WO2015041024A1 - ブレーキ制御装置 - Google Patents

ブレーキ制御装置 Download PDF

Info

Publication number
WO2015041024A1
WO2015041024A1 PCT/JP2014/072774 JP2014072774W WO2015041024A1 WO 2015041024 A1 WO2015041024 A1 WO 2015041024A1 JP 2014072774 W JP2014072774 W JP 2014072774W WO 2015041024 A1 WO2015041024 A1 WO 2015041024A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
brake
control device
pump
predetermined current
Prior art date
Application number
PCT/JP2014/072774
Other languages
English (en)
French (fr)
Inventor
振一郎 西田
今村 政道
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/021,142 priority Critical patent/US20160221558A1/en
Priority to KR1020167003196A priority patent/KR20160030255A/ko
Priority to DE112014004328.1T priority patent/DE112014004328T5/de
Priority to CN201480046391.9A priority patent/CN105473397A/zh
Publication of WO2015041024A1 publication Critical patent/WO2015041024A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/363Electromagnetic valves specially adapted for anti-lock brake and traction control systems in hydraulic systems
    • B60T8/365Electromagnetic valves specially adapted for anti-lock brake and traction control systems in hydraulic systems combining a plurality of functions in one unit, e.g. pressure relief
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force

Definitions

  • the present invention relates to a brake control device.
  • Patent Document 1 discloses a technique for controlling the hydraulic pressure of a wheel cylinder by adjusting a differential pressure of a pressure regulating valve arranged on a circuit connecting a master cylinder and a wheel cylinder during hydraulic pressure control by a pump drive. It is disclosed.
  • An object of the present invention is to provide a brake control device capable of suppressing excessive valve opening of a pressure regulating valve due to pump pulsation while suppressing increase in size of the device.
  • a predetermined current value for obtaining a target wheel cylinder hydraulic pressure and a current value larger than the predetermined current value are alternately supplied to the solenoid of the pressure regulating valve.
  • FIG. 3 is a schematic diagram illustrating a configuration of a gate-out valve 3 according to the first embodiment.
  • FIG. 3 is an enlarged view of a main part of the gate-out valve 3 of the first embodiment.
  • 3 is a flowchart illustrating a flow of a gate-out valve balance control process according to the first embodiment. It is a figure which shows the relationship between valve lift amount and suction force. It is a time chart which shows the pump discharge amount at the time of not performing the target current addition process of Example 1, wheel cylinder hydraulic pressure, the stroke of a gate-out valve, solenoid attraction force, and a solenoid current.
  • 3 is a time chart illustrating an operation of a target current addition process according to the first embodiment. It is a time chart which shows the pump discharge amount at the time of performing the target current addition process of Example 1, wheel cylinder hydraulic pressure, the stroke of a gate-out valve, solenoid attraction force, and movement of solenoid current.
  • FIG. 1 is a circuit configuration diagram of the brake control device according to the first embodiment.
  • the hydraulic control unit HU adjusts the braking force applied to each wheel of the vehicle. Based on the command from the brake control unit (control unit) BCU, the wheel cylinder W / C (RL) on the left rear wheel, The hydraulic pressures of the front wheel wheel cylinder W / C (FR), the left front wheel wheel cylinder W / C (FL), and the right rear wheel wheel cylinder W / C (RR) are increased, decreased or maintained.
  • the liquid pressure control unit HU has a piping structure called an X piping composed of two systems, a P system and an S system.
  • X piping By adopting X piping, even if one piping system fails, the other piping system can be used to generate half of the braking force during normal operation.
  • part described in FIG. 1 shows P system
  • S shows S system
  • RR is a right rear wheel, a left front wheel, a left front wheel, a right rear Indicates that it corresponds to a ring.
  • the description of P, S or RL, FR, FL, RR is omitted when the P, S system or each wheel is not distinguished.
  • the hydraulic control unit HU of Example 1 uses a closed hydraulic circuit.
  • the “closed hydraulic circuit” refers to a hydraulic circuit that returns the brake fluid supplied to the wheel cylinder W / C to the reservoir tank RSV via the master cylinder M / C.
  • the hydraulic circuit that can return the brake fluid supplied to the wheel cylinder W / C directly to the reservoir tank RSV without passing through the master cylinder M / C is called “Open hydraulic circuit”. That's it.
  • the brake pedal (brake operating member) BP is connected to the master cylinder M / C via the input rod IR.
  • the pedal depression force input to the brake pedal BP is boosted by a brake booster (boost device) BB.
  • the master cylinder M / C generates brake fluid pressure according to the output of the brake booster BB.
  • the wheel cylinder W / C (RL) for the left rear wheel RL and the wheel cylinder W / C (FR) for the right front wheel FR are connected to the S system, and the wheel cylinder W / C (for the left front wheel FL is connected to the P system. FL) and the wheel cylinder W / C (RR) of the right rear wheel RR are connected.
  • pumps PP and PS are provided in the P system and the S system. The pumps PP and PS are driven by one motor M. In the first embodiment, the pumps PP and PS are plunger pumps.
  • the master cylinder M / C and the wheel cylinder W / C are connected by a pipeline 1 and a pipeline 2.
  • the pipeline 2S is branched into pipelines 2RL and 2FR, the pipeline 2RL is connected to the wheel cylinder W / C (RL), and the pipeline 2FR is connected to the wheel cylinder W / C (FR).
  • the pipe line 2P branches into pipe lines 2FL and 2RR, the pipe line 2FL is connected to the wheel cylinder W / C (FL), and the pipe line 2RR is connected to the wheel cylinder W / C (RR).
  • a gate-out valve (pressure regulating valve) 3 which is a normally open proportional control valve, is provided on the soot line 1.
  • a master cylinder hydraulic pressure sensor (brake operation state detection unit) 4 is provided at a position closer to the master cylinder side than the gate-out valve 3P of the pipeline 1P of the P system.
  • a pipeline 4 is provided in parallel with the gate-out valve 3.
  • a check valve 5 is provided on the pipeline 4. The check valve 5 allows the flow of brake fluid from the master cylinder M / C to the wheel cylinder W / C and prohibits the flow in the opposite direction.
  • a pipe 7 is provided in parallel with the solenoid-in valve 6.
  • a check valve 8 is provided on the pipeline 7. The check valve 8 allows the brake fluid to flow in the direction from the wheel cylinder W / C toward the master cylinder M / C, and prohibits the flow in the opposite direction.
  • the discharge side of the pump P and the pipe 2 are connected by a pipe 9.
  • a discharge valve 10 is provided on the pipeline 9. The discharge valve 10 allows the flow of the brake fluid in the direction from the pump P toward the pipe 2 and prohibits the flow in the opposite direction.
  • a pressure regulating reservoir 13 is provided between the pipe line 11 and the pipe line 12.
  • the position on the wheel cylinder side of the soot line 2 with respect to the solenoid-in valve 6 and the pressure regulating reservoir 13 are connected by a line 14.
  • the pipeline 14S branches to pipelines 14RL and 14FR, and the pipeline 14P branches to pipelines 14FL and 14RR and is connected to the corresponding wheel cylinder W / C.
  • a solenoid-out valve 15 that is a normally closed solenoid valve is provided on the culvert pipe 14.
  • the pressure regulation reservoir 13 includes a pressure-sensitive check valve (check valve) 16.
  • the check valve 16 prevents the application of high pressure to the suction side of the pump P by prohibiting the flow of brake fluid into the reservoir when the pressure in the pipe line 11 exceeds a predetermined pressure. To do.
  • the check valve 16 opens regardless of the pressure in the pipe 11 when the pump P is activated and the pressure in the pipe 12 becomes low, allowing the brake fluid to flow into the reservoir. To do.
  • FIG. 2 is a schematic diagram illustrating a configuration of the gate-out valve 3 according to the first embodiment.
  • the gate-out valve 3 includes a solenoid 21 that generates an electromagnetic attractive force, a valve element 22 that operates according to the electromagnetic attractive force, and a coil spring 23 that urges the valve element 22 in the valve opening direction (upward in FIG. 2). And a valve body 24 on the pipeline 1 and connected to the pipeline 1a on the master cylinder side of the gate-out valve 3 and the pipeline 1b on the wheel cylinder side.
  • the valve body 22 moves downward in FIG. 2
  • the distal end portion of the valve body 22 is seated on the seat 26 formed on the valve body 24, so that the pipe line 1 a and the pipe line 1 b are closed.
  • the valve body 22 moves upward in FIG.
  • the distal end portion of the valve body 22 is detached from the seat 26, so that the pipe line 1a and the pipe line 1b are opened. That is, the communication state (differential pressure) between the pipe line 1a and the pipe line 1b is determined according to the vertical position (valve lift amount) of the valve body 22.
  • FIG. 3 is an enlarged view of a main part of the gate-out valve 3 of the first embodiment.
  • the valve body 22 has a force Fa according to the pressure difference between the pressure on the upstream side of the gate-out valve 3 (corresponding to the master cylinder hydraulic pressure) and the pressure on the downstream side (corresponding to the hydraulic pressure of the wheel cylinder).
  • a force Fb corresponding to the electromagnetic attraction force of the solenoid 21 acts on the lower side in FIG. 3
  • a force Fc due to the biasing force of the coil spring 23 acts on the upper side in FIG.
  • the current value is controlled to a predetermined value
  • the force due to the above-mentioned differential pressure is applied to the valve body 22 so that the electromagnetic attractive force according to this current value and the biasing force of the coil spring 23 are finally balanced.
  • the flow rate through the gate-out valve 3 is adjusted.
  • the target differential pressure is realized.
  • this is referred to as balance control of the gate-out valve 3.
  • the solenoid-in valve 6 is open and the solenoid-out valve 15 is closed, the amount of increase in the wheel cylinder fluid pressure by the pump P is the amount of fluid discharged from the pump P and the gate-out valve 3 to the master cylinder M / C.
  • the upstream / downstream differential pressure of the gate-out valve 3 corresponds to the wheel cylinder hydraulic pressure. For this reason, if the number of revolutions of the motor M (pump discharge fluid amount) is controlled and the solenoid 21 of the gate-out valve 3 is energized to control the electromagnetic force so that the differential pressure becomes a desired value, the gate The opening degree of the out valve 3 (the amount of leaked liquid) is automatically adjusted, and the wheel cylinder hydraulic pressure can be arbitrarily adjusted.
  • the brake control unit BCU generates the target hydraulic pressure of the wheel cylinder W / C based on signals from the master cylinder hydraulic pressure sensor 4 and other in-vehicle sensors (wheel speed sensor, steering angle sensor, etc.). Each actuator of the hydraulic pressure control unit HU is driven so as to match the target hydraulic pressure.
  • the balance control described above is performed for the gate-out valve 3, but in the first embodiment, the purpose is to suppress the gate-out valve 3 from being excessively opened due to the differential pressure fluctuation accompanying the pump pulsation.
  • a target current addition process is performed in which a predetermined additional current value is periodically added to the target current value (predetermined current value) of the solenoid 21 to correct the target current value.
  • FIG. 4 is a flowchart showing the flow of the gate-out valve balance control process of the first embodiment, and each step will be described below.
  • step S1 the target fluid amount is calculated based on the target fluid pressure of the wheel cylinder W / C.
  • step S2 the pump discharge amount required to satisfy the target flow rate calculated in step S1 is calculated.
  • step S3 a target motor rotational speed for obtaining the necessary pump discharge amount calculated in step S2 is calculated.
  • the target motor rotational speed for obtaining the required pump discharge amount + Q ⁇ is set by adding the predetermined discharge amount Q ⁇ to the required pump discharge amount. It may be calculated.
  • step S4 the estimated motor rotation speed is obtained, and the estimated pump discharge amount is calculated from the estimated motor rotation speed.
  • step S5 the flow rate through the gate-out valve 3 (leak fluid amount to the master cylinder M / C) is calculated by subtracting the target fluid amount calculated in step S1 from the estimated pump discharge amount calculated in step S4.
  • step S6 the target current value of the gate-out valve 3 is calculated from the flow rate calculated in step S5 and the differential pressure (the target hydraulic pressure and the sensor value of the master cylinder hydraulic pressure sensor 4).
  • step S7 a target current addition process is performed in which a predetermined additional current value is periodically (intermittently) added to the target current value calculated in step S6 to correct the target current value.
  • the additional current value of the solenoid 21 that can reliably return the position of the valve body 22 to the control position (target position) even when the stroke amount of the gate-out valve 3 fluctuates due to pump pulsation.
  • the size is such that suction force can be obtained.
  • the period for adding the additional current value is set to the discharge period of the pump P, that is, the period (for example, the peak of the pump discharge amount) in accordance with the rotation period of the motor M.
  • step S8 the target current value is applied to the solenoid 21.
  • the suction force varies with the variation of the stroke, and the stroke may not return to the control position depending on the variation range of the suction force.
  • the suction force decreases as the valve lift amount increases. Therefore, if the suction force significantly decreases, the stroke may not return to the control position only by continuing to apply a constant current.
  • the suction force does not return, and the brake fluid on the wheel cylinder side moves from the gate-out valve to the master cylinder side as the stroke increases, so that the wheel cylinder fluid pressure exceeds the target fluid pressure. Will also be in a lowered state.
  • a target current addition process for periodically adding a predetermined additional current value to the target current value of the gate-out valve 3 is performed.
  • the suction force is periodically increased in order to forcibly return the valve body 22 to the position where control is desired.
  • the stroke of the valve element 22 can be forcibly returned to the position to be controlled, so that the state in which the gate-out valve 3 is excessively opened by the pump pulsation is maintained. It can avoid and it can suppress that foil cylinder liquid pressure falls rather than target liquid pressure.
  • the target current addition process of the first embodiment is also effective when the target current of the gate-out valve 3 changes.
  • the broken line in FIG. 7 is the wheel cylinder hydraulic pressure when the target current addition process of the first embodiment is not performed.
  • the target hydraulic pressure of the wheel cylinder increases or decreases, the above-described problem occurs when the target current value of the solenoid is small.
  • the wheel cylinder hydraulic pressure can be made to follow the target hydraulic pressure.
  • Example 1 a plunger pump is used as the pump P. Since the plunger pump has a structure in which the liquid is intermittently transported by the reciprocating motion of the plunger, the pump pulsation becomes larger than that of a gear pump or the like. Therefore, the effect when the target current addition process of the first embodiment is applied is remarkable.
  • Example 1 the following effects are exhibited.
  • a master cylinder hydraulic pressure sensor 4 that detects the operating state of the brake pedal BP operated by the driver, a master cylinder M / C that generates hydraulic pressure according to the operation of the brake pedal BP, and each wheel Driven by the first hydraulic circuit (pipe line 1, pipe line 2) that connects the wheel cylinder W / C and the detection result of the master cylinder hydraulic pressure sensor 4, and the pressure is adjusted from the master cylinder M / C during driving.
  • the brake fluid sucked in through the check valve 16 that restricts the flow of brake fluid into the reservoir 13 and the pressure regulating reservoir 13 is discharged, and the wheel cylinder hydraulic pressure can be generated by the discharged brake fluid.
  • the pressure difference between the pump P generating pressure and the upstream side connected to the wheel cylinder side of the first hydraulic circuit and the downstream side connected to the master cylinder side can be adjusted, and is discharged from the pump P.
  • Blur The valve body 22 is arranged so that the pressure of the liquid works in the valve opening direction, and the solenoid 21 drives the valve body 22 in the valve closing direction so as to adjust the differential pressure when the target current value is energized.
  • the brake control unit BCU is provided with a gate-out valve 3 and a brake control unit BCU for controlling the energization amount to the solenoid 21.
  • the brake control unit BCU has a target current value and a current value larger than the target current value (target current value + additional current value) Energize alternately.
  • Pump P is a plunger pump. Thereby, excessive valve opening of the gate-out valve 3 due to pump pulsation can be suppressed while employing a plunger pump with large pump pulsation.
  • the period in which a current value larger than the target current value is energized is a period that matches the discharge period of the pump P. Thereby, since a large current value is supplied in accordance with the cycle in which the pump pulsation occurs, excessive opening of the gate-out valve 3 due to the pump pulsation can be suppressed.
  • the current value larger than the target current value is the current value obtained by adding the additional current value to the target current value, and even if the stroke amount of the solenoid 21 fluctuates due to pump pulsation, the additional current value This is a size that can obtain the attractive force of the solenoid 21 that can return the position of the body 22 to the target position. Thereby, excessive opening of the gate-out valve 3 can be suppressed.
  • a master cylinder hydraulic pressure sensor 4 that detects the operating state of the brake pedal BP operated by the driver, a master cylinder M / C that generates hydraulic pressure according to the operation of the brake pedal 4, and each wheel.
  • the first hydraulic circuit (pipe line 1, pipe line 2) that connects the wheel cylinder W / C and the detection result of the master cylinder hydraulic pressure sensor 4, and the pressure is adjusted from the master cylinder M / C during driving.
  • the brake fluid sucked in through the check valve 16 that restricts the flow of brake fluid into the reservoir 13 and the pressure regulating reservoir 13 is discharged, and the wheel cylinder hydraulic pressure can be generated by the discharged brake fluid.
  • the pressure difference between the pump P generating pressure and the upstream side connected to the wheel cylinder side of the first hydraulic circuit and the downstream side connected to the master cylinder side can be adjusted, and is discharged from the pump P.
  • the valve body 22 is arranged so that the pressure of the vacuum fluid acts in the valve opening direction, and the solenoid 21 that drives the valve body 22 in the valve closing direction so as to adjust the differential pressure when the target current value is energized.
  • a brake control unit BCU for intermittently energizing the energization amount of the solenoid 21 when the pump is driven with a target current value and a current value larger than the target current value.
  • a wheel cylinder hydraulic pressure sensor for detecting the wheel cylinder hydraulic pressure may be added, and the period for adding the current value to the target current value based on the sensor value of the wheel cylinder hydraulic pressure sensor may be determined.
  • a brake control device includes: a first hydraulic circuit that connects a master cylinder and a wheel cylinder disposed on each wheel; It is driven according to the detection result of the brake operation state detection unit, and at the time of driving, the brake fluid sucked is discharged from the master cylinder through a reservoir and a check valve that restricts the flow of brake fluid into the reservoir.
  • a pressure regulating valve comprising: a valve body arranged to act in a valve direction; and a solenoid that drives the valve body in a valve closing direction so as to adjust the differential pressure when a predetermined current value is applied;
  • a control unit for controlling an energization amount to the solenoid The control unit may alternately energize the predetermined current value and a current value larger than the predetermined current value.
  • the pump may be a plunger pump.
  • the control unit may alternately energize the predetermined current value and a current value larger than the predetermined current value while the pump is being driven.
  • the period in which a current value larger than the predetermined current value is energized may be a period that matches the discharge period of the pump.
  • the current value larger than the predetermined current value is a current value obtained by adding an additional current value to the predetermined current value, and the additional current value is a case where the stroke amount of the solenoid varies due to the pump pulsation.
  • the solenoid valve may have a size that can obtain the suction force of the solenoid that can return the position of the valve body to the target position.
  • a wheel cylinder hydraulic pressure sensor for detecting the hydraulic pressure of the wheel cylinder;
  • the control unit may determine a period for energizing a current value larger than the predetermined current value based on the detected hydraulic pressure of the wheel cylinder.
  • a brake operation state detection unit for detecting an operation state of the brake operation member;
  • the pump may be driven according to a detection result by the brake operation state detection unit.
  • the brake control device includes a brake operation state detection unit that detects an operation state of the brake operation member operated by the driver; A first hydraulic circuit that connects a master cylinder that generates a hydraulic pressure according to the operation of the brake operating member and a wheel cylinder disposed on each wheel; It is driven according to the detection result of the brake operation state detection unit, and at the time of driving, the brake fluid sucked is discharged from the master cylinder through a reservoir and a check valve that restricts the flow of brake fluid into the reservoir.
  • a pump for generating hydraulic pressure in the first hydraulic circuit so that the wheel cylinder hydraulic pressure can be generated by brake fluid The pressure difference between the upstream side connected to the wheel cylinder side of the first hydraulic circuit and the downstream side connected to the master cylinder side can be adjusted, and the pressure of the brake fluid discharged from the pump can be adjusted.
  • a pressure regulating valve comprising: a valve body arranged to act in the valve opening direction; and a solenoid that drives the valve body in the valve closing direction so as to adjust the differential pressure when a predetermined current value is applied; You may make it provide the control unit which energizes intermittently the energization amount with respect to the said solenoid to the said predetermined electric current value and the electric current value larger than the said predetermined electric current value at the time of the said pump drive.
  • the pump may be a plunger pump.
  • the control unit may intermittently energize the predetermined current value and a current value larger than the predetermined current value while the pump is being driven.
  • the period of intermittently energizing a current value larger than the predetermined current value may be a period that matches the discharge period of the pump.
  • the current value larger than the predetermined current value is a current value obtained by adding an additional current value to the predetermined current value, and the additional current value is a case where the stroke amount of the solenoid varies due to the pump pulsation.
  • the solenoid valve may have a size that can obtain the suction force of the solenoid that can return the position of the valve body to the target position.
  • a wheel cylinder hydraulic pressure sensor for detecting the hydraulic pressure of the wheel cylinder;
  • the control unit may determine a period in which a current value larger than the predetermined current value is applied based on the detected hydraulic pressure of the wheel cylinder.
  • the brake control device A brake operating member operated by a driver; A first hydraulic circuit that connects a master cylinder that generates a hydraulic pressure according to the operation of the brake operating member and a wheel cylinder disposed on each wheel; The brake fluid sucked from the master cylinder during driving and the brake fluid sucked through the check valve for restricting the flow of brake fluid to the reservoir are discharged, and the wheel cylinder hydraulic pressure can be generated by the discharged brake fluid.
  • a plunger pump that generates hydraulic pressure in the hydraulic circuit;
  • the differential pressure between the upstream side connected to the wheel cylinder side of the first hydraulic circuit and the downstream side connected to the master cylinder side can be adjusted, and the brake fluid pressure discharged from the plunger pump is
  • a pressure regulating valve provided with a valve body arranged to act in the valve opening direction and a solenoid for driving the valve body in the valve closing direction so as to adjust the differential pressure when a predetermined current value is applied. It is possible,
  • the control unit may energize a current value larger than the predetermined current value while the plunger pump is being driven.
  • the control unit may energize the predetermined current value and a current value larger than the predetermined current value while the plunger pump is driven.
  • the control unit may alternately energize the predetermined current value and a current value larger than the predetermined current value.
  • the control unit may energize a predetermined current value after energizing a current value larger than the predetermined current value.
  • the period of alternately energizing a current value larger than the predetermined current value may be a period in accordance with the discharge period of the pump.
  • the current value larger than the predetermined current value may be a current value obtained by adding an additional current value to the predetermined current value.
  • the solenoid valve may have a size that can obtain the suction force of the solenoid that can return the position of the valve body to the target position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Regulating Braking Force (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

 装置の大型化を抑制しつつ、ポンプ脈動による調圧弁の過度な開弁を抑制できるブレーキ制御装置を提供する。 ゲートアウトバルブ3のソレノイドに対し、目標とするホイルシリンダ液圧を得る所定の電流値と、この所定の電流値よりも大きな電流値を交互に通電する。

Description

ブレーキ制御装置
 本発明は、ブレーキ制御装置に関する。
 特許文献1には、ポンプ駆動による液圧制御時、マスタシリンダとホイルシリンダとを接続する回路上に配置された調圧弁の差圧を調整することで、ホイルシリンダの液圧を制御する技術が開示されている。
特開2011-105207号公報
 しかしながら、上記従来技術にあっては、調圧弁にポンプ脈動が作用することで調圧弁が過度に開弁し、ホイルシリンダ液圧が低下するという問題があった。一方、ポンプ脈動を吸収するダンパをポンプの吐出側に設けることが考えられるが、この場合、装置の大型化につながる。
  本発明の目的は、装置の大型化を抑制しつつ、ポンプ脈動による調圧弁の過度な開弁を抑制できるブレーキ制御装置を提供することにある。
 調圧弁のソレノイドに対し、目標とするホイルシリンダ液圧を得る所定の電流値と、この所定の電流値よりも大きな電流値を交互に通電する。
 よって、装置の大型化を抑制しつつ、ポンプ脈動による調圧弁の過度な開弁を抑制できる。
実施例1のブレーキ制御装置の回路構成図である。 実施例1のゲートアウトバルブ3の構成を示す模式図である。 実施例1のゲートアウトバルブ3の要部拡大図である。 実施例1のゲートアウトバルブ釣り合い制御処理の流れを示すフローチャートである。 バルブリフト量と吸引力との関係を示す図である。 実施例1の目標電流上乗せ処理を行わなかった場合のポンプ吐出量、ホイルシリンダ液圧、ゲートアウトバルブのストローク、ソレノイド吸引力およびソレノイド電流の動きを示すタイムチャートである。 実施例1の目標電流上乗せ処理の動作を示すタイムチャートである。 実施例1の目標電流上乗せ処理を行った場合のポンプ吐出量、ホイルシリンダ液圧、ゲートアウトバルブのストローク、ソレノイド吸引力およびソレノイド電流の動きを示すタイムチャートである。
 〔実施例1〕
  [回路構成]
  図1は、実施例1のブレーキ制御装置の回路構成図である。
  液圧制御ユニットHUは、車両の各車輪に付与する制動力を調整するもので、ブレーキコントロールユニット(コントロールユニット)BCUからの指令に基づき、左後輪のホイルシリンダW/C(RL)、右前輪のホイルシリンダW/C(FR)、左前輪のホイルシリンダW/C(FL)、右後輪のホイルシリンダW/C(RR)の各液圧を増減または保持する。
  液圧制御ユニットHUは、P系統とS系統との2系統からなる、X配管と呼ばれる配管構造を有している。X配管を採用することで、一方の配管系統が故障した場合であっても、他方の配管系統を用いて正常時の半分の制動力を発生させることができる。なお、図1に記載された各部位の符号の末尾に付けられたPはP系統、SはS系統を示し、RL,FR,FL,RRは右後輪、左前輪、左前輪、右後輪に対応することを示す。以下の説明では、P,S系統または各輪を区別しないとき、P,SまたはRL,FR,FL,RRの記載を省略する。
 実施例1の液圧制御ユニットHUは、クローズド油圧回路を用いている。ここで、「クローズド油圧回路」とは、ホイルシリンダW/Cへ供給されたブレーキ液を、マスタシリンダM/Cを介してリザーバタンクRSVへと戻す油圧回路をいう。ちなみに、クローズド油圧回路に対し、ホイルシリンダW/Cへ供給されたブレーキ液を、マスタシリンダM/Cを介すことなく直接リザーバタンクRSVへ戻すことが可能な油圧回路を、「オープン油圧回路」という。
  ブレーキペダル(ブレーキ操作部材)BPは、インプットロッドIRを介してマスタシリンダM/Cに接続されている。ブレーキペダルBPへ入力されたペダル踏力は、ブレーキブースタ(倍力装置)BBによって倍力される。マスタシリンダM/Cは、ブレーキブースタBBの出力に応じたブレーキ液圧を発生させる。
  S系統には、左後輪RLのホイルシリンダW/C(RL)、右前輪FRのホイルシリンダW/C(FR)が接続され、P系統には、左前輪FLのホイルシリンダW/C(FL)、右後輪RRのホイルシリンダW/C(RR)が接続されている。また、P系統、S系統には、ポンプPP,PSが設けられている。ポンプPP,PSは、1つのモータMにより駆動される。実施例1では、ポンプPP,PSをプランジャポンプとしている。
 マスタシリンダM/CとホイルシリンダW/Cは、管路1と管路2により接続される。管路2Sは、管路2RL,2FRに分岐し、管路2RLはホイルシリンダW/C(RL)と接続され、管路2FRはホイルシリンダW/C(FR)と接続される。管路2Pは、管路2FL,2RRに分岐し、管路2FLはホイルシリンダW/C(FL)と接続され、管路2RRはホイルシリンダW/C(RR)と接続される。
  管路1上には、常開型の比例制御弁であるゲートアウトバルブ(調圧弁)3が設けられている。P系統の管路1Pのゲートアウトバルブ3Pよりもマスタシリンダ側の位置には、マスタシリンダ液圧センサ(ブレーキ操作状態検出部)4が設けられている。管路1上には、ゲートアウトバルブ3と並列に管路4が設けられている。管路4上には、チェックバルブ5が設けられている。チェックバルブ5は、マスタシリンダM/CからホイルシリンダW/Cへ向かうブレーキ液の流れを許容し、反対方向の流れを禁止する。
  管路2上には、各ホイルシリンダW/Cに対応する常開型の比例制御弁であるソレノイドインバルブ6が設けられている。管路2上には、ソレノイドインバルブ6と並列に管路7が設けられている。管路7上には、チェックバルブ8が設けられている。チェックバルブ8は、ホイルシリンダW/CからマスタシリンダM/Cへ向かう方向へのブレーキ液の流れを許容し、反対方向の流れを禁止する。
 ポンプPの吐出側と管路2とは、管路9により接続される。管路9上には、吐出弁10が設けられている。吐出弁10は、ポンプPから管路2へ向かう方向へのブレーキ液の流れを許容し、反対方向の流れを禁止する。
  管路1のゲートアウトバルブ3よりもマスタシリンダ側の位置と、ポンプPの吸入側とは、管路11と管路12により接続される。管路11と管路12との間には、調圧リザーバ13が設けられている。
  管路2のソレノイドインバルブ6よりもホイルシリンダ側の位置と調圧リザーバ13とは管路14により接続される。管路14Sは管路14RL,14FRに分岐し、管路14Pは管路14FL,14RRに分岐し、対応するホイルシリンダW/Cと接続される。
  管路14上には、常閉型の電磁弁であるソレノイドアウトバルブ15が設けられている。
  調圧リザーバ13は、圧力感応型のチェックバルブ(チェック弁)16を備える。チェックバルブ16は、管路11内の圧力が所定圧を超える高圧となった場合、リザーバ内へのブレーキ液の流入を禁止することで、ポンプPの吸入側に高圧が印加されるのを防止する。なお、チェックバルブ16は、ポンプPが作動して管路12内の圧力が低くなった場合には、管路11内の圧力にかかわらず開弁し、リザーバ内へのブレーキ液の流入を許容する。
 [ゲートアウトバルブ]
  図2は、実施例1のゲートアウトバルブ3の構成を示す模式図である。
  ゲートアウトバルブ3は、電磁吸引力を発生するソレノイド21と、この電磁吸引力に応じて作動する弁体22と、弁体22を開弁方向(図2中上方)へ付勢するコイルスプリング23と、管路1上であってゲートアウトバルブ3よりもマスタシリンダ側の管路1aとホイルシリンダ側の管路1bとが接続されたバルブボディ24とから構成されている。弁体22が図2中下方に移動すると、弁体22の先端部がバルブボディ24に形成されたシート26に着座することで管路1aと管路1bとが閉弁状態となる。一方、弁体22が図2中上方に移動すると、弁体22の先端部がシート26から離脱することで管路1aと管路1bとが開弁状態となる。すなわち、弁体22の上下方向位置(バルブリフト量)に応じて管路1aと管路1bとの連通状態(差圧)が決定される。
  図3は、実施例1のゲートアウトバルブ3の要部拡大図である。
  弁体22には、図3中上方にゲートアウトバルブ3の上流側の圧力(マスタシリンダ液圧に相当)と下流側の圧力(ホイルシリンダ液圧に相当)との差圧に応じた力Faと、図3中下方にソレノイド21の電磁吸引力に応じた力Fbと、図3中上方にコイルスプリング23の付勢力による力Fcとが作用する。ソレノイド21に通電する電流を制御することで、上記差圧を所望の値に制御することができる。すなわち、弁体22の位置に応じてコイルスプリング23の付勢力は一意に決まる。このため、電流値を所定値に制御すれば、この電流値に応じた電磁吸引力とコイルスプリング23の付勢力とが最終的に釣り合うような上記差圧による力が弁体22に作用するようになるまで、弁体22がストロークしてゲートアウトバルブ3を流れる流量が調整される。これにより、目標とする差圧が実現される。以下、これをゲートアウトバルブ3の釣り合い制御と言う。例えば、ソレノイドインバルブ6が開でソレノイドアウトバルブ15が閉の場合は、ポンプPによるホイルシリンダ液圧の増圧量は、ポンプPの吐出液量とゲートアウトバルブ3からマスタシリンダM/Cへのリーク液量との差に応じて決定される。マスタシリンダ液圧がゼロのとき、ゲートアウトバルブ3の上下流の差圧はホイルシリンダ液圧に相当する。このため、モータMの回転数(ポンプ吐出液量)を制御すると共に、上記差圧が所望の値となるようにゲートアウトバルブ3のソレノイド21に通電してその電磁力を制御すれば、ゲートアウトバルブ3の開度(上記リーク液量)が自動的に調整され、ホイルシリンダ液圧を任意に調整できる。
 [ゲートアウトバルブ釣り合い制御]
  ブレーキコントロールユニットBCUは、マスタシリンダ液圧センサ4や他の車載センサ(車輪速センサ、操舵角センサ等)からの信号に基づいてホイルシリンダW/Cの目標液圧を生成し、ホイルシリンダ液圧が目標液圧と一致するように、液圧制御ユニットHUの各アクチュエータを駆動する。このとき、ゲートアウトバルブ3については、上述した釣り合い制御を行うが、実施例1では、ポンプ脈動に伴う差圧変動によりゲートアウトバルブ3が過度に開弁するのを抑制することを目的とし、釣り合い制御において、ソレノイド21の目標電流値(所定の電流値)に対し周期的に所定の上乗せ電流値を加算して目標電流値を補正する目標電流上乗せ処理を実施する。
  図4は、実施例1のゲートアウトバルブ釣り合い制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
  ステップS1では、ホイルシリンダW/Cの目標液圧に基づき目標液量を算出する。
  ステップS2では、ステップS1で算出した目標流量を満たすために必要なポンプ吐出量を算出する。
  ステップS3では、ステップS2で算出した必要ポンプ吐出量を得る目標モータ回転数を算出する。このとき、ポンプPの応答遅れ抑制やゲートアウトバルブ3の制御性向上を図るために、所定の吐出量Qαを必要ポンプ吐出量に加え、必要ポンプ吐出量+Qαを得る目標モータ回転数を算出しても良い。
  ステップS4では、推定モータ回転数を求め、推定モータ回転数から推定ポンプ吐出量を算出する。
  ステップS5では、ステップS4で算出した推定ポンプ吐出量からステップS1で算出した目標液量を減算してゲートアウトバルブ3の通過流量(マスタシリンダM/Cへのリーク液量)を算出する。
  ステップS6では、ステップS5で算出した通過流量と差圧(目標液圧とマスタシリンダ液圧センサ4のセンサ値)とからゲートアウトバルブ3の目標電流値を算出する。
  ステップS7では、ステップS6で算出した目標電流値に対し周期的(間欠的に)に所定の上乗せ電流値を加算して目標電流値を補正する目標電流上乗せ処理を行う。ここで、上乗せ電流値は、ポンプ脈動によりゲートアウトバルブ3のストローク量が変動した場合であっても、弁体22の位置を制御位置(目標位置)まで確実に復帰させることができるソレノイド21の吸引力が得られる大きさとする。また、上乗せ電流値を加算する周期は、ポンプPの吐出周期、すなわち、モータMの回転周期に合わせた周期(例えば、ポンプ吐出量のピーク)とする。
  ステップS8では、目標電流値をソレノイド21に印加する。
 次に、作用を説明する。
  [ホイルシリンダ液圧の低下抑制作用]
  ホイルシリンダの目標液圧、ポンプ回転数が一定の場合、目標液圧と平均ポンプ吐出量からゲートアウトバルブのソレノイドに対する目標電流は一定となる。このとき、実際は上述したようなポンプ吐出量の脈動が生じており、これに伴い、ゲートアウトバルブのホイルシリンダ側の圧力は変動する。このとき、実施例1のようにポンプ吐出圧が開弁方向に作用するよう配置された弁体を有するゲートアウトバルブでは、図3に示した差圧に応じた圧力Faが変動するため、一定電流の場合は、ゲートアウトバルブの釣り合いから、弁体が移動し、ストローク量が変動する。一定電流では、ストロークの変動に伴い吸引力が変動し、その吸引力の変動幅によっては、ストロークが制御位置に戻らない場合がある。図5に示すように、バルブリフト量が大きいほど吸引力は低下するため、吸引力が大幅に低下すると、一定電流を与え続けるだけではストロークが制御位置に戻らないことがある。このとき、図6のように、吸引力も戻らず、ストロークの増加に伴ってホイルシリンダ側のブレーキ液がゲートアウトバルブからマスタシリンダ側へと移動してしまい、ホイルシリンダ液圧が目標液圧よりも低下した状態となってしまう。
 これに対し、実施例1では、図7のタイムチャートに示すように、ゲートアウトバルブ3の目標電流値に対し周期的に所定の上乗せ電流値を加算する目標電流上乗せ処理を行う。つまり、弁体22を制御したい位置に強制的に戻すために吸引力を周期的に大きくする。これにより、図8に示すように、弁体22のストロークを制御したい位置へと強制的に戻すことができるため、ポンプ脈動によりゲートアウトバルブ3が過度に開弁した状態が継続されるのを回避でき、ホイルシリンダ液圧が目標液圧よりも低下するのを抑制できる。
  また、実施例1の目標電流上乗せ処理は、ゲートアウトバルブ3の目標電流が変化する場合にも有効である。図7の破線は、実施例1の目標電流上乗せ処理を行わなかった場合のホイルシリンダ液圧であり、ホイルシリンダの目標液圧が増減する際、ソレノイドの目標電流値が小さいときに上述した課題が発生しているのに対し、実施例1では、目標電流上乗せ処理により、ストロークが制御位置から乖離するのを抑制できるため、ホイルシリンダ液圧を目標液圧に追従させることが可能である。
  実施例1では、ポンプPとしてプランジャポンプを用いている。プランジャポンプはプランジャの往復運動により間欠的に液体を輸送する構造であるため、ギアポンプ等と比較してポンプ脈動が大きくなる。よって、実施例1の目標電流上乗せ処理を適用した場合の効果は顕著である。
 次に、効果を説明する。
  実施例1にあっては、以下に列挙する効果を奏する。
  (1) ドライバによって操作されるブレーキペダルBPの操作状態を検出するマスタシリンダ液圧センサ4と、ブレーキペダルBPの操作に応じた液圧を発生させるマスタシリンダM/Cと各車輪に配設されたホイルシリンダW/Cを接続する第1液圧回路(管路1、管路2)と、マスタシリンダ液圧センサ4の検出結果に応じて駆動され、駆動時にはマスタシリンダM/Cから調圧リザーバ13および調圧リザーバ13へのブレーキ液の流れ込みを制限するチェックバルブ16を介して吸入したブレーキ液を吐出し、吐出したブレーキ液によってホイルシリンダ液圧を発生可能に第1液圧回路に液圧を発生させるポンプPと、第1液圧回路のホイルシリンダ側に接続する上流側とマスタシリンダ側に接続する下流側との間の差圧を調節可能であって、ポンプPから吐出されたブレーキ液の圧力が開弁方向に作用するよう配置された弁体22と、目標電流値を通電したときに差圧を調整するよう弁体22を閉弁方向に駆動するソレノイド21とを備えたゲートアウトバルブ3と、ソレノイド21に対する通電量を制御するブレーキコントロールユニットBCUと、を備え、ブレーキコントロールユニットBCUは、目標電流値と目標電流値よりも大きな電流値(目標電流値+上乗せ電流値)を交互に通電する。
  これにより、ポンプ脈動に伴うゲートアウトバルブ3の過度な開弁を抑え、ホイルシリンダ液圧が目標液圧に対して低下するのを抑制できる。
  (2) ポンプPはプランジャポンプである。
  これにより、ポンプ脈動が大きなプランジャポンプを採用しながら、ポンプ脈動に伴うゲートアウトバルブ3の過度な開弁を抑制できる。
 (3) 目標電流値より大きな電流値を通電する周期は、ポンプPの吐出周期にあわせた周期である。
  これにより、ポンプ脈動の発生する周期に合わせて大きな電流値を通電するため、ポンプ脈動に伴うゲートアウトバルブ3の過度な開弁を抑制できる。
  (4) 目標電流値より大きな電流値は、目標電流値に上乗せ電流値を加えた電流値であって、上乗せ電流値はポンプ脈動によりソレノイド21のストローク量が変動した場合であっても、弁体22の位置を目標位置まで復帰させることができるソレノイド21の吸引力が得られる大きさである。
  これにより、ゲートアウトバルブ3の過度な開弁を抑制できる。
 (5)ドライバによって操作されるブレーキペダルBPの操作状態を検出するマスタシリンダ液圧センサ4と、ブレーキペダル4の操作に応じた液圧を発生させるマスタシリンダM/Cと各車輪に配設されたホイルシリンダW/Cを接続する第1液圧回路(管路1、管路2)と、マスタシリンダ液圧センサ4の検出結果に応じて駆動され、駆動時にはマスタシリンダM/Cから調圧リザーバ13および調圧リザーバ13へのブレーキ液の流れ込みを制限するチェックバルブ16を介して吸入したブレーキ液を吐出し、吐出したブレーキ液によってホイルシリンダ液圧を発生可能に第1液圧回路に液圧を発生させるポンプPと、第1液圧回路のホイルシリンダ側に接続する上流側とマスタシリンダ側に接続する下流側との間の差圧を調節可能であって、ポンプPから吐出されたブレーキ液の圧力が開弁方向に作用するよう配置された弁体22と、目標電流値を通電したときに差圧を調整するよう弁体22を閉弁方向に駆動するソレノイド21とを備えたゲートアウトバルブ3と、ポンプ駆動時にソレノイド21に対する通電量を目標電流値と目標電流値よりも大きな電流値を間欠的に通電するブレーキコントロールユニットBCUと、を備えた。 これにより、ポンプ脈動に伴うゲートアウトバルブ3の過度な開弁を抑え、ホイルシリンダ液圧が目標液圧に対して低下するのを抑制できる。
 〔他の実施例〕
  以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  例えば、実施例では、プランジャポンプを用いた例を示したが、ギアポンプ等を用いた場合であってポンプ脈動は生じるため、本発明を適用することで、実施例と同様の作用効果を得ることができる。
  ホイルシリンダ液圧を検出するホイルシリンダ液圧センサを追加し、ホイルシリンダ液圧センサのセンサ値を基に目標電流値に対し上乗せ電流値を加算する周期を決定する構成としても良い。
 本願発明に係る実施例は下記のように構成してもよい。
(1)ブレーキ制御装置は、マスタシリンダと各車輪に配設されたホイルシリンダを接続する第1液圧回路と、
 前記ブレーキ操作状態検出部の検出結果に応じて駆動され、駆動時には前記マスタシリンダからリザーバおよび前記リザーバへのブレーキ液の流れ込みを制限するチェック弁を介して吸入したブレーキ液を吐出し、前記吐出したブレーキ液によって前記ホイルシリンダ液圧を発生可能に前記第1液圧回路に液圧を発生させるポンプと、
 前記第1液圧回路の前記ホイルシリンダ側に接続する上流側と前記マスタシリンダ側に接続する下流側との間の差圧を調節可能であって、前記ポンプから吐出されたブレーキ液圧力が開弁方向に作用するよう配置された弁体と、所定の電流値を通電したときに前記差圧を調整するよう前記弁体を閉弁方向に駆動するソレノイドとを備えた調圧弁と、
 前記ソレノイドに対する通電量を制御するコントロールユニットと、を備えることができ、
 前記コントロールユニットは、前記所定の電流値と前記所定の電流値よりも大きな電流値を交互に通電するようにしてもよい。
(2)(1)に記載のブレーキ制御装置において、
 前記ポンプはプランジャポンプとしてもよい。
(3)(2)に記載のブレーキ制御装置において、
 前記コントロールユニットは、前記ポンプの駆動中は前記所定の電流値と前記所定の電流値よりも大きな電流値を交互に通電するようにしてもよい。
(4)(3)に記載のブレーキ制御装置において、
 前記所定の電流値より大きな電流値を通電する周期は、前記ポンプの吐出周期にあわせた周期としてもよい。
(5)(2)に記載のブレーキ制御装置において、
 前記所定の電流値よりも大きな電流値は、前記所定の電流値に上乗せ電流値を加えた電流値であって、前記上乗せ電流値は前記ポンプ脈動により前記ソレノイドのストローク量が変動した場合であっても、前記弁体の位置を目標位置まで復帰させることができるソレノイドの吸引力が得られる大きさとしてもよい。
(6)(2)に記載のブレーキ制御装置において、
 前記ホイルシリンダの液圧を検出するホイルシリンダ液圧センサを備え、
 前記コントロールユニットは、前記所定の電流値より大きな電流値を通電する周期を前記検出されたホイルシリンダの液圧を基に決定してもよい。
(7)(1)に記載のブレーキ制御装置において、
 前記ブレーキ操作部材の操作状態を検出するブレーキ操作状態検出部を備え、
 前記ポンプは前記ブレーキ操作状態検出部による検出結果に応じて駆動されるようにしてもよい。
(8)ブレーキ制御装置は、ドライバによって操作されるブレーキ操作部材の操作状態を検出するブレーキ操作状態検出部と、
 前記ブレーキ操作部材の操作に応じた液圧を発生させるマスタシリンダと各車輪に配設されたホイルシリンダを接続する第1液圧回路と、
 前記ブレーキ操作状態検出部の検出結果に応じて駆動され、駆動時には前記マスタシリンダからリザーバおよび前記リザーバへのブレーキ液の流れ込みを制限するチェック弁を介して吸入したブレーキ液を吐出し、前記吐出したブレーキ液によって前記ホイルシリンダ液圧を発生可能に前記第1液圧回路に液圧を発生させるポンプと、
 前記第1液圧回路の前記ホイルシリンダ側に接続する上流側と前記マスタシリンダ側に接続する下流側との間の差圧を調節可能であって、前記ポンプから吐出されたブレーキ液の圧力が開弁方向に作用するよう配置された弁体と、所定の電流値を通電したときに前記差圧を調整するよう前記弁体を閉弁方向に駆動するソレノイドとを備えた調圧弁と、
 前記ポンプ駆動時に前記ソレノイドに対する通電量を前記所定の電流値と前記所定の電流値よりも大きな電流値を間欠的に通電するコントロールユニットと、を備えるようにしてもよい。
(9)(8)に記載のブレーキ制御装置において、
 前記ポンプはプランジャポンプとしてもよい。
(10)(9)に記載のブレーキ制御装置において、
 前記コントロールユニットは、前記ポンプの駆動中は前記所定の電流値と前記所定の電流値よりも大きな電流値を間欠的に通電するようにしてもよい。
(11)(9)に記載のブレーキ制御装置において、
 前記所定の電流値より大きな電流値を間欠的に通電する周期は、前記ポンプの吐出周期にあわせた周期としてもよい。
(12)(9)に記載のブレーキ制御装置において、
 前記所定の電流値よりも大きな電流値は、前記所定の電流値に上乗せ電流値を加えた電流値であって、前記上乗せ電流値は前記ポンプ脈動により前記ソレノイドのストローク量が変動した場合であっても、前記弁体の位置を目標位置まで復帰させることができるソレノイドの吸引力が得られる大きさとしてもよい。
(13)(9)に記載のブレーキ制御装置において、
 前記ホイルシリンダの液圧を検出するホイルシリンダ液圧センサを備え、
 前記コントロールユニットは、前記所定の電流値より大きな電流値を通電する周期を前記検出されたホイルシリンダの液圧を基に決定するようにしてもよい。
(14)ブレーキ制御装置は、
 ドライバによって操作されるブレーキ操作部材と、
 前記ブレーキ操作部材の操作に応じた液圧を発生させるマスタシリンダと各車輪に配設されたホイルシリンダを接続する第1液圧回路と、
 駆動時に前記マスタシリンダからリザーバおよび前記リザーバへのブレーキ液の流れ込みを制限するチェック弁を介して吸入したブレーキ液を吐出し、前記吐出したブレーキ液によって前記ホイルシリンダ液圧を発生可能に前記第1液圧回路に液圧を発生させるプランジャポンプと、
 前記第1液圧回路の前記ホイルシリンダ側に接続する上流側と前記マスタシリンダ側に接続する下流側との間の差圧を調節可能であって、前記プランジャポンプから吐出されたブレーキ液圧力が開弁方向に作用するよう配置された弁体と、所定の電流値を通電したときに前記差圧を調整するよう前記弁体を閉弁方向に駆動するソレノイドとを備えた調圧弁とを備えることができ、
 前記コントロールユニットは、前記プランジャポンプの駆動中は前記所定の電流値よりも大きな電流値を通電するようにしてもよい。
(15)(14)に記載のブレーキ制御装置において、
 前記コントロールユニットは、前記プランジャポンプの駆動中は前記所定の電流値と前記所定の電流値より大きな電流値を通電するようにしてもよい。
(16)(15)に記載のブレーキ制御装置において、
 前記コントロールユニットは、前記所定の電流値と前記所定の電流値より大きな電流値を交互に通電するようにしてもよい。
(17)(16)に記載のブレーキ制御装置において、
 前記コントロールユニットは、前記所定の電流値より大きな電流値を通電後に所定の電流値を通電するようにしてもよい。
(18)(16)に記載のブレーキ制御装置において、
 前記所定の電流値より大きな電流値を交互に通電する周期は、前記ポンプの吐出周期にあわせた周期としてもよい。
(19)(14)に記載のブレーキ制御装置において、
 前記所定の電流値よりも大きな電流値は、前記所定の電流値に上乗せ電流値を加えた電流値としてもよく、前記上乗せ電流値は前記ポンプ脈動により前記ソレノイドのストローク量が変動した場合であっても、前記弁体の位置を目標位置まで復帰させることができるソレノイドの吸引力が得られる大きさとしてもよい。
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。
 本願は、2013年9月19日付出願の日本国特許出願第2013-194383号に基づく優先権を主張する。2013年9月19日付出願の日本国特許出願第2013-194383号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1   管路(第1液圧回路)2   管路(第1液圧回路)3   ゲートアウトバルブ(調圧弁)4   マスタシリンダ液圧センサ(ブレーキ操作状態検出部)13  調圧リザーバ(リザーバ)16  チェックバルブ(チェック弁)21  ソレノイド22  弁体BCU ブレーキコントロールユニット(コントロールユニット)BP  ブレーキペダル(ブレーキ操作部材)M/C マスタシリンダP   ポンプW/C ホイルシリンダ

Claims (20)

  1.  マスタシリンダと各車輪に配設されたホイルシリンダを接続する第1液圧回路と、
     前記ブレーキ操作状態検出部の検出結果に応じて駆動され、駆動時には前記マスタシリンダからリザーバおよび前記リザーバへのブレーキ液の流れ込みを制限するチェック弁を介して吸入したブレーキ液を吐出し、前記吐出したブレーキ液によって前記ホイルシリンダ液圧を発生可能に前記第1液圧回路に液圧を発生させるポンプと、
     前記第1液圧回路の前記ホイルシリンダ側に接続する上流側と前記マスタシリンダ側に接続する下流側との間の差圧を調節可能であって、前記ポンプから吐出されたブレーキ液圧力が開弁方向に作用するよう配置された弁体と、所定の電流値を通電したときに前記差圧を調整するよう前記弁体を閉弁方向に駆動するソレノイドとを備えた調圧弁と、
     前記ソレノイドに対する通電量を制御するコントロールユニットと、を備え、
     前記コントロールユニットは、前記所定の電流値と前記所定の電流値よりも大きな電流値を交互に通電することを特徴とするブレーキ制御装置。
  2.  請求項1に記載のブレーキ制御装置において、
     前記ポンプはプランジャポンプであることを特徴とするブレーキ制御装置。
  3.  請求項2に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記ポンプの駆動中は前記所定の電流値と前記所定の電流値よりも大きな電流値を交互に通電することを特徴とするブレーキ制御装置。
  4.  請求項3に記載のブレーキ制御装置において、
     前記所定の電流値より大きな電流値を通電する周期は、前記ポンプの吐出周期にあわせた周期であることを特徴とするブレーキ制御装置。
  5.  請求項2に記載のブレーキ制御装置において、
     前記所定の電流値よりも大きな電流値は、前記所定の電流値に上乗せ電流値を加えた電流値であって、前記上乗せ電流値は前記ポンプ脈動により前記ソレノイドのストローク量が変動した場合であっても、前記弁体の位置を目標位置まで復帰させることができるソレノイドの吸引力が得られる大きさであることを特徴とするブレーキ制御装置。
  6.  請求項2に記載のブレーキ制御装置において、
     前記ホイルシリンダの液圧を検出するホイルシリンダ液圧センサを備え、
     前記コントロールユニットは、前記所定の電流値より大きな電流値を通電する周期を前記検出されたホイルシリンダの液圧を基に決定することを特徴とするブレーキ制御装置。
  7.  請求項1に記載のブレーキ制御装置において、
     前記ブレーキ操作部材の操作状態を検出するブレーキ操作状態検出部を備え、
     前記ポンプは前記ブレーキ操作状態検出部による検出結果に応じて駆動されることを特徴とするブレーキ制御装置。
  8.  ドライバによって操作されるブレーキ操作部材の操作状態を検出するブレーキ操作状態検出部と、
     前記ブレーキ操作部材の操作に応じた液圧を発生させるマスタシリンダと各車輪に配設されたホイルシリンダを接続する第1液圧回路と、
     前記ブレーキ操作状態検出部の検出結果に応じて駆動され、駆動時には前記マスタシリンダからリザーバおよび前記リザーバへのブレーキ液の流れ込みを制限するチェック弁を介して吸入したブレーキ液を吐出し、前記吐出したブレーキ液によって前記ホイルシリンダ液圧を発生可能に前記第1液圧回路に液圧を発生させるポンプと、
     前記第1液圧回路の前記ホイルシリンダ側に接続する上流側と前記マスタシリンダ側に接続する下流側との間の差圧を調節可能であって、前記ポンプから吐出されたブレーキ液の圧力が開弁方向に作用するよう配置された弁体と、所定の電流値を通電したときに前記差圧を調整するよう前記弁体を閉弁方向に駆動するソレノイドとを備えた調圧弁と、
     前記ポンプ駆動時に前記ソレノイドに対する通電量を前記所定の電流値と前記所定の電流値よりも大きな電流値を間欠的に通電するコントロールユニットと、を備えたことを特徴とするブレーキ制御装置。
  9.  請求項8に記載のブレーキ制御装置において、
     前記ポンプはプランジャポンプであることを特徴とするブレーキ制御装置。
  10.  請求項9に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記ポンプの駆動中は前記所定の電流値と前記所定の電流値よりも大きな電流値を間欠的に通電することを特徴とするブレーキ制御装置。
  11.  請求項9に記載のブレーキ制御装置において、
     前記所定の電流値より大きな電流値を間欠的に通電する周期は、前記ポンプの吐出周期にあわせた周期であることを特徴とするブレーキ制御装置。
  12.  請求項9に記載のブレーキ制御装置において、
     前記所定の電流値よりも大きな電流値は、前記所定の電流値に上乗せ電流値を加えた電流値であって、前記上乗せ電流値は前記ポンプ脈動により前記ソレノイドのストローク量が変動した場合であっても、前記弁体の位置を目標位置まで復帰させることができるソレノイドの吸引力が得られる大きさであることを特徴とするブレーキ制御装置。
  13.  請求項9に記載のブレーキ制御装置において、
     前記ホイルシリンダの液圧を検出するホイルシリンダ液圧センサを備え、
     前記コントロールユニットは、前記所定の電流値より大きな電流値を通電する周期を前記検出されたホイルシリンダの液圧を基に決定することを特徴とするブレーキ制御装置。
  14.  ドライバによって操作されるブレーキ操作部材と、
     前記ブレーキ操作部材の操作に応じた液圧を発生させるマスタシリンダと各車輪に配設されたホイルシリンダを接続する第1液圧回路と、
     駆動時に前記マスタシリンダからリザーバおよび前記リザーバへのブレーキ液の流れ込みを制限するチェック弁を介して吸入したブレーキ液を吐出し、前記吐出したブレーキ液によって前記ホイルシリンダ液圧を発生可能に前記第1液圧回路に液圧を発生させるプランジャポンプと、
     前記第1液圧回路の前記ホイルシリンダ側に接続する上流側と前記マスタシリンダ側に接続する下流側との間の差圧を調節可能であって、前記プランジャポンプから吐出されたブレーキ液圧力が開弁方向に作用するよう配置された弁体と、所定の電流値を通電したときに前記差圧を調整するよう前記弁体を閉弁方向に駆動するソレノイドとを備えた調圧弁と、
     前記コントロールユニットは、前記プランジャポンプの駆動中は前記所定の電流値よりも大きな電流値を通電することを特徴とするブレーキ制御装置。
  15.  請求項14に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記プランジャポンプの駆動中は前記所定の電流値と前記所定の電流値より大きな電流値を通電することを特徴とするブレーキ制御装置。
  16.  請求項15に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記所定の電流値と前記所定の電流値より大きな電流値を交互に通電することを特徴とするブレーキ装置。
  17.  請求項16に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記所定の電流値より大きな電流値を通電後に所定の電流値を通電することを特徴とするブレーキ制御装置。
  18.  請求項16に記載のブレーキ制御装置において、
     前記所定の電流値より大きな電流値を交互に通電する周期は、前記ポンプの吐出周期にあわせた周期であることを特徴とするブレーキ制御装置。
  19.  請求項14に記載のブレーキ制御装置において、
     前記所定の電流値よりも大きな電流値は、前記所定の電流値に上乗せ電流値を加えた電流値であって、前記上乗せ電流値は前記ポンプ脈動により前記ソレノイドのストローク量が変動した場合であっても、前記弁体の位置を目標位置まで復帰させることができるソレノイドの吸引力が得られる大きさであることを特徴とするブレーキ制御装置。
  20.  ブレーキ制御装置であって、
     ポンプから吐出されたブレーキ液圧力が開弁方向に作用するよう配置された弁体と、
     所定の電流値を通電したときに前記弁体を閉弁方向に駆動するソレノイドと、
     前記ソレノイドを制御するコントロールユニットと、を備え、
     前記コントロールユニットは、前記所定の電流値と前記所定の電流値よりも大きな電流値を交互に前記ソレノイドに通電できることを特徴とするブレーキ制御装置。
PCT/JP2014/072774 2013-09-19 2014-08-29 ブレーキ制御装置 WO2015041024A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/021,142 US20160221558A1 (en) 2013-09-19 2014-08-29 Brake control apparatus
KR1020167003196A KR20160030255A (ko) 2013-09-19 2014-08-29 브레이크 제어 장치
DE112014004328.1T DE112014004328T5 (de) 2013-09-19 2014-08-29 Bremssteuervorrichtung
CN201480046391.9A CN105473397A (zh) 2013-09-19 2014-08-29 制动控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013194383A JP6069149B2 (ja) 2013-09-19 2013-09-19 ブレーキ制御装置
JP2013-194383 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015041024A1 true WO2015041024A1 (ja) 2015-03-26

Family

ID=52688679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072774 WO2015041024A1 (ja) 2013-09-19 2014-08-29 ブレーキ制御装置

Country Status (6)

Country Link
US (1) US20160221558A1 (ja)
JP (1) JP6069149B2 (ja)
KR (1) KR20160030255A (ja)
CN (1) CN105473397A (ja)
DE (1) DE112014004328T5 (ja)
WO (1) WO2015041024A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10152046B2 (en) 2016-11-29 2018-12-11 Industrial Technology Research Institute Automatic machining force optimizing system and method for NC program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077735A (ja) * 2014-02-27 2017-04-27 日立オートモティブシステムズ株式会社 ブレーキ制御装置
DE102016200864A1 (de) * 2016-01-22 2017-07-27 Robert Bosch Gmbh Steuervorrichtung und Verfahren zum Ansteuern mindestens eines stromlos-geschlossenen Ventils eines Bremssystems eines Fahrzeugs
DE102018212284A1 (de) 2018-07-24 2020-01-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Bremssystems sowie Bremssystem
JP7247506B2 (ja) * 2018-09-28 2023-03-29 株式会社アドヴィックス 制動制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278764A (ja) * 1997-04-07 1998-10-20 Toyota Motor Corp 液圧制御装置
JP2005035466A (ja) * 2003-07-18 2005-02-10 Toyota Motor Corp 液圧制御装置および液圧制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183366A1 (en) * 2003-03-19 2004-09-23 Masahiko Kamiya Vehicle brake system for reducing brake noise
JP4949934B2 (ja) * 2007-06-04 2012-06-13 本田技研工業株式会社 車両用ブレーキ液圧制御装置
DE102007032949B4 (de) * 2007-07-14 2019-04-25 Continental Teves Ag & Co. Ohg Verfahren zur Bestimmung der Förderleistung oder der Betätigungshäufigkeit einer Fluidpumpe, insbesondere in einem elektronischen Kraftfahrzeugbremssystem
JP4473898B2 (ja) * 2007-07-25 2010-06-02 日信工業株式会社 車両用ブレーキ液圧制御装置
JP5074877B2 (ja) * 2007-10-12 2012-11-14 日立オートモティブシステムズ株式会社 ブレーキ倍力制御装置
DE102008018818A1 (de) * 2008-04-15 2009-10-22 Continental Teves Ag & Co. Ohg Elektrisches Motoransteuerungsverfahren mit Lastmomentanpassung
JP4712833B2 (ja) * 2008-06-25 2011-06-29 日立オートモティブシステムズ株式会社 ブレーキ制御装置およびその制御方法
US9205819B2 (en) * 2010-01-28 2015-12-08 Continental Teves Ag & Co. Ohg Electronic control device for a braking system, suitable for a distance control system
JP5866817B2 (ja) * 2011-06-24 2016-02-24 株式会社アドヴィックス 車両用ブレーキ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278764A (ja) * 1997-04-07 1998-10-20 Toyota Motor Corp 液圧制御装置
JP2005035466A (ja) * 2003-07-18 2005-02-10 Toyota Motor Corp 液圧制御装置および液圧制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10152046B2 (en) 2016-11-29 2018-12-11 Industrial Technology Research Institute Automatic machining force optimizing system and method for NC program

Also Published As

Publication number Publication date
JP6069149B2 (ja) 2017-02-01
CN105473397A (zh) 2016-04-06
US20160221558A1 (en) 2016-08-04
JP2015058833A (ja) 2015-03-30
DE112014004328T5 (de) 2016-07-21
KR20160030255A (ko) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2015041024A1 (ja) ブレーキ制御装置
JP5074877B2 (ja) ブレーキ倍力制御装置
JP5119646B2 (ja) 車両用ブレーキ制御装置
US8788172B2 (en) Method and device for controlling an electrohydraulic braking system for motor vehicles
US20150232076A1 (en) Brake Control Device
US9783170B2 (en) Vehicle control apparatus
WO2017068968A1 (ja) ブレーキ制御装置
KR20180133793A (ko) 브레이크 시스템
JP4462038B2 (ja) ブレーキ液圧制御装置
JP2005519806A (ja) アクティブ式液圧ブレーキ倍力装置を備えた車両ブレーキ装置
US20180345925A1 (en) Hydraulic pressure control device
US9868429B2 (en) Vehicle-use brake apparatus
US20180201244A1 (en) Vehicle brake control device
JP5195344B2 (ja) 制動装置及び制動方法
JP5922557B2 (ja) ブレーキ制御装置
WO2014136627A1 (ja) ブレーキ制御装置
JP5821830B2 (ja) 制動力制御装置及び制御装置
JP2010070090A (ja) ブレーキ制御装置
JP4806228B2 (ja) 車両用ブレーキ液圧制御装置
JP2008260417A (ja) ブレーキ倍力制御装置
JP5977691B2 (ja) ブレーキ制御装置
WO2017158878A1 (ja) ブレーキ装置およびブレーキ制御方法
JP5472646B2 (ja) 制動力制御装置
WO2015129852A1 (ja) ブレーキ制御装置
WO2016039196A1 (ja) ブレーキ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046391.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167003196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15021142

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014004328

Country of ref document: DE

Ref document number: 1120140043281

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845957

Country of ref document: EP

Kind code of ref document: A1