させて得られる機能的改変体(類縁物質)からなるペプチド性または蛋白質性リガンドや、ラクダ一本鎖抗体や抗体のFcレセプター等の組換え蛋白質性リガンド、およびチアゾール誘導体等の化学合成性リガンドが挙げられ、抗体医薬品等の精製に使用されている。抗体医薬品は、化学薬品に対しより低い毒性で、より高い特異性を示すことから、理想的な医薬品としてその需要が高まってきている。
 アフィニティ担体による分離精製においては、抗体の凝集体や、宿主由来不純物、抗体の分解物等(以下、凝集体等)の除去が課題となる。
 例えば、アフィニティ担体の一例として、プロテインAクロマトグラフィー工程では、通常、酸性溶出が行われるが、抗体毎に溶出pHが異なりプロセス設計に時間を要していたため、また、溶出pHが低い程、凝集体が形成されるリスクが高まるために、pH3前後の低いpH溶出が必要な抗体もpH3.5~4付近で溶出できるようにプロテインAリガンドにタンパク質工学的に改変を加える試みが行われている(特許文献1)。
 また、プロテインAクロマトグラフィー工程後に凝集体含量が多い場合は、後段の不純物除去工程において、目的の単量体(モノマー)の収率低下に繋がることから、プロテインAクロマトグラフィー工程での凝集体形成を抑えようとする試みの他、更に、当該クロマトグラフィー工程での凝集体を除去する試みがなされている。
 また、プロテインAクロマトグラフィー工程の使用中で、凝集体等の不純物を低減する試みがなされてきた。すなわち、溶出時のpHやイオン強度の最適化、さらには溶出ピークの前半部分と後半部分を分画する等の方法が提案されている。具体的には、プロテインA担体の特性として多量体化した抗体分子が、多量体化していない抗体分子よりも高い確率でプロテインAリガンドと接触するため、解離定数が僅かに低くなることや、疎水性の微妙な調節に基づく分離機構を利用した方法である(特許文献2、特許文献3、特許文献4)。しかし、これらの方法は厳密な制御が困難である上に分離能が低く一般的な分離手法としては用いられておらず、後段の工程で不純物除去を行う必要があった。
 プロテインAクロマトグラフィーに代表されるアフィニティクロマトグラフィーは、酸性pHで溶出が実施されるが、後段のイオン交換クロマトグラフィーや疎水性相互作用クロマトグラフィー等は、通常pH5以上のpHで処理されるため、pHやイオン強度調整が必要であった。
 一方で、通常、陽イオン交換担体は、そのリガンドのpKaよりも高いpHで使用される。また、陽イオン交換担体で精製される標的タンパク質に対し、タンパク質の等電点(pI)よりも低いpHでの吸脱着が行われる。例えば、pIが8の抗体の精製には、pKaが2付近のスルホン基やpKaが3~5付近のカルボキシル基をリガンドとする陽イオン交換担体が、pH5~6の緩衝液を用いて吸脱着され精製される。緩衝液のpHは、リガンドのpKaと標的タンパク質のpIの間に設定されるが、使用pHがpIよりも低い程、タンパク質のプラス電荷が大きくなり、溶出イオン強度を高く設定する必要があり、回収率が低くなる傾向がある。溶出液のイオン強度が高い場合は、後段のプロセス構築においてイオン強度を低減しなければならない等の制限があった。また、使用pHが陽イオン交換リガンドのpKaに近い、または、低い場合には、リガンドのマイナス電荷がプロトン化され、結合容量が低下するとされ、通常、選択されてこなかった。よって、陽イオン交換担体を用いた抗体の精製には、pKa2~5の陽イオン交換担体に対してpH5~6の緩衝液が用いられてきた。
 アフィニティクロマトグラフィー工程後に陰イオン交換クロマトグラフィー工程や疎水的相互作用クロマトグラフィー工程が用いられる場合(特許文献8)、陽イオン交換クロマトグラフィー工程後に陰イオン交換クロマトグラフィー工程を行う場合(特許文献7)もしくは陽イオン交換クロマトグラフィー工程で複数の標的物質を回収する場合(特許文献6)も同様に、pHやイオン強度調整が必要であった。
 上記のように抗体等をアフィニティクロマトグラフィー精製し、後段のプロセスで高度精製するには、酸性pH溶出液のpHやイオン強度調整が必要となり、連続する初期クロマトの効率化には限界があった。加えて、アフィニティクロマトグラフィー精製の方法を採用しないイオン交換クロマトグラフィー工程と疎水性電荷誘導クロマトグラフィー工程を行う場合でも、それぞれの工程を独立して行う必要があり、連続して抗体等を精製することはできず、効率化を図るには限界があった(特許文献9)。
 また、抗体アフィニティ分離マトリックスは、抗体に高い特異性を示し高純度化が可能であるが、使用方法を厳密に設定しても単量体(モノマー)と凝集体等の分離能が低いため、凝集体等の除去工程としては限界があった。
特許第4391830号公報 WO2008/085988 特表2010-507583号公報 WO2010/019493 WO2010/141039 特開平05-202098号公報 特開平06-228200号公報 特表2010-510963号公報 特表2008-535913号公報
Hober S.他 著、「J.Chromatogr.B」、2007年、848巻、40-47頁 Low D.他 著、「J.Chromatogr.B」、2007年、848巻、48-63頁 Roque A.C.A.他 著、「J.Chromatogr.A」、2007年、1160巻、44-55頁
 本発明(第一態様)の目的は、抗体またはFc含有分子もしくはFab、scFv等の低分子化抗体等の抗体由来物質の精製工程の第一クロマトグラフィー工程において、アフィニティ精製の主要目的である抗体自体の高純度化と共に、モノマーの選択的分離特性を向上させ、凝集体等の除去に関し後段の不純物除去工程への負荷を低減または省略できる新規抗体精製手法を提供することにある。
 本発明(第二態様)の目的は、抗体等の精製において、アフィニティクロマトグラフィー精製を回収クロマトグラフィー工程として、後段のプロセスで高度に精製する際に必要とされてきた、酸性pH溶出液のpHやイオン強度調整を必要としない効率化された抗体精製法を提供することにある。
 本発明者は、上記課題に鑑み鋭意検討を行った結果、抗体または抗体由来物質に対するアフィニティリガンドを有する担体と陽イオン交換基を有する担体の両方を同一カラム内または連結カラム内に充填し、両クロマトグラフィーを同時的に実施することで、特異的な吸着能と優れた凝集体等の除去能を併せ持つ新規分離手法を見出し、本発明(第一態様)を完成させるに至った。
 また、本発明者は、上記課題に鑑み鋭意検討を行った結果、抗体アフィニティ担体を溶出する酸性pHで陽イオン交換担体への抗体等の吸脱着を行い、抗体の凝集体等の不純物が低減された画分を得る陽イオン交換担体の新規分離手法を見出し、本発明(第二態様)を完成させるに至った。
 すなわち、本発明(第一態様)の要旨は、以下の通りである:
[1] 抗体または抗体由来物質に対するアフィニティリガンドを有する担体1と陽イオン交換基を有する担体2を用いて連結または混合カラムとし、一体として抗体または抗体由来物質の吸着および溶出を行うことを特徴とする抗体または抗体由来物質の精製方法。
[2] 前記抗体または抗体由来物質に対するアフィニティリガンドを有する担体1と陽イオン交換基を有する担体2を用いた抗体または抗体由来物質の精製方法であり、
 前記担体1を充填したカラムの下流側に前記担体2を充填したカラムを直結した一体型カラムまたは前記担体1と担体2の両方の混合物が充填された混合型カラムに、抗体または抗体由来物質含有液を通液して抗体または抗体由来物質をカラムに負荷し、
 ついで溶出液を通液することで負荷した抗体または抗体由来物質を溶出させることを特徴とする抗体または抗体由来物質の精製方法。
[3] 前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のグラジエントで行う[1]または[2]に記載の精製方法。
[4] 前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のステップワイズで行う[1]または[2]に記載の精製方法。
[5] 前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液よりも低いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する[2]~[4]のいずれかに記載の精製方法。
[6] 前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液と同じまたはより高いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液し、次いで平衡化溶液および抗体または抗体由来物質含有溶液よりも低いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する[2]~[4]のいずれかに記載の精製方法。
[7] 前記アフィニティリガンドを有する担体1がプロテインA、プロテインG、プロテインLまたはそれらの類縁物質をリガンドとする担体である[1]~[6]のいずれかに記載の精製方法。
[8] 前記アフィニティリガンドを有する担体1がプロテインAまたはそれらの類縁物質をリガンドとする担体である[1]~[7]のいずれかに記載の精製方法。
[9] 前記抗体または抗体由来物質が、免疫グロブリンG、免疫グロブリンG誘導体、または、Fc含有分子である[1]~[8]のいずれかに記載の精製方法。
[10] 前記抗体または抗体由来物質が、Fab、scFv、diabody、または抗原結合部位含有分子である[1]~[9]のいずれかに記載の精製方法。
[11] 前記陽イオン交換基を有する担体2が、カルボキシル基をリガンドとする担体である[1]~[10]のいずれかに記載の精製方法。
[12] 前記カルボキシル基が酸性アミノ酸に由来する[11]に記載の精製方法。
[13] 前記抗体または抗体由来物質の溶出pHが5.0未満である[1]~[12]のいずれかに記載の精製方法。
[14] 前記担体1のIgGに対する滞留時間6分での10%DBCが1mg/mL以上100mg/mL以下である[1]~[13]のいずれかに記載の精製方法。
[15] 前記担体2のイオン交換容量が0.001mmol/mL以上0.5mmol/mL以下である[1]~[14]のいずれかに記載の精製方法。
[16] 前記担体1の体積平均粒径が1μm以上1000μm以下であり、前記担体2の体積平均粒径が1μm以上1000μm以下である[1]~[15]のいずれかに記載の精製方法。
[17] pKaが4.0以上であるカルボキシル基含有リガンドを有する陽イオン交換基を有する担体2に抗体または抗体由来物質含有溶液を負荷した後、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する[1]~[16]のいずれかに記載の精製方法。
[18] 前記カルボキシル基含有リガンドを有する陽イオン交換基を有する担体2のIgGに対する滞留時間6分での10%DBCが1mg/mL以上200mg/mL以下である[1]~[17]のいずれかに記載の精製方法。
[19] 前記陽イオン交換基を有する担体2を充填したカラムの前にアフィニティリガンドを有する担体1を充填したカラムを連結して一体型カラムを作製し、中性pH条件で抗体または抗体由来物質含有溶液を前記一体型カラムに負荷した後に、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する[2]~[18]のいずれかに記載の精製方法。
[20] 前記一体型カラムを構成する担体1と担体2の割合が、体積基準で、1/20以上20/1以下である[2]~[19]のいずれかに記載の精製方法。
[21] 前記陽イオン交換基を有する担体2をアフィニティリガンドを有する担体1と共に混合状態で有する混合型カラムを作製し、中性pH条件で抗体又は抗体由来物質含有溶液を負荷してpH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する[2]~[18]のいずれかに記載の精製方法。
[22] 前記混合型カラムを構成する担体1と担体2の割合が、体積基準で、1/20以上20/1以下である[2]~[18]、[21]のいずれかに記載の精製方法。
[23] 吸着条件下における担体1のIgGに対する滞留時間6分での10%DBCに対する、担体2のIgGに対する滞留時間6分での10%DBCが、1/10倍以上10倍以下である[1]~[22]のいずれかに記載の精製方法。
[24] [1]~[23]のいずれかに記載の精製方法で精製された抗体または抗体由来物質。
 本発明(第二態様)の要旨は、以下の通りである:
[1] pKaが4.0以上であるカルボキシル基含有リガンドを有する陽イオン交換基を有する担体2に抗体または抗体由来物質含有溶液を負荷した後、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する陽イオン交換基を有する担体の使用方法。
[2] 前記カルボキシル基含有リガンドが酸性アミノ酸に由来する[1]に記載の使用方法。
[3] 前記カルボキシル基含有リガンドを有する陽イオン交換基を有する担体2のIgGに対する滞留時間6分での10%DBCが1mg/mL以上200mg/mL以下である[1]または[2]に記載の使用方法。
[4] 前記陽イオン交換基を有する担体2のイオン交換容量が0.001mmol/mL以上0.5mmol/mL以下である[1]~[3]のいずれかに記載の使用方法。
[5] 前記陽イオン交換基を有する担体2の体積平均粒径が1μm以上1000μm以下である[1]~[4]のいずれかに記載の使用方法。
[6] 前記陽イオン交換基を有する担体2を充填したカラムの前にアフィニティリガンドを有する担体1を充填したカラムを連結して一体型カラムを作製し、中性pH条件で抗体または抗体由来物質含有溶液を前記一体型カラムに負荷した後に、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する[1]~[5]のいずれかに記載の使用方法。
[7] 前記陽イオン交換基を有する担体2をアフィニティリガンドを有する担体1と共に混合状態で有する混合型カラムを作製し、中性pH条件で抗体又は抗体由来物質含有溶液を負荷してpH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する[1]~[5]のいずれかに記載の使用方法。
[8] 前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液よりも低イオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する[6]または[7]に記載の使用方法。
[9] 前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液と同じまたはより高いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液し、次いで平衡化溶液および抗体または抗体由来物質含有溶液よりも低イオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する[6]または[7]に記載の使用方法。
[10] 前記抗体または抗体由来物質が免疫グロブリンG、免疫グロブリンG誘導体、Fc含有分子、またはFab、scFv、diabodyもしくは抗原結合部位含有分子である[1]~[9]のいずれかに記載の使用方法。
[11] 前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のグラジエントで行う[1]~[10]のいずれかに記載の使用方法。
[12] 前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のステップワイズで行う[1]~[10]のいずれかに記載の使用方法。
[13] [1]~[12]のいずれかに記載の使用方法で精製された抗体または抗体由来物質。
 本発明(第一態様)によれば、抗体またはFc含有分子もしくはFab、scFv等の低分子化抗体等の抗体由来物質の精製工程の第一工程であるアフィニティクロマトグラフィー工程において、アフィニティ精製の主要目的である抗体自体の高純度化と共に、モノマーの選択的分離特性を向上させ、後段の不純物除去工程に対する負荷を軽減することができる。
 本発明(第二態様)によれば、抗体等の精製工程の第一工程であるアフィニティクロマトグラフィー工程後に、その溶出液をそのまま陽イオン交換クロマトグラフィーで処理可能であり、また、アフィニティ担体の酸性溶出pHと同一のpHで陽イオン交換担体への抗体等の吸脱着が可能であることから、アフィニティクロマトグラフィー精製と陽イオン交換クロマトグラフィー精製を一体処理可能で効率的なプロセス構築が可能である。また、本発明(第二態様)によれば、精製後のモノマー抗体が高い含量(純度)で得られる。なお、以下の図面の簡単な説明において、第一態様では図1~10、12~16、第二態様では、図1~16が参照される。
図1は、プロテインAアフィニティクロマトグラフィー工程、ウイルス不活性化工程、及び陽イオン交換クロマトグラフィー工程をこの順で行う従来のフローを示す図である。 図2は、本発明の一例を示すフロー図であり、プロテインAアフィニティクロマトグラフィー工程及び陽イオン交換クロマトグラフィー工程を同時に行なった後、ウイルス不活性化工程を行うフローを示す図である。 図3は、pH3.7、pH4.2、pH4.7における各陽イオン交換基を有する担体の10%漏出DBCを示す図である。 図4は、陽イオン交換基を有する担体(陽イオン交換担体A)を充填したカラムを用いた場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積比率(%)、右縦軸はイオン強度(mM)を示す)。 図5は、陽イオン交換基を有する担体(陽イオン交換担体B)を充填したカラムを用いた場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積比率(%)、右縦軸はイオン強度(mM)を示す)。 図6は、陽イオン交換基を有する担体(陽イオン交換担体C)を充填したカラムを用いた場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積比率(%)、右縦軸はイオン強度(mM)を示す)。 図7は、陽イオン交換基を有する担体(陽イオン交換担体D)を充填したカラムを用いた場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積比率(%)、右縦軸はイオン強度(mM)を示す)。 図8は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムを用い、抗体負荷量が10mgである場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図9は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムを用い、抗体負荷量が30mgである場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図10は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムを用い、抗体負荷量が40mgである場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図11は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムの直下に、陽イオン交換基を有する担体(SP-Sepharose Fast Flow、陽イオン交換担体A)を充填したカラムを連結した場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図12は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムの直下に、陽イオン交換基を有する担体(陽イオン交換担体A)を充填したカラムを連結した場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図13は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムの直下に、陽イオン交換基を有する担体(陽イオン交換担体B)を充填したカラムを連結した場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図14は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムの直下に、陽イオン交換基を有する担体(陽イオン交換担体C)を充填したカラムを連結した場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図15は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)を充填したカラムの直下に、陽イオン交換基を有する担体(陽イオン交換担体D)を充填したカラムを連結した場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。 図16は、プロテインAアフィニティリガンドを有する担体(プロテインA担体)と、陽イオン交換基を有する担体(陽イオン交換担体D)とを同一カラムに混合した場合のモノマー抗体(白抜き)及び凝集体抗体(斜線)の溶出を示す図である(横軸は溶出体積(mL)、左縦軸はピーク面積値、右縦軸はイオン強度(mM)を示す)。
 本発明(第一態様)の抗体等(抗体または抗体由来物質)の新規精製方法は、抗体等に対するアフィニティリガンドを有する担体と陽イオン交換基を有する担体を連結または混合カラムとし、一体として抗体等の吸着および溶出を行うことを特徴としている(本発明(第一態様)において、連結カラム、混合カラムは、それぞれ一体型カラム、混合型カラムと称する場合があり、「吸着」とは、「負荷」のことをいう場合がある。)。
 例えば、本発明(第一態様)の精製方法は、前記抗体等に対するアフィニティリガンドを有する担体1と陽イオン交換基を有する担体2を用いた抗体等の精製方法であり、前記担体1を充填したカラムの下流側に前記担体2を充填したカラムを直結した一体型カラムまたは前記担体1と担体2の両方の混合物が充填された混合型カラムに、抗体等含有液を通液して抗体等をカラムに負荷し、ついで溶出液を通液することで負荷した抗体等を溶出させることを特徴とするものである。なお、本発明(第一態様)において、アフィニティリガンドを有する担体1は、好ましくは陽イオン交換基を含まず、陽イオン交換基を有する担体2は、好ましくはアフィニティリガンドを含まない。
 本発明(第二態様)は、アフィニティ担体から標的分子(抗体等)の溶出を行う酸性溶出pHで陽イオン交換担体からの抗体等の分離を行うこと、または、アフィニティ担体と陽イオン交換担体を連結または混合カラムとし、一体として抗体等の吸着、および溶出を行うことを特徴としている(本発明において、連結カラム、混合カラムは、それぞれ一体型カラム、混合型カラムと称する場合があり、「吸着」とは、「負荷」のことをいう場合がある。)。すなわち、本発明(第二態様)の陽イオン交換基を有する担体の使用方法は、pKa4.0以上であるカルボキシル基含有リガンドを有する陽イオン交換基を有する担体に抗体または抗体由来物質含有溶液を負荷した後、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出することを特徴とする。なお、本発明(第二態様)において、アフィニティリガンドを有する担体1は、好ましくは陽イオン交換基を含まず、陽イオン交換基を有する担体2は、好ましくはアフィニティリガンドを含まない。これら第二態様の特徴は、第一態様で使用されてもよく、第一態様の構成要件とされてもよい。
 本発明(第一態様、第二態様)は、抗体アフィニティクロマトグラフィー精製と陽イオン交換クロマトグラフィー精製を一体としたカラムを操作することで実施することが出来る。すなわち、2クロマトグラフィー工程(図1参照、従来型のフロー)を1クロマトグラフィー工程(図2参照、本発明(第一態様、第二態様)の精製フロー)で実施できることから、工数を省略でき、各工程で必要とされた溶液を使用することなく、生産効率を高めることが出来る。しかも、抗体モノマーの高い含量(高い純度)を実現することも出来る。
 以下に、本発明(第一態様、第二態様)における陽イオン交換担体および抗体アフィニティ担体と陽イオン交換担体の1クロマトグラフィー化について詳細に説明する。
アフィニティリガンドを有する担体(アフィニティ担体)
 本発明(第一態様、第二態様)における、「アフィニティリガンドを有する担体」(以下、アフィニティリガンドを有する担体1、アフィニティ担体またはアフィニティ担体1と称する場合がある)とは、抗原と抗体の結合に代表される、特異的な分子間の親和力に基づいて、ある分子の集合から標的(目的)の分子を選択的に捕集(結合)する物質がリガンドとして水不溶性担体に固定化されたものを示す。
 本発明(第一態様、第二態様)に用いることができるアフィニティリガンドは、標的分子として抗体等に特異的に結合しうる特徴を有していれば特に限定されないが、ペプチド性リガンド、蛋白質性リガンド、または、化学合成性リガンド(合成化合物)が好ましい。標的分子に対する特異性の視点からペプチド性または蛋白質性リガンドが更に好ましく、その内、抗体等に対するアフィニティリガンドがプロテインA、プロテインG、プロテインL、プロテインH、プロテインD、プロテインArp、プロテインFcγR、抗体結合性合成ペプチドリガンド及びそれら類縁物質であることが特に好ましい。第一及び第二態様において、特に第一態様において、前記アフィニティリガンドとしては、プロテインA、プロテインG、プロテインLまたはそれら類縁物質がより好ましく、プロテインAまたはそれらの類縁物質が最も好ましい。
 第一態様、第二態様において、前記アフィニティリガンドは、標的分子結合ドメイン(単量体ペプチドまたは蛋白質、単ドメイン)を有していれば特に制限されないが、2個以上のドメインが連結された多量体ペプチドまたは蛋白質(複ドメイン)が好ましく、2~10個がより好ましく、2~8個、更に2~6個のドメインが連結された多量体蛋白質であることが好ましい。これらの多量体蛋白質は、単一の標的分子結合ドメインの連結体であるホモダイマー、ホモトリマー等のホモポリマーであっても良いし、標的分子が同一であれば、複数種類の標的分子結合ドメインの連結体であるヘテロダイマー、ヘテロトリマー等のヘテロポリマーであってもよい。
 本発明(第一態様、第二態様)の前記アフィニティリガンドの標的分子結合ドメインを連結する方法としては、多量体蛋白質の3次元立体構造を不安定化しない方法が好ましく、たとえば、ドメイン配列の末端アミノ酸を介する連結方法、ドメイン配列のアミノ酸残基を介さず連結する方法、または、1または複数のドメイン配列以外のアミノ酸残基で連結する方法が挙げられ、これらの方法に限定されるものではない。
 本発明(第一態様、第二態様)の前記アフィニティリガンドとしては、多量体蛋白質を1つの構成成分として、機能の異なる他の蛋白質と融合させた融合蛋白質を好ましく用いることができる。融合蛋白質としては、アルブミンやGST(グルタチオンS-トランスフェラーゼ)が融合した蛋白質やDNAアプタマー等の核酸、抗生物質などの薬物、PEG(ポリエチレングリコール)などの高分子が融合されている蛋白質等を挙げることができるが、これらに限定されるものではない。
 第一態様において、アフィニティ担体1のIgGに対する滞留時間6分での10%DBCは、通常1mg/mL以上100mg/mL以下であることが好ましく、より好ましくは10mg/mL以上、さらに好ましくは15mg/mL以上、さらにより好ましくは20mg/mL以上、特に好ましくは30mg/mL以上である。
 斯かる10%DBCは、例えば以下の式により求めることができる。
 DBC10%=(V10%-V)C/V(式中、V10%は、IgGが10%漏出した時の溶液体積、Vは配管内体積(例えば、インジェクションからカラム入り口までの配管内体積およびカラム出口から検出器までの配管内体積を含む)、Cは負荷液の抗体濃度(mg/mL)、Vはカラム体積)。DBC10%を測定する場合、所定の流速、すなわち、所定の滞留時間(例えば1分~10分、好適には3~6分)で行うことが好適である。
 第一態様、第二態様において、前記アフィニティ担体の体積平均粒径は、例えば1μm以上1000μm以下であり、5μm以上500μm以下であることが好ましく、10μm以上200μm以下であることがより好ましく、150μm以下がさらに好ましく、120μm以下がさらにより好ましく、100μm以下が特に好ましい。
陽イオン交換基を有する担体(陽イオン交換担体)
 本発明(第一態様、第二態様)における、「陽イオン交換基を有する担体」(以下、陽イオン交換基を有する担体2、陽イオン交換担体または陽イオン交換担体2と称する場合がある)は、アフィニティリガンドから標的分子である抗体等が溶出(脱離)する条件下で陽イオン交換基として機能し標的分子を捕捉できると共に、ナトリウムイオン、カリウムイオン等のカウンターイオンにより、該標的分子の単量体(モノマー)、凝集体の順序でイオン強度依存的に溶出(脱離)出来る陽イオン交換基が水不溶性担体上に固定化されているものであれば良い。アフィニティリガンドからの標的分子の溶出pHである酸性pH域において、80%以上の回収率で標的分子を回収するため、陽イオン交換基として、弱酸性基であるカルボキシル基をリガンドとする陽イオン交換基(カルボキシル基含有リガンド)の利用が好ましい。また、前記カルボキシル基含有リガンドは、酸性アミノ酸に由来することが可能で、より好ましくはグルタミン酸に由来するものである。通常、アフィニティ担体からの溶出にはpH4.0以下の酸性pHが用いられることから、当該pHで高い回収率を得るには、本発明(第一態様、第二態様)の陽イオン交換リガンドであるカルボキシル基含有リガンドのpKaは4.0以上である。前記カルボキシル基含有リガンドのpKaは、好ましくは4.05以上6.5以下、より好ましくは4.10以上6.45以下である。pKaが低いと、抗体収率が低下する虞がある。
 第一態様において、その好ましい態様では、陽イオン交換基が、カルボキシル基、スルホン基等であることが推奨される。中でも、カルボキシル基が好ましく、pKaが4.0以上のカルボキシル基がより好ましい。また、前記カルボキシル基は、酸性アミノ酸に由来することが可能で、より好ましくはグルタミン酸に由来するものである。さらに、アフィニティリガンドからの標的分子の溶出pH域において、局所的な酸性環境の形成を避けることが好ましく、弱酸性基であることが好ましい。たとえば、プロテインAをアフィニティリガンドとする担体を用いる場合は、陽イオン交換基としてカルボキシル基をリガンドとする陽イオン交換基の利用が好ましい。
 第一態様において、前記陽イオン交換基のpKaは、3.5以上6.5以下であることが好適であり、より好ましくは4.0以上6.0以下、さらに好ましくは4.1以上5.5以下である。pKaが低いと、抗体収率が低下する虞がある。
 本発明(第一態様、第二態様)において、陽イオン交換基を有する担体とアフィニティ担体を連結型カラムまたは混合型カラムに使用する場合、陽イオン交換基のpKaと溶出pHは、陽イオン交換基pKa≧溶出pHの関係を満たすことが好ましく、より好ましくは陽イオン交換基pKa>溶出pHの関係を満たす。
 従来では、陽イオン交換基を有する担体を単独で使用する際、陽イオン交換基pKa<溶出pHの条件で行われていたところ、陽イオン交換基を有する担体とアフィニティ担体を併用する為の好適な条件を本発明で見出したものである。前記関係を満足する限り、溶出時に標的タンパク質(抗体等)の電荷がプラス側に大きく帯電するのに対して、陽イオン交換基のリガンドがマイナスからプラス側への転化が比較的抑えられる為、プラスの電荷をさらに帯びた凝集抗体等を回収することができ、抗体モノマーが精製されやすくなると考えられる。
 第一態様、第二態様において、前記陽イオン交換担体の体積平均粒径は、例えば1μm以上1000μm以下であり、5μm以上500μm以下であることが好ましく、10μm以上200μm以下であることがより好ましく、さらに好ましくは150μm以下、さらにより好ましくは120μm以下、特に好ましくは100μm以下である。
 第一態様、第二態様において、前記陽イオン交換担体のイオン交換容量は、0.001mmol/mL以上0.5mmol/mL以下であることが好ましい。
 第一態様、第二態様において、前記カルボキシル基含有リガンドを有する陽イオン交換基を有する担体(前記陽イオン交換担体2)のIgGに対する滞留時間6分での10%DBCは、1mg/mL以上200mg/mL以下であることが好ましく、より好ましくは10mg/mL以上、さらに好ましくは15mg/mL以上、さらにより好ましくは20mg/mL以上、特に好ましくは30mg/mL以上である。なお、斯かる10%DBCは、例えば以下の式により求めることができる。
 DBC10%=(V10%-V)C/V(式中、V10%は、IgGが10%漏出した時の溶液体積、Vは配管内体積(例えば、インジェクションからカラム入り口までの配管内体積およびカラム出口から検出器までの配管内体積を含む)、Cは負荷液の抗体濃度(mg/mL)、Vはカラム体積)。DBC10%を測定する場合、所定の流速、すなわち、所定の滞留時間(例えば1分~10分、好適には3~6分)、所定pH(例えば3~5、特に4)で行うことが好適である。
水不溶性担体(担体)
 本発明(第一態様、第二態様)に用いることのできる「水不溶性担体」は、水に不溶な基材であって、抗体アフィニティリガンドと陽イオン交換基を固定化できれば特に制限されないが、例えば、ガラスビーズ、シリカゲルなどの無機担体、架橋ポリビニルアルコール、架橋ポリアクリレート、架橋ポリアクリルアミド、架橋ポリスチレンなどの合成高分子や、結晶性セルロース、架橋セルロース、架橋アガロース、架橋デキストランなどの多糖類からなる有機担体、さらにはこれらの組み合わせによって得られる有機-有機、有機-無機などの複合担体などが挙げられる。市販品としては、多孔質セルロースゲルであるGCL2000、アリルデキストランとメチレンビスアクリルアミドを共有結合で架橋したSephacryl S-1000、アクリレート系の担体であるTOYOPEARL、アガロース系の架橋担体であるSepharose CL4B、Rapid Run Agarose Beads、および、セルロース系の架橋担体であるCellufineなどを例示することができる。
 また、本発明(第一態様、第二態様)に用いる水不溶性担体は、単位時間当たりの処理容量の観点から、表面積が大きいことが望ましく、適当な大きさの細孔を多数有する多孔質であることが好ましい。担体の形態としては、ビーズ状、モノリス状、繊維状、膜状(中空糸を含む)などいずれも可能であり、任意の形態を選ぶことができる。水不溶性担体上に配置された抗体アフィニティリガンドと陽イオン交換基が協奏的に機能するために、その物理的距離が近接し、一定の滞留時間が得られることが当該分離マトリックスの機能を効果的に発揮できることから、多孔質ビーズが好ましい。陽イオン交換基を抗体アフィニティリガンドが固定化された担体に固定化する場合、多糖類からなる、または、単糖もしくは多糖類で修飾された担体は、抗体アフィニティリガンド導入の容易さの点で好ましい。具体的には、アガロースやセルロース担体が好ましいが、特にこれに制限されるものではない。
 第一態様において、アフィニティリガンドを水不溶性担体、分離マトリックスに固定化する方法としては、一般的な方法を用いることができる。例えば、抗体アフィニティリガンドのアミノ基が担体上に導入されたホルミル基を介して担体に結合してもよく、抗体アフィニティリガンドのアミノ基が担体上の活性化されたカルボキシル基を介して担体に結合してもよい。
 また、これらの水不溶性担体は、抗体アフィニティリガンド導入の前にリガンドが担体に共有結合できるように活性化されるが、市販の活性化担体を用いても良いし、自ら活性化を行っても良い。
 第一態様において、活性化により水不溶性担体に導入される官能基としては、アフィニティリガンドと共有結合を形成することができる官能基であれば、特に限定されないが、例えばエポキシ基(エピクロルヒドリン)、臭化シアン、N,N-ジスクシンイミジル炭酸塩(DSC)などで活性化されるヒドロキシ基、アルデヒド基または活性化カルボン酸基(例えば、N-ヒドロキシスクシンイミド(NHS)エステル、カルボニルジイミダゾール(CDI)活性化エステル)などの反応性官能基(「活性化基」)等を挙げることができる(Hermanson G.T.他 著、「Immobilized Affinity Ligand Techniques, Academic Press」、1992年、米国特許第5,874,165号、米国特許第3,932,557号、米国特許第4,772,653号、米国特許第4,210,723号、米国特許第5,250,6123号、欧州特許公開第1352957号、WO2004/074471)。これらの中には、アフィニティリガンドが担体に直接共有結合するものと、直鎖、分岐鎖、または環状のリンカーまたはスペーサーが用いられるものが含まれる。なお、抗体アフィニティリガンドが導入された担体を活性化する場合は、抗体アフィニティリガンドと直接反応しない活性化手法が好ましい。
 第一態様において、アフィニティリガンドの内、蛋白質性リガンドを担体に固定化する方法は、蛋白質の官能基の一部と担体の官能基の一部を反応させる方法を用いることができるが、その反応に利用できる蛋白質側の主な官能基(活性基)は、N末端アミノ酸およびリジン(Lys)側鎖のアミノ基、または、システイン(Cys)側鎖のチオール基、または、C末端アミノ酸およびグルタミン酸(Glu)側鎖およびアスパラギン酸(Asp)側鎖のカルボキシル基等があげられるがこれらに限定されるものではない。
 第一態様において、また、リガンドの配向性を制御し蛋白質性抗体アフィニティリガンドを水不溶性担体に固定化する方法として、C末端にシステインを有するプロテインAを利用する方法が提案されている(米国特許第6,399,750号、Ljungquist C.他 著、「Eur.J.Biochem.」、1989年、186巻、557-561頁)。
 リンカーを利用する固定化技術としては、担体とリガンドの距離を確保し、立体障害を排除して高性能化を図る方法の他、リンカーまたはスペーサーの中に官能基(例えば、帯電アミン)を付与、形成させる方法等が挙げられる。抗体アフィニティリガンドの固定化時にリンカーまたはスペーサー部分にリガンドを効果的に集積し、固定化収率の向上による分離性能の向上が検討されてきている。たとえば、リンカーアームの一部としてNHS活性化されたカルボン酸で誘導体化されたアガロース担体への蛋白質性リガンドの固定化技術が挙げられる(米国特許第5,260,373号、特開2010-133733、特開2010-133734)。
 また、リンカーやスペーサーとは別に担体に会合性基を利用し、抗体アフィニティリガンドを担体に集積した後に、会合性基と抗体アフィニティリガンドの間に共有結合を形成させずに、水不溶性担体上に抗体アフィニティリガンドを個別に固定化する方法も提案されている(特開2011-256176)。
 第一態様、第二態様において、陽イオン交換基を水不溶性担体に固定化または導入する手法として、通常、陽イオン交換基の作製に用いられる手法が利用できる。たとえば、糖骨格にカルボキシメチル基を導入する手法として、アルカリ条件下でモノクロル酢酸を反応させる方法や、硫酸基を導入する方法として、アルカリ条件下で硫酸を反応させる方法があるが、これらに限定されるものではない。水不溶性担体にアミノ基と反応する活性基を導入した後に、アミノ酸のアミノ基を介しアミノ酸を固定化することによりカルボキシル基を導入することも出来る。また、水不溶性担体上に存在または導入されたジオール基に対し過ヨウ素酸ナトリウムを反応させて担体を活性化しアルデヒド基を導入し、アミノ基と陽イオン交換基を同一分子内に持つ分子を添加し、イミン形成後に還元処理することにより、担体上のアルデヒド基とアミノ基を還元的アミノ化法により共有結合させ陽イオン交換基を導入することが出来る陽イオン交換基は、直接、水不溶性担体に固定化されていても良いし、スペーサー、リンカー等を介して固定化されていても良い。また、アフィニティ担体から標的分子が溶出(脱離)する酸性pH条件下で陽イオン交換基として機能できれば、陽イオン交換基、スペーサーやリンカーが他の機能を有する官能基を含んでいても良く、それらの分子形状も特に制限されない。アミノ酸のカルボキシル基を導入する方法は、リガンドが脱離した場合の毒性の観点からも、抗体精製用分離マトリックスの材料として好ましい。
 本発明(第一態様、第二態様)は、アフィニティ担体から標的分子の溶出を行う酸性溶出pHで陽イオン交換担体からの抗体等の分離を行うこと、または、アフィニティ担体と陽イオン交換担体を用いて連結または混合カラムとし、一体として抗体等の吸着、および溶出を行うことを特徴としている。
 抗体医薬品の精製プラットホームプロセスに利用される第一クロマトグラフィーと第二クロマトグラフィーの代表例として、例えばプロテインAクロマトグラフィーと陽イオンクロマトグラフィーの組み合わせが用いられる。
 第一態様、第二態様において、第一クロマトグラフィーのプロテインAクロマトグラフィーは、単量体と凝集体の分離能が低く、分離の安定性にも乏しいことから、通常、標的分子である抗体またはFc含有分子の変性や凝集を最小限に抑えつつ高い回収率が得られる溶出条件が選定され、凝集体等の除去は後段プロセスが担う。
 第一態様、第二態様において、第二クロマトグラフィーとして陽イオン交換クロマトグラフィーが選定される場合は、一般的に吸脱着モードで凝集体や他の夾雑物の除去が行われるが、プロテインAリガンドを有する担体(以下、プロテインA担体ともいう)からの溶出液を陽イオン交換クロマトグラフィーの吸着に適したpHおよびイオン強度に調整することが必要である。よって、プロテインAクロマトグラフィー工程の条件設定後に、陽イオン交換クロマトグラフィー工程の条件を設定する必要があり、また、多種の制限因子がある一方で効率的な凝集体等の分離が可能とは言い切れない。
 一方、本発明(第一態様、第二態様)の方法を用いる場合、アフィニティ担体と陽イオン交換担体を用いて連結または混合カラムとし、一体として抗体等の吸着、および溶出を行うことで、2工程のクロマトグラフィー操作を1工程に短縮可能で、使用する緩衝液の種類および使用量、更に、作業時間の短縮が期待できる。
 また、本発明(第一態様、第二態様)の新規抗体精製法は、アフィニティリガンドからの標的分子が溶出される狭いpH域で、イオン強度等の設定により単量体含量の高い溶出画分を得ることが可能である。特にモノクローナル抗体の精製においては、当該溶出pHは標的分子の等電点から大きく離れているため、抗体毎に溶出イオン強度の幅に大きな差異がなく、狭い範囲で各種標的分子の使用条件の設定が可能であることが期待できる。更に、アフィニティリガンドとして、改変プロテインAリガンドを用いる場合、溶出pH域を更に狭く設定可能であるほか、アルカリCIP(cleaning in place;定置洗浄)の使用により、効果的な洗浄も可能であるため、安定的なプロセス構築の観点からは改変プロテインAの利用が好ましい。
 第一態様、第二態様において、アフィニティ担体を用いずに他のクロマトグラフィー担体を連結または混合カラムとして用いた場合、たとえば、イオン交換担体と疎水クロマトグラフィー担体を連結または混合して用いる場合、たとえ標的分子がモノクローナル抗体であっても、疎水性および等電点の相違等により標的分子毎に使用条件の設定が異なる他、特異性も低く、回収工程としてプラットフォーム化は困難と考えられる。
 第一態様、第二態様において、アフィニティ担体と陽イオン交換担体の連結または混合カラムは、吸着時に抗体アフィニティリガンドにより、高い特異性を発揮できるほか、アフィニティリガンドの溶出条件範囲内でイオン強度の設定により容易にその使用条件が設定可能である点で、アフィニティ担体1を使用しない他の担体の組み合わせよりも優れている。
 一旦プロテインAクロマトグラフィーカラムに吸着・溶出させた抗体を陽イオン交換クロマトグラフィーカラムに全量完全に捕捉した後に、pH5.0-9.0の緩衝液で溶出することにより、プロテインAクロマトグラフィーと陽イオン交換クロマトグラフィーの間のホールディングタンクをなくす手法が開示されているが、陽イオン交換担体からの溶出pHとして、アフィニティ担体からの溶出pHよりも高いpHを用いることで、本発明(第二態様)と区別される。また、本発明(第一態様、第二態様)は、アフィニティ担体と陽イオン交換担体を連結または混合カラムとし一体のカラムとして使用可能であり、単一の溶出操作で溶出を行う過程で標的物質を分画出来る点、および、その溶出pHが5.0未満や4.0以下であり、アフィニティ担体の溶出pHのまま陽イオン交換担体の溶出を行う点で、本質的に異なる技術領域である(WO2011/017514)。
 より具体的には、本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換担体の連結または混合カラムの使用方法に関し、中性付近で抗体等の標的分子を吸着させる場合、陽イオン交換基のカウンターイオンを一定濃度以上添加して使用することが好ましく、当該条件では陽イオン交換基機能は作用せず、また、作用しても更に高いイオン強度の洗浄でその陽イオン交換基に由来する非特異的な吸着物は洗浄除去できる。一方、イオン強度はアフィニティリガンドの吸着を阻害せず、高い特異性をもって目的物質を吸着できるほか、高イオン強度の洗浄液の使用により、基材、リンカー、スペーサー、リガンドおよび標的分子に非特異的に吸着する分子を効果的に洗浄除去しうる。
 通常、組換えモノクローナル抗体を発現させた培養上清は、ヒトなどの体液に近いイオン強度を有することから直接本発明(第一態様、第二態様)の連結または混合カラムに供しても高い特異性を維持できる他、より高いイオン強度の洗浄液により夾雑物を更に低減できる。アフィニティ担体から標的分子を含む組成物を溶出させる前に、イオン交換基の機能が発揮できるようにイオン強度の低い緩衝液の通液後に、アフィニティリガンドからの低pH溶出と連動して陽イオン交換基のイオン強度依存的溶出を行うことが好ましい。
 本発明(第一態様、第二態様)において、アフィニティ担体を充填したカラムAと陽イオン交換担体を充填したカラムBを連結する場合、前記カラムAの直下に前記カラムBを連結することが好適であり、連結部分は途中に分岐弁を設けず直管でつながっているものが好ましいが、流路として直結可能である限り、途中に分岐弁を挿入してもよい。
 本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換担体の連結または混合カラムは、アフィニティ担体と陽イオン交換担体の比率によってその機能が調節可能である。アフィニティ担体の中性条件下での標的物質の結合容量がアフィニティ担体からの酸性溶出pHにおける陽イオン交換担体の結合容量よりも大きい場合は、酸性溶出時に低イオン強度でも標的物質がカラムから溶出される傾向があり、アフィニティ担体の結合容量が陽イオン交換担体の結合容量と同程度または低い場合には、低イオン強度ではアフィニティ担体から溶出された抗体が陽イオン交換担体に完全に移行するため、より高い回収率を得るには溶出イオン強度を高めに設定する必要がある。何れの場合も、イオン強度および/またはpHの調節により回収率および、そのモノマー比率の制御が可能である。
 第一態様、第二態様において、アフィニティ担体の結合容量(例えば10%DBC)と陽イオン交換担体の結合容量(例えば10%DBC)の比率に特に制限を設けないが、吸着条件下におけるアフィニティ担体のIgGに対する滞留時間6分での結合容量に対する、陽イオン交換担体のIgGに対する滞留時間6分での結合容量が、10倍以下であることが好ましく、5倍以下であることがより好ましい。また、下限は、1/10倍以上であることが好ましく、1/5倍以上であることがより好ましい。前記結合容量の比率は、例えばアフィニティ担体、陽イオン交換担体それぞれの10%DBC値から得られる比率であってもよい。
 第一態様、第二態様において、前記一体型カラムまたは前記混合型カラムを構成するアフィニティ担体と陽イオン交換担体の割合(アフィニティ担体/陽イオン交換担体)は、体積基準で、1/20以上20/1以下であることが好ましく、より好ましくは1/5以上5/1以下である。
 本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換担体の連結または混合カラムにより精製される標的分子は、抗体等(免疫グロブリンGおよびその類縁物質)であり、一般的に抗体と称される分子の他、免疫グロブリン分子の定常領域であるFc領域と他の機能性蛋白質またはペプチドを融合してなるFc融合蛋白質(Fc含有分子)、および低分子化抗体が含まれ、抗体医薬品の原料として利用される。具体的に、抗体等は、免疫グロブリンG、免疫グロブリンG誘導体、Fc含有分子、更には、Fab、scFv、及びdiabody等の低分子化抗体を含むことが好ましい。
 以下に、本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換担体の連結または混合カラムを一体として抗体等の吸着、および溶出を行う使用方法の詳細な説明を、標的分子が免疫グロブリンGの場合について例示するが、本発明(第一態様、第二態様)はこれに限定されるものではない。
 本発明(第一態様、第二態様)における好適な使用方法は、例えば、(1)前記陽イオン交換担体を充填したカラムの前にアフィニティ担体を充填したカラムを連結して一体型カラムを作製し、中性pH条件(例えばpH6以上9以下)で抗体等含有溶液を前記一体型カラムに負荷した後に、pH4.0以下の酸性バッファーを使用して抗体等を溶出する方法、(2)前記陽イオン交換担体をアフィニティ担体と共に混合状態で有する混合型カラムを作製し、中性pH条件で抗体等含有溶液を負荷してpH4.0以下の酸性バッファーを使用して抗体等を溶出する方法等である。
 第一態様、第二態様において、アフィニティ担体と陽イオン交換担体の連結または混合カラムを用いた標的分子(抗体)の精製は、大きく、吸着工程、洗浄工程、イオン強度調節工程、溶出工程の4工程で構成されるほか、その後の再生工程および/またはCIP工程、再平衡化工程などの再利用の為の工程を含んでいてもよい。
 第一態様、第二態様において、吸着工程では、一般的なアフィニティーカラムクロマトグラフィー精製方法を用いることができる。すなわち、その一例において、抗体等(例えば、免疫グロブリンG)を含む蛋白質溶液のpHが中性付近となるように調整した後、該溶液を本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換基(陽イオン交換担体)の連結または混合カラムに通液し、アフィニティ担体が充填されたカラムまたはアフィニティ担体に抗体等(例えば、免疫グロブリンG)を特異的に吸着させる。たとえば、プロテインA担体をアフィニティ担体とする場合、その負荷pHは6以上が好ましく、6.3以上9以下がより好ましく、6.5以上8.5以下がさらに好ましい。哺乳類培養細胞により生産される免疫グロブリンGの精製において、特にイオン強度の調整を必要としないほか、あらかじめイオン強度を上げて更に非特異吸着を抑制することも出来る。吸着工程において、所定濃度の抗体または抗体由来物質含有溶液を担体に吸着させるが、抗体または抗体由来物質含有溶液の溶媒として、例えばPBS(約10mM リン酸、約150mM NaCl等)を使用してもよい。また、吸着工程の前に、平衡化工程を行ってもよいが、平衡化溶液の溶媒として、例えばPBS(約10mM リン酸、約150mM NaCl等)を使用してもよい。
 第一態様、第二態様において、洗浄工程では、アフィニティリガンドが機能する条件範囲の緩衝液を適量通過させ、カラム内部を洗浄する。すなわち、pHの好ましい範囲は前記負荷時と同じ範囲(中性付近のpH)であってもよく、例えば6以上が好ましい。この時点では標的分子である抗体等(例えば、免疫グロブリンG)はアフィニティ担体に吸着されている。この時、中性付近のpHでイオン強度や組成物の最適化により、不純物を効果的に除去できる場合がある。負荷、洗浄時において、陽イオン交換担体が機能しない条件が好ましく、すなわち、中性付近のpHにすると共に一定以上の高イオン強度の洗浄液の利用が好ましく、この過程で両分離マトリックスおよび/または、免疫グロブリンGを介して非特異的にカラムに残留する不純物を洗浄することが出来る。
 第一態様、第二態様において、抗体等含有溶液を負荷して下記の溶出を開始する前に、洗浄工程を行うが、洗浄工程の回数は、例えば少なくとも1回以上、好ましくは2回以上である。洗浄工程の好適例は、例えば以下の例を挙げることができるが、以下の例に限定されるものではない。
 (1)前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液よりも低いイオン強度の、かつ溶出液よりも高いpHの洗浄液(第2の洗浄液)を通液することが好ましく、(2)前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液と同じまたはより高いイオン強度の、かつ溶出液よりも高いpHの洗浄液(第1の洗浄液)を通液し、次いで平衡化溶液および抗体または抗体由来物質含有溶液よりも低いイオン強度の、かつ溶出液よりも高いpHの洗浄液(第2の洗浄液)を通液することも好ましい。上記(1)および(2)の方法は、通常のプロテインAクロマトグラフィーで使用される洗浄方法を、一体型カラムまたは混合型カラムにも適用するものであり、プロテインA担体に非特異的に吸着した不純物を洗い流すことができ、陽イオン交換担体に吸着した不純物をも洗い流すことができる。また、上記(1)は、例えば精製純度の高い抗体に対して行われることが好適であり、上記(2)は、例えば培養上清に対して行われることが好適である。上記(1)および(2)で使用される第2の洗浄液は、例えば10mM Tris/HCl pH7等の溶液であり、上記(2)で使用される第1の洗浄液は、例えば10mM Tris 1M NaCl pH7、10mM Tris pH7等の溶液である。なお、上記(1)および(2)の前に、平衡化溶液と同じイオン強度およびpHの溶液(例えば、PBS)で前洗浄してもよい。
 第一態様、第二態様において、イオン強度調節工程では、中性付近でイオン強度が低い緩衝液にカラムを置換し、溶出時の陽イオン交換担体によるイオン強度依存的溶出機能の発現に備える。イオン強度は、溶出液のイオン強度よりも低いことが、より好ましい。
 第一態様、第二態様において、溶出工程では、酸性pH、イオン強度の組み合わせにより、アフィニティ担体からの溶出時に陽イオン交換分離モードを機能させ、単量体含量の高い画分を低イオン強度溶出画分に回収することが出来る。溶出液のpHはアフィニティ担体からの抗体等(例えば、免疫グロブリンG)の溶出pHが適用できる。当該pHは、アフィニティ担体と抗体等(例えば、免疫グロブリンG)の種類により決定される分離条件を中心に決定されることから、特段の条件設定を必要としないが、凝集体等の生成抑制の観点から、アフィニティ担体からの溶出が可能な範囲でより高いpHが好ましい。第一態様、第二態様において、抗体等の溶出pHは、4.0以下であり、好ましくは3.95以下、より好ましくは3.9以下、さらに好ましくは3.8以下である。なお溶出pHは、例えば、3.0以上、好ましくは3.2以上、より好ましくは3.5以上としてもよい。
 第一態様の別の態様において、抗体等の溶出pHは、5.0未満であることが好ましく、より好ましくは4.5以下、さらに好ましくは4.0以下である。なお溶出pHは、例えば、3.0以上、好ましくは3.2以上、より好ましくは3.5以上としてもよい。
 第一態様、第二態様において、アフィニティ担体がプロテインA担体の場合は、溶出液pHは例えばpHは5.0未満2以上、4.0以下2以上の間に設定される。ただし、標的分子の酸変性を避ける目的から、pH3.0以上がより好ましく、pH3.5以上が特に好ましい。溶出液pHの上限値は上記と同様であることが好ましい。
 第一態様、第二態様において、アルカリ耐性型の改変型プロテインA担体を使用する場合は、一般的にその溶出pHは3.5~4.0の間を中心に設定されるが、これに限定されるものではない。また、溶出イオン強度は、アフィニティ担体と陽イオン交換担体の比率に依存するほか、単位体積当たりの抗体等(例えば、免疫グロブリンG)の負荷量にも依存するが、グラジエント実験やステップワイズ溶出実験により最適化ポイントを容易に設定しうる。
 本発明(第二態様)の陽イオン交換担体の溶出条件または本発明(第一態様)の溶出条件は、塩濃度グラジエント溶出でもステップワイズ溶出でも適用可能であるが、操作の単純化のためには、ステップワイズ溶出による抗体の回収と高モノマー含量化を達成できる条件設定が好ましいが、グラジエント溶出は条件設定がより容易である。
 第一態様、第二態様において、例えば、抗体等の溶出を酸性pHでかつイオン強度のグラジエントで行ってもよく、抗体等の溶出を酸性pHでかつイオン強度のステップワイズで行ってもよい。なお、洗浄工程のイオン強度と酸性溶出pHの組み合わせでも凝集体等がカラムに残留し溶出画分に混入しない場合は、イオン強度調節工程を省略することが出来る。
 第一態様、第二態様において、溶出を開始する際、溶出液のpHを一定にして、溶出液のイオン強度が連続的または段階的に増大するようにすることが好適である。溶出液は、通常使用されるものであればよく、例えば酢酸、クエン酸等である。溶出液のpHは、3以上4.0以下が好ましく、より好ましくは3.1以上3.95以下、さらに好ましくは3.2以上3.90以下である。特に第一態様において、溶出液のpHは、3以上5以下が好ましく、より好ましくは3.1~4.5、さらに好ましくは3.2~4.0である。第一態様、第二態様において、イオン強度は、0.1mM以上2000mM以下が好ましく、より好ましくは0.5mM以上1000mM以下、さらに好ましくは1mM以上500mM以下の範囲で連続的にまたは段階的に増大させる。
 本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換担体の連結または混合カラムを用いて精製された抗体等(例えば免疫グロブリンG)は、単一の分離モードに基づく抗体アフィニティ分離マトリックスよりも高いモノマー選択性を示し、その溶出液中のモノマー含量が高い。
 単一分離モードに基づくアフィニティ担体を用いた場合にも、溶出pHおよびイオン強度等の最適化により、モノマー含量を幾分高めることは可能であるが、その効果が低く、効果発現にはより大きな回収率の低下を伴う。本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換担体の連結または混合カラムを用いることにより、特異性の高いアフィニティ精製と、主に陽イオン交換クロマトグラフィーにより達成しうるモノマー含量の向上を、単一のクロマト操作で効率的に達成可能であることから、後段プロセスへの負荷の低減が可能となり、プロセス全体の収率向上と単量体含量の向上に貢献できる。すなわち、本発明(第一態様、第二態様)のアフィニティ担体と陽イオン交換担体の連結または混合カラムとして用いる新規抗体精製法により、抗体医薬品の製造プロセスの生産性向上と高純度化に寄与できる。
 本願は、2013年9月17日に出願された日本国特許出願第2013-192378号及び2013年9月17日に出願された日本国特許出願第2013-192379号に基づく優先権の利益を主張するものである。2013年9月17日に出願された日本国特許出願第2013-192378号及び2013年9月17日に出願された日本国特許出願第2013-192379号の明細書の全内容が、本願に参考のため援用される。
 以下に実施例に基づいて本発明(第一態様、第二態様)をより詳細に説明するが、本発明(第一態様、第二態様)はこれらの実施例に限定されるものではない。
(陽イオン交換担体の調製例)
カルボキシル基導入担体の調製(調製例1)
 4%アガロースビーズとして冷水に置換したLow density Glyoxal 4 Rapid Run(ABT社)を湿潤体積として4mLを反応容器にとり、冷やした1Mグルタミン酸(pH6)で5回洗浄し、回収後にスラリーの液量を7mLとした。クロマトチャンバー内で2時間転倒攪拌した後に、1Mのジメチルアミンボラン水溶液を0.5mL追加投入し、クロマトチャンバー内で1時間30分攪拌した。更に、一晩室温で転倒攪拌した。遠心して担体を沈降させた後に液面が6mLになるように上清を除去した中に、20mgの水素化ホウ素ナトリウムを直接加え、室温で更に2時間転倒攪拌した。水、0.1Mクエン酸、0.1M水酸化ナトリウム、および0.5MのNaClを添加したPBSで十分に洗浄し、グルタミン酸のアミノ基を介し還元的アミノ化法でアルデヒド基にカルボキシル基を導入したアガロース担体を得た。本陽イオン交換担体をGlyoxal-COOHとした。
(陽イオン交換担体(カルボキシル基含有リガンド)のpKaおよびイオン交換容量の測定)
 カルボキシル基導入陽イオン交換担体として、CM-Sepharose Fast Flow(GEヘルスケア;陽イオン交換担体A)、TOYOPEARL CM-650M(東ソー;陽イオン交換担体B)、FRACTOGEL COO(M)(メルク;陽イオン交換担体C)、Glyoxal-COOH(調製例1;陽イオン交換担体D)を1M KCl(pH2)で置換し、0.1M NaOHで滴定してpKaとイオン交換容量を求めた。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
(陽イオン交換担体の酸性pHでの結合容量の測定)
 カルボキシル基導入陽イオン交換担体として、CM-Sepharose Fast Flow(GEヘルスケア)、TOYOPEARL CM-650M(東ソー)、Fractogel COO(M)(メルク)、Glyoxal-COOH(調製例1)をOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、0.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、以下のクロマトグラフィー条件にて結合容量を測定した。負荷液のpHを3.7、4.2、または、4.7として、それぞれの結合容量を10%漏出の動的結合容量(10%DBC)として測定した。
陽イオン交換担体の10% DBC測定に用いたクロマトグラフィー条件
カラム:ID 0.66cm x Height 7cm、2.4mL容(Omnifit社製)
流速:0.4mL/分(滞留時間:6分)
ポリクローナル抗体(IgG):ガンマグロブリン・ニチヤク(日本製薬)
負荷液:0.5mg-IgG/mL(5mMクエン酸:pH3.7、4.2、または、4.7)
平衡化液:5mMクエン酸(pH3.7、4.2、または、4.7)
溶出液:50mMクエン酸、0.5M塩化ナトリウム(pH3.7)
CIP液:0.1M水酸化ナトリウム、1M塩化ナトリウム
中和・再平衡化液:5mMクエン酸(pH3.7、4.2、または、4.7)
 各担体の結合容量(10%DBC)を図3に示した。その結果、カルボキシル基をリガンドとする各種陽イオン交換担体の結合容量に大きな差異は確認されなかった。また、表1のイオン交換容量と結合容量の間には、相関は確認されなかった。pKaが低い程、結合容量のpH依存性が大きい傾向にあった。
(モノマー含量の測定)
 各クロマトグラフィー溶出液をゲルろ過に供し、凝集体とモノマーを分画し、そのエリア値の比較からモノマー含量を求めた。以下にゲルろ過条件を示した。
ゲルろ過クロマトグラフィー条件
カラム:Superdex 200 10/300 GL (ID 1cm x Height 30cm)(GEヘルスケア)
流速:0.5mL/分
検出波長:214nm
負荷液:100μL/Injection(吸光度値が1を超えない範囲に希釈)
溶離液:PBS(pH7.4)
(比較例1)
陽イオン交換担体を用いたpH5緩衝液中での抗体の分離
 陽イオン交換担体として、CM-Sepharose Fast Flow(GEヘルスケア)、TOYOPEARL CM-650M(東ソー)、Fractogel COO(M)(メルク)、Glyoxal-COOH(調製例1)をOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、0.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、以下のクロマトグラフィー条件にて分離を行った。溶出フラクションには、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
陽イオン交換クロマトグラフィー条件
カラム:ID 0.66cm x Height 7cm、2.4mL容(Omnifit社製)
流速:0.4mL/分(滞留時間:6分)、ただし、CIP以降は、0.8mL/分
ポリクローナル抗体(IgG):ガンマグロブリン・ニチヤク(日本製薬)
負荷液:0.5mg-IgG/mL(10mMクエン酸、pH5)
平衡化(5カラム体積):10mMクエン酸、pH5
負荷(30mg)
洗浄(5カラム体積):10mMクエン酸、pH5
溶出グラジエント(40カラム体積): A→Bリニアグラジエント
A液:10mMクエン酸、pH5
B液:250mMクエン酸、pH5
再生(4カラム体積):50mMクエン酸、250mM 塩化ナトリウム、pH5
CIP(4カラム体積):0.1M水酸化ナトリウム、1M塩化ナトリウム
中和・再平衡化(4カラム体積):10mMクエン酸、pH5
フラクション:1カラム体積
 各担体のクロマトグラフィーの結果として、CIP画分までの全溶出画分中のモノマーおよび凝集体量の総和を100とし、モノマーおよび凝集体の分離を図4から7に示した。その結果、負荷した抗体は溶出画分に回収され、凝集体のピークトップがモノマーのピークトップより僅かにずれ、緩やかな分離が確認された。
(比較例2)
プロテインA担体を用いた抗体の分離
 プロテインA担体として、MabSelect SuRe(GEヘルスケア)をOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、2.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、以下のクロマトグラフィー条件にて分離を行った。溶出液には、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
プロテインAクロマトグラフィー条件
カラム:ID 0.66cm x Height 7cm、2.4mL容(Omnifit社製)
流速:0.4mL/分(滞留時間:6分)、ただし、CIP以降は、0.8mL/分
ポリクローナル抗体(IgG):ガンマグロブリン・ニチヤク(日本製薬)
負荷液:2.5mg-IgG/mL(PBS、pH7.4)
平衡化(5カラム体積):PBS、pH7.4
負荷(10mg、30mgまたは40mg)
洗浄(5カラム体積):PBS、pH7.4
洗浄2(4カラム体積):10mM Tris/HCl、pH7
溶出グラジエント(40カラム体積): A→Bリニアグラジエント
A液:1mMクエン酸、pH3.7
B液:250mMクエン酸、pH3.7
再生(4カラム体積):50mMクエン酸、250mM 塩化ナトリウム、pH3.7
CIP(4カラム体積):0.1M水酸化ナトリウム、1M塩化ナトリウム
中和・再平衡化(4カラム体積):PBS、pH7.4
 各クロマトグラフィーの結果として、CIP画分までの各分画のモノマーおよび凝集体のエリア値を図8から10に示した。その結果、負荷した抗体は溶出画分に回収されたが、凝集体のピークトップがモノマーピークと共に初期に溶出し、何れの負荷量でも凝集体の分離は確認できなかった。なお、当該プロテインA担体の結合容量(10%DBC)は、約50.3mg/mL程度であった。
(比較例3)
プロテインA担体を充填したカラムとスルホプロピル基をリガンドとする陽イオン交換担体(SP-Sepharose Fast Flow)を充填したカラムとを連結した一体型カラムを用いた抗体の分離
 プロテインA担体としてMabSelect SuRe(GEヘルスケア)を、陽イオン交換担体としてSP-Sepharose Fast Flow(GEヘルスケア)をそれぞれOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、2本のカラムをプロテインA担体を充填したカラム、陽イオン交換担体を充填したカラムの順で連結し、1体のカラムとしてクロマトグラフィー操作を実施した。2.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、以下のクロマトグラフィー条件にて分離を行った。なお、1カラム体積は、1本分の2.4mLとして操作した。溶出液には、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
連結カラムクロマトグラフィー条件
カラム:ID 0.66cm x Height 7cm、2.4mL容(Omnifit社製)の連結体
流速:0.4mL/分(滞留時間:6分)、ただし、CIP以降は、0.8mL/分
ポリクローナル抗体(IgG):ガンマグロブリン・ニチヤク(日本製薬)
負荷液:2.5mg-IgG/mL(PBS、pH7.4;10mM リン酸、150mM NaCl等)
平衡化(5カラム体積):PBS、pH7.4
負荷(40mg)
洗浄(5カラム体積):PBS、pH7.4
洗浄2(4カラム体積):10mM Tris/HCl、pH7
溶出グラジエント(40カラム体積): A→Bリニアグラジエント
A液:1mMクエン酸、pH3.7
B液:250mMクエン酸、pH3.7
再生(4カラム体積):50mMクエン酸、250mM 塩化ナトリウム、pH3.7
CIP(4カラム体積):0.1M水酸化ナトリウム、1M塩化ナトリウム
中和・再平衡化(4カラム体積):PBS、pH7.4
 クロマトグラフィーの結果として、CIP画分までの各分画のモノマーおよび凝集体のエリア値を図11に示した。この時、比較例2の40mg抗体負荷試験の溶出画分中のモノマー量を100とした場合、比較例3で再生画分までに回収できたモノマーは21.0%であり、また、モノマー含量は94.1%であった。CIP画分までに回収できたモノマーは22.9%であり、スルホプロピル基をリガンドとする陽イオン交換担体を充填したカラムをプロテインA担体を充填したカラムに連結して使用した場合、イオン強度溶出可能なモノマー回収率が悪かった。
(参考例1)
プロテインA担体を充填したカラムとpKaが4.0未満のカルボキシル基をリガンドとする陽イオン交換担体A(CM-Sepharose Fast Flow)を充填したカラムとを連結した一体型カラムを用いた抗体の分離
 プロテインA担体としてMabSelect SuRe(GEヘルスケア)を、陽イオン交換担体AとしてCM-Sepharose Fast Flow(GEヘルスケア)をそれぞれOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、2本のカラムをプロテインA担体を充填したカラム、陽イオン交換担体Aを充填したカラムの順で連結し、1体のカラムとしてクロマトグラフィー操作を実施した。2.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、比較例3のクロマトグラフィー条件にて分離を行った。なお、1カラム体積は、1本分の2.4mLとして操作した。溶出液には、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
連結カラムクロマトグラフィー条件
カラム:ID 0.66cm x Height 7cm、2.4mL容(Omnifit社製)の連結体
流速:0.4mL/分(滞留時間:6分)、ただし、CIP以降は、0.8mL/分
ポリクローナル抗体(IgG):ガンマグロブリン・ニチヤク(日本製薬)
負荷液:2.5mg-IgG/mL(PBS、pH7.4;10mM リン酸、150mM NaCl等)
平衡化(5カラム体積):PBS、pH7.4
負荷(40mg)
洗浄(5カラム体積):PBS、pH7.4
洗浄2(4カラム体積):10mM Tris/HCl、pH7
溶出グラジエント(40カラム体積): A→Bリニアグラジエント
A液:1mMクエン酸、pH3.7
B液:250mMクエン酸、pH3.7
再生(4カラム体積):50mMクエン酸、250mM 塩化ナトリウム、pH3.7
CIP(4カラム体積):0.1M水酸化ナトリウム、1M塩化ナトリウム
中和・再平衡化(4カラム体積):PBS、pH7.4
 クロマトグラフィーの結果として、CIP画分までの各分画のモノマーおよび凝集体のエリア値を図12に示した。この時、比較例2の40mg抗体負荷試験の溶出画分中のモノマー量を100とした場合、参考例1で再生画分までに回収できたモノマーは21.2%であり、また、モノマー含量は99.0%であった。CIP画分までに回収できたモノマーは73.7%であり、モノマー含量は83.3%であった。pKaが4.0未満のカルボキシル基をリガンドとする陽イオン交換担体Aを充填したカラムをプロテインA担体を充填したカラムに連結して使用した場合、イオン強度溶出可能なモノマー回収率が悪かった。
(実施例1)
プロテインA担体を充填したカラムとカルボキシル基をリガンドとする陽イオン交換担体B(TOYOPEARL CM-650M)を充填したカラムとを連結した一体型カラムを用いた抗体の分離
 プロテインA担体としてMabSelect SuRe(GEヘルスケア)を、陽イオン交換担体BとしてTOYOPEARL CM-650M(東ソー)をそれぞれOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、2本のカラムをプロテインA担体を充填したカラム、陽イオン交換担体Bを充填したカラムの順で連結し、1体のカラムとしてクロマトグラフィー操作を実施した。2.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、比較例3のクロマトグラフィー条件にて分離を行った。なお、1カラム体積は、1本分の2.4mLとして操作した。溶出液には、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
 クロマトグラフィーの結果として、CIP画分までの各分画のモノマーおよび凝集体のエリア値を図13に示した。この時、同一負荷量の比較例2の40mg抗体負荷試験の溶出画分中のモノマー量を100とした場合、実施例1で再生画分までに回収できたモノマーは91.6%であり、また、モノマー含量は96.7%であった。
 表2の各連結カラムの評価結果について、再生画分までのモノマー回収率、再生画分までの混合液中のモノマー含量、モノマー回収率80%までの溶出液混合液中のモノマー含量を比較例2と比較して示した。比較例2の再生画分までのCIP画分までに回収できたモノマーは99.9%であり、モノマー含量は93.5%であった。モノマー回収率が80%の時点で比較しても、比較例2のモノマー含量が93.4%であるのに対し、実施例1のモノマー含量は97.1%であり、モノマー含量が向上した。
(実施例2)
プロテインA担体を充填したカラムとカルボキシル基をリガンドとする陽イオン交換担体C(Fractogel COO(M))を充填したカラムとを連結した一体型カラムを用いた抗体の分離
 プロテインA担体としてMabSelect SuRe(GEヘルスケア)を、陽イオン交換担体CとしてFractogel COO(M)(メルク)をそれぞれOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、2本のカラムをプロテインA担体を充填したカラム、陽イオン交換担体Cを充填したカラムの順で連結し、1体のカラムとしてクロマトグラフィー操作を実施した。2.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、比較例3のクロマトグラフィー条件にて分離を行った。なお、1カラム体積は、1本分の2.4mLとして操作した。溶出液には、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
 クロマトグラフィーの結果として、CIP画分までの各分画のモノマーおよび凝集体のエリア値を図14に示した。この時、同一負荷量の比較例2の40mg抗体負荷試験の溶出画分中のモノマー量を100とした場合、実施例2で再生画分までに回収できたモノマーは86.7%であり、また、モノマー含量は99.2%であった。
 表2の各連結カラムの評価結果について、再生画分までのモノマー回収率、再生画分までの混合液中のモノマー含量、モノマー回収率80%までの溶出液混合液中のモノマー含量を比較例2と比較して示した。比較例2の再生画分までのCIP画分までに回収できたモノマーは99.9%であり、モノマー含量は93.5%であった。モノマー回収率が80%の時点で比較しても、比較例2のモノマー含量が93.4%であるのに対し、実施例2のモノマー含量は99.2%であり、モノマー含量が向上した。
(実施例3)
プロテインA担体を充填したカラムとカルボキシル基をリガンドとする陽イオン交換担体D(Glyoxal-COOH)を充填したカラムとを連結したカラムを用いた抗体の分離
 プロテインA担体としてMabSelect SuRe(GEヘルスケア)を、陽イオン交換担体DとしてGlyoxal-COOHをそれぞれOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、2本のカラムをプロテインA担体を充填したカラム、陽イオン交換担体Dを充填したカラムの順で連結し、1体のカラムとしてクロマトグラフィー操作を実施した。2.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、比較例3のクロマトグラフィー条件にて分離を行った。なお、1カラム体積は、1本分の2.4mLとして操作した。溶出液には、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
 クロマトグラフィーの結果として、CIP画分までの各分画のモノマーおよび凝集体のエリア値を図15に示した。この時、同一負荷量の比較例2の40mg抗体負荷試験の溶出画分中のモノマー量を100とした場合、実施例3で再生画分までに回収できたモノマーは102.0%であり、また、モノマー含量は96.7%であった。回収率が100%を超えたのは、ゲルろ過時のインジェクション量の誤差と考えられたが、図15のモノマーと凝集体の分離挙動から比較例とのモノマー含量の比較には影響しないと判断できた。
 表2の各連結カラムの評価結果について、再生画分までのモノマー回収率、再生画分までの混合液中のモノマー含量、モノマー回収率80%までの溶出液混合液中のモノマー含量を比較例2と比較して示した。比較例2の再生画分までのCIP画分までに回収できたモノマーは99.9%であり、モノマー含量は93.5%であった。モノマー回収率が80%の時点で比較しても、比較例2のモノマー含量が93.4%であるのに対し、実施例3のモノマー含量は99.1%であり、モノマー含量が向上した。
(実施例4)
プロテインA担体とカルボキシル基をリガンドとする陽イオン交換担体D(Glyoxal-COOH)とを1つのカラム内に混合充填した混合型カラムを用いた抗体の分離
 プロテインA担体としてMabSelect SuRe(GEヘルスケア)を、陽イオン交換担体DとしてGlyoxal-COOHをそれぞれ4:1(体積比)に混合してOmnifit社製のカラム(ID 0.66cm x Height 7cm)に充填し、2.5mg/mLに調製したヒトポリクローナル抗体(ガンマグロブリン・ニチヤク:日本製薬)を負荷液として、比較例2のクロマトグラフィー条件にて分離を行った。抗体負荷量は、10mgとした。なお、1カラム体積は、1本分の2.4mLとして操作した。溶出液には、最終濃度として50-100mMのアルギニンを添加し、pH5~6としてゲルろ過クロマトグラフィーにてモノマー含量の測定を行った。また、そのエリア値分析から各分画のモノマーおよび凝集体量を求めた。
 クロマトグラフィーの結果として、CIP画分までの各分画のモノマーおよび凝集体のエリア値を図16に示した。この時、同一負荷量の比較例2の10mg抗体負荷試験の溶出画分中のモノマー量を100とした場合、実施例4で再生画分までに回収できたモノマーは103.0%であり、また、モノマー含量は97.3%であった。回収率が100%を超えたのは、ゲルろ過時のインジェクション量の誤差と考えられたが、図16のモノマーと凝集体の分離挙動から比較例とのモノマー含量の比較には影響しないと判断できた。
 表3の各連結カラムの評価結果について、再生画分までのモノマー回収率、再生画分までの混合液中のモノマー含量、モノマー回収率80%までの溶出液混合液中のモノマー含量を比較例2と比較して示した。比較例2の再生画分までのCIP画分までに回収できたモノマーは99.9%であり、モノマー含量は96.5%であった。モノマー回収率が80%の時点で比較しても、比較例2のモノマー含量が97.1%であるのに対し、実施例4のモノマー含量は99.1%であり、モノマー含量が向上した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上、本発明(第一態様)により、アフィニティ担体と陽イオン交換担体を連結または混合カラムとし、一体として抗体等の吸着および溶出を行う抗体等の精製方法において、80%以上の高い回収率でまたは80%以上の回収率でなくとも、モノマー(単量体)含量を向上することのできる新規分離モードおよび使用方法が提供され、抗体医薬品の製造プロセスの生産性向上と高純度化に寄与できる。
 加えて、本発明(第二態様)により、pKaが4.0以上の陽イオン交換担体をアフィニティクロマトグラフィー溶出に用いられるpH4.0以下の酸性溶液中でイオン強度依存的溶出を行った場合、抗体回収率として80%以上で、モノマー含量を向上させることができた。また、本発明(第二態様)によれば、プロテインA担体の溶出液を一旦回収する必要はなく、アフィニティ担体に陽イオン交換担体を連結または混合カラムとし、一体として抗体等の吸着、および溶出を行うことができる。
 すなわち、本発明(第二態様)の使用方法を用いることで、アフィニティ担体から標的分子の溶出を行う酸性溶出pHで陽イオン交換担体からの抗体等の分離を行うこと、または、アフィニティ担体と陽イオン交換担体を連結または混合カラムとし、一体として抗体等の吸着、および溶出を行うことにより、抗体医薬品の製造プロセスの生産性向上と高純度化に寄与できる。

Claims (37)

  1.  抗体または抗体由来物質に対するアフィニティリガンドを有する担体1と陽イオン交換基を有する担体2を用いて連結または混合カラムとし、一体として抗体または抗体由来物質の吸着および溶出を行うことを特徴とする抗体または抗体由来物質の精製方法。
  2.  抗体または抗体由来物質に対するアフィニティリガンドを有する担体1と陽イオン交換基を有する担体2を用いた抗体または抗体由来物質の精製方法であり、
     前記担体1を充填したカラムの下流側に前記担体2を充填したカラムを直結した一体型カラムまたは前記担体1と担体2の両方の混合物が充填された混合型カラムに、抗体または抗体由来物質含有液を通液して抗体または抗体由来物質をカラムに負荷し、
     ついで溶出液を通液することで負荷した抗体または抗体由来物質を溶出させることを特徴とする抗体または抗体由来物質の精製方法。
  3.  前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のグラジエントで行う請求項1または2に記載の精製方法。
  4.  前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のステップワイズで行う請求項1または2に記載の精製方法。
  5.  前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液よりも低いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する請求項2~4のいずれかに記載の精製方法。
  6.  前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液と同じまたはより高いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液し、次いで平衡化溶液および抗体または抗体由来物質含有溶液よりも低いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する請求項2~4のいずれかに記載の精製方法。
  7.  前記アフィニティリガンドを有する担体1がプロテインA、プロテインG、プロテインLまたはそれらの類縁物質をリガンドとする担体である請求項1~6のいずれかに記載の精製方法。
  8.  前記アフィニティリガンドを有する担体1がプロテインAまたはそれらの類縁物質をリガンドとする担体である請求項1~7のいずれかに記載の精製方法。
  9.  前記抗体または抗体由来物質が、免疫グロブリンG、免疫グロブリンG誘導体、または、Fc含有分子である請求項1~8のいずれかに記載の精製方法。
  10.  前記抗体または抗体由来物質が、Fab、scFv、diabody、または抗原結合部位含有分子である請求項1~9のいずれかに記載の精製方法。
  11.  前記陽イオン交換基を有する担体2が、カルボキシル基をリガンドとする担体である請求項1~10のいずれかに記載の精製方法。
  12.  前記カルボキシル基が酸性アミノ酸に由来する請求項11に記載の精製方法。
  13.  前記抗体または抗体由来物質の溶出pHが5.0未満である請求項1~12のいずれかに記載の精製方法。
  14.  前記担体1のIgGに対する滞留時間6分での10%DBCが1mg/mL以上100mg/mL以下である請求項1~13のいずれかに記載の精製方法。
  15.  前記担体2のイオン交換容量が0.001mmol/mL以上0.5mmol/mL以下である請求項1~14のいずれかに記載の精製方法。
  16.  前記担体1の体積平均粒径が1μm以上1000μm以下であり、前記担体2の体積平均粒径が1μm以上1000μm以下である請求項1~15のいずれかに記載の精製方法。
  17.  pKaが4.0以上であるカルボキシル基含有リガンドを有する陽イオン交換基を有する担体2に抗体または抗体由来物質含有溶液を負荷した後、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する請求項1~16のいずれかに記載の精製方法。
  18.  前記カルボキシル基含有リガンドを有する陽イオン交換基を有する担体2のIgGに対する滞留時間6分での10%DBCが1mg/mL以上200mg/mL以下である請求項1~17のいずれかに記載の精製方法。
  19.  前記陽イオン交換基を有する担体2を充填したカラムの前にアフィニティリガンドを有する担体1を充填したカラムを連結して一体型カラムを作製し、中性pH条件で抗体または抗体由来物質含有溶液を前記一体型カラムに負荷した後に、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する請求項2~18のいずれかに記載の精製方法。
  20.  前記一体型カラムを構成する担体1と担体2の割合が、体積基準で、1/20以上20/1以下である請求項2~19のいずれかに記載の精製方法。
  21.  前記陽イオン交換基を有する担体2をアフィニティリガンドを有する担体1と共に混合状態で有する混合型カラムを作製し、中性pH条件で抗体又は抗体由来物質含有溶液を負荷してpH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する請求項2~18のいずれかに記載の精製方法。
  22.  前記混合型カラムを構成する担体1と担体2の割合が、体積基準で、1/20以上20/1以下である請求項2~18、21のいずれかに記載の精製方法。
  23.  吸着条件下における担体1のIgGに対する滞留時間6分での10%DBCに対する、担体2のIgGに対する滞留時間6分での10%DBCが、1/10倍以上10倍以下である請求項1~22のいずれかに記載の精製方法。
  24.  請求項1~23のいずれかに記載の精製方法で精製された抗体または抗体由来物質。
  25.  pKaが4.0以上であるカルボキシル基含有リガンドを有する陽イオン交換基を有する担体2に抗体または抗体由来物質含有溶液を負荷した後、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する陽イオン交換基を有する担体の使用方法。
  26.  前記カルボキシル基含有リガンドが酸性アミノ酸に由来する請求項25に記載の使用方法。
  27.  前記カルボキシル基含有リガンドを有する陽イオン交換基を有する担体2のIgGに対する滞留時間6分での10%DBCが1mg/mL以上200mg/mL以下である請求項25または26に記載の使用方法。
  28.  前記陽イオン交換基を有する担体2のイオン交換容量が0.001mmol/mL以上0.5mmol/mL以下である請求項25~27のいずれかに記載の使用方法。
  29.  前記陽イオン交換基を有する担体2の体積平均粒径が1μm以上1000μm以下である請求項25~28のいずれかに記載の使用方法。
  30.  前記陽イオン交換基を有する担体2を充填したカラムの前にアフィニティリガンドを有する担体1を充填したカラムを連結して一体型カラムを作製し、中性pH条件で抗体または抗体由来物質含有溶液を前記一体型カラムに負荷した後に、pH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する請求項25~29のいずれかに記載の使用方法。
  31.  前記陽イオン交換基を有する担体2をアフィニティリガンドを有する担体1と共に混合状態で有する混合型カラムを作製し、中性pH条件で抗体又は抗体由来物質含有溶液を負荷してpH4.0以下の酸性バッファーを使用して抗体または抗体由来物質を溶出する請求項25~29のいずれかに記載の使用方法。
  32.  前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液よりも低イオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する請求項30または31に記載の使用方法。
  33.  前記一体型カラムまたは混合型カラムを平衡化溶液で平衡化し、前記抗体または抗体由来物質含有溶液を負荷し、この負荷後溶出開始前に平衡化溶液および抗体または抗体由来物質含有溶液と同じまたはより高いイオン強度の、かつ溶出液よりも高いpHの洗浄液を通液し、次いで平衡化溶液および抗体または抗体由来物質含有溶液よりも低イオン強度の、かつ溶出液よりも高いpHの洗浄液を通液する請求項30または31に記載の使用方法。
  34.  前記抗体または抗体由来物質が免疫グロブリンG、免疫グロブリンG誘導体、Fc含有分子、またはFab、scFv、diabodyもしくは抗原結合部位含有分子である請求項25~33のいずれかに記載の使用方法。
  35.  前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のグラジエントで行う請求項25~34のいずれかに記載の使用方法。
  36.  前記抗体または抗体由来物質の溶出を酸性pHでかつイオン強度のステップワイズで行う請求項25~34のいずれかに記載の使用方法。
  37.  請求項25~36のいずれかに記載の使用方法で精製された抗体または抗体由来物質。
PCT/JP2014/074452 2013-09-17 2014-09-16 新規抗体精製方法及びそれから得られる抗体(Novel Antibody Purification Method and Antibody obtained therefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(Novel Antibody Purification method using Cation Exchanger and Antibody obtained therefrom) WO2015041218A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201602061YA SG11201602061YA (en) 2013-09-17 2014-09-16 Novel antibody purification method and antibody obtained therefrom, and novel antibody purification method using cation exchanger and antibody obtained therefrom
JP2015537927A JPWO2015041218A1 (ja) 2013-09-17 2014-09-16 新規抗体精製方法及びそれから得られる抗体(NovelAntibodyPurificationMethodandAntibodyobtainedtherefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(NovelAntibodyPurificationmethodusingCationExchangerandAntibodyobtainedtherefrom)
EP14846521.4A EP3048109A4 (en) 2013-09-17 2014-09-16 Novel antibody purification method and antibody obtained therefrom, and novel antibody purification method using cation exchanger and antibody obtained therefrom
CN201480051360.2A CN105555795A (zh) 2013-09-17 2014-09-16 新抗体纯化方法和由该方法得到的抗体、以及使用了阳离子交换基团的新抗体纯化法和由该方法得到的抗体
US15/022,890 US10519195B2 (en) 2013-09-17 2014-09-16 Antibody purification method, antibody obtained therefrom, novel antibody purification method using cation exchanger, and antibody obtained therefrom
KR1020167009648A KR20160054597A (ko) 2013-09-17 2014-09-16 신규 항체 정제 방법 및 그로부터 얻어지는 항체, 및 양이온 교환기를 사용한 신규 항체 정제법 및 그로부터 얻어지는 항체

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013192379 2013-09-17
JP2013-192379 2013-09-17
JP2013192378 2013-09-17
JP2013-192378 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015041218A1 true WO2015041218A1 (ja) 2015-03-26

Family

ID=52688867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074452 WO2015041218A1 (ja) 2013-09-17 2014-09-16 新規抗体精製方法及びそれから得られる抗体(Novel Antibody Purification Method and Antibody obtained therefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(Novel Antibody Purification method using Cation Exchanger and Antibody obtained therefrom)

Country Status (7)

Country Link
US (1) US10519195B2 (ja)
EP (1) EP3048109A4 (ja)
JP (2) JPWO2015041218A1 (ja)
KR (1) KR20160054597A (ja)
CN (1) CN105555795A (ja)
SG (1) SG11201602061YA (ja)
WO (1) WO2015041218A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014169A (ja) * 2015-07-03 2017-01-19 国立研究開発法人医薬基盤・健康・栄養研究所 ペプチド又はタンパク質の分画方法
JP2017083363A (ja) * 2015-10-30 2017-05-18 Jsr株式会社 アフィニティークロマトグラフィー用担体、クロマトグラフィーカラム、精製方法、及び該方法で精製された標的物質
WO2017191747A1 (ja) * 2016-05-06 2017-11-09 株式会社カネカ κ鎖可変領域を含むタンパク質の製造方法
CN107849122A (zh) * 2015-08-21 2018-03-27 豪夫迈·罗氏有限公司 用低电导率洗涤缓冲液进行亲和层析纯化
WO2019039545A1 (ja) 2017-08-23 2019-02-28 Jsr株式会社 クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
WO2020095963A1 (ja) 2018-11-06 2020-05-14 Jsr株式会社 有機硫黄化合物の製造方法、担体、当該担体の製造方法、リガンド固定担体、クロマトグラフィーカラム及び標的物質の検出又は単離方法
US10808013B2 (en) 2015-01-26 2020-10-20 Kaneka Corporation Mutant immunoglobulin K chain variable region-binding peptide
US10844112B2 (en) 2016-05-09 2020-11-24 Kaneka Corporation Method for purifying antibody or antibody fragment containing κ-chain variable region
US10858392B2 (en) 2015-01-26 2020-12-08 Kaneka Corporation Affinity separation matrix for purifying protein containing immunoglobulin K chain variable region
WO2022202466A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
WO2022202467A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
WO2023058409A1 (ja) 2021-10-05 2023-04-13 Jsr株式会社 クロマトグラフィー担体をカラムに充填する方法、スラリーの保存方法、及びスラリー

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201802997WA (en) * 2015-10-23 2018-05-30 Fujifilm Corp Affinity chromatography carrier and method for purifying biological substance
KR102490805B1 (ko) * 2019-07-02 2023-01-20 니혼 메디피직스 가부시키가이샤 226Ra 함유 용액의 정제 방법, 226Ra 타깃의 제조 방법, 및 225Ac의 제조 방법

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932557A (en) 1972-12-19 1976-01-13 Gulf Research & Development Company Reactive hydrophilic epoxy containing polymer
US4210723A (en) 1976-07-23 1980-07-01 The Dow Chemical Company Method of coupling a protein to an epoxylated latex
US4772653A (en) 1985-11-08 1988-09-20 Amoco Corporation Stain resistant cookware from blends comprising an interpolymer of an unsaturated dicarboxylic acid compound
JPH05202098A (ja) 1992-01-29 1993-08-10 Snow Brand Milk Prod Co Ltd 乳質原料から生理活性物質の製造法
US5250613A (en) 1990-10-22 1993-10-05 Berol Nobel Ab Solid surface coated with a hydrophilic outer layer with covalently bonded biopolymers, a method of making such a surface, and a conjugate therefor
US5260373A (en) 1987-03-13 1993-11-09 Repligen Corporation Immobilized immunoglobulin-binding proteins
JPH06228200A (ja) 1993-01-29 1994-08-16 Snow Brand Milk Prod Co Ltd 補体C3cの製造法
US5874165A (en) 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
US6399750B1 (en) 1995-11-07 2002-06-04 Pharmacia Biotech Ab IGG separation medium
JP2002522779A (ja) * 1998-08-12 2002-07-23 ザイコス インク. 発現蛋白質タグのプロファイリングおよびカタログ化
EP1352957A1 (en) 2002-04-08 2003-10-15 Resindion S.R.L. Carriers for covalent immobilization of enzymes
WO2004074471A1 (es) 2003-02-21 2004-09-02 Consejo Superior De Investigaciones Científicas Inmovilización de bio-macromoléculas sobre soportes activados con grupos epóxido.
JP2008505851A (ja) * 2004-02-27 2008-02-28 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 抗体精製
WO2008085988A1 (en) 2007-01-05 2008-07-17 Amgen Inc. Methods of purifying proteins
JP2008535913A (ja) 2005-04-11 2008-09-04 メダレックス インコーポレーティッド タンパク質精製方法
JP2008542218A (ja) * 2005-05-25 2008-11-27 エフ.ホフマン−ラ ロシュ アーゲー 抗体の精製法
JP4391830B2 (ja) 2002-03-25 2009-12-24 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 変異免疫グロブリン結合タンパク質
WO2010019493A1 (en) 2008-08-14 2010-02-18 Merck Sharp & Dohme Corp. Methods for purifying antibodies using protein a affinity chromatography
JP2010507583A (ja) 2006-10-19 2010-03-11 セントコア・オーソ・バイオテツク・インコーポレーテツド 非凝集抗体Fcドメインの製造方法
JP2010510963A (ja) 2006-06-14 2010-04-08 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー セラミックヒドロキシアパタイトを使用する抗体の精製方法
JP2010133734A (ja) 2008-12-02 2010-06-17 Tosoh Corp アフィニティークロマトグラフィー用カルボキシル化担体、及びそれを用いたアフィニティークロマトグラフィー用分離剤
JP2010133733A (ja) 2008-12-02 2010-06-17 Tosoh Corp カチオン交換体、その製造方法及びその用途
WO2010141039A1 (en) 2008-10-20 2010-12-09 Abbott Laboratories Isolation and purification of antibodies using protein a affinity chromatography
WO2011017514A1 (en) 2009-08-07 2011-02-10 Millipore Corporation Methods for purifying a target protein from one or more impurities in a sample
JP2011256176A (ja) 2006-01-06 2011-12-22 Millipore Corp アフィニティークロマトグラフィーマトリックスおよびその作成および使用法
JP2012530088A (ja) * 2009-06-16 2012-11-29 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 二重特異性抗原結合タンパク質
WO2014034457A1 (ja) * 2012-09-03 2014-03-06 株式会社カネカ ミックスモード抗体アフィニティー分離マトリックスとそれを用いた精製方法および標的分子

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145366A (en) * 1974-11-18 1979-03-20 Teijin Limited Process for isomerizing one of the geometric isomers of an α,β-unsaturated aldehyde to its corresponding other geometric isomer
ES2198913T5 (es) * 1998-05-06 2013-11-18 Genentech, Inc. Purificación de proteínas mediante cromatografía de intercambio iónico
US20040224338A1 (en) 1998-08-12 2004-11-11 Zycos Inc., A Delaware Corporation Profiling and cataloging expressed protein tags
US7709209B2 (en) 2002-03-25 2010-05-04 Ge Healthcare Bio-Sciences Ab Protein ligands
GB0304576D0 (en) * 2003-02-28 2003-04-02 Lonza Biologics Plc Protein a chromatography
EP1718386A1 (en) 2004-02-27 2006-11-08 GE Healthcare Bio-Sciences AB A process for the purification of antibodies
SE0400886D0 (sv) * 2004-04-02 2004-04-02 Amersham Biosciences Ab Process of purification
WO2005123952A2 (en) 2004-06-09 2005-12-29 Pathogen Removal And Diagnostic Technologies Inc. Particles embedded ina porous substrate for removing target analyte from a sample
US9266041B2 (en) 2004-10-21 2016-02-23 Ge Healthcare Bio-Sciences Ab Chromatography ligand
WO2006043895A1 (en) 2004-10-21 2006-04-27 Ge Healthcare Bio-Sciences Ab A method of antibody purification
US7691980B2 (en) 2007-01-09 2010-04-06 Bio-Rad Laboratories, Inc. Enhanced capacity and purification of antibodies by mixed mode chromatography in the presence of aqueous-soluble nonionic organic polymers
US7999085B2 (en) 2007-01-09 2011-08-16 Bio-Rad Laboratories, Inc. Enhanced capacity and purification of protein by mixed mode chromatography in the presence of aqueous-soluble nonionic organic polymers
US9433922B2 (en) 2007-08-14 2016-09-06 Emd Millipore Corporation Media for membrane ion exchange chromatography based on polymeric primary amines, sorption device containing that media, and chromatography scheme and purification method using the same
WO2009058769A1 (en) 2007-10-30 2009-05-07 Schering Corporation Purification of antibodies containing hydrophobic variants
WO2009126603A1 (en) 2008-04-08 2009-10-15 Bio-Rad Laboratories, Inc. Chromatography purification of antibodies
CN103396480A (zh) * 2008-05-15 2013-11-20 诺沃—诺迪斯克有限公司 抗体纯化方法
US8497358B2 (en) 2008-12-19 2013-07-30 Takeda Pharmaceutical Company Limited Antibody purification method
US9527010B2 (en) * 2009-09-25 2016-12-27 Ge Healthcare Bio-Sciences Corp. Separation system and method
MX2012004711A (es) 2009-10-20 2012-05-23 Abbott Lab Aislamiento y purificacion de los anticuerpos anti-il-13 al usar cromatografia de afinidad con proteina a.
US8277649B2 (en) 2009-12-14 2012-10-02 General Electric Company Membranes and associated methods for purification of antibodies
JP5952185B2 (ja) 2010-03-24 2016-07-13 株式会社カネカ 免疫グロブリンに特異的に結合するタンパク質および免疫グロブリン結合性アフィニティーリガンド
JP2013544524A (ja) * 2010-12-06 2013-12-19 ターポン バイオシステムズ,インコーポレイテッド 生物学的生成物の連続プロセス法
ES2905675T3 (es) * 2013-05-06 2022-04-11 Sanofi Sa Proceso multietapa continuo para purificar anticuerpos

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932557A (en) 1972-12-19 1976-01-13 Gulf Research & Development Company Reactive hydrophilic epoxy containing polymer
US4210723A (en) 1976-07-23 1980-07-01 The Dow Chemical Company Method of coupling a protein to an epoxylated latex
US4772653A (en) 1985-11-08 1988-09-20 Amoco Corporation Stain resistant cookware from blends comprising an interpolymer of an unsaturated dicarboxylic acid compound
US5260373A (en) 1987-03-13 1993-11-09 Repligen Corporation Immobilized immunoglobulin-binding proteins
US5250613A (en) 1990-10-22 1993-10-05 Berol Nobel Ab Solid surface coated with a hydrophilic outer layer with covalently bonded biopolymers, a method of making such a surface, and a conjugate therefor
JPH05202098A (ja) 1992-01-29 1993-08-10 Snow Brand Milk Prod Co Ltd 乳質原料から生理活性物質の製造法
JPH06228200A (ja) 1993-01-29 1994-08-16 Snow Brand Milk Prod Co Ltd 補体C3cの製造法
US6399750B1 (en) 1995-11-07 2002-06-04 Pharmacia Biotech Ab IGG separation medium
US5874165A (en) 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
JP2002522779A (ja) * 1998-08-12 2002-07-23 ザイコス インク. 発現蛋白質タグのプロファイリングおよびカタログ化
JP4391830B2 (ja) 2002-03-25 2009-12-24 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 変異免疫グロブリン結合タンパク質
EP1352957A1 (en) 2002-04-08 2003-10-15 Resindion S.R.L. Carriers for covalent immobilization of enzymes
WO2004074471A1 (es) 2003-02-21 2004-09-02 Consejo Superior De Investigaciones Científicas Inmovilización de bio-macromoléculas sobre soportes activados con grupos epóxido.
JP2008505851A (ja) * 2004-02-27 2008-02-28 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 抗体精製
JP2008535913A (ja) 2005-04-11 2008-09-04 メダレックス インコーポレーティッド タンパク質精製方法
JP2008542218A (ja) * 2005-05-25 2008-11-27 エフ.ホフマン−ラ ロシュ アーゲー 抗体の精製法
JP2011256176A (ja) 2006-01-06 2011-12-22 Millipore Corp アフィニティークロマトグラフィーマトリックスおよびその作成および使用法
JP2010510963A (ja) 2006-06-14 2010-04-08 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー セラミックヒドロキシアパタイトを使用する抗体の精製方法
JP2010507583A (ja) 2006-10-19 2010-03-11 セントコア・オーソ・バイオテツク・インコーポレーテツド 非凝集抗体Fcドメインの製造方法
WO2008085988A1 (en) 2007-01-05 2008-07-17 Amgen Inc. Methods of purifying proteins
WO2010019493A1 (en) 2008-08-14 2010-02-18 Merck Sharp & Dohme Corp. Methods for purifying antibodies using protein a affinity chromatography
WO2010141039A1 (en) 2008-10-20 2010-12-09 Abbott Laboratories Isolation and purification of antibodies using protein a affinity chromatography
JP2010133734A (ja) 2008-12-02 2010-06-17 Tosoh Corp アフィニティークロマトグラフィー用カルボキシル化担体、及びそれを用いたアフィニティークロマトグラフィー用分離剤
JP2010133733A (ja) 2008-12-02 2010-06-17 Tosoh Corp カチオン交換体、その製造方法及びその用途
JP2012530088A (ja) * 2009-06-16 2012-11-29 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 二重特異性抗原結合タンパク質
WO2011017514A1 (en) 2009-08-07 2011-02-10 Millipore Corporation Methods for purifying a target protein from one or more impurities in a sample
JP2013501721A (ja) * 2009-08-07 2013-01-17 イー・エム・デイー・ミリポア・コーポレイシヨン 試料中の1つ以上の不純物から標的タンパク質を精製するための方法
WO2014034457A1 (ja) * 2012-09-03 2014-03-06 株式会社カネカ ミックスモード抗体アフィニティー分離マトリックスとそれを用いた精製方法および標的分子

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HERMANSON G.T. ET AL.: "Immobilized Affinity Ligand Techniques", 1992, ACADEMIC PRESS
HOBER S. ET AL., J. CHROMATOGR. B, vol. 848, 2007, pages 40 - 47
HOU, C. ET AL.: "Weak anion and cation exchange mixed-bed microcolumn for protein separation", J. SEP. SCI., vol. 33, 2010, pages 3299 - 3303, XP055326690 *
LJUNGQUIST C. ET AL., EUR. J. BIOCHEM., vol. 186, 1989, pages 557 - 561
LOW D. ET AL., J. CHROMATOGR. B, vol. 848, 2007, pages 48 - 63
ROQUE A. C. A. ET AL., J. CHROMATOGR. A, vol. 1160, 2007, pages 44 - 55
See also references of EP3048109A4
TAKEO YAMABE ET AL.: "Kongo Ion Kokan Column ni yoru Amino Acid no Gunbunri", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, vol. 89, no. 8, 1968, pages 772 - 775, XP008182976 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858392B2 (en) 2015-01-26 2020-12-08 Kaneka Corporation Affinity separation matrix for purifying protein containing immunoglobulin K chain variable region
US10808013B2 (en) 2015-01-26 2020-10-20 Kaneka Corporation Mutant immunoglobulin K chain variable region-binding peptide
JP2017014169A (ja) * 2015-07-03 2017-01-19 国立研究開発法人医薬基盤・健康・栄養研究所 ペプチド又はタンパク質の分画方法
CN107849122A (zh) * 2015-08-21 2018-03-27 豪夫迈·罗氏有限公司 用低电导率洗涤缓冲液进行亲和层析纯化
CN107849122B (zh) * 2015-08-21 2022-01-25 豪夫迈·罗氏有限公司 用低电导率洗涤缓冲液进行亲和层析纯化
JP2017083363A (ja) * 2015-10-30 2017-05-18 Jsr株式会社 アフィニティークロマトグラフィー用担体、クロマトグラフィーカラム、精製方法、及び該方法で精製された標的物質
WO2017191747A1 (ja) * 2016-05-06 2017-11-09 株式会社カネカ κ鎖可変領域を含むタンパク質の製造方法
US10844112B2 (en) 2016-05-09 2020-11-24 Kaneka Corporation Method for purifying antibody or antibody fragment containing κ-chain variable region
WO2019039545A1 (ja) 2017-08-23 2019-02-28 Jsr株式会社 クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
WO2020095963A1 (ja) 2018-11-06 2020-05-14 Jsr株式会社 有機硫黄化合物の製造方法、担体、当該担体の製造方法、リガンド固定担体、クロマトグラフィーカラム及び標的物質の検出又は単離方法
WO2022202466A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
WO2022202467A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
WO2023058409A1 (ja) 2021-10-05 2023-04-13 Jsr株式会社 クロマトグラフィー担体をカラムに充填する方法、スラリーの保存方法、及びスラリー

Also Published As

Publication number Publication date
EP3048109A1 (en) 2016-07-27
KR20160054597A (ko) 2016-05-16
EP3048109A4 (en) 2017-04-19
CN105555795A (zh) 2016-05-04
JP2019034963A (ja) 2019-03-07
JPWO2015041218A1 (ja) 2017-03-02
US10519195B2 (en) 2019-12-31
US20160237113A1 (en) 2016-08-18
SG11201602061YA (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2015041218A1 (ja) 新規抗体精製方法及びそれから得られる抗体(Novel Antibody Purification Method and Antibody obtained therefrom)、並びに陽イオン交換基を用いた新規抗体精製法及びそれから得られる抗体(Novel Antibody Purification method using Cation Exchanger and Antibody obtained therefrom)
JP4776615B2 (ja) 抗体精製
JP6335785B2 (ja) ミックスモード抗体アフィニティー分離マトリックスとそれを用いた精製方法および標的分子
JP5064225B2 (ja) 抗体精製法
US11667671B2 (en) Separation method
CA2720615C (en) Chromatography purification of antibodies
JP6420756B2 (ja) アフィニティークロマトグラフィーマトリックス
JP2019165747A (ja) 突然変異免疫グロブリン結合ポリペプチド
JP6630036B2 (ja) 標的物の精製方法、及び、ミックスモード用担体
WO2011118599A1 (ja) アフィニティークロマトグラフィー用充填剤およびイムノグロブリンを単離する方法
JP2013500291A (ja) タンパク質及びペプチドと結合する特定の充填剤、並びに、それを用いた分離方法
JP2007525501A (ja) 抗体精製法
WO2009135656A1 (en) A method for the purification of antibodies using displacement chromatography
CA2645675C (en) Adsorbents for protein purification
WO2017195641A1 (ja) アフィニティ分離マトリックスの製造方法およびアフィニティ分離マトリックス
WO2017195638A1 (ja) 抗体またはκ鎖可変領域含有抗体断片の精製方法
KR20240158894A (ko) 알칼리-안정화된 카파 경쇄-결합 분리 매트릭스
JP2024141217A (ja) 抗体結合性タンパク質固定化担体を用いた抗体精製方法
CN118922247A (zh) 碱稳定的κ轻链结合分离基质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051360.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014846521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15022890

Country of ref document: US

Ref document number: 2014846521

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167009648

Country of ref document: KR

Kind code of ref document: A