WO2015037858A1 - 스캔형 반응기를 가지는 원자층 증착 장치 및 방법 - Google Patents

스캔형 반응기를 가지는 원자층 증착 장치 및 방법 Download PDF

Info

Publication number
WO2015037858A1
WO2015037858A1 PCT/KR2014/008196 KR2014008196W WO2015037858A1 WO 2015037858 A1 WO2015037858 A1 WO 2015037858A1 KR 2014008196 W KR2014008196 W KR 2014008196W WO 2015037858 A1 WO2015037858 A1 WO 2015037858A1
Authority
WO
WIPO (PCT)
Prior art keywords
process chamber
reactor
scan
substrate
precursor
Prior art date
Application number
PCT/KR2014/008196
Other languages
English (en)
French (fr)
Inventor
이춘수
정홍기
Original Assignee
코닉이앤씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닉이앤씨 주식회사 filed Critical 코닉이앤씨 주식회사
Priority to CN201480056689.8A priority Critical patent/CN105849309A/zh
Priority to JP2016515435A priority patent/JP2016536451A/ja
Priority to US15/022,457 priority patent/US20160251759A1/en
Publication of WO2015037858A1 publication Critical patent/WO2015037858A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32899Multiple chambers, e.g. cluster tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the present invention relates to a vapor deposition reactor and a method for forming a thin film using the same, and in particular, in an atomic layer deposition (ALD), a unit process chamber for an atomic layer deposition process capable of separating and combining upper and lower layers is laminated.
  • ALD atomic layer deposition
  • each unit process chamber is provided with a scan-type reactor for reacting the reaction precursor with the raw material precursor while moving on the substrate where the raw material precursor is adsorbed, thereby essentially eliminating the coexistence area of the raw material precursor and the reaction precursor, Scan-type reactor that enables the provision of optimized atomic layer thin film as well as the improvement of thin film quality and productivity through the need for additional film removal process without extra substrate deposition prevention, maintenance cycle extension, and particle generation suppression
  • the present invention relates to an atomic layer deposition apparatus and method having a scan-type reactor.
  • a method of depositing a thin film having a predetermined thickness on a substrate such as a semiconductor substrate or glass includes physical vapor deposition (PVD) using physical collision, such as sputtering, and chemical reaction using a chemical reaction.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • This atomic layer deposition method is similar to the general chemical vapor deposition method in that it uses a chemical reaction between gas molecules. However, unlike conventional CVD in which a plurality of gas molecules are simultaneously injected into a process chamber to deposit a reaction product generated on a substrate, an atomic layer deposition method is heated by injecting a gas containing one source material into the process chamber. The difference is that the product by chemical reaction between the source materials is deposited on the substrate surface by adsorbing onto the substrate and then injecting a gas containing another source material into the process chamber.
  • the atomic layer deposition method described above is a thin film encapsulation of an AMOLED display, a barrier film of a flexible substrate, a solar buffer layer, and a high-k dielectric material for a high-k capacitor for semiconductors. Or aluminum (Al), copper (Cu) wiring diffusion barrier (TiN, TaN, etc.).
  • a single-sheet, batch-type, and scan-type small reactor which has been used in plasma enhanced chemical vapor deposition (PECVD), is transported on a substrate or vice versa.
  • PECVD plasma enhanced chemical vapor deposition
  • the single sheet method is a process proceeds after the input of one substrate, the moving susceptor for the import / export and heating of the substrate, the diffuser (mainstream showerhead type) for the process gas input and exhaust.
  • the chamber is very thick to prevent deformation of the process chamber and the periphery according to the external atmospheric pressure during vacuum formation. Since there is an enormous increase in productivity, there is a problem in that the productivity is significantly reduced due to the rapid increase in the consumption of the raw material precursor and the reaction precursor, the increase in the maintenance cost, and the increase in the process time due to the increase in the adsorption-purge-reaction-purge time.
  • the batch-type method of simultaneously processing a plurality of substrates is applied to a plurality of substrates in order to solve the increase in maintenance cost and low productivity due to the large volume of the precursor precursor and the reaction precursor due to the large volume of the conventional atomic layer deposition equipment.
  • the process is carried out simultaneously.
  • this batch type is partially applied to the solar cell process, there is a problem of simultaneous film formation on the back surface as well as the front surface of the substrate, uniformity and reproducibility of the thin film on multiple substrates. There is a problem that must be done.
  • the scan-type small reactor method is a method in which a plurality of small reactors corresponding to the length of one side of the substrate in the vacuum chamber is disposed so that the substrate or the small reactor is reciprocated to form a film. It is difficult to control the perfect gas flow of a small reactor, and it is difficult to realize a clear separation between the precursor precursor and the reactant precursor, which causes particle issues.
  • a plurality of unit process chambers for the atomic layer deposition process capable of separating and combining the upper and lower portions are arranged in a stacked form, and the raw material precursor is adsorbed on each unit process chamber.
  • a scanning reactor that reacts the reactant precursor with the raw material precursor while moving to eliminate the coexistence area of the raw material precursor and the reactant precursor, thereby eliminating the need for additional film removal process due to the prevention of film formation outside the substrate, maintenance period extension, and particle generation suppression.
  • the present invention provides an atomic layer deposition apparatus and method having a scan type reactor capable of improving thin film quality and productivity and providing optimized atomic layer thin films.
  • the present invention described above is an atomic layer deposition apparatus having a scanning reactor, which comprises a process chamber composed of an upper process chamber and a lower process chamber which are separated or combined with each other, and stands by at a predetermined position outside the process chamber, When the process chamber and the lower process chamber is separated from the scan type reactor for injecting the reaction precursor to the substrate area mounted in the upper process chamber or lower process chamber while moving in a horizontal direction from a predetermined height on the substrate of the lower process chamber; And a vacuum chamber which supports the process chamber and maintains the space in which the process chamber is located in a vacuum state.
  • the present invention is a stacked atomic layer deposition apparatus having a scanning reactor, at least two or more process chambers composed of an upper process chamber and a lower process chamber separated or coupled to each other, and at a predetermined position outside of each process chamber
  • the reaction precursor is injected into the substrate region mounted in the upper process chamber or the lower process chamber while moving in a horizontal direction at a predetermined height on the substrate of the lower process chamber.
  • a vacuum reactor for supporting the process chamber in a stacked form in a vertical direction and maintaining a space in which the process chamber is stacked in a vacuum state.
  • the scan reactor may include a gas supply unit for injecting the reaction precursor in the center or side of the upper surface or the lower surface, and has a predetermined distance from the gas supply unit, and the substrate region of the injected reaction precursor. It characterized in that it comprises a gas exhaust for exhausting the reaction precursor or reaction by-products or purge gas that did not react with the raw material precursor.
  • the scan reactor may further include a purge gas supply unit configured to discharge the purge gas to both sides or side circumferences of the upper surface or the lower surface.
  • the scan type reactor may inject a purge gas through the purge gas supply unit from the time when the reaction precursor is injected into the substrate area to form a gas barrier between the scan type reactor and the substrate by the purge gas. It is characterized by.
  • the purge gas supply unit characterized in that formed in the scan than the gas supply unit and the gas exhaust unit in the outer portion.
  • the scan type reactor characterized in that provided with an electrode for generating plasma on the top or bottom.
  • the scan reactor is characterized in that to generate a plasma in the upper or lower by supplying power to the electrode at the time when the reaction precursor is injected into the substrate region.
  • the scan reactor is provided in each process chamber is driven independently, or is connected by a connecting means for connecting a plurality of scan reactors is characterized in that the drive simultaneously.
  • the scan reactor is characterized in that moved by the reactor transport means for moving the connecting means.
  • the reactor transfer means is characterized in that supported by the vacuum chamber.
  • the scan type reactor is characterized in that supported by the vacuum chamber.
  • the scan reactor characterized in that it comprises a heat treatment means or ultraviolet treatment means for cleaning or surface modification (treatment) for the substrate or a thin film of the substrate.
  • the present invention is an atomic layer evaporator having a scanning reactor, the process chamber consisting of an upper process chamber and a lower process chamber separated or coupled to each other, and waiting in a predetermined position outside of the process chamber, the upper process When the chamber and the lower process chamber is separated from the scan type reactor for reacting the inert reaction precursor introduced into the process chamber with the raw material precursor in the substrate area while moving in a horizontal direction at a predetermined height on the substrate of the lower process chamber; And a vacuum chamber that supports the process chamber and maintains the space in which the process chamber is located in a vacuum state or supplies and exhausts the inert reaction precursor.
  • the present invention is a stacked atomic layer deposition apparatus having a scanning reactor, at least two or more process chambers consisting of an upper process chamber and a lower process chamber separated or coupled to each other, and at a predetermined position outside of each process chamber
  • the inert reaction precursor introduced into the process chamber reacts with the raw material precursor in the substrate region while moving in a horizontal direction at a predetermined height on the substrate of the lower process chamber.
  • a vacuum reactor for supporting the process chamber in a stacked form in a vertical direction and maintaining a space in which the process chamber is stacked in a vacuum state or supplying and evacuating the inert reaction precursor.
  • the scan type reactor may selectively activate only the inert reaction precursor present in the substrate region among the inert reaction precursors using plasma in the substrate region mounted in the upper process chamber or the lower process chamber to react with the raw material precursor. It is characterized by.
  • the scan type reactor may irradiate ultraviolet rays or infrared rays to the substrate region mounted in the upper process chamber or the lower process chamber to selectively activate only the inert reaction precursor present in the substrate region among the inert reaction precursors. It is characterized by reacting with.
  • the scan type reactor characterized in that provided with an electrode for generating the plasma above or below.
  • the scan reactor may be configured to generate the plasma at the upper or lower part by supplying power to the electrode at the time of moving to the substrate.
  • the scan type reactor characterized in that provided with an ultraviolet irradiation device or an infrared irradiation device for the irradiation of the ultraviolet or infrared light on the top or bottom.
  • the scan type reactor is characterized in that to irradiate the ultraviolet or infrared radiation to the upper or lower by driving the ultraviolet or infrared irradiation device at the time to move to the substrate.
  • the inert reaction precursor may be a material that reacts with the raw material precursor by plasma, ultraviolet light, or infrared light.
  • the inert reaction precursor is characterized in that is filled while maintaining a constant pressure in the vacuum chamber.
  • the inert reaction precursor is diffused from the vacuum chamber into a space in which the upper process chamber and the lower process chamber are separated when the raw material precursor adsorption process on the substrate is completed and the upper process chamber and the lower process chamber are separated. It is characterized by the inflow.
  • the inert reaction precursor may be filled in the vacuum chamber when the substrate is loaded or unloaded into the process chamber so that the upper process chamber and the lower process chamber are combined.
  • the present invention is an atomic layer deposition method performed in an atomic layer deposition apparatus in which a process chamber is located in a vacuum chamber, wherein when a substrate and a mask are loaded in the process chamber, an upper process chamber and a lower process chamber of the process chamber are formed.
  • adsorbing the precursor precursor on the substrate by performing a partial process of atomic layer deposition in the sealed reaction space, and after the adsorption of the precursor precursor, Spraying a reaction precursor in the substrate region by using the reaction precursor; and reacting the reaction precursor sprayed in the substrate region with the raw material precursor.
  • the present invention is an atomic layer deposition method performed in a stacked atomic layer deposition apparatus in which at least two process chambers are stacked in a vacuum chamber, the upper process chamber of the process chamber when a substrate and a mask is loaded in the process chamber And a lower process chamber are combined to form a sealed reaction space, and adsorbing the raw material precursor onto the substrate by performing a part of atomic layer deposition in the closed reaction space, and after the adsorption of the raw material precursor. And spraying a reaction precursor in the substrate region using a scan reactor, and reacting the reaction precursor and the raw material precursor sprayed in the substrate region.
  • the spraying may include separating the upper process chamber and the lower process chamber after adsorption of the raw material precursor, and moving the scan-type reactor into a space between the upper process chamber and the lower process chamber. Spraying the reaction precursor in the region.
  • the spraying step spraying the reaction precursor from the substrate region mounted in the upper process chamber or the lower process chamber while moving the scan-type reactor in a horizontal direction at a predetermined height on the substrate of the lower process chamber.
  • a purge gas is injected to both side surfaces or side circumferences of the scan reactor at the time when the reaction precursor is injected through the scan reactor to purge between the scan reactor and the substrate. It is characterized by forming a gas barrier with gas.
  • the spraying step characterized in that for generating a plasma on the upper or lower portion of the scan-type reactor at the time of injecting the reaction precursor through the scan-type reactor.
  • an unreacted reaction between the scan type reactor and the substrate through an exhaust part formed at both sides or a side circumference of the scan type reactor at the time of spraying the reaction precursor through the scan type reactor. It is characterized in that the precursor or reaction by-product or purge gas is exhausted.
  • the scan type reactor is supported by the vacuum chamber, characterized in that the standby in the predetermined position outside of the process chamber.
  • the scan reactor is provided with one or more in each process chamber is driven independently, or is connected by a connecting means for connecting a plurality of scan reactor is characterized in that the drive simultaneously.
  • the present invention is an atomic layer deposition method performed in an atomic layer deposition apparatus in which a process chamber is located in a vacuum chamber, wherein when a substrate and a mask are loaded in the process chamber, an upper process chamber and a lower process chamber of the process chamber are combined.
  • Forming a sealed reaction space adsorbing a precursor precursor to the substrate region by performing a partial process of atomic layer deposition in the sealed reaction space, and using a scan reactor after adsorption of the precursor precursor Thereby reacting the inert reaction precursor introduced into the process chamber with the raw material precursor in the substrate region.
  • the present invention is an atomic layer deposition method performed in a stacked atomic layer deposition apparatus in which at least two process chambers are stacked in a vacuum chamber, the upper process chamber of the process chamber when a substrate and a mask is loaded in the process chamber And a lower process chamber are combined to form a sealed reaction space, and adsorbing the raw material precursor onto the substrate by performing a part of atomic layer deposition in the closed reaction space, and after the adsorption of the raw material precursor. And reacting the inert reaction precursor introduced into the process chamber with the raw material precursor in the substrate region by using a scan reactor.
  • the step of reacting after the adsorption of the raw material precursor, separating the upper process chamber and the lower process chamber, and moving the scan-type reactor on the substrate of the upper process chamber or lower process chamber and And activating the inert reaction precursor by using plasma, ultraviolet light, or infrared light in the scan type reactor to react with the raw material precursor in the substrate region.
  • the reacting step only the inert reaction precursor present in the substrate region of the inert reaction precursor introduced into the process chamber using the plasma, ultraviolet rays or infrared rays is selectively activated to react with the raw material precursor. do.
  • plasma is generated in the substrate region through the scan reactor at the time when the scan reactor is moved to the substrate to activate the inert reaction precursor.
  • the inert reaction precursor may be activated by irradiating ultraviolet or infrared rays to the substrate region through the scan reactor when the scan reactor is moved to the substrate.
  • the inert reaction precursor may be a material that reacts with the raw material precursor by plasma, ultraviolet light, or infrared light.
  • the inert reaction precursor is diffused from the vacuum chamber into a space in which the upper process chamber and the lower process chamber are separated when the raw material precursor adsorption process on the substrate is completed and the upper process chamber and the lower process chamber are separated. It is characterized by the inflow.
  • the inert reaction precursor may be filled in the vacuum chamber when the substrate is loaded or unloaded into the process chamber so that the upper process chamber and the lower process chamber are combined.
  • the scan type reactor is supported by the vacuum chamber, characterized in that the standby in the predetermined position outside of the process chamber.
  • a plurality of unit process chambers for the atomic layer deposition process capable of separating and combining the upper and lower portions are arranged in a stacked form, and each raw material precursor is adsorbed on the substrate for each unit process chamber.
  • FIG. 1 is a three-dimensional perspective view of an atomic layer deposition apparatus structure according to an embodiment of the present invention
  • FIGS. 2A and 2B are cross-sectional detailed structural diagrams of a process chamber according to an embodiment of the present invention.
  • 3a to 3c is a schematic configuration diagram of an atomic layer deposition process using a scan reactor as a cross-sectional structure of the process chamber according to an embodiment of the present invention
  • FIG. 4 is a schematic configuration diagram in which a plurality of scan type reactors are driven together through a connecting means according to an embodiment of the present invention
  • 5a to 5b is a schematic configuration diagram in which the process gas is injected from the scan reactor as a cross-sectional structure of the scan reactor and the process chamber according to an embodiment of the present invention
  • 5c to 5e is a schematic configuration diagram capable of plasma processing as a cross-sectional structure of the scan-type reactor and the process chamber according to an embodiment of the present invention
  • 5F to 5G are schematic cross-sectional structures of a scan reactor and a process chamber according to an embodiment of the present invention, in which process gas and purge gas are simultaneously sprayed from the bottom of the scan reactor;
  • 5H to 5I are cross-sectional structures of a scan reactor and a process chamber according to an embodiment of the present invention, in which a process gas and a purge gas are simultaneously injected from a lower portion of the scan reactor, and a schematic configuration capable of plasma processing;
  • FIG. 5J is a schematic structural diagram of a heat treatment process for a substrate as a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention
  • 6a to 6c is a schematic configuration diagram of an atomic layer deposition process using a scan reactor as a cross-sectional structure of the process chamber according to another embodiment of the present invention
  • FIGS. 7A to 7B are schematic configuration diagrams of an atomic layer thin film forming process using plasma in a scan reactor as a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention
  • FIGS. 7C to 7D are schematic diagrams of an atomic layer thin film forming process using ultraviolet rays or infrared rays in a scan type reactor as a cross-sectional structure of a scan type reactor and a process chamber according to an embodiment of the present invention.
  • FIG. 1 illustrates a three-dimensional perspective view of an atomic layer deposition apparatus structure according to an embodiment of the present invention, wherein the atomic layer deposition apparatus 1000 accommodates a plurality of process chambers 1200 and a plurality of process chambers 1200. Vacuum chamber 1100 and the like.
  • the plurality of process chambers 1200 are implemented to have independent spaces as chambers capable of performing an atomic layer deposition process on a substrate, and are stacked in a vertical direction and accommodated in an external vacuum chamber 1100. do.
  • the process chamber 1200 is moved up and down by the upper process chamber 1210 and the transfer unit provided in the vacuum chamber 1100 when the position is fixed to the vacuum chamber 1100 is coupled to the upper process chamber 1210 or It may be composed of a separate lower process chamber 1220.
  • the process chamber 1200 is configured to be separated or combined into the upper process chamber 1210 and the lower process chamber 1220 as described above to ensure only the space for the optimal atomic layer deposition process to ensure the volume of the atomic layer deposition apparatus It can be designed to minimize the.
  • the process chamber 1200 may enter and exit the vacuum chamber 1100 in conjunction with the guide portion 1204 installed on the upper or side surfaces of the vacuum chamber 1100, and may be introduced into a reference position in the vacuum chamber 1100. It is possible to fix by adjusting the guide portion 1204 in the state.
  • the vacuum chamber 1100 has a multi-stage support portion 1202 and a guide portion 1204 for loading a plurality of process chambers in a vertical direction therein, and maintains a vacuum state in each process chamber 1200. Allow atomic layer deposition processes to take place.
  • the vacuum chamber 1100 supports a plurality of process chambers 1200 in which the unit process chambers 1200 configured to be separated and coupled for the atomic layer deposition process are stacked and the substrates are carried in each process chamber. It is possible to carry out, and to minimize the influence of the external force applied to the inner process chamber 1200 from the environment where the external atmosphere and pressure difference exists.
  • FIGS. 2A and 2B show a detailed cross-sectional structure of a process chamber according to an embodiment of the present invention.
  • FIG. 2A illustrates a state in which the lower process chamber 1220 is moved downward to open the process chamber to load the substrate 1010 and the mask 1020 into the process chamber 1200.
  • the substrate 1010 and the mask 1020 are in the process chamber in a state in which the lower process chamber 1220 is moved up and down from the upper process chamber 1210 by the transfer unit 1110 and opened.
  • the substrate support 1015 and the mask support 1017 in the 1200 are sequentially loaded.
  • the upper process chamber 1210 of the process chamber 1200 is fixed to and supported by the vacuum chamber 1100, and the lower process chamber 1220 is supported by the conveying unit 1110 provided in the vacuum chamber 1100. 1100 may be moved upward and downward.
  • the lower process chamber 1220 is raised by the transfer unit 1110, and the substrate 1010 and As the mask 1020 is sequentially mounted in the lower process chamber 1220, the lower process chamber 1220 is finally coupled to the upper process chamber 1210 as shown in FIG. 2B.
  • the loading of the substrate 1010 and the mask 1020 may be performed separately for each process chamber 1200, or may be simultaneously performed in a state in which a plurality of process chambers 1200 in the vacuum chamber 1100 are opened. have.
  • FIG. 2B illustrates that the lower process chamber 1220 is moved upward and coupled with the upper process chamber 1210 in order to process the process while the substrate 1010 and the mask 1020 are loaded in the process chamber 1200. The state is shown.
  • the lower process chamber 1220 is raised by the transfer unit 1110 to lower the process chamber ( As the 1220 is coupled to the upper process chamber 1210, a sealed reaction space of the process chamber 1200 may be formed.
  • the substrate 1010 is introduced into the process gas supply unit 1212 as the process proceeds.
  • Atomic layer deposition process may be performed.
  • the lower process chamber 1220 is moved by the transfer unit 1110.
  • An unloading operation is performed in which the upper process chamber 1210 and the lower process chamber 1220 are separated by being lowered and carried out to the outside of the process chamber 1200 with respect to the substrate 1010 on which the process is completed in such an unloading state. You lose.
  • 3A to 3C illustrate cross-sectional structures of a process chamber according to an atomic layer deposition process using a scan reactor in a process chamber according to an embodiment of the present invention.
  • the substrate 1010 and the mask 1020 are opened in a state in which the lower process chamber 1220 is moved downward from the upper process chamber 1210 in the vertical direction by the transfer unit 1110. Is sequentially loaded into the substrate support 1015 and the mask support 1017 in the process chamber 1200.
  • the lower process chamber 1220 is raised by the transfer unit 1110 as shown in FIG. 3B, so that the lower process chamber 1220 is the upper process chamber ( 1210, and when the sealed reaction space capable of proceeding the atomic layer deposition process is formed according to the combination, the process gas required for the atomic layer deposition process is sequentially introduced into the gas supply unit 1212. Atomic layer deposition process may be performed.
  • the raw material precursor is adsorbed in a state in which the upper process chamber 1210 and the lower process chamber 1220 of the process chamber 1200 are combined. After the adsorption process of the raw material precursor is completed, the upper process chamber 1210 and the lower process chamber 1220 are separated, and then the reaction precursor reaction process is performed using the scan reactor 1600. do.
  • the raw material precursor is sprayed on the substrate 1010 and the raw material precursor on the substrate 1010 is sufficiently injected, the raw material precursor of the physical adsorption layer physically coupled to the substrate 1010 by supplying the purge gas to the gas supply unit 1212.
  • the single molecule layer of the raw material precursor can be obtained by separating from the substrate 1010.
  • the gas supply part 1212 is implemented on the side of the upper process chamber 1210 so that the raw material precursor is sprayed horizontally from the side of the substrate 1010.
  • the gas supply unit 1212 is formed as a shower head diffuser in the center of the upper process chamber 1210 so that the raw material precursor is the substrate 1010. It can also be implemented in the form of vertically sprayed).
  • the position of the lower process chamber 1220 may be a pre-calculated optimized position so that the scanning reactor 1600 may spray the reaction precursor while moving horizontally over the substrate 1010 of the lower process chamber 1220. Can be.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 1600 may move horizontally to the substrate 1010 of the lower process chamber 1220, thereby moving the scan reactor 1600.
  • a gas supply unit (not shown) formed at the bottom of the scan reactor 1600 while moving the scan reactor 1600 one-way or reciprocally in a horizontal direction over the substrate 1010 of the lower process chamber 1220.
  • the reaction precursor is injected to the substrate, the reaction precursor is injected from the scanning reactor 1600 is to perform a chemical reaction with the precursor precursor adsorbed on the substrate 1010 to form an atomic layer thin film.
  • the scan type reactor 1600 as described above may be independently driven by each process chamber 1200 by each driving means independent, as shown in Figure 4 connecting means such as a connection bar 1610
  • the plurality of scan reactors 1600 may be jointly connected to each other, and the plurality of scan reactors 1600 may be simultaneously driven through an integrated reactor transfer unit 1620 for controlling movement of the connecting unit 1610.
  • the operation of the scan type reactor in the atomic layer deposition apparatus in which a plurality of process chambers are stacked in the vacuum chamber has been described as an example, even when one process chamber exists in the vacuum chamber.
  • the atomic layer deposition process using a reactor can be equally applied.
  • FIG. 5A illustrates a schematic configuration in which a process gas including a reaction precursor as a cross-sectional structure of a scan reactor and a process chamber is injected from a scan reactor according to an embodiment of the present invention.
  • reaction precursors are supplied in a direction perpendicular to the substrate 1010 through a gas supply unit 1601 formed at a lower center of the scan reactor 1600, and both lower side surfaces of the scan reactor 1600.
  • the gas exhaust unit 1602 formed in the lateral periphery does not react with the raw material precursor, and exhausts the remaining reaction precursor on the substrate.
  • the lower process chamber 1220 is lowered by the transfer unit 1110. After the separation from the upper process chamber 1210, it is located in a predetermined position lower than the scan type reactor 1600 located on one side of the process chamber 1200.
  • the position of the lower process chamber 1220 may be a pre-calculated optimized position so that the scanning reactor 1600 may spray the reaction precursor while moving horizontally over the substrate 1010 of the lower process chamber 1220. Can be.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 1600 may move in the horizontal direction to the substrate 1010 of the lower process chamber 1220, thereby moving the scan reactor 1600.
  • the reaction precursor is sprayed while moving the scan reactor 1600 that is waiting at a predetermined position onto the substrate 1010 of the lower process chamber 1220 in which the precursor is adsorbed.
  • the gas supply unit which is implemented at the lower center of the scan reactor 1600 while moving the scan reactor 1600 at a predetermined moving speed onto the substrate 1010 in which the raw material precursor is adsorbed on the lower process substrate 1220.
  • the reaction precursor is uniformly sprayed onto the substrate 1010 through the 1601, and the reaction precursor sprayed from the scan reactor 1600 performs an atomic reaction by performing a chemical reaction with the raw material precursor adsorbed on the substrate 1010. A thin film will be formed.
  • the scan reactor 1600 may perform the injection of the reaction precursor as described above while moving one-way or reciprocating on the substrate 1010 of the lower process chamber 1220 in the horizontal direction.
  • the lower process chamber 1220 may be provided with a heater function to adjust the temperature of the substrate 1010 to perform the function of the susceptor.
  • the reaction precursor when the reaction precursor is injected through the scan reactor 1600, an atomic layer thin film is formed on the substrate 1010 through a chemical reaction between the raw material precursor and the reaction precursor.
  • the reaction precursor that fails to react with the raw material precursor may be exhausted through the gas exhaust 1602 formed on both side surfaces of the lower portion of the scan reactor 1600 as the scan reactor 1600 moves. Accordingly, the reaction precursor may be removed even without performing a separate purge process for removing the reaction precursor remaining on the substrate 1010 without reacting with the raw material precursor on the substrate 1010.
  • the reaction precursor is formed only on the substrate 1010 of the lower process chamber 1220, for example, in which the substrate 1010 is mounted only on the lower process chamber 1220.
  • the structure of spraying has been described, in the structure in which the substrate 1010 can be mounted in the upper process chamber 1210, the atomic layer thin film formation on the two substrates 1010 is simultaneously performed using the scan reactor 1600. It is also possible.
  • the upper process chamber 1210 is formed by forming the gas supply unit 1601 and the gas exhaust unit 1602 having the same structure injecting the reaction precursor on the upper and lower portions of the scan reactor 1600.
  • the atomic layer thin film may be simultaneously formed on the substrate 1010 and the substrate 1010 of the lower process chamber 1220.
  • FIG. 5C illustrates a schematic configuration in which a plasma process is possible as a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention.
  • the reaction precursor is supplied in a direction perpendicular to the substrate 1010 through the gas supply unit 1601 formed at the lower center of the scan reactor 1600, and both lower side surfaces of the scan reactor 1600.
  • the gas exhaust unit 1602 formed at the upper surface of the substrate 1010 does not react with the raw material precursor and exhausts the remaining reaction precursor on the substrate 1010.
  • 5C illustrates a structure in which an electrode 1604 for plasma formation is disposed below the scan reactor 1600 to use plasma in an atomic layer deposition process using the scan reactor 1600. have.
  • the lower process chamber 1220 is lowered by the transfer unit 1110. After the separation from the upper process chamber 1210, it is placed in a predetermined position lower than the scan type reactor 1600 located on one side of the process chamber 1220.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 1600 may move in the horizontal direction to the substrate 1010 of the lower process chamber 1220, thereby moving the scan reactor 1600.
  • the reaction precursor is sprayed while moving the scan reactor 1600 that is waiting at a predetermined position onto the substrate 1010 of the lower process chamber 1220 in which the precursor is adsorbed.
  • the gas supply unit which is implemented at the lower center of the scan reactor 1600 while moving the scan reactor 1600 at a predetermined moving speed onto the substrate 1010 in which the raw material precursor is adsorbed on the lower process substrate 1220.
  • the reaction precursor is uniformly sprayed onto the substrate 1010 through the 1601, and the reaction precursor sprayed from the scan reactor 1600 performs an atomic reaction by performing a chemical reaction with the raw material precursor adsorbed on the substrate 1010. A thin film will be formed.
  • the substrate is mounted only on the lower process chamber 1220, and the reaction precursor is sprayed only onto the substrate 1010 of the lower process chamber 1220.
  • the atomic layer thin film formation on the two substrates 1010 may be simultaneously performed using the scan reactor 1600. .
  • the gas supply unit 1601, the gas exhaust unit 1602, and the electrode 1604 for plasma generation have the same structure as spraying reaction precursors on the upper and lower portions of the scan reactor 1600.
  • the atomic layer thin film using plasma 1615 may be simultaneously formed on the substrate 1010 of the upper process chamber 1210 and the substrate 1010 of the lower process chamber 1220.
  • the gas supply unit 1601 is formed at the center, and the gas exhaust unit 1602 is formed at both sides, so that the reaction precursor is scanned.
  • the gas supply unit 1601 and the gas exhaust unit 1602 are formed to correspond to each side of the scan reactor 1600, respectively. It is also possible.
  • the reaction precursor is injected from the gas supply unit 1601 formed at the lower side of the scan reactor 1600, and the substrate 1010 does not react with the raw material precursor among the injected reaction precursors.
  • the remaining reaction precursor may be exhausted through the gas exhaust 1602 formed at the other lower side of the scan reactor 1600.
  • FIG. 5F illustrates a schematic configuration in which a process gas and a purge gas are simultaneously sprayed from the bottom of the scan reactor as a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention.
  • a reaction precursor is supplied in a vertical direction on a substrate through a gas supply unit 1601 formed at a lower center of the scan reactor 1600, and formed on both lower sides of the scan reactor 1600.
  • the gas exhaust unit 1602 does not react with the raw material precursor, and exhausts the remaining reaction precursor on the substrate 1010.
  • a purge gas supply unit 1603 is further formed on both outer sides or side circumferences of the gas exhaust unit 1602 to simultaneously spray the purge gas when the reaction precursor is sprayed.
  • the structure which forms the gas barrier which has an air curtain effect is shown.
  • the lower process chamber 1220 is lowered by the transfer unit 1110. After the separation from the upper process chamber 1210, it is located in a predetermined position lower than the scan type reactor 1600 located on one side of the process chamber 1200.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 1600 may move in the horizontal direction to the substrate 1010 of the lower process chamber 1220, thereby moving the scan reactor 1600.
  • the reaction precursor is sprayed while moving the scan reactor 1600 that is waiting at a predetermined position onto the substrate 1010 of the lower process chamber 1220 in which the precursor is adsorbed.
  • the gas supply unit which is implemented at the lower center of the scan reactor 1600 while moving the scan reactor 1600 at a predetermined moving speed onto the substrate 1010 in which the raw material precursor is adsorbed on the lower process substrate 1220.
  • the reaction precursor is uniformly sprayed onto the substrate 1010 through the 1601, and the reaction precursor sprayed from the scan reactor 1600 performs an atomic reaction by performing a chemical reaction with the raw material precursor adsorbed on the substrate 1010. A thin film will be formed.
  • the reaction precursor may not react with the raw material precursor in the substrate 1010 of the lower process chamber 1220, and the remaining reaction precursor may be separated from the substrate 1010 and discharged to the gas exhaust 1602. .
  • the purge gas injected vertically from the purge gas supply unit 1603 to the substrate 1010 serves as an air curtain, thereby scanning the reactor 1600 of the reaction precursors injected from the gas supply unit 1601 to the substrate 1010.
  • the reaction precursor leaking into the space between the substrate 1010 and the substrate 1010 may be prevented from being leaked out of the process chamber 1200 by being blocked by the purge gas.
  • the reaction precursor is formed only on the substrate 1010 of the lower process chamber 1220, for example, in which the substrate 1010 is mounted only on the lower process chamber 1220.
  • the spraying structure has been described, in the structure in which the substrate 1010 can be mounted in the upper process chamber 1210, the atomic layer thin film formation on the two substrates 1010 is simultaneously performed using the scan reactor 1600. It is also possible.
  • the gas supply unit 1601 and the gas exhaust unit 1602 and the purge gas supply unit 1603 spraying the purge gas are injected into the upper and lower portions of the scan reactor 1600.
  • the atomic layer thin film may be simultaneously formed on the substrate 1010 of the upper process chamber 1210 and the substrate 1010 of the lower process chamber 1220.
  • FIG. 5H is a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention, in which a process gas and a purge gas are simultaneously injected from a lower part of the scan reactor, and show a schematic configuration capable of plasma processing. .
  • the reaction precursor is supplied in a direction perpendicular to the substrate 1010 through the gas supply unit 1601 formed at the lower center of the scan reactor 1600, and both lower side surfaces of the scan reactor 1600.
  • the gas exhaust unit 1602 formed at the upper surface of the substrate 1010 does not react with the raw material precursor and exhausts the remaining reaction precursor on the substrate 1010.
  • an electrode 1604 for forming the plasma 1615 is disposed below the scan reactor 1600.
  • a purge gas supply unit 1603 is further formed on both side portions of the outer side of the gas exhaust unit 1602 to simultaneously spray purge gas when the reaction precursor is sprayed to form an air curtain.
  • the lower process chamber 1220 is lowered by the transfer unit 1110. After the separation from the upper process chamber 1210, it is located in a predetermined position lower than the scan type reactor 1600 located on one side of the process chamber 1200.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 1600 may move in the horizontal direction to the substrate 1010 of the lower process chamber 1220, thereby moving the scan reactor 1600.
  • the reaction precursor is sprayed while moving the scan reactor 1600 that is waiting at a predetermined position onto the substrate 1010 of the lower process chamber 1220 in which the precursor is adsorbed.
  • the gas supply unit which is implemented at the lower center of the scan reactor 1600 while moving the scan reactor 1600 at a predetermined moving speed onto the substrate 1010 in which the raw material precursor is adsorbed on the lower process substrate 1220.
  • the reaction precursor is uniformly sprayed onto the substrate 1010 through the 1601, and the reaction precursor sprayed from the scan reactor 1600 performs an atomic reaction by performing a chemical reaction with the raw material precursor adsorbed on the substrate 1010. A thin film will be formed.
  • FIG. 5H power is supplied to the electrode 1604 for generating the plasma 1615 formed under the scan reactor 1600 at the time when the reaction precursor is injected using the scan reactor 1600, thereby supplying power to the substrate 1010.
  • Plasma 1615 is generated on the surface to form an atomic layer thin film through chemical reaction between the precursor precursor and the reaction precursor by the plasma 1615.
  • a purge gas supply unit 1603 is formed at the lower portion of the scan type reactor 1600 at an outer side of the scan type reactor 1600 at the time of spraying the reaction precursor using the scan type reactor 1600. Inject purge gas.
  • the reaction precursor may not react with the raw material precursor in the substrate 1010 of the lower process chamber 1220, and the remaining reaction precursor may be separated from the substrate 1010 and discharged to the gas exhaust 1602. .
  • a purge gas injected vertically from the purge gas supply unit 1603 to the substrate 1010 serves as an air curtain to scan the reactor 1600 of the reaction precursors injected from the gas supply unit 1601 to the substrate 1010.
  • the reaction precursor leaking into the space between the substrates 1010 may be prevented from being leaked out of the process chamber 1200 by being blocked by the purge gas.
  • the reaction precursor may be replaced only with the substrate 1010 of the lower process chamber 1220, for example, in which the substrate 1010 is mounted only in the lower process chamber 1220.
  • the structure of spraying has been described, in the structure in which the substrate 1010 can be mounted in the upper process chamber 1210, the atomic layer thin film formation on the two substrates 1010 is simultaneously performed using the scan reactor 1600. It is also possible.
  • a gas supply unit 1601 and a gas exhaust unit 1602, an electrode 1604 for generating plasma, and a purge gas are injected to the upper and lower portions of the scan reactor 1600.
  • the purge gas supply unit 1603 may be formed in the same structure so that the atomic layer thin film may be simultaneously formed on the substrate 1010 of the upper process chamber 1210 and the substrate 1010 of the lower process chamber 1220.
  • FIG. 5J illustrates a schematic configuration for performing heat treatment to a substrate as a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention.
  • the scan type reactor 1600-1 shown in FIG. 5J is not a reactor for injecting reaction precursors, and heat-treatment using a heating wire or a lamp before, during, or after the deposition process with respect to the substrate 1010.
  • a reactor having a processing means 1605 for performing ultraviolet light treatment has a structure for performing cleaning of the substrate 1010, surface modification or physical property change of the thin film through heat treatment or ultraviolet light treatment, and the like.
  • the lower process chamber 1220 is lowered by the transfer unit 1110 and separated from the upper process chamber 1210, and then the scan type reactor 1600-1 is located at one side of the process chamber 1200. ) To a lower preset position.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 1600-1 may move in the horizontal direction to the substrate 1010 of the lower process chamber 1220.
  • the heat treatment is performed while moving the scan reactor 1600-1, which is waiting at the predetermined position, onto the substrate 1010 or the thin film deposited on the substrate 1010 of the lower process chamber 1220.
  • ultraviolet light treatment for example, an IR lamp, a UV treatment means, and the like may be used as the heat treatment means 1605 for performing the above heat treatment.
  • the arrangement and the process cycle of the scan type reactor 1600-1 for heat treatment or ultraviolet treatment may be disposed in close proximity to the scan type reactor 1600 that injects the reaction precursor into a separate reactor, and the reaction precursor-scan
  • the transfer cycle and the simultaneous transfer and process of the type reactor 1600, the simultaneous transfer and cycle-by-cycle process, can be performed individually and individual processes.
  • 6A to 6C illustrate cross-sectional structures of a process chamber according to an atomic layer deposition process using a scan reactor in a process chamber according to another embodiment of the present invention.
  • the substrate 1010 and the mask 1020 are moved in a state in which the lower process chamber 1220 is moved downward from the upper process chamber 1210 in the vertical direction by the transfer unit 1110 and opened. Is sequentially loaded into the substrate support 1015 and the mask support 1017 in the process chamber 1200.
  • the lower process chamber 1220 is raised by the transfer unit 1110 so that the lower process chamber 1220 is the upper process chamber ( 1210, and when the sealed reaction space capable of proceeding the atomic layer deposition process is formed according to the combination, the process gas required for the atomic layer deposition process is sequentially introduced into the gas supply unit 1212. Atomic layer deposition process may be performed.
  • the raw material precursor is adsorbed in a state in which the upper process chamber 1210 and the lower process chamber 1220 of the process chamber 1200 are combined.
  • the upper process chamber 1210 and the lower process chamber 1220 are separated, and then the substrate ( The reaction process between the precursor precursor adsorbed on the phase 1010 and the reaction precursor proceeds.
  • the precursor precursor adsorption and purge process in the upper process chamber 1210 and the lower process chamber 1220 is combined
  • the lower process chamber 1220 is lowered by the transfer unit 1110 and separated from the upper process chamber 1210, and then lower than the scan reactor 2600 located on one side of the process chamber 1200. Position it at a preset position.
  • the position of the lower process chamber 1220 may be an optimized position that is pre-calculated so that the scan type reactor 2600 may move in the horizontal direction over the substrate 1010 of the lower process chamber 1220.
  • the inert reaction precursor 2620 in the vacuum chamber 1200 is filled with a constant pressure, and in this state, the raw material precursor adsorption process is performed on the substrate 1010.
  • the inert reaction precursor may be separated into the separated space of the upper process chamber 1210 and the lower process chamber 1220. 2620 is filled.
  • the inert reaction precursor 2620 may be selected as a material that does not react with the raw material precursor adsorbed on the substrate 1010 when the external specific energy such as plasma or ultraviolet light is not used.
  • the substrate 1010 and the mask 1020 may be loaded into the process chamber 1200 to be filled in the vacuum chamber 1100 when the upper process chamber 1210 and the lower process chamber 1220 are coupled to each other.
  • the inert reaction precursor 2620 located in the process chamber 1200 is selectively activated.
  • an ultraviolet irradiation device such as a plasma generating electrode or a UV lamp capable of ultraviolet irradiation.
  • the scan type reactor 2600 in which the lower process chamber 1220 is separated from the upper process chamber 1210 and located on one side of the process chamber 1200 is horizontally disposed on the substrate 1010 of the lower process chamber 1220.
  • the inert reaction precursor 2620 existing on the substrate 1010 is provided on the substrate 1010 by providing energy such as plasma or ultraviolet light while moving the scan reactor 2600 onto the substrate 1010.
  • an atomic layer thin film is formed by performing a chemical reaction with the raw material precursor adsorbed on the substrate 1010.
  • the scan type reactor 2600 as described above may be driven independently for each process chamber 1200 by each driving means independent, and as shown in FIG. 4, connection means such as a connection bar. Through the plurality of scan reactors 2600 may be jointly connected to be driven simultaneously.
  • connection means such as a connection bar.
  • the operation of the scan type reactor in the atomic layer deposition apparatus in which a plurality of process chambers are stacked in the vacuum chamber has been described as an example, even when one process chamber exists in the vacuum chamber.
  • the atomic layer deposition process using a reactor can be equally applied.
  • FIG. 7A illustrates a schematic configuration of an atomic layer thin film forming process using plasma in a scan reactor as a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention.
  • an electrode 2610 for generating plasma is disposed below the scan reactor 1600.
  • the lower process chamber 1220 is lowered by the transfer unit 1110. After the separation from the upper process chamber 1210, it is located in a predetermined position lower than the scan-type reactor (2600) located on one side of the process chamber 1220.
  • the lower process chamber 1220 is coupled with the upper process chamber 1210 so that the inert reaction precursor 2620 filled in the vacuum chamber 1100 while the raw material precursor adsorption process is performed is an upper process.
  • the chamber 1210 and the lower process chamber 1220 may be filled in separate spaces.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 2600 may move in the horizontal direction to the substrate 1010 of the lower process chamber 1220, thereby allowing the scan reactor 2600 to move.
  • the plasma reactor 2600 is generated on the substrate 1010 while moving the scan-type reactor 2600, which is waiting at a predetermined position, onto the substrate 1010 of the lower process chamber 1220.
  • the plasma is supplied onto the substrate 1010 by supplying power to the plasma generating electrode 2610 formed under the scan reactor 2600.
  • Atomic layers by generating 2615 and selectively inactivating the inert reactant precursor 2620 that was present on the substrate 1010 by the plasma 2615 to perform a chemical reaction with the precursor precursor adsorbed on the substrate 1010.
  • a thin film is formed.
  • the substrate 1010 is mounted only on the lower process chamber 1220.
  • the atomic layer thin film is formed on the substrate 1010 of the lower process chamber 1220.
  • the structure of forming the structure is described, in the structure in which the substrate 1010 can be mounted in the upper process chamber 1210, the atomic layer thin film formation on the two substrates 1010 is simultaneously performed using the scan reactor 2600. It is also possible.
  • the plasma generating electrode 2610 for activating the reaction precursor by the plasma 2615 is formed on the upper and lower portions of the scan-type reactor 2600 in the upper process chamber (
  • the atomic layer thin film may be simultaneously formed on the substrate 1010 of the 1210 and the substrate 1010 of the lower process chamber 1220.
  • FIG. 7C illustrates a schematic configuration of an atomic layer thin film formation process using ultraviolet rays or infrared rays in a scan reactor as a cross-sectional structure of a scan reactor and a process chamber according to an embodiment of the present invention.
  • an ultraviolet / infrared irradiation device 2650 for ultraviolet or infrared radiation is disposed below the scan reactor 2600 is illustrated.
  • Such an ultraviolet / infrared irradiation device 2650 may be, for example. UV lamps, IR lamps and the like.
  • the lower process chamber 1220 is lowered by the transfer unit 1110. After the separation from the upper process chamber 1210, it is placed in a predetermined position lower than the scan-type reactor (2600) located on one side of the process chamber 1220.
  • the lower process chamber 1220 is coupled to the upper process chamber 1210 so that the inert reaction precursor 2620 filled in the vacuum chamber 110 while the raw material precursor adsorption process is performed is an upper process.
  • the chamber 1210 and the lower process chamber 1220 may be filled in separate spaces.
  • the lower process chamber 1220 is lowered to a predetermined position where the scan reactor 2600 may move in the horizontal direction to the substrate 1010 of the lower process chamber 1220, thereby allowing the scan reactor 2600 to move.
  • the scan type reactor 2600 which is waiting at a predetermined position is irradiated with ultraviolet or infrared rays 2652 while moving onto the substrate 1010 of the lower process chamber 1220.
  • the ultraviolet rays or the ultraviolet rays are irradiated onto the substrate 1010 through the ultraviolet / infrared irradiation device 2650 provided at the lower portion of the scanning reactor 2600.
  • Irradiating the infrared rays 2652 and selectively inactive reaction precursors 2620 existing on the substrate 1010 by ultraviolet rays or infrared rays 2652 are selectively activated to perform a chemical reaction with the raw material precursors adsorbed on the substrate 1010. As a result, an atomic layer thin film is formed.
  • the substrate 1010 is mounted only on the lower process chamber 1220, and only the atomic layer thin film is formed on the substrate 1010 of the lower process chamber 1220.
  • the structure of forming the structure is described, in the structure in which the substrate 1010 can be mounted in the upper process chamber 1210, the atomic layer thin film formation on the two substrates 1010 is simultaneously performed using the scan reactor 2600. It is also possible.
  • a UV / IR irradiation apparatus 2650 for activating the reaction precursor by UV or IR 2652 is formed on the upper and lower portions of the scan reactor 2600 in the same structure.
  • the atomic layer thin film may be simultaneously formed on the substrate 1010 of the process chamber 1210 and the substrate 1010 of the lower process chamber 1220.
  • a plurality of unit process chambers for the atomic layer deposition process capable of separating and combining the upper and lower portions are arranged in a stacked form, and the raw material precursors for each unit process chamber Is equipped with a scan reactor that reacts the reactant precursor with the raw material precursor while moving on the adsorbed substrate, thereby eliminating the coexistence area of the raw material precursor and the reactant precursor, eliminating the need for additional film removal process due to extra-film deposition. It is possible to improve thin film quality and productivity through extension and particle generation suppression.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명에서는 원자층 증착에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수개 배치하며, 각 단위 공정챔버별로 원료전구체가 흡착된 기판위를 이동하면서 반응전구체를 원료전구체와 반응시키는 스캔형 반응기를 구비하여 원료전구체와 반응전구체의 공존영역을 원천적으로 배제함으로써, 기판외 성막방지에 따른 추가적인 성막 제거공정 불필요, 메인터넌스 주기연장, 파티클 발생억제를 통한 박막품질 및 생산성을 향상시킬 수 있다. 또한, 스캔형 반응기에 열처리, 자외선 처리, 플라즈마 처리 등의 부가적인 기능을 선택적으로 추가하여 다양한 특성의 원자층 박막의 형성이 가능하게 함으로써 다양한 공정 대응이 가능하여, 필요에 따른 최적화된 박막의 제공이 가능하고, 부가적인 설비 감소로 부대 비용 및 유지보수 비용의 절감이 가능하도록 한다.

Description

스캔형 반응기를 가지는 원자층 증착 장치 및 방법
본 발명은 기상 증착 반응기 및 이를 이용한 박막 형성 방법에 관한 것으로, 특히 원자층 증착(atomic layer deposition: ALD)에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수개 배치하며, 각 단위 공정챔버별로 원료전구체가 흡착된 기판위를 이동하면서 반응전구체를 원료전구체와 반응시키는 스캔형 반응기를 구비하여 원료전구체와 반응전구체의 공존영역을 원천적으로 배제시킴으로써, 기판외 성막방지에 따른 추가적인 성막 제거공정 불필요, 메인터넌스(maintenance) 주기연장, 파티클(particle) 발생억제를 통한 박막품질 및 생산성을 향상시킴과 더불어 최적화된 원자층 박막의 제공이 가능하도록 하는 스캔형 반응기(scan-type reactor)를 가지는 원자층 증착 장치 및 방법에 관한 것이다.
일반적으로, 반도체 기판이나 글라스 등의 기판 상에 소정 두께의 박막을 증착하는 방법으로는 스퍼터링(sputtering)과 같이 물리적인 충돌을 이용하는 물리 기상 증착법(physical vapor deposition, PVD)과, 화학반응을 이용하는 화학 기상 증착법(chemical vapor deposition, CVD) 등이 있다.
그러나, 최근들어 반도체 소자의 디자인 룰(design rule)이 급격하게 미세해짐에 따라 미세 패턴의 박막이 요구되고 박막이 형성되는 영역의 단차 또한 매우 커지고 있어 원자층 두께의 미세 패턴을 매우 균일하게 형성할 수 있을 뿐만 아니라 스텝 커버리지(step coverage)가 우수한 원자층 증착방법(atomic layer deposition: ALD)의 사용이 증대되고 있다.
이러한 원자층 증착방법은 기체 분자들 간의 화학반응을 이용한다는 점에 있어서 일반적인 화학 기상 증착방법과 유사하다. 하지만, 통상의 CVD가 복수의 기체 분자들을 동시에 프로세스 챔버 내로 주입하여 발생된 반응 생성물을 기판에 증착하는 것과 달리, 원자층 증착방법은 하나의 소스 물질을 포함하는 가스를 프로세스 챔버 내로 주입하여 가열된 기판에 흡착시키고 이후 다른 소스 물질을 포함하는 가스를 프로세스 챔버에 주입함으로써 기판 표면에서 소스 물질 사이의 화학반응에 의한 생성물이 증착된다는 점에서 차이가 있다.
한편, 위와 같은 원자층 증착방법은 AMOLED 디스플레이의 박막 봉지, 플렉서블(flexible) 기판의 베리어막(barrier film), 태양광 버퍼 레이어(buffer layer), 반도체용 강유전체(high-k) 캐패시터용 고유전 물질 또는 알루미늄(Al), 구리(Cu) 배선 확산 방지막(TiN, TaN 등) 등을 형성하는데 사용될 수 있다.
이러한 원자층 증착방법은 현재까지 PECVD(plasma enhanced chemical vapor deposition)에서 사용되던 매엽식, 배치식 및 스캔형 소형 반응기가 기판위를 이송 또는 반대 방식으로 공정이 이루어지고 있다.
먼저, 매엽 방식은 1장의 기판 투입후 공정진행이 이루어지며, 기판의 입/반출 및 히팅을 위한 무빙용 서셉터, 공정가스 투입을 위한 디퓨져(샤워헤드 타입이 주류) 및 배기부로 구성되어 있다. 그러나, 매엽 방식에서는 진공 형성시 외부 대기압에 따른 공정챔버 및 주변부의 변형방지를 위하여 챔버가 매우 두껍고 기판의 반입/반출 및 공정 영역 구분을 위한 게이트 밸브의 필요로 대면적기판용 장비 구성시 내부 부피가 엄청나게 늘어나게 되므로 원료전구체 및 반응전구체의 소모량 급증, 유지비용 급증, 흡착-퍼지-반응-퍼지시간 증가에 따른 공정시간 증가로 생산성이 현저히 감소하는 문제점이 있다.
다음으로, 다수의 기판에 대해 동시에 공정을 진행하는 배치형 방식은 종래 원자층 증착 장비의 부피가 커서 원료전구체와 반응전구체가 많이 소요됨에 따른 유지비용 증가와 저생산성 문제점을 해결하고자 여러 장의 기판에 대해 동시에 공정을 수행하는 방식이다. 이러한 배치형 방식은 태양전지 공정에 일부 적용되고 있으나, 기판 전면뿐만 아니라 뒷면에도 동시 성막이 되는 문제점, 다수 기판에 대한 박막의 균일도 및 재현성의 문제가 있으며, 챔버 오염시 초대형 챔버 전체를 분리하여 세정해야 하는 문제점이 있다.
다음으로, 스캔형 소형 반응기방식은 진공챔버내 기판의 한면의 길이에 대응하는 소형 반응기를 여러개 배치하여 기판 또는 소형 반응기가 왕복 운동하여 성막하는 방식으로, 일부 디스플레이 박막봉지 공정에서 적용되었으나, 기판과 소형 반응기의 완벽한 가스 유동 제어가 어려우며, 원료전구체와 반응전구체의 명확한 분리 구현이 어려워 파티클 이슈가 발생하는 문제점이 있다.
따라서, 본 발명에서는 원자층 증착에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수 개 배치하며, 각 단위 공정챔버별로 원료전구체가 흡착된 기판위를 이동하면서 반응전구체를 원료전구체와 반응시키는 스캔형 반응기를 구비하여 원료전구체와 반응전구체의 공존영역을 원천적으로 배제시킴으로써, 기판외 성막방지에 따른 추가적인 성막 제거공정 불필요, 메인터넌스 주기연장, 파티클 발생억제를 통한 박막품질 및 생산성을 향상시킴과 더불어 최적화된 원자층 박막의 제공이 가능하도록 하는 스캔형 반응기를 가지는 원자층 증착 장치 및 방법을 제공하고자 한다.
상술한 본 발명은 스캔형 반응기를 가지는 원자층 증착 장치로서, 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 공정챔버와, 상기 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에 반응전구체를 분사하는 스캔형 반응기와, 상기 공정챔버를 지지하고, 상기 공정챔버가 위치한 공간을 진공상태로 유지시키는 진공챔버를 포함한다.
또한, 본 발명은 스캔형 반응기를 가지는 적층형 원자층 증착 장치로서, 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 적어도 2개 이상의 공정챔버와, 각 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에 반응전구체를 분사하는 스캔형 반응기와, 상기 공정챔버를 상하 방향으로 적층된 형태로 지지하고, 상기 공정챔버가 적층된 공간을 진공상태로 유지시키는 진공챔버를 포함한다.
또한, 상기 스캔형 반응기는, 상부면이나 또는 하부면의 중앙 또는 측면에 상기 반응전구체를 분사하는 가스공급부를 구비하며, 상기 가스공급부와 일정 이격 거리를 가지며, 상기 분사된 반응전구체 중 상기 기판 영역에서 원료전구체와 반응하지 못한 반응전구체 또는 반응 부산물 또는 퍼지가스를 배기시키는 가스배기부를 구비하는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상부면이나 또는 하부면의 양쪽 측면 또는 측면 둘레부에 퍼지가스를 배출하는 퍼지가스 공급부를 더 포함하는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 기판 영역으로 상기 반응전구체를 분사시키는 시점부터 상기 퍼지가스 공급부를 통해 퍼지가스를 분사시켜 상기 스캔형 반응기와 상기 기판 사이에 상기 퍼지가스에 의한 가스장벽을 형성시키는 것을 특징으로 한다.
또한, 상기 퍼지가스 공급부는, 상기 스캔형 반응기 내에서 상기 가스공급부와 가스배기부보다 외곽에 형성되는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상부 또는 하부에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 기판 영역으로 상기 반응전구체를 분사시키는 시점에 상기 전극에 전원을 공급하여 상기 상부 또는 하부에 플라즈마를 발생시키는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 각 공정챔버에 하나씩 구비되어 독립적으로 구동되거나, 다수의 스캔형 반응기를 연결하는 연결수단에 의해 연결되어 동시에 구동되는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 연결수단을 이동시키는 반응기 이송수단에 의해 이동되는 것을 특징으로 한다.
또한, 상기 반응기 이송수단은, 상기 진공챔버에 의해 지지되는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 진공챔버에 의해 지지되는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 기판 또는 기판의 박막에 대한 세정 또는 표면개질(treatment)를 위한 열처리 수단 또는 자외선 처리 수단을 포함하는 것을 특징으로 한다.
또한, 본 발명은 스캔형 반응기를 가지는 원자층 증착기로서, 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 공정챔버와, 상기 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 스캔형 반응기와, 상기 공정챔버를 지지하고, 상기 공정챔버가 위치한 공간을 진공상태로 유지시키거나 상기 비활성 반응전구체를 공급 및 배기하는 진공챔버를 포함한다.
또한, 본 발명은 스캔형 반응기를 가지는 적층형 원자층 증착기로서, 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 적어도 2개 이상의 공정챔버와, 각 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 스캔형 반응기와, 상기 공정챔버를 상하 방향으로 적층된 형태로 지지하고, 상기 공정챔버가 적층된 공간을 진공상태로 유지시키거나 상기 비활성 반응전구체를 공급 및 배기하는 진공챔버를 포함한다.
또한, 상기 스캔형 반응기는, 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에서 플라즈마를 이용하여 상기 비활성 반응전구체 중 상기 기판 영역에 존재하는 비활성 반응전구체만을 선택적으로 활성화시켜 상기 원료전구체와 반응시키는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에 자외선 또는 적외선을 조사하여 상기 비활성 반응전구체 중 상기 기판 영역에 존재하는 비활성 반응전구체만을 선택적으로 활성화시켜 상기 원료전구체와 반응시키는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상부 또는 하부에 상기 플라즈마의 발생을 위한 전극을 구비하는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 기판으로 이동하는 시점에 상기 전극에 전원을 공급하여 상기 상부 또는 하부에 상기 플라즈마를 발생시키는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상부 또는 하부에 상기 자외선 또는 적외선의 조사를 위한 자외선 조사장치 또는 적외선 조사장치를 구비하는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 기판으로 이동하는 시점에 상기 자외선 또는 적외선 조사장치를 구동하여 상기 상부 또는 하부에 상기 자외선 또는 적외선을 조사하는 것을 특징으로 한다.
또한, 상기 비활성 반응전구체는, 플라즈마 또는 자외선 또는 적외선에 의하여 상기 원료전구체와 반응하는 물질인 것을 특징으로 한다.
또한, 상기 비활성 반응전구체는, 상기 진공챔버내 일정한 압력을 유지하며 채워지는 것을 특징으로 한다.
또한, 상기 비활성 반응전구체는, 상기 기판에 대한 원료전구체 흡착 공정이 완료되어 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우, 상기 진공챔버로부터 상기 상부 공정챔버와 하부 공정챔버가 분리된 공간으로 확산 유입되는 것을 특징으로 한다.
또한, 상기 비활성 반응전구체는, 상기 공정챔버내로 상기 기판이 로딩 또는 언로딩되어 상기 상부 공정챔버와 상기 하부 공정챔버가 결합된 상태인 경우 상기 진공챔버내에 채워지는 것을 특징으로 한다.
또한, 본 발명은 진공챔버 내에 공정챔버가 위치되어 있는 원자층 증착장치에서 수행되는 원자층 증착 방법으로서, 상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와, 상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판상에 원료전구체를 흡착시키는 단계와, 상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 기판 영역에서 반응전구체를 분사시키는 단계와, 상기 기판 영역에 분사된 반응전구체와 상기 원료전구체를 반응시키는 단계를 포함한다.
또한, 본 발명은 진공챔버 내에 적어도 2개 이상의 공정챔버가 적층되어 있는 적층형 원자층 증착장치에서 수행되는 원자층 증착 방법으로서, 상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와, 상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판상에 원료전구체를 흡착시키는 단계와, 상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 기판 영역에서 반응전구체를 분사시키는 단계와, 상기 기판 영역에 분사된 반응전구체와 상기 원료전구체를 반응시키는 단계를 포함한다.
또한, 상기 분사시키는 단계는, 상기 원료전구체의 흡착 후, 상기 상부 공정챔버와 하부 공정챔버를 분리시키는 단계와, 상기 스캔형 반응기를 상기 상부 공정챔버와 하부 공정챔버 사이의 공간으로 이동시키면서 상기 기판 영역에서 반응전구체를 분사시키는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 분사시키는 단계에서, 상기 스캔형 반응기를 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동시키면서 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에서 반응전구체를 분사하는 것을 특징으로 한다.
또한, 상기 분사시키는 단계에서, 상기 스캔형 반응기를 통해 상기 반응전구체를 분사시키는 시점에 상기 스캔형 반응기의 양쪽 측면 또는 측면 둘레부에 퍼지가스를 분사시켜 상기 스캔형 반응기와 상기 기판 사이에 상기 퍼지가스에 의한 가스장벽을 형성시키는 것을 특징으로 한다.
또한, 상기 분사시키는 단계에서, 상기 스캔형 반응기를 통해 상기 반응전구체를 분사시키는 시점에 상기 스캔형 반응기의 상부 또는 하부에 플라즈마를 발생시키는 것을 특징으로 한다.
또한, 상기 분사시키는 단계에서, 상기 스캔형 반응기를 통해 상기 반응전구체를 분사시키는 시점에 상기 스캔형 반응기의 양쪽 측면 또는 측면 둘레부에 형성된 배기부를 통해 상기 스캔형 반응기와 상기 기판 사이의 미반응 반응전구체 또는 반응 부산물 또는 퍼지가스를 배기시키는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 진공챔버에 의해 지지되며, 상기 공정챔버의 외부의 상기 기설정된 위치에서 대기하는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 각 공정챔버에 하나 이상 구비되어 독립적으로 구동되거나, 다수의 스캔형 반응기를 연결하는 연결수단에 의해 연결되어 동시에 구동되는 것을 특징으로 한다.
또한, 본 발명은 진공챔버 내에 공정챔버가 위치되는 원자층 증착장치에서 수행되는 원자층 증착 방법으로서, 상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와, 상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판 영역에 원료전구체를 흡착시키는 단계와, 상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 단계를 포함한다.
또한, 본 발명은 진공챔버 내에 적어도 2개 이상의 공정챔버가 적층되어 있는 적층형 원자층 증착장치에서 수행되는 원자층 증착 방법으로서, 상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와, 상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판상에 원료전구체를 흡착시키는 단계와, 상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 단계를 포함한다.
또한, 상기 반응시키는 단계는, 상기 원료전구체의 흡착 후, 상기 상부 공정챔버와 하부 공정챔버를 분리시키는 단계와, 상기 스캔형 반응기를 상기 상부 공정챔버 또는 하부 공정챔버의 기판상으로 이동시키는 단계와, 상기 스캔형 반응기에서 플라즈마 또는 자외선 또는 적외선을 이용하여 상기 비활성 반응전구체를 활성화시켜 상기 기판 영역에서 상기 원료전구체와 반응시키는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 반응시키는 단계에서, 상기 플라즈마 또는 자외선 또는 적외선을 이용하여 상기 공정챔버내 유입된 비활성 반응전구체 중 상기 기판 영역에 존재하는 비활성 반응전구체만을 선택적으로 활성화시켜 상기 원료전구체와 반응시키는 것을 특징으로 한다.
또한, 상기 반응시키는 단계에서, 상기 스캔형 반응기를 상기 기판으로 이동시키는 시점에 상기 스캔형 반응기를 통해 상기 기판 영역에 플라즈마를 발생시켜 상기 비활성 반응전구체를 활성화시키는 것을 특징으로 한다.
또한, 상기 반응시키는 단계에서, 상기 스캔형 반응기를 상기 기판으로 이동시키는 시점에 상기 스캔형 반응기를 통해 상기 기판 영역에 자외선 또는 적외선을 조사하여 상기 비활성 반응전구체를 활성화시키는 것을 특징으로 한다.
또한, 상기 비활성 반응전구체는, 플라즈마 또는 자외선 또는 적외선에 의하여 상기 원료전구체와 반응하는 물질인 것을 특징으로 한다.
또한, 상기 비활성 반응전구체는, 상기 기판에 대한 원료전구체 흡착 공정이 완료되어 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우, 상기 진공챔버로부터 상기 상부 공정챔버와 하부 공정챔버가 분리된 공간으로 확산 유입되는 것을 특징으로 한다.
또한, 상기 비활성 반응전구체는, 상기 공정챔버내로 상기 기판이 로딩 또는 언로딩되어 상기 상부 공정챔버와 상기 하부 공정챔버가 결합된 상태인 경우 상기 진공챔버내에 채워지는 것을 특징으로 한다.
또한, 상기 스캔형 반응기는, 상기 진공챔버에 의해 지지되며, 상기 공정챔버의 외부의 상기 기설정된 위치에서 대기하는 것을 특징으로 한다.
본 발명에 따르면, 원자층 증착에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수 개 배치하며, 각 단위 공정챔버별로 원료전구체가 흡착된 기판위를 이동하면서 반응전구체를 원료전구체와 반응시키는 스캔형 반응기를 구비하여 원료전구체와 반응전구체의 공존영역을 원천적으로 배제함으로써, 기판 외 성막방지에 따른 추가적인 성막 제거공정이 불필요하고, 메인터넌스 주기를 연장시킬 수 있으며, 파티클 발생억제를 통한 박막품질 및 생산성을 향상시킬 수 있는 이점이 있다.
또한, 스캔형 반응기에 열처리, 플라즈마 처리 등의 부가적인 기능을 선택적으로 추가하여 다양한 특성의 원자층 박막의 형성이 가능하므로 필요에 따른 최적화된 박막의 제공이 가능하고, 부가적인 설비 감소로 부대 비용 및 유지보수 비용의 절감이 가능한 이점이 있다.
도 1은 본 발명의 실시예에 따른 원자층 증착 장치 구조의 입체 사시도,
도 2a 및 도 2b는 본 발명의 실시예에 따른 공정챔버의 단면 상세 구조도,
도 3a 내지 도 3c는 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 스캔형 반응기를 이용한 원자층 증착 공정의 개략적인 구성도,
도 4는 본 발명의 실시예에 따른 연결수단을 통해 다수의 스캔형 반응기가 함께 구동되는 개략적인 구성도,
도 5a 내지 도 5b는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 공정가스가 스캔형 반응기로부터 분사되는 개략적인 구성도,
도 5c 내지 도 5e는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 플라즈마 공정이 가능한 개략적인 구성도,
도 5f 내지 도 5g는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 공정가스와 퍼지가스가 스캔형 반응기의 하부로부터 동시에 분사되는 개략적인 구성도,
도 5h 내지 도 5i는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 공정가스와 퍼지가스가 스캔형 반응기의 하부로부터 동시에 분사되며, 플라즈마 공정이 가능한 개략적인 구성도,
도 5j는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 기판에 대해 열처리 공정이 가능한 개략적인 구성도,
도 6a 내지 도 6c는 본 발명의 다른 실시예에 따른 공정챔버의 단면 구조로서 스캔형 반응기를 이용한 원자층 증착 공정의 개략적인 구성도,
도 7a 내지 도 7b는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 스캔형 반응기에서 플라즈마를 이용한 원자층 박막 형성 공정의 개략적인 구성도,
도 7c 내지 도 7d는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 스캔형 반응기에서 자외선 또는 적외선을 이용한 원자층 박막 형성 공정의 개략적인 구성도.
이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시예에 따른 원자층 증착 장치 구조의 입체 사시도를 도시한 것으로, 원자층 증착 장치(1000)는 다수 개의 공정챔버(1200)와 상기 다수 개의 공정챔버(1200)를 수용하는 진공챔버(1100) 등을 포함할 수 있다.
이하, 도 1을 참조하여 본 발명의 원자층 증착 장치(1000)의 구조를 상세히 설명하기로 한다.
먼저, 다수 개의 공정챔버(1200)는 기판에 대한 원자층 증착공정을 수행할 수 있는 챔버(chamber)로서 각각 독립적인 공간을 가지도록 구현되며, 수직 방향으로 적층되어 외부 진공챔버(1100)에 수용된다. 이러한 공정챔버(1200)는 진공챔버(1100)에 인입 시 위치가 고정되는 상부 공정챔버(1210)와 진공챔버(1100)에 구비되는 이송부에 의해 상하로 이동하여 상부 공정챔버(1210)와 결합되거나 분리되는 하부 공정챔버(1220)로 구성될 수 있다.
이러한 공정챔버(1200)는 위와 같은 상부 공정챔버(1210)와 하부 공정챔버(1220)로 분리 또는 결합되도록 하는 구성을 통해 최적의 원자층 증착 공정이 가능한 공간만 확보하도록 하여 원자층 증착 장치의 부피를 최소화할 수 있도록 설계될 수 있다.
또한, 공정챔버(1200)는 진공챔버(1100)의 상부 또는 측면에 설치되는 가이드부(1204)와 연계하여 진공챔버(1100)로의 입출이 가능하며, 진공챔버(1100)내 기준위치에 인입된 상태에서 가이드부(1204)를 조절하여 고정이 가능하게 된다.
다음으로, 진공챔버(1100)는 내부에 다수 개의 공정챔버를 상하 방향으로 적재할 수 있는 다단 지지부(1202)와 가이드부(1204) 등을 가지며 진공상태를 유지하여 각각의 공정챔버(1200)에서 원자층 증착 공정이 이루어질 수 있도록 한다.
즉, 진공챔버(1100)는 원자층 증착 공정을 위해 분리 결합이 가능하도록 구성된 단위 공정챔버(1200)가 적층되어 배치된 내측의 다수 개의 공정챔버(1200)를 지지하고 각 공정챔버에서 기판이 반입/반출 가능하도록 하며, 외부의 대기 및 압력차가 존재하는 환경으로부터 내측 공정챔버(1200)에 가해지는 외력의 영향을 최소화시킬 수 있다.
따라서, 위 도 1에서와 같이 독립적인 원자층 증착 공정이 수행되는 다수개의 공정챔버(1200)를 하나의 진공챔버(1100)에 상하방향으로 적층한 구조를 이용하는 경우 다수 개의 공정챔버(1200)에서 다수 개의 기판에 동시에 성막이 이루어지므로 종래 단일 기판용 증착기에 대비하여 몇 배의 생산성 향상을 가질 수 있도록 한다.
도 2a 및 도 2b는 본 발명의 실시예에 따른 공정챔버의 단면 상세 구조를 도시한 것이다.
먼저, 도 2a는 공정챔버(1200)내로 기판(1010) 및 마스크(1020)를 로딩시키기 위해 하부 공정챔버(1220)가 하부로 이동되어 공정챔버가 개방된 상태를 도시한 것이다.
위 도 2a를 참조하면, 하부 공정챔버(1220)가 이송부(1110)에 의해 상부 공정챔버(1210)로부터 상하방향의 하부로 이동하여 개방된 상태에서 기판(1010)과 마스크(1020)가 공정챔버(1200) 내부의 기판 지지부(1015)와 마스크 지지부(1017)에 순차적으로 로딩된다. 이때, 공정챔버(1200)의 상부 공정챔버(1210)는 진공챔버(1100)에 고정되어 지지되며, 하부 공정챔버(1220)는 진공챔버(1100)에 구비되는 이송부(1110)에 의해 진공챔버(1100)에 대해 상하방향으로 이동될 수 있다.
위와 같이, 기판 지지부(1015)와 마스크 지지부(1017)에 기판(1010)과 마스크(1020)가 로딩되는 경우, 이송부(1110)에 의해 하부 공정챔버(1220)가 상승하고, 기판(1010)과 마스크(1020)가 하부 공정챔버(1220)에 순차적으로 탑재되면서 도 2b에서와 같이 하부 공정챔버(1220)가 상부 공정챔버(1210)에 최종 결합하게 된다.
한편, 이때 기판(1010)과 마스크(1020)의 로딩은 각각의 공정챔버(1200)별로 개별적으로 이루어질 수도 있으며, 진공챔버(1100)내 다수의 공정챔버(1200)가 개방된 상태에서 동시에 이루어질 수도 있다.
다음으로, 도 2b는 공정챔버(1200)에 기판(1010)과 마스크(1020)가 로딩된 상태에서 공정진행을 위해 하부 공정챔버(1220)가 상부로 이동되어 상부 공정챔버(1210)와 결합된 상태를 도시한 것이다.
위 도 2b를 참조하면, 공정챔버(1200)가 개방된 상태에서 기판(1010)과 마스크(1020)가 로딩된 후, 이송부(1110)에 의해 하부 공정챔버(1220)가 상승되어 하부 공정챔버(1220)가 상부 공정챔버(1210)에 결합하게 됨으로서 공정챔버(1200)의 밀폐된 반응 공간이 형성될 수 있다.
이와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합되어 공정 진행이 가능한 밀폐된 반응 공간이 형성되는 경우, 공정 진행에 따라 공정 가스 공급부(1212)로 필요한 가스가 인입되면서 기판(1010)에 대한 원자층 증착 공정이 수행될 수 있다.
한편, 위와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 기판(1010)에 대한 원자층 증착 공정이 완료되는 경우, 하부 공정챔버(1220)가 이송부(1110)에 의해 하강되어 상부 공정챔버(1210)와 하부 공정챔버(1220)가 분리되는 언로딩 동작이 수행되며, 이와 같은 언로딩 상태에서 공정이 완료된 기판(1010)에 대해 공정챔버(1200) 외부로 반출이 이루어지게 된다.
도 3a 내지 도 3c는 본 발명의 실시예에 따른 공정챔버에서 스캔형 반응기를 이용한 원자층 증착 공정에 따른 공정챔버의 단면 구조를 도시한 것이다.
이하, 도 3a 내지 도 3c를 참조하여 스캔형 반응기(1600)를 이용한 원자층 증착 공정의 동작 개념을 상세히 설명하기로 한다.
먼저, 도 3a에서 보여지는 바와 같이, 하부 공정챔버(1220)가 이송부(1110)에 의해 상부 공정챔버(1210)로부터 수직방향의 하부로 이동되어 개방된 상태에서 기판(1010)과 마스크(1020)가 공정챔버(1200) 내부의 기판 지지부(1015)와 마스크 지지부(1017)에 순차적으로 로딩된다.
위와 같이 기판(1010)과 마스크(1020)가 정상적으로 로딩이 완료되는 경우, 도 3b에서와 같이 이송부(1110)에 의해 하부 공정챔버(1220)가 상승되어 하부 공정챔버(1220)가 상부 공정챔버(1210)에 결합하게 되며, 이와 같은 결합에 따라 원자층 증착 공정 진행이 가능한 밀폐된 반응공간이 형성되는 경우, 가스 공급부(1212)로 원자층 증착 공정에 필요한 공정가스가 순차적으로 인입되면서 기판(1010)에 대한 원자층 증착 공정이 수행될 수 있다.
이때, 본 발명의 실시예에 따른 스캔형 반응기(1600)를 이용하는 원자층 증착 공정에서는 공정챔버(1200)의 상부 공정챔버(1210)과 하부 공정챔버(1220)가 결합된 상태에서 원료전구체를 흡착시키는 공정만 진행하게 되며, 원료전구체의 흡착 공정이 완료된 후에는 상부 공정챔버(1210)와 하부 공정챔버(1220)를 분리한 후, 스캔형 반응기(1600)를 이용하여 반응전구체 반응 공정을 진행하게 된다.
또한, 이와 같이 반응공간에서 원료전구체를 흡착시키는 방법으로는 예를 들어 도 3b에서와 같이 상부 공정챔버(1210)의 상부면 외곽에 구성되는 가스공급부(1212)를 통해 가스를 공급하여 기판(1010)상 원료전구체를 분사시키게 되며, 기판(1010)상 원료전구체가 충분히 분사된 경우, 가스공급부(1212)로 퍼지가스를 공급하여 기판(1010)상에 물리적으로 결합하고 있는 물리흡착층의 원료전구체에 대해서는 기판(1010)으로부터 분리시킴으로써 원료전구체의 단일 분자층을 얻을 수 있도록 한다.
한편, 공정챔버(1200)내에서의 원료전구체 흡착 공정에 있어서, 위 설명에서는 가스공급부(1212)가 상부 공정챔버(1210)의 측면에 구현되어 기판(1010)의 측면에서 원료전구체가 수평으로 분사되는 것을 예를 들어 설명하였으나, 이는 하나의 실시예일뿐 이러한 가스공급부(1212)는 상부 공정챔버(1210)상 중앙부에 샤워헤드(shower head) 디퓨저(defuser) 등으로 형성되어 원료전구체가 기판(1010)상 수직으로 분사되는 형태로도 실시 가능하다.
이어, 위와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체에 대한 흡착이 완료되는 경우, 도 3c에서와 같이 다시 상부 공정챔버(1210)와 하부 공정챔버(1220)를 분리시킨 후, 스캔형 반응기(1600)를 기판(1010)으로 수평한 방향으로 편도 또는 왕복 이송시키면서 기판(1010)상으로 반응전구체를 분사하여 원자층 박막을 형성시키게 된다.
위와 같은 스캔형 반응기(1600)를 이용한 원자층 박막 형성 공정을 보다 자세히 설명하면, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1200)의 일측면에 위치하고 있는 스캔형 반응기(1600) 보다 낮은 기설정된 위치에 위치시킨다. 이때, 하부 공정챔버(1220)의 위치는 스캔형 반응기(1600)가 하부 공정챔버(1220)의 기판(1010)위로 수평 방향으로 이동하면서 반응전구체를 분사할 수 있도록 미리 계산된 최적화된 위치가 될 수 있다.
이어, 위와 같이 스캔형 반응기(1600)가 하부 공정챔버(1220)의 기판(1010)으로 수평방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(1600)의 이동이 가능하게 되는 경우, 스캔형 반응기(1600)를 하부 공정챔버(1220)의 기판(1010)위로 수평 방향으로 편도 또는 왕복 이동시키면서 스캔형 반응기(1600)의 하부에 형성된 가스공급부(도시하지 않음)를 통해 반응전구체를 기판으로 분사시키게 되며, 스캔형 반응기(1600)로부터 분사되는 반응전구체는 기판(1010)위에 흡착되어 있던 원료전구체와 화학반응을 수행하여 원자층 박막을 형성하게 되는 것이다.
이때, 위와 같은 스캔형 반응기(1600)는 독립적인 각각의 구동수단에 의해 각 공정챔버(1200)별 독립적으로 구동되도록 할 수도 있으며, 도 4에서 보여지는 바와 같이 연결바 등의 연결수단(1610)을 통해 다수의 스캔형 반응기(1600)를 공동으로 연결시키고, 연결수단(1610)을 이동 제어하는 통합적인 반응기 이송수단(1620)을 통해 동시에 다수의 스캔형 반응기(1600)가 구동되도록 할 수도 있다. 또한, 본 발명의 실시예에서는 진공챔버내 다수의 공정챔버가 적층된 형태의 원자층 증착 장치에서 스캔형 반응기의 동작을 예로써 설명하였으나, 진공챔버내 하나의 공정챔버가 존재하는 경우에도 스캔형 반응기를 이용한 원자층 증착 공정을 동일하게 적용할 수 있다.
한편, 위와 같은 스캔형 반응기를 이용한 원자층 증착 공정의 보다 상세한 동작은 후술되는 도 5a 내지 도 5j에서 보다 상세히 설명하기로 한다.
도 5a는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 반응전구체를 포함하는 공정가스가 스캔형 반응기로부터 분사되는 개략적인 구성을 도시한 것이다.
도 5a를 참조하면, 스캔형 반응기(1600)의 하부 중앙에 형성되는 가스공급부(1601)를 통해 기판(1010)상 수직한 방향으로 반응전구체를 공급하고, 스캔형 반응기(1600)의 하부 양쪽 측면부 또는 측면 둘레부에 형성되는 가스배기부(1602)를 통해 원료전구체와 반응하지 못하고, 기판상 잔존하는 반응전구체를 배기시키도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1200)의 일측면에 위치하고 있는 스캔형 반응기(1600) 보다 낮은 기설정된 위치에 위치시킨다. 이때, 하부 공정챔버(1220)의 위치는 스캔형 반응기(1600)가 하부 공정챔버(1220)의 기판(1010)위로 수평 방향으로 이동하면서 반응전구체를 분사할 수 있도록 미리 계산된 최적화된 위치가 될 수 있다.
이어, 위와 같이 스캔형 반응기(1600)가 하부 공정챔버(1220)의 기판(1010)으로 수평 방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(1600)의 이동이 가능하게 되는 경우, 기설정된 위치에서 대기 중이던 스캔형 반응기(1600)를 원료전구체가 흡착된 상태인 하부 공정챔버(1220)의 기판(1010) 상으로 이동시키면서 반응전구체를 분사하게 된다.
즉, 스캔형 반응기(1600)를 하부 공정기판(1220) 상 원료전구체가 흡착된 상태인 기판(1010) 위로 기설정된 이동속도로 이동시키면서, 스캔형 반응기(1600)의 하부 중앙에 구현되는 가스공급부(1601)를 통해 기판(1010)상으로 반응전구체를 균일하게 분사시키게 되며, 스캔형 반응기(1600)로부터 분사되는 반응전구체는 기판(1010)위에 흡착되어 있던 원료전구체와 화학반응을 수행하여 원자층 박막을 형성하게 된다.
이때, 이러한 스캔형 반응기(1600)는 하부 공정챔버(1220)의 기판(1010)위를 수평 방향으로 편도 또는 왕복 이동하면서 위와 같은 반응전구체의 분사를 수행할 수 있다. 또한, 반응전구체의 원활한 반응 및 박막 특성의 향상을 위하여 하부 공정챔버(1220)에 히터(heater) 기능을 부여하여 기판(1010)의 온도 조절이 가능하도록 하여 서셉터의 기능을 수행할 수도 있다.
한편, 스캔형 반응기(1600)를 이용한 원자층 증착에서는 스캔형 반응기(1600)를 통해 반응전구체가 분사되는 경우, 기판(1010)상에서는 원료전구체와 반응전구체가 화학 반응을 통해 원자층 박막이 형성되며, 원료전구체와 반응하지 못한 반응전구체는 스캔형 반응기(1600)가 이동함에 따라 스캔형 반응기(1600)의 하부 양쪽 측면부에 형성된 가스배기부(1602)를 통해 배기될 수 있다. 따라서, 기판(1010)상에서 원료전구체와 반응하지 못하고 기판(1010)위에 잔존하는 반응전구체의 제거를 위한 별도의 퍼지공정을 수행하지 않더라도 반응전구체를 제거할 수도 있게 된다.
또한, 위 도 5a에 도시된 스캔형 반응기(1600)의 구조에서는 하부 공정챔버(1220)에만 기판(1010)이 탑재된 것을 예로 들어 하부 공정챔버(1220)의 기판(1010)으로만 반응전구체를 분사하는 구조를 설명하였으나, 상부 공정챔버(1210)에도 기판(1010)을 탑재시킬 수 있는 구조에서는 스캔형 반응기(1600)를 이용하여 2 개의 기판(1010)에 대한 원자층 박막 형성을 동시에 진행하는 것도 가능하다.
이러한 경우에는 도 5b에서 보여지는 바와 같이 스캔형 반응기(1600)의 상부와 하부에 반응전구체를 분사하는 가스공급부(1601)와 가스배기부(1602)를 동일한 구조로 형성하여 상부 공정챔버(1210)의 기판(1010)과 하부 공정챔버(1220)의 기판(1010)에 대해 동시에 원자층 박막 형성이 가능하도록 할 수도 있다.
다음으로, 도 5c는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 플라즈마(plasma) 공정이 가능한 개략적인 구성을 도시한 것이다.
도 5c를 참조하면, 스캔형 반응기(1600)의 하부 중앙에 형성되는 가스공급부(1601)를 통해 기판(1010)상 수직한 방향으로 반응전구체를 공급하고, 스캔형 반응기(1600)의 하부 양쪽 측면부에 형성되는 가스배기부(1602)를 통해 원료전구체와 반응하지 못하고, 기판(1010)상 잔존하는 반응전구체를 배기시키도록 하는 구조를 나타내고 있다. 이때, 도 5c에서는 스캔형 반응기(1600)를 이용한 원자층 증착 공정에 플라즈마를 이용하기 위해 도 5a에서와는 달리 스캔형 반응기(1600)의 하부에 플라즈마 형성을 위한 전극(1604)을 배치한 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1220)의 일측면에 위치하고 있는 스캔형 반응기(1600) 보다 낮은 기설정된 위치에 위치시킨다.
이어, 위와 같이 스캔형 반응기(1600)가 하부 공정챔버(1220)의 기판(1010)으로 수평 방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(1600)의 이동이 가능하게 되는 경우, 기설정된 위치에서 대기 중이던 스캔형 반응기(1600)를 원료전구체가 흡착된 상태인 하부 공정챔버(1220)의 기판(1010) 상으로 이동시키면서 반응전구체를 분사하게 된다.
즉, 스캔형 반응기(1600)를 하부 공정기판(1220) 상 원료전구체가 흡착된 상태인 기판(1010) 위로 기설정된 이동속도로 이동시키면서, 스캔형 반응기(1600)의 하부 중앙에 구현되는 가스공급부(1601)를 통해 기판(1010)상으로 반응전구체를 균일하게 분사시키게 되며, 스캔형 반응기(1600)로부터 분사되는 반응전구체는 기판(1010)위에 흡착되어 있던 원료전구체와 화학반응을 수행하여 원자층 박막을 형성하게 된다.
이때, 도 5c에서는 스캔형 반응기(1600)를 이용하여 반응전구체를 분사시키는 시점에 스캔형 반응기(1600)의 하부에 형성된 플라즈마 발생용 전극(1604)에 전원을 공급하여 기판(1010)상으로 플라즈마(1615)를 발생시켜 플라즈마(1615)에 의해 반응전구체가 활성화되면 원료전구체와 화학적 반응을 통해 원자층 박막을 형성시키게 된다.
또한, 위 도 5c에 도시된 스캔형 반응기(1600)의 구조에서는 하부 공정챔버(1220)에만 기판이 탑재된 것을 예로 들어 하부 공정챔버(1220)의 기판(1010)으로만 반응전구체를 분사하는 구조를 설명하였으나, 상부 공정챔버(1210)에도 기판(1010)을 탑재시킬 수 있는 구조에서는 스캔형 반응기(1600)를 이용하여 2 개의 기판(1010)에 대한 원자층 박막 형성을 동시에 진행하는 것도 가능하다.
이러한 경우에는 도 5d에서 보여지는 바와 같이 스캔형 반응기(1600)의 상부와 하부에 반응전구체를 분사하는 가스공급부(1601)와 가스배기부(1602), 플라즈마 발생을 위한 전극(1604)을 동일한 구조로 형성하여 상부 공정챔버(1210)의 기판(1010)과 하부 공정챔버(1220)의 기판(1010)에 대해 동시에 플라즈마(1615)를 이용한 원자층 박막 형성이 가능하도록 할 수도 있다.
또한, 위 도 5c에 도시된 플라즈마(1615)를 이용하는 스캔형 반응기(1600)의 구조에서는 가스공급부(1601)가 중앙에 형성되고, 가스배기부(1602)가 양쪽 측부에 형성됨으로써 반응전구체가 스캔형 반응기(1600)의 중앙에서 분사되어 양쪽 측면으로 배기되는 구조를 설명하였으나, 가스공급부(1601)와 가스배기부(1602)가 스캔형 반응기(1600)의 각각의 측부에 서로 대응되게 형성되는 구조도 가능하다.
이러한 경우에는 도 5e에서 보여지는 바와 같이 스캔형 반응기(1600)의 하부 일측에 형성되는 가스공급부(1601)에서 반응전구체가 분사되며, 분사된 반응전구체 중 원료전구체와 반응하지 못하고, 기판(1010)상 잔존하는 반응전구체는 스캔형 반응기(1600)의 하부 타측에 형성되는 가스배기부(1602)를 통해 배기될 수 있다.
다음으로, 도 5f는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 공정가스와 퍼지가스가 스캔형 반응기의 하부로부터 동시에 분사되는 개략적인 구성을 도시한 것이다.
도 5f를 참조하면, 스캔형 반응기(1600)의 하부 중앙에 형성되는 가스공급부(1601)를 통해 기판상 수직한 방향으로 반응전구체를 공급하고, 스캔형 반응기(1600)의 하부 양쪽 측면부에 형성되는 가스배기부(1602)를 통해 원료전구체와 반응하지 못하고, 기판(1010)상 잔존하는 반응전구체를 배기시키도록 하는 구조를 나타내고 있다. 이때, 도 5f에서는 도 5a에서와는 달리 가스배기부(1602)보다 더 외곽의 양쪽 측면 또는 측면 둘레부에는 퍼지가스 공급부(1603)를 추가로 형성하여 반응전구체의 분사 시 퍼지가스도 동시에 분사하여 에어커튼(air curtain) 효과를 가지는 가스장벽을 형성시키는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1200)의 일측면에 위치하고 있는 스캔형 반응기(1600) 보다 낮은 기설정된 위치에 위치시킨다.
이어, 위와 같이 스캔형 반응기(1600)가 하부 공정챔버(1220)의 기판(1010)으로 수평 방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(1600)의 이동이 가능하게 되는 경우, 기설정된 위치에서 대기 중이던 스캔형 반응기(1600)를 원료전구체가 흡착된 상태인 하부 공정챔버(1220)의 기판(1010) 상으로 이동시키면서 반응전구체를 분사하게 된다.
즉, 스캔형 반응기(1600)를 하부 공정기판(1220) 상 원료전구체가 흡착된 상태인 기판(1010) 위로 기설정된 이동속도로 이동시키면서, 스캔형 반응기(1600)의 하부 중앙에 구현되는 가스공급부(1601)를 통해 기판(1010)상으로 반응전구체를 균일하게 분사시키게 되며, 스캔형 반응기(1600)로부터 분사되는 반응전구체는 기판(1010)위에 흡착되어 있던 원료전구체와 화학반응을 수행하여 원자층 박막을 형성하게 된다.
이때, 위 도 5f에서는 스캔형 반응기(1600)를 이용하여 반응전구체를 분사시키는 시점에 스캔형 반응기(1600)의 하부에 가스배기부(1602) 보다 더 외곽쪽에 형성된 퍼지가스 공급부(1603)를 통해 퍼지가스를 분사시키도록 한다.
이와 같은 퍼지가스의 분사에 따라 하부 공정챔버(1220)의 기판(1010)에서 원료전구체와 반응하지 못하고, 잔존하던 반응전구체가 기판(1010)으로부터 분리되어 가스배기부(1602)로 배출될 수 있다. 또한, 퍼지가스 공급부(1603)로부터 기판(1010)으로 수직으로 분사되는 퍼지가스가 에어커튼 역할을 수행함으로써, 가스공급부(1601)로부터 기판(1010)으로 분사되는 반응전구체 중 스캔형 반응기(1600)와 기판(1010) 사이의 공간으로 누출되는 반응전구체가 퍼지가스에 의해 가로막혀 공정챔버(1200)의 외부로 누출되는 것이 방지될 수 있다.
또한, 위 도 5f에 도시된 스캔형 반응기(1600)의 구조에서는 하부 공정챔버(1220)에만 기판(1010)이 탑재된 것을 예로 들어 하부 공정챔버(1220)의 기판(1010)으로만 반응전구체를 분사하는 구조를 설명하였으나, 상부 공정챔버(1210)에도 기판(1010)을 탑재시킬 수 있는 구조에서는 스캔형 반응기(1600)를 이용하여 2개의 기판(1010)에 대한 원자층 박막 형성을 동시에 진행하는 것도 가능하다.
이러한 경우에는 도 5g에서와 같이 스캔형 반응기(1600)의 상부와 하부에 반응전구체를 분사하는 가스공급부(1601)와 가스배기부(1602), 그리고 퍼지가스를 분사하는 퍼지가스 공급부(1603)를 동일한 구조로 형성하여 상부 공정챔버(1210)의 기판(1010)과 하부 공정챔버(1220)의 기판(1010)에 대해 동시에 원자층 박막 형성이 가능하도록 할 수도 있다.
다음으로, 도 5h는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 공정가스와 퍼지가스가 스캔형 반응기의 하부로부터 동시에 분사되며, 플라즈마 공정이 가능한 개략적인 구성을 도시한 것이다.
도 5h를 참조하면, 스캔형 반응기(1600)의 하부 중앙에 형성되는 가스공급부(1601)를 통해 기판(1010)상 수직한 방향으로 반응전구체를 공급하고, 스캔형 반응기(1600)의 하부 양쪽 측면부에 형성되는 가스배기부(1602)를 통해 원료전구체와 반응하지 못하고, 기판(1010)상 잔존하는 반응전구체를 배기시키도록 하는 구조를 나타내고 있다. 이때, 도 5h에서는 스캔형 반응기(1600)를 이용한 원자층 증착 공정에 플라즈마(1615)를 이용하기 위해 스캔형 반응기(1600)의 하부에 플라즈마(1615) 형성을 위한 전극(1604)을 배치하며, 또한, 가스배기부(1602)보다 더 외곽의 양쪽 측면부에는 퍼지가스 공급부(1603)를 추가로 형성하여 반응전구체의 분사 시 퍼지가스도 동시에 분사하여 에어커튼을 형성시키는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1200)의 일측면에 위치하고 있는 스캔형 반응기(1600) 보다 낮은 기설정된 위치에 위치시킨다.
이어, 위와 같이 스캔형 반응기(1600)가 하부 공정챔버(1220)의 기판(1010)으로 수평 방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(1600)의 이동이 가능하게 되는 경우, 기설정된 위치에서 대기 중이던 스캔형 반응기(1600)를 원료전구체가 흡착된 상태인 하부 공정챔버(1220)의 기판(1010) 상으로 이동시키면서 반응전구체를 분사하게 된다.
즉, 스캔형 반응기(1600)를 하부 공정기판(1220) 상 원료전구체가 흡착된 상태인 기판(1010) 위로 기설정된 이동속도로 이동시키면서, 스캔형 반응기(1600)의 하부 중앙에 구현되는 가스공급부(1601)를 통해 기판(1010)상으로 반응전구체를 균일하게 분사시키게 되며, 스캔형 반응기(1600)로부터 분사되는 반응전구체는 기판(1010)위에 흡착되어 있던 원료전구체와 화학반응을 수행하여 원자층 박막을 형성하게 된다.
이때, 도 5h에서는 스캔형 반응기(1600)를 이용하여 반응전구체를 분사시키는 시점에 스캔형 반응기(1600)의 하부에 형성된 플라즈마(1615) 발생용 전극(1604)에 전원을 공급하여 기판(1010)상으로 플라즈마(1615)를 발생시켜 플라즈마(1615)에 의한 원료전구체와 반응전구체간 화학적 반응을 통해 원자층 박막을 형성시키게 된다.
또한, 위 도 5h에서는 스캔형 반응기(1600)를 이용하여 반응전구체를 분사시키는 시점에 스캔형 반응기(1600)의 하부에 가스배기부(1602) 보다 더 외곽쪽에 형성된 퍼지가스 공급부(1603)를 통해 퍼지가스를 분사시키도록 한다.
이와 같은 퍼지가스의 분사에 따라 하부 공정챔버(1220)의 기판(1010)에서 원료전구체와 반응하지 못하고, 잔존하던 반응전구체가 기판(1010)으로부터 분리되어 가스배기부(1602)로 배출될 수 있다. 또한, 퍼지가스 공급부(1603)로부터 기판(1010)으로 수직으로 분사되는 퍼지가스가 에어커튼 역할을 수행하여 가스공급부(1601)로부터 기판(1010)으로 분사되는 반응전구체 중 스캔형 반응기(1600)와 기판(1010) 사이의 공간으로 누출되는 반응전구체가 퍼지가스에 의해 가로막혀 공정챔버(1200)의 외부로 누출되는 것이 방지될 수 있다.
또한, 위 도 5h에 도시된 스캔형 반응기(1600)의 구조에서는 하부 공정챔버(1220)에만 기판(1010)이 탑재된 것을 예로 들어 하부 공정챔버(1220)의 기판(1010)으로만 반응전구체를 분사하는 구조를 설명하였으나, 상부 공정챔버(1210)에도 기판(1010)을 탑재시킬 수 있는 구조에서는 스캔형 반응기(1600)를 이용하여 2 개의 기판(1010)에 대한 원자층 박막 형성을 동시에 진행하는 것도 가능하다.
이러한 경우에는 도 5i에서와 같이 스캔형 반응기(1600)의 상부와 하부에 반응전구체를 분사하는 가스공급부(1601)와 가스배기부(1602), 플라즈마 발생을 위한 전극(1604), 퍼지가스를 분사하는 퍼지가스 공급부(1603)를 동일한 구조로 형성하여 상부 공정챔버(1210)의 기판(1010)과 하부 공정챔버(1220)의 기판(1010)에 대해 동시에 원자층 박막 형성이 가능하도록 할 수도 있다.
다음으로, 도 5j는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 기판으로 열처리를 수행할 수 있도록 하는 개략적인 구성을 도시한 것이다.
위와 같은 도 5j에 도시되는 스캔형 반응기(1600-1)는 반응전구체를 분사하는 반응기가 아니며, 기판(1010)에 대해 성막공정 이전, 성막공정 중간, 성막공정 후 열선 또는 램프를 이용하여 열처리 또는 자외선 처리를 수행하는 처리 수단(1605)을 구비한 반응기로써, 열처리 또는 자외선 처리 등을 통해 기판(1010)의 세정, 박막의 표면 개질(treatment) 도는 물성변화 등을 수행하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1200)의 일측면에 위치하고 있는 스캔형 반응기(1600-1) 보다 낮은 기설정된 위치에 위치시킨다.
이어, 위와 같이 스캔형 반응기(1600-1)가 하부 공정챔버(1220)의 기판(1010)으로 수평 방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(1600-1)의 이동이 가능하게 되는 경우, 기설정된 위치에서 대기 중이던 스캔형 반응기(1600-1)를 하부 공정챔버(1220)의 기판(1010) 또는 기판(1010)에 증착된 박막상으로 이동시키면서 열처리 또는 자외선 처리를 수행하게 된다. 이때, 위와 같은 열처리를 수행하는 열처리 수단(1605)으로는 예를 들어 IR 램프, 자외선 처리 수단으로는 UV 램프 등이 사용될 수 있다.
이하, 열처리 또는 자외선 처리용 스캔형 반응기(1600-1)의 배치 및 공정주기를 살펴보면, 반응전구체를 분사하는 스캔형 반응기(1600)와 별도의 반응기로 근접하게 배치될 수 있으며, 반응전구체-스캔형 반응기(1600)의 이송 주기와 동시이송 및 공정, 동시이송 및 주기별 공정, 개별이송 및 개별공정을 수행할 수 있다.
도 6a 내지 도 6c는 본 발명의 다른 실시예에 따른 공정챔버에서 스캔형 반응기를 이용한 원자층 증착 공정에 따른 공정챔버의 단면 구조를 도시한 것이다.
이하, 도 6a 내지 도 6c를 참조하여 스캔형 반응기(2600)를 이용한 원자층 증착 공정의 동작 개념을 상세히 설명하기로 한다.
먼저, 도 6a에서 보여지는 바와 같이, 하부 공정챔버(1220)가 이송부(1110)에 의해 상부 공정챔버(1210)로부터 수직방향의 하부로 이동되어 개방된 상태에서 기판(1010)과 마스크(1020)가 공정챔버(1200) 내부의 기판 지지부(1015)와 마스크 지지부(1017)에 순차적으로 로딩된다.
위와 같이 기판(1010)과 마스크(1020)가 정상적으로 로딩이 완료되는 경우, 도 6b에서와 같이 이송부(1110)에 의해 하부 공정챔버(1220)가 상승되어 하부 공정챔버(1220)가 상부 공정챔버(1210)에 결합하게 되며, 이와 같은 결합에 따라 원자층 증착 공정 진행이 가능한 밀폐된 반응공간이 형성되는 경우, 가스 공급부(1212)로 원자층 증착 공정에 필요한 공정가스가 순차적으로 인입되면서 기판(1010)에 대한 원자층 증착 공정이 수행될 수 있다.
이때, 본 발명의 실시예에 따른 스캔형 반응기(2600)를 이용하는 원자층 증착 공정에서는 공정챔버(1200)의 상부 공정챔버(1210)과 하부 공정챔버(1220)가 결합된 상태에서 원료전구체를 흡착시키는 공정만 진행하게 되며, 원료전구체의 흡착 공정이 완료된 후에는 도 6c에서와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)를 분리한 후, 스캔형 반응기(2600)를 이용하여 기판(1010)상 흡착된 원료전구체와 반응전구체간 반응 공정을 진행하게 된다.
위와 같은 스캔형 반응기(2600)를 이용한 원자층 박막 형성 공정을 보다 자세히 설명하면, 도 6b에서와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1200)의 일측면에 위치하고 있는 스캔형 반응기(2600) 보다 낮은 기설정된 위치에 위치시킨다. 이때, 하부 공정챔버(1220)의 위치는 스캔형 반응기(2600)가 하부 공정챔버(1220)의 기판(1010)위로 수평 방향으로 이동할 수 있도록 미리 계산된 최적화된 위치가 될 수 있다.
이때, 도 6b에 도시된 실시예에서는 앞서서 설명한 도 3b에서와는 달리, 진공챔버(1200)내 비활성 반응전구체(2620)가 일정한 압력으로 채워진 상태이며, 이와 같은 상태에서 기판(1010)상 원료전구체 흡착 공정이 완료되어 상부 공정챔버(1210)와 하부 공정챔버(1220)가 분리되는 경우, 도 6c에서 보여지는 바와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)의 분리된 공간에도 비활성 반응전구체(2620)가 채워지게 된다.
이러한 비활성 반응전구체(2620)는 플라즈마(plasma) 또는 자외선(ultraviolet : UV) 등과 같은 외부의 특정 에너지를 이용하지 않는 경우에는 기판(1010)상 흡착된 원료전구체와 반응하지 않는 물질로 선택될 수 있으며, 공정챔버(1200)내로 기판(1010)과 마스크(1020)가 로딩되어 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합되는 시점에 진공챔버(1100)내에 채워질 수 있다.
또한, 스캔형 반응기(2600)에는 반응전구체, 퍼지가스 등을 분사하는 가스공급부를 가졌던 도 3a의 스캔형 반응기(1600)와는 달리 공정챔버(1200)내 위치한 비활성 반응전구체(2620)를 선택적으로 활성화시키기 위해 기판(1010)상으로 플라즈마 또는 자외선 등의 에너지를 제공할 수 있도록 하는 플라즈마 발생용 전극 또는 자외선 조사가 가능한 UV 램프 등과 같은 자외선 조사장치가 구비될 수 있다.
따라서, 하부 공정챔버(1220)가 상부 공정챔버(1210)로부터 분리되어 공정챔버(1200)의 일측면에 위치하고 있는 스캔형 반응기(2600)가 하부 공정챔버(1220)의 기판(1010)상으로 수평방향으로 이동할 수 있는 기설정된 위치로 하강되는 경우, 기판(1010)상으로 스캔형 반응기(2600)를 이동시키면서 플라즈마 또는 자외선 등의 에너지를 제공하여 기판(1010)상 존재하는 비활성 반응전구체(2620)만을 선택적으로 활성화시킴으로써 기판(1010)위에 흡착되어 있던 원료전구체와 화학반응을 수행하도록 하여 원자층 박막을 형성하게 되는 것이다.
이때, 위와 같은 스캔형 반응기(2600)는 독립적인 각각의 구동수단에 의해 각 공정챔버(1200)별 독립적으로 구동되도록 할 수도 있으며, 전술한 도 4에서 보여지는 바와 같이 연결바 등의 연결수단 등을 통해 다수의 스캔형 반응기(2600)를 공동으로 연결시켜 동시에 구동되도록 할 수도 있다. 또한, 본 발명의 실시예에서는 진공챔버내 다수의 공정챔버가 적층된 형태의 원자층 증착 장치에서 스캔형 반응기의 동작을 예로써 설명하였으나, 진공챔버내 하나의 공정챔버가 존재하는 경우에도 스캔형 반응기를 이용한 원자층 증착 공정을 동일하게 적용할 수 있다.
도 7a는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 스캔형 반응기에서 플라즈마를 이용한 원자층 박막 형성 공정의 개략적인 구성을 도시한 것이다.
도 7a를 참조하면, 스캔형 반응기(1600)의 하부에 플라즈마 발생을 위한 전극(2610)을 배치한 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1220)의 일측면에 위치하고 있는 스캔형 반응기(2600) 보다 낮은 기설정된 위치에 위치시킨다.
이때, 위 설명한 바와 같이, 예를 들어 하부 공정챔버(1220)가 상부 공정챔버(1210)와 결합되어 원료전구체 흡착 공정이 수행되는 동안에 진공챔버(1100)에 채워진 비활성 반응전구체(2620)가 상부 공정챔버(1210)와 하부 공정챔버(1220)의 분리된 공간상에도 채워지게 된다.
이어, 스캔형 반응기(2600)가 하부 공정챔버(1220)의 기판(1010)으로 수평 방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(2600)의 이동이 가능하게 되는 경우, 기설정된 위치에서 대기 중이던 스캔형 반응기(2600)를 하부 공정챔버(1220)의 기판(1010) 상으로 이동시키면서 기판(1010)상으로 플라즈마(2615)를 발생시키게 된다.
즉, 스캔형 반응기(1600)가 기판(1010)상으로 이동을 시작하는 시점에 스캔형 반응기(2600)의 하부에 형성된 플라즈마 발생용 전극(2610)에 전원을 공급하여 기판(1010)상으로 플라즈마(2615)를 발생시키며, 플라즈마(2615)에 의해 기판(1010)상에 존재하던 비활성 반응전구체(2620)만 선택적으로 활성화되어 기판(1010)상 흡착된 원료전구체와 화학반응이 수행되도록 함으로써 원자층 박막을 형성시키게 된다.
한편, 위 도 7a에 도시된 스캔형 반응기(2600)의 구조에서는 하부 공정챔버(1220)에만 기판(1010)이 탑재된 것을 예로 들어 하부 공정챔버(1220)의 기판(1010)에 대해서만 원자층 박막을 형성하는 구조를 설명하였으나, 상부 공정챔버(1210)에도 기판(1010)을 탑재시킬 수 있는 구조에서는 스캔형 반응기(2600)를 이용하여 2 개의 기판(1010)에 대한 원자층 박막 형성을 동시에 진행하는 것도 가능하다.
이러한 경우에는 도 7b에서 보여지는 바와 같이 스캔형 반응기(2600)의 상부와 하부에 플라즈마(2615)에 의해 반응전구체를 활성화시키기 위한 플라즈마 발생용 전극(2610)을 동일한 구조로 형성하여 상부 공정챔버(1210)의 기판(1010)과 하부 공정챔버(1220)의 기판(1010)에 대해 동시에 원자층 박막 형성이 가능하도록 할 수도 있다.
도 7c는 본 발명의 실시예에 따른 스캔형 반응기와 공정챔버의 단면 구조로서 스캔형 반응기에서 자외선 또는 적외선을 이용한 원자층 박막 형성 공정의 개략적인 구성을 도시한 것이다.
도 7c를 참조하면, 스캔형 반응기(2600)의 하부에 자외선 또는 적외선 조사를 위한 자외선/적외선 조사장치(2650)를 배치한 구조를 나타내고 있으며, 이러한 자외선/적외선 조사 장치(2650)는 예를 들어 UV 램프, IR램프 등이 될 수 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 원료전구체 흡착 및 퍼지공정이 완료되는 경우, 하부 공정챔버(1220)를 이송부(1110)에 의해 하강시켜 상부 공정챔버(1210)와 분리시킨 후, 공정챔버(1220)의 일측면에 위치하고 있는 스캔형 반응기(2600) 보다 낮은 기설정된 위치에 위치시킨다.
이때, 위 설명한 바와 같이, 예를 들어 하부 공정챔버(1220)가 상부 공정챔버(1210)와 결합되어 원료전구체 흡착 공정이 수행되는 동안에 진공챔버(110)에 채워진 비활성 반응전구체(2620)가 상부 공정챔버(1210)와 하부 공정챔버(1220)의 분리된 공간상에도 채워지게 된다.
이어, 스캔형 반응기(2600)가 하부 공정챔버(1220)의 기판(1010)으로 수평 방향으로 이동할 수 있는 기설정된 위치로 하부 공정챔버(1220)가 하강되어 스캔형 반응기(2600)의 이동이 가능하게 되는 경우, 기설정된 위치에서 대기 중이던 스캔형 반응기(2600)를 하부 공정챔버(1220)의 기판(1010) 상으로 이동시키면서 자외선 또는 적외선(2652)을 조사하게 된다.
즉, 스캔형 반응기(2600)가 기판(1010)상으로 이동을 시작하는 시점에 스캔형 반응기(2600)의 하부에 구비되는 자외선/적외선 조사장치(2650)를 통해 기판(1010)상으로 자외선 또는 적외선(2652)을 조사시키며, 자외선 또는 적외선(2652)에 의해 기판(1010)상에 존재하던 비활성 반응전구체(2620)만 선택적으로 활성화되어 기판(1010)상 흡착된 원료전구체와 화학반응이 수행되도록 함으로써 원자층 박막을 형성시키게 된다.
한편, 위 도 7c에 도시된 스캔형 반응기(2600)의 구조에서는 하부 공정챔버(1220)에만 기판(1010)이 탑재된 것을 예로 들어 하부 공정챔버(1220)의 기판(1010)에 대해서만 원자층 박막을 형성하는 구조를 설명하였으나, 상부 공정챔버(1210)에도 기판(1010)을 탑재시킬 수 있는 구조에서는 스캔형 반응기(2600)를 이용하여 2 개의 기판(1010)에 대한 원자층 박막 형성을 동시에 진행하는 것도 가능하다.
이러한 경우에는 도 7d에서 보여지는 바와 같이 스캔형 반응기(2600)의 상부와 하부에 자외선 또는 적외선(2652)에 의해 반응전구체를 활성화시키기 위한 자외선/적외선 조사장치(2650)를 동일한 구조로 형성하여 상부 공정챔버(1210)의 기판(1010)과 하부 공정챔버(1220)의 기판(1010)에 대해 동시에 원자층 박막 형성이 가능하도록 할 수도 있다.
상기한 바와 같이, 본 발명에 따르면, 원자층 증착에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수개 배치하며, 각 단위 공정챔버별로 원료전구체가 흡착된 기판위를 이동하면서 반응전구체를 원료전구체와 반응시키는 스캔형 반응기를 구비하여 원료전구체와 반응전구체의 공존영역을 원천적으로 배제함으로써, 기판외 성막방지에 따른 추가적인 성막 제거공정 불필요, 메인터넌스 주기연장, 파티클 발생억제를 통한 박막품질 및 생산성을 향상시킬 수 있다. 또한, 스캔형 반응기에 열처리, 플라즈마 처리 등의 부가적인 기능을 선택적으로 추가하여 다양한 특성의 원자층 박막의 형성이 가능하게 함으로써 다양한 공정대응이 가능하여 필요에 따른 최적화된 박막의 제공이 가능하고, 부가적인 설비 감소로 부대 비용 및 유지보수 비용의 절감이 가능하도록 한다.
한편 상술한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 예를 들어, 본 발명의 실시예에서는 원자층 증착장치에서의 동작을 예를 들어 설명하고 있으나, 본 발명은 PECVD에서도 동일하게 적용 가능하다.
따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.

Claims (44)

  1. 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 공정챔버와,
    상기 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에 반응전구체를 분사하는 스캔형 반응기와,
    상기 공정챔버를 지지하고, 상기 공정챔버가 위치한 공간을 진공상태로 유지시키는 진공챔버
    를 포함하는 스캔형 반응기를 가지는 원자층 증착기.
  2. 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 적어도 2개 이상의 공정챔버와,
    각 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에 반응전구체를 분사하는 스캔형 반응기와,
    상기 공정챔버를 상하 방향으로 적층된 형태로 지지하고, 상기 공정챔버가 적층된 공간을 진공상태로 유지시키는 진공챔버
    를 포함하는 스캔형 반응기를 가지는 원자층 증착기.
  3. 제 2 항에 있어서,
    상기 스캔형 반응기는,
    상부면이나 또는 하부면의 중앙 또는 측면에 상기 반응전구체를 분사하는 가스공급부를 구비하며, 상기 가스공급부와 일정 이격 거리를 가지며, 상기 분사된 반응전구체 중 상기 기판 영역에서 원료전구체와 반응하지 못한 반응전구체 또는 반응 부산물 또는 퍼지가스를 배기시키는 가스배기부를 구비하는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  4. 제 3 항에 있어서,
    상기 스캔형 반응기는,
    상부면이나 또는 하부면의 양쪽 측면 또는 측면 둘레부에 퍼지가스를 배출하는 퍼지가스 공급부를 더 포함하는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  5. 제 4 항에 있어서,
    상기 스캔형 반응기는,
    상기 기판 영역으로 상기 반응전구체를 분사시키는 시점부터 상기 퍼지가스 공급부를 통해 퍼지가스를 분사시켜 상기 스캔형 반응기와 상기 기판 사이에 상기 퍼지가스에 의한 가스장벽을 형성시키는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  6. 제 3 항에 있어서,
    상기 퍼지가스 공급부는,
    상기 스캔형 반응기 내에서 상기 가스공급부와 가스배기부보다 외곽에 형성되는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  7. 제 3 항에 있어서,
    상기 스캔형 반응기는,
    상부 또는 하부에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  8. 제 7 항에 있어서,
    상기 스캔형 반응기는,
    상기 기판 영역으로 상기 반응전구체를 분사시키는 시점에 상기 전극에 전원을 공급하여 상기 상부 또는 하부에 플라즈마를 발생시키는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  9. 제 2 항에 있어서,
    상기 스캔형 반응기는,
    각 공정챔버에 하나씩 구비되어 독립적으로 구동되거나, 다수의 스캔형 반응기를 연결하는 연결수단에 의해 연결되어 동시에 구동되는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  10. 제 9 항에 있어서,
    상기 스캔형 반응기는,
    상기 연결수단을 이동시키는 반응기 이송수단에 의해 이동되는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  11. 제 10 항에 있어서,
    상기 반응기 이송수단은,
    상기 진공챔버에 의해 지지되는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  12. 제 2 항에 있어서,
    상기 스캔형 반응기는,
    상기 진공챔버에 의해 지지되는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  13. 제 2 항에 있어서,
    상기 스캔형 반응기는,
    상기 기판 또는 기판의 박막에 대한 세정 또는 표면개질(treatment)를 위한 열처리 수단 또는 자외선 처리 수단을 포함하는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  14. 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 공정챔버와,
    상기 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 스캔형 반응기와,
    상기 공정챔버를 지지하고, 상기 공정챔버가 위치한 공간을 진공상태로 유지시키고 상기 비활성 반응전구체를 공급 및 배기하는 진공챔버
    를 포함하는 스캔형 반응기를 가지는 원자층 증착기.
  15. 서로 분리 또는 결합되는 상부 공정챔버와 하부 공정챔버로 구성되는 적어도 2개 이상의 공정챔버와,
    각 공정챔버의 외부의 기설정된 위치에 대기하며, 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동하면서 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 스캔형 반응기와,
    상기 공정챔버를 상하 방향으로 적층된 형태로 지지하고, 상기 공정챔버가 적층된 공간을 진공상태로 유지시키고, 상기 비활성 반응전구체를 공급 및 배기하는 진공챔버
    를 포함하는 스캔형 반응기를 가지는 원자층 증착기.
  16. 제 15 항에 있어서,
    상기 스캔형 반응기는,
    상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에서 플라즈마를 이용하여 상기 비활성 반응전구체 중 상기 기판 영역에 존재하는 비활성 반응전구체만을 선택적으로 활성화시켜 상기 원료전구체와 반응시키는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  17. 제 15 항에 있어서,
    상기 스캔형 반응기는,
    상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에 자외선 또는 적외선을 조사하여 상기 비활성 반응전구체 중 상기 기판 영역에 존재하는 비활성 반응전구체만을 선택적으로 활성화시켜 상기 원료전구체와 반응시키는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  18. 제 16 항에 있어서,
    상기 스캔형 반응기는,
    상부 또는 하부에 상기 플라즈마의 발생을 위한 전극을 구비하는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  19. 제 18 항에 있어서,
    상기 스캔형 반응기는,
    상기 기판으로 이동하는 시점에 상기 전극에 전원을 공급하여 상기 상부 또는 하부에 상기 플라즈마를 발생시키는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  20. 제 17 항에 있어서,
    상기 스캔형 반응기는,
    상부 또는 하부에 상기 자외선 또는 적외선의 조사를 위한 자외선 조사장치 또는 적외선 조사장치를 구비하는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  21. 제 20 항에 있어서,
    상기 스캔형 반응기는,
    상기 기판으로 이동하는 시점에 상기 자외선 또는 적외선 조사장치를 구동하여 상기 상부 또는 하부에 상기 자외선 또는 적외선을 조사하는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  22. 제 15 항에 있어서,
    상기 비활성 반응전구체는,
    플라즈마 또는 자외선 또는 적외선에 의하여 상기 원료전구체와 반응하는 물질인 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  23. 제 15 항에 있어서,
    상기 비활성 반응전구체는,
    상기 진공챔버내 일정한 압력을 유지하며 채워지는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  24. 제 15 항에 있어서,
    상기 비활성 반응전구체는,
    상기 기판에 대한 원료전구체 흡착 공정이 완료되어 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우, 상기 진공챔버로부터 상기 상부 공정챔버와 하부 공정챔버가 분리된 공간으로 확산 유입되는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  25. 제 15 항에 있어서,
    상기 비활성 반응전구체는,
    상기 공정챔버내로 상기 기판이 로딩 또는 언로딩되어 상기 상부 공정챔버와 상기 하부 공정챔버가 결합된 상태인 경우 상기 진공챔버내에 채워지는 것을 특징으로 하는 스캔형 반응기를 가지는 원자층 증착기.
  26. 진공챔버 내에 공정챔버가 위치되어 있는 원자층 증착장치에서 수행되는 원자층 증착 방법으로서,
    상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와,
    상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판상에 원료전구체를 흡착시키는 단계와,
    상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 기판 영역에서 반응전구체를 분사시키는 단계와,
    상기 기판 영역에 분사된 반응전구체와 상기 원료전구체를 반응시키는 단계
    를 포함하는 스캔형 반응기를 이용한 원자층 증착 방법.
  27. 진공챔버 내에 적어도 2개 이상의 공정챔버가 적층되어 있는 적층형 원자층 증착장치에서 수행되는 원자층 증착 방법으로서,
    상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와,
    상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판상에 원료전구체를 흡착시키는 단계와,
    상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 기판 영역에서 반응전구체를 분사시키는 단계와,
    상기 기판 영역에 분사된 반응전구체와 상기 원료전구체를 반응시키는 단계
    를 포함하는 스캔형 반응기를 이용한 원자층 증착 방법.
  28. 제 27 항에 있어서,
    상기 분사시키는 단계는,
    상기 원료전구체의 흡착 후, 상기 상부 공정챔버와 하부 공정챔버를 분리시키는 단계와,
    상기 스캔형 반응기를 상기 상부 공정챔버와 하부 공정챔버 사이의 공간으로 이동시키면서 상기 기판 영역에서 반응전구체를 분사시키는 단계
    를 포함하는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  29. 제 28 항에 있어서,
    상기 분사시키는 단계에서,
    상기 스캔형 반응기를 상기 하부 공정챔버의 기판위의 기설정된 높이에서 수평 방향으로 이동시키면서 상기 상부 공정챔버 또는 하부 공정챔버에 탑재된 기판 영역에서 반응전구체를 분사하는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  30. 제 28 항에 있어서,
    상기 분사시키는 단계에서,
    상기 스캔형 반응기를 통해 상기 반응전구체를 분사시키는 시점에 상기 스캔형 반응기의 양쪽 측면 또는 측면 둘레부에 퍼지가스를 분사시켜 상기 스캔형 반응기와 상기 기판 사이에 상기 퍼지가스에 의한 가스장벽을 형성시키는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  31. 제 28 항에 있어서,
    상기 분사시키는 단계에서,
    상기 스캔형 반응기를 통해 상기 반응전구체를 분사시키는 시점에 상기 스캔형 반응기의 상부 또는 하부에 플라즈마를 발생시키는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  32. 제 28 항에 있어서,
    상기 분사시키는 단계에서,
    상기 스캔형 반응기를 통해 상기 반응전구체를 분사시키는 시점에 상기 스캔형 반응기의 양쪽 측면 또는 측면 둘레부에 형성된 배기부를 통해 상기 스캔형 반응기와 상기 기판 사이의 미반응 반응전구체 또는 반응 부산물 또는 퍼지가스를 배기시키는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  33. 제 27 항에 있어서,
    상기 스캔형 반응기는,
    상기 진공챔버에 의해 지지되며, 상기 공정챔버의 외부의 상기 기설정된 위치에서 대기하는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  34. 제 27 항에 있어서,
    상기 스캔형 반응기는,
    각 공정챔버에 하나 이상 구비되어 독립적으로 구동되거나, 다수의 스캔형 반응기를 연결하는 연결수단에 의해 연결되어 동시에 구동되는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  35. 진공챔버 내에 공정챔버가 위치되는 원자층 증착장치에서 수행되는 원자층 증착 방법으로서,
    상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와,
    상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판 영역에 원료전구체를 흡착시키는 단계와,
    상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 단계
    를 포함하는 스캔형 반응기를 이용한 원자층 증착 방법.
  36. 진공챔버 내에 적어도 2개 이상의 공정챔버가 적층되어 있는 적층형 원자층 증착장치에서 수행되는 원자층 증착 방법으로서,
    상기 공정챔버내에 기판과 마스크가 로딩되는 경우 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와,
    상기 밀폐된 반응공간에서 원자층 증착의 일부 공정을 수행하여 상기 기판상에 원료전구체를 흡착시키는 단계와,
    상기 원료전구체의 흡착 후, 스캔형 반응기를 이용하여 상기 공정챔버내 유입된 비활성 반응전구체를 상기 기판 영역에서 상기 원료전구체와 반응시키는 단계
    를 포함하는 스캔형 반응기를 이용한 원자층 증착 방법.
  37. 제 36 항에 있어서,
    상기 반응시키는 단계는,
    상기 원료전구체의 흡착 후, 상기 상부 공정챔버와 하부 공정챔버를 분리시키는 단계와,
    상기 스캔형 반응기를 상기 상부 공정챔버 또는 하부 공정챔버의 기판상으로 이동시키는 단계와,
    상기 스캔형 반응기에서 플라즈마 또는 자외선 또는 적외선을 이용하여 상기 비활성 반응전구체를 활성화시켜 상기 기판 영역에서 상기 원료전구체와 반응시키는 단계
    를 포함하는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  38. 제 37 항에 있어서,
    상기 반응시키는 단계에서,
    상기 플라즈마 또는 자외선 또는 적외선을 이용하여 상기 공정챔버내 유입된 비활성 반응전구체 중 상기 기판 영역에 존재하는 비활성 반응전구체만을 선택적으로 활성화시켜 상기 원료전구체와 반응시키는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  39. 제 37 항에 있어서,
    상기 반응시키는 단계에서,
    상기 스캔형 반응기를 상기 기판으로 이동시키는 시점에 상기 스캔형 반응기를 통해 상기 기판 영역에 플라즈마를 발생시켜 상기 비활성 반응전구체를 활성화시키는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  40. 제 37 항에 있어서,
    상기 반응시키는 단계에서,
    상기 스캔형 반응기를 상기 기판으로 이동시키는 시점에 상기 스캔형 반응기를 통해 상기 기판 영역에 자외선 또는 적외선을 조사하여 상기 비활성 반응전구체를 활성화시키는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  41. 제 36 항에 있어서,
    상기 비활성 반응전구체는,
    플라즈마 또는 자외선 또는 적외선에 의하여 상기 원료전구체와 반응하는 물질인 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  42. 제 36 항에 있어서,
    상기 비활성 반응전구체는,
    상기 기판에 대한 원료전구체 흡착 공정이 완료되어 상기 상부 공정챔버와 하부 공정챔버가 분리되는 경우, 상기 진공챔버로부터 상기 상부 공정챔버와 하부 공정챔버가 분리된 공간으로 확산 유입되는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  43. 제 36 항에 있어서,
    상기 비활성 반응전구체는,
    상기 공정챔버내로 상기 기판이 로딩 또는 언로딩되어 상기 상부 공정챔버와 상기 하부 공정챔버가 결합된 상태인 경우 상기 진공챔버내에 채워지는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
  44. 제 36 항에 있어서,
    상기 스캔형 반응기는,
    상기 진공챔버에 의해 지지되며, 상기 공정챔버의 외부의 상기 기설정된 위치에서 대기하는 것을 특징으로 하는 스캔형 반응기를 이용한 원자층 증착 방법.
PCT/KR2014/008196 2013-09-16 2014-09-02 스캔형 반응기를 가지는 원자층 증착 장치 및 방법 WO2015037858A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480056689.8A CN105849309A (zh) 2013-09-16 2014-09-02 具有扫描型反应器的原子层沉积设备及其方法
JP2016515435A JP2016536451A (ja) 2013-09-16 2014-09-02 走査型反応器を有する原子層蒸着装置及びこれを利用した原子層蒸着方法
US15/022,457 US20160251759A1 (en) 2013-09-16 2014-09-02 Atomic layer deposition device having scan-type reactor and method of depositing atomic layer using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130111026A KR101579527B1 (ko) 2013-09-16 2013-09-16 스캔형 반응기를 가지는 원자층 증착 장치 및 방법
KR10-2013-0111026 2013-09-16

Publications (1)

Publication Number Publication Date
WO2015037858A1 true WO2015037858A1 (ko) 2015-03-19

Family

ID=52665915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008196 WO2015037858A1 (ko) 2013-09-16 2014-09-02 스캔형 반응기를 가지는 원자층 증착 장치 및 방법

Country Status (5)

Country Link
US (1) US20160251759A1 (ko)
JP (1) JP2016536451A (ko)
KR (1) KR101579527B1 (ko)
CN (1) CN105849309A (ko)
WO (1) WO2015037858A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790619A (zh) * 2016-09-22 2019-05-21 Cic纳米技术公司 原子层沉积室
KR20180096853A (ko) * 2017-02-20 2018-08-30 삼성디스플레이 주식회사 박막 증착 장치
KR102076467B1 (ko) * 2017-12-19 2020-02-13 주식회사 테스 박막증착장치
CN111383883B (zh) * 2018-12-27 2021-09-21 中国科学院光电技术研究所 超大面积扫描式反应离子刻蚀机及刻蚀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070097791A (ko) * 2006-03-29 2007-10-05 주식회사 제이씨텍 Fpd소자 제조용 박막증착 및 처리 설비
KR20090081471A (ko) * 2008-01-24 2009-07-29 삼성전자주식회사 원자층 증착설비 및 그의 원자층 증착방법
KR20110092825A (ko) * 2010-02-10 2011-08-18 세메스 주식회사 플라즈마 처리 장치 및 이를 이용한 방법
KR20120140627A (ko) * 2011-06-21 2012-12-31 도쿄엘렉트론가부시키가이샤 일괄식 처리 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776054B2 (ja) * 2000-02-04 2011-09-21 株式会社デンソー 原子層成長による薄膜形成方法
US7270724B2 (en) * 2000-12-13 2007-09-18 Uvtech Systems, Inc. Scanning plasma reactor
US8287647B2 (en) * 2007-04-17 2012-10-16 Lam Research Corporation Apparatus and method for atomic layer deposition
US8758512B2 (en) * 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
JPWO2012039310A1 (ja) * 2010-09-22 2014-02-03 株式会社アルバック 有機el素子の製造方法、成膜装置、有機el素子
US8771791B2 (en) 2010-10-18 2014-07-08 Veeco Ald Inc. Deposition of layer using depositing apparatus with reciprocating susceptor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070097791A (ko) * 2006-03-29 2007-10-05 주식회사 제이씨텍 Fpd소자 제조용 박막증착 및 처리 설비
KR20090081471A (ko) * 2008-01-24 2009-07-29 삼성전자주식회사 원자층 증착설비 및 그의 원자층 증착방법
KR20110092825A (ko) * 2010-02-10 2011-08-18 세메스 주식회사 플라즈마 처리 장치 및 이를 이용한 방법
KR20120140627A (ko) * 2011-06-21 2012-12-31 도쿄엘렉트론가부시키가이샤 일괄식 처리 장치

Also Published As

Publication number Publication date
KR101579527B1 (ko) 2015-12-22
CN105849309A (zh) 2016-08-10
US20160251759A1 (en) 2016-09-01
KR20150031613A (ko) 2015-03-25
JP2016536451A (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2015037858A1 (ko) 스캔형 반응기를 가지는 원자층 증착 장치 및 방법
WO2017030414A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2009102133A2 (ko) 배치형 원자층 증착 장치
WO2013147481A1 (ko) 선택적 에피택셜 성장을 위한 장치 및 클러스터 설비
WO2017131404A1 (ko) 기판처리장치
WO2014030973A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013095030A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013180451A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013154297A1 (ko) 히터 승강형 기판 처리 장치
WO2013073889A1 (ko) 보조가스공급포트를 포함하는 기판 처리 장치
WO2015072691A1 (ko) 원자층증착 장치 및 방법
WO2015016526A1 (ko) 기판 처리 장치
WO2013180453A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2014119971A1 (ko) 박막증착장치
WO2019083261A1 (ko) 증착 장치
WO2011002204A2 (ko) 라미네이팅 시스템 및 방법
WO2014007572A1 (ko) 기판 처리 장치
WO2015034208A1 (ko) 적층형 원자층 증착 장치 및 방법
KR20220034304A (ko) 베이크 장치 및 기판 처리 장치
WO2011065776A2 (ko) 트레이와 이를 이용한 기판 처리 장치, 및 트레이의 제조 방법
JP3804913B2 (ja) 半導体装置の製造方法および半導体装置の製造装置
WO2015142131A1 (ko) 멀티형 증착 장치 및 이를 이용한 박막 형성 방법
WO2016010185A1 (ko) 박막 증착 장치 및 방법
WO2021206351A1 (ko) 기판 처리 장치 및 방법
WO2013191469A1 (ko) 원자층 증착 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
WWE Wipo information: entry into national phase

Ref document number: 15022457

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14844224

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC (EPO FORM 1205A 03-08-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14844224

Country of ref document: EP

Kind code of ref document: A1